E. Andrew-i-comport, P. Malis, and . Rives, Accurate quadrifocal tracking for robust 3d visual odometry, IEEE International Conference on, pp.40-45, 2007.

. Dartmouth, Interpolation methods, pp.5-2017, 2017.

L. Douadi, M. Aldon, and A. Crosnier, Pair-wise registration of 3D/Color data sets with ICP, IEEE International Conference on Intelligent Robots and Systems, 2006.
DOI : 10.1109/iros.2006.282551

URL : https://hal.archives-ouvertes.fr/lirmm-00128688

A. Martin, R. C. Fischler, and . Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Commun. ACM, vol.24, issue.6, pp.381-395, 1981.

A. Fitzgibbon, Robust registration of 2d and 3d point sets. Image and Vision Computing, vol.21, pp.1145-1153, 2003.
DOI : 10.5244/c.15.43

URL : http://www.bmva.ac.uk/bmvc/2001/papers/82/../../papers/41/accepted_41.pdf

N. Gelfand, J. Niloy, L. J. Mitra, H. Guibas, and . Pottmann, Robust global registration, Proceedings of the Third Eurographics Symposium on Geometry Processing, SGP '05, 2005.

P. Georgel, S. Benhimane, and N. Navab, A unified approach combining photometric and geometric information for pose estimation, Proceedings of the British Machine Vision Conference, 2008.
DOI : 10.5244/c.22.14

C. A. Glasbey and K. V. Mardia, A review of image-warping methods, Journal of Applied Statistics, vol.25, issue.2, pp.155-171, 1998.
DOI : 10.1080/02664769823151

URL : http://www.math.chalmers.se/~rudemo/Papers/GlasbeyMardia98.pdf

M. Halber and T. A. Funkhouser, Structured global registration of RGB-D scans in indoor environments, 2016.

T. Han, C. Xu, R. Loxton, and L. Xie, Bi-objective optimization for robust rgb-d visual odometry, The 27th Chinese Control and Decision Conference, pp.1837-1844, 2015.
DOI : 10.1109/ccdc.2015.7162218

URL : http://arxiv.org/pdf/1411.7445

A. Handa, T. Whelan, J. Mcdonald, and A. J. Davison, A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM, IEEE International Conference on Robotics and Automation, 2014.
DOI : 10.1109/icra.2014.6907054

URL : http://eprints.maynoothuniversity.ie/8309/1/JM-Benchmark-2014.pdf

R. I. Hartley and F. Kahl, Global optimization through rotation space search, International Journal of Computer Vision, vol.82, issue.1, pp.64-79, 2009.
DOI : 10.1007/s11263-008-0186-9

URL : http://www.maths.lth.se/vision/publdb/reports/pdf/hartley-kahl-ijcv-09.pdf

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, The 12th International Symposium on Experimental Robotics, chapter RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments, 2014.

D. Holz, A. E. Ichim, F. Tombari, R. B. Rusu, and S. Behnke, Registration with the point cloud library: A modular framework for aligning in 3-d, IEEE Robotics Automation Magazine, vol.22, issue.4, pp.110-124, 2015.

S. Holzer, M. Radu-bogdan-rusu, S. Dixon, N. Gedikli, and . Navab, Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2684-2689, 2012.
DOI : 10.1109/iros.2012.6385999

K. P. Berthold and . Horn, Closed-form solution of absolute orientation using unit quaternions, J. Opt. Soc. Am. A, vol.4, issue.4, pp.629-642, 1987.

D. Huber and M. Hebert, Fully automatic registration of multiple 3d data sets, vol.21, pp.637-650, 2003.
DOI : 10.1016/s0262-8856(03)00060-x

URL : http://www.ri.cmu.edu/pub_files/pub3/huber_daniel_f_2001_1/huber_daniel_f_2001_1.pdf

P. J. Huber, J. Wiley, and W. Interscience, Robust statistics, 1981.
DOI : 10.1002/0471725250

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471725250.fmatter

R. Hulik, V. Beran, M. Spanel, P. Krsek, and P. Smrz, Fast and accurate plane segmentation in depth maps for indoor scenes, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1665-1670, 2012.
DOI : 10.1109/iros.2012.6385868

M. Irani and P. Anandan, About direct methods, Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, pp.267-277, 1999.
DOI : 10.1007/3-540-44480-7_18

F. I. Muñoz and A. I. Comport, Direct matching for improving image-based registration, IEEE International Conference on Intelligent Robots and Systems, 2015.

F. I. Muñoz and A. I. Comport, Point-to-hyperplane RGB-D pose estimation: Fusing photometric and geometric measurements, IEEE International Conference on Intelligent Robots and Systems, 2016.

F. I. Muñoz and A. I. Comport, A proof that fusing measurements using point-to-hyperplane registration is invariant to relative scale, IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2016.

F. I. Muñoz and A. I. Comport, Global point-to-hyperplane icp: Local and global pose estimation by fusing color and depth, IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2017.

F. I. Muñoz and A. I. Comport, Point-to-hyperplane icp: Fusing different metric measurements for pose estimation, Advanced Robotics Journal, 2017.

A. E. , J. , and S. Kang, registration and integration of textured 3d data, Image and Vision Computing, vol.17, issue.2, pp.135-147, 1999.

C. Kerl, J. Sturm, and D. Cremers, Dense visual SLAM for RGB-D cameras, IEEE International Conference on Intelligent Robots and Systems, 2013.
DOI : 10.1109/iros.2013.6696650

URL : http://vision.in.tum.de/_media/spezial/bib/kerl13iros.pdf

K. Khoshelham, Accuracy Analysis of Kinect Depth Data. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.3812, pp.133-138, 2011.
DOI : 10.5194/isprsarchives-xxxviii-5-w12-133-2011

URL : https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-5-W12/133/2011/isprsarchives-XXXVIII-5-W12-133-2011.pdf

A. H. Land and A. G. Doig, An automatic method of solving discrete programming problems, Econometrica, vol.28, issue.3, pp.497-520, 1960.
DOI : 10.2307/1910129

K. L. Lange, J. A. Roderick, J. M. Little, and . Taylor, Robust statistical modeling using the t distribution, Journal of the American Statistical Association, vol.84, issue.408, pp.881-896, 1989.
DOI : 10.2307/2290063

URL : https://cloudfront.escholarship.org/dist/prd/content/qt27s1d3h7/qt27s1d3h7.pdf

E. L. Lawler and D. E. Wood, Branch-and-bound methods: A survey, Operations Research, vol.14, issue.4, pp.699-719, 1966.
DOI : 10.1287/opre.14.4.699

M. Liu, F. Pomerleau, F. Colas, and R. Siegwart, Normal estimation for pointcloud using gpu based sparse tensor voting, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp.91-96, 2012.
DOI : 10.1109/robio.2012.6490949

URL : https://hal.archives-ouvertes.fr/hal-01142736

C. Lorenz, T. Klinder, and J. Berg, Feature-Based Registration Techniques, pp.85-102, 2013.
DOI : 10.1007/978-3-642-36441-9_5

URL : https://doi.org/10.1007/978-3-642-36441-9_5

D. G. Lowe, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/b:visi.0000029664.99615.94

URL : http://www.cs.ubc.ca/~lowe/papers/ijcv03.ps

H. L. Luo, C. T. Shen, Y. C. Chen, R. H. Wu, and Y. P. Hung, Automatic multi-resolution joint image smoothing for depth map refinement, 2nd IAPR Asian Conference on Pattern Recognition, pp.284-287, 2013.
DOI : 10.1109/acpr.2013.59

A. Makadia, A. Patterson, and K. Daniilidis, Fully automatic registration of 3d point clouds, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol.1, pp.1297-1304, 2006.
DOI : 10.1109/cvpr.2006.122

URL : https://repository.upenn.edu/cgi/viewcontent.cgi?article=1473&context=cis_papers

R. Martins, E. Fernandez-moral, and P. Rives, Adaptive Direct RGB-D Registration and Mapping for Large Motions, Asian Conference on Computer Vision, ACCV 2016, 2016.
DOI : 10.1007/978-3-319-54190-7_12

URL : https://hal.archives-ouvertes.fr/hal-01403953

D. L. Massart, L. Kaufman, P. J. Rousseeuw, and A. Leroy, Least median of squares: a robust method for outlier and model error detection in regression and calibration, Analytica Chimica Acta, vol.187, pp.171-179, 1986.

G. J. Mclachlan and D. Peel, Finite mixture models, Wiley Series in Probability and Statistics, 2000.

M. Meilland and A. I. Comport, On unifying key-frame and voxel-based dense visual SLAM at large scales, International Conference on Intelligent Robots and Systems, 2013.
DOI : 10.1109/iros.2013.6696881

URL : https://hal.archives-ouvertes.fr/hal-01357359

N. Mellado, D. Aiger, and N. J. Mitra, Super 4pcs fast global pointcloud registration via smart indexing, Computer Graphics Forum, vol.33, issue.5, pp.205-215, 2014.
DOI : 10.1111/cgf.12446

URL : https://hal.archives-ouvertes.fr/hal-01538738

H. Men, B. Gebre, and K. Pochiraju, Color point cloud registration with 4D ICP algorithm, IEEE International Conference on Robotics and Automation, 2011.
DOI : 10.1109/icra.2011.5980407

J. P. Michael-korn and M. Holzkothen, Color supported generalized-ICP, International Conference on Computer Vision Theory and Applications, 2014.

L. Morency and T. Darrell, Stereo tracking using ICP and normal flow constraint, 16th International Conference on Pattern Recognition, 2002.
DOI : 10.1109/icpr.2002.1047472

URL : http://www.ai.mit.edu/~lmorency/Papers/icpr2002.pdf

M. Muja and D. G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration, International Conference on Computer Vision Theory and Application VISSAPP'09), pp.331-340, 2009.

M. Muja and D. G. Lowe, Scalable nearest neighbor algorithms for high dimensional data. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.36, 2014.
DOI : 10.1109/tpami.2014.2321376

URL : https://doi.org/10.1109/tpami.2014.2321376

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim et al., Kinectfusion: Real-time dense surface mapping and tracking, IEEE ISMAR. IEEE, 2011.
DOI : 10.1109/ismar.2011.6162880

URL : http://www.doc.ic.ac.uk/%7Eajd/Publications/newcombe_etal_ismar2011.pdf

A. Nuchter, K. Lingemann, and J. Hertzberg, Cached k-d tree search for icp algorithms, 3D Digital Imaging and Modeling, 2007. 3DIM '07. Sixth International Conference on, pp.419-426, 2007.
DOI : 10.1109/3dim.2007.15

URL : http://kos.informatik.uni-osnabrueck.de/download/3dim2007.pdf

C. Olsson, F. Kahl, and M. Oskarsson, Branch-and-bound methods for euclidean registration problems, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.5, pp.783-794, 2009.
DOI : 10.1109/tpami.2008.131

S. Orts-escolano, C. Rhemann, S. Fanello, W. Chang, A. Kowdle et al., Holoportation: Virtual 3d teleportation in real-time, Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST '16, pp.741-754, 2016.

C. Papazov and D. Burschka, Stochastic Optimization for Rigid Point Set Registration, pp.1043-1054, 2009.
DOI : 10.1007/978-3-642-10331-5_97

URL : http://www6.in.tum.de/Main/Publications/Papazov2009.pdf

C. Papazov and D. Burschka, Stochastic global optimization for robust point set registration, Comput. Vis. Image Underst, vol.115, issue.12, pp.1598-1609, 2011.
DOI : 10.1016/j.cviu.2011.05.008

S. Paris, P. Kornprobst, and J. Tumblin, Bilateral Filtering, 2009.

H. R. Parks, The volume of the unit n-ball. Mathematics Magazine, vol.86, pp.270-274, 2013.

E. Rodolã, A. Albarelli, D. Cremers, and A. Torsello, A simple and effective relevance-based point sampling for 3d shapes, Pattern Recognition Letters, vol.59, pp.41-47, 2015.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, Orb: An efficient alternative to sift or surf, Proceedings of the 2011 International Conference on Computer Vision, ICCV '11, pp.2564-2571, 2011.
DOI : 10.1109/iccv.2011.6126544

URL : http://www.willowgarage.com/sites/default/files/orb_final.pdf

D. Ruprecht and H. Muller, Image warping with scattered data interpolation, Computer Graphics and Applications, vol.15, issue.2, pp.37-43, 1995.
DOI : 10.1109/38.365004

H. Sarbolandi, D. Lefloch, and A. Kolb, Kinect range sensing: Structuredlight versus time-of-flight kinect, 2015.
DOI : 10.1016/j.cviu.2015.05.006

URL : http://arxiv.org/pdf/1505.05459

M. Schmeing and X. Jiang, Color Segmentation Based Depth Image Filtering, pp.68-77, 2013.
DOI : 10.1007/978-3-642-40303-3_8

A. Segal, D. Haehnel, and S. Thrun, Generalized-ICP, Proceedings of Robotics: Science and Systems, 2009.
DOI : 10.15607/rss.2009.v.021

URL : https://doi.org/10.15607/rss.2009.v.021

R. Siegwart, R. Illah, and . Nourbakhsh, Introduction to Autonomous Mobile Robots. Bradford Company, 2004.

N. Silberman and R. Fergus, Indoor scene segmentation using a structured light sensor, Proceedings of the International Conference on Computer Vision-Workshop on 3D Representation and Recognition, 2011.

M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, 2005.

F. Steinbruecker, C. Kerl, J. Sturm, and D. Cremers, Large-scale multi-resolution surface reconstruction from RGB-D sequences, International Conference on Computer Vision, 2013.

J. Straub, T. Campbell, J. P. How, J. W. Fisher, and I. , Efficient globally optimal point cloud alignment using bayesian nonparametric mixtures, 2016.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, A benchmark for the evaluation of RGB-D SLAM systems, IEEE International Conference on Intelligent Robot and Systems, 2012.

T. Taketomi, H. Uchiyama, and S. Ikeda, Visual slam algorithms: a survey from, IPSJ Transactions on Computer Vision and Applications, vol.9, issue.1, p.16, 2010.

T. M. Tykkälä, C. Audras, and A. Comport, Direct Iterative Closest Point for Real-time Visual Odometry, The Second international Workshop on Computer Vision in Vehicle Technology: From Earth to Mars in conjunction with the International Conference on Computer Vision, 2011.

T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. Mcdonald, Robust real-time visual odometry for dense RGB-D mapping, IEEE International Conference on Robotics and Automation, 2013.

T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard et al., Real-time large-scale dense RGB-D SLAM with volumetric fusion, International Journal of Robotics Research, vol.34, issue.4-5, pp.598-626, 2015.

T. Whelan, S. Leutenegger, R. S. Moreno, B. Glocker, and A. Davison, Elasticfusion: Dense slam without a pose graph, Proceedings of Robotics: Science and Systems, 2015.

J. Yang, H. Li, and Y. Jia, Go-icp: Solving 3d registration efficiently and globally optimally, Proceedings of the 2013 IEEE International Conference on Computer Vision, ICCV '13, pp.1457-1464, 2013.

Y. Qian, V. Zhou, and . Koltun, Color map optimization for 3D reconstruction with consumer depth cameras, ACM Trans. Graph, 2014.

Q. Zhou, J. Park, and V. Koltun, Fast Global Registration, pp.766-782, 2016.