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Abstract

A numerical model describing the behavior of �exible �bers under inertial �ows was developed
by coupling a discrete element solver with a �nite volume solver. Each �ber is discretized
into several beam segments, such that the �ber can bend, twist and rotate. The equations
of the �ber motion were solved using a2nd order accurate explicit scheme (space and time).
The three dimensional Navier-Stokes equations describing the motion of the �uid phase was
discretized using a4th th order accurate (space and time) unstructured �nite volume scheme.
The coupling between the discrete �ber phase and the continuous �uid phase was obtained by
a pseudo immersed boundary method as the hydrodynamic force on the �ber segments were
calculated based on analytical expressions. Several hydrodynamic force models were analyzed
and their validity and short-comings were identi�ed. For Reynolds numbers (Re) at the inertial
regime (10� 2 � Re � 102, Re de�ned at the �ber scale), non linear drag force formulations
based on the �ow past an in�nite cylinder was used. For rigid �bers in creeping �ow, the drag
force formulation from the slender body theory was used. A per unit length hydrodynamic
torque model for the �bers was derived from explicit numerical simulations of shear �ow past
a high aspect ratio cylinder. The developed model was validated against several experimental
studies and analytical theories ranging from the creeping �ow regime (for rigid �bers) to inertial
regimes. In the creeping �ow regime, numerical simulations of semi dilute rigid �ber suspensions
in shear were performed.The developed model was able to capture the �ber-�ber hydrodynamic
and non-hydrodynamic interactions. The elasto-hydrodynamic interactions at �nite Reynolds
was validated with against two test cases. In the �rst test case, the de�ection of the free end of
a �ber in an uniform �ow �eld was obtained numerically and the results were validated. In the
second test case the conformation of long �exible �bers in homogeneous isotropic turbulence was
obtained numerically and the results were compared with previous experiments. Two numerical
studies were performed to verify the e�ects of the suspended �bers on carrier phase turbulence and
the numerical model was able to reproduce the damping/enhancement phenomena of turbulence
in channel and pipe �ows as a consequence of the micro-structural evolution of the �bers.

Résumé

Un modèle numérique décrivant le comportement de �bres souples en suspension dans un écou-
lement de �uide en régime inertiel a été développé au moyen d'un couplage entre la méthode
des éléments discrets et la méthode des volumes �nis. Chaque �bre est discrétisée en plusieurs
éléments de type poutre permettant de prendre en compte une déformation (�exion, torsion,
allongement) et un mouvement de corps rigide. Les équations du mouvement des �bres sont
résolues au moyen d'un schéma explicite du second ordre (temps et espace). Le mouvement de
la phase �uide est décrit par les équations de Navier-Stokes, qui sont discrétisées et résolues au
moyen d'un schéma aux volumes �nis non structurés, d'ordre 4 (temps et espace). Le couplage
entre la phase solide (discrète) et la phase �uide (continue) est obtenue par une pseudo méthode
IBM (Immersed Boundary Method) dans laquelle l'e�ort hydrodynamique est calculé analyti-
quement. Plusieurs modèles de force hydrodynamique issus de la littérature sont analysés et leur
validité ainsi que leurs limites sont identi�ées. Pour des nombres de Reynolds (Re) correspon-
dant au régime inertiel (10� 2 � Re � 102, Re dé�ni à l'échelle de la �bre), des formulations
non-linéaires de la force hydrodynamique exercée par un écoulement uniforme sur un cylindre
in�ni sont utilisées. Le couplage a aussi été utilisé pour des �bres rigides en écoulement de Stokes,
en utilisant l'expression de la force de traînée issue de la théorie des corps élancés (`slender body
theory'). Une expression du moment hydrodynamique par unité de longueur est obtenu à partir
de simulations numériques par volumes �nis de l'écoulement autour d'un cylindre élancé.

Le modèle développé a été validé par comparaison avec plusieurs résultats expérimentaux
et analytiques, du régime de Stokes (pour des �bres rigides) jusqu'aux régimes inertiels. Dans
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le cas du régime de Stokes, des simulations numériques du cisaillement de suspensions de �bres
semi-diluées ont été réalisées. Le modèle développé permet de capturer les interactions hydro-
dynamiques et non-hydrodynamiques entre les �bres. Les interactions élasto-hydrodynamiques
pour Re �ni ont été validées dans deux cas. Dans le premier cas, la �èche d'une �bre encastrée-
libre dans un écoulement uniforme a été obtenu par calcul numérique et le résultat validé par
comparaison aux résultats expérimentaux de la littérature. Dans le second cas, la conformation
de �bres élancées et très déformables dans un écoulement turbulent homogène et isotrope a été
obtenu par calcul numérique et le résultat validé par comparaison aux résultats expérimentaux
de la littérature. Deux études numériques ont été réalisées pour étudier l'e�et de la présence de
�bres en suspension sur la turbulence au sein du �uide suspensif. Le modèle numérique a permis
de reproduire le phénomène de réduction/ampli�cation de la turbulence dans un écoulement en
canal ou en conduite, dû à l'évolution microstructurale de la phase �breuse.



Acknowledgements

I would like to thank my supervisors (in alphabetical order) : Barthélémy,
Bruno, Guillaume and Pierre for providing me the opportunity to pursue this
thesis. This thesis had bene�ted greatly from their continuous valuable sugges-
tions and advices. To be speci�c, Bart for his patience in answering my silly
and fundamental questions on solid mechanics and Discrete Element Methods,
Bruno for his guidance on the programming parts and working with YADE,
Guillaume for teaching me turbulence and occasional help with the YALES2
code and Pierre in providing insights on the physics of �ber suspensions. Spe-
cial thanks to Patrick (LEGI) for his advices and ideas on the code coupling,
implementation and helping with the HPC facilities. Rémi (3SR) for assisting
and solving the computer related issues during my time at 3SR lab. If it wasn't
for these people, this thesis would not have materialized!

I would like to thank my o�ce mates Abdelali and Aleksandr (Sasha) for
the frequent entertainment, jokes, co�ee breaks and discussions during the tough
times. If it was not for these guys I would have lost my sanity long ago (that
being said, you guys are still crazy!). Special thanks to Payam for listening to
my complaints and cynical comments on almost everything, helping me with
paper works and the french bureaucracy, I shall always remain indebted to you!
Outside the lab, I would like to thank Keshav for the long thought provoking
discussions with co�ee and some other things, Hengdi for the weekend dinners,
Didier for introducing me to the Metal scene at Grenoble and the weekly guitar
jams, Brigitte for the french lessons. I would also like to thank Anish, Harsha,
Joe, Vishwa, Mathew (G!), Vedaj and Godson for the frequent inquiries on my
well being.

Finally I would like to thank my parents, my brother, my sister and my niece
for their unconditional encouragement, love and support and for being with me
all the time (I have no words to describe this). Thank you very much!





CONTENTS

1 Introduction 1

2 Review of computational methods for particulate multiphase �ows 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Microhydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Resistance and Mobility Tensors . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Higher Reynolds numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Computational modelling of particulate multiphase �ows . . . . . . . . . . . . . . 11
2.3.1 Simulation of the �uid phase . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Simulation of particle laden �ows . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Numerical modeling of rigid and �exible �bers . . . . . . . . . . . . . . . . . . . . 16
2.5 Objectives of the present work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Numerics and Coupling Methodology 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Discrete element solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Fiber mechanical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Numerical stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Finite volume solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Finite Volume discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Pressure correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Time advancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 Linear solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 FVM-DEM Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Overview of the hydrodynamic force and torque on a �ber segment. . . . . 31
3.4.2 Coupling Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.4 Coupled FVM-DEM numerical stability . . . . . . . . . . . . . . . . . . . 37
3.4.5 Coupling timescale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Hydrodynamic Force and Torque Models 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 The prolate spheroid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Slender body theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



ii

4.5 Force per unit length on an In�nite Cylinder . . . . . . . . . . . . . . . . . . . . . 47
4.6 Comparison of di�erent force models. . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Hydrodynamic torque model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Validation Test Cases 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 De�ection of a free end �ber in a uniform �ow . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Flexible �ber in turbulent �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Concentrated �ber suspension in channel �ow . . . . . . . . . . . . . . . . . . . . 70
5.4.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Semi Dilute Rigid Fiber Suspensions in Shear 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.1 Hydrodynamic force model . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.2 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.1 Suspension microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.2 Suspension rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Drag Reduction in Turbulent Pipe Flow by Fibrous Additives 91
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Conclusion and Perspectives 103

Bibliography 113

CONTENTS



CHAPTER1

INTRODUCTION

Introduction

This thesis is mainly concerned with the numerical modeling of high aspect ratio �exible �bers
in �uid �ows. These �bers are usually long and thin, i.e, their length is many times greater than
their width.

Figure 1.1: Optical micrograph (obtained from Atomic Force Microscopy (AFM)) of cellulose
nano�bril suspension adapted from Martoïa et al. [111]

Figure 1.1 shows an optical micrograph of cellulose nano�bril suspension with 0.001% concen-
tration by weight. This low concentration was used for imaging long cellulose nano�brils and
usually the suspensions are used with 1% volume concentration. From the �gure one can notice
the complex geometry of these slender �bers The �ow of suspensions involving long �exible �bers
are quite complex and arise in several industrial applications such as in the manufacturing of
paper (pulp �bers) [106], bio based composite materials [50]. In addition to industrial applica-
tions, suspensions of long thin �laments are also encountered in several bio-physical phenomena,
such as in cell division [118], swimming of microorganisms [90] and sperm cells [125]. In the
manufacturing of composite materials involving �bers, the structure of the �ber network and
the orientation distribution of the �bers (the microstructure) play a crucial role in the resulting
mechanical properties of these composite materials. Figure 1.2 from Dumontet al. [51] shows
the resulting �ber microstructure of bundle �ber suspensions after compression tests. The �ber
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volume fraction is 0.15 (15%) and two specimens were considered : one with a random initial
in-plane (in the e1 direction) microstructure ( A init

11 � 0:5) and oriented in-plane microstructure
A init

11 � 0:6. The parameter A init is the initial �ber orientation tensor. From the �gure it is ob-
served that the suspension with preferential orientation exhibit lower axial Cauchy stress. The
deformed specimens are shown in the right hand side of �gure.

Figure 1.2: Fiber microstructure after compression tests of two samples of bundle �ber suspen-
sions. Two specimens with initial random (A init

11 � 0:5, upper part) and oriented (A init
11 � 0:6,

lower part) microstructures. The graph at the center gives the recorded axial Cauchy stress and
logarithmic strains. Adapted from Dumont et al. [51]

Furthermore it is necessary to understand the key mechanisms on the formation of clusters within
in �ber networks i.e. �oc formation. Another interesting phenomena in these complex �ows is the
deformation of the suspended �bers, that is there is an elasto-hydrodynamic interaction between
the suspended �bers and carrier �ow and how the �ber networks in turn a�ect the �ow behavior
of the carrier phase.

Objectives

The objective of this thesis is to develop a numerical model through which can one can study the
�ow of suspensions of �bers for variety of �ow situations. In this thesis, the �bers are considered
as discrete Lagrangian beams that can deform and the �uid phase is considered as an Eulerian
�eld. The motion and mechanical behaviour of the discrete �ber beams are modeled using
an Discrete Element (DEM) solver and the Navier-Stokes equations governing the �uid motion
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are solved using a Finite Volume solver (FVM). The �ber-�ber hydrodynamic and mechanical
interactions and the �uid-�ber hydrodynamic force and torque are taken into account in the
�ber mechanical model. The resulting hydrodynamic force from the �ber is introduced into the
Navier-Stokes equations as line force distribution.

Thesis outline

ˆ Chapter 2 introduces the concept of hydrodynamic force and torque on non-spherical par-
ticles. The scales of motion in the particle phase and the �uid phase are explained. The
Chapter closes with a brief review on the computational methods for modeling particle
laden multiphase �ows.

ˆ Chapter 3 introduces the solvers used in the present study. This Chapter primarily deals
with the description of the numerical methods and schemes used in the present study. The
governing equations of the �ber motion and its discretization are presented, followed by a
section on the �nite volume discretization. Finally the coupling methodology between the
solvers developed in this study is presented.

ˆ Discussion on three types of hydrodynamic force models and their shortcomings such as
the e�ect of the �ber discretization and the validity of the force models in the stokesian and
inertial regimes are explained in Chapter 4. First part of this Chapter presents basic results
obtained from a commonly used (the prolate spheroid model) hydrodynamic force model
for low Reynolds number �ows (at the �ber scale). The remaining part of the Chapter
deals with examination of previously derived analytical expressions for the hydrodynamic
force for various Reynolds numbers (at the �ber scale). In the last section of the Chapter,
a hydrodynamic torque model based on a `per unit length' fashion has been originally
formulated from explicit numerical simulations of a slender cylinder in shear �ow.

ˆ Chapter 5 consists of validation studies of the coupled numerical method. These studies
are performed in the inertial regime (�nite Reynolds number at the �ber scale.). The
validation tests include :

� Uniform �ow past a high aspect ratio �ber with one of its ends �xed with the other
end free to bend. The numerically obtained de�ection is compared with previous
experimental results and an analytical expression.

� The conformation of �exible �bers in homogeneous isotropic turbulent �ow. The
results are compared with experimental studies.

� Turbulent channel �ow of concentrated (volume fraction = 1%) �ber suspension. The
numerically obtained �ow behavior is compared with experimental results.

ˆ In Chapter 6 numerical study on the rheological behavior of semi-dilute suspensions of
rigid �bers are presented. In this Chapter, a Stokesian force model is used to describe
the hydrodynamic interaction between the �ber and the �uid. The developed model is
validated against available analytical theories and experimental studies hence validating
the developed coupled numerical model at low Reynolds numbers.

ˆ Chapter 7 deals with the numerical study of turbulent pipe �ow of semi dilute �ber sus-
pensions. Preliminary qualitative results on the drag reducing e�ects the suspension are
presented

ˆ Chapter 8 gives an overall conclusion of the present work, discussing possible improvements
and drawbacks of the developed coupled numerical model.

3
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CHAPTER2

REVIEW OF COMPUTATIONAL METHODS FOR PARTICULATE
MULTIPHASE FLOWS

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Microhydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Resistance and Mobility Tensors . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Higher Reynolds numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Computational modelling of particulate multiphase �ows . . . . . . 11

2.3.1 Simulation of the �uid phase . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Simulation of particle laden �ows . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Numerical modeling of rigid and �exible �bers . . . . . . . . . . . . 16

2.5 Objectives of the present work . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Introduction

The present Chapter gives an introduction to the �eld of particulate multiphase �ow in the
context of �ber suspension �ows. Some important results and historical development in the �eld
of microhydrodynamics are presented, in particular the drag force on spherical and spheroidal
particles in Stokes �ows. The properties, theorems and solution methods to Stokes �ow problems
have been omitted and for such details, the reader is advised to see the following references [88,
66, 64]. In the next part, popular methods used for the numerical study of multiphase particulate
�ows are presented. The Chapter closes with discussion on the modelling of �ber suspensions
and rheological and microstructural behaviour of rigid non Brownian �ber suspensions.

2.2 Microhydrodynamics

The motion of a particle suspended in a quiescent �uid is governed by the hydrodynamic force
exerted by the �uid on the particle boundaries, the equation of motion for an incompressible
�uid (Navier-Stokes equations) reads as

r � ~Uf = 0 (2.1a)

where in equation (2.1a) is the incompressibility constraint, ~Uf is the �uid velocity. The mo-
mentum equation reads as



6

@~Uf

@t
+ ~r

�
~Uf 
 ~Uf

�
= �

~r P
�

+ � ~r 2 ~Uf (2.1b)

where, � is the �uid density, p the pressure and� the kinematic viscosity of the �uid.
In order to characterize the e�ects of particle inertia suspended in the �uid, two non-dimensional
numbers viz. the Stokes (St) and particle Reynolds number (Rep) are frequently used. The
Stokes number is de�ned as

St =
j ~Uf j� p

lp
; (2.2)

where in equation (2.2) lp is the characteristic length scale of the particle and� p is the particle
relaxation time:

� p /
� pl2p
� f

: (2.3)

The Reynolds number is de�ned as

Rep =
jUf jlp

�
: (2.4)

The Reynolds number is the ratio of inertial forces to viscous forces, and the Stokes number is
de�ned as the ratio of characteristic time scale of the suspended particle to the characteristic
time scale of the �uid �ow. For low Stokes numbers (St << 1), the suspended particle follow the
streamlines of the �ow and for higherSt, the particles detach from the �ow and do not necessarily
follow the �uid streamlines. When the particle Reynolds number is very small (Re << 1) the
equation (2.1b) can be simpli�ed by neglecting the convective and transient part to obtain linear
Stokes equation, hence

~r P
�

= � ~r 2 ~Uf (2.5)

Since the Stokes equations are linear (2.5), it is possible to derive analytical solutions by the
use of several mathematical methods such as Green's functions [80, 66] or by boundary integral
methods [186] and singularity methods [131]. Stokes [159] derived the frictional resistance or the
`drag' force experienced by a sphere having radiusr moving in a quiescent �uid, the expression
reads as

~Fd = 6 ��r ~Uf : (2.6)

For a rigid spherical particle suspended in an unbounded Newtonian quiescent �uid, Faxén [57]
derived general expressions for the force and torque relating to the particle translational and
rotational velocity

~Fhyd = 6 ��r
��

1 +
r 2

6
~r 2

�
~u0� ( ~U � ~U1

f )
�

(2.7a)

~Thyd = 8 ��r 3
�

1
2

�
~r � ~u

0
�

�
�

~
 � ~
 1
f

� �
(2.7b)

where in equations (2.7a) and (2.7b),~u
0

is the disturbance velocity caused by the particle.
Batchelor [14] extended Faxén's law by the concept of stresslet. The stressletS is the symmetric
part of the �rst moment of force [64]. The stresslet relates the stress induced by the particles
in the suspesnion [64], it is in fact the resistance of the particle deformation in strainig motion.
The equation for the stresslet for a sphere is:
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�
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r 2~r 2
�

( ~r ~u
0
+ ( ~r ~u

0
)T )

�
: (2.8)

Je�ery [70] derived equations of motion for a neutrally buoyant ellipsoid in an unbounded
stokes �ow. For an ellipsoid having b as the length of the semi-minor axis, anda as the semi-
major axis, with aspect ratio rp de�ned as a=b, the time period of rotation for the ellipsoid
immersed in a shear �ow at Re ! 0 is

tp =
2� _


rp + 1
r p

(2.9)

Figure 2.1: Rotation of a spheroidal object in shear �ow (shear in XY plane).

In equation (2.9), _
 is the shear rate (see �gure 2.1). Considering~p being the orientation vector
of the symmetric axis of the ellipsoid,� and � being the angles~p makes with velocity gradient
direction and vorticity direction (see �g. 2.1), the expressions for the angular velocity of the
ellipsoid is

d�
dt

=
_


r 2
p + 1

(r 2
p cos2 � + sin 2 � ) (2.10)

d�
dt

=
_

4

�
r 2

p � 1

r 2
p + 1

�
sin 2� sin 2� (2.11)

with the angles � and � given as

tan � = rp tan
�

_
t
rp + 1

r p

+ k
�

(2.12)

tan � =
Crpq

r 2
p cos2 � + sin 2 �

(2.13)

where C and k are constants depending upon the initial orientation of the ellipsoid.
In addition to the motion of the ellipsoid in a quiscent �uid, Je�ery derived an expression for the
e�ective viscosity for a dilute suspension of spheroidal particles largely in�uenced from Einstein's
work [56]. Concerning cylindrical particles, Burgers [30] derived the hydrodynamic force and
torque constants on a cylindrical particle, drawing inspiration from the work of Oberbeck [120].
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Burgers had postulated that the disturbance induced by a long ellipsoid of revolution could
be represented as a line force of magnitude acting along the axis of symmetry of the particle.
Broersma [26, 27] improved the work of Burgers [30], however the results of both Burgers and
Broersma were not asymptotically accurate. Mason and co-workers [167, 112] experimentally
showed that neutrally buoyant rigid rod like particles tend to follow orbits similar to Je�ery
orbits and in fact the expression (2.9)- (2.13) could be used for the prediction of the motion
provided that the aspect ratio of the rod rp is replaced by an e�ective aspect ratiore, (re =
0:8rp). Bretherton [24] theoretically showed that the motion of axisymmetrical particles would
exhibhit motion similar to Je�ery's predictions. Cox [41] by the method of Matched Asymptotic
Expansions (MAE) derived the transverse and axial force per unit length on a high aspect
aspect ratio cylindrical particle known as the slender body theory. Batchelor [12] extended the
formualtion of Cox for slender bodies with non-circular cross sections. The slender body theory
was further improved by Keller and Rubinow [77] and later Johnson [71] introduced a non local
drag formulation in the slender body theory.

2.2.1 Resistance and Mobility Tensors

The solution to microhydrodynamics problems can be classi�ed into two types : the resistance
problem and the mobility problem. In the resistance problem, the �uid and particle velocities are
set as the boundary conditions and one seeks for the hydrodynamic force, torque and stresslet
the �uid applies on the particle [23].

0

@
~Fhyd
~Thyd

Shyd

1

A = �

0

@
A B G
B C H
G H M

1

A �

0

@
~Uf � ~Up
~
 f � ~
 p

E 1

1

A (2.14)

where in equation (2.14)A , B , and C are second rank tensors,G and H are third order tensors
and M is a fourth order tensor, � is the �uid dynamic viscosity. The square matrix in (2.14)
is usually known as the `grand resistance' matrix. Expanding the equation (2.14), leads to the
following set of expressions [23]. The expression of the hydrodynamic force on the particle reads
as

Fhyd i = �
h
A ij

�
U f

j � Up
j

�
+ ~B ij

�

 f

j � 
 p
j

�
+ Gijk E 1

jk

i
(2.15)

The expression for the hydrodynamic torque reads as:

Thyd i = �
h
B ij

�
U f

j � Up
j

�
+ Cij

�

 f

j � 
 p
j

�
+ H ijk E 1

jk

i
(2.16)

and the expression for the particle stresslet is

Shyd ij = �
h
Gijk

�
U f

k � Up
k

�
+ H ijk

�

 f

k � 
 p
k

�
+ M ijkl E 1

kl

i
(2.17)

The tensors appearing in equations (2.14) to (2.17) are called the hydrodynamic resistance ten-
sors. The hydrodynamic resistance tensors can be derived for any particle and it primarily
depends upon the particle size and shape. The derivation of resistance tensors has been pre-
sented in the works of Brenner. In ref [21, 22], Brenner presents the method of derivation and
in ref [23], the hydrodynamic resistance tensors of various slender axissymmetric particles have
been presented. Furthermore, analytical expressions for the speci�c viscosity, rotary di�usion
and other microstructural properties of Newtonian suspensions (dilute to semi-dilute) regime has
been reviewed.
The mobility problem aims to derive the solution of the particle motion in response to prescribed
forces and torques under an ambient �ow. Based on the linearity of the Stokes equations, equation
(2.14) can be written as
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where in equation (2.18),a, b and c are second order tensors.g and h are third order tensors. m
is a fourth order tensor. The square matrix in the righjt hand side of (2.18) is called the mobility
matrix. The components of the mobility matrix can be derived from the resistance matrix, for
details see [80] pages 109-115.

2.2.2 Higher Reynolds numbers

The formulation of hydrodynamic forces and torques presented in the previous section are only
valid in the Stokes regime. Furthermore, the drag force on an in�nite cylinder in the limit of low
Reynolds numbers (Re ! 0) cannot be derived using the Stokes equations (Stokes paradox) [88].
In this section we discuss some of the analytical and empirical expressions for the hydrodynamic
forces and torques on spherical and non-spherical particles when the particle Reynolds numbers
are in the inertial regime. Oseen [121] derived an expression for the hydrodynamic force on a
sphere for �nite inertia. The solution was derived by linearizing the convective part of the NS
equations,

Ux1

@ui
@x1

= �
1
�

@p
@xi

+ �
@2ui

@xj @xj
(2.19)

where in eqaution (2.19)Ux1 is the uniform velocity in the stream-wise direction (x1), far from
the particle in an unbounded domain,~u is the disturbance in the �ow velocity induced by the
particle. The boundary conditions for the problem are

At the particle surface, the boundary condition reads:

u = U (2.20a)

and at the far �eld, the boundary conditions are:

u ! 0 and (2.20b)

p ! p1 for r ! 1 (2.20c)

where in equation (2.20c),r is the distance from the particle andp1 is the free stream pressure.
The expression of the drag force on a sphere was derived as [121]

~Fhyd = 6 ��r ~U
�

1 +
3
16

Re
�

(2.21)

The Oseen's equations (2.19) and (2.20) are not entirely correct. Due to the linearization of
the NS eqautions and the no-slip boundary condition on the surface, the inertial terms tend
to zero at the particle surface. At some distances away from the particle, The inertial forces
dominate and at the far�eld viscous terms tend to zero, which implies that neither the Stokes
equations or the Oseen equations are valid throughout the domain, this is called the Whitehead
paradox. Nevertheless Oseen's linearization technique has been widely used to study problems
in microhydrodynamics at �nite Reynolds numbers. With the method of Matched Asymptotic
Expansions (MAE), Proudman and Pearson [133] derived exact analytical expression on the drag
force of a sphere with more accuracy, their expression reads as

~Fhyd = 6 ��r~u
�

1 +
3
16

Re +
9Re2ln(Re=2)

160
+ O(Re2)

�
(2.22)
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The method of MAE has been extensively used to derive the drag force per unit length on an
in�nite cylinder by Proudman and Pearson [133], Kaplun and Lagerstrom [75, 74] and Skinner
[153]. Hydrodynamic drag and lift forces for �ow past in�nite cylinders have been derived
semi-empirically for higher Reynolds numbers by Taylor [163]. Taylor [163] used these results
for analyzing the swimming and motion of long, axisymmetric animals [163]. Similar results
for low Reynolds Re � O(10� 3) was derived by Tomotika et al. [164]. Breif details on the
derivation of these solutions are presented in Chapter 4. Junk and Illner [73] re-derived Je�ery's
equation based on asymptotic expansions and the solution was extended to particles of general
shape and �nite Reynolds numbers. Recent studies by Einarssonet al. [55] and Rosen [138],
analyzed the motion of spheroidal and ellipsoidal particles in simple shear �ows for �nite shear
Reynolds numbers. Their study was primarily based on perturbation and expansion methods
complemented by Direct Numerical Simulation (DNS) reuslts using Lattice Boltzmann methods.
In the work of Einarsson et al., the orientation motion of neutrally buoyant spheroids were
studied. The e�ect of inertia on the Je�ery orbits and the mechanics of particle rolling and
tumbling were studied. In the work of Rosenet al. [138] the e�ect of inertia on the motion of
triaxial ellipsoids were analyzed and studied. Several drag models for non-spherical particles in
higher Reynolds number have been presented and most of these drag models are semi-empirical
derived from experiments and Direct Numerical Simulations (DNS) (see section 2.3). Cliftet
al. [39] presented various drag models for non-spherical particles with short aspect ratios for
various particle Reynolds numbers, these models were composed of analytical models for low
Reynolds numbers and models from experimental �tted data. Holzer and Sommerfeld [67] gave
the following expression for the drag coe�cient for a nonspherical particle

CD =
8

Re
1

p
� k

+
16
Re

1
p

�
+

3
p

Re

1

�
3
4

+ 0 :42100:4(� log� )0:2 1
� ?

(2.23)

where in equation (2.23)CD is the drag coe�cient, de�ned as

CD =
j ~FD j

0:5� j ~Uj2 �d 2

4

(2.24)

The expression of the drag coe�cient presented in equation (2.23) includes a term� called
the sphericity of the particle. Sphericity of a non-spherical particle is de�ned as the ratio of
the surface of the volume equivalent sphere to the surface area of the non-spherical particle.
The parameter � ? is the cross-wise sphericity, de�ned as the ratio of the cross-sectional area of
the volume equivalent sphere to the projected cross-sectional area of the non-spherical particle
perpendicular to the �ow direction. The parameter � k is the lengthwise sphericity de�ned as
the ratio of the cross-sectional area of the volume equivalent sphere to the cross-sectional area
of the non-spherical particle projected parallel to the �ow direction. This model of the drag
coe�cient was developed by combining the correlations obtained from the experimental studies
in refs. [93, 60, 166].

Figure 2.2 shows the variation of the drag-coe�cient CD with respect to Reynolds number
for various Reynolds numbers from the experimental data of [93, 60, 166]. Drag coe�cients
of non-spherical particles have also been obtained from DNS. Zastawnyet al. [189] performed
direct numerical simulations for ellipsoids, disc and �ber shapes. From these numerical sim-
ulations particle drag, lift and moment coe�cients were derived. Holzer and Sommerfeld [68]
also presented the drag and lift coe�cients of nonspherical particles by DNS using the Lattice
Boltzmann Method (LBM). Most of the drag models are valid for short aspect ratio particles
and as the sphericity of the particle tends to lower values, i,e. as the particles approach slender
shapes, these drag models do not perform well.
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Figure 2.2: Drag coe�cient vs. Reynolds numbers for various particle shapes, from [68].

2.3 Computational modelling of particulate multiphase �ows

In this section some computational approaches pertaining to the numerical simulations of par-
ticulate multiphase �ows are presented. The discussion is restricted to Eulerian-Lagrangian
approaches or pure Lagrangian methods. The Eulerian approach for describing the dispersed
phase is not considered in the present work. An overview of several methods namely Stokesian
dynamics, Lagrangian point force method, Force Coupling Method (FCM) and Fully Resolved
Lagrangian methods are presented.
Figure 2.3 shows a `map' of the particle concentration with respect to the coupling approach.
In the case of dilute suspensions, the �uid �ow a�ects the particle motion and the momen-
tum exchange from the dispersed particle phase to the �uid is not considered. The particle
Reynolds numbers are usually in the creeping regime and the particles do not detach from the
�ow streamlines. In the two-way coupled approach, the dispersed particulate phase a�ects the
carrier �ow, however the particle concentration is so low, that the particle-particle hydrodynamic
and non-hydrodynamic interactions are negligible. When the particle concentration increases,
the particle-particle hydrodynamic interactions become dominant, these hydrodynamic interac-
tions could be short range such as lubrication forces between particles or long range such as when
the motion of a given particle would be a�ected by the wake of another particle. Understanding
the particle and �uid length and time-scales are of importance when it comes to modelling of
particulate �ows. Based on the �ow Reynolds number, the �uid would exhibit a range of length
scales and time scales of motion.

2.3.1 Simulation of the �uid phase

In the case of turbulent �ows, the �uid exhibits varieties of length and time scales accompanied
by the transfer of energy between the scales (Figure 2.4). Full Resolution of the Navier Stokes
equations [Direct Numerical Simulations (DNS)] for turbulent �ows remain a challenge to this
day as the number of grid points required scales to almost the cube of Reynolds number. Large
Eddy Simulations (LES) resolves the larger scales of the �uid motion and the smaller scales are
modelled. This is achieved based on temporal and spatial averaging by means of a `�lter' which
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Figure 2.3: Particle concentration and �uid-particle coupling. By Loth et al. [104].

removes the information of the small scales. The subgrid scales and the associated turbulent
stresses are then modelled using eddy viscosity models such as Smagorinsky model (constant
eddy viscosity) [155] or dynamic eddy viscosity models [61].

Figure 2.4: Turbulent structures in a mixing layer �ow from Brown and Roshko [29]. 1

Another approach of simulating turbulent �ows is based on the Reynolds Averaged Navier Stokes
equations (RANS). These equations are the time averaged Navier Stokes equations, in which the
instantaneous velocity is decomposed into a mean velocity �eld and the �uctuating velocity

1Adapted from a report by U.Piomelli titled `A primer on DNS and LES'.
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Figure 2.5: Comparison of resolution requirements in various turbulence simulation approaches.
� x refers to the grid spacing.

�eld. In RANS modeling, one seeks for the solution of the mean velocity �eld and the stresses
induced by the �uctuating velocity is modeled. Several RANS models have been developed and
most of these RANS models involve additional transport equations for solving the turbulent
kinetic energy/turbulent viscosity or in the case of the seven equation Reynolds Stress Model
(RSM) six individual components of the turbulent stresses are solved and one transport equation
for the turbulent dissipation is solved. RANS models involve several semi-empirical constants
derived from experimental studies and boundary layer theory [178]. Figure 2.5 shows the various
turbulence modelling approaches and the associated grid requirements.

2.3.2 Simulation of particle laden �ows

Stokesian Dynamics (SD) is a simulation framework initially used for rigid spherical suspensions
for both dilute and dense suspensions [20] similar to Molecular Dynamics methods. The key idea
in Stokesian Dynamics is to construct resistance matrices (described in section 2.2.1, equation
(2.14)) for the given particle con�guration in space. The method is capable of taking into account
the non-hydrodynamic interparticle interactions such as Brownian forces and colloidal forces.
Swan and Brady extended the method of SD to include particle wall interactions [162]. Typical
SD simulations have the computational complexity ofO

�
N 3

�
whereN is the number of spheres.

Sierou and Brady [150] introduced an e�cient SD method which reduces the computational
complexity to O(N logN ). Various studies on colloidal and non-colloidal suspensions based on
the SD method can be found in the following refs. [84, 19, 151]
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The Lagrangian point force approach is one of the most commonly used methods and has been in
use since the late 80s. In this method, the motion of individual particles or cloud of particles are
tracked in the simulation domain and the �uid velocities from the Eulerian grid are interpolated
to the particle position. The drag force on the particle is calculated by the Stokes drag equation
and the motion of the particle is calculated based on Newton's second law as

m
d~Up

dt
= ~Fd: (2.25)

Yeung and Pope [184, 185] presented a Lagrangian particle tracking algorithm for inertialess
particles in isotropic turbulence with respect to spectral methods. This method was based on
one-way coupling between the dispersed phase and carrier phase and it was used to study the
Lagrangian statistics of velocity, acceleration and dissipation in isotropic �ow �elds. Eaton [52]
presented a critical review on the point-particle approach within the context of particle laden
�ows. A detailed comparison between several experimental and numerical results were also pre-
sented. From the comparison between the numerical and experimental studies, it was shown that
the Lagrangian point force method was able to reproduce the experimental results in one-way
coupled simulations with good agreement. However, for two-way coupled simulations, the numer-
ical results di�ered signi�cantly from the experimental ones especially for the studies involving
higher particle Reynolds numbers (Rep � 100) and high Stokes numbers. This discrepancy was
due to the fact that at higher particle Reynolds numbers, the e�ect of the particle unsteady
wake is signi�cant and the point force methods are not able to describe these features very well
and little to no turbulence modulation was observed in the numerical studies. Balachandar and
Eaton [11] presented a critical review on various approaches for modelling turbulent dispersed
�ows.

Figure 2.6: Applicability of various coupling approaches from [11].� k is the Kolmogorov time
scale, the time scale of the smallest eddies in the carrier �ow and� is the smallest length scale
(Kolmogorov length scale). d is the particle length scale

Figure 2.6 shows a plot of the time scale ratio (� p=�k ) versus the particle size ratio(d=� k ) and
presents the applicability of various coupling approaches. The particle relaxation time or time
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scale is represented by� p and � k is the Kolmogorov time scale, i,e. the time scale of the smallest
eddies. d is the particle length scale and� is the Kolmogorov length scale.
The Force Coupling Method (FCM) [40, 102] is another approach to model the coupling between
the carrier phase and the dispersed phase. In this method, the presence of the particle is repre-
sented by a force distribution in the NS equations. This body force is represented as multipole
expansion of the particle force [102]:

f i (x; t ) =
NpX

n=1

Fi � ( x � Y n (t)) +
NpX

n=1

Gn
ij

@
@xj

�
0
(x � Y n (t)) (2.26)

where in equation (2.26), the �rst term on the RHS Fi is the force monopole, that the particle
exerts on the �uid which is comprised of the inter-particle interaction forces, particle inertia and
other external forces. Y n (t) is the position of the particle at time t. The second term in the
RHS Gij is the force dipole related to the moment of the forces acting on the �uid, consisting
of symmetric part and an anti-symmetric part. The anti-symmetric part corresponds to the
hydrodynamic torque and the symmetric part corresponding to the stresslet. The information
about the particle size enters equation (2.26) via the Gaussian envelopes�( x) for the monopole
and �

0
(x) for the force dipole as

�( x) = (2 �� 2) � 3=2exp
�

�
jxj
2� 2

�
(2.27a)

and

�
0
(x) = (2 ��

02) � 3=2exp
�

�
jxj

2� 02

�
(2.27b)

where � = a=
p

(� ) and � 0 = a=(6
p

� )1=3 , a is the particle radius.
The FCM method introduces a spatially �ltered velocity which leads to higher accuracy compared
to conventional point force approaches especially when the turbulence in the carrier medium is
resolved by Direct Numerical Simulations [11]. In fact FCM is nearly exact for low particle
Reynolds numbers� O(10) and has been extensively used to study turbulence modulation by
spherical particles in channel �ows [101], turbulent shear �ows [175], sedimentation of spherical
particles in Stokes �ows [114] and micro-swimmer suspensions [45, 46].

Glowinski et al. [62] developed a �ctitious domain method known as the Distributed La-
grangian Multiplier method (DLM/FD). The equations of �uid and particle motions are com-
bined into a weak formulation by a `combined velocity space' (page 766 in [62]). The �uid
�ow equations are enforced inside the particle constrained to a rigid body motion by means of
Lagrange multipliers. The multiplier represents an additional body force per unit volume to
maintain the rigid body motion in the interior of the particle. The equations are discretized
based on a �nite element framework. A '�ne' mesh is used to solve the �uid velocity and a
coarser mesh is used for the pressure �eld. The particle is represented by another �nite element
mesh. Time advancement of the combined system is performed based on operator splitting tech-
niques (Marchuk-Yamenko) similar to the method of Chorin [35]. The Lagrange multipliers are
used as force densities in the last step of the fractional step of the time advancement. Singh
et al. [152] and Patankar et al. [124] presented a modi�ed version of the DLM method, with
improved collision physics between the particles similar to a soft sphere approach, where the
particles can overlap each other. Within the context of spectral �nite element methods, Donget
al. [48] presented a DLM method. Studies on settling of spheres under gravity in a �uid column
has been published using this method [152, 62, 187].

Immersed Boundary methods (IBM) and its variants have been popular in simulating par-
ticulate multiphase �ows. Peskin [126, 128, 127] presented one of the �rst IBM approaches for
studying the �uid dynamics of heart valves. In this method, the NS equations are solved on a
�xed cartesian grid and the discretization of the NS equations can be based on �nite di�erence
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methods/volumes or elements and the solid object is represented by discrete Lagrangian marker
`�bers'. The relative displacement of these lagrangian markers by the �uid velocity is used to
calculate the elastic response of the �bers. The no slip boundary condition on these marker
points is enforced by setting the velocity of the marker points to the velocity of the �uid in the
grid points in the vicinity of the marker. Based on Peskin's IB method, Uhlmann [169] devel-
oped a direct forcing IB formulation. This formulation utilizes the regularized delta functions of
Peskin [127] to interpolate the �uid velocity to the Lagrangian marker points and in `spreading'
the feed back force from the particle to the �uid grid. The key idea in Uhlmann's method [169]
is to evaluate a body force term in the Lagrangian marker points at an intermediate time level
betweentn and tn+1 :

~F n+1 =2 =
~Ud � ~Un

� t
� RHSn+1 =2 (2.28a)

where in equation (2.28a),~Ud is the velocity at the Lagrangian marker, RHS is the right hand side
of the NS equations including the viscous terms and the pressure gradient term. The expression
for ~Ud reads:

~Ud(X i
l ) = ~ui

c + ~! i
c �

�
X i

l � x i
c

�
(2.28b)

where xc is the geometric center of the particle,~ui
c the velocity at the center of the particle and

~! i
c the rotational velocity of the particle center. The velocity ~Un is interpolated from the �uid

grid using the following expression:

~Un =
X

~uf � h (x f � X l ) h3 (2.28c)

in equation � h is a discrete dirac-delta function andh is the grid spacing. Details of this function
can be found in the work of Romaet al. [136]. The feed back force is then interpolated back to
the �uid grid using an expression similar to (2.28c). Breugem [25] improved the IB framework of
Uhlmann [169] by including a multidirect forcing scheme for better approximation of the no-slip
boundary condition on the particle interface. Additional improvements were made in reducing the
grid dependency on the IB scheme (`estimation of the e�ective particle diameter') and the overall
numerical stability of the IB scheme was improved. The aforementioned IB scheme was modi�ed
by Ardekani et al. [8, 9] by including particle-particle interactions for various particle shapes
(ellipsoids, spheroids). The method was used to study the in�uence of particle concentration and
shape in drag reducing turbulent �ows.
Within context of Lattice Boltzmann Methods (LBM), the `standard bounce back' model and
the `external boundary forcing methods' were applied to study particle laden �ows. A detailed
review has been presented by Aidun and Clausen [2] and a detailed method for the simulation
of suspensions using the LB framework has been derived by Ladd [85, 86]. A recent review on
numerical methods for the simulation for particle laden multiphase methods has been presented
by Maxey [113]. The review covers several other methods such as the Arbitrary Lagrangian
Eulerian (ALE) approach and the PHYSALIS methods [190, 149] for the simulation of multiphase
�ows.

2.4 Numerical modeling of rigid and �exible �bers

Rigid �bers Based on the point force coupling approach, several studies on the orientation
behavior and preferential concentration in turbulent channel �ows for various Stokes numbers
and �ber aspect ratios have been presented in refs [33, 108, 192, 191, 119]. In these studies, the
�bers were modeled as Lagrangian points, utilizing the hydrodynamic force and torque models
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based on Je�ery's theory [70]. The relaxation time of the �ber was calculated using the expression
derived from the experimental studies of Shapiro and Goldenberg [145],

� p =
2Da2 ln

�
rp +

q
r 2

p � 1
�

9�
q

r 2
p � 1

(2.29a)

In equation (2.29a) D is the ratio of particle density to �uid density, rp the aspect ratio. The
associated Stokes number is

St =
� pu2

�

�
(2.29b)

where u� is the turbulent friction velocity. Shin and Koch [147] used the slender body theory
of Khayat and Cox [79] valid at �nite Reynolds numbers (Reynolds based on the �ber length)
for studying the rotational di�usion of long rigid �bers in isotropic turbulence. The integral
equations were solved using a pseudo-spectral method [148]. A similar method was used by
Lopez and Guazzelli [103] for studying the settling of �bers under a vortical �ow. Saintillan et
al. [140] used particle mesh Ewald summation algorithm to simulate settling of �ber suspensions.
Flexible �bers : In the framework of simulating �exible �bers, Tornberg and Shelley [165]
derived a non-local SBT (slender body theory) formulation [77, 71] coupled with the Euler-
Bernoulli beam theory to yield integral expressions for the center-line velocity of high aspect ratio
�laments. Their numerical model included the hydrodynamic interactions between multiple �bers
and the e�ect of �bers on the background �uid. Li et al [94] used a variation of the numerical
method proposed by Tornberg and Shelley [165] to study the sedimentation of �exible �laments.
A detailed review of SBT concerning modeling �bers has been presented by Lindner and Shelley
[96]. Stockie and Green [158] used Peksin's method to simulate the dynamics of a single �exible
�ber and they were able to reproduce the deformed �ber shapes observed experimentally by
Forgac & Mason [58]. Wiens and Stockie [177] developed a parallel scalable IBM based on a
Kircho�'s rod model proposed by Lim et et al. [95]. Aidun [180, 181, 141] and coworkers used
an IBM within the LBM framework known as 'external boundary forcing' method to study the
e�ect of �ber sti�ness and rotational di�usion of semi-dilute sheared �ber suspensions. Immersed
Boundary Methods/Fictitious Domain Methods, aim to fully resolve the �ow-�eld around a �ber
and are therefore computationally expensive.
In bead/rod models, a �ber is represented by an array of spheres or prolate spheroids. Yamamoto
& Matsuoka [183] developed a �exible �ber mechanical model where a �ber consisted of spheres
that are bonded to each other. The mechanical properties of the �ber were determined based on
the bending, twisting and stretching constants. Their model was validated against low Reynolds
number �ows such as the motion of a single �ber in shear �ow with respect to Je�ery's predictions
[70] and to the deformation of �bers observed experimentally by Forgacs & Mason [58]. Their
study only considered one way coupling, ignoring the action of �bers on the �uid. Jounget
al. [72] developed a similar model where a �ber was represented by a chain of spheres with
inextensible connectors thereby allowing the bending and twisting dynamics of the �bers and
the model was used to study the behavior of Newtonian suspensions and predict the viscosity of
a �exible �ber suspension. Delmotte et al. [44] improved the model of Yamamoto and Matsuoka
[183] by implementing Lagrange multipliers and a new contact model between the spheres known
as the Gears model to de�ne the twisting and bending behavior. The model was validated with
Je�ery's predictions, [70] sedimentation of a �exible �ber, dynamics of an actuated �lament and
swimming of microorganisms.
Schmid et al. [144] developed a model for �exible �bers in which the hydrodynamic force of the
�ber was represented as a chain of prolate spheroids (hereby referred to as PS model) and included
the contact forces between the �bers. Their model was used to study the formation of �ocs in
�ber suspensions, e�ect of �ber equilibrium shapes on the viscosity of �ber suspensions, however
their simulations were still based on one-way coupling. Lindström and Uesaka [97] improved
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the numerical stability of the model proposed by Schmidet al. [144] and also implemented a
two-way coupling scheme. Moreover a hydrodynamic force model for the inertial regime was
proposed. The model was used for the study of semi-dilute non-brownian �ber suspensions [98].
The same model of Lindström & Uesaka [97] was used by Andri¢et al. [6, 5, 7] for studying the
behavior of dilute suspensions and motion of �bers in inertial �ows. However the hydrodynamic
force presented by Lindström & Uesaka [97] are not accurate for intermediate inertial Reynolds
numbers and for low angles of attack past the �ber, the component of force parallel to the �ber
symmetric axis was neglected. A detailed review of such models have been presented by Lindner
and Shelley [96] and Hämäläinenet al. [65].

2.5 Objectives of the present work

In this Chapter, an introduction to particulate multiphase �ows have been presented. The
formulation of hydrodynamic forces and torques on non spherical particles from the creeping
regime to inertial regimes have been explained, followed by short descriptions on computational
methods to simulate particulate �ows have been presented. From the discussions presented in
this Chapter, it is evident that the behavior of dilute and semi-dilute suspensions in inertial
�ows are not fully understood. This thesis aims at developing a Eulerian Lagrangian method to
numerically simulate the collective behavior of several thousands of �bers in creeping and inertial
�ows. The �uid phase is solved by Finite Volume Method (FVM) and the motion of the �bers are
solved based on the Discrete Element Method (DEM). The coupling between the phases is based
on a `pseudo' immersed boundary method, as the �bers are discretized into several segments
and the length of each segment is comparable to the cell edge length of the �uid domain. The
drag force on the �ber segments are obtained via analytical expressions and drag correlation
formulae. In Chapter 3, the governing equations of motion and the numerical methods for the
�uid and �ber are discussed. Chapter 4 presents an analysis on the use of hydrodynamic force
and torque models relevant to long �bers (�bers with aspect ratio rp > 10). In Chapter 5 the
developed numerical framework is tested for �bers in inertial �ows. Chapter 6 deals with �bers
in the Stokes regime, i.e. a numerical study on semi dilute rigid �ber suspensions in shear is
presented. This study highlights the ability of the developed numerical model to reasonably
capture and describe the many body hydrodynamic interactions between the �bers. In Chapter
7, preliminary results of the drag reducing e�ects in semi-dilute �ber suspensions in turbulent
pipe �ows are presented.
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NUMERICS AND COUPLING METHODOLOGY
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3.1 Introduction

This chapter describes the governing equations for the �ber and �uid motions, and the momentum
exchange between the two phases. Two separate solvers are used to solve the equations of motion
of the �bers and the �uid. The equations of motion of the �bers are solved using the open
source Discrete Element Method (DEM) code YADE. The �bers are discretized into several
beam segments, with each segment being composed of a pair of nodes (�g. 8.2). The equations
of motion for the nodes are solved by a2nd order explicit accurate scheme (time and space).
The high-�delity �nite volume code YALES2 is used to solve three dimensional incompressible
Navier-Stokes equations. The �uid domain is discretized using a4th order accurate (space and
time) explicit �nite volume scheme. Momentum exchange between the phases is included via the
source term in the Navier-Stokes equations.
This chapter begins with a brief outline of the discrete element method and the solver. It is
followed by a description of the mechanical model of the �ber and its discretization. An outline
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of the �uid solver YALES2 and the �nite volume discretization is presented. The chapter closes
with coupling methods used to exchange data between the solvers.

3.2 Discrete element solver

YADE (Yet Another Dynamic Engine) is an open-source DEM solver primarily intended to solve
problems arising in granular materials. This code includes a variety of contact laws to describe the
interaction physics between particles (spherical, non-spherical and polyhedral shapes). Written
primarily in C++, YADE includes Python wrappers for the C++ classes and the user de�nes a
simulation case in a Python script, calling the required `engines'. Within the context of this thesis,
the contact laws between �ber segments have been modi�ed to include the lubrication terms.
Furthermore several C++ and Python functions were written in order to facilitate coupling and
data exchange with YALES2.
Figure 3.1 shows a typical simulation work �ow in the DEM solver YADE. Initially the particles
with their associated shape, material, translational and rotational velocities and their axis-aligned
bounding boxes are initialized. A collision detection algorithm checks for potential contacts via a
sweep and prune and insertion sort algorithms [174]. Once a potential contact between a particle
pair is identi�ed, geometric parameters that de�ne the `indentation depth' or deformation are
calculated. Forces and torques based on the speci�ed contact laws are calculated for each contact
pair and stored for the current timestep.

Figure 3.1: Simulation loop from YADE documentation [174].

For the sake of simplicity, the particles considered in this section are spherical. Acceleration
(translational and rotational) of the spheres are calculated from the respective forces and torques.
Using a 2nd order accurate explicit verlet-velocity integration like scheme, new particle velocities
and positions are calculated. The following set of equations can be written for a sphere. Repre-
senting the position of the center of mass of a spheren as ~On , the translational acceleration at
time t can be written as

~•On (t) = ~F (t)=mn (3.1)

where in equation (3.1), ~F (t) is the sum of all interaction forces on the spheren. Similar to
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equation (3.1), the rotational acceleration~_! n for spheren with moment of inertia Jn is written
as

~_! n (t) = ~T(t)=Jn (3.2)

where in equation (3.2),Jn = 2=5mn r 2
n . In these equations,mn is the mass of the sphere andrn

the radius.
For a nonspherical particle, the torque equation (3.2) reads:

d
dt

(J~_! n (t)) = ~T(t) (3.3)

In equation (3.3), J is the moment of inertia tensor.
From equations (3.1), an expression for the position of the particle att + � t can be obtained by
Taylor expansion along the particle coordinate~On (t) as follows:

~On (t + � t) = ~On (t) + � t
h

~_On (t) + (� t=2) ~•On (t)
i

| {z }
T1

(3.4)

where in equation (3.4), the term T1 is the the Taylor expansion of the velocity ~_On (t) about

� t=2, i.e ~_On (t + � t=2). Hence the leapfrog integration equations are

~_On (t + � t=2) = ~_On (t � � t=2) + � t ~•On (t) (3.5)

~On (t + � t) = ~O(t) + � t ~_On (t + � t=2) (3.6)

The leapfrog equations for updating the particle orientation is analogous to equations (3.5) and
(3.6) for spherical particles. However for non-spherical particles, the numerical integration is
quite involved as its local reference frame is not inertial [174]. Details of the rotation integration
can be found in ref [174].

3.2.1 Fiber mechanical model

The mechanical model of the �ber in the present work has been previously used to study various
problems in geomechanics/geotextiles [34, 18, 53]. Geometrically, a single �ber segment is rep-
resented by a sphero-cylinder, obtained by the Minkowski sum of a sphere and line. Consider a
�ber F , as shown in �gure 8.2, composed off b1; b2; b3; :::; bng �ber segments,f c1; c2; c3; :::; cn+1 g
are the nodes on the �ber segments. f ~O1; ~O2; ~O3; :::; ~On+1 g are the position vectors of these
nodes and ~Ze is the end to end vector of the �ber . (ex ; ey ; ez) forms an orthonormal basis that
is �xed on the �ber segment and ~p is the orientation vector of a given �ber segment. The length
of a �ber segment is de�ned asl = jj ~On � ~On� 1jj
The �ber segments are massless and the masses are concentrated on the nodes. The equations
of motion for a �ber node cn , while neglecting the gravity e�ects, read as

~FHYD cn
+ ~Fint +

mX

i =1

~Fconcn ;c i
+

mX

i =1

~Flub cn ;c i
= mcn

~•Ocn (3.7)

~THYD cn
+ ~M int +

mX

i =1

~M concn ;c i
= Jbn

~_! cn (3.8)

where in equation (3.7), ~FHYD cn
is the hydrodynamic force, ~Fint is the internal force of the �ber

segment which consists of a normal force component~FN cn
and shear force component~FScn

.
~Fconcn ;c i

the contact force applied by contacting �ber segments and~Flub cn ;c i
is the lubrication
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Figure 3.2: Fiber geometry.

force between the �ber segments. The position vector~O refers to the center of mass of the �ber
nodes.
In equation (3.8), ~THYD cn

is the hydrodynamic torque, ~M int is the internal moment consisting
of a bending moment ~M B cn

and a twisting moment ~M Tcn
. Jbn is the inertia tensor, and ~_! cn

the angular acceleration. ~M concn ;c i
is the moment at the nodes due to the contact forces. The

moments are calculated at the pointOn .
From equations (3.7) and (3.8), the equation of forces and moments on a �ber segmentbi having
the nodescn and cn� 1 are as follows :

1. The normal force ~FN
~FN cn

= kn (l � lo)~pbi ; (3.9)

where lo refers to the length of the �ber segment at the stress free con�guration,l the
length in the actual con�guration and kn is the elastic sti�ness associated to the normal
force de�ned as

kn =
�Er 2

f

l
; (3.10)

where in expression (3.10),E is the tensile modulus of the beam material andr f the radius
of the �ber segment.

2. The twisting moment ~M T between the nodes

The relative rotation between the nodes is used to de�ne the bending and twisting compo-
nents. Using a rotational vector representation, the relative rotation ~
 n� 1;n between the
nodescn� 1 and cn is de�ned as

~
 cn � 1 ;cn = ~
 cn � ~
 cn � 1 (3.11)

The component of twist between the nodes is

~
 T
cn � 1 ;cn

= ( ~
 cn � 1 ;cn : ~pbi ): ~pbi (3.12)

and the equation for twisting moment is

~M T = kt ~
 T
cn � 1 ;cn

: (3.13)

where kt is the sti�ness associated to the twisting moment de�ned as
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kt =
�Gr 4

f

2l
; (3.14)

where G is the shear modulus of the beam material.

3. The shear force~FS and bending moment ~M B

Figure 3.3: De�nition of the shear displacement~us in a �ber segment subjected to pure shear.

The bending moment and shear force (�gure 3.3) are mechanically coupled. Their rates of
change are linearly dependent on the rotational and translational velocities of the nodes
and can be expressed by introducing a matrix similar to the sti�ness matrix of a beam
element [193] in structural mechanics [18]
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where in equation (3.15),~_uscn
is the shear velocity (orthonormal component of the velocity)

of the node de�ned as

~_uscn
= ( I � ~pbi 
 ~pbi ) � ~_Ocn (3.16)

and ~! B cn
is the rotational velocity associated to the bending, de�ned as

~! B cn
= ~! cn � (~! cn � ~pbi ) � ~pbi (3.17)

4. Contact detection between the �ber segments

Consider two non-adjacent (non-parallel, non-intersecting) �ber segmentsbi and bj with
the nodesbi cn� 1, bi cn on bi and bj cn� 1,bj cn on bj as shown in �gure 3.4.

The contact forces between the �ber segments are calculated based on the distance between
the segmentsbi and bj . The direction vector of the segmentbi is ~pbi and that of bj is ~pbj .
The position vector of the nodebi cn is denoted by ~Obi cn and the position vector of node
bj cn is denoted by ~Obj cn and based on these position vectors the equation of a parametric
line can be written as

~A (s) = ~Obi cn + s~pbi (3.18)

~B ( t ) = ~Obj cn + t~pbj (3.19)
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Figure 3.4: Interaction between non-parallel and non intersecting segments, adapted from [53]

where, (s; t) 2 [0; 1] � [0; 1]. The vector ~w is de�ned as

~w(s; t) = ~A (s) � ~B ( t ) (3.20)

The aim is to �nd (sc; tc) 2 [0; 1] � [0; 1], such that

~wc = ~w(sc; tc) = ~A(sc) � ~B (tc) = min
(s;t )2 [0;1]� [0;1]

~w(s; t) (3.21)

The vector ~wc = ~w(sc; tc) is uniquely perpendicular to the segment direction vectors~pbi

and ~pbj . Hence it satis�es : ~pbi : ~wc = 0 and ~pbj : ~wc = 0 and the following system of
equations can be written :

8
><

>:

~wc = ~A(sc) � ~B (tc)

~pbi � ~wc = 0

~pbj � ~wc = 0

(3.22)

The solution of equation (3.22) is given by

8
><

>:

sc =
(~pbi �~pbj )( ~pbj � ~w0 )�jj ~pbj jj (~pbi � ~w0 )

jj ~pbi jjjj ~pbj jj� (~pbi �~pbj )2

tc =
jj ~pbi jj (~pbj � ~w0 )� (~pbi �~pbj )( ~pbi � ~w0 )

jj ~pbi jjjj ~pbj jj� (~pbi �~pbj )2

(3.23)

where in equation (3.23), ~wo = ~Obi cn � 1 � ~Obj cn � 1 .

Once the values ofsc and tc are obtained, the criterion for the contact is de�ned as:

jj ~wc(sc; tc)jj � jj sc � tcjj (3.24)

5. Contact force between two �ber segments

The contact between two �ber segmentsbi , bj having radii rbi , rbj is shown in �gure 3.5.
Once a potential contact is found based on the criteria in equation (3.24), each segment in
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3.2 Discrete element solver

Figure 3.5: Interaction between two �ber-segments

the contact is associated with one virtual node at the contact pointssc and tc. The virtual
nodesSi and Sj are positioned along the vectors connecting the nodes of beam segments
bi , bj in contact as shown in �gure 3.5. jj ~wc(sc; tc)jj = jj ~Si � ~Sj jj de�nes the shortest

distance between the respective axes of the segments in contact. The translational~_Si and
rotational velocities ~S! i of a virtual node Si are calculated from its associated segment in
the following way[53, 18]:

~_Si = � ~_Ocn � 1 + (1 � � ) ~_Ocn : (3.25)

~S! i = �~! cn � 1 + (1 � � )~! cn : (3.26)

� =
jj ~Ocn � 1 � ~Si jj

jj ~Ocn � 1 � ~Ocn jj
: (3.27)

The contact force ~Fcon consists of a normal ~Fcon;N and shear component~Fcon;S , the ex-
pression for the normal force reads as

~Fcon;N = kncon un;con � ~ncon (3.28)

where un;con is the normal displacement (indentation depth) and~ncon the contact normal
between the virtual nodes, which are de�ned as

un;con = jj ~Si � ~Sj jj � rSi � rSj (3.29a)

~ncon =
~Si � ~Sj

jj ~Si � ~Sj jj
(3.29b)

where in equation (3.29a)rSi and rSj are the radii of the virtual nodes and rSi = rbi ,
rSj = rbj .

kncon is the normal sti�ness between the contact nodes

kncon = 2 k̂
rSi rSj

rSi + rSj

(3.30a)

where in equation (3.30a),k̂ is the normalized sti�ness andk̂ is assigned the value ofE .

The shear sti�ness kscon is de�ned as

kscon = �k ncon (3.30b)
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where in equation (3.30b),� is a non dimensional parameter.

The contact shear force~Fcon;S is as follows:

~F t+ dt
con;S = ~F t

con;S + kscon
~_uscon dt (3.31a)

jj ~Fcon;S jj � � f jj ~Fcon;N jj (3.31b)

where in equation (3.31a),~_uscon is the relative shear velocity de�ned as

~_uscon = ( I � ~nncon 
 ~nncon) �
�

~_Si � ~_Sj

�
+

 
�

~S! i � ~S! j

�
�

~Si � ~Sj

2

!

(3.32)

and � f is the coe�cient of friction. Equation (3.31) leads to an elastic-frictional condition
between the �ber segments in contact.

Hence the expression for the contact force reads as

~Fcon = ~Fcon;N + ~Fcon;S (3.33)

The moment of this force aboutSi is:

~M con =
�

~C � ~Si

�
� ~Fcon (3.34)

considering the contact point located at ~C = ( ~Si + ~Sj )=2

The contact force ~Fcon and the corresponding moment ~M con are then distributed to the
nodes of the segment using� as the interpolation weight. Further details are reported in
the works of Bourrier et al. [18] and E�eindzourou et al. [53, 174]

6. Lubrication forces

The lubrication force between the �ber segments is based on the formulation of Frenkel
and Acrivos [59], and it is composed of a normal component and a shear component.The
normal component of the lubrication force is written as

~F L
n =

3
2

��
r 2

f

h
~_un : (3.35)

The equation for the shear component is

~F L
s =

��
2

�
� 2r f + (2 r f + h) + ln

(2r f + h)
h

� ~_us; (3.36)

where in equations (3.35) and (3.36),� is the �uid viscosity, r f is the radius of the �ber
segment,h is the distance between 2 adjacent �bers (calculated based on equation (3.22)),
~_un and ~_us are the normal and shear velocity components of the �ber segment.
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3.2.2 Numerical stability

The stability based on the sti�ness of the �ber segments is derived as follows [69]. For a given node
cn that participates in N i interactions, an equivalent translational sti�ness K tran and rotational
sti�ness K rot matrices are written. This is based on the `stifnesses' de�ned in equations (3.9) to
(3.30a):

K tran
cn

=
N iX

j =1

(kn � ks) (~pbi 
 ~pbi ) + ksI (3.37)

K rot
cn

=
N iX

j =1

r 2
f ks (I � ~pbi 
 ~pbi ) + kt (~pbi 
 ~pbi ) + kb (I � ~pbi 
 ~pbi ) (3.38)

where in equations (3.37) and (3.38),kn , ks, kt , kb are the sti�nesses associated to the normal
force, shear force, twisting moment and bending moment as described in the previous section.
r f is the �ber radius.
The maxima of the natural frequency! max from the sti�ness matrices are used to calculate the
timestep:

! max = max
cn

�
max

�
! tran

cn
; ! rot

cn

��
(3.39)

� tsf =
2

p
! max

(3.40)

Since the computation of the sti�ness matrices are quite involved, only the diagonal elements
are calculated as these terms are dominant.

3.3 Finite volume solver

YALES2[117] is a massively parallel unstructured low Mach number solver primarily used for
studying turbulent �ows and combustion problems in complex geometries. Originally developed
in CORIA lab, several research labs develop and maintain their own versions. YALES2 is written
in object oriented Fortran and contains a suite of solvers and numerical methods to solve complex
multiphysics problems. Within the context of this work, only the numerics of the incompressible
solver are presented. The user de�nes a simulation by an input �le (a bash script) with a .f90
`main' �le for including user de�ned functions.
YALES2 follows a collocated cell-vertex based discretization, i.e.. the variables~U; p;grad ~U and
scalars are stored in the nodes of the mesh and the control volumes are constructed around the
nodes.

3.3.1 Finite Volume discretization

The 3D Incompressible Navier-Stokes equations (omitting the energy equation), consists of a
momentum conservation equation and the mass conservation equation. The momentum conser-
vation equation reads as

@~U
@t|{z}

unsteady term

+ ~r
�

~U 
 ~U
�

| {z }
convective term

=
� ~r � pI

�
| {z }

pressure grad.

+ � ~r 2 ~U| {z }
di�usion term

+
~f b

�
|{z}

body forces

(3.41)

where in equation (3.41),� is the �uid density and � the �uid kinematic viscosity. The continuity
or the mass conservation equation reads as
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~r � ~U = 0 (3.42)

Discretization of the Navier-Stokes equations begins with de�ning a polyhedral control volume

 consisting ofN f faces
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�
d
 (3.43)

Rearranging and applying Gauss's theorem to equation (3.43) leads to

Figure 3.6: Control volume de�nition, from YALES2 training document.
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 (3.44)

Representing the volume integral of~U as

~�U =
1
Vp

Z




~Ud
 (3.45)

Rewriting (3.44) as

~�U(t + � t) � ~�U(t)
� t

=
1
Vp

Z

@


� �
� ~U 
 ~U

�
+ � ~r ~U �

pI
�

�

| {z }
surface forces

~ndA +
1
Vp

Z




~f b

�
|{z}

body forces

d
 (3.46)

The semi-discrete form of equation (3.46) is:

~�U(t + � t) � ~�U(t)
� t

=
1
Vp

N fX

i =1

Z

Sf

� �
� ~U 
 ~U

�
+ � ~r ~U �

pI
�

�
~ndA

| {z }
surface �ux  

+
1

�V p

~�f b (3.47)

From equation (3.47),  forms the surface �ux across the cell face, the expression of a2nd

order accurate interpolation of this �ux at the control volume boundary (CVB) b between p and
q is (�gure 3.6) :
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 b =
� (
 p) + � (
 q)

2
(3.48)

Equation (3.48) is a nominally 2nd order accurate, for irregular meshes consisting of tetrahedral
and pyramid elements, the scheme is1st order accurate. In order to overcome the issue of
accuracy, YALES2 includes a4th order accurate scheme. This spatial integration scheme was
derived by a two step procedure. This scheme is derived using the following procedure:

ˆ In the �rst step, the nodal values at p and q (�gure 3.6) are calculated as volume averages at
the barycenter of the control volume. Then a Taylor series expansion of the deconvolution
of this function is then performed.

ˆ the resulting expression of the nodal values are used to calculate the �uxes between the
control volume boundary b.

Complete details of this procedure can be found in the study of Vantieghem [170] and Kraushaar
[83].

3.3.2 Pressure correction

Since the �ow is incompressible, it introduces an inherent decoupling between the pressure and
velocity �elds. In YALES2 the problem of decoupling is solved by using a modi�ed version of
the fractional step pressure projection method of Chorin [35]. The procedure involves decom-
posing the velocity �eld into two parts [87], a solenoidal part and an irrotational part (Hodge
decomposition).

~U = ~Usolenoidal + ~Uirrotational (3.49)

The irrotational vector �eld can be expressed as the gradient of scalar potential�

~Uirrotational = ~r � (3.50a)

The following vector identity holds

~r � ~Uirrotational = ~r �
�

~r �
�

= 0 (3.50b)

From equation (3.50b), ~Usolenoidal can be expressed as

~Usolenoidal = ~U � ~r � (3.50c)

~r 2� = ~r � ~U (3.50d)

The following procedure outlines the pressure-correction algorithm in YALES2

ˆ The �rst step is to `predict' a velocity �eld ~̂U from semi-discrete form of equation (3.46),

~̂U � ~Un

� t
=  b �

~r Pn� 1=2

�
(3.51)

where in equation (3.51), the superscriptn refers to the current time level.

ˆ In the next step, an intermediate `corrected velocity' ~U � �eld is calculated from ~̂U using
the following expression

~U � � ~̂U
� t

= �
~r Pn� 1=2

�
(3.52)
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ˆ In the �nal step of the pressure correction, the velocity �eld is advanced to time leveln + 1
or at (t + � t) as

~Un+1 � ~U �

� t
= �

~r Pn+1 =2

�
(3.53)

From equation (3.53), the pressure �eld at time leveln + 1=2 can be recovered by taking
the divergence of equation (3.53) since the velocity �eld~Un+1 is divergence free :

~r 2Pn+1 =2 = �
~r � ~U �

� t
(3.54)

Equation (3.54), forms the pressure Poisson equation. In order to determinePn+1 =2 an
algebraic linear equation system with dimensions equivalent to the number of nodes has to
be solved. A brief description of the solution of the linear system is presented in section
3.3.4

3.3.3 Time advancement

A 4th -order Runge Kutta like scheme is used for time integration in the �uid solver, with an im-
plicit time-stepping scheme for the di�usive terms (see Kraushaar [83] for details). The stability
is then controlled by the Courant-Friedrichs-Lewy (CFL) number, de�ned as,

CFL = j ~Uf j
� t f

� x
; (3.55)

where ~Uf the �uid velocity, � t f the time step and � x the mesh size. For each iteration, the
time step is adapted to guarantee CFL< 1.

3.3.4 Linear solver

Equation (3.54) is the pressure-Poisson equation and for each node an algebraic expression is
written. This results into a linear system of equations of the form

A x = f (3.56)

where in equation (3.56),A is a positive de�nite symmetric and sparse matrix with dimensions
nc � nc with nc being the number of nodes. Direct methods such as Gaussian elimination or
LU factorization are expensive, therefore iterative algorithms are used. In the present study, all
computations were performed using a variant of the Conjugate Gradient (CG) method known as
the De�ated Preconditioned Conjugate Method (DPCG) method is used. Details on the method
can be found in refs [173, 107].

3.4 FVM-DEM Coupling

One of the main objectives of the present work is to couple the DEM code YADE with the FVM
code YALES2. The hydrodynamic force~FHYD and torques ~THYD are applied on the �ber segment
and the feedback force from the �ber segment acts as a body force in the NS equations describing
the �uid motion. In this section, the method of calculation of the hydrodynamic force and torque
on the segment is presented, followed by a brief description of the technical implementation used
in the present work. Finally the method of coupling the segment hydrodynamic force on the
�uid cells is discussed.
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3.4 FVM-DEM Coupling

3.4.1 Overview of the hydrodynamic force and torque on a �ber segment.

On a given �ber segment, the hydrodynamic forces and torques are calculated based on analytical
expressions (see Chapter 4). The hydrodynamic force and torque on a �ber segment are functions
of the relative velocity between �uid velocity and the orientation of the �ber segment.
Figure 3.7 shows a �ber segmentbi formed by the nodescn and cn� 1 and the orientation of the
segment is~pbi . For calculating the hydrodynamic force on the segment, the segment translational
velocity is required. The segment velocity is calculated in the following way:

~Useg =
~_Ocn � 1 + ~_Ocn

2
(3.57)

Figure 3.7: Application of hydrodynamic force and torque on a �ber segment.

The hydrodynamic force is then calculated using the following expression (for �nite Reynolds
numbers)

~FHYD =
1
2

�C D

�
�
� ~U�uid � ~Useg

�
�
�
�

~U�uid � ~Useg

�
dseglseg (3.58)

where, lseg and dseg are the length and diameter of the �ber segment. The hydrodynamic torque
on a �ber segment is calculated in the following manner:
The equation for the component of angular velocity of the �ber segment, parallel to the symmetric
axis of the �ber segment reads as

~! segk
= ( ~! m : ~pbi ): ~pbi (3.59)

where, ~! m is given by ~! m = 0 :5(~! cn � 1 + ~! cn ).
The equation for the component of angular velocity of the �ber segment, normal to the symmetric
axis of the �ber segment reads as:

~! seg?
=

� ~_Ocn � 1 � ~_Ocn

lseg

�
� ~pbi (3.60)

Hence, the total angular velocity of the beam segment is

~! seg = ~! seg?
+ ~! segk

(3.61)

The expression of the hydrodynamic torque on the �ber segment is

~THYD = ~Tspin + ~Tstrain (3.62)

where, ~Tspin is the component of the hydrodynamic torque due to the �uid vorticity and ~Tstrain is
the component of the hydrodynamic torque due to the straining motion of the �uid. Formulation
of these torque components are expalined in Chapter 4.
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3.4.2 Coupling Methodology

From equations (3.58) and (3.62), it is seen that the �uid velocity and the velocity gradient tensor
of the �uid are required to compute the hydrodynamic force and torque on the �ber segment.
In this section, discussion on the interpolation of these quantities from the �uid Eulerian grid to
the Lagrangian �ber segments is done.

Figure 3.8: Graphical representation of the coupling. Fiber shown in green, �ber nodes shown
in blue. Fluid grid in black lines and �uid nodes in red.

The coupling methodology involves managing the data exchange between the two solvers. YADE
requires the velocity and velocity gradient tensor at a speci�c position in 3D space corresponding
to the position of the �ber nodes and YALES2 requires the body force term from the �ber nodes.
An overview of the coupling is shown is shown in �gures 8.3 and 3.9.
YALES2 is a massively parallel code which is parallelized by the distributed memory paradigm
of parallelization and uses Message Passing Interface (MPI) libraries. In this framework, each
processor has its own memory space and the processor deals with the variables within this memory
space. Variables between di�erent processors are exchanged by sending and receiving messages
using the MPI library. There are two types of communication, point-to-point communication
which involves communication between two processors and collective communication in which
variables are broadcast or gathered to one processor from several di�erent processors.
Compared to standard single level domain decomposition, YALES2 follows a double domain
decomposition. In this type of decomposition, at �rst the domain is split into several pieces
based on optimal load balancing for each processor and the the overlap regions that participate
in the inter-processor communication are marked. In the second level of the decomposition,
within each processor the mesh is further divided into several `cell groups' and each processor
has an internal communicator as well as an external communicator. The internal communicator
is responsible for maintaining the exchange and looping between these cell groups, whereas the
external communicator collects the required data from the internal communicator and uses it
for communication with the other processors. The METIS [76] library is used to generate the
partitions based on an uni-directional graph data structure at both the levels.
The discrete element method is essentially an N-body simulation problem. For such problems,
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Figure 3.9: Simple schematic of the coupling between the codes YADE and YALES2.

distributed parallelization coupled with spatial domain decomposition is not well suited as there
would be severe load imbalance between the processors. One could perform a domain decompo-
sition for these problems by initially assigning the particles to the processors irrespective of the
spatial location. This method looks quite attractive if there are long range interaction between
the particles, however typical DEM problems involve short range interaction forces and for such
problems this mode of decomposition would lead to large communication overheads between the
processors. Parallelization in YADE is done based on the shared memory paradigm and the
OpenMP library is used to achieve the parallelization. In this mode of parallelization, several
cores have access to a single memory space. Building the lists of potential contacts and interac-
tion forces based on this method is relatively e�cient, since the looping through the particles can
be split into several lightweight processes called threads and with the trend of increasing number
of cores and larger RAM, this method of parallelization is quite attractive. However if one wishes
to solve large scale problems involving millions of particles, MPI based domain decomposition
parallelization would be e�cient.
In the present coupling framework, a task-based parallelism approach is used. This is achieved
by splitting the `communicator' in the MPI framework. A collection of processors performing
a single task forms a communicator and the default communicator is calledMPI_COMM_WORLD.
The default communicator is split into two, with one processor and communicator assigned to
YADE and Np processors assigned to YALES2 which forms the YALES2 communicator. YADE
spawns OpenMP threads based on the number of available cores. One processor in the YALES2
communicator is called as the `master' and manages the communication between the other pro-
cessors in the YALES2 communicator. Furthermore YADE sends and receives data from the
master processor of YALES2. Figure 3.10 shows an overview of the coupling scheme within one
timestep.
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Figure 3.10: Flowchart of coupling between the codes YADE and YALES2.
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3.4.3 Implementation

YADE runs under a Python environment and by default, majority of the C++ classes and
variables are `wrapped' at the lowest level i.e.. they behave as objects in a shared library which
can be accessed and modi�ed via a generic Python script. Since Python is used in the top
level, Python can be used as a `glue' to facilitate coupling between the two codes. YALES2 on
the other hand uses Fortran `main.f90' �le which drives the simulation. A Fortran code can be
called under Python environment by generating Python wrappers for the Fortran code. This
is done by using thef2py module of the Numpy library in Python. Therefore one method of
coupling is to write a piece of Fortran code that acts as an interface. The interface consists of
the functions that provides the splitting of the MPIcommunicator, sending and receiving of data
under the MPIenvironment (MPI_SEND,MPI_RECV MPI_BROADCASTetc.). This type of coupling is
relatively simple to implement however it has some drawbacks. One of the main drawbacks is the
dependency on thef2py and Numpy libraries as it is incapable of generating wrappers for modern
object oriented Fortran codes utilizing derived data-types (similar to struct in C/C++) 2. The
other drawback of this method involves an internal conversion of datatypes i.e.. Fortran �oats to
Numpy �oats and for large arrays it is ine�cient. f2py is also notorious for memory-leaks during
runtime, i.e.. earlier versions of f2py keeps a copy of the variable when it is passed between
Fortran and Python, this leads to a growing memory consumption during runtime ultimately
terminating the entire application.
Another approach for coupling the codes is based on mixed language programming. This involves
in exposing Fortran functions in C++ or vice versa. This method is similar to the previous
approach but instead of using Python to maintain the coupling/communication between the
codes, a low level coupling is achieved by calling Fortran functions in C++ or vice versa. This
leads to an e�cient and fast data exchanges. However, careful implementation should be done in
order to avoid unexpected `segmentation faults'. The function prototype of the external Fortran
functions are declared in the.hpp header �le using the extern keyword and the associated
datatype bu�ers (no support for struct datatypes). This mode of coupling is used throughout
in this thesis.

The coupling algorithm is as follows (from �gure 3.10):

ˆ The communicator MPI_COMM_WORLDis split into two. YADE forms a communicator space
with one processor and YALES2 forms a separate communicator with its group of proces-
sors.

ˆ The �ber segment coordinates are collected in an array and sent to the YALES2 master
processor using theMPI_SENDfunction. YALES2 master processor receives the segment
coordinates (MPI_RECV).

ˆ The YALES2 master processor performs a broadcast using theMPI_BROADCASTfunction,
the other processors receive the segment coordinates.

� Each processor loops through its element groups and performs a search for the coor-
dinates based on a min-max method in a tree like data structure.

� Once the element containing the segment is found, the values of the velocity vector
and velocity gradient tensor is interpolated and sent to the master processor.

ˆ YALES2 master sends the velocity vector and velocity gradient tensor corresponding to
the segment position to YADE by a MPI_SEND/RECVfunction. YADE calculates the hydro-
dynamic forces and torque for each segment and calculates the new position of segments
for a prescribed number of timesteps.

2There is a library called f90wrap which overcomes this limitation, during the development of the coupling
f90wrap was in its nascent stage ca. early 2015
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ˆ YADE sends the new segment positions and corresponding hydrodynamic forces to YALES2
by the MPI_SEND/RECVfunction.

� The velocity-source/body force term in the NS equations are initialized to zero.
YALES2 master processor broadcasts the segment position and hydrodynamic forces.

� A search in the element group of each processor is performed, once the segment posi-
tion is located the hydrodynamic forces are interpolated to the nodes of the element
containing the �ber segment.

ˆ The NS equations are solved based on the algorithm presented in the previous section
incorporating the velocity-source term and the loop continues until the desired number of
timesteps or time is reached.

Compared to typical CFD-DEM coupling [179, 81], the present coupling numerical model di�ers
in the scale of particle-grid resolution and particle volume fraction. In standard CFD-DEM
methods, the particle concentration is higher than 10% and the e�ect of this volume concentration
is incorporated in to the NS equations, whereas in the present study the �ber volume fraction
at maximum is 5%. Furthermore the particles are several times smaller than the �uid element
size. In the present work, the segment sizes and the �uid elements have comparable dimensions
(usually the segment length is kept 1 to 2 times the �uid element edge length). This method is
quite expensive, however it provides better resolution and for low Reynolds numbers the subgrid
scales are resolved within the �ber segment length.
The hydrodynamic forces on the �uid element nodes are interpolated using a method similar to
the work of Lindström and Uesaka [97]. Using this interpolation scheme, the force exerted by
one �ber segment on one �uid cell is distributed over the �uid cell nodes in such a way that:

ˆ The sum of the interpolated forces is equal to the force itself.

ˆ At each cell node, the moment of the interpolated forces is equal to the force itself.

Consider a hexahedral element with nodes labeled as(i; j; k ), (i + 1 ; j; k ) � � � and so on. ~xp =
(xp; yp; zp) be the position vector of the �ber segment from the node(i; j; k ). The weighting
function for each node is as follows:

Wi;j;k (xp; yp; zp) =
x i +1 � xp

� x
�

yi +1 � yp

� y
�

zi +1 � zp

� z
(3.63a)

Wi +1 ;j;k (xp; yp; zp) =
xp

� x
�

yi +1 � yp

� y
�

zi +1 � zp

� z
(3.63b)

Wi +1 ;j +1 ;k (xp; yp; zp) =
xp

� x
�

yp

� y
�

zi +1 � zp

� z
(3.63c)

Wi;j +1 ;k (xp; yp; zp) =
x i +1 � xp

� x
�

yp

� y
�

zi +1 � zp

� z
(3.63d)

Wi;j;k +1 (xp; yp; zp) =
x i +1 � xp

� x
�

yi +1 � yp

� y
�

zp

� z
(3.63e)

Wi +1 ;j;k +1 (xp; yp; zp) =
xp

� x
�

yi +1 � yp

� y
�

zp

� z
(3.63f)

Wi;j +1 ;k+1 (xp; yp; zp) =
x i +1 � xp

� x
�

yp

� y
�

zp

� z
(3.63g)

Wi +1 ;j +1 ;k+1 (xp; yp; zp) =
xp

� x
�

yp

� y
�

zp

� z
(3.63h)
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The hydrodynamic force ~Fhyd is distributed to the nodes based on the volumetric weighting
function from equation (3.63). For example for node(i; j; k ), the hydrodynamic force is

~̂Fhyd i;j;k
=

~Fhyd Wi;j;k (xp; yp; zp)
� f � Vf

(3.64)

Figures 3.11 and 3.12 shows the geometric representation of the force distribution in 2 dimensions.
In �gure 3.11, the hydrodynamic force ~Fh from the �ber segment center P is to be distributed
to the four nodes of the quadilateral �uid cell as

Figure 3.11: Schematic of the force interpolation in 2D.

Figure 3.12: Geometric representation of the force interpolation by means of area weighted
average in 2D.

In the case of tetrahedral elements, the same approach is used. Consider a tetrahedral element
with the nodes n1 = ( x1; y1; z1), n2 = ( x2; y2; z2), n3 = ( x3; y3; z3) and n4 = ( x4; y4; z4). p =
(xp; yp; zp) is the position of the segment and
 1234 be the volume of the tetrahedral element.
The weighting function for node n1 is

Wn1 (p) =

 p234


 1234
(3.65)

where in equation (3.65),
 p234 is the volume of the tetrahedron formed by the segment center and
the other nodesn2, n3 and n4. For other nodes, the same expression applies. The hydrodynamic
force on the node is calculated based on expression (3.64) :

~̂Fhyd n;i
=

~Fhyd Wn;i

� f � Vf
(3.66)

3.4.4 Coupled FVM-DEM numerical stability

The equations of motion presented for a given �ber segment node can be written as a spring-
mass system. However, the presence of a �uid damps the motion of the �ber nodes [32], hence
a spring-mass damper system equation for a given nodecn can be written as
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mcn f ~•Ocn g + [ V cn ] f ~_Ocn g + [ K cn ] f ~Ocn g = 0 (3.67)

where in equation (3.67)mcn is the mass of the node,V cn is the viscosity matrix consisting of
the hydrodynamic force coe�cients and K cn the segment sti�ness matrix. From equation (3.67)
a critical timestep � tdf can be derived for the viscosity dominated regime (negligible sti�ness).

mcn f ~•Ocn g + [ V cn ] f ~_Ocn g = 0 (3.68)

where V cn is a 3 � 3 diagonal matrix with the scalar hydrodynamic force coe�cients � k, � ? and
� ? as the diagonal elements

� k =
1
2

� f Cl df lseg

�
�
� ~Uf � ~Useg

�
�
� ; (3.69a)

� ? =
1
2

� f Cndf lseg

�
�
� ~Uf � ~Useg

�
�
� : (3.69b)

Writing equation (3.68) in the discrete form for one direction , one obtains:

~_Ocn (t + � t) � ~_Ocn (t)
� t

= �
Vcn i;j

(t)

mcn

~_Ocn (t) (3.70a)

and
~_Ocn (t + � t) =

 

1 �
Vcn i;j

mcn

� t

!
~_Ocn (t) (3.70b)

where equation (3.70) re�ects the integration of equation (3.68) by the explicit time stepping
algorithm in use.
The stability of an explicit integration scheme is ensured by imposing the condition [32]:

�
�
�
�1 �

max(V cn )
mcn

� t

�
�
�
� � 1: (3.71)

Hence from equation (3.71), the criterion for a stable timestep is deduced as:

� tdf < 2 � min
cn

�
mcn

max(V cn )

�
: (3.72)

3.4.5 Coupling timescale

From the previous discussions, three critical timesteps pertaining to the DEM solver, FVM
solver and the coupled scheme has been presented. In the present section, the `coupling' time
is presented. The timestep of the DEM solver depends on the particle size, sti�ness (Young's
modulus) and density of the material. The �bers in the present work are assumed to have
diameters in the order of �m and the Young's modulus varies from few MPa to tens of GPa.
This leads to extremely sti� systems rendering the typical timestep � tsf of the DEM solver in
the order of 10� 7s to 10� 9s. For the �uid solver, two timesteps are present: a timestep based on
the advection of the �ow and a timestep for the di�usive component. For turbulent and �nite
�ow Reynolds numbers, the viscous/di�usive timesteps are in the order of10� 8s to 10� 4s and the
convective timesteps range from10� 5s to 10� 2s, (at CFL=1). As mentioned in section 3.3.3, the
constraint of extremely small timesteps arising from the di�usion process is overcome by using
implicit schemes and therefore a timescale for the �uid solver is �xed based on the convective
timetstep � t f . In section 3.4.4, a timestep� tdf for the coupling has beeen presented. This
timestep can be considered in an intermediate region between the �uid and particle timescales,
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i.e. the coupling timestep is higher than the standard DEM solver timestep but less than the �uid
solver : � tsf < � tdf < � t �uid . In the present work, the DEM solver is run until it approaches
� tdf , at this time the data exchange is done. In the �uid solver the CFL number is set to a
value that correpsonds to � tdf . For Stokesian force models such as the slender body theory
and prolate-spheroid model (discussed in detail in Chapter 4), the �uid velocity at the current
timestep is used. Owing to the non-linearity of the drag force in �nite Reynolds numbers, the
hydrodynamic force is calculated using the �uid velocity from the previous timestep.

3.5 Conclusion

The governing equations and the numerical methods of the �ber phase and the �uid phase have
been discussed. YADE an open-source DEM solver is used for solving the equations of �ber
motion and a high �delity �nite volume solver YALES2 is used for the numerical solution of the
Navier-Stokes equations of the �uid phase. Interphase coupling is achieved by incorporating the
�ber hydrodynamic force as a velocity-source term in the NS equations and the methodology of
the communication between the solvers has been presented. Numerical stability of each numerical
method is presented and �nally the stability of the coupled FVM-DEM has also been presented.
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HYDRODYNAMIC FORCE AND TORQUE MODELS
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4.1 Introduction

This chapter is primarily concerned with the various force formulations applicable for �exible
�bers within a bead-rod framework. The chapter begins with implementations of some previous
force models used. Their implication in using them in the present �ber discretization framework
is examined. A hydrodynamic force model based on the `force per unit length' on an in�nite
cylinder model for various Reynolds numbers is introduced and its applicability is discussed. The
chapter closes with a formulation for the hydrodynamic torque in a `per unit length' fashion.
This hydrodynamic torque was developed from explicit CFD simulations of a high aspect ratio
cylinder in a shear �ow.

4.2 Preliminaries

In this section, we describe the de�nitions of the hydrodynamic force coe�cients used in this
chapter and throughout this work.
The total hydrodynamic force ~Fhyd acting on the surface of a particle is de�ned as:

~Fhyd =
Z

sp

� :~ndS (4.1)

where � is the total hydrodynamic stress. This stress� can be decomposed into:

� = � pI + � : (4.2)
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In equation (4.2) p is the absolute pressure,I is the unit tensor, and � is the viscous stress tensor.
The viscous stress tensor� is de�ned as :

� = 2 � E: (4.3)

In equation (4.3), � is the �uid dynamic viscosity. E is the strain rate tensor, which is de�ned
as:

E =
1
2

�
(r ~Uf ) + ( r ~Uf )T

�
(4.4)

where in equation (4.4), ~Uf is the �uid velocity.
The Reynolds number is de�ned as the ratio of inertial force to viscous force. In the present
study the Reynolds number is based on the �bre diameter as follows:

Rep =
� f j ~Un jd�b

�
(4.5)

where � f is the �uid density, and ~Un is the component of the relative velocity normal to the
symmetry axis of the �ber segment. For low Reynolds numbers (Rep < 0:01), a Stokesian
formulation of the force is used:

~Fhyd = � f A
�

~Uf � ~Useg

�
(4.6)

where A is the hydrodynamic resistance tensor of the particle. For higher Reynolds numbers,
the following non-linear formulation is used :

~Fn =
1
2

� � Cnd�b lsegj ~Uabsj
�

~Uf ? � ~Useg?

�
(4.7a)

~Fl =
1
2

� � Cl d�b lsegj ~Uabsj
�

~Uf k
� ~Usegk

�
(4.7b)

~Fhyd = ~Fn + ~Fl (4.7c)

In equation (4.7), ~Fl is the component of the hydrodynamic force parallel to the �ber segment
symmetric axis (longitudinal component). ~Fn is the component normal to the symmetry axis.
Cn and Cl are the hydrodynamic force coe�cients for the normal and longitudinal directions
(equations (4.7a) and (4.7b)). Details of the force coe�cients are presented in the later sections.
The total hydrodynamic torque at the hydrodynamic center of the particle is de�ned as

~TO =
Z

sp

~r � � :~ndS (4.8)

where ~r is the vector from the center of the particle to the particle surface. The torque due to
the rotational velocities of �uid and the �ber (at the hydrodynamic center) is de�ned as :

~TR = �C R (~! f � ~! p) (4.9)

Torque due to the strain-rate tensor/deformation of the �uid (at the hydrodynamic center) is
de�ned as :

~TS = �C S (� � (~p
 ~p)) : E (4.10)

where in equation (4.9)CR is a resistance tensor depending upon the particle shape and orienta-
tion and in (4.10), and CS is resistance scalar based on the particle shape and� is the Levi-Civita
symbol.
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4.3 The prolate spheroid model

The prolate-spheroid model was used in the studies of Schmidet al. [144], Lindström and
Uesaka [97] and Skjeteneet al. [154]. In their studies, a �ber was modeled as a chain of cylinders
with hemispherical end caps. The hydrodynamic force on these segments are approximated by
`equivalent' prolate spheroid. The hydrodynamic force formulation on these spheroids is based
on Je�ery's results [70] and has been presented in the work of Kim and Karilla [80].
The hydrodynamic force and torque on a prolate-spheroid [80] is written as follows :

~Fhyd = 6 ��a
�
X A (~p
 ~p) + Y A (� � (~p
 ~p))

�
:
�

~Uf � ~Useg

�
(4.11)

~Thyd = 8 ��a 3 �
X C (~p
 ~p) + Y C (� � (~p
 ~p))

�
:(~! f � ~! seg) � 8��a 3Y H (� : (~p
 ~p)) : E (4.12)

where in equations (4.11) and (4.12),a = lseg=2 is half the segment length,� is the dynamic
viscosity of the �uid. X A ,Y A ,X C ,Y C ,Y H are the hydrodynamic scalar resistance functions which
are based on the geometry of the spheroid.

X A =
8
3

e3 �
� 2e+ (1 + e2)L

� � 1
(4.13a)

Y A =
16
3

e3 �
2e+ (3 e2 � 1)L

� � 1
(4.13b)

X C =
4
3

e3(1 � e2)
�
2e � (1 � e2)L

� � 1
(4.13c)

Y C =
4
3

e2(2 � e2)
�
� 2e+ (1 + e2)L

� � 1
(4.13d)

Y H =
4
3

e5 �
� 2e+ (1 + e2)L

� � 1
(4.13e)

L (e) = ln
�

1 + e
1 � e

�
(4.13f)

where e is the eccentricity of the spheroid. When using such a model for �bers with cylindrical
shapes, a question of de�ning the value ofe arises. Schmidet al. [144] de�ned an e�ective aspect
ratio re of the spheroid relating the segments aspect ratiorp based on Bretherton's results [24]
re = 0 :7rp. The eccentricity was then de�ned as:

e =

s

1 �
1
r 2

e
(4.13g)

It should be noted that the eccentricity in all these studies (Schmidet al. [144] and Lindström
and Uesaka [97]) was de�ned for the �ber segment and not for the entire �ber.
In the work of Lindström and Uesaka [97], the diameter of the equivalent spheroiddspheroid was
calculated from the semi-empirical expression derived by Cox [41],

dspheroid =
1

1:24
df

�
ln

lseg

df

� 1=2

(4.14)

Equation (4.14) is valid for slender bodies with high aspect ratio (rp > 10) and is not accurate
when the aspect ratio of the segment is short. As a �rst case study, the prolate spheroid hy-
drodynamic force model was implemented and tested. A rigid �ber is placed under a shear �ow
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Figure 4.1: Spheroid shape based one, from ref [80]

and the motion of the �ber is compared with Je�ery's theory. Fibers with di�erent aspect ratios
ranging from 25 to 200 are tested with two-way coupling. The e�ective aspect ratio of the �ber
segments were calculated using equation (4.14) and the eccentricity from (4.13g). For rigid �bers
the Young's modulus was varied from 8 to 20 GPa (higher Young's modulus for higherrp). Table
4.1 shows the details of the �ber discretization for di�erent rp .

rp Nseg

12 6
25 12
32 15
50 20
80 30
100 50
200 60

Table 4.1: Fiber discretization.

Figure 4.2: Rigid �ber in a shear �ow (shear in XY plane).

Figure 4.2 shows the schematic of the numerical simulation.� is the angle between the symmetric
axis of the �ber and the velocity gradient direction. � is the angle between the vorticity axis and
the projection of the �ber symmetric axis on the vorticity plane. For a �ber depicted in �gure
4.2, Je�ery [70] derived the time period of the rotation of an ellipsoid:

Tp =
2� _


re + 1
r e

(4.15)

where _
 , is the shear rate andre is the the aspect ratio of the ellipsoid. In the present study,re

is the e�ective aspect ratio. For a �nite cylinder with aspect ratio rp, re was calculated using
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the equation derived by Cox [41]:

re = 1 :24rp
1

p
ln rp

(4.16)

Figure 4.3: Comparison of angular displacement with Je�ery's theory for rigid �bers with di�er-
ent aspect ratios.

Figure 4.3 shows the comparison of the non-dimensional orbit period_
T with respect to the
aspect ratio rp. The eccentricity of the segments were �ne-tuned in this case. The e�ect of
varying the number of segments is shown in �gure 4.4.
Figure 4.4 shows the comparison of angular displacement� with respect to time obtained from
the prolate spheroid (PS) model and the analytical solution of Je�ery (eq. (4.15)). From the
�gure it is observed that the numerical solutions are dependent on the number of segments. This
is the major inconsistency of the PS model.

Figure 4.4: Comparison of angular displacement with Je�ery's theory. Fiberrp = 50, _
 = 500

The Bending number (BR) is a non-dimensional number that characterizes the �exibility of a
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�ber in shear �ow [63, 58]. The expression of BR is

BR =
E (ln(2rp) � 1:50)

2� _
r 4
p

(4.17)

In equation (4.17), E is the �ber Young's modulus. For BR > 10 the �bers are considered as
rigid, and as the BR decreases, the �bers are seen as �exible.

Figure 4.5: Deformation of �exible �bers in a shear �ow, shear in XY plane. (a) BR = 0 :80.
(b) BR = 0 :04. (c) BR = 0 :0075. (d) BR = 8 :5 � 10� 4. (e) BR = 5 :1 � 10� 4. (f )
BR = 1 :1 � 10� 4. Vectors in green show the disturbance produced by the �ber.

Figure 4.6: Deformation of �bers observed in the experiments of Salinas and Pitman [142]

The deformation of a �exible �ber in a shear �ow for varying bending numbers was studied.
The results of the �ber deformation is shown in �gure 4.5. Figure 4.6 shows the experimental
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observations obtained by Salinas and Pitman [142]. From the �gures it is observed that the
results obtained by the PS hydrodynamic model is in reasonable agreement with the experimental
observations.

4.4 Slender body theory

The slender body theory was derived by Batchelor [12] and Cox [41]. Keller and Rubinow [77]
introduced the non-local slender body theory. The slender body theory derives asymptotic solu-
tions for particles having large aspect ratios (rp > 10). Since the slender body theory is derived
based on the Stokes equations in which the inertial terms of the NS equations are neglected, it
does not aim to solve the Stokes paradox. The slender body theory assumes a distribution of
point forces and torques on axisymmetric particles called as `stokeslets' and `rotlets'. Letbbe the
semi-length of the particle, a be the width/radius particle, slender body theory aims to derive
the pointforce distribution for an axisymmetric body with a=b! 0. An asymptotic expansion
of the Stokes equation based onk = a=bis employed at the vicinity of the particle to satisfy the
no-slip boundary condition known as the `inner expansion'. The `outer expansion', is based on
the parameter k and aims to satisfy the free stream velocity boundary condition based on the
Stokes equation but in the absence of the slender body. (see Cox [41] page 797)
The force per unit length/force distribution on an axisymmetric particle derived from the slender
body theory is :

~f = 4 �k�
�

� �
1
2

(~p
 ~p)
�

~V (4.18)

from equation (4.18), the force per unit length parallel to symmetric axis of the particle is :

f jj =
4��

ln (2rp) + 0 :5
Vk (4.19)

and the force per unit length normal to the symmetric axis :

f ? =
8��

ln (2rp) + 0 :5
V? (4.20)

The slender body theory in the form of equations (4.19) and (4.20) is not directly applicable in
the present numerical methods, as there remains questions on the de�nition of the aspect ratio
rp for �exible �bers.

4.5 Force per unit length on an In�nite Cylinder

Stokes Paradox : Based on the Stokes equations, it is impossible to derive the force per unit
length on an in�nite cylinder, i.e. there exists no 2D creeping �ow past a circular cylinder which
satis�es both the no-slip boundary condition on the surface of the cylinder, and the free-stream
velocity boundary condition in an unbounded domain because the e�ect of the cylinder on the
�uid exists at very large distances from the cylinder boundary andRe tends to be O(1). Hence
the inertial terms are not negligible. Oseen [121] linearized the inertial terms of the NS equations
and formed the Oseen-Stokes equations and solved the �ow past a sphere for higherRe, Lamb
[88] explains that the linearization of Oseen[121] is not true and re-formulated the Oseen-Stokes
equation and derived the force per unit length on an in�nite cylinder. Tomotika et al. [164]
derived the force per unit length for oblique in�nite cylinders by expanding the Oseen-Stokes
equations in terms of Bessel functions forRe < 4. Proudmann and Pearson [133] and Kaplun [75]
derived the force per unit length by the rigourous mathematical method of Matched Asymptotic
Expansions and showed that the expression derived by Lamb [88], Tomotika [164] is true, however
the framework of derivation used by Lamb and Tomotika was not entirely correct.
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Tomotika et al. [164] derived the following model for the normal and longitudinal component of
the hydrodynamic force with respect to the symmetry axis of an oblique in�nite cylinder. This
model is valid for Re < 4:

Cn =
8�
s

�
1 �

s2 � s=2 + 5=16
32s

�
Re2; (4.21a)

Cl =
8�

2s � 1

�
1 �

2s2 � 2s + 1
16(2s � 1)

�
Re2; (4.21b)

where s = 2 :002� ln(Re).
Through DNS simulations of �ow past in�nite oblique cylinders, Marhienke and Wegner [109]
derived the following models for the force coe�cients Cn and Cl which is valid in the range
1 < Re < 20

Cn = 2 exp
� 3X

j =0

pn;j (ln Re) j
�

(4.22a)

Cl = 2 exp
� 3X

j =0

p�;j (ln Re) j
�

(4.22b)

where in equations (4.22a) and (4.22b),pn;j and p�;j are four constants shown in tables 4.2 and
4.3.

pn;0 1:6911
pn;1 � 6:722� 10� 1

pn;2 3:3287� 10� 2

pn;3 3:5015� 10� 3

Table 4.2: Constants used in equation (4.22a)

p�; 0 1:1552
p�; 1 � 6:8479� 10� 1

p�; 2 1:4884� 10� 2

p�; 3 7:4966� 10� 3

Table 4.3: Constants used in equation (4.22b)

The model derived by Taylor [163] valid for Re > 20 reads as:

Cn =
4

p
Re

+ 1 (4.23a)

Cl =
5:4

p
Re

(4.23b)

In order to assess the validity and accuracy of these models, numerical simulations of �ow past
an in�nite cylinder at various incidence angles were performed. The numerically obtainedCn

and Cl at di�erent Re were compared to the various models described in equations (4.21), (4.22)
and (4.23).
Mesh details : The mesh consisted of� 650; 000 tetrahedral elements. The length of the
domain downstream from the cylinder was140d, whered is the diameter of the cylinder. Periodic
boundary conditions were imposed at the top, bottom and lateral sides of the domain. At
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the inlet, a velocity boundary condition was speci�ed and at the convective out�ow boundary
condition was imposed in the out�ow side. A portion of the mesh and streamlines of the �ow
past an oblique cylinder is shown in image 4.7(a). In �gure 4.7(b), the streamlines are attached
to the surface of the cylinder and there was almost no �ow separation at the trailing edge. On
increasing the Reynolds numberRe = 60, the �ow detaches at the trailing edge due to the e�ect
of the adverse pressure gradient and this leads to a formation of horseshoe vortex as shown in
�gure 4.7(c). The Reynolds numbers considered here are in the laminar regime asRe < 3000
and one can observe the non linear behavior of the �ow at these laminar Reynolds numbers.
Figures 8.4(a) and 8.4(b) show the range of the discussed force models with respect to the
Reynolds number.
From �gures 8.4(a) and 8.4(b), it is observed that the force models described in this section are
in reasonable agreement with the numerical simulations and to the experimental observations
[143].
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(a) Portion of the mesh for an obliquie in�nite cylinder.

(b) Streamlines at Re = 0 :50

(c) Horseshoe vortex at Re = 60

Figure 4.7: Numerical simulations of �ow past an oblique in�nite cylinder.
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(a) Cn vs. Re

(b) Cl vs. Re

Figure 4.8: Hydrodynamic force coe�cients vs. Reynolds Number. In �gure 8.4(a), Schlichting
refers to the data in ref [143]. Numerical simulations refer to the present study.
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4.6 Comparison of di�erent force models.

This section deals with the comparison of the previously discussed hydrodynamic force models
(the PS model, slender body theory and in�nite cylinder model). These comparisons are done
for a situation in which �ber was placed in a uniform �ow �eld. The force per unit length based
on each model was calculated.
As de�ned earlier :

Cn =
Fn

1
2 �V 2d�b l �b

(4.24)

Figure 4.9: Comparison ofCn between the slender body theory and the in�nite cylinder

Figure 4.9 shows the dependence ofCn with respect to the aspect ratio rp of the slender body
model. The Reynolds numberRe based on the �ber diameter was0:37. The analytical value of
Cn at Re = 0 :37 was 21:24 (calculated from equations (4.21a) and numerical results obtained
from explicit numerical simulations of �ow past an in�nite cylinder), and the experimental value
of Cn at this Reynolds number was found to be19:6 [168].

Figure 4.10: Comparison of normal force coe�cient Cn between PS model and the in�nite
cylinder model. Re = 0 :37, rp = 300

Using the PS model leads to discrepancy in the hydrodynamic force with respect to the number
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of �ber segments for a given aspect ratio as shown in �gure 4.10. In this simulation, a high
aspect ratio �ber rp = 300 was kept �xed, placed in a uniform �ow and the Reynolds number
based on the �ber diameter wasRe = 0 :37. The normal drag coe�cient is then calculated for
each con�guration with varying number of segments. Figure 4.10 clearly shows the inconsistency
of the PS model.
The model derived by Tomotika et al. [164] (equation (4.21)) includes a dependency on the
Reynolds number and its validity in the creeping �ow regime is questionable. The validity of this
model at low Reynolds number (Re < O(10� 3)) was tested by calculating the hydrodynamic
torque at the center of the �ber which is placed in a shear �ow. The results are compared with
solutions of Je�ery [70], slender body theory and explicit numerical simulations. The aspect ratio
of the cylinder/�ber in the study was set to rp = 128 and the shear rate was set to_
 = 0 :004.
The �ow is in x direction, velocity gradient in y direction and vorticity in z direction as shown in
�gure 4.2. The hydrodynamic torque at the center (~To) of the cylinder using the models (slender
body theory and in�nite cylinder) are calculated using equation (4.25).

~To =
Z

l f

~Oc � ~f hyd dl (4.25)

where ~Oc is the center of the �ber, ~f hyd the hydrodynamic drag force per unit length. The
details of the explicit numerical simulations are presented in section 4.7. Figure 4.11 shows the
comparison of the torque between the hydrodynamic force models, Je�ery's theory and numerical
simulations. It is observed that the in�nite cylinder model of Tomotika et al. [164] underestimates
the net hydrodynamic torque.

Figure 4.11: ~Toz comparison (Je�ery, slender-body theory, in�nite cylinder, _
 = 0 :004)

A comparison of the local hydrodynamic drag force per unit length on the cylinder/�ber was
made. In this comparison, the �ber/cylinder is kept �xed in a shear �ow and the symmetric
axis is perpendicular to �ow direction. We de�ne a Reynolds numberRetip , based on the local
velocity ~Ux; tip at the tip of the �bre,

Retip =
� � j ~Ux; tip jd�b

�
(4.26)

In the explicit numerical simulations, the mesh of the cylinder was decomposed into several `ring
elements' (see �gure 4.13(b)) and the drag force per unit length (f n ) normal to the symmetry axis
was calculated on these ring elements. Two Reynolds numbers,Retip = 0 :002 and Retip = 0 :02
were considered. The validity of the slender body theory and in�nite cylinder model in terms of
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Reynolds numbers is known. Comparing the hydrodynamic force per unit length predicted by
these models with numerical simulations give an insight about the validity of these force models
in terms of Reynolds numbers.
Figures 4.12(a) and 4.12(b) show the variation of the hydrodynamic force per unit length between
the models and the numerical simulations. The aspect ratiorp in this analysis was set to 128.
From �gure 4.12, it is seen that the in�nite cylinder model of Tomotika et al. [164] (equation

(a) Force per unit length of the cylinder comparison, Retip =
0:002, _
 = 0 :004s� 1

(b) Force per unit length comparison, Retip = 0 :02, _
 =
0:04s� 1

Figure 4.12: Comparison of force per unit length for a cylinder in shear �ow.

(4.21a)) under predicts the drag force at lowRetip whereas the slender body theory agrees well
with the results of the numerical simulations (excluding the tip e�ects). When the Retip was
increased to0:02, the drag force per unit length of the in�nite cylinder model (equation (4.21a))
showed better agreement with the numerical simulation compared to the slender body theory.
In order to further understand this behavior, explicit 2D numerical simulations for a �ow past a
circle at various Reynolds numbers (Re based on the diameter) were performed. TheCn values
obtained from the numerical simulations and the in�nite cylinder model were compared and are
shown in table 4.4. It is observed that the in�nite cylinder model (4.21a) is not valid for Reynolds
numbers less than10� 2.
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Re Cn (model) [164] Cn (2D simulations)

0.001 2820.2 6210.1
0.0025 1257.6 2384.8
0.005 688.5 1185.2
0.01 380 391.4
0.05 100.6 111.2
0.1 58.6 62.1
0.2 34.2 35.6
0.4 21.7 20.8
0.6 16.25 16.7
0.8 13.2 13.5
1.0 12.2 12.4

Table 4.4: Re vs Cn . The in�nite model used here is from Tomotika et al. [164], equation (4.21a)

4.7 Hydrodynamic torque model

In the previous section, the hydrodynamic force distribution on the �ber is represented as a line
force,when the symmetric axis of the �ber/�ber segment is parallel to the �uid velocity vector,
the moment of this hydrodynamic drag force becomes zero as depicted in �gure 4.14.
Hence in-order to account for the thickness of the �ber, a hydrodynamic torque model per unit
length has been derived in the present study. The present model accounts for the �uid spin and
the �uid strain similar to Je�ery's [70] analytical expression. The expression for the torque due
to the spin reads as

~Tr = �d 2
f lseg

�
Cr k ~p
 ~p+ Cr ? (I � ~p
 ~p)

�
� (~! f � ~! seg) (4.27)

where ~! seg refers to the angular velocity of the �ber segment and~! f is the �uid spin ( ~! f =
0:5r � ~Uf ). The coe�cients Cr k and Cr ? are hydrodynamic torque resistance that are parallel
and normal to the �ber-segment symmetry axis respectively (see �gure 4.15)
The expression for the torque due to �uid strain reads as

~Ts = Cs�d 2
f lseg(��� � ~p
 ~p) : E (4.28)

where E is the �uid strain rate tensor, ��� is the Levi-Civita symbol. Figure 4.16 depicts the
streamlines for a rigid �ber in a straining motion. The values of Cr ? and Cs were calculated
from explicit CFD calculations of a high aspect ratio (rp) �ber, rp = 128 in a shear �ow as shown
in �gure 4.13(a). A hybrid mesh approach was used as shown in �gure 4.13(c), The surface mesh
of the �ber is composed of quadrilateral elements (see �gure 4.13(b)), and the volume mesh is
composed of tetrahedral elements. The size of the �uid domain was set to 8 times the �ber
length and the mesh consisted of1:3� 106 elements. For deriving the resistanceCr k , the domain
shown in �gure 4.13(d) was used. In this con�guration, the cylinder is placed in a rotating wall
with periodicity in the axial direction and the hydrodynamic torque at the ring elements are
computed.
Figure 4.17 shows the comparison of the net torque~Toz calculated at the hydrodynamic center
of the �ber with the torque predicted by Je�ery's[70] theory for various incidence angles under
a shear �ow.
The net torque ~Toz at the center of the �ber was calculated using the expression :

~Toz =
Z

Sf

~xo � (�: ~n)ds; (4.29)
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(a) Domain con�guration

(b) Ring elements (shown in red) over the quad
surface mesh

(c) Cut plane view of mesh used for ex-
tracting Cr ?

(d) Domain con�guration used for extracting
Cr k

Figure 4.13: Domain and Mesh used for the simulations.

where in equation (4.29), ~Toz is the torque at hydrodynamic center of the �ber, ~xo refers to
the vector from the hydrodynamic center to the surface mesh points on the �ber and� the
hydrodynamic stress on the corresponding mesh points.
In order to obtain a �torque per unit length�, the torque was calculated on individual 'ring
elements' on the surface of the cylinder as shown in �gure 4.13(b). The torque on these elements
is calculated by the following expression[64]

~Tc =
Z

Sp

~xc �

 

�: ~n �
~Fhyd

Sp

!

ds; (4.30)

where in equation (4.30)~Tc is the torque at the center of the ring element,Sp is the surface area,
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Figure 4.14: Schematic of �ber in shear �ow when the symmetry axis is parallel to the �uid
velocity. The moment due to the drag force is 0 when the hydrodynamic force distribution is
considered as a line.

(a) �ow stream lines past a rigid �ber/-
cylinder with the symmetry axis parallel
to �uid vorticity Cr k

(b) �ow stream lines past a rigid �ber/cylinder with the
symmetry axis normal to �uid vorticity Cr ?

Figure 4.15: Streamlines of �ow a rigid �ber in a rotational �ow �eld.

Figure 4.16: Schematic of �ber in straining �ow (Cs)

� the hydrodynamic stress,~Fhyd the hydrodynamic force on the ring element and~xc is the vector
from the center of the ring element to the nodes of the mesh within that particular ring element.
Equation (4.30) de�nes the component of the torque which results only from the shear forces at
the �uid/solid interface, removing the torque component resulting from the heterogeneity of the
pressure �eld [64]. This latter component is naturally taken into account in the present model
as the moment of the drag force. Figure 4.18 shows the variation of the hydrodynamic torque
normalized by the shear rate _
 along the �ber length, calculated at the ring elements by using
equation (4.30) for �ber aspect ratio rp = 100 and rp = 200. It was observed that the torque
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Figure 4.17: Torque comparison with Je�ery's [70] expression,� is the angle between the �ber
axis and �ow direction. Equation (4.29) was used to calculate~Toz.

Figure 4.18: Variation of the hydrodynamic torque (normalized by the shear-rate_
 ) on the ring
elements along the length of the cylinder for aspect ratiosrp 100 and 200.

was independent of the aspect ratio on all the ring elements, except at the tips of the �ber.
Figure 4.19 shows the obtained values ofCr and Cs for di�erent orientations of the cylinder in a
shear �ow. Based on these results, the values ofCr k ,Cr ? and Cs were set to3:10, 0:35 and 3:07

respectively. An analytical expression for the component~Tr k per unit length has been derived
in refs [89, 130] their expression reads as

~Tr k = �d 2�~! f � dl (4.31)

Comparing the coe�cient in (4.31), the numerically obtained value of Cr k is in good agreement.
The developed torque model is based on the creeping �ow formulation (Je�ery's equations [70]).
The use of such a torque model is justi�ed due to the following reasons:

ˆ The hydrodynamic force should explicitly lead to the hydrodynamic torque (di�erence in
forces along the �ber segments should generate a torque).

ˆ The rotational Reynolds number (equation (4.32)) is proportional to the square of the �ber
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(a) Cs

(b) Cr ?

(c) Cr k

Figure 4.19: Cs and Cr for di�erent angles � between the �ber axis and �ow direction. At � = 45o

the �ber axis is parallel to the principal axis of the strain rate tensor, hence the torque~Ts due
to the �uid strain is 0.

diameter and for small diameters (� 10� 6� m), a Stokesian model would su�ce.

Rerot =
j~! jrel d2

�b

�
(4.32)
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4.8 Conclusion

An examination of various hydrodynamic force and torque models have been presented. The
prolate spheroid model used in previous studies has been implemented and tested and the results
were in good agreement with Je�ery's theory. In addition in the case of �exible �bers, the
deformed shapes were compared with experimental results. However, the prolate spheroid model
shows a strong dependency on the �ber discretization and this model is not valid for small
�nite Reynolds numbers. The slender body theory is valid for very low Reynolds numbers
Re < 10� 2 but at higher Reynolds number the slender body theory under predicts the drag
force. Furthermore, the drag force predicted by the slender body theory is dependent on the
aspect ratio of the �ber and as the aspect ratio is increased, the drag force tends to 0 which
is a major shortcoming. The in�nite cylinder model of Tomotika et al. was found to be valid
for Re > 10� 2 and for lower Reynolds numbers, this model under predicts the drag force. A
model which describes the hydrodynamic torque `per unit length' was developed from explicit
simulations of a high aspect ratio �ber in a shear �ow.
In the following chapters several examples of the simulation results using the in�nite cylinder
model and the developed hydrodynamic torque model are presented. The hydrodynamic force
formulation of the slender body theory is used for high aspect ratio rigid �bers in creeping �ow
for Re < 10� 2 and the in�nite cylinder model is used for all types of �bers at �nite Reynolds
numbers.
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5.1 Introduction

The present chapter deals with some validation test cases for the coupled numerical model. Three
test cases are considered in the present work. In the �rst test case, the de�ection of the free
end of a �ber placed in an uniform �ow is considered for several Reynolds numbers. These
results are compared with the experimental results of Tritton [168] and an analytical solution for
the de�ection. In the second test case, the deformation of �exible �bers under a homogeneous
isotropic turbulent �ow �eld is studied. The probability density function of the end-to-end vector
is obtained numerically and the results are compared with the experimental results of Brouzetet
al. [28]. Under the same framework, the correlation of the tangent vector along the length of the
�ber for di�erent �ber lengths is studied and these results are compared with the experimental
study of Verhille and Bartoli [172]. In the last test case, the �ow of a �ber suspension in a
channel is considered. Two Reynolds numbers viz.Re = 2000 and Re = 6000 are studied and
the e�ect of the �bers on the mean �ow �eld are studied. The �ber concentration in this study
is �xed at 1% concentration by volume and the results of this last study are compared with the
experimental results of Xu and Aidun [182].
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5.2 De�ection of a free end �ber in a uniform �ow

5.2.1 Experiment

Tritton [168] performed experiments to study the drag of cylinders in low Reynolds number
�ow ( Re = �Ud f =� varying from 0:387 � 100). In the experiments, a high aspect ratio (rp

varying from 500 to 876) quartz �ber cemented on one end was placed in an uniform �ow and
the de�ection of the free end was measured using a traveling microscope. As a �rst validation
case, the experiments of Tritton were numerically performed for various Reynolds numbers as
shown in Table 5.1.
An analytical expression for the de�ection h of the �ber based on the simple bending moment
theory, was derived as [168] :

h =
8F l 4

f

�Ed 4
f

(5.1)

where in equation (5.1), F is the force per unit length, E the �ber Young's modulus. In the
present study, comparisons between the experimental, analytical and the simulations were made.
The expression of hydrodynamic force per unit length on an in�nite cylinder derived by Tomotika
et al. [164] was used for the analytical solution (equation (5.1)).

5.2.2 Numerical study

Figure 5.1 shows the schematics of the numerical simulations, it consisted of a �ber �xed on
one end, i.e. the translational and rotational degrees of freedom of the node attached to the
wall was blocked. In order to obtain uniform velocity pro�le and since the dimensions of the
wind-tunnel were unknown, periodic boundary conditions were applied at the top and bottom
surfaces. The domain was discretized into64� 64� 2 cells, properties of the �uid correspond to
air � f = 1 :205kg=m3 and � = 1 :81� 10� 5 Pa s. The �ber properties are given in Table 5.1.

Figure 5.1: Schematics of the numerical setup,~U1 is the �uid velocity, l f is the �ber length,
PBC refers to Periodic Boundary conditions for the �uid domain, the bottom node of the �ber
is �xed, h is the de�ection.

Fiber Type E (GPa) df (cm) l f (cm) Reynolds numbers

Fiber-1 79:4 0:00194 1:70 0:387� 0:845
Fiber-2 79:0 0:00197 1:27 1:16
Fiber-7 59:5 0:00745 1:12 49
Fiber-8 59:5 0:01125 2:11 105

Table 5.1: Fiber properties and Reynolds numbers used in the validation study.
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The prolate-spheroid model (PS) and the in�nite cylinder model (current model) were used in
the numerical study and the de�ections obtained from these models were compared. In the case
of PS model, the diameter of the equivalent spheroid was determined based on the semi-empirical
expression derived by Cox [41]. This expression was previously used by Lindström and Uesaka
[97]. The expression for the equivalent diameter of the spheroid reads as

dspheroid =
1

1:24
df

�
ln

lseg

df

� 1=2

(5.2)

The expressions of the hydrodynamic force on a prolate-spheroid presented by Kim and Karrrila
[80] were used. The simulations were run until a steady state convergence of the de�ection was
obtained. Figure 5.2(a) shows the time convergence of the in�nite cylinder model (current model)
with respect to the �uid grid. One can observe that de�ections of the �ber converge for di�erent
�uid discretizations.

(a) Grid convergence study for the in�nite cylinder model.

(b) Comparison of model sensitivity with respect to the num-
ber of segments used for the �ber discretization.

Figure 5.2: Grid and segment convergence studies for the de�ectionh of �ber placed in a uniform
�ow at Re = 0 :387.

Figure 5.2(b) shows the convergence of de�ection for the two force models with respect to number
of segments for Fiber-1. It is observed that using the PS model leads to a dependence on the
segment discretization. This error/di�erence is due the geometric parameter called eccentricity
(based on the segment aspect ratio) which varies with the number of segments resulting in a
di�erent net drag force as discussed in Chapter 4. Figure 8.6 shows the comparison of the
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obtained de�ection with respect to the experimental values for di�erent Reynolds numbers. The
maximum error in the case of current force model was found to be approximately7%, whereas
for the PS model, the error was approximately43% with 55 segments as shown in �gure 8.6.
Figures 5.4(a) and 5.4(b) shows the convergence of de�ection of Fiber-1 and Fiber-8 atRe = 1

Figure 5.3: Comparison of de�ectionh with experimental and numerical results (PS and current
model) and the analytical expression.

and Re = 105 respectively. The mesh in these computations consisted of64� 64� 2 and the �bers
were discretized into64 segments. Table 5.2 shows the comparison of the de�ectionh between
experimentshexp, simulations hsim and the analytical expression (equation (5.1))hanalytical .

Type Reynolds number hsim(cm) hexp (cm) hanalytical (cm)

Fiber-1 0:387 0:0426 0:0413 0:0436
Fiber-1 0:518 0:0605 0:0556 0:0640
Fiber-1 0:845 0:1180 0:1063 0:126
Fiber-2 1:16 0:0471 0:0460 0:0508
Fiber-7 49:0 0:0142 0:0138 0:0154
Fiber-8 105 0:0904 0:0878 0:0980

Table 5.2: Comparison of de�ectionh between experiments, simulations and analytical expression
(5.1) for all �ber types. hsim is obtained using the in�nite cylinder model discussed in chapter 4.
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(a) De�ection convergence at Re = 1 :16

(b) De�ection convergence at Re = 105

Figure 5.4: De�ection convergence

5.3 Flexible �ber in turbulent �ow

5.3.1 Experiment

The dynamics of �exible �bers in isotropic turbulent �ow was studied experimentally by Brouzet
et al. [28] and Verhille and Bartoli [172]. In both studies, an isotropic Von Kármán �ow was
generated in a cylindrical tank by counter rotating disks. The Reynolds number was calculated
based on the rotational frequency and the disk radius, i.eRe = 2 �R 2f=� , where f is the disk
rotation frequency, R the disk radius and � the kinematic viscosity of the �uid. The disks were
placed 17:6 cm apart in a cylindrical container, with each disk having a diameter of 17:2 cm
[28, 172]. A schematic diagram of the experimental setup is shown in �gure 5.5

Figure 5.5: Schematics of the experimental setup used in experiments [28, 172]
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In the study of Brouzet et al. [28], the working �uid used was a mixture of water and ucon oil
with a dynamic viscosity of � � 100� 10� 3 Pas, whereas in the experimental study of Verhille
and Bartoli [172], the working �uid was water. Brouzet et al. [28] studied the conformation
and distortion of �bers in an isotropic turbulent �ow �eld. The integral scale Reynolds number
was varied by changing the rotational frequencyf of the disk (f varies from 2Hz to 30Hz,
ReL � 1000 to 104) and the authors obtained the Probability Density Function (PDF) of the
end-to-end vector ~Ze for di�erent �ber lengths. From the experimental study, it was observed
that the behavior of a �exible �ber under a turbulent �ow �eld is �analogous to a polymer in a
good solvent� [28], i,e. a �ber behaves as a macroscopic polymer [28]. The deformation of the
�ber was dependent on the turbulent dissipation rate � and the length of the �ber l f . However,
for high aspect ratio �bers or for a certain length greater than the �persistence length�lp, the
�bers were always �exible. Verhille and Bartoli [172] obtained the correlation of the tangent
vector along the length of the �ber for l f ranging from l f = 1 cm to l f = 5 cm. In their study the
Reynolds numberReL and turbulent dissipation rate � were6:8 � 105 and 6 m2=s3, respectively,
and the �ber 's Young's modulus was� 400 kPa. The expression for the elastic lengthle (the
term �elastic length� was used instead of persistence length by Verhille and Bartoli [172]) de�ned
by Verhille and Bartoli [172] reads as

le =
(EI )1=4

(��� )1=8
; (5.3)

where E is the Young's modulus of the �ber, I the moment of inertia of the �ber cross section
(I = �d 4

f =64), � the turbulence dissipation rate, � and � the density and viscosity of the �uid
respectively.

5.3.2 Numerical study

In In the present work, numerical simulations of �exible �bers in homogeneous isotropic turbulent
(HIT) �ows were performed. The correlation of the unit tangent vector along the �ber length
h~p(s)_~p(s + l)i and PDF of the �ber end to end vector ~Ze were compared. DNS simulations of
HIT �ow �eld in physical space at Re� m � 50 � 90, based on the Taylor micro-scale� m were
performed. This range ofRe� m leads to integral scale Reynolds numbersReL comparable to the
experiments of Brouzetet al. [28] In order to sustain the turbulence at the prescribed Reynolds
number (Re� m ), the linear forcing scheme for physical space proposed by Rosales and Meneveau
[137] was used.
The initial conditions of the �ow �eld (single phase �uid) corresponding to Re� m = 78:6 are
shown in table 5.3

Re� m Reynolds number based on Taylor micro scale 78:6
N 3 Number of grid points 2563

� Kinematic viscosity 1:1 � 10� 4 m2=s
K Kinetic energy 2:24 m2=s2

� Dissipation rate 48:4 m2=s3

� m Taylor micro scale 7 � 10� 3m
� k Kolmogorov length scale 4 � 10� 4m
l t Length scale of largest eddy 0:036m
� � Eddy turnover time 4:519� 10� 2 s
� x=� k Grid resolution 2:23
L D Domain length 0:23 m

Table 5.3: Initial conditions for the present HIT simulations at Re� m = 78. For other values of
Re� m , the turbulent kinetic energy K was changed.
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In Table 5.3, � is the average dissipation rate per unit mass and� k the Kolmogorov scale, the
length scale of the smallest eddies at which the �uid viscosity dominates and the turbulent kinetic
energyK is dissipated into heat. For homogeneous isotropic turbulence� k and � are related as

� k =
�

� 3

�

� 1
4

: (5.4)

the turbulent kinetic energy K is de�ned based on the root mean square of velocity �uctuations
u0

K =
3
2

u02: (5.5)

The Taylor micro-scale � m is an intermediate length scale used to characterize turbulence, is
de�ned as

� m =
p

10� 2=3
k l1=3

t : (5.6)

The Reynolds numberRe� m based on� m , is de�ned as

Re� m =
u0� m

�
: (5.7)

The length scale of the largest eddies or the integral length scalel t , is de�ned as

l t =
u03

�
: (5.8)

The eddy turnover time � � is de�ned as

� � =
K
�

: (5.9)

Simulation of the �bers in HIT �ow �eld were performed once a statistical stationary state of

Figure 5.6: Normalized kinetic energy spectrum at the statistically stationary state corresponding
to Re� m = 78:6. The wave numbersk was normalized using the Kolmogorov scale length� k .

the �ow �eld was obtained. Figure 5.6 shows the obtained energy spectrum at this state. The
number of �bers in the simulation was 50 and the number of segments used in the simulation
for di�erent �ber lengths is given in Table 5.4. The diameter of the �bers were set to the value
in the experimental studies [28, 172],df = 620 � m. Comparing to the experiments of Brouzetet
al. [28], the �ber and the �uid properties were the same, however the Reynolds number based
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Fiber length l f (cm) Number of segmentsnseg

1 8
2 24
3 36
5 44
16 80

Table 5.4: Fiber discretization for di�erent �ber lengths

on the Taylor micro-scale is comparatively lower in the simulations (Re� m � 80 to 3000 in the
experiments). Comparing the numerical setup with the experiments of Verhille and Bartoli [172],
the �uid properties and �ber properties were di�erent but the elastic length le was kept similar
by changing the Young's modulus. The contact interaction between the �ber segments were not
considered in the present simulations as the experiments correspond to dilute concentration.

(a) PDF of ~Z 2
e for l f = 5 cm

(b) PDF of ~Z 2
e for l f = 16 cm, the rotational frequency in the

experiment is unavailable.

Figure 5.7: PDF comparison for di�erent �ber lengths between present simulations and experi-
ments of Brouzet et al. [28]

Figures 5.7(a) and 5.7(b) show the PDF comparison of the end to end vector~Ze with the
experimental results of Brouzetet al. [28]. Figure 5.8 shows the deformation of �exible �bers
in a turbulent �ow. In the case of l f = 5 cm, the shape of the PDF changed indicating a
transition from a rigid �ber towards a �exible �ber as a function of the input turbulent kinetic
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(a) l f = 5 cm (b) l f = 16 cm

Figure 5.8: Instantaneous deformation of �bers in HIT �ow �eld at Re� m = 78. (�bers colored
in red and �uid velocity contours in grayscale.)

energy, indicating that the numerical results are consistent with the experimental observations.
While in the case of the longer �ber l f = 16 cm, the �bers remained �exible for all Re� m , which
was characterized by a behavior similar to the Gaussian distribution of~Z 2

e=h~Z 2
e i , (G( ~Z 2

e) �
exp(� ~Z 2

e=h~Z 2
e i )) consistent with the experimental observation and the �ber �exibility increases

with increasing Re� m . Figure 5.9 shows the particle Reynolds number based on the slip velocity
between the �ber segments and �uid velocity. From the �gure it is inferred that the segment
Reynolds numbers are mostly in the inertial regime.

Figure 5.9: PDF of segment Reynolds number based on slip velocity in HIT �ow �eld atRe� m =
52:4.

Finally, the experimental results of the correlation function of the tangent vector [172]~p(s)
were compared with the results of the simulations. Since the working �uid in the experiments
and the numerical simulation are di�erent and in order to maintain the same elastic lengthle,
and owing to higher dissipation rate in the simulations, the Young's modulus of the �bers in
the simulations were set toE = 1 :5 GPa. Figure 5.10 shows the comparison of the correlation
functions of the tangent vector along the �ber length. For low ratios of l=le the numerically
obtained correlation function agrees well with the experimental ones. However, for higherl=le
ratios,there is a consistent deviation between the numerically obtained correlation function and
experimental ones, this might be due to the di�erence in the properties of �ber and �uid between
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the experiments and the simulations. Moreover, the quantity elastic lengthle may not be a
universal parameter to compare with, as the bending of �bers are greatly in�uenced by the
length scale of the interacting eddies.

Figure 5.10: Correlation of the tangent vector along the �ber length comparison between the
present study and experiments of Verhille and Bartoli [172]. Herel is the distance from one end
of the �ber and le is the elastic length calculated by equation (5.3).

5.4 Concentrated �ber suspension in channel �ow

5.4.1 Experiment

Xu and Aidun [182] performed an experimental study of wood �ber suspensions in a channel
�ow for varying concentrations and Reynolds number (Re varying from 2000to 92000, based on
the bulk �uid velocity and half the channel height). Their experiment consisted of a rectangular
plexiglass channel with the dimensions of150 cm in length, 5:08 cm in width and 1:65 cm in
height. The velocity pro�les for suspensions with concentrations varying from0:0% to 1:0% were
measured by the technique of Pulsed Ultrasonic Doppler Velocimetry (PUDV). In addition to
the measurement of velocity pro�les, the �uctuations in the velocity �elds were also measured.

5.4.2 Numerical study

In the present study, we performed DNS simulations of1% concentration �ber suspension for
Reynolds numbers of2000 and 6000 (Re based on the bulk �uid velocity and half the channel
height). The dimensions of the channel used were6:5� in the stream-wise directionx, 2� in the
wall normal direction y and and 2:2� in the lateral direction z, where � = 0 :0024 m.
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Figure 5.11: Schematics of the channel �ow simulation.

The Reynolds number is de�ned based on the �uid bulk velocity and half the channel height:

Re�ow =
� � Ub�

�
; (5.10)

whereUb is the �uid bulk velocity. The turbulent Reynolds number Re� is based on the friction
velocity u� . The friction velocity is de�ned as

u� =
r

� w

� �
: (5.11)

For setting up the initial conditions and mesh spacing, the wall shear stress� w was calculated
using the skin friction factor based on the Reynolds numberRe calculated using the following
expression [143]:

Cf =
0:026
Re1=7

; (5.12a)

and the wall shear stress:

� w =
Cf � � U2

b

2
: (5.12b)

y+ is de�ned as the non-dimensional distance from the wall. It is calculated using the following
expression:

y+
i =

� � u� yi

�
: (5.12c)

In equation (5.12c), yi is the distance in the wall-normal direction. u� was initially calculated
using equations (5.12b) and (5.11)
The channel domain was discretized into128� 164� 128mesh points in thex, y and z respectively,
with the �rst grid point placed at the viscous sublayer in 0:05 wall units ( y+ = 0.05). Periodic
boundary conditions were employed in thex and z directions and no slip wall boundary condition
in the y direction. Figure 5.11 shows the schematic of the numerical setup. DNS simulations
similar to those of Morinishi et al. [115] were performed. The corresponding Reynolds number
based on the friction velocity u� was Re� = 360.

Figure 5.12 shows the comparison between the DNS results of the present study and the
previous study of Moseret al. [116]. 3

In �gure 5.12(a), u+ is the nondimensional velocity, obtained by normalizing the �uid velocity
with u� . The turbulence statistics were obtained by performing temporal and spatial average
over vertical planes for eachy+ and this procedure was done for 8 �ow through times after the

3The RMS components of velocity was not available in the DNS database, http://turbulence.ices.utexas.
edu/data/MKM/chan395/
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(a) Comparison of velocity pro�le in wall units between present
study and ref [116] at Re = 6000.

(b) Root mean square components at Re = 6000, single phase
�ow.

Figure 5.12: Comparison of single phase �ow DNS results.

�ow was established. The friction velocity u� was calculated based on the numerically obtained
wall shear stress� w . Figure 5.12(b) shows the root mean square(RMS)/�uctuating components
of the �uid. The RMS components were obtained by subtracting the mean �ow velocity from the
instantaneous velocity �eld. The RMS components give an indication of the turbulence intensity
and from the �gure, it is observed that the turbulence production occurs near the wall in the
viscous sublayer aty+ < 5. Similar pro�les are obtained in other DNS studies [115, 116].
Numerical simulations were performed with the �ber suspension at 1% concentration. The
Young's modulus of the �ber corresponds to pulp �ber properties with E = 21mmGPa. The
geometrical properties (aspect ratiorp = 60 (df = 38� m, l f = 2 :3mm) similar to the experiments
were used. Each �ber was discretized into 30 segments and a total of 1280 �bers (corresponding to
1% concentration) were initialized with random orientations and positions. The �uid properties
are that of water (similar to the experiments), � = 1000 kg=m3, � = 0 :001 Pa s. The velocity
�eld obtained from the DNS of single phase was �ow used as the initial condition.
Figure 5.13 shows the comparison of the velocity pro�le forRe = 2000 with the experimental
results [182]. Compared to the laminar �ow velocity pro�le, the velocity pro�le of the �ber
suspension resembles more of a turbulent �ow rather than a laminar �ow, as shown in �gure
5.14(a). In fact there was a transition from the laminar �ow to turbulent �ow. Such a transitional
e�ect was characterized in the DNS study of spherical particles (5% concentration by volume) in
a channel �ow by Loisel et al. [101] who reported similar e�ects in the production of near wall
turbulent intensity as shown in �gure 5.14(b).
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Figure 5.13: Comparison of velocity pro�les between single phase �uid and 1% �ber suspension
at Re = 2000.

(a) Comparison of velocity pro�le in wall units between single
phase �uid and �ber suspension at Re = 2000.

(b) Comparison of root mean square components at Re = 2000.

Figure 5.14: Non dimensional velocity pro�les,Re = 2000.

Figure 8.8 shows the comparison of the velocity pro�le forRe = 6000 with the experimental
results of Xu and Aidun [182]. The �ber suspension �ow was characterized by a blunt velocity
pro�le similar to a plug �ow behavior. This e�ect is seen clearly in �gure 5.16(a) where a
reduction in velocity is observed in the regiony+ > 100. Such a reduction in the velocity,
indicates that a signi�cant portion of the mean turbulent kinetic energy is being transferred
between the phases and further studies are required to understand and quantify this phenomenon.
A reduction in the turbulence intensity in the stream wise direction, similar to the experimental
results [182] and numerical results of Do-Quang [47]et al. is observed. The presence of �bers
tends to dampen the turbulence. However, �gure 5.16(b) shows that the �uctuating components
(RMS) of wall-normal v0 and spanwisew0 directions were slightly higher (� 2 � 3%) than the
RMS components of the single phase turbulent �ows in the regions ofy+ > 175as the �bers tend
to introduce certain instabilities in the log layer and outer layer of the �ow. Figure 5.17 shows
the PDF of the �ber segments Reynolds number based on the slip velocity, one can observe that
the average segment Reynolds number were in the magnitude of 10.
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Figure 5.15: Comparison of velocity pro�les between single phase �uid and 1% �ber suspension
at Re = 6000.

(a) Comparison of velocity pro�le in wall units between single
phase �uid and �ber suspension at Re = 6000.

(b) Comparison of RMS components.

Figure 5.16: Non dimensional velocity pro�les atRe = 6000.

Figure 5.17: PDF of segment Reynolds number based on the slip velocity in turbulent channel
�ow. The Re based on half the channel height,Re = 6000
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Figure 5.18 shows the evolution of the �ber structure in the turbulent channel �ow case for
di�erent �ow through times. As the steady state was approached, a plug-like �ow structure was
observed with several �bers accumulating at the wall and a core with �ocs in the center of the
channel.

(a) t=T = 0 (b) t=T = 1

(c) t=T = 2 (d) t=T = 3

Figure 5.18: Evolution of �oc formation for various �ow through times, �gures 5.18(b) to 5.18(d)
sliced X � Y plane.

Figure 5.19: Magni�ed view of �oc.
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5.5 Conclusion

The developed numerical model was used to describe the deformation of �exible �bers under
various �ow conditions for low and high Reynolds numbers with reasonable agreement to the
experiments. Furthermore, the present model was able to characterize some important �ow
physics of �ber suspensions such as the damping of turbulence and formation of �ber �ocs under
a channel �ow.
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6.1 Introduction

Based on the concentration of the suspended �bers in the suspension, three distinct regimes i.e.
: dilute, semi-dilute and concentrated regimes can be identi�ed. In this chapter monodisperse
�ber suspensions with the �bers having length l f , diameter df and aspect ratiorp are considered.
The orientation vector of a �ber is represented by ~p and the number density (number of �bers
per unit volume) of the �ber suspension is denoted byn.
In dilute suspensions, both the hydrodynamic and contact interactions between the �bers are
minimal. The motion of the �bers in such a suspension under a low Reynolds number simple shear
�ow, follow Je�ery's prediction, that is they would rotate about their center of mass following
the Je�ery orbits [70]. In such suspensions, the �bers tend to align or spend most of the time
(depending on the �ber aspect ratio rp and the shear rate_
 the time spent would be in the order
of rp=_
 ) in the x � z plane (�gure 2.1) and they quickly rotate (in the order of inverse of the
shear rate _
 ). For such suspensions, Batchelor [13] derived the following expression for the stress
of the suspension:

� f = � �ber

�
h~p
 ~p
 ~p
 ~pi �

1
3

� h~p
 ~pi
�

: E + 2 � E ; (6.1)

where, � �ber is a constant depending on the concentration and aspect ratio of the �bers. The
angled brackets denote the ensemble average over the orientation distribution of the �bers,E
is the �uid strain rate tensor and � the �uid dynamic viscosity. For dilute suspensions, the
expression for� �ber reads as [13]

� �ber =
�nl 3

f �

6 ln (2rp)
f (� ); (6.2a)
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where � = (ln (2 rp)) � 1, and f (� ) is de�ned as

f (� ) =
1 + 0:64�
1 � 1:5�

+ 1 :659� 2: (6.2b)

On increasing the concentration (semi-dilute and concentrated regime) of the �bers, the evolution
of the microstructure cannot be predicted using Je�ery's theory. In such suspensions, inter �ber
interactions tend to dominate the evolution of the microstructure. These �ber-�ber interactions
are in the form of contact forces, short range hydrodynamic forces (lubrication e�ects) and long
range hydrodynamic interactions (e�ect of the disturbance in �uid velocity �eld). In the semi-
dilute regime, Shaqfeh and Fredrickson [146] showed that the dilute theory of Batchelor [13] was
found to be applicable using the following correction to� �ber :

� �ber =
�nl 3

f �

3 (ln (1=c) + ln (ln (1 =c)) + A)
; (6.3)

where,c is the volume fraction of �bers, A is a constant depending on the �ber orientation. The
parameter A = � 0:66 for a suspension with random �ber orientation [160] andA = 0 :16 when
all the �bers are aligned in the same direction.
Based on the microstructure of the �ber suspension and equation (6.1) the following rheological
properties for dilute and semi-dilute suspensions can be obtained, written as follows:

The relative viscosity � rel of the �ber suspension was derived as

� rel = 1 +
� �ber

�
hp2

xp2
y i : (6.4a)

The �rst normal stress di�erence N1 is

N1 = � xx � � yy = � �ber _

�
hp3

xpz i � h pxp3
y i

�
; (6.4b)

and the second normal stress di�erenceN2 is

N2 = � yy � � zz = � �ber _

�
hp3

xpz i � h pxpyp2
z i

�
: (6.4c)

Various experimental studies have dealt with the rheological behavior of rigid �ber suspensions.
Bibbo [16, 15] studied the rheological behavior of non-colloidal rigid �ber suspensions using a
parallel-plate rheometry device. The e�ect of �ber concentration on the apparent viscosity was
studied for dilute and semi-dilute regimes. The results were compared to Batchelor's theory
[13] and good agreement was seen in the dilute regime. The presence of other �bers in the
near vicinity do not allow the individual �bers to follow the Je�ery's orbits. In this regime, the
�ber-�ber interactions tend to dictate the microstructure and rheological properties of the sus-
pension. Stoveret al. [160] experimentally studied the microstructural behavior of semi-dilute
rigid �ber suspensions. Their experiment was based on optical methods. It allowed for the direct
observation of tracer �bers in a couette rheometry device. The statistics of the orientation of the
�bers were obtained from the images of the microstructure. Analysis of the data was performed
in order to characterize the orbit distribution of the �bers. Using the orientation distribution
and Batchelor's theory [13] (equations (6.1) to (6.4c)) the rheological properties of the �ber sus-
pension was deduced. The measured orbit constants agreed well with the experimental results
of Anczurowski, et al. [4] for the dilute regime. The rheological properties of the suspension
compared reasonably well to the experimental results of Bibbo [15] and to the theory proposed
by Shaqfeh and Fredrickson [146] (equations (6.18) to (6.4c)). The hydrodynamic interactions
between �bers in the semi-dilute regime play a major role in the steady state orientation of the
suspension. Within this context, Rahnamaet al. [134] derived the steady state �ber orientation
using the framework of perturbation analysis along with the theory of Leal and Hinch [91] for
weak rotary brownian motion. The results of the orbit distribution, �ber orientation distribution

CHAPTER 6. SEMI DILUTE RIGID FIBER SUSPENSIONS IN SHEAR



6.1 Introduction

compared reasonably with the experimental results of Stoveret al. for the semi dilute regime.
However the steady state �ber orientation distribution did not agree well with the experimental
results of Anczurowski et al. [3] for semi-dilute suspensions. Rahnamaet al. argued that the
�ber orientation distribution observed by Anczurowski et al. were not entirely due to inter-�ber
hydrodynamic interactions but could also be due to thermal convection in the �uid. The rheolog-
ical properties of high aspect ratio rigid �bers in the semi-dilute and semi-concnetrated regime
in a parallel plate rheometry device was measured by Petrichet al. [129]. In the experimental
study, the height of the parallel plate geometry was 3 times the �ber length and the e�ective vis-
cosity of the suspension and the di�erence between the �rst and second normal stress di�erences
were measured. The experimental study of Petrich was mainly con�ned to high aspect ratio �ber
suspension (rp = 52, rp = 72) in the semi-dilute regime and the semi-concentrated regime. The
experimental results were in reasonable agreement with theory of Shaqfeh and Fredrickson for
rp = 52 in the semi dilute regime.
Several particle-based numerical approaches have been used to study the rheological behavior of
dilute and semi-dilute �ber suspensions. Based on a modi�ed method of Stokesian Dynamics for
ellipsoids and spheroids, Claeys and Brady [37, 38] studied the microstructural and rheological
behavior of semi dilute rigid �ber suspensions, the hydrodynamic interactions between the �bers
were resolved based on the multipole expansion arising from the formulation of SD. Lindström
and Uesaka [99, 100] performed two way coupled simulations of semi dilute suspensions and
their results were in good agreement with previous experimental studies. However as shown
previously in Chapter 4, their simulations are highly sensitive to the number of segments as the
hydrodynamic force description is based on approximating the �ber segment as a prolate spheroid.
Salahuddin et al. [141] used the LBM-EBF model used to study the rotational di�usivity of semi
dilute �ber suspensions in shear. The numerically obtained rotational di�usion were compared
with the theoretical results of Koch's di�usion model [82] and to the experimental results of
Stover et al. [160]. Sundararajakumar and Koch [161] developed a numerical method to study
suspensions involving mechanical contacts between the �bers. The method did not include
�ber-�ber hydrodynamic interactions (both lubrication and long range e�ects) and could not
accurately describe the behavior of semi-dilute suspensions.
Recently Snooket al. [156] studied the normal stress di�erences in concentrated non-Brownian
rigid �ber suspensions. The e�ect of con�nement on the normal stress di�erences were aslo stud-
ied numerically in ref. [157]. In the work of Snooket al. [156], the normal stress di�erences were
obtained both numerically and experimentally and it was observed that for short aspect ratio
�bers ( 10 < r p < 20), the sign of the second normal stress di�erence was negative was approxi-
mately half the value of �rst normal stress di�erence. In the experimental works of Bounouaet
al. [17], similar phenomena was observed qualitatively and the e�ect of con�nment was studied.
In their study it was found that increasing the con�nement led to an increased second normal
stress di�erence (with a negative sign). A review on the rheology of �ber suspensions have been
presented recently by Butler and Snook [31].
In this chapter numerical studies on semi dilute suspensions of rigid non-Brownian �bers in
shear are presented. The rheological properties of the �ber suspensions were obtained via direct
calculations and comparisons with previous theoretical and experimental studies are presented.
Semi-dilute suspensions of �bers with aspect rations viz.rp = 18, 32 and 52 were performed for
concentrations varying fromcv = 0 :0075to 0:035(maximum nl 3

f = 52). The methodology in this
study is similar to the previous chapter but owing to extremely low Reynolds numbers at the
�ber scale, the slender body theory of Batchelor [12] is used to describe the hydrodynamic force
on the �ber segments. The purpose of this chapter is to serve as a validation of the developed
model at low Reynolds numbers and to demonstrate its ability to predict the rheological behavior
of �ber suspensions in which the rheological and microstructure behavior is dominated by the
long range short range �ber-�ber hydrodynamic interactions. The numerically obtained results
are compared with the various experimental results and to the the semi dilute theory derived by
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Batchelor [13] and Shaqfeh and Fredrickson [146].

6.2 Numerical Setup

6.2.1 Hydrodynamic force model

The hydrodynamic force model in this study is based on the slender body theory (presented in
Chapter 4). As presented in Chapter 4, the solutions of the �ow past an in�nite cylinder in
low Reynolds number �ows underpredict the hydrodynamic force. However for long and �nite
axisymmetric bodies, the slender body theory accurately describes the hydrodynamic force. This
hydrodynamic force is derived in `per unit length' fashion and is logarithmically dependent on the
aspect ratio rp of the particle. For a cylinder with aspect ratio rp > 10, the following equations
describe the hydrodynamic force:

~f k =
2��

ln(2rp) + C0

�
~Uf k

� ~Usegk

�
; (6.5a)

~f ? =
4��

ln(2rp) + C0

�
~Uf ? � ~Useg?

�
; (6.5b)

where in equations (6.5a) and (6.5b),rp is the �ber aspect ratio, ~f k is the component of hydro-

dynamic force parallel to the symmetry axis of the �ber segment, and~f ? is the component of
the hydrodynamic force normal to the symmetry axis. In addition C0 is a constant de�ned as :
C0 = ln(2 :0) � 1:5 [23].

6.2.2 Simulation setup

The setup of the numerical simulation consists of �bers suspended in a Couette �ow. Periodic
boundary conditions are applied in the X and Z directions and translating wall boundary con-
ditions are applied in the Y directions as shown in �gure 6.1(a). The edge length of the �uid
elements in the domain was equal to the length of a �ber segment, as such a discretization would
allow to capture �uid disturbances and its e�ect on the other �ber segments to be captured.
The initial microstructure is composed of �bers having random orientations and positions (�gure
6.1(b)). The critical Young's modulus at which a �ber would undergo deformation in a shear
�ow is [58]

Ecrit =
2� _
r 4

p

ln(2rp) � 1:75
: (6.6)

where in equation (6.6), _
 is the shear rate. Therefore in the present study, the Young's modulus
of the �bers were set to 10 times ofEcrit . Table 6.1 gives the parameters of the present numerical
study. The parameter rp is the �ber aspect ratio, l f the length, df the diameter and Ey is the
Young modulus of the �ber. N f is the number of �bers present in each concentration andnseg is
the number of the segments by which the �bers are discretized.cv is the volume fraction of the
�bers. nl 3

f and nl 2
f df are the �ber concentration based on the number densityn = N f =V with

V the �uid volume. _
 is the prescribed shear rate.
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(a) Schematic of �ow domain.

(b) Rigid �ber suspension with r p = 52 at cv = 0 :0075.

Figure 6.1: Simulation setup. In �g. 6.1(b), the �uid velocity contours are shown in rainbow
and the �bers in green.

rp l f (mm) df (� m) Ey(GPa) N f nseg nl 3
f nl 2

f d cv _
 (s� 1) Nx � Ny � Nz

18 2:16

120

2:67
112

6
3:09 0:18 0:0075

300 18� 24� 18224 6:18 0:34 0:015
520 14:43 0:80 0:035

32 3:84 20:37
352

10
9:77 0:30 0:0075

300 30� 40� 30704 19:55 0:61 0:015
1640 45:63 1:40 0:035

52 6:24 39:4
930

15
25:80 0:49 0:0075

100 45� 60� 45
1860 51:64 1:00 0:015

Table 6.1: Fiber parameters used in the study.Nx � Ny � Nz are the number of nodes by which
the �uid domain is discretized in the X, Y and Z directions. The �uid viscosity was set to 13 Pa
s.

6.3 Results and discussion

In this section the results of the two-way coupled numerical simulations of semi dilute rigid �ber
suspensions are presented. First comparisons of the microstructure descriptors based on the �ber
orientation are shown. Second, the stress states of the studied semi-dilute �ber suspensions are
presented.
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6.3.1 Suspension microstructure

Figure 6.2 depicts a single �ber in a shear �ow (shear in XY planr). The angle� 2 [0; 2� ) is
the angle between the unit vector~p parallel to the symmetric axis of the �ber and the velocity
gradient direction. � 2 [0; � ) is the angle between the unit vector~p and the vorticity direction Z.

Figure 6.2: Rigid �ber in a shear �ow, shear in XY plane. ~p is the unit vector parallel to the
symmetric axis of the �ber. px and py are the projections of ~p in the �ow direction X and
gradient direction Y )respectively.

Je�ery [70] analytically showed that an ellipsoid immersed in an ubounded shear �ow would
rotate in `orbits' about the vorticity axis. These orbits are characterized by the orientations �
and � . For an ellipsoid with aspect ratio rel immersed in a �ow with shear rate _
 , the time period
of the rotation ( � ) of the ellipsoid is :

� =
2� _


rel + 1
r el

: (6.7)

Bretherton [24] showed that equation (6.7) is valid for rigid cylinders provided that the aspect
ratio of the cylinder is replaced with an e�ective aspect ratio re. In the present study, the
e�ective aspect ratio re is calculated based on the expression derived by Cox [41]:

re = 1 :24rp
1

p
lnrp

(6.8)

Mason and Manley [112], based on Je�ery`s theoretical work [70] derived the following expression
for the probability distribution function p(� ) of �ber orientation angle � :

p(� ) =
re

2�
�
r 2

e cos2 � + sin 2 �
� : (6.9)

Figure 6.3 shows the PDF of� obtained for rp = 32, in the semi dilute regime (nl 3
f = 45:6) in

comparison with Je�ery's equation. From the �gure it is seen that the distribution is slightly
asymmetric indicating the presence of �ber-�ber interactions, similar distribution was obtained
in the experimental study of Stover et al. [160].
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Figure 6.3: PDF comparison of numerically obtained� with Je�ery's prediction (6.9) and Stover's
experimental results [160] forrp = 32, nl 3 = 45:63.

In creeping �ow and for isolated non-Brownian �bers, the motion of the �bers can be character-
ized by an orbit constant C. The orbit constant is de�ned as the elliptical path traced out by
the unit vector ~p. C = 0 corresponds to perfect alignment in the XZ plane (vorticity axis) and
C = 1 corresponds to rotations in the XY plane (shear plane). The orbit constantC is de�ned
as

C =
1
re

tan �
q

re cos2 � + sin 2 �: (6.10)

Following the studies reported in refs. [160, 98, 141], the alternative orbit constantCb = ( C=1 +
C) was used in the present study so thatCb ranges between 0 and 1.
Figure 6.4 shows the comparison of the probability distribution function p(Cb) with respect to
the experimental results of Stoveret al.[160]. The PDF shown in �gure 6.4 was obtained over
several time periods of rotation. From �gure it is observed that the Cb distribution is nearly
isotropic and is di�erent from the distribution of dilute suspensions [4], in which lower orbit
constants are preferred.
Within the semi dilute regime concentration (1 < nl 3

f < r p), the Cb distribution is qualitatively
similar as shown in �gure 6.5. However it is observed that the peak of the PDF shifts towards
lower orbit constants. The obtained values of< C b > are compared with the experimental values
as shown in table 6.2.

rp hCbi present study hCbi Stover [160] hCbi Petrich [129]

18 0:459 0:450 �
32 0:413 0:408 �
52 0:378 � 0:365

Table 6.2: Comparison ofhCbi with experimental studies.
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Figure 6.4: PDF of orbit constant Cb for rp = 32 and cv = 0 :035. For other concentrations, the
shape of the PDF was found to be similar (�g. 6.5).

Figure 6.5: PDF of orbit constant Cb for rp = 32 and cv = 0 :015.

In the theories predicting the relative viscosity (equations (6.16)) of �ber suspensions in shear,
� rel depends on the quantityhp2

xp2
y i (px , py and pz are the components of the unit vector~p). For

suspensions in the semi-dilute regime, Stover [160], and Petrich [129] observed thathp2
xp2

y i was
independent of the �ber volume fraction cv . Figures 6.6(a) and 6.6(b) show the convergence of
the numerically obtained values forhp2

xp2
y i .

Figure 6.7 shows the comparison ofhp2
xp2

y i for di�erent �ber aspect ratios and concentrations
with the experimental results of Petrich et al. and Stover et al. [129, 160]

Koch [82] derived a correlation for the structure/orientation moment hp2
xp2

y i of �ber suspen-
sions based on the theoretical studies of Rahnamaet al. [134] and the experimental studies of
Stover et al. [160]. The following correlation was derived for shear �ow:

hp2
xp2

y i �
0:371

rp
: (6.11)

Table 6.3 shows rather good agreement between the numerically obtainedhp2
xp2

y i with the
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(a) r p = 18 , cv = 0 :035

(b) r p = 52 , cv = 0 :015

Figure 6.6: Convergence ofhp2
xp2

y i as a function of normalized timet=� with � the time period
of Je�ery's orbit.

Figure 6.7: Comparison ofhp2
xp2

y i with the results of experimental studies [160, 129]

correlation (6.11).
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rp nl 2
f d Simulations hp2

xp2
y i Correlation 0:371

r p

18 0:178 0:0205
0:020618 0:34 0:0212

18 0:80 0:0215
32 0:30 0:0118

0:011532 0:61 0:0125
32 1:40 0:0120
52 0:49 0:00881

0:00713
52 0:99 0:00895

Table 6.3: Comparison ofhp2
xp2

y i against Koch's correlation [82]

6.3.2 Suspension rheology

In this section the rheological properties obtained from the numerical simulations are compared
with the predictions of Shaqfeh and Fredrickson [146] for semi-dilute suspensions ()equations
(6.16) to (6.18)) and various experimental results [129, 16, 160].

The total stress tensor of the �ber suspension is de�ned as:

� susp = 2 � E � pI
| {z }

� �uid

+ � �ber : (6.12)

For shear �ow, the �rst and second normal stress di�erencesN1 and N2 are de�ned as

N1 = � 11 � � 22; (6.13a)

N2 = � 22 � � 33: (6.13b)

The relative viscosity � rel of the suspension is de�ned as follows:

� rel =
� 12

2�E 12
: (6.14)

In equations (6.13a), (6.13b) and (6.14),� ij correspond to the components of the suspension
stress tensor� susp. In the present study, the stress of the suspension was calculated via Direct
Numerical Simulations. The following volume averaged expression was used to calculate the
stress tensor of the �ber suspension

� susp =

2

6
6
6
6
6
4

� Z

V
� �uid dV

�
+

0

@
N �berX

i =1

N segX

j =1

�
~Fint i;j 
 ~pi;j dl

�
1

A

| {z }
Fiber contribution to stress = � �ber

3

7
7
7
7
7
5

1
V

; (6.15)

where in equation (6.15),� �uid is the volume averaged �uid stress tensor,~Fint is the interaction
force on a given �ber segment.
In addition to the direct calculation of the stress by expression (6.15), the normal stress di�erences
and the e�ective viscosity of the suspension for dilute and semi-dilute rigid �ber suspensions can
be calculated from the orientation of the �ber [13, 146] as it has been previously mentioned in
the introduction of this chapter. The �rst and normal stress di�erences (N1 and N2, `*' refers
to the theoretical expression) reads as:

N �
1 = � �ber _


�
hp3

xpz i � h pzp3
y i

�
; (6.16a)

N �
2 = � �ber _


�
hp3

xpz i � h pxpyp2
z i

�
: (6.16b)
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The expression for the relative viscosity of the suspension reads:

� �
rel = 1 +

� �ber

�
hp2

1p2
2i : (6.16c)

In equation (6.16), � �ber depends on the �ber concentration. For dilute suspensions, the expres-
sion of � �ber was derived by Batchelor [13]:

� �ber =
�nl 3

f �

6 ln (2rp)
f (� ); (6.17a)

where � = (ln (2 rp)) � 1, and f (� ) is de�ned as

f (� ) =
1 + 0:64�
1 � 1:5�

+ 1 :659� 2: (6.17b)

In the semi dilute regime, Shaqfeh and Fredrickson [146] proposed the following expression:

� �ber =
�nl 3

f �

3 (ln (1=cv) + ln (ln (1 =cv)) + A)
: (6.18)

In the present study, the stress of the �ber suspension is calculated directly using equation (6.15)
and the results of this calculation is compared with the theory of Shaqfeh and Fredrickson [146]
using the instantaneous �ber microstructure. In the present study,A = 0 :16 was chosen.

l f (mm) df (�m ) rp _
 (s� 1) � (Pa s)

Bibbo [16]
2:0 120 17 1 � 100 13
4:0 120 33 1 � 100 13
6:0 120 51 1 � 100 13

Stover [160]
1:61 95 16:9 0:319� 0:471 1
2:68 84 31:9 0:447� 0:472 1

Petrich [129]
0:65 13 50 0:50 27:5
0:55 11 50 0:50 27:5

Present study
2:16 120 18 300 13
3:84 120 32 300 13
6:24 120 52 100 13

Table 6.4: Fiber parameters, dynamic viscosity� and shear rate _
 of various experimental
studies and present study. The parametersl f and df correspond to the �ber length and diameter
respectively.

Table 6.4 gives the details of the experimental studies in comparison. The �ber parameters in
the present study are based on the experimental study of Bibbo [16], except for the shear rate
_
 . From table 6.4, it is observed that the shear rate (_
 ) ranges from10� 2 to 102 s� 1. The shear
rate in the present study was set to_
 = 300s� 1 and _
 = 100s� 1 . Despite of a higher shear rate,
the �ber Reynolds numbers based on the �ber diameter and normal component of the relative
velocity was in the Stokesian regime as shown in �gure 6.8. The Reynolds number based on the
shear rate and the �ber diameter was found to be3 � 10� 4. The relative viscosity � rel and the
normal stress di�erences were calculated directly using equation (6.15) and using the semi-dilute
[146] theory with the suspension microstructure obtained from the simulations. In order to avoid
the wall e�ects, �bers close to the wall were neglected in the calculation using equation (6.15).
The value of the �ber-wall distance corresponds to0:25l f .
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Figure 6.8: PDF of �ber Reynolds number rp = 52, nl 3
f = 51:64

Figure 6.9: Convergence of �ber stress components forrp = 32, cv = 0 :0075
as a function of t=� .

Figures 6.9, 6.10(a) and 6.10(b) show the convergence of the individual stress components, �rst
and second normal stress di�erence obtained from the direct stress calculation and using the
analytical theory of Shaqfeh and Fredrickson [146]. Comparison of the relative viscosity obtained
by the direct calculation and the semi-dilute theory is shown in �gure 6.10(c).
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(a) Convergence of �rst normal stress di�erence N1 for
r p = 32 , cv = 0 :0075.

(b) Convergence of second normal stress di�erenceN1 for
r p = 32 , cv = 0 :0075.

(c) Convergence of relative viscosity for r p = 32 , cv =
0:0075

Figure 6.10: Convergence of the rheological properties of �ber suspensioncv = 0 :0075, rp = 32
as a function of t=�

Figure 8.5 shows the comparison of the relative viscosity� rel between the experimental studies
and the present numerical work. From the �gure it is observed that the numerical results agree
reasonably with the experimental results of Stoveret al. for rp = 32. Reasonable agreement is
also observed with the results of Petrichet al. [129].
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Figure 6.11: Comparison of the computed �ber suspension relative viscosity� rel with experi-
mental results.

6.4 Conclusion

In this chapter, the evolution ot the microstructure and the rheological properties of semi dilute
rigid �ber suspensions in shear �ow was studied. Three �ber aspect ratios (rp = 18; 32; 52) were
considered and the concentration was varied from(1 < nl 3

f < r p). The results of the numerical
simulations were compared with several experimental results and predictions of Batchelor and
Shaqfeh and Fredrickson. It was observed that the developed numerical model takes into account
the long range and short hydrodynamic interactions between the �bers. The e�ect of the inter-
actions is evident the PDF of the� orientation angle and orbit constant Cb distribution. Finally
the rheological properties of the suspensions obtained from the numerical studies were compared
with previous experimental results and the semi dilute suspension theory using the suspension
microstructure parameters obtained frim numerical simulation. The developed numerical model
was able to reproduce the evolution of the relative viscosity� rel of semi dilute �ber suspensions
as a function of their concentrations with a reasonable accuracy.

CHAPTER 6. SEMI DILUTE RIGID FIBER SUSPENSIONS IN SHEAR



CHAPTER7

DRAG REDUCTION IN TURBULENT PIPE FLOW BY FIBROUS
ADDITIVES
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7.1 Introduction

The �ow of �ber suspensions is critical in several applications such as in the manufacture of �ber
based composites [43, 42], paper making [106] and as potential drag reducing agents [171]. The
�ow of �ber suspensions in these applications are usually in the inertial regime, ie. the Reynolds
number and the Stokes number at the �ber scale are �nite. One of the most important e�ects in
these �ows are the ability of the suspended �bers to enhance/damp turbulence. Robertson and
Mason [135] performed experimental studies on the �ow of dilute �ber suspensions in a pipe �ow.
The volume fraction of the �bers were varied from 0.1% to 1%. For �ber volume fractions greater
than 0.2%, three di�erent �ow regimes were identi�ed : plug �ow, mixed turbulent �ow and
turbulent �ow. For low bulk �ow Reynolds numbers (Rebulk < 1500), the plug �ow regime was
dominant for up to volume concentrations of 0.3%. In the regime between2000< Re bulk < 3000,
transition to turbulence was observed. In fact the presence of �bers enhanced the turbulence for
volume concentrations greater than 0.5%. For concentrations less than 0.7%, and in the regime
between 6000 < Re bulk < 50000, drag reducing e�ects were observed (characterized by lower
pressure drop and lower wall shear stress). For higher concentrations the �ow was similar to a
turbulent �ow with reduced turbulence intensity in the streamwise direction but increased wall
shear stress, the �bers formed a plug like annular structure for higher concentrations. For higher
bulk �ow Reynolds numbers (Re > 60000) the presence of �bers did not a�ect the velocity pro�les
of the �ow and the �ow was similar to a single phase turbulent pipe �ow. Such phenomena have
been observed in several studies of �ber suspensions in channel and pipe �ows [182, 171, 92]. The
e�ect of �ber aspect ratio on the drag reduction characteristics was studied experimentally in refs
[78, 92]. In these studies it was found that �bers with higher aspect ratios (30 < r p < 300) and
dilute concentrations proved to be better drag reducing agents compared to short aspect ratios
(rp < 30) for the same volume fraction. The mechanism of drag reduction in turbulent channel
�ows was numerically studied by Paschkewitzet al. [122, 123]. The contribution of the �ber
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stress were calculated using the constitutive equations involving the �ber orientation moments
(
R

~p
 ~p and
R

~p
 ~p
 ~p
 ~p) and closure approximations from the studies in refs. [36, 1]. The
extra �ber stress term were added with Newtonian stress tensor in the NS equations. In their
study, drag reduction of up to 26% were obtained and the drag reduction mechanism was found
to be qualitatively similar to those that are induced by the use of polymers for drag reduction
[49]. The streamwise �uctuating component of the velocity had a higher peak in the suspension
compared to the single phase �ow which is commonly observed in polymer solutions.
In this chapter, numerical simulations of dilute �ber suspensions in turbulent pipe �ow were
performed. Two �ber volume concentration cv = 0 :0025and cv = 0 :005 were considered and the
�ow Reynolds number based on the pipe diameter wasRe = 6000. The e�ect of �bers on the �ow
characteristics were obtained and the �ber microstructure was studied. Preliminary qualitative
results such as the velocity pro�les, root mean square of the �uctuating velocity components are
presented. Due to the heavy time requirements of the simulation, the statistics were collected
only for short duration ( � two �ow through times.). Therefore high order statistics needed for
the stress and energy budget did not reach the statistically stationary state and these results
have not been presented.

7.2 Numerical Setup

The �ow domain consisted of a pipe geometry with diameterDp = 5 l f (l f is the �ber length,
Dp = 0 :006 m) and the length of the pipe was set toL p = 5Dp (similar to the DNS studies
of Eggels et al. [54]). The pipe geometry was discretized into a hybrid unstructured mesh
consisting of 3:7 � 106 cells, with 20 layers of hexahedral cells in the wall normal direction
starting from y+ = 0 :05 with a growth ratio of 1:20. Periodic boundary condition was applied in
the streamwisex direction and the no slip wall boundary condition was imposed over the pipe
surface. The density� �uid and dynamic viscosity � of the �uid were set to 1000 kg=m3 and 0:001
Pa s respectively. Figure 7.1 shows the initial �ber microstructure and the �ow domain. Table

Figure 7.1: Flow domain and �bers. The �bers are shown in pink and the contours correspond to
the �ow velocity magnitude. The initial �ber positions and orientations were randomly generated
inside a cylindrical geometry.

7.1 gives the �ber properties used in the present study. The aspect ratiorp of the �bers was set
to rp = 50.
The single phase turbulent pipe �ow was driven using a forcing~f x in the stream-wise direction
X to maintain a constant pressure gradient at a bulk Reynolds numberReD p = 6000 (equation
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cv Nf Nseg l f (mm) df (� m) rp nl 3
f EY (GPa)

0:0025 3905
20 1:20 24 50

7:95
2:1

0:005 7804 15:91

Table 7.1: Fiber properties and discretization used in the present study. The �bers are considered
to be neutrally buoyant.

(7.1)). The corresponding Reynolds number based on the friction velocityu� (u� =
p

� w=� , with
� w the wall shear stress) wasRe� = 367.

@~U
@t

+ r
�

~U 
 ~U
�

= ~f x �
r p

� �uid
+ � r 2 ~U: (7.1)

Initially the forcing ~f x was calculated using the analytical expressions from boundary layer theory
in ref [143]. To do so, �rst, the friction factor f for turbulent pipe �ows in smooth pipes was
calculated using the Colebrook equation [176]:

1
p

f
= 2 log10

� p
fRe D p

�
� 0:8: (7.2)

The an estimate of the wall shear stress� w was obtained using

� w =
1
2

� �uid

�
~U

� 2
Cf ; (7.3a)

and
f = 4Cf (7.3b)

For fully developed turbulent pipe �ow, the force balance equation reads as

~Fx = � w �D pL p = �
1
4

dp
dx

�D 2
pL p: (7.4a)

Finally, for constant pressure gradient, the volumetric forcing term is:

~f x =
~Fx

� �uid V�uid
: (7.4b)

For the �ber suspension case, the value of~f x obtained from single phase �ow simulation was
used and the simulations were run until a convergence in the �uid bulk velocity was observed.
The viscous length scale� v is de�ned as follows:

� v =
�
u�

; (7.5)

where � is the �uid kinematic viscosity. In the present study, the diameter df of the �ber is
comparable to the the viscous length scale� v as df =� v = 1 :47.

7.3 Results and discussion

Figure 7.2 shows the comparison of the mean velocity pro�le in the streamwise direction X
direction between the present study (Re = 6000) and the experimental/DNS results of Eggels
et. al [54] (Re = 5300) for single phase �ow (cv = 0 ) simulation. The mean velocity hUx i in
the streamwise direction was normalized by the friction velocityu� that numerically obtained
from the wall shear stress, i.e.u� =

p
� w=� . The velocity pro�le obtained from the DNS in the

present study is in reasonable agreement with the DNS results reported by Eggelset al. [54].
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Figure 7.2: Comparison of mean velocity pro�les between present DNS (single phase) and Eggels
et al. [54]

Figure 7.3: Comparison ofu0
i RMS components between present DNS (single phase) and Eggels

et al. [54] numerical results.

Figure 7.3 shows the root mean square(RMS) of the �uctuating �uid velocity components. The
RMS components give an indication of the turbulence intensity. The RMS pro�les obtained in
the present study are also in good agreement with the DNS results of Eggelset al. [54]
The velocity �eld of the single phase DNS was used as the initial condition for the simulation
of the �ber suspension �ow. In �gure 8.9, the velocity pro�les of the single phase �ow and �ber
suspension �ow are shown in wall unitsy+ (inner units). The y+ can be seen as a local Reynolds
number and it is de�ned as

y+
i =

�u � yi

�
; (7.6)

where in equation (7.6), yi is the wall normal coordinate. The mean velocity is normalized by
the friction velocity u� so as to obtainu+ = hUf i =u� . Figure 8.9 shows that in the case of the
suspension �ow, there appears to be a thickening in the viscous sublayer (y+ < 5) and closely
follows the trend given by u+ = y+ for y+ up to 10 or more precisely up to a portion of the
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bu�er layer 5 < y + < 30. Laminar �ows follow the trend of u+ = y+ for the entire y+ . The
deviation from this trend gives an indication of the drag reduction in the near wall region. In
addition, it was also observed that the friction velocity u� for the �ow of the �ber suspension
was lower compared to the single phase �ow implying, a reduction in the wall shear stress� w .

Figure 7.4: Comparison between mean velocities obtained for single phase �ow and �ber suspen-
sion �ow in wall units.

Similar trends in the velocity pro�les were obtained in the numerical study of Paschkewitzet al.
[122]. Signi�cant di�erences in the velocity pro�les were observed in the log-law layer (y+ > 30)
and the outer layer (y+ > 50) between the �ber suspension �ow and and the single phase �ow.
In the case of single phase �ow, the velocity pro�le follows the log-law of:

u+ =
1
k

ln y+ + B; (7.7)

where in equation (7.7), k is the von-Kármán constant and for pipe �ow, k = 0 :40 [188]. B
is the the additive constant, B = 5 :5. The velocity pro�les of the �ber suspension �ow were
comparatively higher in these regions.
Figure 7.5 shows the comparison of the root means square (RMS) of the �uctuating velocity
componentsu0

x (streamwise direction), u0
� (azimuthal direction) and u0

r (radial direction) with
respect to the outer units (r=D p). The RMS of the �uctuating velocity components indicates
the turbulence intensity.
In �gure 7.5(a), the RMS of the streamwise �uctuating component u0

x was found to be higher for
the �ber suspension �ow. This behavior has been observed both numerically and experimentally
in the drag reducing �ows by polymer additives in Newtonian �uids [49, 105]. However the
mechanism of the drag reduction by polymer additives are di�erent, the drag reduction in such
suspensions are essentially associated to the change of shape of the polymer,i,e. initially coiled
polymers are stretched in the near wall region. Drag reducing trends have been observed for
rigid �ber suspensions in the experimental study of Xu and Aidun [182]. In the later section
of this chapter, an attempt to explain this behavior using the �ber microstructure is presented.
It is also observed that the RMS components of the �ber suspension �ow are reduced in the
azimuthal and radial directions (�gures 7.5(c) and 7.5(b)). Such trends have been observed in
particle laden turbulent channel �ows [101, 9].
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(a) u0
x;rms

(b) u0
r;rms

(c) u0
�;rms

Figure 7.5: Comparison of velocity �uctuations between single phase �ow and �ber suspensions.

Figure 7.6(a) show the pro�le of the �uid stress (for both the single phase and �ber suspension
cases) in the velocity gradient direction normalized by the wall shear stress� w of the single phase
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(a) Pro�le of the stress in the wall normal direction for �uid,
normalized by wall shear stress � w of the single phase �uid.

(b) Component of the �ber stress � xr

Figure 7.6: Stress pro�les in the velocity gradient direction.

�ow with respect to the outer units. Figure 7.6 shows that the presence of �bers reduced the
stress in the near wall region (forr=D p � 0:47 to 0:5) and an increase in the stress in the log-law
region was observed. Figure 7.6(b) shows the variation of the �ber contribution to the stress
for the two concentrations studied. In order to calculate the �ber stress, the pipe domain was
divided in to 10 annuli with varying radii. The stress was calculated using the following equation
(as explained previously in Chapter 6.).

� �b =

0

@
N �berX

i =1

N segX

j =1

�
~Fint i;j 
 ~pi;j

�
1

A 1
V i

(7.8)

where in equation (7.8), ~Fint corresponds to the internal force on the �ber segments,~p is the
orientation of the �ber segments and Vi is the volume of the considered annular region.
The percentage in drag reduction (DR %) was de�ned as [122]:

DR % = 1 �
�

u�; susp

u�; sp

� 2

� 100 (7.9)

where in equation (7.9),u�; susp is the friction velocity obtained from the �ber suspension �ow and
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u�; sp is the friction velocity obtained for single phase �ow (both these velocities were obtained
using the relation u� =

p
� w=� ). In the present study the percentage in drag reduction was

found to be 7:75% for cv = 0 :0025(nl 3 = 7 :95) and 12:8% for cv = 0 :005 (nl 3 = 15:91), thereby
showing a clear e�ect of the increase in �ber concentration on the drag reduction. Figure 7.7

Figure 7.7: Comparison of instantaneous velocity contours aty+ = 6

shows the instantaneous contours of the �ow velocity on the iso-surface at the near wall region
(y+ = 6 ). It is observed that the �bers strongly modulate the �ow in this region as seen in the
velocity pro�le (�gure 8.9) and the presence of high speed streaks (shown in red) in �gure 7.7.
Figure 7.8 shows the comparison of the PDF of the �ber segment orientation between the two
volume fractions considered in the present study where� is the angle between the �ber segment
axis and the �ow direction and the angle � is normal to the �ow direction.

Figure 7.8: Comparison of PDF of�

Figure 7.8 shows that for low volume fraction (cv = 0 :0025), the �bers tend to align with the
�ow direction whereas in the case ofcv = 0 :005, the distribution was comparatively isotropic i.e.
showing a more random orientation. In order to get a clearer idea of the orientation distribu-
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7.3 Results and discussion

tion, the pipe domain was divided into 10 annular regions with varying radii. The orientation
distribution of the �ber segments in each of these regions are shown in �gures 7.9 and 7.10.

(a) p(� ) for varying r

(b) p(� ) for varying r

Figure 7.9: Comparison of PDF of� and � for varying annular regions within the pipe, cv =
0:0025

In �gure 7.9, preferential alignment was observed for the �ber segments at the near wall region
and the orientation distribution tends to be isotropic towards the core of the pipe. However in
the case ofcv = 0 :005 near isotropic distribution were seen throughout the pipe domain with
slight preferential alignment in the near wall region. Such an e�ect is mainly due to the �ber-
�ber interactions and �ber deformation. Evidence of �ber deformation is shown in �gure 7.11.
Figure 7.11 shows the PDF of the end-to-end vector~Ze for the two studied concentrations. It
was observed that for the case withcv = 0 :005, the �bers tend to undergo more deformation,
as the peak of the PDF is lower. It should be noted that the �bers are not very �exible, as the
maxima of h~Z 2

e i =~Z 2
e is around 1.02 (for rigid �bers, l2f = ~Z 2

e). Note that similar PDF pro�les were
obtained in the experimental study of Brouzetet al. [28] for nearly rigid �bers in homogeneous
isotropic turbulent �ow.
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(a) p(� ) for varying r

(b) p(� ) for varying r

Figure 7.10: Comparison of PDF of� and � for varying annular regions within the pipe, cv =
0:005

Figure 7.11: PDF of end to end vector~Ze for the two studied suspensions withcv = 0 :0025and
cv = 0 :005.
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7.4 Conclusion

Figure 7.12 shows the instantaneous �ber microstructure for the two volume fractions. In the case
of cv = 0 :005 �ber �occulation was observed intermittently and �oc formation was qualitatively
observed to increase the deformation of the �bers.

(a) 2D projected �ber conformation for cv =
0:0025

(b) 2D projected �ber con�rmation for cv = 0 :005

Figure 7.12: Fiber conformation, �bers shown in red. Contours of Instantaneous velocity in
grayscale.

7.4 Conclusion

In this chapter preliminary results on the e�ect of �brous additives in turbulent pipe �ow for
Re = 6000 have been presented. The obtained results are in reasonable agreement with previous
theoretical and numerical studies on drag reduction by particle laden �ows. Due to the heavy time
requirement of the simulations, complete physical analysis on the mechanism of drag reduction
has not been performed as the higher order statistics such ashu

0

i u
0

j i and hu
0

i u
0

j u
0

k i did not reach
a fully statistically stationary state. However, these components are necessary to understand
the energy budget and stress budget of the drag reduced �ows. Future work would include these
results.
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CHAPTER8

CONCLUSION AND PERSPECTIVES

Conclusion

This thesis was primary concerned with the numerical modeling of high aspect ratio �exible
�bers in inertial �ows. The �bers were modeled as discrete beam segments that can twist, bend
and rotate. The equations of the �ber motion were solved using an open source discrete element
solver YADE [174]. The three dimensional incompressible Navier-Stokes equations governing
the �uid motion were solved based on a node centered �nite volume solver YALES2 [117]. The
coupling between the phases were obtained by means of a pseudo immersed boundary method as
the hydrodynamic interaction between the phases were calculated using analytical expressions
from the literature. A `per unit length' hydrodynamic torque model for the �bers was derived
from explicit numerical simulations of shear �ow past a high aspect ratio cylinder. For Reynolds
numbers at the inertial regime (10� 2 � Re < 102, Re at the �ber scale), non linear drag force
formulations [164, 109, 163] for �ow past an in�nite cylinder was used. For rigid �bers in creeping
�ow, the drag force formulation from the slender body theory [12] was used.
The developed model was validated against several experimental studies and analytical theories
ranging from the creeping �ow regime (for rigid �bers) to inertial regimes. In the creeping �ow
regime, numerical simulations of semi dilute rigid �ber suspensions in shear were performed.
The developed model was able to capture the �ber-�ber hydrodynamic and non-hydrodynamic
interactions. The numerically obtained �ber microstructure and rheological properties were in
reasonable agreement with previous experimental observations and analytical theories [160, 16,
146, 70]. The elasto-hydrodynamic interactions at �nite Reynolds was validated with against
two test cases. In the �rst test case, the de�ection of the free end of a �ber in an uniform �ow
�eld was obtained numerically and the results were compared with the experiment of Tritton
[168]. In the second test case the conformation of long �exible �bers in homogeneous isotropic
turbulence was obtained numerically and the results were compared with the experiments of
Brouzet et al. [28] as well as Verhille and Bartoli [172]. Two numerical studies were performed
to verify the e�ects of the suspended �bers on carrier phase turbulence. Turbulence modulations
by 1% concentration �ber suspension (by volume) were observed in turbulent channel �ow at
Re = 2000 and it was observed that the laminar velocity pro�le of the �ow was altered to a blunt
velocity bearing resemblance to the1=7 power law pro�le. At Re = 6000 a mixed turbulent �ow
was observed. The numerical results were validated against the experimental work of Xu and
Aidun [182]. Preliminary results of the drag reducing e�ects of semi dilute �ber suspensions in
turbulent pipe were obtained. Two �ber volume concentrations were considered and the obtained
results such as reduction in the wall shear stress, increased turbulence intensity in the streamwise
direction agreed qualitatively with previous studies [122, 92, 171]. However, the results are not
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conclusive as more analysis on the drag reduction mechanism needs to be performed.

Future Works

Model Improvements

One of the major issues in the present work is the numerical noise induced by the �ber segments
onto the �uid grid. The interpolation of the velocity (translational and rotational) and forces
between the �ber segments and the �uid grid can be improved by using a Gaussian envelope
so as to have a better interpolation of the �uid velocity around the �ber segment interface [10]
(and the segment hydrodynamic force interpolation back to the �uid grid). Another approach
would be to utilize the force coupling method (FCM) [175, 114], as this method provides nearly
exact description of the hydrodynamic force on the particles at low �nite particle Reynolds
numbers. However the existing FCM may need to be modi�ed to take into account of the �ber
shape and �exibility. Implementation of Immersed Boundary Method (IBM) with the direct
forcing approach [169] in the present numerical model is quite straightforward. However, such an
implementation would require additional Lagrangian points around the circumference of the �ber
segment and the computational cost for simulating long �bers would be signi�cantly expensive
compared to the present model (Prosperetti [132] gives an interesting commentary on the fully
resolved IB methods and the computational cost). The IB method explicitly enforces the no slip
boundary condition over the �ber resulting in a very accurate coupling between the �ow and the
�ber. Figure 8.10 shows the streamlines around a rigid �ber at �nite Reynolds number the IB
method of Uhlmann was used.

Figure 8.1: Streamlines past �ber (in red) in shear at �nite Reynolds number obtained by
immersed boundary method of Uhlmann [169].

Physical modeling

In terms of understanding new physics, the developed model could be used to understand the
rheology of concentrated rigid �ber suspensions. From the experiments of Snooket al. [156] and
Bounouaet al. [17], a negative second normal stress di�erence was observed. These experimental
results are in qualitative agreement and perhaps numerical simulations of rigid �ber suspensions
could provide some insight on the origin of the negative second normal stress di�erence. More
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physics can be included between the �ber-�ber interactions, this would include for instance im-
plementing van der Waals force model between the �bers, colloidal forces and Brownian motion.
Such interactions dictate the rheology and microstructure formation in high aspect ratio cellulose
nano �ber suspensions as shown in the experimental studies of Martoïaet al. [110, 111].
The dynamics of �exible �bers in isotropic turbulent �ows can be used to study the very nature
of turbulent �ows as shown in the experimental studies of Brouzetet al. [28], [172]. In a recent
numerical study, Rosti et al. [139] correlated the deformation of �exible �bers in homogeneous
isotropic turbulent (HIT) �ows to the second-order velocity structure function and showed that
reasonable prediction of the �ow �eld could be obtained by studying the �ber deformation. The
developed model could be used to study similar phenomena.
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Résumé

Un modèle numérique décrivant le comportement de �bres �exibles transportées par un écoule-
ment a été développé. Ce modèle s'appuie sur le couplage du code �open-source� YADE, basé
sur une méthode d'éléments discrets pour la prédiction du comportement mécanique des �bres,
avec le code communautaire YALES2 pour la prédiction de l'écoulement. Chaque �bre est dis-
crétisée en plusieurs segments, ce qui leur permet de se plier, de se vriller et de se tourner. Les
équations du mouvement des �bres sont résolues en utilisant des schémas explicites du second
ordre en temps et en espace. Pour l'écoulement, les équations de Navier-Stokes incompressibles
sont résolues à partir d'une discrétisation volumes �nis d'ordre 4 en temps et en espace.
La �gure 8.2 illustre la géométrie et la discrétisation d'une �bre. La �bre est composée de
plusieurs segmentsf b1; b2; b3; :::; bng et f c1; c2; c3; :::; cn+1 g sont les n÷uds de ces segments.

f ~O1; ~O2; ~O3; :::; ~On+1 g sont les vecteurs positions de ces n÷uds et~Ze est le vecteur �bord à
bord� de la �bre. Les vecteurs(ex ; ey ; ez) forment une base ortho-normée qui est �xée au segment
considéré et~p est le vecteur orientation de ce segment.

Figure 8.2: Géométrie d'une �bre

Le couplage entre la phase composée des �bres et la phase �uide est obtenu par une méthode
type �frontière immergée�, où les forces hydrodynamiques qui s'appliquent sur les segments des
�bres sont calculées à partir de di�érentes expressions analytiques. La �gure 8.3 schématise le

Figure 8.3: Représentation graphique du couplage. La �bre est représentée en vert, les n÷uds
des �bres sont en bleu, les n÷uds du maillage �uide sont en rouge.

couplage utilisé dans cette étude. Le vecteur vitesse et le tenseur des gradients de vitesse calculés
sur les n÷uds du maillage �uide à proximité des segments des �bres sont interpolés sur la �bre et
des modèles analytiques et/ou empiriques sont utilisés pour déterminer la force hydrodynamique
s'appliquant sur les segments des �bres. Di�érents modèles de force hydrodynamique ont été
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analysés et leurs limitations ont été déterminées. Pour un nombre de Reynolds, basé sur l'échelle
de la �bre, situé dans le régime inertiel ((10� 2 � Re � 102), une formulation non-linéaire de la
force de trainée basée sur les résultats d'un écoulement autour d'un cylindre in�ni oblique est
utilisée. La �gure 8.4 compare les composantes des modèles de forces hydrodynamiques utilisés
avec des résultats de simulations explicites d'écoulements autour d'un cylindre in�ni.

(a) Cn vs. Re (b) Cl vs. Re

Figure 8.4: Coe�cients de la force hydrodynamique en fonction du nombre de Reynolds. �Nu-
merical simulation� fait référence aux simulations explicites d'écoulements autour d'un cylindre
in�ni.

Dans le cas de �bres rigides dans un écoulement de Stokes, la formulation de la force de trainée
utilisée est celle issue de la théorie �slender body�. Un modèle de couple hydrodynamique par
unité de longueur de �bre a été dérivé à partir de simulations numériques explicites d'un cylindre
à grand rapport d'aspect placé dans un écoulement cisaillé. Le modèle ainsi développé a été
validé en le confrontant à di�érentes études expérimentales et résultats analytiques allant des
écoulements de Stokes (pour des �bres rigides) à des régimes inertiels. Pour les écoulements de
Stokes, des simulations numériques de suspension de �bres rigides dans un écoulement cisaillé
ont été réalisées. Le modèle développé est capable de prédire les interactions entre �bres. Les
résultats numériques obtenus sur la microstructure des �bres et les propriétés rhéologiques sont
en accord avec les observations expérimentales précédentes et les théories analytiques [160, 16,
146, 70], comme l'illustre la �gure 8.5.
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Figure 8.5: Comparaison de la viscosité e�ective,� rel , évaluée à partir des simulations numériques
et de résultats expérimentaux ou théoriques pour di�érents rapports d'aspect des �bres.

Les interactions elasto-hydrodynamiques ont été validées à partir de deux cas tests. Dans le
premier cas test, la déviation d'une �bre �xée à un bord et libre de l'autre dans un écoulement
uniforme a été simulée et comparée aux résultats expérimentaux de Tritton [168]. La �gure 8.6
montre cette comparaison entre le modèle développé dans ce travail, les résultats expérimentaux,
mais également entre un modèle de force précédemment proposé (prolate-spheroid model) et un
résultat analytique.

Figure 8.6: Comparaison de la déviationh issue de résultats expérimentaux, numériques
(prolate-spheroid modelet le modèle développé dans ce travail) et analytiques.

Le second cas test considéré consiste à prédire le comportement de �bres �exibles dans une
turbulence homogène et isotrope. Les résultats sont comparés aux résultats expérimentaux de
Brouzet et al. [28] et Verhille et Bartoli [172]. A titre d'illustration, la �gure 8.7 compare la
densité de probabilité (PDF) de la norme du vecteur �bord-à-bord� obtenu numériquement, à
celle mesuré expérimentalement par Brouzetet al. [28].
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(a) PDF de ~Z 2
e =h~Z 2

e i pour une longueur de �bre l f =
5cm.

(b) PDF de ~Z 2
e =h~Z 2

e i pour une longueur de �bre l f =
16cm.

Figure 8.7: PDF de la norme du vecteur �bord-à-bord� pour des �bres �exibles dans une turbu-
lence homogène et isotrope.

Deux autres études numériques ont été menées pour mesurer les e�ets des �bres en suspension
sur l'écoulement turbulent porteur. La modulation de la turbulence par une suspension de �bres
(concentration de1%en volume) a été observée dans un canal turbulent à un nombre de Reynolds
Re = 2000. Ainsi, le pro�l de vitesse initialement laminaire est modi�é en un pro�l plus plat
ressemblant à un pro�l plus turbulent. Les résultats numériques ont été validés par comparaison
aux travaux expérimentaux de Xu and Aidun [182]. La �gure 8.8 montre la comparaison des
pro�ls de vitesse pour le régime turbulent, Re = 6000.

Figure 8.8: Comparaison des pro�ls de vitesse entre une con�guration sans �bre et une con�gu-
ration avec une suspension de �bres (concentration de1% en volume) àRe = 6000.

Des résultats préliminaires des e�ets de réduction de trainée d'une suspension de �bres dans
un écoulement turbulent dans une conduite ont �nalement été obtenus. Deux concentrations
de �bres di�érentes ont été considérées et les résultats obtenus sur la réduction du cisaillement
pariétal et l'augmentation de l'intensité turbulente dans la direction de l'écoulement sont en
accord avec les précédentes études [122, 92, 171]. Les pro�ls de vitesse (�gure 8.9) sont en
accord avec les résultats observés dans de précédentes études et indiquent un e�et de réduction
de trainée due aux �bres. La réduction de trainée évaluée à partir de la vitesse de frottementu�

est de 7.75% pour la concentrationcv = 0 :0025 et de 12.8% pourcv = 0 :005. Cependant, une
étude plus approfondie des mécanismes de réduction de trainée doit être menée.
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Figure 8.9: Comparaison des pro�ls de vitesse moyenne (en unité de parois) entre un écoulement
sans et avec �bres.

Perspectives

Développement du modèle

Une amélioration nécessaire à l'actuelle implémentation est de réduire le bruit numérique induit
par les segments des �bres sur le maillage �uide. Une enveloppe Gaussienne peut être utilisée de
façon à avoir une meilleure interpolation de la vitesse du �uide autour des �bres [10], ainsi qu'une
meilleure interpolation des forces hydrodynamiques sur le maillage �uide. Une autre approche
serait d'utiliser la méthode �force coupling� (FC) [175, 114], qui permet une description quasi-
exacte de la force hydrodynamique sur les particules à bas nombre de Reynolds particulaire.
Cependant, la méthode FC existante nécessite une adaptation pour prendre en compte la forme
des �bres et leur �exibilité. L'implémentation d'une méthode de frontières immergées (IB) avec
une approche de forçage direct [169] est quasi immédiate dans la méthode actuelle. La méthode
IB force explicitement la condition de non-glissement sur des �bres, permettant un couplage
très précis entre les �bres et le �uide. La �gure 8.10 montre les lignes de courant autour d'une
�bre rigide calculée à partir d'une méthode IB. Cependant, une telle implémentation nécessite
des points Lagrangiens supplémentaires autour des segments de �bres et le coût des simulations
pour des �bres longues serait sensiblement augmenté par rapport au modèle actuel (Prosperetti
[132] commente le coût computationnel d'une approche entièrement résolue par méthode IB).

Analyse physique

En terme d'analyse physique, le modèle développé pourrait être utilisé pour comprendre la rhéolo-
gie de suspension de �bres rigides. En e�et, dans les expériences de Snooket al. [156] et Bounoua
et al. [17], une di�érence de tension normale négative est observée. Ces expériences sont co-
hérentes entre elles et peut-être que des simulations numériques de suspension de �bres rigides
pourraient apporter un éclairage supplémentaire sur l'origine de cette di�érence. Plus de physique
pourrait être prise en compte dans les interactions entre �bres. Cela pourrait inclure un modèle
de force de van der Waals entre les �bres, les forces colloïdales et des mouvements Browniens.
De telles interactions contrôlent la rhéologie et la formation de microstructures dans les suspen-
sions de nano �bres de celluloses à fort rapport d'aspect, comme l'ont montré les expériences de
Martoïa et al. [110, 111].
La dynamique de �bres �exibles en turbulence homogène isotrope peut être utilisée pour l'étude
fondamentale de la turbulence, comme cela a été montré par les études expérimentales de Brouzet
et al. [28], [172]. Dans une étude numérique récente, Rostiet al. [139] rapprochait la déformation
de �bres �exibles dans une turbulence homogène isotrope à la fonction de structure du second
ordre de la vitesse. Une prédiction raisonnable de l'écoulement peut être obtenue en étudiant la
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Figure 8.10: Lignes de courant autour d'une �bre (en rouge) dans un écoulement cisaillé. Résultat
obtenu à partir d'une simulation utilisant une méthode IB [169].

déformation des �bres. Le modèle développé pourrait être utilisé pour des études similaires.
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