L. Figure and F. , représente un champ scalaire généré à partir d'un même spectre pour des niveaux niveaux de ségrégations S ?. Le champ scalaire est ensuite lissé en résolvant l'équation de diffusion, jusqu'à ce que les gradients scalaires se soient bien résolus sur le maillage

J. H. Agui, G. Briassulis, and Y. Andreopoulos, Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields, Journal of Fluid Mechanics, vol.524, pp.143-195, 2005.

M. Al-marouf and R. Samtaney, A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry, Journal of Computational Physics, vol.337, pp.339-378, 2017.

Y. Andreopoulos, J. H. Agui, and G. Briassulis, Shock wave-turbulence interactions, Annual Review of Fluid Mechanics, vol.32, pp.309-345, 2000.

P. A-n-g-o-t, C. H. Ru-n-e-au, and P. , Fa b r i e : A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, pp.497-520, 1999.

E. A-rq-u-i-s and J. P. Ltag-i-ro-n-e, Sur les conditions hydrodynamiques au voisinage d'une interface milieu fluide-milieu poreux: application à la convection naturelle. CR Acad. Sci, vol.II, pp.1-4, 1984.

. T. Wm, A. R. A-s-h-u-r-s-t, R. M. K-e-r-s-t-e-i-n, and C. H. K-e-r-r, G i b s o n : Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. The Physics of Fluids, vol.30, pp.2343-2353, 1987.

K. E. , Atk in son : An introduction to numerical analysis, 2008.

B. Auvity, S. Barre, and J. P. , Bonnet : Experimental study of a normal shock/homogeneous turbulence interaction, ASME 2002 Joint US-European Fluids Engineering Division Conference, pp.1089-1095, 2002.

, C r a m e r : Suppression of shock-induced separation in fluids having large bulk viscosities, Journal of Fluid Mechanics, vol.756, 2014.

A. B. , Ba i l e y et J. H i at t : Sphere drag coefficients for a broad range of Mach and Reynolds numbers, AIAA Journal, vol.10, pp.1436-1440, 1972.

D. S. Balsara and C. W. Shu, Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, Journal of Computational Physics, vol.160, pp.405-452, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01634261

S. Ba-r-r-e, D. A-l-e-m, and J. P. , Experimental study of a normal shock/homogeneous turbulence interaction, AIAA Journal, vol.34, 1996.

G. K. , Batc hel or : An Introduction to Fluid Dynamics, 2000.

M. Bau-m and T. , Po i n s o t et D. Th é v e n i n : Accurate boundary conditions for multicomponent reactive flows, Journal of Computational Physics, vol.116, pp.247-261, 1995.

R. Betchov, An inequality concerning the production of vorticity in isotropic turbulence, Journal of Fluid Mechanics, vol.1, pp.497-504, 1956.

R. P. Beyer and R. J. Leveque, Analysis of a one-dimensional model for the immersed boundary method, SIAM Journal on Numerical Analysis, vol.29, pp.332-364, 1992.

G. Billet, V. Giovangigli, and G. D. Gassowski, Impact of Volume Viscosity on a Shock-HydrogenBubble Interaction, vol.12, pp.221-248, 2008.

F. S. , Shock-wave shapes around spherical-and cylindrical-nosed bodies, Journal of Spacecraft and Rockets, vol.4, pp.822-823, 1967.

G. , R e y n o l d s : Compressibility effects on the growth and structure of homogeneous turbulent shear flow, Journal of Fluid Mechanics, vol.256, pp.443-485, 1993.

, Simulation of the Cascade-Gust Interaction Problem Using a High-Order Immersed Boundary Method, 16th AIAA/CEAS Aeroacoustics Conference, p.3889, 2010.

C. Bogey, Calcul direct du bruit aérodynamique et validation de modèles acoustiques hybrides, 2000.

O. Boiron, G. Chiavassa, and R. Donat, A high-resolution penalization method for large Mach number flows in the presence of obstacles, Computers & Fluids, vol.38, pp.703-714, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00259907

O. N. and S. E. , E l g h o b a s h i et R. Z h o n g : On the alignment of strain, vorticity and scalar gradient in turbulent, buoyant, nonpremixed flames, Physics of Fluids, vol.10, pp.2260-2267, 1998.

I. Borazjani, L. Ge, and F. Sotiropoulos, Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies, Journal of Computational physics, vol.227, pp.7587-7620, 2008.
DOI : 10.1016/j.jcp.2008.04.028

URL : http://europepmc.org/articles/pmc2963478?pdf=render

R. Borghi, Turbulent combustion modelling, Progress in Energy and Combustion Science, vol.14, pp.245-292, 1988.
DOI : 10.1016/0360-1285(88)90015-9

R. , B o ua l i et A. M u r a : Direct numerical simulations of shock-scalar mixing interaction, Proceedings of 25th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS). ICDERS, 2017.

R. , Evolution of scalar and velocity dynamics in planar shock-turbulence interaction. Shock Waves, 2018.

R. Boukharfane, B. Bouvelle, Z. Bouali, and A. Mura, An Immersed Boundary Method to Simulate Compressible Reactive Flows featuring Shock-Wave Interactions with Three-Dimensional Solid Obstacles, Proceedings of 25th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS)

, ICDERS, 2015.

R. , M a r t i n e z-F e r r e r, A. M u r a et V. G i ova n g i g l i : On the role of bulk viscosity in compressible reactive shear layer developments, 2018.

R. B. R-i-b-e-i-ro and Z. , B o ua l i et A. M u r a : A combined ghost-point-forcing/directforcing immersed boundary method (IBM) for compressible flow simulations, Computers & Fluids, vol.162, pp.91-112, 2018.

G. Brethouwer, J. C. Unt, and F. T. , Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence, Journal of Fluid Mechanics, vol.474, pp.193-225, 2003.

T. T. B-r-i-n-g-l-e-y and C. , P e s k i n : Validation of a simple method for representing spheres and slender bodies in an immersed boundary method for Stokes flow on an unbounded domain, Journal of Computational Physics, vol.227, pp.5397-5425, 2008.

A. E. Bryson and R. W. , Gross : Diffraction of strong shocks by cones, cylinders, and spheres, Journal of Fluid Mechanics, vol.10, pp.1-16, 1961.

K. A. Buc-h and W. J. , Dah m : Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. Sc ? 1, Journal of Fluid Mechanics, vol.317, pp.21-71, 1996.

K. A. Buc-h and W. J. , Dah m : Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. Sc ? 1, Journal of Fluid Mechanics, vol.364, pp.1-29, 1998.

R. Buttay, Etude de l'interaction choc/turbulence/combustion en écoulement cisaillé réactif: analyse des jets réactifs fortement sous-détendus, 2015.

R. B-u-t-tay and G. , L e h na s c h et A. M u r a : Turbulent mixing and molecular transport in highly underexpanded hydrogen jets, International Journal of Hydrogen Energy, 2018.

O. R. B-u-x-t-o-n and B. , G a na pat h i s u b r a m a n i : Amplification of enstrophy in the far field of an axisymmetric turbulent jet, Journal of Fluid Mechanics, vol.651, pp.483-502, 2010.

S. , Mécanique des fluides. DUNOD, 1990.

, Thermodynamics: An Engineering Approach, 2014.

N. Chakraborty, M. Champion, A. Mura, and N. Swaminathan, Scalar dissipation rate approach, Turbulent Premixed Flames 1st Edition, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00471444

S. M. , On the shock-vortex interaction in Schardin's problem, Shock Waves, vol.10, pp.333-343, 2000.

C. J. , , vol.23, 2000.

, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, 1970.

, Pa r k : The Mathematical Theory of Non-Uniform Gases, vol.30, pp.389-389, 1962.

P. Chassaing, Turbulence en mécanique des fluids: Analyse du phénomène en vue de sa modélisation à l'usage de l'ingénieur, 2000.

P. Ha-ssain-g, Mécanique des fluides. Cepadues éditions, 2010.

A. C-h-au-d-h-u-r-i and A. , H a d ja d j et A. C h i n nay ya : On the use of immersed boundary methods for shock/obstacle interactions, Journal of Computational Physics, vol.230, pp.1731-1748, 2011.

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, and G. B. , Northam : Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame, Combustion and Flame, vol.99, issue.1, pp.157-173, 1994.

J. J. Choi, Hybrid spectral difference/embedded finite volume method for conservation laws, Journal of Computational Physics, vol.295, pp.285-306, 2015.

M. S. Chong, A. E. Perry, and B. J. Cantwell, A general classification of three-dimensional flow fields, Physics of Fluids A : Fluid Dynamics, vol.2, pp.765-777, 1990.

S. I-n and S. D-i-o-t-et-r.-l-o-u-b-e-r-e, A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD), Journal of Computational Physics, vol.230, pp.4028-4050, 2011.

D. K. Clarke, H. A. Hassan, and M. D. Salas, Euler calculations for multielement airfoils using Cartesian grids, AIAA Journal, vol.24, pp.353-358, 1986.

M. S. C-r-a-m-e-r, Numerical estimates for the bulk viscosity of ideal gases, Physics of Fluids, vol.24, issue.6, p.66102, 2012.

, Transport Properties of Multicomponent Gas Mixtures, vol.17, pp.550-555, 1949.

H. Dammertz and A. Keller, Improving ray tracing precision by object space intersection computation, Interactive Ray Tracing, pp.25-31, 2006.

T. Davidovi?davidovi?davidovi?, T. Engelhardt, I. Georgiev, P. Slusallek, and C. Dachsbacher, 3D rasterization: a bridge between rasterization and ray casting, pp.201-208, 2012.

P. , Dav id son : Turbulence: an introduction for scientists and engineers, 2015.

T. D-e-k-a-r-m-a-n-et-l.-h-o-wa-r-t-h, On the statistical theory of isotropic turbulence, In Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.164, pp.192-215, 1938.

M. D. D-e-tu-l-l-i-o and P. , An immersed boundary method for compressible flows using local grid refinement, Journal of Computational Physics, vol.225, pp.2098-2117, 2007.

P. J. Diamessis and K. K. Nomura, Interaction of vorticity, rate-of-strain, and scalar gradient in stratified homogeneous sheared turbulence, Physics of Fluids, vol.12, pp.1166-1188, 2000.

H. D-i-n-g, C. S-h-u, K. S. Ye-o, and D. , Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods, International Journal for Numerical methods in Fluids, vol.53, pp.305-332, 2007.

D. A. D-o-n-z-i-s, Similarity scaling in shock-turbulence interactions, APS Division of Fluid Dynamics Meeting Abstracts, 2010.

D. A. , on zi s : Shock structure in shock-turbulence interactions, Physics of Fluids, vol.24, p.126101, 2012.

E. D-r-e-s-s-e-l-h-au-s and M. Ta-b-o-r, The kinematics of stretching and alignment of material elements in general flow fields, Journal of Fluid Mechanics, vol.236, pp.415-444, 1992.

D. D-r-i-k-a-k-i-s and D. , Computation of non-stationary shockwave/cylinder interaction using adaptive-grid methods, Journal of Fluids and Structures, vol.11, pp.665-692, 1997.

J. and C. W. , A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework, Applied Numerical Mathematics, vol.95, pp.173-198, 2015.

P. D-u-p-o-n-t, C. Da-d, J. P. A-r-d-i-s-s-o-n-e, and J. , Aerospace Science and Technology, vol.9, pp.561-572, 2005.

J. P. D-u-s-sau-g-e, P. D-u-p-o-n-t, and J. , D e b i è v e : Unsteadiness in shock wave boundary layer interactions with separation, Aerospace Science and Technology, vol.10, pp.85-91, 2006.

J. L. E-l-l-z-e-y, M. R. H-e-n-n-e-k-e, J. M. P-i-c-o-n-e, and E. S. , The interaction of a shock with a vortex: shock distortion and the production of acoustic waves, Physics of Fluids, vol.7, pp.172-184, 1995.

G. E. , E l s i n g a et I. M a ru s i c : Universal aspects of small-scale motions in turbulence, Journal of Fluid Mechanics, vol.662, pp.514-539, 2010.

G. Emanuel, Bulk viscosity of a dilute polyatomic gas, Physics of Fluids A : Fluid Dynamics, vol.2, issue.12, pp.2252-2254, 1990.

G. Emanuel, Effect of bulk viscosity on a hypersonic boundary layer, Physics of Fluids A : Fluid Dynamics, vol.4, issue.3, pp.491-495, 1992.

A. F. E-m-e-r-y, An evaluation of several differencing methods for inviscid fluid flow problems, Journal of Computational Physics, vol.2, pp.306-331, 1968.

G. E-r-l-e-b-ac-h-e-r, M. Y. H-u-s-sa-i-n-i, and H. O. , K r e i s s et S. S a r k a r : The analysis and simulation of compressible turbulence, Theoretical and Computational Fluid Dynamics, vol.2, pp.73-95, 1990.

A. Ern and V. Giovangigli, Multicomponent Transport Algorithms, vol.24, 1994.

A. Ern and V. Giovangigli, Fast and Accurate Multicomponent Transport Property Evaluation, Journal of Computational Physics, vol.120, issue.1, pp.105-116, 1995.

A. E-r-n-et-v.-g-i-ova-n-g-i-g-l-i, eglib: a general-purpose fortran library for multicomponent transport property evaluation. Rapport technique, Manual of EGLIB Version, 2004.

D. Fab-re, L. Qu-in, and J. S-es-te-rhe-nn, Linear interaction of a cylindrical entropy spot with a shock, Physics of Fluids, vol.13, pp.2403-2422, 2001.

E. A. Fa-d-l-u-n and R. , Ve r z i c c o, P. O r l a n d i et J. M o h d-Yu s o f : Combined immersed-boundary finitedifference methods for three-dimensional complex flow simulations, Journal of Computational Physics, vol.161, pp.35-60, 2000.

R. P. F-e-d-k-i-w and B. , M e r r i m a n et S. O s h e r : Numerical methods for a mixture of thermally perfect and/or calorically perfect gaseous species with chemical reactions, 1996.

R. P. , B. Er-ri-man, and S. , High accuracy numerical methods for thermally perfect gas flows with chemistry, Journal of Computational Physics, vol.132, pp.175-190, 1997.

, Numerical simulation of a compressible homogeneous, 1981.

J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, American Journal of Physics, vol.41, issue.4, pp.601-603, 1973.

B. F-o-r-n-b-e-r-g, Steady viscous flow past a sphere at high Reynolds numbers, Journal of Fluid Mechanics, vol.190, pp.471-489, 1988.

G. Ru and G. , Direct numerical simulations of the impact of high turbulence intensities and volume viscosity on premixed methane flames, Journal of Combustion, 2011.

S. Fu and Q. Li, Numerical simulation of compressible mixing layers, International Journal of Heat and Fluid Flow, vol.27, pp.895-901, 2006.

T. F-u-j-i-m-o-r-i, M. , J. , and H. , K o b aya sh i et T. N i i o k a : Flame-holding behind a wedge by incident shock waves, Iutam Symposium on Combustion in Supersonic Flows, pp.95-110, 1997.

, s : Investigation of threedimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry, Journal of Fluid Mechanics, vol.598, pp.141-175, 2008.

A. , Etude et modélisation de la structure fine des champs scalaires en écoulement turbulent, 2006.

R. G-h-i-a-s and R. M-i-t-ta-l-et-t.-l-u-n-d, A non-body conformal grid method for simulation of compressible flows with complex immersed boundaries, 42nd AIAA Aerospace Sciences Meeting and Exhibit, p.80, 2004.

R. G. Gilbert, K. Luther, and J. Troe, Theory of Thermal Unimolecular Reactions in the Fall-off Range. II. Weak Collision Rate Constants, Berichte der Bunsengesellschaft für Physikalische Chemie, vol.87, issue.2, pp.169-177, 1983.

E. Gledzer, On the Taylor hypothesis corrections for measured energy spectra of turbulence, Physica D : Nonlinear Phenomena, vol.104, pp.163-183, 1997.

R. G-o-m-e-s-f-e, Va s s i l i c o s : Evolution of the velocitygradient tensor in a spatially developing turbulent flow, Journal of Fluid Mechanics, vol.756, pp.252-292, 2014.

, Effect of bulk viscosity on Couette flow, vol.5, pp.1267-1268, 1993.

, Mélange local et comportement non-stationnaire du gradient d'un scalaire passif, 2009.

M. Gon and P. Lez, Par an tho ën : Influence of vorticity alignment upon scalar gradient production in three-dimensional, isotropic turbulence, Journal of Physics : Conference Series, vol.318, p.52041, 2011.

S. G-o-r-d-o-n-et-b.-m-c-b-r-i-d-e, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations, 1976.

S. Gottlieb and C. W. Shu, Total variation diminishing Runge-Kutta schemes. Mathematics of computation of the, vol.67, pp.73-85, 1998.
DOI : 10.1090/s0025-5718-98-00913-2

F. Grasso and S. Pirozzoli, Shock-wave-vortex interactions: shock and vortex deformations, and sound production, Theoretical and Computational Fluid Dynamics, vol.13, pp.421-456, 2000.
DOI : 10.1007/s001620050121

R. E. Graves and B. M. Argrow, Bulk viscosity: past to present, Journal of Thermophysics and Heat Transfer, vol.13, issue.3, pp.337-342, 1999.
DOI : 10.2514/2.6443

C. J. G-r-e-e-n-s-h-i-e-l-d-s, H. G. We-l-l-e-r, L. G-a-s-pa-r-i-n-i, and J. , R e e s e : Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows, International Journal for Numerical Methods in Fluids, vol.63, pp.1-21, 2010.

H. The and . Group, Hierarchical Data Format, vol.5, 1997.

N. Ru-b-e and E. Tay-l-o-r-et-p.-m-a-r-t-i-n, Numerical investigation of shock-wave/isotropic turbulence interaction, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p.480, 2011.

M. , B. L-Ü-t-h-i, A. L-i-b-e-r-z-o-n, and A. , T s i n o b e r et W. K i n z e l b ac h : On the evolution of material lines and vorticity in homogeneous turbulence, Journal of Fluid Mechanics, vol.533, pp.339-359, 2005.

G. M. G-u-l-d-b-e-r-g and P. Wa-ag-e, Ueber die Chemische Affinität. §1. Einleitung. Advanced Synthesis & Catalysis, vol.19, pp.69-114, 1879.

G. G-u-l-i-t-s-k-i, M. K-h-o-l-m-ya-n-s-k-y, W. K-i-n-z-e-l-b-ac-h, B. L-Ü-t-h-i, and A. , T s i n o b e r et S. Yo r i s h : Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 1. Facilities, methods and some general results, Journal of Fluid Mechanics, vol.589, pp.57-81, 2007.

G. G-u-l-i-t-s-k-i, M. K-h-o-l-m-ya-n-s-k-y, W. K-i-n-z-e-l-b-ac-h, B. L-Ü-t-h-i, and A. , T s i n o b e r et S. Yo r i s h : Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 2. Accelerations and related matters, Journal of Fluid Mechanics, vol.589, pp.83-102, 2007.

G. G-u-l-i-t-s-k-i, M. K-h-o-l-m-ya-n-s-k-y, W. K-i-n-z-e-l-b-ac-h, B. L-Ü-t-h-i, and A. , T s i n o b e r et S. Yo r i s h : Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 3. Temperature and joint statistics of temperature and velocity derivatives, Journal of Fluid Mechanics, vol.589, pp.103-123, 2007.

J. , H a a s et B. S t u r t e va n t : Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, Journal of Fluid Mechanics, vol.181, pp.41-76, 1987.

A. Ja-d-j-et-a.-k-u-d-r-yav-t-s-e-v, Computation and flow visualization in high-speed aerodynamics, Journal of Turbulence, vol.6, p.16, 2005.

F. E. , F. S. L-i-e-n, and A. , S t ro n g : A Cartesian grid method with transient anisotropic adaptation, Journal of Computational Physics, vol.179, issue.2, pp.469-494, 2002.

, Direct numerical simulation of a Mach 2 shock interacting with isotropic turbulence, Applied Scientific Research, vol.54, pp.205-221, 1995.

A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, vol.71, pp.231-303, 1987.

X. and L. S. , Lattice Boltzmann model for the incompressible Navier-Stokes equation, Journal of Statistical Physics, vol.88, pp.927-944, 1997.

P. W. Hermans, L. J. Hermans, and J. J. , Beenakker : A survey of experimental data related to the non-spherical interaction for the hydrogen isotopes and their mixture with noble gases, Physica A : Statistical Mechanics and its Applications, vol.122, issue.1-2, pp.173-211, 1983.

D. J. Hill and D. I. , Pullin : Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks, Journal of Computational Physics, vol.194, pp.435-450, 2004.

J. O. , , 1959.

K. H-o-r-i-u-t-i, A classification method for vortex sheet and tube structures in turbulent flows, Physics of Fluids, vol.13, pp.3756-3774, 2001.

H. Huh and J. F. Driscoll, Shock-wave-enhancement of the mixing and the stability limits of supersonic hydrogen-air jet flames, Symposium (International) on Combustion, vol.26, pp.2933-2939, 1996.

, Local grid refinement for an immersed boundary RANS solver, 42nd AIAA Aerospace Sciences Meeting and Exhibit, p.586, 2004.

G. R-i-n-o and R. , Ve r z i c c o : Immersed boundary technique for turbulent flow simulations, Applied Mechanics Reviews, vol.56, pp.331-347, 2003.

O. I-n-o-u-e and Y. , H at t o r i : Sound generation by shock-vortex interactions, Journal of Fluid Mechanics, vol.380, pp.81-116, 1999.

S. A. Sa-e-v and D. A. , Ly s e n k o : Testing of the fluent package in calculation of supersonic flow in a step channel, Journal of Engineering Physics and Thermophysics, vol.77, pp.857-860, 2004.

F. A. B-e-r-i and D. , Characteristics of chemically reacting compressible homogeneous turbulence, vol.12, pp.1189-1209, 2000.

S. Jamme, J. B. Cazalbou, F. Torres, and P. Chassaing, Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence. Flow, Turbulence and Combustion, vol.68, pp.227-268, 2002.

, C r e s p o et P. C h a s sa i n g : A study of sheared turbulence/shock interaction: velocity fluctuations and enstrophy behaviour, Turbulence and Interactions, pp.107-114, 2014.

S. M-m-e and F. , To r r e s, J. B. C a z a l b o u et P. C h a s sa i n g : Parallel direct numerical simulation of shock-turbulence interaction, Parallel Computational Fluid Dynamics, pp.163-170, 1998.

J. Ng and F. Us-sa-in, On the identification of a vortex, Journal of Fluid Mechanics, vol.285, pp.69-94, 1995.

J. Jeong, F. Hussain, W. Schoppa, and J. Kim, Coherent structures near the wall in a turbulent channel flow, Journal of Fluid Mechanics, vol.332, pp.185-214, 1997.

J. Jiménez, Kinematic alignment effects in turbulent flows, Physics of Fluids A : Fluid Dynamics, vol.4, pp.652-654, 1992.

J. Jiménez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, The structure of intense vorticity in isotropic turbulence, Journal of Fluid Mechanics, vol.255, pp.65-90, 1993.

W. P. Jones and P. Musonge, Closure of the Reynolds stress and scalar flux equations. The Physics of Fluids, vol.31, pp.3589-3604, 1988.

D. Ic, Computations of phase change, 1996.

D. Juric and G. Tryggvason, A front-tracking method for dendritic solidification, Journal of Computational Physics, vol.123, pp.127-148, 1996.

J. , An interferometric investigation of the diffraction of a planar shock wave over a semicircular cylinder, NASA STI/Recon Technical Report N, vol.89, 1988.

, Intermittency and Reynolds number, vol.10, pp.910-921, 1998.

R. J. Kee, G. Dixon-lewis, J. Warnatz, M. E. Coltrin, and J. A. , Miller : A Fortran Computer Code Package for the evaluation of Gas-phase Multicomponent Transport Properties, 1986.

R. J. K-e-e, J. F. , M. D. S-m-o-o-k-e, and J. , M i l l e r : A FORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames, 1986.

R. J. Kee, F. M. Rupley, E. Meeks, and J. A. , Miller : chemkin-III: a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics, 1996.

R. M. , Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence, Journal of Fluid Mechanics, vol.153, pp.31-58, 1985.

H. and S. , Evolution of the shock front and turbulence structures in the shock/turbulence interaction, D. S p i n k s, éditeur : Studying Turbulence Using Numerical Simulation Databases, 1992.

K. Da and S. A. , O r s z ag : Energy and spectral dynamics in forced compressible turbulence, Journal of Scientific Computing, vol.5, issue.2, pp.85-125, 1990.

S. Kobayashi and T. Adachi, Experiment on the stability of oblique shock reflection in the dual-solution regime, Proceedings of the 21-st International Shock Interation Symposium, pp.26-29, 2014.

V. K. K-o-n-y-u-k-h-ov, V. V. K-o-ro-g-o-d, and V. I. , Ti k h o n ov : A phase method of measuring the vibrational relaxation time for CO 2 molecules, Journal of Applied Spectroscopy, vol.10, issue.2, pp.174-176, 1969.

L. S. , K ova sznay : Turbulence in supersonic flow, Journal of the Aeronautical Sciences, vol.20, pp.657-674, 1953.

G. K-u-m-a-r, S. S. G-i-r-i-m-a-j-i, and J. , K e r i m o : weno-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence, Journal of Computational Physics, vol.234, pp.499-523, 2013.

A. K-u-r-g-a-n-ov and G. P-e-t-rova, Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws, Numerical Methods for Partial Differential Equations, vol.21, pp.536-552, 2005.

M. C. and C. S. , P e s k i n : An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, Journal of Computational Physics, vol.160, pp.705-719, 2000.

L. D. Dau and E. , L if sc hit z : Statistische Physik, 1987.

J. L-a-r-s-s-o-n and I. , L e l e : Reynolds-and Mach-number effects in canonical shock-turbulence interaction, Journal of Fluid Mechanics, vol.717, pp.293-321, 2013.

J. Larsson and S. K. Lele, Direct numerical simulation of canonical shock/turbulence interaction, Physics of Fluids, vol.21, p.126101, 2009.

P. D. and X. D. , Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM Journal on Scientific Computing, vol.19, pp.319-340, 1998.

S. Lee, S. K. Lele, and P. Moin, Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow, Physics of Fluids A : Fluid Dynamics, vol.4, pp.1521-1530, 1992.

S. L-e-e and S. K. L-e-l-e-et-p.-m-o-i-n, Direct numerical simulation of isotropic turbulence interacting with a weak shock wave, Journal of Fluid Mechanics, vol.251, pp.533-562, 1993.

S. L-e-e and S. K. L-e-l-e-et-p.-m-o-i-n, Interaction of isotropic turbulence with shock waves: effect of shock strength, Journal of Fluid Mechanics, vol.340, pp.225-247, 1997.

H. F. , L eh r : Experiments on shock-induced combustion, Astronautica Acta, vol.17, pp.589-597, 1972.

S. K. Lele, Shock-jump relations in a turbulent flow, vol.4, pp.2900-2905, 1992.

S. K. , Compressibility effects on turbulence. Annual Review of Fluid Mechanics, vol.26, issue.1, pp.211-254, 1994.

S. K. L-e-l-e and J. , L a r s s o n : Shock-turbulence interaction: What we know and what we can learn from peta-scale simulations, Journal of Physics : Conference Series, vol.180, 2009.

W. , Y. P-e-n-g, and L. S. , Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence, Physical Review E, vol.80, issue.4, p.46702, 2009.

A. L. L-i-m-a-e-s-i-lva, A. S-i-lv-e-i-r-a-n-e-t-o, and J. J. , Da m a s c e n o : Numerical simulation of twodimensional flows over a circular cylinder using the immersed boundary method, Journal of Computational Physics, vol.189, pp.351-370, 2003.

F. A. Lindemann, S. Arrhenius, I. Langmuir, N. R. Dhar, J. Perrin et al., Discussion on "The Radiation Theory of Chemical Action, Transactions of the Faraday Society, vol.17, pp.598-606, 1922.

R. Liska and B. Wendroff, Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, SIAM Journal on Scientific Computing, vol.25, pp.995-1017, 2003.

X. D. L-i-u, S. O-s-h-e-r, and T. , Weighted essentially non-oscillatory schemes, Journal of Computational Physics, vol.115, pp.200-212, 1994.

Y. Liu and Y. Mori, Properties of discrete delta functions and local convergence of the immersed boundary method, SIAM Journal on Numerical Analysis, vol.50, pp.2986-3015, 2012.

G. L-o-dat-o, P. D-o-m-i-n-g-o, and L. , Ve rv i s c h : Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, Journal of Computational Physics, vol.227, pp.5105-5143, 2008.

T. and C. K. , Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations, Progress in Energy and Combustion Science, vol.35, issue.2, pp.192-215, 2009.

J. L. Lumley, Interpretation of time spectra measured in high-intensity shear flows, The Physics of Fluids, vol.8, pp.1056-1062, 1965.

J. L. Lumley, Computational modeling of turbulent flows, Advances in Applied Mechanics, vol.18, pp.123-176, 1979.

T. S. Lund and M. M. Rogers, An improved measure of strain state probability in turbulent flows, Physics of Fluids, vol.6, pp.1838-1847, 1994.

K. Mahesh, S. Lee, S. K. Lele, and P. Moin, The interaction of an isotropic field of acoustic waves with a shock wave, Journal of Fluid Mechanics, vol.300, pp.383-407, 1995.

K. Mahesh, S. K. Lele, and P. Moin, The influence of entropy fluctuations on the interaction of turbulence with a shock wave, Journal of Fluid Mechanics, vol.334, pp.353-379, 1997.

K. Mahesh, P. Moin, and S. K. Lele, The interaction of a shock wave with a turbulent shear flow. Rapport technique No. TF-69, Thermosciences division, 1996.

, Direct and large-eddy simulation of inert and reacting compressible turbulent shear layers, 2007.

D. Maier, J. Hesser, and R. Männer, Fast and accurate closest point search on triangulated surfaces and its application to head motion estimation, 3rd WSEAS International Conference on SIGNAL, SPEECH and IMAGE PROCESSING, 2003.

, B o r g h i : A new model of premixed wrinkled flame propagation based on a scalar dissipation equation, Combustion and Flame, vol.96, pp.443-457, 1994.

C. N. Markides and E. Mastorakos, Measurements of the statistical distribution of the scalar dissipation rate in turbulent axisymmetric plumes. Flow, Turbulence and Combustion, vol.81, pp.221-234, 2008.

J. M-a-r-t-i-n, A. O-o-i, M. S. C-h-o-n-g, and J. , Dynamics of the velocity gradient tensor invariants in isotropic turbulence, Physics of Fluids, vol.10, pp.2336-2346, 1998.

J. M. M-a-r-t-i-n and J. , F r a n ç o i s et R. G i j b e l s : First principles computation of thermochemical properties beyond the harmonic approximation. I. Method and application to the water molecule and its isotopomers, The Journal of chemical physics, vol.96, pp.7633-7645, 1992.

P. J. M-a-r-t-i-n-e-z-f-e-r-r-e-r, Simulation numérique directe dans la combustion turbulente sur une couche de cisaillement, 2013.

P. J. Martinez-ferrer, R. Buttay, G. Lehnasch, and A. Mura, A detailed verification procedure for compressible reactive multicomponent Navier-Stokes solvers, Computers & Fluids, vol.89, pp.88-110, 2014.

P. J. M-a-r-t-i-n-e-z-f-e-r-r-e-r and G. , L e h na s c h et A. M u r a : Compressibility and heat release effects in high-speed reactive mixing layers I.: Growth rates and turbulence characteristics, Combustion and Flame, vol.180, pp.284-303, 2017.

A. D. M-c-n-au-g-h-t and A. D. , Compendium of Chemical Terminology, vol.1669, 1997.

R. M-e-i-et-w.-s-h-y-y, On the finite difference-based lattice Boltzmann method in curvilinear coordinates, Journal of Computational Physics, vol.143, pp.426-448, 1998.

M. F. M-i-l-l-e-r and C. T. , An experimental investigation of the effects of compressibility on a turbulent reacting mixing layer, Journal of Fluid Mechanics, vol.356, pp.25-64, 1998.

R. R. M-i-l-l-s-j-r and A. L. , K i s t l e r, V. O ' b r i e n et S. C o r r s i n : Turbulence and temperature fluctuations behind a heated grid, 1958.

R. E. M-i-t-c-h-e-l-l and R. J. , General-purpose computer code for predicting chemical-kinetic behavior behind incident and reflected shocks, 1982.

R. Mittal and G. Iaccarino, Immersed boundary methods, Annual Review of Fluid Mechanics, vol.37, pp.239-261, 2005.

J. M-o-h-d-yu-s-o-f, Combined immersed-boundary/B-spline methods for simulations of ow in complex geometries, Annual Research Briefs, vol.317, 1997.

F. K. Moore, Unsteady oblique interaction of a shock wave with a plane disturbance, 1953.

A. Et-r.-b-o-r-g-h-i, Towards an extended scalar dissipation equation for turbulent premixed combustion, Combustion and flame, vol.133, pp.193-196, 2003.

G. R. N-e-w-m-a-n, B. E. Au-n-d-e-r-et, and J. L. L-u-m-l-e-y, Modelling the behaviour of homogeneous scalar turbulence, Journal of Fluid Mechanics, vol.111, pp.217-232, 1981.

F. Nieuwstadt and H. B. Keller, Viscous flow past circular cylinders, Computers & Fluids, vol.1, pp.59-71, 1973.

K. K. Nomura and S. E. Elghobashi, Mixing characteristics of an inhomogeneous scalar in isotropic and homogeneous sheared turbulence, Physics of Fluids A : Fluid Dynamics, vol.4, pp.606-625, 1992.

K. K. Nomura and G. K. , Post : The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence, Journal of Fluid Mechanics, vol.377, pp.65-97, 1998.

M. Ó-c-o-na-i-r-e, H. J. C-u-r-r-a-n, J. M. S-i-m-m-i-e, W. J. P-i-t-z, and C. K. , We s t b ro o k : A comprehensive modeling study of hydrogen oxidation, International Journal of Chemical Kinetics, vol.36, issue.11, pp.603-622, 2004.

W. L. , R oy : Verification and validation in scientific computing, C. J, 2010.

A. O-o-i, J. M-a-r-t-i-n, J. S-o-r-i-a, and M. S. C-h-o-n-g, A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence, Journal of Fluid Mechanics, vol.381, pp.141-174, 1999.

S. A. Orszag and G. S. Patterson, Numerical simulation of three-dimensional homogeneous isotropic turbulence, Physical Review Letters, vol.28, p.76, 1972.

P. L. O-'-n-e-i-l-l, D. N-i-c-o-l-a-i-d-e-s, D. H-o-n-n-e-r-y, and J. , Autocorrelation functions and the determination of integral length with reference to experimental and numerical data, 15th Australasian Fluid Mechanics Conference, vol.1, pp.1-4, 2004.

C. Pa-n-ta-n-o and S. , S a r k a r : A study of compressibility effects in the high-speed turbulent shear layer using direct simulation, Journal of Fluid Mechanics, vol.451, pp.329-371, 2002.

T. , Pa s s o t et A. Po u q u e t : Numerical simulation of compressible homogeneous flows in the turbulent regime, Journal of Fluid Mechanics, vol.181, pp.441-466, 1987.

A. E. P-e-r-r-y and M. S. C-h-o-n-g, Topology of flow patterns in vortex motions and turbulence, Applied Scientific Research, vol.53, pp.357-374, 1994.

C. S. P-e-s-k-i-n, Flow patterns around heart valves: a numerical method, Journal of Computational Physics, vol.10, pp.252-271, 1972.

C. S. , Pes ki n : The fluid dynamics of heart valves: experimental, theoretical, and computational methods, Annual Review of Fluid Mechanics, vol.14, pp.235-259, 1982.

C. S. , The immersed boundary method. Acta Numerica, vol.11, pp.479-517, 2002.

C. S. Peskin and B. F. , Printz : Improved volume conservation in the computation of flows with immersed elastic boundaries, Journal of Computational Physics, vol.105, pp.33-46, 1993.

N. P-e-t-e-r-s, J. B-o-s-c-h-u-n-g, M. Au-d-i-n-g, J. H. G-o-e-b-b-e-r-t, and R. J. , H i l l et H. P i t s c h : Higher-order dissipation in the theory of homogeneous isotropic turbulence, Journal of Fluid Mechanics, vol.803, pp.250-274, 2016.

J. M. Picone and J. P. , Boris : Vorticity generation by shock propagation through bubbles in a gas, Journal of Fluid Mechanics, vol.189, pp.23-51, 1988.

C. D. Pierce, Progress-variable approach for large-eddy simulation of turbulent combustion, 2001.

S. P-i-ro-z-z-o-l-i, Conservative hybrid compact-WENO schemes for shock-turbulence interaction, Journal of Computational Physics, vol.178, pp.81-117, 2002.

S. Pirozzoli and F. Grasso, Direct numerical simulations of isotropic compressible turbulence: Influence of compressibility on dynamics and structures, vol.16, pp.4386-4407, 2004.

T. Po-i-n-s-o-t and S. K. , Boundary conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, vol.101, pp.104-129, 1992.

T. Poi and D. Ot, Vey nant e : Theoretical and Numerical Combustion, 2005.

G. J. , Ultrasonic determination of the volume viscosity of N 2 , CO, CH 4 and CD 4 between 77 and 300 K, vol.64, pp.278-288, 1973.

G. J. P-r-a-n-g-s-m-a, L. J. B-o-r-s-b-o-o-m, H. F. , and C. J. , Beenakker : Rotational relaxation in ortho hydrogen between 170 and 300 K, Physica, vol.61, issue.4, pp.527-538, 1972.

A. P-u-m-i-r, A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient, Physics of Fluids, vol.6, pp.2118-2132, 1994.

J. J. Quirk, AMRITA: A computational facility (for CFD modelling), Lecture Series Van-Kareman Institute for Fluid Dynamics, vol.3, pp.1-72, 1998.

B. N. Rajani, A. Kandasamy, and S. Majumdar, Numerical simulation of laminar flow past a circular cylinder, Applied Mathematical Modelling, vol.33, pp.1228-1247, 2009.

S. and G. N. , An Improved Non-linear Weights for Seventh-Order WENO Scheme, 2016.

A. Lt, G. Sa, and R. , Shock-vortex interactions at high Mach numbers, Journal of Scientific Computing, vol.19, pp.347-371, 2003.

J. Reveillon, Simulation dynamique des grandes structures appliquée aux flammes turbulentes non-prémélangées, 1996.

H. S. R-i-b-n-e-r, Convection of a pattern of vorticity through a shock wave, 1954.

J. R. R-i-s-t-o-rc-e-l-l-i and G. A. , B l a i s d e l l : Consistent initial conditions for the DNS of compressible turbulence, Physics of Fluids, vol.9, pp.4-6, 1997.

R. S. Rogallo, Numerical experiments in homogeneous turbulence, 1981.

D. Rotman, Shock wave effects on a turbulent flow, Physics of Fluids A : Fluid Dynamics, vol.3, pp.1792-1806, 1991.

D. H. Rudy and J. , Strikwerda : A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations, Journal of Computational Physics, vol.36, pp.55-70, 1980.

G. R. R-u-e-t-s-c-h and M. R. , The evolution of small-scale structures in homogeneous isotropic turbulence, Physics of Fluids A : Fluid Dynamics, vol.4, pp.2747-2760, 1992.

J. Ry-u-et-d.-l-i-v-e-s-c-u, Turbulence structure behind the shock in canonical shock-vortical turbulence interaction, Journal of Fluid Mechanics, vol.756, 2014.

P. and C. , Homogeneous turbulence dynamics, vol.10, 2008.

E. M. Saiki and S. Biringen, Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method, Journal of Computational Physics, vol.123, pp.450-465, 1996.

S. K. , S a m b a s i va n et H. S. U day K u m a r : Ghost Fluid method for strong shock interactions Part 2: Immersed solid boundaries, AIAA Journal, vol.47, pp.2923-2937, 2009.

´. , Direct numerical simulation of decaying compressible turbulence and shocklet statistics, Physics of Fluids, vol.13, pp.1415-1430, 2001.

, s : The analysis and modelling of dilatational terms in compressible turbulence, Journal of Fluid Mechanics, vol.227, pp.473-493, 1991.

H. S-c-h-a-r-d-i-n, High frequency cinematography in the shock tube, The Journal of Photographic Science, vol.5, pp.17-19, 1957.

B. S-e-k-a-r and . Hs-m-u-k-u-n-da, A computational study of direct simulation of high speed mixing layers without and with chemical heat release, Symposium (International) on Combustion, vol.23, pp.707-713, 1991.

Y. S-h-e-n and G. , Z h a : Improved seventh-order WENO scheme, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p.1451, 2010.

J. Shi, Y. T. Zhang, and C. W. Shu, Resolution of high order WENO schemes for complicated flow structures, Journal of Computational Physics, vol.186, pp.690-696, 2003.

C. W. Shu, Essentially Non-Oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws, Advanced numerical approximation of nonlinear hyperbolic equations, pp.325-432

. Springer, , 1998.

K. Sinha, K. Mahesh, and G. V. , Candler : Modeling shock unsteadiness in shock/turbulence interaction, Physics of Fluids, vol.15, pp.2290-2297, 2003.

G. A. , Sod : A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, Journal of Computational Physics, vol.27, pp.1-31, 1978.

J. Oria, R. Ondergaard, B. J. Cantwell, M. S. Hong, and A. E. , A study of the fine-scale motions of incompressible time-developing mixing layers, Physics of Fluids, vol.6, pp.871-884, 1994.

F. S-o-t-i-ro-p-o-u-l-o-s and X. , Ya n g : Immersed boundary methods for simulating fluid-structure interaction, Progress in Aerospace Sciences, vol.65, pp.1-21, 2014.

E. , S pan ie r : Algebraic topology, 1989.

S. Ta-n-l-e-y and S. , S a r k a r : Simulations of spatially developing two-dimensional shear layers and jets, Theoretical and Computational Fluid Dynamics, vol.9, issue.2, pp.121-147, 1997.

P. H. S-t-e-wa-r-t, C. W. L-a-r-s-o-n, and D. M. G-o-l-d-e-n, Pressure and Temperature Dependence of Reactions Proceeding via a Bound Complex. 2. Application to 2CH 3 ? C 2 H 5 + H, Combustion and Flame, vol.75, issue.1, pp.25-31, 1989.

G. G. S-t-o-k-e-s, On the effect of the internal friction of fluids on the motion of pendulums, vol.9, p.1851

J. C. Da, Finite difference schemes and partial differential equations. SIAM, 2004.

D. R. and H. , , 1971.

S. Tavoularis, J. C. Bennett, and S. Corrsin, Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence, Journal of Fluid Mechanics, vol.88, pp.63-69, 1978.
DOI : 10.1017/s0022112078001986

A. Te-c-h-e-r, Simulation aux Grandes Échelles Explicite et Implicite de la Combustion Supersonique, 2017.

K. W. Thompson, Time dependent boundary conditions for hyperbolic systems, Journal of Computational Physics, vol.68, pp.1-24, 1987.
DOI : 10.1016/0021-9991(87)90041-6

P. A. , Tho mp son : Compressible-Fluid Mechanics. Advanced engineering series, 1984.

L. , Tis za : Supersonic absorption and Stokes' viscosity relation, Physical Review, p.531, 1942.

A. A. , Tow ns end : The structure of turbulent shear flow, 1980.

Y. H. Tseng and J. , Ferziger : A ghost-cell immersed boundary method for flow in complex geometry, Journal of Computational Physics, vol.192, pp.593-623, 2003.

A. T-s-i-n-o-b-e-r, An informal conceptual introduction to turbulence: of an informal introduction to turbulence, vol.92, 2009.

A. , Exploratory numerical experiments on the differences between genuine and "passive" turbulence, Physics of Fluids, vol.15, pp.3514-3531, 2003.

A. T-s-i-n-o-b-e-r, E. K-i-t, and T. , Experimental investigation of the field of velocity gradients in turbulent flows, Journal of Fluid Mechanics, vol.242, pp.169-192, 1992.

. Arkady-t-s-i-n-o-b-e-r, Va s s i l i c o s, éditeurs : Turbulence Structure and Vortex Dynamics, pp.164-191, 2000.

S. O. U-n-v-e-r-d-i and G. , Tr y g g va s o n : A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of Computational Physics, vol.100, pp.25-37, 1992.

J. , Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight, Annual Review of Fluid Mechanics, vol.50, issue.1, 2018.

P. Vedula, P. K. Yeung, and R. O. Fox, Dynamics of scalar dissipation in isotropic turbulence: a numerical and modelling study, Journal of Fluid Mechanics, vol.433, pp.29-60, 2001.

V. K. , Ve e r a et K. S i n h a : Modeling the effect of upstream temperature fluctuations on shock/homogeneous turbulence interaction, Physics of Fluids, vol.21, p.25101, 2009.

J. , Ve m u l a et K. S i n h a : Reynolds stress models applied to canonical shock-turbulence interaction, Journal of Turbulence, vol.18, pp.653-687, 2017.

H. K. Ve, An introduction to computational fluid dynamics: the finite volume method. Pearson Education, 2007.

R. Vi-c-q-u-e-l-i-n, Tabulation de la cinétique chimique pour la modélisation et la simulation de la combustion turbulente, 2010.

A. Vincent and M. , The dynamics of vorticity tubes in homogeneous turbulence, Journal of Fluid Mechanics, vol.258, pp.245-254, 1994.

W. G. , Vin ce nti et C. H. K ru ger : Introduction to physical gas dynamics, 1965.

J. Wa-n-g, Y. S-h-i, L. P. Wa-n-g, Z. , and X. H-e-et-s.-c-h-e-n, Effect of compressibility on the small-scale structures in isotropic turbulence, Journal of Fluid Mechanics, vol.713, pp.588-631, 2012.

L. Wang and N. Peters, The length-scale distribution function of the distance between extremal points in passive scalar turbulence, Journal of Fluid Mechanics, vol.554, pp.457-475, 2006.

Z. , War ha ft : Passive scalars in turbulent flows, Annual Review of Fluid Mechanics, vol.32, pp.203-240, 2000.

J. Wa-r-nat-z and U. , M a s s et R. W. D i b b l e : Combustion: Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation, 1996.

F. A. , Wil li ams : Turbulent Combustion. The mathematics of Combustion, vol.2, pp.267-294, 1985.

P. Wo-o-dwa-r-d and P. , The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, vol.54, pp.115-173, 1984.

S. Wo-o-p, C. B-e-n-t-h-i-n, and I. , Wa l d : Watertight ray/triangle intersection, Journal of Computer Graphics Techniques (JCGT), vol.2, pp.65-82, 2013.

J. G. Wouchuk, C. H. De-lira, and A. L. , Velikovich : Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field, Physical Review E, vol.79, p.66315, 2009.

X. Wu, Inflow turbulence generation methods, Annual Review of Fluid Mechanics, vol.49, pp.23-49, 2017.

Z. Xiong, S. Nagarajan, and S. K. Lele, Simple method for generating inflow turbulence, AIAA Journal, vol.42, pp.2164-2166, 2004.

T. Ye, R. M-i-t-ta-l, and H. S. , U day k u m a r et W. S h y y : An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, Journal of Computational Physics, vol.156, pp.209-240, 1999.

C. S. Yoo, Y. Wang, A. Trouvé, and H. G. , Im : Characteristic boundary conditions for direct simulations of turbulent counterflow flames, Combustion Theory and Modelling, vol.9, pp.617-646, 2005.

H. Z. Yua-n, X. D. N-i-u, S. S-h-u, and M. , Ya m ag u c h i : A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow, Computers & Mathematics with Applications, vol.67, pp.1039-1056, 2014.

S. H. Z-h-a-n-g, X. G. D-e-n-g, M. L. , and C. W. , Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes, Acta Mathematicae Applicatae Sinica, English Series, vol.29, pp.449-464, 2013.

T. Zhou and R. A. Antonia, Approximations for turbulent energy and temperature variance dissipation rates in grid turbulence, Physics of Fluids, vol.12, pp.335-344, 2000.

L. Zhu, G. He, L. Wang, S. Miller, X. Zhang et al., An immersed boundary method based on the lattice Boltzmann approach in three dimensions, with application, vol.61, pp.3506-3518, 2011.

J. L. Ziegler, R. Deiterding, J. E. Shepherd, and D. I. Pullin, An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry, Journal of Computational Physics, vol.230, pp.7598-7630, 2011.

J. Zó?tak and D. Drikakis, Hybrid upwind methods for the simulation of unsteady shock-wave diffraction over a cylinder, Computer Methods in Applied Mechanics and Engineering, vol.162, pp.165-185, 1998.