R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su et al., Precise and Ultrafast Molecular Sieving through Graphene Oxide Membranes, Science, vol.343, p.752, 2014.

A. Siria, P. Poncharal, A. Biance, R. Fulcrand, X. Blase et al., Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube, Nature, vol.494, p.455, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00959984

K. H. Jensen, E. Rio, R. Hansen, C. Clanet, and T. Bohr, Osmotically Driven Pipe Flows and Their Relation to Sugar Transport in Plants, J. Fluid Mech, vol.636, p.371, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02356994

S. M. Henton, Revisiting the Münch pressure-Flow Hypothesis for Long-Distance Transport of Carbohydrates: Modelling the Dynamics of Solute Transport Inside a Semipermeable Tube, J. Exp. Bot, vol.53, p.1411, 2002.

R. Greger and U. Windhorst, Comprehensive Human Physiology: From Cellular Mechanisms to Integration, 1996.

C. W. Gottschalk and M. Mylle, Evidence that the Mammalian Nephron Functions as a Countercurrent Multiplier System, Science, vol.128, p.594, 1958.

L. Bankir, N. Bouby, and M. M. Trinh-trang-tan, The Role of The Kidney in the Maintenance of Water Balance, Baillière's Clinical Endocrinology and Metabolism, vol.2, p.249, 1989.

J. L. Stephenson, Concentration of Urine in a Central Core Model of the Renal Counterflow System, Kidney international, vol.2, p.85, 1972.

P. J. Palatt and G. M. Saidel, Countercurrent Exchange in the Inner Renal Medulla: Vasa Recta-descending Limb System, Bull. Math. Biol, vol.35, p.431, 1973.

S. R. Thomas, Inner Medullary Lactate Production and Accumulation: A Vasa Recta Model, Am. J. Physiol. Renal Physiol, vol.279, p.468, 2000.

D. Foster, J. A. Jacquez, and E. Daniels, Solute Concentration in the Kidney-II. Input-Output Studies on a Central Core Model, Math. Biosci, vol.32, p.337, 1976.

A. T. Layton, A Mathematical Model of the Urine Concentrating Mechanism in the Rat Renal Medulla. I. Formulation and Base-Case Results, Am. J. Physiol. Renal Physiol, vol.300, p.356, 2010.

A. Edwards, Modeling Transport in the Kidney: Investigating Function and Dysfunction, Am. J. Physiol. Renal Physiol, vol.298, p.475, 2010.
DOI : 10.1152/ajprenal.00501.2009

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838608/pdf

, 031008 for details on analytical derivations and computations

, Phoenix X, vol.36, 2009.

J. Borenstein, E. Weinberg, B. Orrick, C. Sundback, M. Kaazempur-mofrad et al., Microfabrication of Three-Dimensional Engineered Scaffolds, Tissue Eng. Part A, vol.13, p.1837, 2007.
DOI : 10.1089/ten.2006.0156

J. Kim, F. Garzotto, F. Nalesso, D. Cruz, J. Kim et al., A Wearable Artificial Kidney: Technical Requirements and Potential Solutions, Expert Rev. Med. Dev, vol.8, p.567, 2011.

P. Armignaco, F. Garzotto, M. Neri, A. Lorenzin, and C. Ronco, Blood purification, vol.39, p.110, 2015.

C. Chou, M. A. Knepper, A. N. Hoek, D. Brown, B. Yang et al., Reduced Water Permeability and Altered Ultrastructure in Thin Descending Limb of Henle in Aquaporin-1 Null Mice, J. Clin. Invest, vol.103, p.491, 1999.

S. Nielsen, J. Frkiaer, D. Marples, T. H. Kwon, P. Agre et al., Aquaporins in the Kidney: From Molecules to Medicine, Physiol. Rev, vol.82, p.205, 2002.

R. Greger and E. Schlatter, Presence of Luminal k+, a Prerequisite for Active NaCl Transport in the Cortical Thick Ascending Limb of Henle's Loop of Rabbit Kidney, Pflügers Arch, vol.392, p.92, 1981.

J. A. Jacquez, D. Foster, and E. Daniels, Solute Concentration in the Kidney-I. A Model of the Renal Medulla and Its Limit Cases, Math. Biosci, vol.32, p.307, 1976.

J. Stephenson, Concentration Engines and the Kidney: I. Central Core Model of the Renal Medulla, Biophys. J, vol.13, p.512, 1973.

J. Stephenson, Concentration Engines and the Kidney: II. Multisolute Central Core Systems, Biophys. J, vol.13, p.546, 1973.

J. Stephenson, Concentration Engines and the Kidney: III. Canonical Mass Balance Equation for Multinephron Models of the Renal Medulla, Biophys. J, vol.16, p.1273, 1976.

J. Stephenson, R. Tewarson, and R. Mejia, Quantitative Analysis of Mass and Energy Balance in Non-ideal Models of the Renal Counterflow System, Proc. Natl. Acad. Sci. U.S.A, vol.71, p.1618, 1974.

J. Stephenson, Models of the Urinary Concentrating Mechanism, Kidney international, vol.31, p.648, 1987.

A. Finkelstein, Water Movement through Lipid Bilayers, Pores, and Plasma Membranes, 1987.

R. Greger and E. Schlatter, Properties of the Basolateral Membrane of the Cortical Thick Ascending Limb of Henle's Loop of Rabbit Kidney, Pflügers Arch, vol.396, p.325, 1983.

B. Yang and J. M. Sands, Urea Transporters, 2014.

R. P. Garay and P. J. Garrahan, The Interaction of Sodium and Potassium with the Sodium Pump in Red Cells, J. Physiol, vol.231, p.297, 1973.

M. A. Knepper, R. A. Danielson, G. M. Saidel, and R. S. Post, Quantitative Analysis of Renal Medullary Anatomy in Rats and Rabbits, Kidney international, vol.12, p.313, 1977.

H. Koepsell, W. Kriz, and J. Schnermann, Pattern of Luminal Diameter Changes along the Descending and Ascending Thin Limbs of the Loop of Henle in the Inner Medullary Zone of the Rat Kidney, Z. Anat. Entwickl.Gesch, vol.138, p.321, 1972.

J. Newburgh, The Changes which Alter Renal Osmotic Work, J. Clin. Invest, vol.22, p.439, 1943.

A. Layton, Mathematical Modeling of Kidney Transport, Wiley Interdiscip. Rev.: Syst. Biol. Med, vol.5, p.557, 2013.

B. Hargitay and W. Kuhn, The Multiplication Principle as the Basis for Concentrating Urine in the Kidney, J. Am. Soc. Nephrol, vol.12, p.539, 1951.

A. Osmotic and E. For-efficient-?, PHYS. REV. X, vol.6, p.31008, 2016.

S. Hervy and S. Thomas, Inner Medullary Lactate Production and Urine-Concentrating Mechanism: A Flat Medullary Model, Am. J. Physiol. Renal Physiol, vol.284, p.65, 2003.

B. Alberts, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 2002.

J. W. Post, J. Veerman, H. V. Hamelers, G. J. Euverink, S. J. Metz et al., Salinity-Gradient Power: Evaluation of Pressure-Retarded Osmosis and Reverse Electrodialysis, J. Membr. Sci, vol.288, p.218, 2007.

B. B. Sales, M. Saakes, J. W. Post, C. J. Buisman, P. M. Biesheuvel et al., Direct Power Production from a Water Salinity Difference in a MembraneModified Supercapacitor Flow Cell, vol.44, p.5661, 2010.

J. Jong, R. G. Lammerink, and M. Wessling, Membranes and Microfluidics: A Review, vol.6, p.1125, 2006.

W. H. Fissell, H. D. Humes, A. J. Fleischman, and S. Roy, Dialysis and Nanotechnology: Now, 10 Years, or Never?, Blood purification, vol.25, p.12, 2007.

R. Semiat, Energy Issues in Desalination Processes, Environ. Sci. Technol, vol.42, p.8193, 2008.

C. Fritzmann, J. Löwenberg, T. Wintgens, and T. Melin, State-of-the-Art Reverse Osmosis Desalination, Desalination, vol.216, p.1, 2007.

R. K. Nagarale, G. S. Gohil, and V. K. Shahi, Recent Developments on On-Exchange Membranes and Electromembrane Processes, Adv. Colloid Interface Sci, vol.119, p.97, 2006.

J. Li, M. Zhou, J. Lin, W. -y.-ye, Y. Xu et al., Mono-valent Cation Selective Membranes for Electrodialysis by Introducing Polyquaternium-7 in a Commercial Cation Exchange Membrane, J. Membr. Sci, vol.486, p.89, 2015.

S. C. O'hern, M. S. Boutilier, J. Idrobo, Y. Song, J. Kong et al., Selective Ionic Transport through Tunable Subnanometer Pores in SingleLayer Graphene Membranes, vol.14, p.1234, 2014.

A. Siria, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, vol.494, pp.455-458, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00959984

J. Geng, Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes, Nature, vol.514, pp.612-615, 2014.

S. Guo, E. R. Meshot, T. Kuykendall, S. Cabrini, and F. Fornasiero, Nanofluidic transport through isolated carbon nanotube channels: advances, controversies, and challenges, Adv. Mater, vol.27, pp.5726-5737, 2015.

M. Whitby and N. Quirke, Fluid flow in carbon nanotubes and nanopipes, Nat. Nanotechnol, vol.2, pp.87-94, 2007.
DOI : 10.1038/nnano.2006.175

L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev, vol.39, pp.1073-1095, 2010.
DOI : 10.1039/b909366b

C. Y. Lee, W. Choi, J. Han, and M. S. Strano, Coherence resonance in a single-walled carbon nanotube ion channel, Science, vol.329, pp.1320-1324, 2010.
DOI : 10.1126/science.1193383

E. Secchi, A. Niguès, L. Jubin, A. Siria, and L. Bocquet, Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes, Phys. Rev. Lett, vol.116, p.154501, 2016.
DOI : 10.1103/physrevlett.116.154501

URL : http://europepmc.org/articles/pmc4984977?pdf=render

X. Qin, Q. Yuan, Y. Zhao, S. Xie, and Z. Liu, Measurement of the rate of water translocation through carbon nanotubes, Nano Lett, vol.11, pp.2173-2177, 2011.

U. Lorenz and A. Zewail, Observing liquid flow in nanotubes by 4D electron microscopy, Science, vol.344, pp.1496-1500, 2014.
DOI : 10.1126/science.1253618

URL : https://authors.library.caltech.edu/46394/1/Lorenz.SM.pdf

N. Laohakunakorn, A Landau-Squire nanojet, Nano Lett, vol.13, pp.5141-5146, 2013.
DOI : 10.1021/nl402350a

URL : http://europepmc.org/articles/pmc3897716?pdf=render

J. Eggers and E. Villermaux, Physics of liquid jets, Rep. Prog. Phys, vol.71, p.36601, 2008.
DOI : 10.1088/0034-4885/71/3/036601

URL : https://hal.archives-ouvertes.fr/hal-00098347

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, vol.6, pp.81-83, 1959.

H. B. Squire, The round laminar jet, Q. J. Mech. Appl. Math, vol.4, pp.321-329, 1951.

J. A. Thomas and A. J. Mcgaughey, Reassessing fast water transport through carbon nanotubes, Nano Lett, vol.8, pp.2788-2793, 2008.

K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction, Nano Lett, vol.10, pp.4067-4073, 2010.

R. A. Sampson, On Stokes's current function, Phil. Trans. R. Soc. A, vol.182, pp.449-518, 1891.

D. Mattia, H. Leese, and K. P. Lee, Carbon nanotube membranes: from flow enhancement to permeability, J. Membr. Sci, vol.475, pp.266-272, 2015.

A. Maali, T. Cohen-bouhacina, and H. Kellay, Measurement of the slip length of water flow on graphite surface, Appl. Phys. Lett, vol.92, p.53101, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00762539

M. E. Suk, A. V. Raghunathan, and N. R. Aluru, Fast reverse osmosis using boron nitride and carbon nanotubes, Appl. Phys. Lett, vol.92, p.133120, 2008.

T. A. Hilder, D. Gordon, and S. Chung, Salt rejection and water transport through boron nitride nanotubes, Small, vol.5, pp.2183-2190, 2009.

G. Tocci, L. Joly, and A. Michaelides, Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures, Nano Lett, vol.14, pp.6872-6877, 2014.

, Supplementary Information is available in the online version of the paper. pipe flows and their relation to sugar transport in plants, J. Fluid Mech, vol.636, pp.371-396, 2009.

O. Kedem and A. Katchalsky, A physical interpretation of the phenomenological coefficients of membrane permeability, J. Gen. Physiol, vol.45, pp.143-179, 1961.

B. E. Logan and M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature, vol.488, pp.313-319, 2012.
DOI : 10.1038/nature11477

A. Siria, P. Poncharal, A. Biance, R. Fulcrand, X. Blase et al., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, vol.494, pp.455-458, 2013.
DOI : 10.1038/nature11876

URL : https://hal.archives-ouvertes.fr/hal-00959984

J. R. Werber, C. O. Osuji, and M. Elimelech, Materials for next-generation desalination and water purification membranes, Nat. Rev. Mater, vol.1, p.16018, 2016.
DOI : 10.1038/natrevmats.2016.18

J. W. Gibbs, Semi-permeable films and osmotic pressure, Nature, vol.55, pp.461-462, 1897.

E. A. Guggenheim, Thermodynamics: An Advanced Treatment for Chemists and Physicists, 1985.
DOI : 10.1063/1.3060168

I. M. Klotz and R. M. Rosenberg, Chemical Thermodynamics Basic Concepts and Methods, 2008.

J. L. Talen and A. J. Staverman, Osmometry with membranes permeable to solvent and solute, Trans. Faraday Soc, vol.61, pp.2800-2804, 1965.
DOI : 10.1039/tf9656102794

URL : http://publications.tno.nl/publication/34619958/gOhvGD/talen-1965-osmometry.pdf

C. Lee, C. Cottin-bizonne, A. Biance, P. Joseph, L. Bocquet et al., Osmotic flow through fully permeable nanochannels, Phys. Rev. Lett, vol.112, p.244501, 2014.
DOI : 10.1103/physrevlett.112.244501

URL : https://hal.archives-ouvertes.fr/hal-01628783

C. Lee, C. Cottin-bizonne, R. Fulcrand, L. Joly, and C. Ybert, Nanoscale dynamics versus surface interactions: What dictates osmotic transport?, J. Phys. Chem. Lett, vol.8, pp.478-483, 2017.
DOI : 10.1021/acs.jpclett.6b02753

URL : https://hal.archives-ouvertes.fr/hal-01628790

G. S. Manning, Binary diffusion and bulk flow through a potential-energy profile: A kinetic basis for the thermodynamic equations of flow through membranes, J. Chem. Phys, vol.49, pp.2668-2675, 1968.

A. Ajdari and L. Bocquet, Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-osmosis and beyond, Phys. Rev. Lett, vol.96, p.186102, 2006.
DOI : 10.1103/physrevlett.96.186102

URL : http://arxiv.org/pdf/cond-mat/0605512

O. Kedem and A. Katchalsky, Permeability of composite membranes. Part 1.-Electric current, volume flow and flow of solute through membranes, Trans. Faraday Soc, vol.59, pp.1941-1953, 1918.

J. L. Anderson and D. M. Malone, Mechanism of osmotic flow in porous membranes, Biophys. J, vol.14, p.957, 1974.

B. Abécassis, C. Cottin-bizonne, C. Ybert, A. Ajdari, and L. Bocquet, Boosting migration of large particles by solute contrasts, Nat. Mater, vol.7, pp.785-789, 2008.

V. Yadav, H. Zhang, R. Pavlick, and A. Sen, Triggered 'on/off' micropumps and colloidal photodiode, J. Am. Chem. Soc, vol.134, pp.15688-15691, 2012.
DOI : 10.1021/ja307270d

S. Shin, E. Um, B. Sabass, J. T. Ault, M. Rahimi et al., Size-dependent control of colloid transport via solute gradients in dead-end channels, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.257-261, 2016.

N. Shi, R. Nery-azevedo, A. I. Abdel-fattah, and T. M. Squires, Diffusiophoretic focusing of suspended colloids, Phys. Rev. Lett, vol.117, p.258001, 2016.
DOI : 10.1103/physrevlett.117.258001

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.117.258001

P. Debye, Equilibrium and sedimentation of uncharged particles in inhomogeneous electric fields, Ion Transport Across Membranes, pp.273-285, 1954.

E. Grim and K. Sollner, The contributions of normal and anomalous osmosis to the osmotic effects arising across charged membranes with solutions of electrolytes, J. Gen. Physiol, vol.40, pp.887-899, 1957.

C. B. Picallo, S. Gravelle, L. Joly, E. Charlaix, and L. Bocquet, Nanofluidic osmotic diodes: Theory and molecular dynamics simulations, Phys. Rev. Lett, vol.111, p.244501, 2013.
DOI : 10.1103/physrevlett.111.244501

URL : https://hal.archives-ouvertes.fr/hal-01087699

J. Barrat and J. Hansen, Basic Concepts for Simple and Complex Liquids, 2003.

J. R. Pappenheimer, Passage of molecules through capillary walls, Physiol. Rev, vol.33, pp.387-423, 1953.

E. Ruckenstein, Can phoretic motions be treated as interfacial tension gradient driven phenomena?, J. Colloid Interface Sci, vol.83, pp.77-81, 1981.

J. L. Anderson, Colloid transport by interfacial forces, Annu. Rev. Fluid Mech, vol.21, pp.61-99, 1989.

H. Yoshida, S. Marbach, and L. Bocquet, Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamic simulations, J. Chem. Phys, vol.146, p.194702, 2017.

O. Kedem and A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta, vol.27, pp.229-246, 1958.

S. S. Sablani, M. F. Goosen, R. Al-belushi, and M. Wilf, Concentration polarization in ultrafiltration and reverse osmosis: A critical review, Desalination, vol.141, pp.269-289, 2001.

B. Abécassis, C. Cottin-bizonne, C. Ybert, A. Ajdari, and L. Bocquet, Boosting migration of large particles by solute contrasts, Nat. Mater, vol.7, pp.785-789, 2008.

V. Yadav, H. Zhang, R. Pavlick, and A. Sen, Triggered 'on/off' micropumps and colloidal photodiode, J. Am. Chem. Soc, vol.134, pp.15688-15691, 2012.

C. Lee, C. Cottin-bizonne, A. Biance, P. Joseph, L. Bocquet et al., Osmotic flow through fully permeable nanochannels, Phys. Rev. Lett, vol.112, p.244501, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01628783

Y. Shen, P. O. Saboe, I. T. Sines, M. Erbakan, and M. Kumar, Biomimetic membranes: A review, J. Membr. Sci, vol.454, pp.359-381, 2014.

S. Shin, E. Um, B. Sabass, J. T. Ault, M. Rahimi et al.,

A. Stone, Size-dependent control of colloid transport via solute gradients in dead-end channels, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.257-261, 2016.

M. Yoshida and J. Bocquet, Chem. Phys, vol.146, p.194702, 2017.

S. Marbach and L. Bocquet, Active osmotic exchanger for efficient nanofiltration inspired by the kidney, Phys. Rev. X, vol.6, p.31008, 2016.

C. Lee, C. Cottin-bizonne, R. Fulcrand, L. Joly, and C. Ybert, Nanoscale dynamics versus surface interactions: What dictates osmotic transport?, J. Phys. Chem. Lett, vol.8, pp.478-483, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01628790

A. Siria, P. Poncharal, A. Biance, R. Fulcrand, X. Blase et al., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, vol.494, pp.455-458, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00959984

W. J. Van-egmond, M. Saakes, S. Porada, T. Meuwissen, C. J. Buisman et al., The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation, J. Power Sources, vol.325, pp.129-139, 2016.

O. Kedem and A. Katchalsky, A physical interpretation of the phenomenological coefficients of membrane permeability, J. Gen. Physiol, vol.45, pp.143-179, 1961.

A. Katchalsky and O. Kedem, Thermodynamics of flow processes in biological systems, Biophys. J, vol.2, pp.53-78, 1962.

K. S. Spiegler and O. Kedem, Thermodynamics of hyperfiltration (reverse osmosis): Criteria for efficient membranes, Desalination, vol.1, pp.311-326, 1966.

G. S. Manning, Binary diffusion and bulk flow through a potential-energy profile: A kinetic basis for the thermodynamic equations of flow through membranes, J. Chem. Phys, vol.49, pp.2668-2675, 1968.

S. Marbach, H. Yoshida, and L. Bocquet, Osmotic and diffusio-osmotic flow generation at high solute concentration. I. Mechanical approaches, J. Chem. Phys, vol.146, p.194701, 2017.

L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev, vol.39, pp.1073-1095, 2010.

J. L. Anderson, M. E. Lowell, and D. C. Prieve, Motion of a particle generated by chemical gradients Part 1. Non-electrolytes, J. Fluid Mech, vol.117, pp.107-121, 1982.

J. L. Anderson, Colloid transport by interfacial forces, Annu. Rev. Fluid Mech, vol.21, pp.61-99, 1989.

J. L. Talen and A. J. Staverman, Osmometry with membranes permeable to solvent and solute, Trans. Faraday Soc, vol.61, pp.2800-2804, 1965.

J. L. Anderson and D. M. Malone, Mechanism of osmotic flow in porous membranes, Biophys. J, vol.14, p.957, 1974.

T. W. Lion and R. J. Allen, Osmosis in a minimal model system, J. Chem. Phys, vol.137, p.244911, 2012.

J. N. Israelachvili, Intermolecular and Surface Forces, 2011.

A. Ajdari and L. Bocquet, Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-osmosis and beyond, Phys. Rev. Lett, vol.96, p.186102, 2006.

H. Yoshida, H. Mizuno, T. Kinjo, H. Washizu, and J. Barrat, Molecular dynamics simulation of electrokinetic flow of an aqueous electrolyte solution in nanochannels, J. Chem. Phys, vol.140, p.214701, 2014.

R. Ganti, Y. Liu, and D. Frenkel, Molecular simulation of thermo-osmotic slip, 2017.

D. K. Bhattacharya and G. C. Lie, Molecular-dynamics simulations of nonequilibrium heat and momentum transport in very dilute gases, Phys. Rev. Lett, vol.62, p.897, 1989.

B. D. Todd and D. J. Evans, Temperature profile for Poiseuille flow, Phys. Rev. E, vol.55, p.2800, 1997.

J. Barrat and L. Bocquet, Large slip effect at a nonwetting fluid-solid interface, Phys. Rev. Lett, vol.82, p.4671, 1999.

H. Yoshida and L. Bocquet, Labyrinthine water flow across multilayer graphene-based membranes: Molecular dynamics versus continuum predictions, J. Chem. Phys, vol.144, p.234701, 2016.

H. Yoshida, H. Mizuno, T. Kinjo, H. Washizu, and J. Barrat, Generic transport coefficients of a confined electrolyte solution, Phys. Rev. E, vol.90, p.52113, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01067859

J. L. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys, vol.123, p.234505, 2005.

W. L. Jorgensen, J. D. Madura, and C. J. Swenson, Optimized intermolecular potential functions for liquid hydrocarbons, J. Am. Chem. Soc, vol.106, pp.6638-6646, 1984.

W. L. Jorgensen, Optimized intermolecular potential functions for liquid alcohols, J. Phys. Chem, vol.90, pp.1276-1284, 1986.
DOI : 10.1021/j100398a015

S. H. Lee and P. J. Rossky, A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces-A molecular dynamics simulation study, J. Chem. Phys, vol.100, pp.3334-3345, 1994.

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc, vol.117, pp.5179-5197, 1995.

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, 1989.

K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, Ultralow liquid/solid friction in carbon nanotubes: Comprehensive theory for alcohols, alkanes, OMCTS, and water, Langmuir, vol.28, pp.14261-14272, 2012.
DOI : 10.1021/la3029403

B. References, L. Tabeling, and E. , Physics and technological aspects of nanofluidics, Lab on a Chip, vol.14, pp.3143-3158, 2014.

B. , D. Deamer, D. W. Marziali, A. Bayley, H. Benner et al., The potential and challenges of nanopore sequencing, Nat. Biotechnol, vol.26, pp.1146-1153, 2008.

C. , C. T. Jacobson, S. C. Ramsey, and J. M. , Diffusion coefficient measurements in microfluidic devices, Talanta, vol.56, issue.2, pp.365-373, 2002.

F. , J. Graf, M. Liu, K. Ovchinnikov, D. Dumcenco et al., Single-layer MoS 2 nanopores as nanopower generators, Nature, vol.536, pp.197-200, 2016.

G. , J. Kim, K. Zhang, J. Escalada, A. Tunuguntla et al., Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes, Nature, vol.514, issue.7524, pp.612-615, 2014.

S. Marbach and L. Bocquet, 154701 (2017) technology, and the environment, J. Chem. Phys, vol.147, pp.712-717, 2011.

L. Bocquet and P. Tabeling, Physics and technological aspects of nanofluidics, Lab Chip, vol.14, pp.3143-3158, 2014.
DOI : 10.1039/c4lc00325j

J. Werber, C. Osuji, and M. Elimelech, Materials for next-generation desalination and water purification membranes, Nat. Rev. Mater, vol.1, p.16018, 2016.
DOI : 10.1038/natrevmats.2016.18

S. Y. Noskov, S. Berneche, and B. Roux, Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands, Nature, vol.431, pp.830-834, 2004.

T. Humplik, J. Lee, S. C. O'hern, B. A. Fellman, M. A. Baig et al., Nanostructured materials for water desalination, Nanotechnology, vol.22, p.292001, 2011.
DOI : 10.1088/0957-4484/22/29/292001

J. Lee, T. Laoui, and R. Karnik, Nanofluidic transport governed by the liquid/vapour interface, Nat. Nanotechnol, vol.9, pp.317-323, 2014.
DOI : 10.1038/nnano.2014.28

URL : http://dspace.mit.edu/bitstream/1721.1/99474/1/2014-%20Lee%20-%20Nanofluidic%20Transport%20Governed%20by%20the%20Liquid-Vapour%20Interface.pdf

J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin et al., Fast mass transport through sub-2-nanometer carbon nano-tubes, Science, vol.312, p.1034, 2006.
DOI : 10.1126/science.1126298

R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su et al., Precise and ultrafast molecular sieving through graphene oxide membranes, Science, vol.343, pp.752-754, 2014.
DOI : 10.1126/science.1245711

URL : http://arxiv.org/pdf/1401.3134

A. Siria, P. Poncharal, A. Biance, R. Fulcrand, X. Blase et al., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, vol.494, pp.455-458, 2013.
DOI : 10.1038/nature11876

URL : https://hal.archives-ouvertes.fr/hal-00959984

Z. Siwy and A. Fuli´nskifuli´nski, Fabrication of a synthetic nanopore ion pump, Phys. Rev. Lett, vol.89, p.198103, 2002.
DOI : 10.1103/physrevlett.89.198103

C. B. Picallo, S. Gravelle, L. Joly, E. Charlaix, and L. Bocquet, Nanofluidic osmotic diodes: Theory and molecular dynamics simulations, Phys. Rev. Lett, vol.111, p.244501, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01087699

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco et al., Single-layer MoS 2 nanopores as nanopower generators, Nature, vol.536, p.197, 2016.

R. Greger and E. Schlatter, Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney, Pfluegers Arch. Eur. J. Physiol, vol.396, pp.325-334, 1983.

L. Szilard, Uber die entropieverminderung in einem thermodynamischen system bein eingriffen intelligenter wesen, Z. Phys, vol.53, pp.840-856, 1929.

B. Tavakol, M. Bozlar, C. Punckt, G. Froehlicher, H. A. Stone et al., Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps, Soft Matter, vol.10, pp.4789-4794, 2014.

S. Marbach and L. Bocquet, J. Chem. Phys, vol.147, p.154701, 2017.

J. Koski, V. Maisi, J. Pekola, and D. Averin, Experimental realization of a Szilard engine with a single electron, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.13786-13789, 2014.

Y. Jun, M. Gavrilov, and J. Bechhoefer, High-precision test of Landauer's principle in a feedback trap, Phys. Rev. Lett, vol.113, p.190601, 2014.

R. Zwanzig, Rate processes with dynamical disorder, Acc. Chem. Res, vol.23, pp.148-152, 1990.

R. Zwanzig, Dynamical disorder: Passage through a fluctuating bottleneck, J. Chem. Phys, vol.97, pp.3587-3589, 1992.

E. Secchi, A. Nigù-es, L. Jubin, A. Siria, and L. Bocquet, Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes, Phys. Rev. Lett, vol.116, p.154501, 2016.

D. Beece, L. Eisenstein, H. Frauenfelder, D. Good, M. Marden et al., Solvent viscosity and protein dynamics, Biochemistry, vol.19, pp.5147-5157, 1980.

D. R. Lide, CRC Handbook of Chemistry and Physics, vol.85, 2004.

N. Eizenberg and J. Klafter, Molecular motion under stochastic gating, Chem. Phys. Lett, vol.243, pp.9-14, 1995.

D. Fu, W. Zhang, and R. Xiong, The first metal-organic framework (MOF) of imazethapyr and its SHG, piezoelectric and ferroelectric properties, Dalton Trans, pp.3946-3948, 2008.

A. U. Ortiz, A. Boutin, K. J. Gagnon, A. Clearfield, and F. Coudert, Remarkable pressure responses of metal-organic frameworks: Proton transfer and linker coiling in zinc alkyl gates, J. Am. Chem. Soc, vol.136, pp.11540-11545, 2014.

O. Kedem and A. Katchalsky, Permeability of composite membranes, Trans. Faraday Soc, vol.59, pp.1918-1953, 1963.

L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev, vol.39, pp.1073-1095, 2010.

W. Richard and . Baker, Membrane technology and applications, Membrane Technology, 2004.

A. Lee, W. Jeffrey, . Elam, . Seth, and . Darling, Membrane materials for water purification: design, development, and application, Environmental Science: Water Research & Technology, vol.2, issue.1, pp.17-42, 2016.

. Christopher-dickenson, Filters and filtration handbook, 1997.

. Jay-r-werber, O. Chinedum, M. Osuji, and . Elimelech, Materials for next-generation desalination and water purification membranes, Nature Reviews Materials, vol.1, issue.5, p.16018, 2016.

L. Tlfi and L. Trésor-de, Langue Française informatisé, pp.1971-1994

, Thesaurus dictionnary, 2018.

A. Ernout and A. Meillet, Dictionnaire étymologique de la langue latine, 1951.

D. Brinkley, History of the United States, 1998.

. Bernard-de-montfaucon, Antiquity Explained, and Represented in Sculptures, 1722.

I. Spencer-hornse, A history of Beer and Brewing, 2003.

J. Robert and . Forbes, A short history of the art of distillation: from the beginnings up to the death of Cellier Blumenthal, 1970.

S. Kenneth, G. Sutherland, and . Chase, Filters and filtration handbook, 2011.

D. Geoffrey-m-geise and . Freeman, Fundamental water and salt transport properties of polymeric materials, Progress in Polymer Science, vol.39, issue.1, pp.1-42, 2014.

P. Sheeler, . Donald, and . Bianchi, Cell and molecular biology, 1987.

E. Kaare-h-jensen, R. Rio, C. Hansen, T. Clanet, and . Bohr, Osmotically driven pipe flows and their relation to sugar transport in plants, Journal of Fluid Mechanics, vol.636, pp.371-396, 2009.

O. Kedem and . Katchalsky, A physical interpretation of the phenomenological coefficients of membrane permeability, The Journal of general physiology, vol.45, issue.1, pp.143-179, 1961.

M. Bruce-e-logan and . Elimelech, Membrane-based processes for sustainable power generation using water, Nature, vol.488, issue.7411, p.313, 2012.

A. Siria, P. Poncharal, A. Biance, R. Fulcrand, X. Blase et al., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, vol.494, issue.7438, p.455, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00959984

J. Van't-hoff, Etudes de dynamique chimique, vol.1, 1884.

. Jacobus-h-van't-hoff, Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen, vol.1, pp.481-508, 1887.

J. Gibbs, Semi-permeable films and osmotic pressure, Nature, vol.55, p.461, 1429.

A. Edward and . Guggenheim, Thermodynamics-an advanced treatment for chemists and physicists, vol.414, p.p, 1985.

. Irving-myron-klotz, M. Robert, and . Rosenberg, Chemical thermodynamics: basic concepts and methods, 2008.

W. Pfeffer, Osmotische untersuchungen: studien zur zellmechanik, 1877.

J. B. Dandeno, Osmotic Theories, with Special Reference to Van't Hoff's Law, Bulletin of the Torrey Botanical Club, vol.36, issue.6, pp.283-298, 1909.

M. M. Meyer and . Hoff, Sur la pression osmotique, Recueil des Travaux Chimiques des Pays-Bas, vol.9, issue.7, pp.157-161, 1890.

S. Sourirajan, Sea Water Demineralization by the "Surface Skimming" Process, pp.58-65, 1958.

. Samuel-terrill-yuster, K. Sourirajan, and . Bernstein, Sea Water Demineralization by the" surface Skimming" Process, vol.58, 1958.

S. Loeb, The loeb-sourirajan membrane: How it came about, 1981.

S. Loeb and . Srinivasa-sourirajan, Sea water demineralization by means of an osmotic membrane, 1962.

M. Marroquin, T. Bruce, J. Pellegrino, . Wickramasinghe, and . Scott-m-husson, Characterization of asymmetry in microporous membranes by cross-sectional confocal laser scanning microscopy, Journal of membrane science, vol.379, issue.1-2, pp.504-515, 2011.

S. Seetha, . Manickam, and . Jeffrey-r-mccutcheon, Understanding mass transfer through asymmetric membranes during forward osmosis: A historical perspective and critical review on measuring structural parameter with semi-empirical models and characterization approaches, Desalination, vol.421, pp.110-126, 2017.

T. Matsuura, Progress in membrane science and technology for seawater desalination-a review, Desalination, vol.134, issue.1-3, pp.47-54, 2001.

M. Ulbricht, Advanced functional polymer membranes, Polymer, vol.47, issue.7, pp.2217-2262, 2006.

Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, . Xavier-cordobes et al., A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research, Applied energy, vol.88, issue.4, pp.981-1007, 2011.

Y. Chun, D. Mulcahy, L. Zou, . In, and . Kim, A short review of membrane fouling in forward osmosis processes, Membranes, vol.7, issue.2, p.30, 2017.

, World Health Organization, Progress on sanitation and drinking water: 2015 update and MDG assessment, World Health Organization, 2015.

. Kelvin-b-gregory, D. Radisav, . Vidic, A. David, and . Dzombak, Water management challenges associated with the production of shale gas by hydraulic fracturing, Elements, vol.7, issue.3, pp.181-186, 2011.

D. Radisav, S. L. Vidic, J. M. Brantley, D. Vandenbossche, . Yoxtheimer et al., Impact of shale gas development on regional water quality, Science, vol.340, issue.6134, p.1235009, 2013.

L. Devin, L. Shaffer, M. Chavez, S. Ben-sasson, and . Romero-vargas-castrillón, Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions, Ngai Yin Yip et Menachem Elimelech, vol.47, issue.17, pp.9569-9583, 2013.

C. Viviani, J. Onishi, and . Caballero, Zero-liquid discharge desalination of hypersaline shale gas wastewater: Challenges and future directions, Euro-Mediterranean Conference for Environmental Integration, pp.65-67, 2017.

C. Viviani, A. Onishi, J. A. Carrero-parreno, E. Reyes-labarta, and . Caballero, Desalination of shale gas produced water: A rigorous design approach for zero-liquid discharge evaporation systems, Journal of Cleaner Production, vol.140, pp.1399-1414, 2017.

, Dossier scientifique: l'eau

. Arjen-y-hoekstra-et-mesfin-m-mekonnen, The water footprint of humanity, Proceedings of the national academy of sciences, vol.109, pp.3232-3237, 2012.

J. D. Birkett, The history of desalination before large-scale use, encyclopedia of desalination and water resources (desware, 2012.

L. Henthorne, Desalination-a critical element of water solutions for the 21st century, The International Desalination Association, 2009.

R. Semiat, Energy issues in desalination processes, Environmental science & technology, vol.42, issue.22, pp.8193-8201, 2008.

E. Matthew, T. F. Suss, W. L. Baumann, C. M. Bourcier, . Spadaccini et al., Capacitive desalination with flow-through electrodes, Energy & Environmental Science, vol.5, issue.11, pp.9511-9519, 2012.

Y. Oren, Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review), Desalination, vol.228, issue.1-3, pp.10-29, 2008.

A. L. Marc-a-anderson, J. Cudero, and . Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?, Electrochimica Acta, vol.55, issue.12, pp.3845-3856, 2010.

I. and E. Hammurabi-ruelas-ramírez, Desalination of sea water with aquatic lily (Eichhornia crassipes), Environmental Science and Pollution Research, vol.24, issue.33, pp.25676-25681, 2017.

A. Jaime-m-amezaga, C. A. Amtmann, T. Biggs, C. J. Bond, A. Gandy et al., Biodesalination: a case study for applications of photosynthetic bacteria in water treatment, Plant physiology, vol.164, issue.4, pp.1661-1676, 2014.

K. Minas, T. Karunakaran, . Bond, . Gandy, . Honsbein et al., Biodesalination: an emerging technology for targeted removal of Na+ and Cl-from seawater by cyanobacteria, Desalination and Water Treatment, vol.55, issue.10, pp.2647-2668, 2015.

D. Deng, V. Dydek, J. Han, S. Schlumpberger, A. Mani et al., Overlimiting current and shock electrodialysis in porous media, Langmuir, vol.29, issue.52, pp.16167-16177, 2013.

J. Sung, S. H. Kim, K. Ko, and . Han, Direct seawater desalination by ion concentration polarization, Nature Nanotechnology, vol.5, issue.4, p.297, 2010.

K. Kim-choon-ng, Y. Thu, A. Kim, G. Chakraborty, and . Amy, Adsorption desalination: an emerging low-cost thermal desalination method, Desalination, vol.308, pp.161-179, 2013.

Y. Luo, W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai et al., A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Science of the Total Environment, vol.473, pp.619-641, 2014.

L. W. Stephens, R. Lindsay, M. Milne, and A. Klein, PCBs: The Next Frontier In Microconstituent Regulation-A Case Study of Municipal Wastewater Treatment, Proceedings of the Water Environment Federation, vol.2016, issue.8, pp.5423-5429, 2016.

S. Jeremy, . Guest, J. Steven, J. L. Skerlos, B. Barnard et al., A new planning and design paradigm to achieve sustainable resource recovery from wastewater, 2009.

X. Wang, L. Perry, J. Mccarty, N. Liu, D. Ren et al., Probabilistic evaluation of integrating resource recovery into wastewater treatment to improve environmental sustainability, Proceedings of the National Academy of Sciences, vol.112, issue.5, pp.1630-1635, 2015.

D. Puyol, D. J. Batstone, T. Hülsen, S. Astals, M. Peces et al., Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects, Frontiers in microbiology, vol.7, p.2106, 2017.

W. Li, H. Yu, and Z. He, Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies, Energy & Environmental Science, vol.7, issue.3, pp.911-924, 2014.

P. W. Mark-a-shannon, M. Bohn, . Elimelech, G. John, B. J. Georgiadis et al., Science and technology for water purification in the coming decades, Nature, vol.452, issue.7185, p.301, 2008.

Y. Zhou and . Richard, Evaluating the costs of desalination and water transport, Water resources research, vol.41, issue.3, 2005.

K. Gaid, Le dessalement des eaux par osmose inverse: l'expérience de Véolia Water, Desalination, vol.203, issue.1-3, pp.1-14, 2007.

M. Elimelech, . William, and . Phillip, The future of seawater desalination: energy, technology, and the environment, science, vol.333, issue.6043, pp.712-717, 2011.

, World Development Indicators | Data, data.worldbank.org (retrieved on March 2nd, 2018.

S. Shin, J. T. Ault, and P. Stone, Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis, vol.7, p.41038, 2017.

. Lloyd-m-robeson, Correlation of separation factor versus permeability for polymeric membranes, Journal of membrane science, vol.62, issue.2, pp.165-185, 1991.

A. Mehta, L. Andrew, and . Zydney, Permeability and selectivity analysis for ultrafiltration membranes, Journal of Membrane Science, vol.249, issue.1-2, pp.245-249, 2005.

O. Kedem and . Katchalsky, Permeability of composite membranes. Part 1.-Electric current, volume flow and flow of solute through membranes, Transactions of the Faraday Society, vol.59, 1918.

L. Zeman and M. Wales, Polymer solute rejection by ultrafiltration membranes, 1981.

J. Ferry, Ultrafilter membranes and ultrafiltration, Chemical Reviews, vol.18, issue.3, pp.373-455, 1936.

P. Scherr, Drag coefficients for the movement of rigid spheres through liquid-filled cylindrical pores, Biophysical journal, vol.15, issue.10, p.1087, 1975.

S. Mochizuki, L. Andrew, and . Zydney, Theoretical analysis of pore size distribution effects on membrane transport, Journal of membrane science, vol.82, issue.3, pp.211-227, 1993.

. Geoffrey-m-geise, . Ho-bum, A. C. Park, B. Sagle, and . Mcgrath, Water permeability and water/salt selectivity tradeoff in polymers for desalination, Journal of Membrane Science, vol.369, issue.1-2, pp.130-138, 2011.

C. Bellona, E. Jörg, P. Drewes, G. Xu, and . Amy, Factors affecting the rejection of organic solutes during NF/RO treatment?a literature review, Water research, vol.38, issue.12, pp.2795-2809, 2004.

K. Kimura, G. Amy, E. Jörg, T. Drewes, T. Heberer et al., Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes, Journal of membrane science, vol.227, issue.1-2, pp.113-121, 2003.

A. Jay-r-werber, M. Deshmukh, and . Elimelech, The critical need for increased selectivity, not increased water permeability, for desalination membranes, Environmental Science & Technology Letters, vol.3, issue.4, pp.112-120, 2016.

R. Singh, Production of high-purity water by membrane processes, Desalination and Water Treatment, vol.3, issue.1-3, pp.99-110, 2009.

Y. Miyashita, S. Park, H. Hyung, C. Huang, and J. Kim, Removal of N-nitrosamines and their precursors by nanofiltration and reverse osmosis membranes, Journal of Environmental Engineering, vol.135, issue.9, pp.788-795, 2009.

T. Fujioka, P. Kenneth, T. Ishida, H. Shintani, and . Kodamatani, High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors, Water research, vol.131, pp.45-51, 2018.

S. Shanmuganathan, P. Loganathan, C. Kazner, . Mah-johir, and . Saravanamuthu-vigneswaran, Submerged membrane filtration adsorption hybrid system for the removal of organic micropollutants from a water reclamation plant reverse osmosis concentrate, Desalination, vol.401, pp.134-141, 2017.

. Douglas-l-gin and . Richard-d-noble, Designing the next generation of chemical separation membranes, Science, vol.332, issue.6030, pp.674-676, 2011.

C. William-j-koros and . Zhang, Materials for next-generation molecularly selective synthetic membranes, Nature materials, vol.16, issue.3, p.289, 2017.

B. Khaled-a-mahmoud, A. Mansoor, M. Mansour, and . Khraisheh, Functional graphene nanosheets: The next generation membranes for water desalination, Desalination, vol.356, pp.208-225, 2015.

O. Sanyal, C. Zhang, S. Graham-b-wenz, N. Fu, L. Bhuwania et al., Next generation membranes?using tailored carbon, Carbon, vol.127, pp.688-698, 2018.

L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chemical Society Reviews, vol.39, issue.3, pp.1073-1095, 2010.

L. Bocquet and P. Tabeling, Physics and technological aspects of nanofluidics, Lab on a Chip, vol.14, issue.17, pp.3143-3158, 2014.

P. Agre, The aquaporin water channels, Proceedings of the American Thoracic Society, vol.3, issue.1, pp.5-13, 2006.

T. Gregory-m-preston, W. B. Carroll, P. Guggino, and . Agre, Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein, Science, vol.256, issue.5055, pp.385-387, 1992.

K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre et al., Structural determinants of water permeation through aquaporin-1, Nature, vol.407, issue.6804, p.599, 2000.

B. Roux, J. Lapointe, G. Daniel, and . Bichet, Structure de l'aquaporine 1 ou comment bloquer un bâton de relais (le proton) qui se déplace plus vite que le coureur (l'eau)?, 2001.

T. Walz, L. Barbara, . Smith, L. Mark, A. Zeidel et al., Biologically active two-dimensional crystals of aquaporin CHIP, Journal of Biological Chemistry, vol.269, issue.3, pp.1583-1586, 1994.

H. Sui, B. Han, J. K. Lee, P. Walian, K. Bing et al., Structural basis of water-specific transport through the AQP1 water channel, Nature, vol.414, issue.6866, p.872, 2001.

S. Gravelle, L. Joly, F. Detcheverry, and C. Ybert, Optimizing water permeability through the hourglass shape of aquaporins, Proceedings of the National Academy of Sciences, vol.110, issue.41, pp.16367-16372, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00873654

E. Tajkhorshid, P. Nollert, M. Ø. Jensen, J. W. Larry, J. Miercke et al., Control of the selectivity of the aquaporin water channel family by global orientational tuning, Science, vol.296, issue.5567, pp.525-530, 2002.

J. Gao, R. Szoszkiewicz, U. Landman, and E. Riedo, Structured and viscous water in subnanometer gaps, Physical Review B, vol.75, issue.11, p.115415, 2007.

E. Simona-dalla-bernardina, J. Paineau, P. Brubach, S. Judeinstein, P. Rouzière et al., Water in carbon nanotubes: the peculiar hydrogen bond network revealed by infrared spectroscopy, Journal of the American Chemical Society, vol.138, issue.33, pp.10437-10443, 2016.

S. Kumar-varoon-agrawal, . Shimizu, W. Lee, D. Drahushuk, . Kilcoyne et al., Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes, Nature nanotechnology, vol.12, issue.3, p.267, 2017.

G. Algara-siller, . Lehtinen, . Wang, . Nair, H. A. Kaiser et al., Square ice in graphene nanocapillaries, Nature, vol.519, issue.7544, p.443, 2015.

K. Koga, H. Gao, X. Tanaka, and . Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature, vol.412, issue.6849, p.802, 2001.

J. Alexander-i-kolesnikov, C. Zanotti, P. Loong, A. P. Thiyagarajan, . Moravsky et al., Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement, Physical review letters, vol.93, issue.3, p.35503, 2004.

U. Raviv, P. Laurat, and J. Klein, Fluidity of water confined to subnanometre films, Nature, vol.413, issue.6851, p.51, 2001.

E. Lauga, M. Brenner, and H. Stone, Microfluidics: the no-slip boundary condition, Springer handbook of experimental fluid mechanics, pp.1219-1240, 2007.

J. Goyon, . Colin, . Ovarlez, . Ajdari, and . Bocquet, Spatial cooperativity in soft glassy flows, vol.454, p.84, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01980476

H. Kazuko-t-mashiyama and . Mori, Origin of the Landau-Lifshitz hydrodynamic fluctuations in nonequilibrium systems and a new method for reducing the Boltzmann equation, Journal of Statistical Physics, vol.18, issue.4, pp.385-407, 1978.

F. Detcheverry and L. Bocquet, Thermal fluctuations in nanofluidic transport, Physical review letters, vol.109, issue.2, p.24501, 2012.

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco et al., Singlelayer MoS 2 nanopores as nanopower generators, Nature, vol.536, issue.7615, p.197, 2016.

J. Feng, K. Liu, R. D. Bulushev, S. Khlybov, and D. Dumcenco, Identification of single nucleotides in MoS 2 nanopores, Nature nanotechnology, vol.10, issue.12, p.1070, 2015.

S. Pagliara, L. Simon, . Dettmer, . Ulrich, and . Keyser, Channel-facilitated diffusion boosted by particle binding at the channel entrance, Physical review letters, vol.113, issue.4, p.48102, 2014.

C. Young-lee, W. Choi, J. Han, S. Michael, and . Strano, Coherence resonance in a single-walled carbon nanotube ion channel, Science, vol.329, issue.5997, pp.1320-1324, 2010.

W. Choi, Z. W. Ulissi, F. E. Steven, D. O. Shimizu, . Bellisario et al., Diameter-dependent ion transport through the interior of isolated singlewalled carbon nanotubes, Nature communications, vol.4, p.2397, 2013.

E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria et al., Massive radius-dependent flow slippage in carbon nanotubes, Nature, vol.537, issue.7619, pp.210-213, 2016.

H. Ramya, . Tunuguntla, Y. Robert, Y. Henley, T. A. Yao et al., Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins, Science, vol.357, issue.6353, pp.792-796, 2017.

P. Nednoor, G. Vasilis, N. Gavalas, . Chopra, J. Bruce et al., Carbon nanotube based biomimetic membranes: mimicking protein channels regulated by phosphorylation, Journal of Materials Chemistry, vol.17, issue.18, pp.1755-1757, 2007.

R. R. Nair, H. A. Wu, . Pn-jayaram, . Iv-grigorieva, and . Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science, vol.335, issue.6067, pp.442-444, 2012.

A. Esfandiar, . Radha, . Wang, . Yang, . Hu et al., Size effect in ion transport through angstrom-scale slits, Science, vol.358, issue.6362, pp.511-513, 2017.

M. Majumder, A. Siria, and L. Bocquet, Flows in one-dimensional and twodimensional carbon nanochannels: Fast and curious, MRS Bulletin, vol.42, issue.4, pp.278-282, 2017.

A. Siria, M. Bocquet, and L. Bocquet, New avenues for the large-scale harvesting of blue energy, Nature Reviews Chemistry, vol.1, issue.11, p.91, 2017.

A. W. Nicholas, . Bell, R. Christian, M. Engst, G. Ablay et al., DNA origami nanopores, vol.12, issue.1, pp.512-517, 2011.

M. Langecker, V. Arnaut, J. Thomas-g-martin, S. List, M. Renner et al., Synthetic lipid membrane channels formed by designed DNA nanostructures, Science, vol.338, issue.6109, pp.932-936, 2012.

K. Michael-i-walker, V. Ubych, . Saraswat, P. Edward-a-chalklen, S. Braeuningerweimer et al., Extrinsic cation selectivity of 2D membranes, ACS nano, vol.11, issue.2, pp.1340-1346, 2017.

F. Fornasiero, G. Hyung, J. K. Park, M. Holt, . Stadermann et al., Ion exclusion by sub-2-nm carbon nanotube pores, Proceedings of the National Academy of Sciences, vol.105, issue.45, pp.17250-17255, 2008.

J. Feng, K. Liu, M. Graf, D. Dumcenco, A. Kis et al., Observation of ionic Coulomb blockade in nanopores, Nature materials, vol.15, issue.8, p.850, 2016.

J. K. Holt, H. Park, Y. Wang, M. Stadermann, A. B. Artyukhin et al., Fast mass transport through sub2-nanometer carbon nanotubes, Science, vol.312, issue.5776, pp.1034-1037, 2006.

M. Majumder, N. Chopra, R. Andrews, J. Bruce, and . Hinds, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature, vol.438, issue.7064, p.44, 2005.

M. Whitby, L. Cagnon, M. Thanou, and N. Quirke, Enhanced fluid flow through nanoscale carbon pipes, Nano letters, vol.8, issue.9, pp.2632-2637, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00997664

W. Chan, E. Marand, and . Stephen-m-martin, Novel zwitterion functionalized carbon nanotube nanocomposite membranes for improved RO performance and surface anti-biofouling resistance, Journal of Membrane Science, vol.509, pp.125-137, 2016.

K. Robert-l-mcginnis, J. Reimund, L. Ren, . Xia, R. Maqsud et al., Large-scale polymeric carbon nanotube membranes with sub-1.27-nm pores, Science advances, vol.4, issue.3, p.1700938, 2018.

A. Bianciardi, C. Credi, M. Levi, F. Rosa, and A. Zecca, Biomimicry thinking: methodological improvements and practical implementation, Biomimetic and Nanobiomaterials, vol.6, issue.2, pp.87-101, 2017.

H. Bryan-d-mccloskey, H. Park, . Ju, . Brandon-w-rowe, J. Daniel et al., A bioinspired fouling-resistant surface modification for water purification membranes, Journal of membrane science, vol.413, pp.82-90, 2012.

H. Lee, M. Shara, . Dellatore, M. William, . Miller et al., Mussel-inspired surface chemistry for multifunctional coatings, science, vol.318, issue.5849, pp.426-430, 2007.

Y. Lv, H. Yang, H. Liang, and L. Xu, Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking, Journal of Membrane Science, vol.476, pp.50-58, 2015.

H. Gao, Y. Sun, J. Zhou, R. Xu, and . Hongwei-duan, Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification, ACS applied materials & interfaces, vol.5, issue.2, pp.425-432, 2013.

M. E. De-azzi and . Beyrouthy, How Emerging Technologies and Biomimicry can Help Solving Water Problems: Desert case Studies, Adv Crop Sci Tech, vol.3, p.130, 2015.

J. Guadarrama-cetina, A. Mongruel, M. Medici, E. Baquero, A. R. Parker et al., Dew condensation on desert beetle skin, The European Physical Journal E, vol.37, issue.11, p.109, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01136654

N. Vladimirovna-chevtchik, M. Fedecostante, J. Jansen, M. Mihajlovic, M. Wilmer et al., Upscaling of a living membrane for bioartificial kidney device, European journal of pharmacology, vol.790, pp.28-35, 2016.

P. Anthony, D. Davis, . Sheppard, . Bradley, and . Smith, Development of synthetic membrane transporters for anions, Chemical Society Reviews, vol.36, issue.2, pp.348-357, 2007.

K. Xiao, L. Chen, G. Xie, P. Li, X. Kong et al., Bio-Inspired Dumbbell-Shaped Nanochannel with Controllable Structure and Ionic Rectification, 2018.

J. Lee, P. Anthony, M. Straub, and . Elimelech, Vapor-gap membranes for highly selective osmotically driven desalination, Journal of Membrane Science, 2018.

J. Jiang, H. Zhang, W. He, T. Li, H. Li et al., Adhesion of Microdroplets on Water-Repellent Surfaces toward the Prevention of Surface Fouling and Pathogen Spreading by Respiratory Droplets, ACS applied materials & interfaces, vol.9, issue.7, pp.6599-6608, 2017.

H. Chen, . Hao-ran, X. Liu, H. Lu, and . Ding, Entrapping an impacting particle at a liquid-gas interface, Journal of Fluid Mechanics, vol.841, pp.1073-1084, 2018.

M. Fouet, M. Mader, S. Iraïn, Z. Yanha, A. Naillon et al., Filter-less submicron hydrodynamic size sorting, Lab on a Chip, vol.16, issue.4, pp.720-733, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01222327

G. Destgeer, K. H. Lee, and J. H. Jung, Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW), Anas Alazzam et Hyung Jin Sung, vol.13, pp.4210-4216, 2013.

A. Fakhfouri, C. Devendran, J. David, Y. Collins, A. Ai et al., Virtual membrane for filtration of particles using surface acoustic waves (SAW), Lab on a Chip, vol.16, issue.18, pp.3515-3523, 2016.

J. A. Mccammon, Protein dynamics, Reports on Progress in Physics, vol.47, issue.1, p.1, 1984.

P. Mukherjee, I. Kass, and . Isaiah-t-arkin-et-martin-t-zanni, Picosecond dynamics of a membrane protein revealed by 2D IR, Proceedings of the National Academy of Sciences of the United States of America, vol.103, issue.10, pp.3528-3533, 2006.

K. Henzler-wildman and D. Kern, Dynamic personalities of proteins, Nature, vol.450, issue.7172, pp.964-972, 2007.

A. Wand, Dynamic activation of protein function: a view emerging from NMR spectroscopy, Nature Structural & Molecular Biology, vol.8, issue.11, pp.926-931, 2001.

S. Y. Noskov, S. Berneche, and . Benoît-roux, Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands, Nature, vol.431, issue.7010, pp.830-834, 2004.

G. Bhabha, J. Lee, C. Damian, J. Ekiert, . Gam et al., A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis, Science, vol.332, issue.6026, pp.234-238, 2011.

G. Wei, W. Xi, R. Nussinov, and B. Ma, Protein ensembles: how does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell, Chemical reviews, vol.116, issue.11, pp.6516-6551, 2016.

S. Toby-w-allen, . Kuyucak, and C. Shin-ho, Molecular dynamics study of the KcsA potassium channel, Biophysical journal, vol.77, issue.5, pp.2502-2516, 1999.

H. Orr, V. I. Shapiro, M. Fernandez, J. S. Garren, . Guasto et al., Vortical ciliary flows actively enhance mass transport in reef corals, Proceedings of the National Academy of Sciences, vol.111, issue.37, pp.13391-13396, 2014.

S. Klaus-f-rinne, D. Gekle, J. Bonthuis, and . Roland-r-netz, Nanoscale pumping of water by AC electric fields, Nano letters, vol.12, issue.4, pp.1780-1783, 2012.

J. Geng, K. Kim, J. Zhang, A. Escalada, R. Tunuguntla et al., Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes, Nature, vol.514, issue.7524, p.612, 2014.

G. Hummer, C. Jayendran, . Rasaiah, P. Jerzy, and . Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature, vol.414, issue.6860, p.188, 2001.

P. Hyung-gyu and Y. Jung, Carbon nanofluidics of rapid water transport for energy applications, Chemical Society Reviews, vol.43, issue.2, pp.565-576, 2014.

S. Guo, E. R. Meshot, T. Kuykendall, S. Cabrini, and F. Fornasiero, Nanofluidic transport through isolated carbon nanotube channels: Advances, controversies, and challenges, Advanced Materials, vol.27, issue.38, pp.5726-5737, 2015.

A. Maali, T. Cohen-bouhacina, and H. Kellay, Measurement of the slip length of water flow on graphite surface, Applied Physics Letters, vol.92, issue.5, p.53101, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00762539

R. K. Joshi, P. Carbone, F. Wang, G. Vasyl, Y. Kravets et al., Precise and ultrafast molecular sieving through graphene oxide membranes, science, vol.343, issue.6172, pp.752-754, 2014.

S. Joseph, Why are carbon nanotubes fast transporters of water?, Nano letters, vol.8, issue.2, pp.452-458, 2008.
DOI : 10.1021/nl072385q

URL : https://www.fisica.uniroma2.it/~marsili/Grafene/Nanostructures/joseph08_nanotube.pdf

D. Mattia and Y. Gogotsi, Static and dynamic behavior of liquids inside carbon nanotubes, Microfluidics and Nanofluidics, vol.5, issue.3, pp.289-305, 2008.
DOI : 10.1007/s10404-008-0293-5

M. Whitby and . Quirke, Fluid flow in carbon nanotubes and nanopipes, Nature Nanotechnology, vol.2, issue.2, p.87, 2007.
DOI : 10.1038/nnano.2006.175

K. Falk, F. Sedlmeier, L. Joly, L. Roland-r-netz, and . Bocquet, Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction, Nano letters, vol.10, issue.10, pp.4067-4073, 2010.
DOI : 10.1021/nl1021046

. John-a-thomas, J. H. Alan, and . Mcgaughey, Reassessing fast water transport through carbon nanotubes, Nano letters, vol.8, issue.9, pp.2788-2793, 2008.

H. Liu, J. He, J. Tang, H. Liu, P. Pang et al., Translocation of single-stranded DNA through single-walled carbon nanotubes, Science, vol.327, issue.5961, pp.64-67, 2010.

E. Secchi, A. Niguès, L. Jubin, A. Siria, and L. Bocquet, Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes, Physical review letters, vol.116, issue.15, p.154501, 2016.
DOI : 10.1103/physrevlett.116.154501

URL : http://europepmc.org/articles/pmc4984977?pdf=render

X. Qin, Q. Yuan, Y. Zhao, S. Xie, and Z. Liu, Measurement of the rate of water translocation through carbon nanotubes, Nano letters, vol.11, issue.5, pp.2173-2177, 2011.

J. Ulrich, . Lorenz, H. Ahmed, and . Zewail, Observing liquid flow in nanotubes by 4D electron microscopy, Science, vol.344, issue.6191, pp.1496-1500, 2014.

K. Kim, J. Geng, R. Tunuguntla, R. Luis, . Comolli et al., Osmotically-driven transport in carbon nanotube porins, Nano letters, vol.14, issue.12, pp.7051-7056, 2014.
DOI : 10.1021/nl5034446

I. Newton, Philosophiae naturalis principia mathematica, G. Brookman, vol.1, 1833.
DOI : 10.5479/sil.52126.39088015628399

URL : https://archive.org/download/philosophiaenat00newt/philosophiaenat00newt.pdf

D. Bernoulli, Hydrodynamica: sive de viribus et motibus fluidorum commentarii, 1738.
DOI : 10.14711/spcol/b495264

J. Le-rond-d'alembert, Essai d'une nouvelle théorie de la résistance des fluides

L. Euler, Principes généraux du mouvement de fluides, mémoire de l'académie des Sciences de Berlin, vol.11, 1755.

C. Navier, Mémoire sur les lois du mouvement des fluides, Institut de France, vol.6, pp.389-440, 1823.

G. Stokes, On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Transactions of the Cambridge Philosophical Society, vol.8, 1880.

O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Philosophical Trans Royal Society, vol.1, pp.935-82, 1883.

L. Prandtl, Über Flussigkeitsbewegung bei sehr kleiner Reibung, Verhandl. III, Internat. Math.-Kong, pp.484-491, 1904.

L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, Sitzungs. Akad. Wiss. Wien, vol.66, p.370, 1872.
DOI : 10.1007/978-3-322-84986-1_3

J. Maxwell, IV. On the dynamical theory of gases, Philosophical transactions of the Royal Society of London, vol.157, pp.49-88, 1867.

S. Chapman and &. Vi, On the law of distribution of molecular velocities, and on the theory of viscosity and thermal conduction, in a non-uniform simple monatomic gas, Phil. Trans. R. Soc. Lond. A, vol.216, pp.279-348, 1916.

D. Enskog, Kinetische Theorie der Vorgänge in mässig verdünnten Gasen, 1917.

J. Maxwell, On Stresses in Rarefied Gases Arising from Inequalities of Temperature, Proceedings of the Royal Society of London, vol.27, pp.304-308, 1878.

F. Coron, Derivation of slip boundary conditions for the Navier-Stokes system from the Boltzmann equation, Journal of Statistical Physics, vol.54, issue.3-4, pp.829-857, 1989.

F. Golse, From the Boltzmann equation to the Euler equations in the presence of boundaries, Computers & Mathematics with Applications, vol.65, issue.6, pp.815-830, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00637344

N. Masmoudi and L. Saint-raymond, From the Boltzmann equation to the Stokes-Fourier system in a bounded domain, Communications on pure and applied mathematics, vol.56, issue.9, pp.1263-1293, 2003.

L. Bocquet and J. Barrat, Flow boundary conditions from nano-to micro-scales, Soft matter, vol.3, issue.6, pp.685-693, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00119492

L. Bocquet and J. Barrat, Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids, Physical review E, vol.49, issue.4, p.3079, 1994.

J. Barrat and L. Bocquet, Large slip effect at a nonwetting fluid-solid interface, Physical review letters, vol.82, issue.23, p.4671, 1999.

D. Elizabeth, . Smith, M. Mark-o-robbins, and . Cieplak, Friction on adsorbed monolayers, Physical Review B, vol.54, issue.11, p.8252, 1996.

E. Lauga, . Howard, and . Stone, Effective slip in pressure-driven Stokes flow, Journal of Fluid Mechanics, vol.489, pp.55-77, 2003.

C. Cottin-bizonne, J. Barrat, L. Bocquet, and E. Charlaix, Low-friction flows of liquid at nanopatterned interfaces, Nature materials, vol.2, issue.4, p.237, 2003.

C. Neto, R. Drew, E. Evans, H. Bonaccurso, . Butt et al., Boundary slip in Newtonian liquids: a review of experimental studies, Reports on Progress in Physics, vol.68, issue.12, p.2859, 2005.

. Jacob-n-israelachvili, . Gayle, and . Adams, Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm, Journal of the Chemical Society, Faraday Transactions, vol.1, pp.975-1001, 1978.

G. Binnig, C. Calvin-f-quate, and . Gerber, Atomic force microscope, Physical review letters, vol.56, issue.9, p.930, 1986.

. Jacob-n-israelachvili, Measurement of the viscosity of liquids in very thin films, Journal of colloid and interface science, vol.110, issue.1, pp.263-271, 1986.

C. Cottin-bizonne, . Jurine, . Baudry, . Crassous, . Restagno et al., Nanorheology: an investigation of the boundary condition at hydrophobic and hydrophilic interfaces, The European Physical Journal E, vol.9, issue.1, pp.47-53, 2002.

C. L. Henry, D. R. Neto, . Evans, . Biggs, and . Craig, The effect of surfactant adsorption on liquid boundary slippage, Physica A: Statistical Mechanics and its Applications, vol.339, issue.1-2, pp.60-65, 2004.

E. Secchi, S. Marbach, A. Niguès, A. Siria, and L. Bocquet, The Landau-Squire plume, Journal of Fluid Mechanics, vol.826, 2017.

N. Laohakunakorn, B. Gollnick, F. Moreno-herrero, G. Dirk, . Aarts et al., Nano letters, vol.13, issue.11, pp.5141-5146, 2013.

J. Eggers and E. Villermaux, Physics of liquid jets, Reports on progress in physics, vol.71, issue.3, p.36601, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00098347

. He-b-squire, The round laminar jet, The Quarterly Journal of Mechanics and Applied Mathematics, vol.4, issue.3, pp.321-329, 1951.

L. Davidovich-landau and E. M. Lifshitz, Course of Theoretical Physics, vol.6, 1959.

S. Ralph-allen, On Stokes's current function, Philosophical Transactions of the Royal Society of London. A, vol.182, pp.449-518, 1891.

U. Høgsbro-thygesen and T. Kiørboe, Diffusive transport in Stokeslet flow and its application to plankton ecology, Journal of mathematical biology, vol.53, issue.1, pp.1-14, 2006.

D. Mattia and H. Lee, Carbon nanotube membranes: from flow enhancement to permeability, Journal of Membrane Science, vol.475, pp.266-272, 2015.

M. Barboiu, Artificial water channels-incipient innovative developments, Chemical Communications, vol.52, issue.33, pp.5657-5665, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01678019

F. Calabrò, . Lee, and . Mattia, Modelling flow enhancement in nanochannels: Viscosity and slippage, Applied Mathematics Letters, vol.26, issue.10, pp.991-994, 2013.

D. Mattia and F. Calabrò, Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions, Microfluidics and Nanofluidics, vol.13, issue.1, pp.125-130, 2012.

P. Ternes, A. Mendoza-coto, and E. Salcedo, Single-file mobility of water-like fluid in a generalized Frenkel-Kontorova model, The Journal of chemical physics, vol.147, issue.3, p.34510, 2017.

M. E. Suk and . Av-raghunathan, Fast reverse osmosis using boron nitride and carbon nanotubes, Applied Physics Letters, vol.92, issue.13, p.133120, 2008.

A. Tamsyn, D. Hilder, S. Gordon, and . Chung, Salt rejection and water transport through boron nitride nanotubes, Small, vol.5, pp.2183-2190, 2009.

G. Tocci, L. Joly, and A. Michaelides, Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures, Nano letters, vol.14, issue.12, pp.6872-6877, 2014.

C. Benoit-grosjean, A. Pean, L. Siria, R. Bocquet, M. Vuilleumier et al., Chemisorption of hydroxide on 2D materials from DFT calculations: graphene versus hexagonal boron nitride, The journal of physical chemistry letters, vol.7, issue.22, pp.4695-4700, 2016.

J. B. Sokoloff, Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations, Physical Review E, vol.97, issue.3, p.33107, 2018.

X. Wei and T. Luo, Effects of Electrostatic Interaction and Chirality on the Friction Coefficient of Water Flow Inside Single-Walled Carbon Nanotubes and Boron Nitride Nanotubes, The Journal of Physical Chemistry C, vol.122, issue.9, pp.5131-5140, 2018.

M. Thomas and B. Corry, A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination, Phil. Trans. R. Soc. A, vol.374, p.20150020, 2016.

D. Einzel, P. Panzer, and M. Liu, Boundary condition for fluid flow: curved or rough surfaces, Physical review letters, vol.64, p.2269, 1990.

D. Iftimie and F. Sueur, Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions, Archive for rational mechanics and analysis, vol.199, pp.145-175, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00865912

. Bv-levich, Bubble motion at high Reynolds numbers, Zh. Eksp. Theoret. Fiz, vol.19, pp.18-24, 1949.

D. W. Moore, The boundary layer on a spherical gas bubble, Journal of Fluid Mechanics, vol.16, issue.2, pp.161-176, 1963.

J. Louis-lions, Quelques méthodes de résolution des problemes aux limites non linéaires, 1969.

Y. Xiao and . Zhouping-xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Communications on pure and applied mathematics, vol.60, issue.7, pp.1027-1055, 2007.

H. Beirao-da-veiga and F. Crispo, Concerning the Wk, p-inviscid limit for 3-D flows under a slip boundary condition, Journal of Mathematical Fluid Mechanics, vol.13, issue.1, pp.117-135, 2011.

C. Luigi, S. Berselli, and . Spirito, On the Boussinesq system: regularity criteria and singular limits, Methods and Applications of Analysis, vol.18, issue.4, pp.391-416, 2011.

L. Wang, Z. Xin, and A. Zang, Vanishing viscous limits for 3D Navier-Stokes equations with a Navier-slip boundary condition, Journal of Mathematical Fluid Mechanics, vol.14, issue.4, pp.791-825, 2012.

S. Maier and J. Saal, Stokes and Navier-Stokes equations with perfect slip on wedge type domains, Discrete and Continuous Dynamical Systems, Series S, vol.7, issue.5, pp.1045-1063, 2014.

X. Zhong, Vanishing viscosity limits for the 3D Navier-Stokes equations with a slip boundary condition, Proceedings of the American Mathematical Society, vol.145, issue.4, pp.1615-1628, 2017.

F. Brochard and . Pg-de-gennes, Shear-dependent slippage at a polymer/solid interface, vol.8, pp.3033-3037, 1992.

. Peter-a-thompson and . Sandra-m-troian, A general boundary condition for liquid flow at solid surfaces, Nature, vol.389, issue.6649, p.360, 1997.

M. Ilton, T. Salez, D. Paul, M. Fowler, M. Rivetti et al., Beyond the Navierde Gennes paradigm: slip inhibition on ideal substrates, 2017.

K. Kamrin, . Howard, and . Stone, The symmetry of mobility laws for viscous flow along arbitrarily patterned surfaces, Physics of Fluids, vol.23, issue.3, p.31701, 2011.

J. Happel and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media, vol.1, 2012.

D. Olbers, J. Willebrand, and C. Eden, Ocean dynamics, 2012.

H. H. Winter, Viscous dissipation term in energy equations, Calculation and Measurement Techniques for Momentum, Energy and Mass Transfer, vol.7, pp.27-34, 1987.

J. Zhang, H. Tian, Z. Yao, P. Hao, and N. Jiang, Evolutions of hairpin vortexes over a superhydrophobic surface in turbulent boundary layer flow, Physics of Fluids, vol.28, issue.9, p.95106, 2016.

. Michael-b-martell and . Blair-perot-et-jonathan-p-rothstein, Direct numerical simulations of turbulent flows over superhydrophobic surfaces, Journal of Fluid Mechanics, vol.620, pp.31-41, 2009.

J. Robert, . Daniello, and . Nicholas-e-waterhouse-et-jonathan-p-rothstein, Drag reduction in turbulent flows over superhydrophobic surfaces, Physics of Fluids, vol.21, issue.8, p.85103, 2009.

A. Busse, D. Neil, G. Sandham, . Mchale, and . Michael-i-newton, Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface, Journal of Fluid Mechanics, vol.727, pp.488-508, 2013.

P. Muralidhar, N. Ferrer, R. Daniello, and . Jonathan-p-rothstein, Influence of slip on the flow past superhydrophobic circular cylinders, Journal of Fluid Mechanics, vol.680, pp.459-476, 2011.

D. Legendre, E. Lauga, and J. Magnaudet, Influence of slip on the dynamics of two-dimensional wakes, Journal of fluid mechanics, vol.633, pp.437-447, 2009.

J. O. Ivan-u-vakarelski, . Marston, Y. C. Derek, . Chan, and . Sigurdur-t-thoroddsen, Drag reduction by Leidenfrost vapor layers, Physical review letters, vol.106, issue.21, p.214501, 2011.

U. Ivan, J. D. Vakarelski, . Berry, Y. C. Derek, . Chan et al., Leidenfrost vapor layers reduce drag without the crisis in high viscosity liquids, Physical review letters, vol.117, issue.11, p.114503, 2016.

D. Joseph, . Berry, U. Ivan, . Vakarelski, Y. C. Derek et al., Navier slip model of drag reduction by Leidenfrost vapor layers, Physics of Fluids, vol.29, issue.10, p.107104, 2017.

L. Guo, S. Chen, . Mark, and . Robbins, Slip boundary conditions over curved surfaces, Physical Review E, vol.93, issue.1, p.13105, 2016.

B. Corry, Designing carbon nanotube membranes for efficient water desalination, Physical Chemistry B, vol.112, issue.5, pp.1427-1434, 2008.

J. Bruce, N. Hinds, T. Chopra, R. Rantell, V. Andrews et al., Aligned multiwalled carbon nanotube membranes, Science, vol.303, issue.5654, pp.62-65, 2004.

M. Majumder, N. Chopra, J. Bruce, and . Hinds, Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes, Journal of the American Chemical Society, vol.127, issue.25, pp.9062-9070, 2005.

B. Corry, Water and ion transport through functionalised carbon nanotubes: implications for desalination technology, Energy & Environmental Science, vol.4, issue.3, pp.751-759, 2011.

W. Chan, H. Chen, A. Surapathi, G. Michael, X. Taylor et al., Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination, Acs Nano, vol.7, issue.6, pp.5308-5319, 2013.

. Tian-yin, . Liu, Q. Hao-ge-yuan, Y. Li, Q. Tang et al., Ion-responsive channels of zwitterion-carbon nanotube membrane for rapid water permeation and ultrahigh mono-/multivalent ion selectivity, ACS nano, vol.9, issue.7, pp.7488-7496, 2015.

H. , Y. , and R. Karnik, Membrane for filtrating water, vol.873, p.92, 2018.

J. Liu, C. Wang, X. Tu, B. Liu, L. Chen et al., Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy, Nature Communications, vol.3, p.1199, 2012.

J. Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller et al., Controlled synthesis of single-chirality carbon nanotubes, Nature, vol.512, issue.7512, p.61, 2014.

M. Meagan-s-mauter, . Elimelech, O. Chinedum, and . Osuji, Nanocomposites of vertically aligned single-walled carbon nanotubes by magnetic alignment and polymerization of a lyotropic precursor, Acs Nano, vol.4, issue.11, pp.6651-6658, 2010.

C. Xu, A. Cui, Y. Xu, and X. Fu, Graphene oxide-TiO2 composite filtration membranes and their potential application for water purification, Carbon, vol.62, pp.465-471, 2013.

B. Radha, . Esfandiar, A. P. Wang, . Rooney, . Gopinadhan et al., Molecular transport through capillaries made with atomic-scale precision, Nature, vol.538, issue.7624, p.222, 2016.

T. C. Broyer, The movement of materials into plants Part I. Osmosis and the movement of water into plants, The Botanical Review, vol.13, issue.1, pp.1-58, 1947.

. Sm-henton, G. J. Greaves, . Piller, and . Peh-minchin, Revisiting the Münch pressure-flow hypothesis for long-distance transport of carbohydrates: modelling the dynamics of solute transport inside a semipermeable tube, Journal of Experimental Botany, vol.53, issue.373, pp.1411-1419, 2002.

R. Greger and . Windhorst, Comprehensive human physiology, From Cellular Mechanisms to Integration, vol.2, 1996.

P. H. Baylis, Water and salt homeostasis in hearlth and disease-foreword, 1989.

. John-l-stephenson, Concentration of urine in a central core model of the renal counterflow system, Kidney international, vol.2, issue.2, pp.85-94, 1972.

J. Paul, . Palatt, M. Gerald, and . Saidel, Countercurrent exchange in the inner renal medulla: vasa recta-descending limb system, Bulletin of mathematical biology, vol.35, issue.4, pp.431-447, 1973.

S. Thomas, Inner medullary lactate production and accumulation: a vasa recta model, American Journal of Physiology-Renal Physiology, vol.279, issue.3, pp.468-481, 2000.
DOI : 10.1152/ajprenal.2000.279.3.f468

URL : http://physiome.ibisc.fr/~srt/publis/2000_srt_AJP_vasarecta.pdf

D. Foster, E. John-a-jacquez, and . Daniels, Solute concentration in the kidney-II. Inputoutput studies on a central core model, Mathematical Biosciences, vol.32, issue.3-4, pp.337-360, 1976.

. Anita-t-layton, A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results, American Journal of Physiology-Renal Physiology, vol.300, issue.2, pp.356-371, 2010.

A. Edwards, Modeling transport in the kidney: investigating function and dysfunction, American Journal of Physiology-Renal Physiology, vol.298, issue.3, pp.475-484, 2009.
DOI : 10.1152/ajprenal.00501.2009

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838608/pdf

S. Marbach and L. Bocquet, Active osmotic exchanger for efficient nanofiltration inspired by the kidney, Physical Review X, vol.6, issue.3, p.31008, 2016.
DOI : 10.1103/physrevx.6.031008

URL : http://link.aps.org/pdf/10.1103/PhysRevX.6.031008

. Gambro, Phoenix x 36 brochure, 2009.

E. J. Jeffrey-t-borenstein, B. K. Weinberg, C. Orrick, M. Sundback, and . Vacanti, Microfabrication of three-dimensional engineered scaffolds, Tissue engineering, vol.13, issue.8, pp.1837-1844, 2007.

J. Kim, F. Garzotto, F. Nalesso, D. Cruz, J. H. Kim et al., A wearable artificial kidney: technical requirements and potential solutions, Expert review of medical devices, vol.8, issue.5, pp.567-579, 2011.
DOI : 10.1586/erd.11.33

P. Armignacco, F. Garzotto, M. Neri, A. Lorenzin, and C. Ronco, Wak engineering evolution, Blood purification, vol.39, issue.1-3, pp.110-114, 2015.
DOI : 10.1159/000368955

R. Greger and E. Schlatter, Properties of the basolateral membrane of the cortical thick ascending limb of henle's loop of rabbit kidney, Pflügers Arch, vol.396, pp.325-334, 1983.

C. Chou, M. A. Knepper, A. N. Hoek, D. Brown, B. Yang et al., Reduced water permeability and altered ultrastructure in thin descending limb of Henle in aquaporin-1 null mice, J. Clin. Invest, vol.103, pp.491-496, 1999.

S. Nielsen, J. Frøkiaer, D. Marples, T. H. Kwon, P. Agre et al., Aquaporins in the kidney: from molecules to medicine, Physiol. Rev, vol.82, pp.205-244, 2002.
DOI : 10.1152/physrev.00024.2001

URL : http://physrev.physiology.org/content/physrev/82/1/205.full.pdf

R. Greger and E. Schlatter, Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of henle's loop of rabbit kidney, Pflügers Arch, vol.392, pp.92-94, 1981.

J. A. Jacquez, D. Foster, and E. Daniels, Solute concentration in the kidney-I. A model of the renal medulla and its limit cases, Mathematical biosciences, vol.32, pp.307-335, 1976.

J. Stephenson, Concentration engines and the kidney : I. Central core model of the renal medulla, Biophys. J, vol.13, pp.512-545, 1973.

J. Stephenson, Concentration engines and the kidney : II. Multisolute central core systems, Biophys. J, vol.13, pp.546-567, 1973.

J. Stephenson, Concentration engines and the kidney : III-Canonical mass balance equation for multinephron models of the renal medulla, Biophys. J, vol.16, pp.1273-1286, 1976.

J. Stephenson, R. Tewarson, and R. Mejia, Quantitative analysis of mass and energy balance in non-ideal models of the renal counterflow system, Proc. Nat. Acad. Sci. USA, vol.71, pp.1618-1622, 1974.

J. Stephenson, Models of the urinary concentrating mechanism, Kidney Int, vol.31, pp.648-661, 1987.

M. A. Knepper, R. A. Danielson, G. M. Saidel, and R. S. Post, Quantitative analysis of renal medullary anatomy in rats and rabbits, Kidney Int, vol.12, pp.313-323, 1977.

L. Koepsell, W. Kriz, and J. Schnermann, Pattern of luminal diameter changes along the descending and ascending thin limbs of the loop of Henle in the inner medullary zone of the rat kidney, Z. Anat. Entwickl.-Gesch, vol.138, pp.321-328, 1972.

A. Finkelstein, Water movement through lipid bilayers, pores, and plasma membranes, 1987.

B. Yang and J. M. Sands, Urea Transporters, 2014.

R. P. Garay and P. J. Garrahan, The interaction of sodium and potassium with the sodium pump in red cells, J. Physiol, vol.231, pp.297-325, 1973.

J. Newburgh, The changes which alter renal osmotic work, J. Clin. Invest, vol.22, pp.439-446, 1943.

A. Layton, Mathematical modeling of kidney transport, Wiley Interdiscip. Rev. Syst. Biol. Med, vol.5, pp.557-73, 2013.

B. Hargitay and W. Kuhn, The multiplication principle as the basis for concentrating urine in the kidney, J. Am. Soc. Nephrol, 2001.

S. Hervy and S. R. Thomas, Inner medullary lactate production and urine-concentrating mechanism: a flat medullary model, Am. J. Physiol. Renal Physiol, 2003.

B. Alberts, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 2002.

J. W. Post, J. Veerman, V. M. Hubertus, G. J. Hamelers, . Euverink et al., Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis, J. Memb. Sci, vol.288, pp.218-230, 2007.

B. B. Sales, M. Saakes, J. W. Post, C. J. Buisman, P. M. Biesheuvel et al., Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell, Environ. Sci. Technol, vol.44, pp.5661-5665, 2010.

J. Jong, R. G. Lammerink, and M. Wessling, Membranes and microfluidics: a review, Lab Chip, vol.6, pp.1125-1139, 2006.

D. Sticker, M. Rothbauer, S. Lechner, M. Hehenberger, and P. Ertl, Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications, Lab on a Chip, vol.15, issue.24, pp.4542-4554, 2015.

D. Bor-han-chueh, C. R. Huh, T. Kyrtsos, N. Houssin, S. Futai et al., Leakage-free bonding of porous membranes into layered microfluidic array systems, Analytical chemistry, vol.79, issue.9, pp.3504-3508, 2007.

W. H. Fissell, H. D. Humes, A. J. Fleischman, and S. Roy, Dialysis and Nanotechnology: Now, 10 Years, or Never?, Blood Purif, vol.25, pp.12-17, 2007.

C. Allen-r-nissenson, G. Ronco, M. Pergamit, R. Edelstein, and . Watts, The human nephron filter: toward a continuously functioning, implantable artificial nephron system, Blood purification, vol.23, issue.4, pp.269-274, 2005.

C. Allen-r-nissenson, G. Ronco, M. Pergamit, R. Edelstein, and . Watts, Continuously functioning artificial nephron system: the promise of nanotechnology, Hemodialysis International, vol.9, issue.3, pp.210-217, 2005.

E. Weinberg, . Kaazempur-mofrad, and . Borenstein, Concept and computational design for a bioartificial nephron-on-a-chip, The International journal of artificial organs, vol.31, issue.6, pp.508-514, 2008.

L. Ha, K. Jang, and K. Suh, Microfluidics for Medical Applications, pp.19-39, 2014.

Y. Gu and N. Miki, Multilayered microfilter using a nanoporous PES membrane and applicable as the dialyzer of a wearable artificial kidney, Journal of Micromechanics and Microengineering, vol.19, issue.6, p.65031, 2009.

H. Wu, T. W. Odom, D. Chiu, M. George, and . Whitesides, Fabrication of complex three-dimensional microchannel systems in PDMS, Journal of the American Chemical Society, vol.125, issue.2, pp.554-559, 2003.

A. Naillon, H. Massadi, R. Courson, J. Bekhit, L. Seveno et al., Quasi-static drainage in a network of nanoslits of nonuniform depth designed by grayscale laser lithography, Microfluidics and Nanofluidics, vol.21, issue.8, p.131, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01566417

V. Liu, Y. Song, and J. Han, Capillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip, Lab on a Chip, vol.10, issue.11, pp.1485-1490, 2010.

A. Caliò, . Leng, L. Decock, . Stefano, and . Salmon, Microscopy assisted fabrication of a hydrogel-based microfluidic filter, Journal of the European Optical Society, 2015.

J. Decock, M. Schlenk, and J. Salmon, In-situ photo-patterning of pressureresistant hydrogel membranes with controlled permeabilities in PEGDA microfluidic channels, 2018.

Z. Siwy and . Fuli?ski, Fabrication of a synthetic nanopore ion pump, Physical Review Letters, vol.89, p.198103, 2002.

L. Bankir, N. Bouby, M. Trinh-trang-tan, and B. Kaissling, Thick ascending limb-anatomy and function: role in urine concentrating mechanisms, Adv. Nephrol, vol.16, pp.69-102, 1987.

J. David-l-goldstein-et-eldon and . Braun, Proportions of mammalian-type and reptilian-type nephrons in the kidneys of two passerine birds, journal of Morphology, vol.187, issue.2, pp.173-179, 1986.

F. Khalil and J. Tawfic, Some observations on the kidney of the desert J. jaculus and G. gerbillus and their possible bearing on the water economy of these animals, Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, vol.154, issue.3, pp.259-271, 1963.

H. William, . Dantzler, J. Eldon, and . Braun, Comparative nephron function in reptiles, birds, and mammals, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.239, issue.3, pp.197-213, 1980.

C. Beuchat, Body size, medullary thickness, and urine concentrating ability in mammals, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.258, issue.2, pp.298-308, 1990.

R. J. Gibson, The Atlantic salmon in fresh water: spawning, rearing and production, Reviews in fish biology and fisheries, vol.3, issue.1, pp.39-73, 1993.

N. Hammerschlag, Osmoregulation in elasmobranchs: a review for fish biologists, behaviourists and ecologists, Marine and Freshwater Behaviour and Physiology, vol.39, issue.3, pp.209-228, 2006.

N. Hazon, A. Wells, D. Richard, J. P. Pillans, G. Good et al., Urea based osmoregulation and endocrine control in elasmobranch fish with special reference to euryhalinity, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol.136, issue.4, pp.685-700, 2003.

W. S. Marshall, Ion transport, osmoregulation, and acid-base balance, The physiology of fishes, vol.3, pp.177-230, 2006.

C. Fritzmann, J. Löwenberg, T. Wintgens, and T. Melin, State-of-the-art reverse osmosis desalination, Desalination, vol.216, pp.1-76, 2007.

R. K. Nagarale, G. S. Gohil, and V. K. Shahi, Recent developments on on-exchange membranes and electro-membrane processes, Adv. Colloid Interface Sci, vol.119, pp.97-130, 2006.

J. Li, M. Zhou, J. Lin, Y. Wen-yuan-ye, J. Xu et al., Mono-valent cation selective membranes for electrodialysis by introducing polyquaternium-7 in a commercial cation exchange membrane, Journal of Membrane Science, vol.486, pp.89-96, 2015.

S. C. O'hern, M. S. Boutilier, J. Idrobo, Y. Song, J. Kong et al., Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes, Nano Lett, vol.14, pp.1234-1241, 2014.

A. Ring and J. Sandblom, Measurement of channel lifetime in artificial lipid membranes: dimerization kinetics of gramicidin A, Journal of Membrane Science, vol.16, pp.319-337, 1983.

M. Karplus, A. Mccammon, L. Warner, and . Peticolas, The internal dynamics of globular protein, Critical Reviews in Biochemistry, vol.9, issue.4, pp.293-349, 1981.

E. Haldoupis, T. Watanabe, S. Nair, S. David, and . Sholl, Quantifying Large Effects of Framework Flexibility on Diffusion in MOFs: CH4 and CO2 in ZIF-8, ChemPhysChem, vol.13, issue.15, pp.3449-3452, 2012.

M. Ma, F. Grey, L. Shen, M. Urbakh, S. Wu et al., Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction, Nature nanotechnology, vol.10, issue.8, pp.692-695, 2015.

M. Ma, G. Tocci, A. Michaelides, and G. Aeppli, Fast diffusion of water nanodroplets on graphene, Nature Materials, vol.15, issue.1, p.66, 2016.

E. Eduardo-r-cruz-chú, J. H. Papadopoulou, A. Walther, G. Popadi?, and . Li, On phonons and water flow enhancement in carbon nanotubes, Nature nanotechnology, vol.12, issue.12, p.1106, 2017.

K. Herterich and . Hasselmann, The horizontal diffusion of tracers by surface waves, Journal of Physical Oceanography, vol.12, issue.7, pp.704-711, 1982.

L. Szilard, Uber die Entropieverminderung in einem thermodynamischen System bein Eingriffen intelligenter Wesen, Z. Phys, vol.53, pp.840-856, 1929.

J. Helen-m-berman, Z. Westbrook, G. Feng, . Gilliland, N. Talapady et al., The protein data bank, International Tables for Crystallography Volume F: Crystallography of biological macromolecules, pp.675-684, 1999.

S. Marbach and L. Bocquet, Active sieving across driven nanopores for tunable selectivity, The Journal of Chemical Physics, vol.147, issue.15, p.154701, 2017.

R. Zwanzig, Rate processes with dynamical disorder, Acc. Chem. Res, vol.23, pp.148-152, 1990.

R. Zwanzig, Dynamical disorder: passage through a fluctuating bottleneck, J. Chem. Phys, vol.97, pp.3587-3589, 1992.

D. Beece, H. Eisenstein, . Frauenfelder, . Good, . Mc-marden et al., Solvent viscosity and protein dynamics, Biochemistry, vol.19, issue.23, pp.5147-5157, 1980.

. David-r-lide, CRC handbook of chemistry and physics, vol.85, 2004.

Y. Sakiyama, A. Mazur, L. E. Kapinos, Y. H. Roderick, and . Lim, Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy, Nature nanotechnology, vol.11, issue.8, p.719, 2016.

. James-m-gere, J. Barry, and . Goodno, Mechanics of Materials, vol.5, 2001.

A. Khan, . Philip, and . Hess, Young's modulus of silicon nitride used in scanning force microscope cantilevers, Journal of Applied Physics, vol.95, issue.4, pp.1667-1672, 2004.

. Khashayar-babaei-gavan, J. R. Hidde, . Westra, W. Emile, . Van-der-drift et al., Size-dependent effective Young's modulus of silicon nitride cantilevers, Applied Physics Letters, vol.94, issue.23, p.233108, 2009.

S. Marbach, D. S. Dean, and L. Bocquet, Transport and dispersion across wiggling nano-pores, 2018.

G. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.219, pp.186-203, 1953.

R. Aris, On the dispersion of a solute in a fluid flowing through a tube, Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, vol.235, pp.67-77, 1956.

D. Reguera, Kinetic equations for diffusion in the presence of entropic barriers, Physical Review E, vol.64, issue.6, p.61106, 2001.

P. Malgaretti and I. Pagonabarraga, Entropic electrokinetics: recirculation, particle separation, and negative mobility, Physical review letters, vol.113, issue.12, p.128301, 2014.

K. Alim, G. Amselem, F. Peaudecerf, P. Michael, A. Brenner et al., Random network peristalsis in Physarum polycephalum organizes fluid flows across an individual, Proceedings of the National Academy of Sciences, vol.110, issue.33, pp.13306-13311, 2013.

S. Kuroda, S. Takagi, T. Nakagaki, and T. Ueda, Allometry in Physarum plasmodium during free locomotion: size versus shape, speed and rhythm, Journal of experimental biology, vol.218, issue.23, pp.3729-3738, 2015.

M. Tlalka, P. R. Bebber, . Darrah, . Sc-watkinson, and . Fricker, Emergence of self-organised oscillatory domains in fungal mycelia, Fungal Genetics and Biology, vol.44, issue.11, pp.1085-1095, 2007.

V. Démery and . David-s-dean, Perturbative path-integral study of active-and passive-tracer diffusion in fluctuating fields, Physical review E, vol.84, issue.1, p.11148, 2011.

G. Grün, K. Mecke, and M. Rauscher, Thin-film flow influenced by thermal noise, Journal of Statistical Physics, vol.122, issue.6, pp.1261-1291, 2006.

K. Mecke and M. Rauscher, On thermal fluctuations in thin film flow, Journal of Physics: Condensed Matter, vol.17, issue.45, p.3515, 2005.

C. Stubenrauch-et-regine-von and . Klitzing, Disjoining pressure in thin liquid foam and emulsion films-new concepts and perspectives, Journal of Physics: condensed matter, vol.15, issue.27, p.1197, 2003.

R. Fetzer, . Rauscher, K. Seemann, K. Jacobs, and . Mecke, Thermal noise influences fluid flow in thin films during spinodal dewetting, Physical Review Letters, vol.99, issue.11, p.114503, 2007.

S. Gravelle, C. Ybert, L. Bocquet, and L. Joly, Anomalous capillary filling and wettability reversal in nanochannels, Physical Review E, vol.93, issue.3, p.33123, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01293509

F. Heslot, . Fraysse, and . Cazabat, Molecular layering in the spreading of wetting liquid drops, Nature, vol.338, issue.6217, pp.640-642, 1989.

A. Ajdari and J. Prost, Free-flow electrophoresis with trapping by a transverse inhomogeneous field, Proceedings of the National Academy of Sciences, vol.88, issue.10, pp.4468-4471, 1991.

P. Reimann, C. Van-den-broeck, H. Linke, P. Hänggi, . Rubi et al., Giant acceleration of free diffusion by use of tilted periodic potentials, Physical review letters, vol.87, issue.1, p.10602, 2001.

P. Reimann, C. Van-den-broeck, H. Linke, P. Hänggi, . Rubi et al., Diffusion in tilted periodic potentials: Enhancement, universality, and scaling, Physical Review E, vol.65, issue.3, p.31104, 2002.

T. Guérin and . Dean, Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems, Physical Review E, vol.92, issue.6, p.62103, 2015.

A. Siria and A. Niguès, Electron beam detection of a Nanotube Scanning Force Microscope, Scientific Reports, vol.7, issue.1, p.11595, 2017.

W. Fischer and J. Brickmann, Ion-specific diffusion rates through transmembrane protein channels: a molecular dynamics study, Biophysical chemistry, vol.18, issue.4, pp.323-337, 1983.

A. Fasolino, . Los, and . Mikhail-i-katsnelson, Intrinsic ripples in graphene, Nature materials, vol.6, issue.11, pp.858-861, 2007.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, science, vol.321, issue.5887, pp.385-388, 2008.

H. Qiu, R. Shen, and W. Guo, Vibrating carbon nanotubes as water pumps, Nano Research, vol.4, issue.3, pp.284-289, 2011.
DOI : 10.1007/s12274-010-0080-y

A. M. Rao, S. Richter, B. Bandow, . Chase, K. A. Eklund et al., Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science, vol.275, issue.5297, pp.187-191, 1997.

V. Sazonova, Y. Yaish, H. Üstünel, D. Roundy, A. Tomás et al., A tunable carbon nanotube electromechanical oscillator, Nature, vol.431, issue.7006, pp.284-287, 2004.

D. Garcia-sanchez, . San-paulo, . Esplandiu, . Perez-murano, . Forró et al., Mechanical detection of carbon nanotube resonator vibrations, Physical review letters, vol.99, issue.8, p.85501, 2007.

P. Poncharal, D. Wang, . Ugarte, . Walt-a-de, and . Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes, science, vol.283, issue.5407, pp.1513-1516, 1999.

K. Sushil and . Sarna, Colonic motility: from bench side to bedside, Colloquium Series on Integrated Systems Physiology: From Molecule to Function, vol.2, pp.1-157, 2010.

M. Johannes, . Froehlich, A. Michael, . Patak, C. F. Constantin-von-weymarn et al., Small bowel motility assessment with magnetic resonance imaging, Journal of Magnetic Resonance Imaging, vol.21, issue.4, pp.370-375, 2005.

J. Cremer, I. Segota, C. Yang, M. Arnoldini, J. T. Sauls et al., Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel, Proceedings of the National Academy of Sciences, p.201601306, 2016.

M. Tlalka, P. R. Sc-watkinson, . Darrah, and . Fricker, Continuous imaging of amino-acid translocation in intact mycelia of Phanerochaete velutina reveals rapid, pulsatile fluxes, New Phytologist, vol.153, issue.1, pp.173-184, 2002.

P. A. Stewart and B. T. Stewart, Protoplasmic movement in slime mold plasmodia: The diffusion drag force hypothesis, Exp. Cell Res, vol.17, p.44, 1959.

S. Marbach, K. Alim, N. Andrew, A. Pringle, P. Michael et al., Pruning to increase Taylor dispersion in Physarum polycephalum networks, Physical review letters, vol.117, issue.17, p.178103

P. Girard, . Prost, and . Bassereau, Passive or active fluctuations in membranes containing proteins, Physical review letters, vol.94, issue.8, p.88102, 2005.

P. Simonnin, B. Noetinger, C. Nieto-draghi, V. Marry, and B. Rotenberg, Diffusion under confinement: hydrodynamic finite-size effects in simulation, Journal of Chemical Theory and Computation, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01760231

J. Arnold, C. Storm, J. Storm, H. Chen, J. Zandbergen et al., Fast DNA translocation through a solid-state nanopore, Nano letters, vol.5, issue.7, pp.1193-1197, 2005.

D. B. Stefan-w-kowalczyk, A. Wells, C. Aksimentiev, and . Dekker, Slowing down DNA translocation through a nanopore in lithium chloride, Nano letters, vol.12, issue.2, pp.1038-1044, 2012.

F. Ulrich and . Keyser, Controlling molecular transport through nanopores, Journal of The Royal Society Interface, p.20110222, 2011.

J. Lorenz, R. D. Steinbock, S. Bulushev, and . Krishnan, DNA translocation through low-noise glass nanopores, Acs Nano, vol.7, issue.12, pp.11255-11262, 2013.

K. Liu and J. Feng, Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation, ACS nano, vol.8, issue.3, pp.2504-2511, 2014.

F. Grégory, S. W. Schneider, . Kowalczyk, E. Victor, G. Calado et al., DNA translocation through graphene nanopores, Nano letters, vol.10, issue.8, pp.3163-3167, 2010.

J. Rodenburg, M. Dijkstra, and . René-van-roij, Van't Hoff's law for active suspensions: the role of the solvent chemical potential, Soft matter, vol.13, issue.47, pp.8957-8963, 2017.

. Thomas-w-lion, . Rosalind, and . Allen, Osmosis with active solutes, Europhysics Letters), vol.106, issue.3, p.34003, 2014.

J. Alexandre-p-solon, M. E. Stenhammar, Y. Cates, J. Kafri, and . Tailleur, Generalized thermodynamics of phase equilibria in scalar active matter, Physical Review E, vol.97, issue.2, p.20602, 2018.

Y. Alexandre-p-solon, A. Fily, . Baskaran, E. Mickael, Y. Cates et al., Pressure is not a state function for generic active fluids, Nature Physics, vol.11, issue.8, p.673, 2015.

. Jl-talen and . Staverman, Osmometry with membranes permeable to solvent and solute, Transactions of the Faraday Society, vol.61, pp.2794-2799, 1965.

. Jl-talen and . Staverman, Negative reflection coefficients, Transactions of the Faraday Society, vol.61, pp.2800-2804, 1965.

C. Lee, A. Cottin-bizonne, . Biance, . Joseph, . Bocquet et al., Osmotic flow through fully permeable nanochannels, Physical review letters, vol.112, issue.24, p.244501, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01628783

C. Lee, . Cottin-bizonne, . Fulcrand, . Joly, and . Ybert, Nanoscale dynamics versus surface interactions: What dictates osmotic transport?, The journal of physical chemistry letters, vol.8, issue.2, pp.478-483, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01628790

. Gerald-s-manning, Binary Diffusion and Bulk Flow through a Potential-Energy Profile: A Kinetic Basis for the Thermodynamic Equations of Flow through Membranes, The Journal of Chemical Physics, vol.49, issue.6, pp.2668-2675, 1968.

A. Ajdari and L. Bocquet, Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-osmosis and beyond, Physical review letters, vol.96, issue.18, p.186102, 2006.

O. Kedem and . Katchalsky, Permeability of composite membranes. Part 2.-Parallel elements, Transactions of the Faraday Society, vol.59, pp.1931-1940, 1963.

O. Kedem and . Katchalsky, Permeability of composite membranes. Part 3.-Series array of elements, Transactions of the Faraday Society, vol.59, pp.1941-1953, 1963.

. John-l-anderson, M. Dermot, and . Malone, Mechanism of osmotic flow in porous membranes, Biophysical journal, vol.14, issue.12, pp.957-982, 1974.

S. Marbach, H. Yoshida, and L. Bocquet, Osmotic and diffusio-osmotic flow generation at high solute concentration. I. Mechanical approaches, The Journal of Chemical Physics, vol.146, issue.19, p.194701, 2017.

P. Debye, . Pp-debye, W. H. Bh-eckstein, and . Barber, Equilibrium and sedimentation of uncharged particles in inhomogeneous electric fields, 1954.

E. Grim and . Sollner, The contributions of normal and anomalous osmosis to the osmotic effects arising across charged membranes with solutions of electrolytes, The Journal of general physiology, vol.40, issue.6, pp.887-899, 1957.

S. Clara-b-picallo, L. Gravelle, E. Joly, L. Charlaix, and . Bocquet, Nanofluidic osmotic diodes: Theory and molecular dynamics simulations, Physical review letters, vol.111, issue.24, p.244501, 2013.

H. Yoshida, S. Marbach, and L. Bocquet, Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamics simulations, The Journal of Chemical Physics, vol.146, issue.19, p.194702, 2017.

E. Ruckenstein, Can phoretic motions be treated as interfacial tension gradient driven phenomena?, Journal of Colloid and Interface Science, vol.83, issue.1, pp.77-81, 1981.

. John-l-anderson, Colloid transport by interfacial forces, Annual review of fluid mechanics, vol.21, issue.1, pp.61-99, 1989.

B. Abécassis, C. Cottin-bizonne, . Ybert, . Ajdari, and . Bocquet, Boosting migration of large particles by solute contrasts, Nature materials, vol.7, issue.10, p.785, 2008.

V. Yadav, H. Zhang, R. Pavlick, and A. Sen, Triggered "on/off" micropumps and colloidal photodiode, Journal of the American Chemical Society, vol.134, issue.38, pp.15688-15691, 2012.

S. Shin, E. Um, B. Sabass, J. T. Ault, M. Rahimi et al., Size-dependent control of colloid transport via solute gradients in dead-end channels, Proceedings of the National Academy of Sciences, vol.113, issue.2, pp.257-261, 2016.

N. Shi, R. Nery-azevedo, and A. Squires, Diffusiophoretic focusing of suspended colloids, Physical review letters, vol.117, issue.25, p.258001, 2016.

T. Chou, Kinetics and thermodynamics across single-file pores: solute permeability and rectified osmosis, The Journal of Chemical Physics, vol.110, issue.1, pp.606-615, 1999.

C. Linder and O. Kedem, Asymmetric ion exchange mosaic membranes with unique selectivity, Journal of Membrane Science, vol.181, issue.1, pp.39-56, 2001.

Y. Pavel, I. V. Apel, . Blonskaya, E. Nikolay, K. Lizunov et al., Osmotic Effects in Track-Etched Nanopores, 2018.

G. Eisenman and R. Horn, Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels, The Journal of membrane biology, vol.76, issue.3, pp.197-225, 1983.

P. Läuger, . Stephan, and . Frehland, Fluctuations of barrier structure in ionic channels, Biochimica et Biophysica Acta (BBA)-Biomembranes, vol.602, issue.1, pp.167-180, 1980.

H. Schröder, Rate theoretical analysis of ion transport in membrane channels with elastically bound ligands, The Journal of chemical physics, vol.79, issue.4, pp.1997-2005, 1983.

J. Barrat and J. Hansen, Basic concepts for simple and complex liquids, 2003.

V. Ludmila, A. E. Schagina, . Grinfeldt, and . Lev, Interaction of cation fluxes in gramicidin A channels in lipid bilayer membranes, Nature, vol.273, issue.5659, p.243, 1978.

F. J. Sigworth, Fluctuations in the current through open ach-receptor channels, BIOPHYSICAL JOURNAL, vol.37, pp.309-309, 1982.

A. Donev, B. John, A. Bell, A. De-la-fuente, and . Garcia, Enhancement of diffusive transport by non-equilibrium thermal fluctuations, Journal of Statistical Mechanics: Theory and Experiment, issue.06, p.6014, 2011.

R. Kubo, The fluctuation-dissipation theorem, Reports on progress in physics, vol.29, issue.1, p.255, 1966.

B. A. Wallace, Common structural features in gramicidin and other ion channels, Bioessays, vol.22, issue.3, pp.227-234, 2000.

A. Devaki-a-kelkar and . Chattopadhyay, The gramicidin ion channel: a model membrane protein, Biochimica et Biophysica Acta (BBA)-Biomembranes, vol.1768, issue.9, pp.2011-2025, 2007.

A. Finkelstein and . Olaf-sparre-andersen, The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport, The Journal of membrane biology, vol.59, issue.3, pp.155-171, 1981.

P. Läuger, Mechanisms of biological ion transport-carriers, channels, and pumps in artificial lipid membranes, Angewandte Chemie International Edition, vol.24, issue.11, pp.905-923, 1985.

R. P. Swenson and . Armstrong, K+ channels close more slowly in the presence of external K+ and Rb+, Nature, vol.291, issue.5814, p.427, 1981.

. Al-l-hodgkin and . Keynes, The potassium permeability of a giant nerve fibre, The Journal of Physiology, vol.128, issue.1, pp.61-88, 1955.

A. L. Hodgkin and . Keynes, Active transport of cations in giant axons from Sepia and Loligo, The Journal of physiology, vol.128, issue.1, pp.28-60, 1955.

P. Rosenberg and A. Finkelstein, Interaction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes, The Journal of general physiology, vol.72, issue.3, pp.327-340, 1978.

B. Coste, B. Xiao, J. S. Santos, R. Syeda, J. Grandl et al., Piezo proteins are pore-forming subunits of mechanically activated channels, Nature, vol.483, issue.7388, p.176, 2012.
DOI : 10.1038/nature10812

URL : http://europepmc.org/articles/pmc3297710?pdf=render

J. Wu, H. Amanda, J. Lewis, and . Grandl, Touch, tension, and transduction-the function and regulation of Piezo ion channels, Trends in biochemical sciences, vol.42, issue.1, pp.57-71, 2017.
DOI : 10.1016/j.tibs.2016.09.004

URL : http://europepmc.org/articles/pmc5407468?pdf=render

L. Jubin, A. Poggioli, A. Siria, and L. Bocquet, Dramatic pressuresensitive ion conduction in conical nanopores, Proceedings of the National Academy of Sciences page 201721987, 2018.
DOI : 10.1073/pnas.1721987115

A. Sellier, Stokes flow about a slip arbitrary-shaped particle, Computer Modeling in Engineering & Sciences(CMES), vol.87, issue.2, pp.157-176, 2012.

F. Hecht, New development in FreeFem++, J. Numer. Math, vol.20, issue.3-4, pp.251-265, 2012.
DOI : 10.1515/jnum-2012-0013

URL : https://hal.archives-ouvertes.fr/hal-01476313

R. Courant, E. Isaacson, and M. Rees, On the solution of nonlinear hyperbolic differential equations by finite differences, Communications on Pure and Applied Mathematics, vol.5, issue.3, pp.243-255, 1952.

F. Detcheverry and L. Bocquet, Thermal fluctuations of hydrodynamic flows in nanochannels, Physical Review E, vol.88, issue.1, p.12106, 2013.