G. , Geometric Point-to-plane (? I = 0), vol.16

I. , Direct-method 2

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, Pyramid methods in image processing, RCA Engineer, vol.29, issue.6, pp.33-41, 1984.

P. Fernández-alcantarilla, J. Nuevo, and A. Bartoli, Fast explicit diffusion for accelerated features in nonlinear scale spaces, BMVC, 2013.

C. Andrew, Robust real-time 3D tracking of rigid and articulated objects for augmented reality and robotics, 2005.

H. Badino, D. Huber, Y. Park, and T. Kanade, Fast and accurate computation of surface normals from range images, IEEE International Conference on Robotics and Automation, 2011.

A. Batu-akan and M. Cetin, 3D Head tracking using normal flow constraints in a vehicle environment, Biennial on DSP for in-Vehicle and Mobile Systems, 2007.

H. Bay, A. Ess, T. Tuytelaars, and L. Van-gool, Speeded-up robust features (surf), Comput. Vis. Image Underst, vol.110, issue.3, pp.346-359, 2008.

S. Benhimane and E. Malis, Real-time image-based tracking of planes using efficient second-order minimization, IEEE International Conference on Intelligent Robots and Systems, 2004.

J. L. Bentley, Multidimensional binary search trees used for associative searching. Commun, vol.18, pp.509-517, 1975.

P. J. Besl and N. D. Mckay, A method for registration of 3-d shapes. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.14, issue.2, pp.239-256, 1992.

A. Parra-bustos, T. J. Chin, A. Eriksson, H. Li, and D. Suter, Fast rotation search with stereographic projections for 3d registration, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, issue.11, pp.2227-2240, 2016.

P. Buyssens, M. Daisy, D. Tschumperlã-c, O. Lã, and . Zoray, Superpixel-based depth map inpainting for rgb-d view synthesis, 2015 IEEE International Conference on Image Processing (ICIP), pp.4332-4336, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01153769

M. Calonder, V. Lepetit, C. Strecha, and P. Fua, BRIEF: Binary Robust Independent Elementary Features, pp.778-792, 2010.

D. Campbell and L. Petersson, GOGMA: globally-optimal gaussian mixture alignment, 2016.

D. Campbell, L. Petersson, L. Kneip, and H. Li, Globally-optimal inlier set maximisation for simultaneous camera pose and feature correspondence, 2017.

M. Camplani and L. Salgado, Efficient spatio-temporal hole filling strategy for kinect depth maps, vol.8290, pp.82900-82900, 2012.

Y. Chen and G. Medioni, Object modeling by registration of multiple range images, IEEE International Conference on Robotics and Automation, 1991.

D. Chetverikov, D. Stepanov, and P. Krsek, Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm, Image and Vision Computing, vol.23, issue.3, pp.299-309, 2005.

H. J. Chien, C. C. Chuang, C. Y. Chen, and R. Klette, When to use what feature? sift, surf, orb, or a-kaze features for monocular visual odometry, 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ), pp.1-6, 2016.

E. Andrew-i-comport, P. Malis, and . Rives, Accurate quadrifocal tracking for robust 3d visual odometry, IEEE International Conference on, pp.40-45, 2007.

. Dartmouth, Interpolation methods, pp.5-2017, 2017.

L. Douadi, M. Aldon, and A. Crosnier, Pair-wise registration of 3D/Color data sets with ICP, IEEE International Conference on Intelligent Robots and Systems, 2006.
DOI : 10.1109/iros.2006.282551

URL : https://hal.archives-ouvertes.fr/lirmm-00128688

A. Martin, R. C. Fischler, and . Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Commun. ACM, vol.24, issue.6, pp.381-395, 1981.

A. Fitzgibbon, Robust registration of 2d and 3d point sets. Image and Vision Computing, vol.21, pp.1145-1153, 2003.
DOI : 10.5244/c.15.43

URL : http://www.bmva.ac.uk/bmvc/2001/papers/82/../../papers/41/accepted_41.pdf

N. Gelfand, J. Niloy, L. J. Mitra, H. Guibas, and . Pottmann, Robust global registration, Proceedings of the Third Eurographics Symposium on Geometry Processing, SGP '05, 2005.

P. Georgel, S. Benhimane, and N. Navab, A unified approach combining photometric and geometric information for pose estimation, Proceedings of the British Machine Vision Conference, 2008.
DOI : 10.5244/c.22.14

C. A. Glasbey and K. V. Mardia, A review of image-warping methods, Journal of Applied Statistics, vol.25, issue.2, pp.155-171, 1998.
DOI : 10.1080/02664769823151

URL : http://www.math.chalmers.se/~rudemo/Papers/GlasbeyMardia98.pdf

M. Halber and T. A. Funkhouser, Structured global registration of RGB-D scans in indoor environments, 2016.

T. Han, C. Xu, R. Loxton, and L. Xie, Bi-objective optimization for robust rgb-d visual odometry, The 27th Chinese Control and Decision Conference, pp.1837-1844, 2015.
DOI : 10.1109/ccdc.2015.7162218

URL : http://arxiv.org/pdf/1411.7445

A. Handa, T. Whelan, J. Mcdonald, and A. J. Davison, A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM, IEEE International Conference on Robotics and Automation, 2014.
DOI : 10.1109/icra.2014.6907054

URL : http://eprints.maynoothuniversity.ie/8309/1/JM-Benchmark-2014.pdf

R. I. Hartley and F. Kahl, Global optimization through rotation space search, International Journal of Computer Vision, vol.82, issue.1, pp.64-79, 2009.
DOI : 10.1007/s11263-008-0186-9

URL : http://www.maths.lth.se/vision/publdb/reports/pdf/hartley-kahl-ijcv-09.pdf

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, The 12th International Symposium on Experimental Robotics, chapter RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments, 2014.

D. Holz, A. E. Ichim, F. Tombari, R. B. Rusu, and S. Behnke, Registration with the point cloud library: A modular framework for aligning in 3-d, IEEE Robotics Automation Magazine, vol.22, issue.4, pp.110-124, 2015.

S. Holzer, M. Radu-bogdan-rusu, S. Dixon, N. Gedikli, and . Navab, Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2684-2689, 2012.
DOI : 10.1109/iros.2012.6385999

K. P. Berthold and . Horn, Closed-form solution of absolute orientation using unit quaternions, J. Opt. Soc. Am. A, vol.4, issue.4, pp.629-642, 1987.

D. Huber and M. Hebert, Fully automatic registration of multiple 3d data sets, vol.21, pp.637-650, 2003.
DOI : 10.1016/s0262-8856(03)00060-x

URL : http://www.ri.cmu.edu/pub_files/pub3/huber_daniel_f_2001_1/huber_daniel_f_2001_1.pdf

P. J. Huber, J. Wiley, and W. Interscience, Robust statistics, 1981.
DOI : 10.1002/0471725250

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471725250.fmatter

R. Hulik, V. Beran, M. Spanel, P. Krsek, and P. Smrz, Fast and accurate plane segmentation in depth maps for indoor scenes, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1665-1670, 2012.
DOI : 10.1109/iros.2012.6385868

M. Irani and P. Anandan, About direct methods, Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, pp.267-277, 1999.
DOI : 10.1007/3-540-44480-7_18

F. I. Muñoz and A. I. Comport, Direct matching for improving image-based registration, IEEE International Conference on Intelligent Robots and Systems, 2015.

F. I. Muñoz and A. I. Comport, Point-to-hyperplane RGB-D pose estimation: Fusing photometric and geometric measurements, IEEE International Conference on Intelligent Robots and Systems, 2016.

F. I. Muñoz and A. I. Comport, A proof that fusing measurements using point-to-hyperplane registration is invariant to relative scale, IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2016.

F. I. Muñoz and A. I. Comport, Global point-to-hyperplane icp: Local and global pose estimation by fusing color and depth, IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2017.

F. I. Muñoz and A. I. Comport, Point-to-hyperplane icp: Fusing different metric measurements for pose estimation, Advanced Robotics Journal, 2017.

A. E. , J. , and S. Kang, registration and integration of textured 3d data, Image and Vision Computing, vol.17, issue.2, pp.135-147, 1999.

C. Kerl, J. Sturm, and D. Cremers, Dense visual SLAM for RGB-D cameras, IEEE International Conference on Intelligent Robots and Systems, 2013.
DOI : 10.1109/iros.2013.6696650

URL : http://vision.in.tum.de/_media/spezial/bib/kerl13iros.pdf

K. Khoshelham, Accuracy Analysis of Kinect Depth Data. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.3812, pp.133-138, 2011.
DOI : 10.5194/isprsarchives-xxxviii-5-w12-133-2011

URL : https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-5-W12/133/2011/isprsarchives-XXXVIII-5-W12-133-2011.pdf

A. H. Land and A. G. Doig, An automatic method of solving discrete programming problems, Econometrica, vol.28, issue.3, pp.497-520, 1960.
DOI : 10.2307/1910129

K. L. Lange, J. A. Roderick, J. M. Little, and . Taylor, Robust statistical modeling using the t distribution, Journal of the American Statistical Association, vol.84, issue.408, pp.881-896, 1989.
DOI : 10.2307/2290063

URL : https://cloudfront.escholarship.org/dist/prd/content/qt27s1d3h7/qt27s1d3h7.pdf

E. L. Lawler and D. E. Wood, Branch-and-bound methods: A survey, Operations Research, vol.14, issue.4, pp.699-719, 1966.
DOI : 10.1287/opre.14.4.699

M. Liu, F. Pomerleau, F. Colas, and R. Siegwart, Normal estimation for pointcloud using gpu based sparse tensor voting, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp.91-96, 2012.
DOI : 10.1109/robio.2012.6490949

URL : https://hal.archives-ouvertes.fr/hal-01142736

C. Lorenz, T. Klinder, and J. Berg, Feature-Based Registration Techniques, pp.85-102, 2013.
DOI : 10.1007/978-3-642-36441-9_5

URL : https://doi.org/10.1007/978-3-642-36441-9_5

D. G. Lowe, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/b:visi.0000029664.99615.94

URL : http://www.cs.ubc.ca/~lowe/papers/ijcv03.ps

H. L. Luo, C. T. Shen, Y. C. Chen, R. H. Wu, and Y. P. Hung, Automatic multi-resolution joint image smoothing for depth map refinement, 2nd IAPR Asian Conference on Pattern Recognition, pp.284-287, 2013.
DOI : 10.1109/acpr.2013.59

A. Makadia, A. Patterson, and K. Daniilidis, Fully automatic registration of 3d point clouds, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol.1, pp.1297-1304, 2006.
DOI : 10.1109/cvpr.2006.122

URL : https://repository.upenn.edu/cgi/viewcontent.cgi?article=1473&context=cis_papers

R. Martins, E. Fernandez-moral, and P. Rives, Adaptive Direct RGB-D Registration and Mapping for Large Motions, Asian Conference on Computer Vision, ACCV 2016, 2016.
DOI : 10.1007/978-3-319-54190-7_12

URL : https://hal.archives-ouvertes.fr/hal-01403953

D. L. Massart, L. Kaufman, P. J. Rousseeuw, and A. Leroy, Least median of squares: a robust method for outlier and model error detection in regression and calibration, Analytica Chimica Acta, vol.187, pp.171-179, 1986.

G. J. Mclachlan and D. Peel, Finite mixture models, Wiley Series in Probability and Statistics, 2000.

M. Meilland and A. I. Comport, On unifying key-frame and voxel-based dense visual SLAM at large scales, International Conference on Intelligent Robots and Systems, 2013.
DOI : 10.1109/iros.2013.6696881

URL : https://hal.archives-ouvertes.fr/hal-01357359

N. Mellado, D. Aiger, and N. J. Mitra, Super 4pcs fast global pointcloud registration via smart indexing, Computer Graphics Forum, vol.33, issue.5, pp.205-215, 2014.
DOI : 10.1111/cgf.12446

URL : https://hal.archives-ouvertes.fr/hal-01538738

H. Men, B. Gebre, and K. Pochiraju, Color point cloud registration with 4D ICP algorithm, IEEE International Conference on Robotics and Automation, 2011.
DOI : 10.1109/icra.2011.5980407

J. P. Michael-korn and M. Holzkothen, Color supported generalized-ICP, International Conference on Computer Vision Theory and Applications, 2014.

L. Morency and T. Darrell, Stereo tracking using ICP and normal flow constraint, 16th International Conference on Pattern Recognition, 2002.
DOI : 10.1109/icpr.2002.1047472

URL : http://www.ai.mit.edu/~lmorency/Papers/icpr2002.pdf

M. Muja and D. G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration, International Conference on Computer Vision Theory and Application VISSAPP'09), pp.331-340, 2009.

M. Muja and D. G. Lowe, Scalable nearest neighbor algorithms for high dimensional data. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.36, 2014.
DOI : 10.1109/tpami.2014.2321376

URL : https://doi.org/10.1109/tpami.2014.2321376

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim et al., Kinectfusion: Real-time dense surface mapping and tracking, IEEE ISMAR. IEEE, 2011.
DOI : 10.1109/ismar.2011.6162880

URL : http://www.doc.ic.ac.uk/%7Eajd/Publications/newcombe_etal_ismar2011.pdf

A. Nuchter, K. Lingemann, and J. Hertzberg, Cached k-d tree search for icp algorithms, 3D Digital Imaging and Modeling, 2007. 3DIM '07. Sixth International Conference on, pp.419-426, 2007.
DOI : 10.1109/3dim.2007.15

URL : http://kos.informatik.uni-osnabrueck.de/download/3dim2007.pdf

C. Olsson, F. Kahl, and M. Oskarsson, Branch-and-bound methods for euclidean registration problems, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.5, pp.783-794, 2009.
DOI : 10.1109/tpami.2008.131

S. Orts-escolano, C. Rhemann, S. Fanello, W. Chang, A. Kowdle et al., Holoportation: Virtual 3d teleportation in real-time, Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST '16, pp.741-754, 2016.

C. Papazov and D. Burschka, Stochastic Optimization for Rigid Point Set Registration, pp.1043-1054, 2009.
DOI : 10.1007/978-3-642-10331-5_97

URL : http://www6.in.tum.de/Main/Publications/Papazov2009.pdf

C. Papazov and D. Burschka, Stochastic global optimization for robust point set registration, Comput. Vis. Image Underst, vol.115, issue.12, pp.1598-1609, 2011.
DOI : 10.1016/j.cviu.2011.05.008

S. Paris, P. Kornprobst, and J. Tumblin, Bilateral Filtering, 2009.

H. R. Parks, The volume of the unit n-ball. Mathematics Magazine, vol.86, pp.270-274, 2013.

E. Rodolã, A. Albarelli, D. Cremers, and A. Torsello, A simple and effective relevance-based point sampling for 3d shapes, Pattern Recognition Letters, vol.59, pp.41-47, 2015.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, Orb: An efficient alternative to sift or surf, Proceedings of the 2011 International Conference on Computer Vision, ICCV '11, pp.2564-2571, 2011.
DOI : 10.1109/iccv.2011.6126544

URL : http://www.willowgarage.com/sites/default/files/orb_final.pdf

D. Ruprecht and H. Muller, Image warping with scattered data interpolation, Computer Graphics and Applications, vol.15, issue.2, pp.37-43, 1995.
DOI : 10.1109/38.365004

H. Sarbolandi, D. Lefloch, and A. Kolb, Kinect range sensing: Structuredlight versus time-of-flight kinect, 2015.
DOI : 10.1016/j.cviu.2015.05.006

URL : http://arxiv.org/pdf/1505.05459

M. Schmeing and X. Jiang, Color Segmentation Based Depth Image Filtering, pp.68-77, 2013.
DOI : 10.1007/978-3-642-40303-3_8

A. Segal, D. Haehnel, and S. Thrun, Generalized-ICP, Proceedings of Robotics: Science and Systems, 2009.
DOI : 10.15607/rss.2009.v.021

URL : https://doi.org/10.15607/rss.2009.v.021

R. Siegwart, R. Illah, and . Nourbakhsh, Introduction to Autonomous Mobile Robots. Bradford Company, 2004.

N. Silberman and R. Fergus, Indoor scene segmentation using a structured light sensor, Proceedings of the International Conference on Computer Vision-Workshop on 3D Representation and Recognition, 2011.

M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, 2005.

F. Steinbruecker, C. Kerl, J. Sturm, and D. Cremers, Large-scale multi-resolution surface reconstruction from RGB-D sequences, International Conference on Computer Vision, 2013.

J. Straub, T. Campbell, J. P. How, J. W. Fisher, and I. , Efficient globally optimal point cloud alignment using bayesian nonparametric mixtures, 2016.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, A benchmark for the evaluation of RGB-D SLAM systems, IEEE International Conference on Intelligent Robot and Systems, 2012.

T. Taketomi, H. Uchiyama, and S. Ikeda, Visual slam algorithms: a survey from, IPSJ Transactions on Computer Vision and Applications, vol.9, issue.1, p.16, 2010.

T. M. Tykkälä, C. Audras, and A. Comport, Direct Iterative Closest Point for Real-time Visual Odometry, The Second international Workshop on Computer Vision in Vehicle Technology: From Earth to Mars in conjunction with the International Conference on Computer Vision, 2011.

T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. Mcdonald, Robust real-time visual odometry for dense RGB-D mapping, IEEE International Conference on Robotics and Automation, 2013.

T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard et al., Real-time large-scale dense RGB-D SLAM with volumetric fusion, International Journal of Robotics Research, vol.34, issue.4-5, pp.598-626, 2015.

T. Whelan, S. Leutenegger, R. S. Moreno, B. Glocker, and A. Davison, Elasticfusion: Dense slam without a pose graph, Proceedings of Robotics: Science and Systems, 2015.

J. Yang, H. Li, and Y. Jia, Go-icp: Solving 3d registration efficiently and globally optimally, Proceedings of the 2013 IEEE International Conference on Computer Vision, ICCV '13, pp.1457-1464, 2013.

Y. Qian, V. Zhou, and . Koltun, Color map optimization for 3D reconstruction with consumer depth cameras, ACM Trans. Graph, 2014.

Q. Zhou, J. Park, and V. Koltun, Fast Global Registration, pp.766-782, 2016.