O. Corti, S. Lesage, and A. Brice, What genetics tells us about the causes and mechanisms of Parkinson's disease, Physiol Rev, vol.91, pp.1161-218, 2011.

,

I. E. Clark, M. W. Dodson, C. Jiang, J. H. Cao, J. R. Huh et al., Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin, Nature, vol.441, pp.1162-1168, 2006.

J. Park, S. B. Lee, S. Lee, Y. Kim, S. Song et al., Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature, vol.441, pp.1157-61, 2006.

Y. Yang, S. Gehrke, Y. Imai, Z. Huang, Y. Ouyang et al., Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin, Proc Natl Acad Sci, vol.103, pp.10793-10801, 2006.

H. Deng, M. W. Dodson, H. Huang, and M. Guo, The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila, Proc Natl Acad Sci U S A, vol.105, pp.14503-14511, 2008.

,

A. C. Poole, R. E. Thomas, L. A. Andrews, H. M. Mcbride, A. J. Whitworth et al., The PINK1/Parkin pathway regulates mitochondrial morphology, Proc Natl Acad Sci U S A, vol.105, pp.1638-1681, 2008.

,

Y. Yang, Y. Ouyang, L. Yang, M. F. Beal, A. Mcquibban et al., Pink1 regulates mitochondrial dynamics through interaction with the fission/ fusion machinery, Proc Natl Acad Sci U S A, vol.105, pp.7070-7075, 2008.

,

D. Narendra, A. Tanaka, D. F. Suen, and R. J. Youle, Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J Cell Biol, vol.183, pp.795-803, 2008.

N. Matsuda, S. Sato, K. Shiba, K. Okatsu, K. Saisho et al., PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy, J Cell Biol, vol.189, pp.211-232, 2010.

D. P. Narendra, S. M. Jin, A. Tanaka, D. F. Suen, C. A. Gautier et al., PINK1 is selectively stabilized on impaired mitochondria to activate Parkin, PLoS Biol, vol.8, 2010.

, , 20126261.

S. Geisler, K. M. Holmström, A. Treis, D. Skujat, S. S. Weber et al., The PINK1/ Parkin-mediated mitophagy is compromised by PD-associated mutations, Autophagy, vol.6, pp.871-879, 2010.

C. Vives-bauza, C. Zhou, Y. Huang, M. Cui, R. L. De-vries et al., PINK1-dependent recruitment of Parkin to mitochondria in mitophagy, Proc Natl Acad Sci U S A, vol.107, pp.378-83, 2010.

R. J. Youle and D. P. Narendra, Mechanisms of mitophagy, Nat Rev Mol Cell Biol, vol.12, pp.9-14, 2011.

A. Tanaka, M. M. Cleland, S. Xu, D. P. Narendra, D. F. Suen et al., Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin, J Cell Biol, vol.191, pp.1367-80, 2010.

N. C. Chan, A. M. Salazar, A. H. Pham, M. J. Sweredoski, N. J. Kolawa et al., Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy, Hum Mol Genet, vol.20, pp.1726-1763, 2011.

S. R. Yoshii, C. Kishi, N. Ishihara, and N. Mizushima, Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane, J Biol Chem, vol.286, p.21454557, 2011.

,

O. Corti, S. Lesage, and A. Brice, What genetics tells us about the causes and mechanisms of Parkinson's disease, Physiol Rev, vol.91, pp.1161-1218, 2011.

R. A. Byrd and A. M. Weissman, Compact Parkin only: insights into the structure of an autoinhibited ubiquitin ligase, EMBO J, vol.32, pp.2087-2089, 2013.

I. E. Clark, M. W. Dodson, C. Jiang, J. H. Cao, J. R. Huh et al., Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin, Nature, vol.441, pp.1162-1166, 2006.

J. Park, S. B. Lee, S. Lee, Y. Kim, S. Song et al., Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature, vol.441, pp.1157-1161, 2006.

H. Deng, M. W. Dodson, H. Huang, and M. Guo, The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila, Proc Natl Acad Sci, vol.105, pp.14503-14508, 2008.
DOI : 10.1073/pnas.0803998105

URL : http://www.pnas.org/content/105/38/14503.full.pdf

A. C. Poole, R. E. Thomas, L. A. Andrews, H. M. Mcbride, A. J. Whitworth et al., The PINK1/ Parkin pathway regulates mitochondrial morphology, Proc Natl Acad Sci, vol.105, pp.1638-1643, 2008.

Y. Yang, Y. Ouyang, L. Yang, M. F. Beal, A. Mcquibban et al., Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery, Proc Natl Acad Sci, vol.105, pp.7070-7075, 2008.
DOI : 10.1073/pnas.0711845105

URL : http://www.pnas.org/content/105/19/7070.full.pdf

D. Narendra, A. Tanaka, D. F. Suen, and R. J. Youle, Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J Cell Biol, vol.183, pp.795-803, 2008.

S. Geisler, K. M. Holmstrom, D. Skujat, F. C. Fiesel, O. C. Rothfuss et al., PINK1/ Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1, Nat Cell Biol, vol.12, pp.119-131, 2010.

N. Matsuda, S. Sato, K. Shiba, K. Okatsu, K. Saisho et al., PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy, J Cell Biol, vol.189, pp.211-221, 2010.

D. P. Narendra, S. M. Jin, A. Tanaka, D. F. Suen, C. A. Gautier et al., PINK1 is selectively stabilized on impaired mitochondria to activate Parkin, PLoS Biol, vol.8, p.1000298, 2010.

C. Vives-bauza, C. Zhou, Y. Huang, M. Cui, R. L. De-vries et al., PINK1-dependent recruitment of Parkin to mitochondria in mitophagy, Proc Natl Acad Sci, vol.107, pp.378-383, 2010.

A. Tanaka, M. M. Cleland, S. Xu, D. P. Narendra, D. F. Suen et al., Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin, J Cell Biol, vol.191, pp.1367-1380, 2010.

N. C. Chan, A. M. Salazar, A. H. Pham, M. J. Sweredoski, N. J. Kolawa et al., Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy, Hum Mol Genet, vol.20, pp.1726-1737, 2011.

S. R. Yoshii, C. Kishi, N. Ishihara, and N. Mizushima, Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane, J Biol Chem, vol.286, pp.19630-19640, 2011.
DOI : 10.1074/jbc.m110.209338

URL : http://www.jbc.org/content/286/22/19630.full.pdf

K. Okatsu, S. Iemura, F. Koyano, E. Go, M. Kimura et al., Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase, Biochem Biophys Res Commun, vol.428, pp.197-202, 2012.

Y. Sun, A. A. Vashisht, J. Tchieu, J. A. Wohlschlegel, and L. Dreier, Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy, J Biol Chem, vol.287, pp.40652-40660, 2012.

S. A. Sarraf, M. Raman, V. Guarani-pereira, M. E. Sowa, E. L. Huttlin et al., Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization, Nature, vol.496, pp.372-376, 2013.

M. K. Mccoy, A. Kaganovich, I. N. Rudenko, J. Ding, and M. R. Cookson, Hexokinase activity is required for recruitment of parkin to depolarized mitochondria, Hum Mol Genet, vol.23, pp.145-156, 2014.

Y. Chen and G. W. Dorn, PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria, Science, vol.340, pp.471-475, 2013.

M. Lazarou, S. M. Jin, L. A. Kane, and R. J. Youle, Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin, Dev Cell, vol.22, pp.320-333, 2012.

G. Bertolin, R. Ferrando-miguel, M. Jacoupy, S. Traver, K. Grenier et al., The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance, Autophagy, vol.9, pp.1801-1817, 2013.

F. Darios, O. Corti, C. B. Lucking, C. Hampe, M. P. Muriel et al., Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death, Hum Mol Genet, vol.12, pp.517-526, 2003.

J. Zschocke, HSD10 disease: clinical consequences of mutations in the HSD17B10 gene, J Inherit Metab Dis, vol.35, pp.81-89, 2012.

S. Y. Yang, X. Y. He, C. Isaacs, C. Dobkin, D. Miller et al., Roles of 17beta-hydroxysteroid dehydrogenase type 10 in neurodegenerative disorders, J Steroid Biochem Mol Biol, vol.143, pp.460-472, 2014.

K. Rauschenberger, K. Scholer, J. O. Sass, S. Sauer, Z. Djuric et al., A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival, EMBO Mol Med, vol.2, pp.51-62, 2010.
DOI : 10.1002/emmm.200900055

URL : http://embomolmed.embopress.org/content/embomm/2/2/51.full.pdf

J. Zschocke, J. P. Ruiter, J. Brand, M. Lindner, G. F. Hoffmann et al., Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism, Pediatr Res, vol.48, pp.852-855, 2000.

J. Holzmann, P. Frank, E. Loffler, K. L. Bennett, C. Gerner et al., RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme, Cell, vol.135, pp.462-474, 2008.

S. D. Yan, J. Fu, C. Soto, X. Chen, H. Zhu et al., An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer's disease, Nature, vol.389, pp.689-695, 1997.

J. W. Lustbader, M. Cirilli, C. Lin, H. W. Xu, K. Takuma et al., ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease, Science, vol.304, pp.448-452, 2004.
DOI : 10.1126/science.1091230

K. Tieu, C. Perier, M. Vila, C. Caspersen, H. P. Zhang et al., L-3-hydroxyacyl-CoA dehydrogenase II protects in a model of Parkinson's disease, Ann Neurol, vol.56, pp.51-60, 2004.

M. S. Goldberg, S. M. Fleming, J. J. Palacino, C. Cepeda, H. A. Lam et al., Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons, J Biol Chem, vol.278, pp.43628-43635, 2003.

J. M. Itier, P. Ibanez, M. A. Mena, N. Abbas, C. Cohen-salmon et al., Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse, Hum Mol Genet, vol.12, pp.2277-2291, 2003.
DOI : 10.1093/hmg/ddg239

URL : https://academic.oup.com/hmg/article-pdf/12/18/2277/6947966/ddg239.pdf

J. J. Palacino, D. Sagi, M. S. Goldberg, S. Krauss, C. Motz et al., Mitochondrial dysfunction and oxidative damage in parkin-deficient mice, J Biol Chem, vol.279, pp.18614-18622, 2004.

R. Von-coelln, B. Thomas, J. M. Savitt, K. L. Lim, M. Sasaki et al., Loss of locus coeruleus neurons and reduced startle in parkin null mice, Proc Natl Acad Sci, vol.101, pp.10744-10749, 2004.

F. A. Perez and R. D. Palmiter, Parkin-deficient mice are not a robust model of parkinsonism, Proc Natl Acad Sci, vol.102, pp.2174-2179, 2005.

M. Periquet, O. Corti, S. Jacquier, and A. Brice, Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function, J Neurochem, vol.95, pp.1259-1276, 2005.

M. Damiano, C. A. Gautier, A. L. Bulteau, R. Ferrando-miguel, C. Gouarne et al., Tissue-and cell-specific mitochondrial defect in Parkin-deficient mice, PLoS One, vol.9, p.99898, 2014.
DOI : 10.1371/journal.pone.0099898

URL : https://hal.archives-ouvertes.fr/inserm-01075893

A. W. Greene, K. Grenier, M. A. Aguileta, S. Muise, R. Farazifard et al., Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment, EMBO Rep, vol.13, pp.378-385, 2012.

S. M. Jin and R. J. Youle, The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria, Autophagy, vol.9, pp.1750-1757, 2013.

M. Rojo, F. Legros, D. Chateau, and A. Lombes, Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo, J Cell Sci, vol.115, pp.1663-1674, 2002.

A. Chacinska, C. M. Koehler, D. Milenkovic, T. Lithgow, and N. Pfanner, Importing mitochondrial proteins: machineries and mechanisms, Cell, vol.138, pp.628-644, 2009.

E. L. Snapp and R. S. Hegde, Rational design and evaluation of FRET experiments to measure protein proximities in cells, Curr Protoc Cell Biol, vol.17, p.19, 2006.

W. J. Koopman, H. J. Visch, S. Verkaart, L. W. Van-den-heuvel, J. A. Smeitink et al., Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency, Am J Physiol Cell Physiol, vol.289, pp.881-890, 2005.

S. A. Detmer and D. C. Chan, Functions and dysfunctions of mitochondrial dynamics, Nat Rev Mol Cell Biol, vol.8, pp.870-879, 2007.

G. Twig, A. Elorza, A. J. Molina, H. Mohamed, J. D. Wikstrom et al., Fission and selective fusion govern mitochondrial segregation and elimination by autophagy, EMBO J, vol.27, pp.433-446, 2008.

L. Buhlman, M. Damiano, G. Bertolin, R. Ferrando-miguel, A. Lombes et al., Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance, Biochim Biophys Acta, vol.1843, pp.2012-2026, 2014.
DOI : 10.1016/j.bbamcr.2014.05.012

URL : https://doi.org/10.1016/j.bbamcr.2014.05.012

D. Tondera, S. Grandemange, A. Jourdain, M. Karbowski, Y. Mattenberger et al., SLP-2 is required for stress-induced mitochondrial hyperfusion, EMBO J, vol.28, pp.1589-1600, 2009.

L. C. Gomes, D. Benedetto, G. Scorrano, and L. , During autophagy mitochondria elongate, are spared from degradation and sustain cell viability, Nat Cell Biol, vol.13, pp.589-598, 2011.

A. S. Rambold, B. Kostelecky, N. Elia, and J. Lippincott-schwartz, Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation, Proc Natl Acad Sci, vol.108, pp.10190-10195, 2011.

G. M. Cereghetti, A. Stangherlin, O. Martins-de-brito, C. R. Chang, C. Blackstone et al., Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria, Proc Natl Acad Sci, vol.105, pp.15803-15808, 2008.

A. P. Joselin, S. J. Hewitt, S. M. Callaghan, R. H. Kim, Y. H. Chung et al., ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons, Hum Mol Genet, vol.21, pp.4888-4903, 2012.

P. Bragoszewski, A. Gornicka, M. E. Sztolsztener, and A. Chacinska, The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins, Mol Cell Biol, vol.33, pp.2136-2148, 2013.

M. J. Hawrylycz, E. S. Lein, A. L. Guillozet-bongaarts, E. H. Shen, L. Ng et al., An anatomically comprehensive atlas of the adult human brain transcriptome, Nature, vol.489, pp.391-399, 2012.
DOI : 10.1038/nature11405

URL : http://europepmc.org/articles/pmc4243026?pdf=render

E. Vilardo, C. Nachbagauer, A. Buzet, A. Taschner, J. Holzmann et al., A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase-extensive moonlighting in mitochondrial tRNA biogenesis, Nucleic Acids Res, vol.40, pp.11583-11593, 2012.

A. K. Muller-rischart, A. Pilsl, P. Beaudette, M. Patra, K. Hadian et al., The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO, Mol Cell, vol.49, pp.908-921, 2013.

C. Hampe, H. Ardila-osorio, M. Fournier, A. Brice, and O. Corti, Biochemical analysis of Parkinson's disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity, Hum Mol Genet, vol.15, pp.2059-2075, 2006.

J. D. Martell, T. J. Deerinck, Y. Sancak, T. L. Poulos, V. K. Mootha et al., Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy, Nat Biotechnol, vol.30, pp.1143-1148, 2012.

L. Fallon, C. M. Belanger, A. T. Corera, M. Kontogiannea, E. Regan-klapisz et al., A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling, Nat Cell Biol, vol.8, pp.834-842, 2006.

M. Escobar-khondiker, M. Hollerhage, M. P. Muriel, P. Champy, A. Bach et al., Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons, J Neurosci, vol.27, pp.7827-7837, 2007.

, ) Parkin regulates mitochondrial HSD17B10 levels G Bertolin et al ARTICLE Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy

M. Jacoupy, , 2007.

, Sidi Mohamed Hassoun, 2004.

T. Usenko,

B. Bilgic, 10 Murat Emre, 10 Nihan Erginel-Unaltuna, 11 Gamze Guven, 11 François Tison, p.12

C. Tranchant,

A. Leutenegger, , vol.16, p.17

A. Michael and . Nalls, , p.5

D. G. Hernandez, , p.18

J. Deleuze, , 2004.

A. Singleton, French Parkinson's Disease Genetics Study (PDG), and the International Parkinson's Disease Genomics Consortium (IPDGC), 1920.

, VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria, Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C)

, expressed as the proportion of COS-7 cells without PMPCB (black bars) or TOMM20 (gray bars) staining; the siVPS13C treatment increased and siPINK1 decreased the proportion. In the absence of exogenous Parkin ($Parkin; cells overproducing the control protein EGFP) or CCCP (not shown), all the cells harbored normal mitochondrial PMPCB staining, whether or not VPS13C was silenced (means 5 SEM, B) Quantification of mitophagy in the conditions described in (A)

, nM) of each siRNA and 48 hr of CCCP treatment. The mitophagy-promoting effect of VPS13C depletion was abolished by concomitant silencing of PINK1 (means 5 SEM, C) Proportion of COS-7 cells without PMPCB staining after transfection with half-doses

, The American Journal of Human Genetics, vol.98, pp.500-513, 2016.

J. Dartigues, P. Deloukas, G. Deuschl, D. T. Dexter, K. D. Van-dijk et al.,

J. Hunt, T. Huttenlocher, . Illig, V. Pálmi, L. L. Jó-nsson et al.,

E. Morrison, S. S. Mudanohwo, M. J. O'sullivan, J. Owen, J. S. Pearson et al.,

A. G. Traynor, D. Uitterlinden, R. Velseboer, B. Walker, M. Van-de-warrenburg et al., Accepted, vol.16, 2015.

, Parkinsonism Relat. Disord, vol.20, issue.1, pp.23-28, 2013.

C. B. Lücking, A. Dürr, V. Bonifati, J. Vaughan, G. De-michele et al.,

, Association between early-onset Parkinson's disease and mutations in the parkin gene, European Consortium on Genetic Susceptibility in Parkinson's Disease, vol.342, pp.1560-1567, 2000.

P. Ibáñez, S. Lesage, E. Lohmann, S. Thobois, G. De-michele et al., Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa, Brain, vol.129, pp.686-694, 2006.

A. M. Pickrell, Y. , and R. J. , The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease, Neuron, vol.85, pp.257-273, 2015.

V. S. Burchell, D. E. Nelson, A. Sanchez-martinez, M. Delgadocamprubi, R. M. Ivatt et al., The Parkinson's disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy, Nat. Neurosci, vol.16, pp.1257-1265, 2013.

G. Mclelland, V. Soubannier, C. X. Chen, H. M. Mcbride, and E. A. Fon, Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control, 2014.

, EMBO J, vol.33, pp.282-295

A. J. Hughes, S. E. Daniel, L. Kilford, and A. J. Lees, Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases, J. Neurol. Neurosurg. Psychiatry, vol.55, pp.181-184, 1992.

A. Leutenegger, B. Prum, E. Génin, C. Verny, A. Lemainque et al., , 2003.

, The American Journal of Human Genetics, vol.98, pp.500-513, 2016511-03-03.

, Estimation of the inbreeding coefficient through use of genomic data, Am. J. Hum. Genet, vol.73, pp.516-523

V. Buée-scherrer, O. Condamines, C. Mourton-gilles, R. Jakes, M. Goedert et al., AD2, a phosphorylation-dependent monoclonal antibody directed against tau proteins found in Alzheimer's disease, Brain Res. Mol. Brain Res, vol.39, pp.79-88, 1996.

V. Deramecourt, F. Lebert, C. Maurage, F. Fernandez-gomez, S. Dujardin et al., Clinical, neuropathological, and biochemical characterization of the novel tau mutation P332S, J. Alzheimers Dis, vol.31, pp.741-749, 2012.

H. Li and R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform, Bioinformatics, vol.26, pp.589-595, 2010.

A. Mckenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis et al., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res, vol.20, pp.1297-1303, 2010.

K. Wang, M. Li, and H. Hakonarson, ANNOVAR: functional annotation of genetic variants from highthroughput sequencing data, Nucleic Acids Res, vol.38, p.164, 2010.

G. E. Crooks, G. Hon, J. Chandonia, and S. E. Brenner, WebLogo: a sequence logo generator, Genome Res, vol.14, pp.1188-1190, 2004.

F. Desmet, D. Hamroun, M. Lalande, G. Collod-béroud, M. Claustres et al., Human Splicing Finder: an online bioinformatics tool to predict splicing signals, Nucleic Acids Res, vol.37, p.67, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00396239

T. D. Schneider and R. M. Stephens, Sequence logos: a new way to display consensus sequences, Nucleic Acids Res, vol.18, pp.6097-6100, 1990.

G. Bertolin, R. Ferrando-miguel, M. Jacoupy, S. Traver, K. Grenier et al., The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance, Autophagy, vol.9, pp.1801-1817, 2013.

Z. Erpapazoglou, M. Froissard, I. Nondier, E. Lesuisse, R. Haguenauer-tsapis et al., Substrate-and ubiquitin-dependent trafficking of the yeast siderophore transporter Sit1, Traffic, vol.9, pp.1372-1391, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00284724

G. Bertolin, M. Jacoupy, S. Traver, R. Ferrando-miguel, T. Saint-georges et al., Parkin maintains mitochondrial levels of the protective Parkinson's disease-related enzyme 17-b hydroxysteroid dehydrogenase type 10, Cell Death Differ, vol.22, pp.1563-1576, 2015.

M. R. Wieckowski, C. Giorgi, M. Lebiedzinska, J. Duszynski, P. et al., Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells, Nat. Protoc, vol.4, pp.1582-1590, 2009.

W. J. Koopman, S. Verkaart, H. Visch, F. H. Van-der-westhuizen, M. P. Murphy et al., Inhibition of complex I of the electron transport chain causes O2-.-mediated mitochondrial outgrowth, Am. J. Physiol. Cell Physiol, vol.288, pp.1440-1450, 2005.

L. Buhlman, M. Damiano, G. Bertolin, R. Ferrando-miguel, A. Lombès et al., Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance, Biochim. Biophys. Acta, vol.1843, pp.2012-2026, 2014.

A. Velayos-baeza, A. Vettori, R. R. Copley, C. Dobson-stone, and A. P. Monaco, Analysis of the human VPS13 gene family, Genomics, vol.84, pp.536-549, 2004.

N. Exner, B. Treske, D. Paquet, K. Holmström, C. Schiesling et al., Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin, J. Neurosci, vol.27, pp.12413-12418, 2007.

H. Mortiboys, K. J. Thomas, W. J. Koopman, S. Klaffke, P. Abou-sleiman et al., , 2008.

, Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts, Ann. Neurol, vol.64, pp.555-565

I. H. Henn, L. Bouman, J. S. Schlehe, A. Schlierf, J. E. Schramm et al., Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factorkappaB signaling, J. Neurosci, vol.27, pp.1868-1878, 2007.

L. Bouman, A. Schlierf, A. K. Lutz, J. Shan, A. Deinlein et al., Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress, Cell Death Differ, vol.18, pp.769-782, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00595932

K. M. Doherty, L. Silveira-moriyama, L. Parkkinen, D. G. Healy, M. Farrell et al., Parkin disease: a clinicopathologic entity?, JAMA Neurol, vol.70, pp.571-579, 2013.

L. Samaranch, O. Lorenzo-betancor, J. M. Arbelo, I. Ferrer, E. Lorenzo et al., PINK1-linked parkinsonism is associated with Lewy body pathology, Brain, vol.133, pp.1128-1142, 2010.

L. Rampoldi, C. Dobson-stone, J. P. Rubio, A. Danek, R. M. Chalmers et al., A conserved sorting-associated protein is mutant in chorea-acanthocytosis, Nat. Genet, vol.28, pp.119-120, 2001.

J. Kolehmainen, G. C. Black, A. Saarinen, K. Chandler, J. Clayton-smith et al., Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport, Am. J. Hum. Genet, vol.72, pp.1359-1369, 2003.

C. H. An, Y. R. Kim, H. S. Kim, S. S. Kim, N. J. Yoo et al., Frameshift mutations of vacuolar protein sorting genes in gastric and colorectal cancers with microsatellite instability, Hum. Pathol, vol.43, pp.40-47, 2012.

S. C. Richardson, S. C. Winistorfer, V. Poupon, J. P. Luzio, and R. C. Piper, Mammalian late vacuole protein sorting orthologues participate in early endosomal fusion and interact with the cytoskeleton, Mol. Biol. Cell, vol.15, pp.1197-1210, 2004.

V. A. Bankaitis, L. M. Johnson, and S. D. Emr, Isolation of yeast mutants defective in protein targeting to the vacuole, Proc. Natl. Acad. Sci. USA, vol.83, pp.9075-9079, 1986.

C. Vilariño-güell, C. Wider, O. A. Ross, J. C. Dachsel, J. M. Kachergus et al., VPS35 mutations in Parkinson disease, Am. J. Hum. Genet, vol.89, pp.162-167, 2011.

A. Zimprich, A. Benet-pagès, W. Struhal, E. Graf, S. H. Eck et al., , 2011.

, a subunit of the retromer complex, causes late-onset Parkinson disease, The American Journal of Human Genetics, vol.98, pp.168-175, 2016.

E. Braschi, V. Goyon, R. Zunino, A. Mohanty, L. Xu et al., Vps35 mediates vesicle transport between the mitochondria and peroxisomes, Curr. Biol, vol.20, pp.1310-1315, 2010.

A. Almeida, J. Almeida, J. P. Bolaños, and S. Moncada, Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection, Proc. Natl. Acad. Sci. USA, vol.98, pp.15294-15299, 2001.

A. Almeida, S. Moncada, and J. P. Bolaños, Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway, Nat. Cell Biol, vol.6, pp.45-51, 2004.

E. I. Rugarli and T. Langer, Mitochondrial quality control: a matter of life and death for neurons, EMBO J, vol.31, pp.1336-1349, 2012.

V. Choubey, D. Safiulina, A. Vaarmann, M. Cagalinec, P. Wareski et al., , 2011.

, Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy, J. Biol. Chem, vol.286, pp.10814-10824

N. Dhungel, S. Eleuteri, L. Li, N. J. Kramer, J. W. Chartron et al., Parkinson's disease genes VPS35 and EIF4G1 interact genetically and converge on a-synuclein, Neuron, vol.85, pp.76-87, 2015.

M. A. Nalls, N. Pankratz, C. M. Lill, C. B. Do, D. G. Hernandez et al.,

. Parkinson's, Study Group (PSG) Parkinson's Research: The Organized GENetics Initiative (PROGENI); 23andMe; GenePD, NeuroGenetics Research Consortium (NGRC

, Hussman Institute of Human Genomics (HIHG)

, Ashkenazi Jewish Dataset Investigator

, Cohorts for Health and Aging Research in Genetic Epidemiology (CHARGE)

, North American Brain Expression Consortium (NABEC)

, United Kingdom Brain Expression Consortium (UKBEC)

, Greek Parkinson's Disease Consortium

, Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease, Alzheimer Genetic Analysis Group, vol.46, pp.989-993, 2014.

, The American Journal of Human Genetics, vol.98, p.513, 2016.

, The American Journal of Human Genetics, vol.98

, Supplemental Information Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy

S. Lesage, V. Drouet, E. Majounie, V. Deramecourt, M. Jacoupy et al.,