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Action Model Learning for Socio-Communicative Human Robot Interaction

by Ankuj Arora

Driven with the objective of rendering robots as socio-communicative, there has been a
heightened interest towards researching techniques to endow robots with social skills and
“commonsense” to render them acceptable. This “commonsense” is not so common, as even
a standard dialogue exchange integrates behavioral subtleties that are difficult to codify. In
such a scenario, learning the behavioral model of the robot is a promising approach. This
thesis tries to solve the problem of learning robot behavioral models in the Automated Plan-
ning and Scheduling (APS) paradigm of AI. During the course of this thesis, we introduce
various symbolic and deep learning systems, by the names SPMSAT and PDeepLearn re-
spectively, which facilitate the learning of action models, and extend the scope of these new
techniques to learn robot behavioral models. The long term objective is to empower robots
to communicate autonomously with humans without the need of “wizard” intervention.

Résumé en Français Conduite dans le but de rendre les robots comme socio-communicatifs,
il y a eu un intérêt accru pour les techniques de recherche pour doter les robots de compé-
tences sociales et de sens commun pour les rendre acceptables. Ce «sens commun» n’est
pas si commun, car même un échange de dialogue standard intègre des subtilités comporte-
mentales difficiles à codifier. Dans un tel scénario, l’apprentissage du modèle comporte-
mental du robot est une approche prometteuse. Cette thèse tente de résoudre le problème
de l’apprentissage des modèles comportementaux du robot dans le paradigme de planifica-
tion automatisée et d’ordonnancement (APS) de l’IA. Au cours de cette thèse, nous intro-
duisons divers systèmes d’apprentissage symbolique et approfondi, par les noms SPMSAT et
PDeepLearn, respectivement, qui facilitent l’apprentissage des modèles d’action et étendent
la portée de ces nouvelles techniques pour apprendre les modèles de comportement du robot.
L’objectif à long terme d’habiliter les robots à communiquer de manière autonome avec les
humains sans avoir besoin d’une intervention "wizard".
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Chapter 1

Introduction

1.1 Motivation

With the near simultaneous advances in mechatronics on the engineering side and ergonomics
on the human factors side, the field of social robotics has seen a significant spike in interest
in the recent years. Driven with the objective of rendering robots as socio-communicative,
there has been an equally heightened interest towards researching techniques to endow robots
with cognitive, emotional and social skills. The strategy to do so draws inspiration from
study of human behaviors. For robots, social and emotive qualities not only lubricate the
interface between humans and robots, but also promote learning, decision making and so on.
These qualities strengthen the possibility of acceptability and emotional attachment to the
robot (Breazeal, 2003; Breazeal, 2004). This acceptance is only likely if the robot fulfils a
fundamental expectation that one living being has of the other: not only to do the right thing,
but also at the right time and in the right manner (Breazeal, 2003). This acceptability is
seen to play a pivotal role in domains centered on human-robot interaction, such as Socially
Assistive Robotics (SAR).

SAR is also becoming indispensable owing to a shortfall in skilled human labor. In or-
der to render robots as assistive, they need to be “programmed” with socially acceptable
behaviours. For social robots to be brought more into widespread use in the fields of com-
panionship, care taking and domestic help, they must be capable of demonstrating social
intelligence. This social intelligence or “commonsense” of the robot is what eventually de-
termines its social acceptability in the long run.

“Commonsense”, however, is not that common. Robots can, thus, only learn to be accept-
able with experience. However, teaching a humanoid the subtleties of a social interaction is
not evident. Even a standard dialogue exchange integrates the widest possible panel of signs
which intervene in the communication and are difficult to codify (synchronization between
the expression of the body, the face, the tone of the voice, etc.). In such a scenario, learn-
ing the behavioral model of the robot in place of encoding these behaviors is a promising
approach. This learning can be performed with the help of AI techniques. This study tries
to solve the problem of learning robot behavioral models in the Automated Planning (AP)
paradigm of AI. In the domain of Automated Planning (AP), intelligent agents by virtue re-
quire an action model (blueprints of action definitions and descriptions whose interleaved
executions effectuates transitions of the system state) in order to plan and solve real world
problems. During the course of this thesis, we introduce two new learning systems which
facilitate the learning of action models, and extend the scope of these new systems to learn
robot behavioral models. This is in the interest of a long term objective to introduce be-
havioral autonomy in robots, such that they can communicate autonomously with humans
without the need of “wizard” intervention. This corresponds to one of the milestones set by
our funding project, ANR-SOMBRERO.

In response to the growing need of rendering robots as socially intelligent, the project
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ANR-SOMBRERO1 proposes to endow humanoid robots with cognitive, emotional and so-
cial skills by immersive teleoperation i.e.“beaming” of human pilots, interfacing this tele-
operated robot with human subjects with the intent of producing interaction data, and learn-
ing from this data the underlying behavioral model of the robot. The project has three core
phases:

• Perform beaming experiments involving adults interacting with a humanoid robot in
cooperative, situated and finalized tasks. The targeted task is a series of tests used
in neuropsychological records. We focus on the socio-communicative behavior that
should accompany the monitoring of the task, i.e. the correct comprehension of the in-
structions, the seamless execution of the task by the interlocutor, the positive feedback
and encouragement given along the performance and correction for errors, misunder-
standings or precisions,

• Develop and implement autonomous socio-communicative behaviors into the robot
cognitive architecture via statistical modeling of the multimodal behaviors monitored
during the prior robot-mediated interactions,

• Assess these behaviors and the achieved social embodiment with acceptance measures
and analysis of user attitudes.

The key feature of this project is the monitoring, characterization and learning of robot-
mediated sensory- motor loops via real-time beaming. By shaping pilots’ perception and
action skills through a robotic embodiment, SOMBRERO offers a unique way to study the
social acceptance and usage profiles of robots that do not have yet full-fledged autonomous
reasoning, scene understanding and action planning. We now explain the aforementioned
phases in finer detail as follows:

• Phase 1: “Beaming” phase
Our research strategy consists of endowing humanoid robots with cognitive, emotional
and social skills via immersive teleoperation (also known as beaming) by human pilots
(Argall et al., 2009; Verstaevel et al., 2015; Bailly, Elisei, and Sauze, 2015). Thanks to
this technique, a human operator can perceive, analyze, act and interact with a remote
person through robotic embodiment. A human operator will solve both the scaling
and social problems by optimally exploiting the robots affordances: we acknowledge
that humans are more experts in performing social interactions than engineering social
models. The experimental scenario consists of a humanoid piloted by a psychologist
interacting with patients to determine their level of memory loss. This interaction pro-
duces rich multimodal traces. During the beaming stage, the robot passively monitors
its sensory-motor state and stores these multimodal traces into a behavioral memory.
This process is also illustrated in figure 1.1. Once it has cumulated sufficient expe-
rience, semi-automatic machine learning techniques use this behavioral memory to
compute behavioral (action) models, explained better in the following phase.

• Phase 2: Multimodal behavior modelling phase
In this phase, the multimodal traces recorded in the previous phase are used to recon-

struct the core behavioral model of a robot, in a bid to automate its future multimodal
interactions with humans. The ability to learn the underlying action (behavioral) model
which produces these traces could save the effort from having to code these operators
from scratch, and promote re usability at the same time. It is very challenging to script

1The project context is a part of the SOMBRERO project financed by the French National Research Agency
(ANR) with a grant ANR-14-CE27-0014
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this behavioral model relying solely on the expertise of a domain expert who also, in
his own right, is likely to commit errors while scripting. The effort required by the
domain expert to script this subtle and delicate humanoid behavioral model can be di-
minished by ML. The work done in ML goes hand in hand with the long history of
planning, as ML is viewed as a potentially powerful means of endowing an agent with
greater autonomy and flexibility. It often compensates for the designer’s incomplete
knowledge of the world that the agent will face. The developed ML techniques could
be applied across a wide variety of domains to speed up planning. The underlying be-
havioral model is learnt from the experience accumulated during the dialog exchanges
between the robot and human. To explain this, it becomes necessary to ignore the def-
inite uncertainty in communication, and view the human utterances as speech acts. By
means of these acts, the speaker plans to influence the listeners’ beliefs, goals and emo-
tional states (Austin, 1975; Cohen and Perrault, 1979) with the intent of fulfilling his
own goals. Prosody is heavily interlinked with body movements and gestures which
complete the act. For example, the act of greeting somebody can be represented by the
sentence “Hello!” followed by the waving of the hand. These interleaved physical and
speech acts i.e. multi modal acts can be modeled as operators in a planning system,
and frameworks can be developed for providing their semantics (Sadek, 1991; Perrault,
1990). This HRI sequence can be dubbed into the AP paradigm. In the field of AP,
agents interact with the environment by executing actions which change the state of the
environment, gradually propelling it from its initial state towards the agents’ desired
goal. The speech act exchange sequence between the robot and human can thus be
treated as a sequence of actions which constitutes the plan execution traces (training
data). Each multimodal act sequence can thus be viewed as a plan execution trace.
Thus, the entire HRI can be viewed as plan execution traces in the AP paradigm, with
the intent to reconstruct the underlying behavioral (or action) model which serves as
the driving force of the interaction. This process is also illustrated in figure 1.2. This is
essentially the core contribution of this thesis towards the larger objective of the project
as a whole.

• Phase 3: Analysis of Achieved Autonomy and User Feedback
Once the behavioral model of the robot has been learned, it can be re-used to generate
a fresh dialog sequence between the robot and human, this time without the interven-
tion of a skilled pilot to preside over the proceedings. The execution of this dialogue
sequence is envisioned to be performed again with the patients of Phase 1. These pa-
tients would then be requested to provide their feedback on the quality and fluidity of
the interaction. This feedback would help determine the quality or shortcomings of the
learning approach, thus providing as a mechanism for continuous quality improvement
of the learning algorithms. This process is also illustrated in figure 1.3.

1.2 Problem Statement

While the overall objective of ANR-SOMBRERO is to endow robots with socio-communicative
autonomy, this particular study looks to tackle the reconstruction-specific challenges and
solve the modelling-specific hindrances which appear in the pipeline towards autonomy.
These challenges correspond principally to Phase 2 of the project. This study can be con-
sidered as a progressive step towards the attainment of socio-communicative autonomy in
robots. Thus, the central aim of this study is: given a set of plan execution traces from an
orchestrated HRI, we aim to propose novel learning systems capable of reconstructing the un-
derlying action model. This model can then be used to auto-generate interaction sequences
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FIGURE 1.1: Step 1 - Initial Run of HRI experiment by beaming (Bailly,
Elisei, and Sauze, 2015)

FIGURE 1.2: Step 2 - Learning the behavioral model from collected traces

to drive future autonomous interactions of the robot, subtracting the need for a skilled pilot.
Our problem is better illustrated with the Figure 1.4. The left part of the figure represents
the input to the reconstruction system, whereas the right part of the figure represents the be-
havioral model which is the output of the reconstruction system. The syntax and semantics
of the behavioral model will be explained in chapter 2. This learnt model can then be fed
to a planner which is capable of generating fresh interaction sequences to engineer future
Human-Robot Interactions, without the need of a human operator to preside over the robots’
vocal interactions (see Figure 1.3).

1.3 Contribution of this Study

This study proposes two novel learning systems which view the problem of reconstruction
from two different perspectives and solves them accordingly. The input to both these learning
systems are alternating sequences of symbolic representations of (i) executed actions and (ii)
the state of the execution environment as a result of the action execution (called the planning
state); constituting a trace. A planning state is the current state of the world represented in
the form of ground atoms of predicate logic (called predicates) that evaluate to true in that
state: all other atoms assumed to be false. Actions have a name and a signature, accompa-
nied by preconditions and effects, both of which are represented in the form of conjunctions
of predicates. An action is applied to a world state by binding all the parameters in the sig-
nature to the constants of the world state, creating an action instance. The precondition of
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FIGURE 1.3: Step 3 - Autonomous re-run of HRI

this created action instance must be satisfied in the current state, allowing the effects of the
action to take charge of changing the world state. The atoms, both positive and negative,
comprise the effects and are responsible for changing the world state: positive effects make
the predicate true in the new state, while negative effects make the predicate false. Each such
sequence of executing actions catalyze the gradual progression of the world state from an
initial one towards a desired goal state. Summarizing, each sequence of:

• Initial state

• Alternating sequence of action applications and resulting state representations, and

• the goal state

constitutes a trace. An action model m is the blueprint of all the domain-applicable actions.
Each action is defined as an aggregation of:

• the action signature (consisting of the action name with zero or more arguments),

• three lists, namely (pre, add and del). These are the pre list (predicates whose satis-
fiability determines the applicability of the action), add list (predicates added to the
current system state by the action execution) and the del list (predicates deleted from
the current system state upon action execution), respectively.

. The goal of both of the learning systems can be illustrated with the following example. AP
defines a number of synthetic planning domains (simplified domains in classical planning
aimed to reduce the size of the problem space), out of which we use the gripper domain to
formulate our learning problem (figure 1.5). In this domain, the task of the robot is to move
an object from one room to the other. The principal actions in this domain (mentioned on the
left of the image) are (move, pick, drop). The principal predicates include: at (true if object
?obj is present in room ?room), at-robby (true if robot ?r is present in room ?room), free
(true if gripper ?g of robot ?r is free), carry (true if object ?obj is carried in gripper ?g of
robot ?r). We represent a snippet of the learnt model with the actions pick (a robot picks up
an object in a room with either its left or its right gripper) and move (a robot moves from one
room to another) on the right.

The proposed systems are first tested on AI planning domains (gripper being one of them)
to validate the conceptual strength of these systems. They are then tested with HRI traces
in a bid to validate the applicability of the systems to a real-life scenario. This real-scenario
testing comes with its share of issues. Dialogue planning for HRI is not straightforward as
the interleaving between various body gestures and utterances which constitute multimodal
dialogues is highly delicate (Arora et al., 2016).. In such cases, since the intricacies and
subtleties are so barely identifiable, even expert intervention would not be sufficient to render
the model reusable. The work plan followed in this study is better illustrated in Figure 1.6.

Our principal contributions in this study are outlined as follows:
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FIGURE 1.4: Objective of the two reconstruction systems proposed in this
study. The left block symbolizes the input to the reconstruction system while
the right block symbolizes the output of the reconstruction system. The syn-
tax of the learnt model is as follows: this model consists of two actions,
namely sayHello and say. Each action is broadly represented by its signature,
preconditions (predicates or properties representing the world state which
serve as prerequisites for the execution of the action), and effects (properties
which are either added or deleted from the world state following the execu-
tion of the action). Each action is syntactically represented by its name (adja-
cent to the :action tag), parameters (adjacent to the :parameters tag), precon-
ditions (adjacent to the :preconditions tag, consisting of predicate names and
signatures), and effects (adjacent to the :effects tag). This syntax is written
in the PDDL (Planning Domain Description Language) (McDermott et al.,

1998) language.

• SAT-based Techniques: The SRMLearn System
To learn the underlying action model, it is possible to exploit intra-action and inter-
action dependencies and constraints. While the intra-action constraints deal with the
syntax of the action, the inter-action ones exploit the semantic relationship between
successive action in a plan sequence. We present an approach called SRMLearn (Sequential
Rules-based Model Learner), which encodes the aforementioned constraints in the
form of a maximum satisfiability problem (MAX-SAT), and solves it with a MAX-
SAT solver to learn the underlying action model. Unlike previous MAX-SAT driven
approaches, our chosen constraints exploit the relationship between consecutive ac-
tions, rendering more accurately learnt models in the end. This approach is capable
of learning purely from plan execution sequences, subtracting the need for domain
knowledge. Experimental results highlight that the learnt model is syntactically diver-
gent from the hand woven model (ground truth action model which representing the
domains of the benchmarks), thus requiring further refining at the hands of a domain
expert. This motivates our search for other techniques which go a step further in reduc-
ing the need for human intervention, resulting in the below mentioned learning system
called PDeepLearn.

• Connectionist Techniques: The PDeepLearn System
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FIGURE 1.5: Illustration of our learning problem

We introduce our approach which is called PDeepLearn, which stands for PDDL do-
main Deep Learner. It uses long short-term memory (LSTM) techniques for the ac-
quisition of the underlying action model. We use the sequence labelling capabilities
of LSTMs to predict the next action in a plan execution sequence based on previously
observed actions. This is done by iteratively testing the sequence labelling capabili-
ties of each of the models sampled from an exhaustively generated then trimmed set
of all possible action models. Empirical results highlight that the sequence labelling
achieved with an empirically isolated model speculated to be identical to the hand
woven model attains the highest accuracy compared to other models in the set. The
structural consistency of the acquired model with the hand woven model renders this
LSTM-based sequence labelling approach to learn action models as an effective one.

1.4 Thesis Outline

This section provides a brief overview of the contents of the following chapters.

• Chapter 2 provides an overview of some notions in Automated Planning (AP). It pro-
vides introductory definitions and descriptions of elemental concepts such as actions,
predicates etc. which are building blocks to more complex concepts such as action
model, plan, trace etc. It provides an account of the various languages used in AP to
represent problem, domain and solution descriptions. These languages are listed with
their syntax representations, advantages and shortcomings. Some applications of AP
in the real world are highlighted to demonstrate the potential of the field in solving real
world problems. We also provide a brief account of the usage of AP in HRI with the
intent of planning of socio-communicative acts to endow the robot with interactional
abilities in their bid to interface with humans.

• Chapter 3 provides an account of the literature centered around the learning of action
models. It identifies certain key characteristics of learning systems, such as the kind
of input, kind of output, format of traces, stochastic nature of environment and ac-
tions, presence/absence of background knowledge, family of learning algorithms etc.
It uses these characteristics to classify and categorize the algorithms to the best possible
extent. The classification is primarily done on the basis of the family of learning algo-
rithms the particular approach belongs to: like inductive learning, analytical learning,
reinforcement learning, neural networks etc. These classifications are nourished by the
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FIGURE 1.6: Work plan followed in this study. The blocks on the left and
the right represent the two learning systems introduced during the course
of this study, and their eventual application to different sets of data. The
introduced systems (non-optimal SAT-based techniques and connectionist
techniques) are first tested on benchmark domains available in the field of
AP to validate their correctness. These approaches are then applied to HRI
traces to reconstruct the underlying behavioral model in the PDDL format.

identified characteristics in order to present to the reader a concrete representation of
the learning system, seconded by the characteristics of the individual approaches. We
then provide for the ease of the reader: (i) a tabular representation of the learning sys-
tems characterized by the aforementioned criteria, and (ii) an algorithmic “cheat sheet”
intended to help the reader choose an approach from the literature based on their indi-
vidual envisioned output and provided inputs. We then provide a brief account of our
chosen approaches, justifying our choice vis-a-vis the state of the art.

• Chapter 4 is pivoted on more classical techniques to learn action models. Since these
techniques render an incomplete model in the end, they are labelled as “Non-optimal
learning techniques”. In this chapter, our objective is to learn the underlying action
model that resembles the ground truth model to the highest possible extent, thus fa-
cilitating the work of domain experts who would only have to do minimal additions
to the learnt model in order to make it usable. To learn this model, it is possible to
exploit intra-action and inter-action dependencies and constraints. While the intra-
action constraints deal with the syntax of the action, the inter-action ones exploit the
semantic relationship between successive actions in a plan sequence. We present an ap-
proach called SRMLearn (Sequential Rules-based Model Learner), which encodes the
aforementioned constraints in the form of a weighted maximum satisfiability problem
(MAX-SAT), and solves it with a weighted MAX-SAT solver to learn the underlying
action model. Unlike previous MAX-SAT driven approaches, our chosen constraints
exploit the relationship between consecutive actions, rendering more accurately learnt
models in the end. Our approach is capable of learning purely from plan execution se-
quences, subtracting the need for domain knowledge. SRMLearn uses a bare minimum
of domain knowledge in the form of state-action interleaved traces in the input to learn
an action model as the output. It proceeds in the following fashion: it defines a set
of intra-action constraints, both syntactic and semantic in nature. It then defines cer-
tain inter-action constraints which exploit short and long-term dependencies between
actions in the sequence by means of pattern mining techniques. Finally, it encodes
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all the aforementioned constraints in the form of a satisfiability problem and solves
the problem with the help of a MAX-SAT solver. The solved constraints are used to
reconstruct the underlying action model. While there are other approaches in the lit-
erature that learn action models by encoding it in the form of a satisfiability problem
(for example ARMS (Yang, Wu, and Jiang, 2007)), empirical results of our evalua-
tion demonstrates a higher accuracy of the learnt model with SRMLearn. However,
the results highlight a syntactic divergence of the learnt model from the hand woven
model, eliciting the need of a domain expert to “fine tune” the model in order to make
it usable. This motivates our search for other techniques which go a step further in re-
ducing the gap between the learnt and ground truth model, resulting in the conception
of the below mentioned learning system called PDeepLearn.

• Chapter 5 Speaks about the use of optimal learning techniques to learn action models.
Most of the approaches highlighted in the previous chapter start from scratch to build in
a brick-by-brick fashion the eventual action model. These, however, are deemed insuf-
ficient for they stay shy of learning the entire model, resulting in an incapability to feed
the learnt model to a planner to consequently plan again. There is an imperative need of
a domain expert to “fine tune” the learnt model to make it ready to plan again. With the
intent of taking the human out of the loop, we follow an exhaustive model generation
technique, gradually filtering down to the most optimum model which best explains
the traces. The exhaustive generation step, although cumbersome and computationally
intensive, ensures that there is no lack of information, and there is atleast one model
in the exhaustive set which contains all the required information. These exhaustively
generated models are then filtered down by means of syntactic and semantic pruning
techniques furnished by pattern mining algorithms such as TRuleGrowth (Fournier-
Viger, Nkambou, and Tseng, 2011). Since a plan by virtue is a sequential execution
of actions which bear dependencies, we use the sequence labelling capabilities of the
LSTM (Long Short Term Memory) family of memory based recurrent neural networks
(Hochreiter and Schmidhuber, 1997) to identify the most appropriate model which best
explains the plan traces. The LSTM is extensively used in the fields of language pro-
cessing and computer vision as it is ideal to cater to long-term dependencies among
entities such as those among words of a sentence and images. Our approach is called
PDeepLearn, which stands for PDDL domain Deep Learner. Promising results with
PDeepLearn indicate a definite potential of deep learning techniques to learn action
models.

• Chapter 6 employs the optimal and non-optimal learning techniques introduced in the
aforementioned chapters to learn the behavioral model of the robot. This chapter in-
troduces an approach to learn robot behavioral models from HRI traces in the form of
PDDL action models using a MAX-SAT framework. This learning approach is very
much on the lines of SPMSAT, using intra-action constraints and inter-action ones
which have been isolated with the help of pattern mining techniques to learn patterns
in temporal time sequences. The Temporal Interval Tree Association Rule Learning
(Titarl) algorithm (Guillame-Bert and Crowley, 2012) allows the representation of im-
precise and inaccurate temporal information between speech acts considered as sym-
bolic events. It also helps to mine temporal association rules which are used to form
soft constraints. All the constraints are encoded in the form of a satisfiability problem
and solves the problem with the help of a MAX-SAT solver. The solved constraints
are used to reconstruct the underlying action model. The learnt model is used to label
speech acts in the HRI exchanges using the sequence labeling capabilities of the LSTM
network. The relatively high error rates of the reconstructed model are attributed to the
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linear structure of the predicates relative to the actions of the hand woven model, in-
troducing discrepancies in the form of falsified predicates in the output. We conclude
that a reworking of the semantics of the hand woven model in terms of the utilized
predicates is required to boost the learning rate and further reduce the error. The se-
quence labeling achieved with the corrected behavioral model is however encouraging,
demonstrating the fact that the learnt model represents the most appropriate feature set
for the given problem.

• Chapter 7 provides a closing perspective to the work done in this study. It highlights
some of the shortcomings of AP in learning action models and using the learnt mod-
els to solve real world problems. It also highlights the shortcomings of our learning
approaches when applied to the HRI traces to learn behavioral models. We finish by
outlining some future perspectives from the current state of the study.
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Chapter 2

Automated Planning- Theory,
Language and Applications

2.1 Introduction

Automated planning has been a continuous field of study since the 1960s, since the notion
of accomplishing a task using an ordered set of actions resonates with almost every known
activity domain. However, as we move from synthetic domains closer to the complex real
world, these actions become increasingly difficult to codify. The reasons range from intense
laborious effort, to intricacies so barely identifiable, that programming them is a challenge
that presents itself much later in the process. In such domains, planners now leverage recent
advancements in machine learning to learn action models i.e. blueprints of all the actions
whose execution effectuates transitions in the system. This learning provides an opportunity
for the evolution of the model towards a version more consistent and adapted to its envi-
ronment, augmenting the probability of success of the plans. It is also a conscious effort to
decrease laborious manual coding and increase quality. This chapter introduces the domain
of Automated Planning (AP), the problem of learning action models in AP and characteris-
tics and features of learning systems in the field. These characteristics and criteria serve as a
means to classify the learning systems introduced in the next chapter.

2.2 AP Formulation and Representation

Automated Planning (AP) is a means-end reasoning i.e. the process of deciding how to
achieve a goal given a set of available and applicable actions. We begin with some definitions
of fundamental concepts. The following definitions have been derived from (Ghallab, Nau,
and Traverso, 2004).

Definition 1 (Predicates and Actions). Predicates are properties that constitute the world
state and actions. Here, each action a∈A where A = {a1, a2, . . . an}, n being the maximum
number of actions in the domain. We use actions and operators interchangably in our context.
States are defined to be sets of ground (positive) predicates.

Definition 2 (Classical Planning). Classical planning is the branch of planning in which
predicates are propositional: they do not change unless acted upon by the planning agent.
Moreover, all relevant attributes can be observed at any time, the impact of action execution
on the environment is known and deterministic, the effects of action execution occur instantly
and so on (Zimmerman and Kambhampati, 2003).

Definition 3 (Action Model). An action modelm is the blueprint of all the domain-applicable
actions belonging to the set A = {a1, a2, . . . an}. Each action is defined as an aggregation of:

• the action signature (consisting of the action name with zero or more arguments),
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• three lists, namely (pre, add and del). These are the pre list (predicates whose satis-
fiability determines the applicability of the action), add list (predicates added to the
current system state by the action execution) and the del list (predicates deleted from
the current system state upon action execution), respectively.

Definition 4 (Planning Problem). A planning problem is a triplet P = (STS, s0, g) com-
posed of:

• the initial state s0 of the world,

• the goal g, (set of propositions representing the goal to achieve), belonging to the set
of goal states Sg, and

• the state transition system (STS).

Definition 5 (STS). The STS in the previous definition is formally a 3-tuple (S,A, δ) further
composed of

• S = {s0, s1, s2, . . . , sn} as the set of states,

• A = {a0, a1, a2, . . . , an} as the set of actions,

• δ : (S ×A→ S) is the state transition function (Ghallab, Nau, and Traverso, 2004)).

All the aforementioned elements in this section contribute to the formulation of a plan.

Definition 6 (Plan). A plan, given the initial state of the system, goal, and an action model,
is a sequence of actions π = [a1, a3, a2, . . . , an] that drives the system from the initial state
to the goal. This plan is usually generated by a planner.

The transition from the initial state to the goal is driven by the previously mentioned tran-
sition function in Definition 5 (Ghallab, Nau, and Traverso, 2004) as:

δ(s, π) =

{
s if |π| = 0

δ(δ(s, a1), [a2, . . . ak]) if precond(a1) ⊆ s

This transition function, when applied to the set of the current state and the applicable
action, produces the next state as:

si+1 = δ(si, a) = (si − del(a)) ∪ add(a)

This transition function, when successively applied to the resulting intermediate states at
each step, leads to the goal.

We explain the aforementioned definitions in the form of a concrete example. AP de-
fines a certain number of artificial domains, one of the most famous ones being Blocksworld.
It consists of a set of blocks resting on a table, the goal being to build one or more piles
of blocks. However, only one block may be moved at a time: either placed on top of an-
other block or on the table. A sample problem in the Blocksworld domain with its solution
sequence is represented in the figures 2.1 and 2.2.
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FIGURE 2.1: Problem definition. The objective of the planner is to generate
a plan which will allow the robot to re-order the blocks constituting the stack
in such a way that the block D from the top of the stack (initial state of

system) is placed at the bottom of the stack (goal of the system)

FIGURE 2.2: Solution steps. In this sequence of steps, the robot successively
unstacks all the blocks and places them on the ground, after which it proceeds
to restack them, keeping block D at the bottom. Each step is representative
of a system state as successive stacking and unstacking actions propel the

system to the goal.

2.3 Languages in Automated Planning

AP problems and domains are typically represented in a standard language called the Plan-
ning Domain Definition Language (PDDL). It has been the official language for the represen-
tation of the problems and solutions in all of the International Planning Competitions (IPC)
which have been held from the year 1998 onwards.

The PDDL representation of the actions and the sequence of steps leading to the final
block configuration can be summarized in the figure 2.3. The left of the figure represents
the sequence of actions to achieve the goal mentioned in Figure 2.1: pick-up, putdown, stack
and unstack. The right of the figure represents a magnified view into two of the four actions,
namely stack and unstack. These actions are constituted by the following predicates: hold-
ing (true if the block is being held), clear (true if the block does not have another block sitting
on top of it), arm-empty (true if the arm stacking and un-stacking the blocks is empty) and
on (true if one block is on top of another). In the PDDL representation of these actions, the
name of the action follows the : action tag. Similarly, the parameters constituting the action
signature follow the : parameters tag. The preconditions and effects of the action are rep-
resented as a conjunction of predicates follow the :precondition (equivalent to the pre list in
Definition 5) and :effect (equivalent to the add and del lists in Definition 5) tags respectively.
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FIGURE 2.3: PDDL Representation Of the actions stack and unstack in the
Blocksworld domain

Choosing a good representation language which accurately models every action effect the
system might encounter and no others is essential. Any extra modeling capacity is wasted
and complicates learning, since the system will have to consider a larger number of potential
models, and be more likely to overfit (Pasula, Zettlemoyer, and Kaelbling, 2007). Some lan-
guages in the domain of AP and their features are summarized in the table 2.1. We return to
our example of the Blocksworld domain, and refer to the action pick-up which represents the
picking up of a block from the table or from another block. A syntactic representation of the
action pick-up of the Blocksworld domain in six prominent languages (described in table 2.1)
can be found in table 2.2. An analysis of the language formats facilitates our choice of the
representation language. From the descriptions, characteristics as well as the limitations of
the various languages, we choose PDDL as our choice of representation language. Since
we intend to learn deterministic models with classical representations of actions, predicates,
types and constants; a language on the lines of STRIPS only flexible enough to include typ-
ing is sufficient for our learning problem. This is our key reason behind our choice of PDDL
as a representation language.
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TABLE 2.1: Representation Languages in AP (PDDL = Planning Domain
Definition Language, PPDDL = Probabilistic PDDL, OCL = Object Cen-
tered Language, RDDL = Relational Dynamic Diagram Language, ADL =

Action Description Language)

Language Features Limitations

PDDL
(McDermott et al., 1998)

(i) Machine-readable, standardized
syntax for representing STRIPS
and other languages.
(ii) Has types, constants, predicates
and actions

Goal cannot be
included into
action models

PPDDL
(Younes et al., 2005)

(i) Extension of PDDL2.1
as the standard high
level planning language
for probabilistic planners
(ii) Supports actions with
probabilistic effects

Goal cannot be
included into
action models

STRIPS
(Fikes and Nilsson, 1971)

Sublanguage of PDDL

(i) Accounts for
deterministic not
probabilistic actions
(ii) Requires exponential
number of samples to learn

OCL (Mc-
Cluskey,
Richardson,
and Simpson,
2002)

High level language with
representation centered
around objects instead
of states

Cannot be input
into standard
planners

RDDL
(Sanner, 2010)

STRIPS + functional terms,
leading to higher expressiveness

Does not cater
to non-determinism

ADL
(Pednault, 1989)

STRIPS operators augmented with
quantifiers and conditional effects,
resulting in situational
calculus-like expressiveness

Computational efficiency
proportional to
knowledge of initial state
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Language Domain Action Definition

PDDL %Definition of the blocksworld domain
(define (domain BLOCKSWORLD)

%Declaration of used packages
(strips, typing)
(:requirements :strips :typing)

%Declaration of constant objects
(:types block)

% Declaration of symbolic facts
(:predicates (on ?x - block ?y - block)
(ontable ?x - block) (clear ?x - block)
(handempty) (holding ?x - block))

% Action definition
(:action pick-up
:parameters (?x - block)

% Preconditions for action applicability
:precondition (and (clear ?x) (ontable ?x)
(handempty))

% Action-induced object transitions
:effect (and (not (ontable ?x)) (not (clear ?x))
(not (handempty)) (holding ?x)))

PPDDL

% Action definition
(:action pick-up
:parameters (?x - block)

% Preconditions for operator applicability
:precondition (and (clear ?x) (ontable ?x) )

% Action-induced object transitions
:effect (and (when (not (handempty))
(probabilistic 0.00) (and (clear ?x)
(ontable ?x)) (when (handempty)
(probabilistic 1.00) (and (not (ontable ?x))
(not (clear ?x)) (not (handempty))
(holding ?x)))

STRIPS

%Definition of the blocksworld domain
(define (domain BLOCKSWORLD)

%Declaration of used packages (strips)
(:requirements :strips)

% Declaration of symbolic facts
(:predicates (on ?x ?y)
(ontable ?x) (clear ?x)
(handempty) (holding ?x))

% Action definition
(:action pick-up
:parameters (?x)

% Preconditions to apply operator
:precondition (and (clear ?x)
(ontable ?x)(handempty))

% Action-induced object transitions
:effect (and (not (ontable ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))

Action representation in STRIPS
:action (pick-up (b)
PRECOND :
clear(b) ∧ ontable(b) ∧ handempty
EFFECT : ¬ontable(b) ∧ ¬clear(b)
∧¬handempty ∧ holding(x)
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OCL

% objects (Type and instances of each object)
objects (block, [block1])
objects(gripper, [tom])

% All predicates
predicates([on_block (block,block),
on_table (block), clear (block),
gripped (block,gripper), busy (gripper),
free (gripper)])

%Substrate Class (sc): “typical situations" an
object of a particular sort may exist in due to
planning process
operator (grip_from_table (B,G)

% prevail (preconditions for operator
applicability)
[]

% necessary (transitions for objects
changed by action)
[sc (block, B,[on_table (B),clear (B)]
=>[gripped (B,G)]),
sc (gripper,G,[free (G)] =>[busy (G)])]

% conditional (optional conditions)
[]
)

TABLE 2.2: Representation of action “pick-up” of the Blocksworld domain
in various languages

2.4 Applications of AP

This section highlights some of the feats of AP in terms of deployments in real-world appli-
cations and serving actual needs.

Planning has found its place into an array of real world applications which range from hu-
man multi-drones search-and-rescue missions (Bevacqua et al., 2015), single-operator multi-
aircraft guidance (Strenzke and Schulte, 2011) to military evacuation operations (Muñoz-
Avila et al., 1999).

Robotics is one of the most appealing application areas for AP. The fast-developing world
of social robotics has cited planning and its ability to scale to real-world problems posed by
robotics as a key issue to resolve. This is because most work done in AP is focused on action
planning, whereas actions are not the only aspects that a robot reasons upon. Planning also
needs to account for temporal, causal, resource and information dependencies between com-
putational, perceptual, and actuation components (Di Rocco, Pecora, and Saffiotti, 2013).
This is increasingly falling into place. For example, the ROBIL team in the DARPA robotics
challenge (DRC) (www.darpa.mil/NewsEvents/Releases/2012/10/24.aspx) used hierarchical
plans for runtime monitoring of resources (Cohen, Shimony, and Weiss, 2015). The DARPA
Grand Challenge is pivoted on path planning for autonomous vehicles, thus is beyond the
scope of this work. All in all, these works are gradual steps towards conceptualizing au-
tonomous systems.

Achieving autonomous systems is one of the most prominent challenges of AP. AI plan-
ners have been successfully used in a wide range of applications with the intent of con-
tributing towards the creation of autonomous systems. However AP alone is not sufficient
to achieve autonomy, and requires the amalgamation of perception, comprehension and pro-
jection capabilities in order to achieve contextual awareness leading to fully autonomous
behavior (Endsley and Garland, 2000). From the perspective of AI planning and within the
scope of this work, we present a list of non-exhaustive guidelines that a robotic system can
follow in order to be proclaimed autonomous:
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• Capability of Autonomous Exploration and Conservative Planning: a robot must be
capable of observing its surroundings using onboard sensors, selecting from a set of
candidate locations, planning a trajectory and autonomously navigating to the selected
location (Gregory and Lindsay, 2016). Conservative planning is a method that seeks
to exploit the classical planning framework, while simultaneously recognizing the op-
portunities (unexpected events). These opportunities are then used to increase the plan
utility during its execution (Cashmore et al., 2016a).

• Persistent Autonomy: a robot must be capable of planning long-term behaviour and
performing activity over extended periods of time without human intervention (Cash-
more et al., 2016b).

• Interleaving with other tasks: This entails the combination of two types of planners: AI
task planners that handle the high-level symbolic reasoning part and motion planners
that plan the movements in space and check the geometrical feasibility of the plans
output by the task planners (Ferrer-Mestres, Frances, and Geffner, 2015). It also entails
concurrent planning and execution abilities so that the robot can achieve its goal as
quickly as possible.

AP techniques have also been used extensively in the field of space exploration, notably
in satellite, rover and spacecraft missions. For example, the Deep Space One employed a
constraint-based integrated temporal planner and resource scheduler which performed peri-
odic planning to manage resources and develop plans to achieve goals in a timely manner
(Muscettola et al., 1998), (Pell et al., 1997).

2.5 Automated Planning in HRI

On the robotics side, there has been considerable work done on usage of state-of-the-art su-
pervised (Young et al., 2013) and non-supervised (Fung and Liu, 2003) machine learning
techniques for continuous sensorimotor spaces, task-oriented robot behavior learning (Fung
and Liu, 2003) and so on. Our work, however, is concentrated on the learning of PDDL
(Planning Domain Description Language (McDermott et al., 1998), syntax for planning do-
mains) based behavioral models for robots. In other words, it is the extension of the notion
of learning action models in AP and applying it to the HRI domain.

In general, AP methods can help an AI system to reason about how to interact. By
equating the system’s communicative goals to goals of planning problems, appropriate plans
that solve these problems can be created. Because effects of both linguistic (e.g., factual
description of a location) and physical (e.g., locomotive acts enabling an addressee to arrive
at that location) nature could result from an utterance, planning in HRI involves a mix of
linguistic and non-linguistic elements. This fundamental form of reasoning, centric to both
human and artificial intelligence, has been employed in computational models of natural
language in different ways. On the linguistic end, AP has principally been used in the case of
natural language generation and understanding. Early work has shown how speakers’ acts of
producing certain types of utterances can be modeled in terms of planning actions, and how
such acts can be automatically generated. Later work enriched this kind of planning in two
principal ways: with physical acts of some sort, with the intent of capturing the speakers’
behaviour; and with a grammar, with the intent of constructing, word by word, full sentences
that obey the grammar rules. Another line of research has employed planning for natural
language understanding instead of generation, inferring a speaker’s plans (thus their desired
communicative goals) by observing their actions (Garoufi, 2014).

Sticking to the case of natural language generation which is closer to our cause, the gener-
ation of a meaningful utterance is what termed a speech act (Austin, 1975). Since producing
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utterances is much like performing speech acts, and AP can be used to figure out which se-
quences will achieve a desired goal, the question arises whether planning methods, given
the action model and a planning problem as input, can be applied to the automatic genera-
tion of utterances. (Perrault and Allen, 1980) were among the first to explore this question,
arguing that the same processes used to construct plans of physical actions could also be
used to construct interleaved sequences of speech acts. They showed how techniques from
classical planning could be employed to the generation of speech acts for the satisfaction of
a speaker’s communicative goals. The authors focused on requesting and furnishing infor-
mation in a cooperative task-based dialog setting. Modeling speech acts as planning actions
based on the agents’ mental states has been the topic of a considerable amount of later work
(e.g., (Cohen and Levesque, 1988) refine the semantics of speech acts using a modal tem-
poral logic). This expressive formalism, which is based on philosophical foundations laid
out by (Bratman, 1987), formalizes the principles of rational action using reasoning about
the beliefs, desires, and intentions (BDI) of agents participating in dialog, thus referred to as
BDI-based framework of communicative planning.

Bratman principally defines intention, an attitude whose key role is to influence an agent
to performing rational action. Intention instigates action rather than merely influencing it. It
is“a distinctive attitude, not to be conflated with or reduced to ordinary desires and beliefs”
(Bratman, 1987). Desires merely influence behavior because they than contribute to a sum of
competing as well as cooperating forces, whereas intentions do not have to deal with compet-
ing intentions, thus retaining control. The functional role of intention is more comprehensible
in case of plans for the future rather than in the case of current-day or immediate ones. The
role of future-directed plans is to help an agent to solve a practical problem incrementally and
in advance, rather than at the moment when an action is indispensable. A downside of the
BDI approach is that it typically does not address uncertainty, which is a key component of
real-world interactions. Among other works, (Steedman and Petrick, 2007) generate speech
acts using (Petrick and Bacchus, 2002) contingent planning with knowledge and sensing
(PKS) system, aimed at constructing conditional plans to cover all possible surprises. AP-
based methods in the BDI paradigm have also been applied (Benotti and Blackburn, 2011)
use the classical FF planner (Hoffmann and Nebel, 2001) to construct plans from which con-
versational implicatures can be inferred. The literature also speaks of other approaches which
have treated dialogues as planning operators. In (Brenner, 2003) the authors introduce a new
language called MAPL (Multi Agent Programming Language) which represents speech acts
as operators with qualitative and quantitative temporal relations between them. Other works
also use AP to generate natural language sentences for communication (García-Martínez and
Borrajo, 2000; Garoufi and Koller, 2010; Marques and Rovatsos, 2016).

AP has been used to reinforce the communion between communicative and physical act
planning in the case of natural language generation, where language unfolds in the context
of a physical environment that the communicating agents share. In such an environment,
non-linguistic aspects of context like the agents’ spatial position can have a direct impact on
the type and form of language they choose to produce; spoken language can in turn have
its own impact on the agents’ future physical actions. Situated language planning thus be-
comes part of a more general architecture for an agent’s behavior planning, integrating both
speech and physical acts. Ideally, depending on their levels of embodiment, such agents
must be able to switch seamlessly among the planning of speech acts, the planning of phys-
ical acts, the execution of these plans, and the observation of their environment. (Brenner
and Kruijff-Korbayová, 2008) approach this problem with an algorithm for continual multi-
agent planning (Brenner and Nebel 2009). Functioning along the lines of continual planning,
agents do not only execute plans but they also monitor the validity of their current plans,
revising parts that are no longer executable. Along similar lines, (Briggs and Scheutz, 2013)
extend (Perrault and Allen, 1980) approach to the generation and understanding of indirect
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speech acts (in addition to direct speech acts and physical acts) in accordance with social
norms of conduct and politeness. In conclusion, AP has extensively been studied as a means
of lubricating the synergy between physical and speech acts in both dialog and task planning.

2.6 Conclusion

This chapter provides an overview of some notions in Automated Planning (AP). It provides
an account of the various languages used in AP to represent problem, domain and solution
descriptions. These languages are listed with their syntax representations, advantages and
shortcomings. Some applications of AP in the real world are highlighted to demonstrate the
potential of the field in solving real world problems. We also provide a brief account of
the usage of AP in HRI with the intent of planning of socio-communicative acts to endow
the robot with interactional abilities in their bid to interface with humans. The next chapter
uses these aforementioned criteria to characterize and label the various learning approaches
proposed in the literature.
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Chapter 3

Learning Systems in Automated
Planning

3.1 Introduction

As mentioned in our problem statement in section 1.2, we aim to learn a domain model en-
compassing all the domain-applicable actions which best explains the observed plan traces.
This chapter introduces the prominent learning techniques that have been employed by learn-
ing systems over the years. It then proceeds to classify the learning systems based on these
techniques, highlighting in brief the operational core of the classified systems.

3.2 Machine Learning (ML) in AP

Whilst good in theory, the creation of models in the case of complex domains is a non trivial
task. While it is possible to codify, debug and maintain action models pertaining to simple
artificial domains, it remains laborious, unfeasible and sometimes impractical to do so for
some complex real-world domains. The amount of effort needed to encode and maintain
accurate action models is significant. There is also no “one size fits all" strategy. Thus,
we seek help from various ML techniques which allow learning of the underlying action
model from traces produced as a result of plan execution. This learnt model can ideally be
re-injected into the planner for further planning purposes.

3.3 Characteristics of Learning Systems

During the course of this bibliographical review, we have been able to identify certain key
criteria which help us characterize the works in the literature. These criteria are described in
the following subsections. The ML techniques to learn from traces broadly fall into one of
the following categories:

• Online: Learning occurs during the execution phase (Zimmerman and Kambhampati,
2003). The system can start learning as soon as the generation phase is complete. This
kind of learning never stops, thus allowing the continuous correction and improvement
of an incorrect model and adaptation to changing environment characteristics. On the
flip side, the cost of learning is added to the cost of planning, augmenting the time
window in which execution occurs.

• Offline: One-shot learning exercise from traces. It allows a decoupling of the learning
and planning phases, ensuring that the cost of learning is not added to that of planning.
However, this one-time learning also means that in case of the injection of a faulty
domain, the planner may never be able to recover before the end of the planning and
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the beginning of the learning phase, thus staying blocked. Offline learning is the more
popular learning mechanism.

The characteristics of the learning systems in AP are detailed in the subsections below.

3.3.1 Representation Mechanism

This section tries to classify approaches based on the viewpoint the learning system is ob-
served from. The learning system can be seen as:

• Object-centered representation: While the onus is on learning action models from
action execution sequences, the focus is on the objects manipulated by an action during
the course of its execution. Each such operator is represented by a single parameterized
state machine. The learning systems which use this representation describe how object
descriptions change during the execution of the operator. The action model is generally
represented in OCL (Object Centered Language).

• Action-centered representation: A plan is viewed as an interleaved sequence of states
and actions representing the transition of the system from the initial state to the goal.
The action model in this case is generally represented in the form of PDDL and its
sub-languages or variants.

3.3.2 Inputs To The Learning System

The inputs to the learning system as well as some other characteristics (quality, quantity etc.)
go a long way in determining the output and its quality. The inputs to the system may include:
the model, the background knowledge and the traces; all three in varying capacities.

Model

Before the learning phase begins, the action model may exist in one of the following capaci-
ties:

• No Model: This refers to the fact that no information on the actions that constitute the
model is available in the beginning, and the entire model must be learnt from scratch.

• Partial Model: Some elements of the model are available to the learner in the be-
ginning, and the model is enriched with more knowledge at the end of the learning
phase.

Background Knowledge

Background knowledge (BK) is mostly required only in the absence of complete and correct
domain knowledge. The availability of this BK is inversely proportional to the planning effort
required. For example in the blocksworld domain, “only one block can be on top of some
other block" or “a block being held means that the robotic arm is not empty" is an illustration
of BK. To compensate for the absence of domain knowledge, this BK may also comprise of
object type definitions as well as predicate and intermediate state information (Jilani et al.
(2014)).

In most cases, BK restricts the possible action choices at every system state, thus speed-
ing up planning. This BK, however, may also be difficult to acquire. Depending on the
presence or absence of background knowledge, the associated learning techniques may ei-
ther be classified as analytical or inductive respectively. These techniques are discussed in
detail in section 3.4.1.
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Traces

Traces are the residue or the proof of the execution of a series of actions in a domain. They
represent a summary of the executed action and the resulting state of the world. These plan
execution traces may be classified into pure or adulterated as follows:

• Noisy: The traces can be adulterated because of sensor miscalibration or faulty an-
notation by a domain expert. For example, AMAN (Action-Model Acquisition from
Noisy plan traces) (Zhuo and Kambhampati, 2013) falls into this category.

• Ideal: There is no discrepancy between the ideal action and the recorded action. For
example, OBSERVER (Wang, 1996).

3.3.3 System Outputs

Action Granularity

Irrespective of whether the trace is represented in form of action sequences or state-action
interleavings, the actions can be classified as atomic or grouped. Atomic actions are unitary
actions applied to a system state to effectuate a transition. Macro actions, on the other hand,
are a group of actions applied at a time point like a single action, representing high level tasks
while encompassing low level details (Newton et al., 2007; Newton et al., 2008; Newton and
Levine, 2010). From a broader perspective, macros are like procedures in the programming
realm. They are promising because they are capable of aggregating several steps in the state
space, and providing extended search space visibility to the planner. Some merits of using
macros include:

• Macros generated from plans of smaller problems are scalable and can be evaluated
against larger problems.

• Macros allow planning of several steps at a time and allow for re-usability in plan snip-
pets. Knowledge acquired from macros can be integrated into the planner or encoded
into the domain (Newton et al., 2007; Newton et al., 2008; Newton and Levine, 2010).

Some limitations are as follows:

• They increase the processing time of the planner, adding more branches in the search
tree at every point in time. However, the problem is significantly reduced by search
tree pruning used by many recent planners (Newton et al., 2007).

• Macros often result in longer plans than when no macro is used (Newton and Levine,
2010).

State Observability and Action Effects

The observability of the current state of the system after the action execution may either
be perfectly certain or flawed because of faulty sensor calibration. For illustration, we take
the case of the SOMBRERO project. In the beaming experiments, the doctor manipulating
the robot has an eye tracking device mounted on their head, connected to the cameras in the
eyesockets of the robot. This helps the doctor remotely “see” the experimental setup and steer
the visual focus of attention of the robot in a more context-aware fashion. This device is also
equipped with a pupil tracker, tracking the movement of the pupil and helping to ascertain the
direction of focus of attention of the doctor. This tracker is inherently imprecise in its pupil
tracking, often wrongly estimating the position of the pupil thus the visual focus of attention.
In such cases of faulty calibration, the state of the system is only partially observable at run
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time, thus observations return a set of possible states (called as “belief states") instead of a
single state (Ghallab, Nau, and Traverso, 2004).

Similarly, actions are not necessarily deterministic (single outcome on execution) but
may be stochastic, that is: capable of producing multiple outcomes, each of them equipped
with a different execution probability.

Keeping these variations of action effects and state observability in mind, we define four
categories of learning systems:

• Deterministic effects, Full state observability: For example, the EXPO (Gil, 1992)
system.

• Deterministic Effects, Partial State Observability: In this family, the system may be
in one of a set of “belief states” after the execution of each action (Ghallab, Nau, and
Traverso, 2004). For example, the ARPlaces system (Stulp et al., 2012).

• Probabilistic effects, Full State Observability: for example, the PELA (Planning, Exe-
cution and Learning Architecture) system (Jiménez, Fernández, and Borrajo, 2008).

• Probabilistic Effects, Partial State Observability: Barring a few initial works in this
area (Yoon and Kambhampati, 2007), this classification remains as the most under-
studied one till date.

3.3.4 Learnt Model Granularity

Learning systems can be also be characterized according to the sheer amount of detail rep-
resented in the output representation of the learnt model. This can range from a bare-bones
STRIPS model produced in the output (Zhuo, Nguyen, and Kambhampati, 2013), to PDDL
models with quantifiers and logical implications (Zhuo et al., 2010), to PDDL models with
static predicates (predicates existing implicitly in operator preconditions and never appearing
in plans e.g. (Jilani et al., 2014)). Granularity is an important classification criterion because
of the fact that the choice of a certain algorithm would depend on the level of granularity
with which the environment needs to be modeled, thus determining the level of detail to be
represented in the learnt model. Granularity is used a criteria to classify the works summa-
rized in the table 3.1 based on the richness of the information learnt vis-a-vis the amount of
input provided.

3.4 Type of Learning

This section sheds light on some classical learning techniques which have been around and
in use for learning action models characterised in Chapter 2, as well as newer and interesting
techniques which have emerged with recent advancements and the broadening spectrum of
machine learning techniques. The algorithms described in this chapter are further summa-
rized in the form of table 3.1. These tables provide a bird’s eye view of the key characteristics
of each algorithm in terms of input provided, output produced, application environment etc.
These tables are described with the intent of serving someone who is new to the domain and
is looking to situate their problem in the context of a previously done work.

3.4.1 Learning Techniques based on availability of background knowledge

As discussed in section 3.3.2, the learning techniques based on the absence or presence of
background knowledge are classified into inductive and analytical learning techniques re-
spectively.
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Inductive Learning

The learning system is fed with a hypothesis space H of possible rules and a set of traces
T (defined in section 1.3). The desired output is a hypothesis from the space H that is con-
sistent with these traces (Zimmerman and Kambhampati, 2003). Inductive techniques are
useful because they can identify patterns and generalize over many examples in the absence
of a domain model. One prominent inductive learning technique is that of regression tree
learning. Regression trees are capable of predicting continuous variables and modeling noise
in the data. In comparison to a decision tree which predicts along a category (i.e. class), a
regression tree performs value prediction along the dependent dimension for all observations
(Balac, Gaines, and Fisher, 2000).
The PELA (Planning, Execution and Learning Architecture) system (Jiménez, Fernández,
and Borrajo, 2008) performs the three functions suggested in its name to generate probabilis-
tic rules from plan executions and compile them to refine and upgrade its planning model.
The upgraded planning model inculcates in the existing deterministic model two kinds of
information: state-dependent probabilities of action success and state-dependent predictions
of execution dead-ends. This model may be represented in PDDL as well as PPDDL for-
mats. This is done by learning a relational decision tree for every action in the planning
domain using the TDIDT (Top-Down Induction of Decision Trees) (Quinlan, 1986) algo-
rithm. Each branch of the learned decision tree represents the following about the pattern
of performance of the action in question: (i) the internal nodes of the branch represent con-
ditions under which the pattern of performance is true, and (ii) the leaf nodes contain the
corresponding conditions representing the performance of the action (success/failure/dead-
end) and the number of examples covered by the pattern. Once done, all the trees of all the
actions are combined to produce an action model with conditional or probabilistic effects. In
ERA (Exploration, Regression tree induction and Action models) (Balac, Gaines, and Fisher,
2000), a robot learns action models for its navigation under various terrain conditions. With
each exploration step, the robot records the executed action, the current terrain conditions
and positions before and after the action execution. When exploration is finished, the data is
divided into groups based on action type and a regression tree induction algorithm is applied
to the data for each action type. This algorithm then builds a regression tree representing the
model and expected outcome of that particular action.
LOCM (Cresswell, McCluskey, and West, 2009) uses an object-centered representation and
learns a set of parameterized Finite State Machines (FSM). These FSMs are then exploited
to identify pre- and post-conditions of the domain operators (Jilani et al., 2014).

LOCM2 (Cresswell and Gregory, 2011) is generalized and heuristic in nature to allow
multiple state machines to represent a single object. This extends the coverage of domains
for which a domain model can be learned. Unlike LOCM, LOCM2 constructs many possible
solutions to the same problem. The heuristic is used to select a single solution from these
possible solutions. The limitation of both LOCM and LOCM2 is that they learn only the
dynamic properties of the system and not the static ones. This means that the learned models
produce plans which are shorter than optimal solutions. This is a drawback as many systems
use static predicates (predicates that never change) to contain the set of possible actions. This
limitation is addressed by the NLOCM system.

NLOCM (Gregory and Lindsay, 2016) extends classical planning to numerical planning
i.e. learns action costs in planning domains from state transition sequences using a constraint
programming approach. It uses the LOCM2 and LOP systems as pre-processing steps. While
the LOCM and LOCM2 algorithms only learn the dynamic aspects of the domain, the LOP
system (Gregory and Cresswell, 2015) learns static relations. NLOCM extends the FSM of
LOCM to an automata with numeric weights on the important features. A set of templates is
defined for each operator which contributes to the action cost of that operator in the domain.
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The algorithm successively solves more and more complex template sets (all possible subsets
of operator parameters) until a satisfying assignment which minimizes the complexity cost is
found. These templates are used to find the valid cost models.

Opmaker (McCluskey, Richardson, and Simpson, 2002) is a mixed initiative (planning
methodology where both the human and the machine take initiative) tool to induce operators
from action sequences, domain knowledge and user interaction. These operators are param-
eterized and hierarchical in nature. OCL is used to model the domain. For each action in
the training solution sequence, it asks the user to input, if needed, the target state that each
object would occupy after the action execution, thus creating its operator schema step-by-
step. It is implemented inside a graphic tool called GIPO (Graphical Interface for Planning
with Objects), which facilitates user interaction, domain modeling and operator induction
(McCluskey, Richardson, and Simpson, 2002; Jilani et al., 2014).

FIGURE 3.1: Opmaker Screen

Opmaker2 (McCluskey et al., 2009) is an improvement over Opmaker such that it elim-
inates the dependency on the user for intermediate state information. After Opmaker2 au-
tomatically infers this intermediate state information, it proceeds in the same fashion as
Opmaker and induces the same operators. The main advantage of Opmaker2 is that it
computes its own intermediate states using a combination of heuristics and inference from
the Partial Domain Model (PDM), example sequences and solutions. In Opmaker2, the
DetermineStates procedure performs this function by tracking the changing states of each
object referred to in the training example, taking advantage of the static and other information
in the PDM. The output from DetermineStates is, for each object, a map associating each
object to a unique state value at each point in the training sequence. Once the map has been
generated, the techniques of the original Opmaker algorithm are used to create an operator
schema.

In (Martınez et al., 2016), the authors learn a probabilistic model including exogenous
effects (predicates not related to any action execution) from a set of state transitions. They
use the LFIT (Learning From Interpretation Transitions) framework (Inoue, Ribeiro, and
Sakama, 2014) which uses Inductive Logic Programming (ILP) to induce a set of proposi-
tional rules that orchestrate the given input transitions. This is done by first transforming
grounded to relational transitions, then relational transitions to probabilistic rules. Planning
operators can be reconstructed from probabilistic rules. A score function evaluates the oper-
ators, and a heuristic search algorithm selects the set of operators that maximize the score.
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Analytical Learning

The learning system has at its disposal the same hypothesis space H and traces as in the case
of inductive learning but with an additional input: Background Knowledge (BK) that can ex-
plain traces. The desired output is a hypothesis from the space H that is consistent with both
the traces and BK (Zimmerman and Kambhampati, 2003). Analytic learning relies on BK to
analyze a given trace and identify its relevant features. Any system which relies on domain
knowledge, predicate information or intermediate state information can be classified under
this category. More details about analytic learning techniques can be found in (Zimmerman
and Kambhampati, 2003).

3.4.2 Genetic and Evolutionary algorithm based approaches

Owing to advantages like scalability and re-usability, it may be a viable proposition to learn
action models consisting of macro actions in place of unitary actions. A series of approaches
which use evolutionary algorithms to learn macro actions in the absence of any kind of ad-
ditional knowledge may be classified under this category. An approach by (Newton et al.,
2007) learns macro actions given a domain and action sequences. It is generic in the sense
that it does not require structural knowledge about the domain or the planner, but learns from
plans generated for random planners and domains using a genetic algorithm .

Another approach by the same author (Newton and Levine, 2010) learns macros as well
as macro-sets (collection of macros which collectively perform well). In this work, once
a macro is learned, it is tinkered with by adding, deleting and modifying existing and new
actions in a bid to learn how the new macro performs. In the first phase, only individual
macros are learned using actions from generalized plans produced by solving input problems.
In the second phase, macro-sets are learned using the macro pool obtained in the first phase,
including only those that have fitness values greater than a certain minimum level.

In a third approach by the same author (Newton et al., 2008), non-observable macros
i.e. macros that are not observable from traces are learned. This is done with the intent of
constructing a comprehensive macro-library for future reuse. Learning is based on an evolu-
tionary algorithm. Evolutionary algorithms repeatedly generate new macros (in every epoch)
from current individuals by using given genetic operators: only the individuals with the best
fitness values survive through successive epochs. The fitness function is based on three mea-
sures: Cover, Score, Point. Cover evaluates the percentage of problems solved when the
macro is used. Score measures the time gained or lost over all the problems solved with
the augmented domain compared to when they are solved using the original domain. Point
measures the percentage of problems solved with the augmented domain which take less or
equal time compared to when they are solved using the original domain.

3.4.3 Reinforcement Learning

Reinforcement learning (RL) is a special case of inductive learning, and more specifically
characterizes a learning problem instead of a learning technique (Sutton and Barto, 1998). An
RL problem is composed of three principal elements: (i) the goal an agent must achieve, (ii) a
stochastic environment, and (iii) actions an agent takes to modify the state of the environment
(Sutton and Barto, 1998). RL takes place during the process of plan building. Through
trial-and-error online traversal of states, an optimal policy (mapping from perceived states
of the environment to actions to be taken when in those states) is found for achieving the
agent’s goals (Zimmerman and Kambhampati, 2003). The strength of RL lies in its ability to
handle dynamic and stochastic environments where the domain model is either nonexistent or
incomplete. The benefits of an RL system are two-fold: on one hand, it improves plan quality
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(the system progressively moves towards finding an optimal policy) and, on the other hand,
it can learn the domain model. One of the major drawbacks of RL is that of generalization:
in its bid to achieve domain-specific goals, it cannot gather general knowledge of the system
dynamics, leading to a problem of generalization. Despite its drawbacks, RL played a major
role in the success of real life systems such as the recent AlphaGo (Silver et al., 2016).
AlphaGo used policy gradient RL (policy represented by own function approximator) to
optimize a deep convolutional neural network by simulating games of the network playing
against previous versions of itself and rewarding itself for taking moves that gave it wins.

The LOPE (Learning by Observation in Planning Environments) (García-Martínez and
Borrajo, 2000) system learned planning operators by observing the consequences of the exe-
cution of planned actions in the environment. In the beginning, the system is a blank slate and
has no knowledge, it perceives the initial situation, and selects a random action to execute in
the environment. It then loops by (1) executing an action, (2) perceiving the resulting situa-
tion of the action execution and its utility, (3) learning a model from this perception and (4)
planning for further interaction with the environment. A global reinforcement mechanism
either rewards or punishes operators based on their success in predicting the environment
behavior. This is done by a virtual generalized Q table (associates each (s, a) pair with an es-
timate ofQ(s, a), where s and a are state and action respectively, andQ(s, a) is the expected
reward for taking action a in state s).

In an approach by (Safaei and Ghassem-Sani, 2007), probabilistic planning operators are
learned in an incremental fashion. It has an integrated learning-planning system consisting
of (i) an observation module for operator learning, (ii) an acting module for planning, and
(iii) a control center for generating goals to further test the algorithm. This control center
also dynamically assigns the reward function.

Relational Reinforcement Learning

Relational reinforcement learning is the combination between reinforcement learning and
inductive logic programming (Dz̃eroski et al. (2001)). Given a (i) possible state set S, (ii)
possible action set A, (iii) state transition function δ : S × A → S, (iv) reward function
r : S × A → S, (v) background knowledge and (vi) declarative bias for learning policy
representations; the task is finding a policy π for selecting actions π : S → A that maximizes
the expected reward. RRL employs the Q-learning method (learns policies which are repre-
sented as value-assigned state-action pairs) using a relational regression tree. Due to the use
of a more expressive relational language, RRL can be applied to a wider array of problems.
It also allows the reuse of results of previous learning phases and their application to novel
and more challenging situations.

MARLIE (Model-Assisted Reinforcement Learning in Expressive languages) is the first
RRL system that learns a transition and reward function online (Croonenborghs et al. (2007)).
MARLIE builds probabilistic models accounting for the uncertainty of world dynamics. It
uses the TG algorithm (Driessens et al. (2001)) to learn relational decision trees. The de-
cision trees are not restructured on the appearance of new examples. However, their fully
relational aspect allows them to be applicable to a wider range of problems.
IRALe (Rodrigues et al. (2011)) produces a STRIPS-like (see table 2.1) action model con-
sisting of a set of rules by combining RRL and active learning. At first, the action model is an
empty rule-set. The interactions between the agent and the environment produce examples.
In the event of a counter example (an example that contradicts the model), the example has
to be revised by modifying or adding one or more rules. This contradiction is determined by
matching operations performed between the rules and examples, and each identified counter-
example leads to either a specialization or a generalization. The agent (independent entity
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which perceives the world and performs actions accordingly) also performs active learning,
that is, in every state it chooses an action that it expects to lead to a generalization of the
model. With IRALe, new opportunities for generalizing the model will decrease the number
of examples required to converge to the correct model. It uses a formalism called Extended
Deterministic STRIPS (EDS), which is more expressive than traditional STRIPS.

3.4.4 Uncertainty-based techniques

Markov Logic Networks

A Markov Logic Network (Richardson and Domingos, 2006) is a combination of first or-
der logic and probabilistic graphical models. It is a first-order knowledge base consisting
of weighted formulas, and can be equated to a template used to construct Markov networks.
They have numerous advantages. From the probability point of view, MLNs provide a lan-
guage scalable enough to specify very large Markov networks, and the ability to inject a
comprehensive range of domain knowledge into them. From the first-order logic point of
view, MLNs are equipped with the ability to soundly handle imperfect knowledge and uncer-
tainty. For example, the LAMP (Learning Action Models from Plan traces) system (Zhuo et
al., 2010) learns action models with quantifiers and logical implications using MLNs. Firstly,
the input plan traces (state-action interleavings) are encoded into propositional formulas (con-
junction of ground literals) to store into a database as a collection of facts. These formulas
are very close to PDDL (refer to table 2.1) in terms of representation. Secondly, candidate
formulas are generated according to the predicate lists and domain constraints. Thirdly, a
MLN uses the formulas generated in the above two steps to learn the corresponding weights
of formulas and select the most likely subset from the candidate formula set. Finally, this
subset is transformed into the final action models (Zhuo et al., 2010).

Noisy Trace Treatment Approaches

As explained in section 3.3.2, sensor miscalibration may cause introduce noise, giving birth
to uncertainty. For example, AMAN (Action-Model Acquisition from Noisy plan traces) han-
dles noise (Zhuo and Kambhampati, 2013) by finding a domain model that best explains the
observed noisy plan traces using a probabilistic graphical model based approach. The only
input to the learning phase are traces in the form of noisy action sequences. A probabilistic
graphical model (PGM, graphical representation of dependence among random variables) is
used to capture the relationship between the current state, correct action, observed action and
the domain model. First, a set of all possible candidate models is generated. Then the ob-
served noisy plan traces are used to predict the correct plan traces based on the PGM. Then,
the correct plan traces are executed to calculate the reward of the predicted correct plan traces
according to a predefined reward function. This reward function output is used to update the
weights of the candidate models. The model with the highest weight is rendered as the model
being searched for (Jilani et al., 2014).

In a series of works by (Pasula, Zettlemoyer, and Kaelbling, 2004; Zettlemoyer, Pasula,
and Kaelbling, 2005), the goal is to learn action models in noisy and stochastic domains.
This is done by: (i) allowing rules to refer to objects not mentioned in the signature of the
action, (ii) relaxing the frame assumption (unspecified atoms in the operator’s effects re-
main unchanged) and allowing the existence of “noise-induced" changes in the world, and
(iii) extending the language: introducing newer and more complex concepts like existential
quantification, universal quantification, counting and transitive closure. Transitive closure
is represented in the language via the Kleene star operator. It allows to learn probabilistic
rules which are affected by a factor of noise and include deictic references, thus are called
Noisy Deictic Rules (NDR). Deictic references (first order description of the world in terms
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of arguments of currently executing action (Mourao et al., 2012)) are used to identify objects,
even those which are not directly affected by the mentioned predicates. The works conclude
that the addition of noise and deictic references increases the quality of the learned rules.

3.4.5 Surprise Based Learning (SBL)

In a learning system, a surprise is produced if the latest prediction and the latest observation
are considerably different (Ranasinghe and Shen, 2008). Once an action is performed, the
world state is sensed by a perceptor module which extracts sensor information. If the algo-
rithm had made a prediction, it is verified by the surprise analyzer. If the prediction turns
out incorrect, the model modifier adjusts the world model accordingly. Based on the updated
model, the action selector will perform the next action so as to repeat the learning cycle. This
is illustrated in Figure 3.2.

FIGURE 3.2: Overview of surprise based learning (taken from Ranasinghe
and Shen, 2008)

A series of approaches based on SBL have used Goal Driven Autonomy (GDA). GDA
(Weber, Mateas, and Jhala, 2012) is a conceptual model for creating an autonomous agent
that (i) monitors expectations during plan execution (ii) detects the occurrence of discrep-
ancies, (iii) builds explanations and new goals to pursue in the case of failures. In order
to identify when planning failures occur, a GDA agent requires the planning component to
generate an expectation of world state after executing each action in the execution environ-
ment. The GDA model thus provides a framework for creating agents capable of responding
to unforeseen failures during plan execution in complex environments. Early implementa-
tions of GDA were focused both on operator learning and refining. Among approaches that
refine operators, the EXPO (Gil, 1992) system refines incomplete planning operators by a
method called the ORM (operator refinement method). EXPO does this by generating plans
and monitoring their execution to detect the difference between the predicted and observed
state. EXPO then constructs a set of specific hypotheses to fix the detected differences. Af-
ter heuristic filtration, each hypothesis is experimentally tested and a plan is constructed to
achieve the required situation (Jiménez et al., 2012). Among GDA approaches that learn
operators, LIVE (Shen, 1993) is a discrimination-based learning method that creates general
rules by noticing the changes in the environment, then specifying the rules by explaining
their failures in prediction. When a rule executes and the predicted outcome does not match
the observation, LIVE explores and creates new sibling rules. These rules are usually created
by comparing the difference between a successful previous execution and the current failed
one. New rules can accordingly be made more specific/generic. OBSERVER (Wang (1996))
is another operator learning system that integrates learning, planning and execution into a
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system which incrementally learns planning operators. The learning module learns operator
preconditions and effects by observing experts executing sample problems, then refining the
operators collected from these observations. The operator preconditions are learned by creat-
ing and updating both the most specific and most general representations of the preconditions
based on trace executions. Operator effects are learned by generalizing the delta-state (the
difference between pre-state and post-state) from multiple observations. Later approaches
have used GDA in conjunction with a relational or reinforcement learning component. For
example: the FOOLMETWICE and LGDA systems. FOOLMETWICE (Molineaux and
Aha, 2014) is goal-oriented (GDA-Goal Driven Agent) and not reward-driven. It identifies
unknown events in a model based on surprise and explanation generation, and uses a rela-
tional learning method to update environment models.

LGDA (Jaidee, Muñoz-Avila, and Aha, 2011) is a GDA algorithm that uses case-based
reasoning to map state-action pairs to a distribution over expected states, and map goal-
discrepancy pairs to a value distribution over discrepancy-resolution goals. It also uses rein-
forcement learning to learn the expected values of the goals. It models goal formulation as
an RL problem in which the value of a goal is estimated based on the expected future reward
obtained on achieving it. More recent approaches have extended the reach of GDA to the ter-
ritory of HTN-based planners as well. For example, the ARTUE (Autonomous Response To
Unexpected Events) system (Molineaux, Klenk, and Aha, 2010) dynamically reasons about
the goals to pursue when encountered with unexpected environmental situations. It consists
of four principal components. A Hierarchical Task Network (HTN) planner reasons about
exogenous events. A goal generation component reasons about and generates new goals. An
explanation component reasons about hidden information in the environment. Finally, a goal
management component manages and communicates the goals to the planner. ARTUE han-
dles unexpected environmental changes by first explaining those changes, then generating
new goals incorporating the explained knowledge about hidden environmental aspects.

3.4.6 Transfer Learning

In the case of some domains with limited knowledge and training examples at disposal, it
is hard to learn the underlying domain model. In such cases, knowledge drawn from other
domains may be plugged into the problem domain to achieve the objective of learning the
underlying model of the problem domain. This can be made possible with the help of a
technique called Transfer Learning. It is a technique in which, given a source task (in the
context of task learning) and target task in the source and target domains respectively, aims to
extract the knowledge from the source task and apply it to the target task in a situation where
the latter has fewer training data (Pan and Yang, 2010). Most machine learning methods
work well only under a common assumption: the training and test data are drawn from
the same probability distribution. However, when the distribution changes, most models
need to be reconstructed, trained and tested from scratch using data generated from the new
probability distribution. In many real world applications, it is expensive, if not impossible,
to regenerate the needed training data for model reconstruction. In order to reduce the effort
to regenerate the training data, the possibility of knowledge transfer between domains would
be ideal. Transfer learning (Pan and Yang, 2010) allows the domains, tasks, and probability
distributions used in training and testing to be different. For example, we may find that
learning to recognize apples might help to recognize oranges. Some characteristics of transfer
learning systems include: the type of knowledge to be transferred, situation of transfer and
technique of transfer. As far as type of knowledge goes, some knowledge is specific to
individual domains, while other may be common between different domains such that it may
help improve performance for the target domain. After discovering which knowledge can
be transferred, learning algorithms need to be developed to perform the knowledge transfer.
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The situation of transfer is an important characteristic as while it is important to know the
situation in which a transfer must occur, it is equally important to know the situations in
which transfer must not occur. In some cases, when the source domain and target domain
are not related to each other, thus a brute-force transfer may be highly unsuccessful. In the
worst case, it may even degrade the performance of the target domain, a situation referred to
as negative transfer (for example, when an Indian or British tourist in Europe learns to drive
on the left side of the road).

The advantages of using transfer learning are clear: a change of features, domains, tasks,
and probability distributions from the training to the testing phase does not require the un-
derlying learning model to be rebuilt. The disadvantages are listed as follows:

• Most existing transfer learning algorithms assume that the source and target domains
are related to each other in some sense. However, if the assumption does not hold,
negative transfer may happen. In order to avoid negative transfer learning, measures
to ascertain transferability between source domains and target domains needs to be
studied. Based on this study of possible transferability, we can then select relevant
source domains/tasks to extract knowledge for learning the target domains/tasks.

• Most existing transfer learning algorithms so far have focused on improving general-
ization across different distributions between source and target domains or tasks. In
doing so, they assumed that the feature spaces between the source and target domains
are the same. However, in many applications, we may wish to transfer knowledge
across domains or tasks that have different feature spaces. This type of transfer learn-
ing is referred to as heterogeneous transfer learning, which remains a challenge yet to
be overcome (Pan and Yang, 2010).

A perfect example of transfer learning is the TRAMP (Transfer learning Action Models
for Planning) system. TRAMP, given a set of traces in the target domain and expert-created
domain models in the source domain, learns action models in the target domain by trans-
ferring knowledge from the source domain. TRAMP first encodes the input plan traces,
which are state-action interleavings, into propositional formulas then as databases. Second,
TRAMP encodes the action models from the source domains to a propositional formula set.
Thirdly, TRAMP generates a candidate formula set to structure the target action models,
building mappings between the source and target domains by searching keywords of predi-
cates and actions from the Web, then calculating similarities of Web pages to bridge the gap
between the two and transfer knowledge. Finally, TRAMP learns action models from the
transferred knowledge with the help of Markov Logic Networks (Zhuo and Yang, 2014).

3.4.7 Deep Learning

Many AI problems can be solved by extracting the appropriate features that problem, then
providing these features to a simple machine learning algorithm. In cases where it is difficult
to extract high-level and abstract features from raw data (for example, to identify a breed of
dog in millions of images from its intricate features such as tail length, body outline etc.), one
solution is to allow computers to learn from experience and understand the world in terms
of a hierarchy of concepts, with each concept defined in terms of its relation to simpler con-
cepts. By gathering knowledge from experience, this approach avoids the need for human
operators to formally specify all domain knowledge needed by the computer. The concept
hierarchy allows the computer to learn complicated concepts by building them out of simpler
ones (Goodfellow, Bengio, and Courville, 2016). If a graph is drawn showing how these con-
cepts are built on top of each other, the graph is deep, with many layers. For this reason, this
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approach is called deep learning. Deep learning thus by virtue offers multiple layers of repre-
sentation wherein the features are not designed by human engineers but learn from data using
a general-purpose learning procedure (LeCun, Bengio, and Hinton, 2015). It is an interesting
field which, barring a few initial works on perceptron-based approaches (Mourao, Petrick,
and Steedman, 2008; Mourao, Petrick, and Steedman, 2010; Mourao et al., 2012), remains
a possibility to be put to use for the learning of domain models. In some recent approaches,
deep learning has come into use in fields which are closely associated with AP, if not con-
sidered its sub-domains, such as plan recognition and goal recognition. Deep learning has
however been used in the fields of plan recognition. For example, a recursive neural network
is used in (Bisson, Larochelle, and Kabanza, 2015) to learn the HTN decision-making model
of the observee agent (by the observer agent) for plan recognition. Assuming a given HTN
plan library (drawn from the Monroe plan corpus (Blaylock and Allen, 2005), StarCraft Nav-
igation and the kitchen domain), the problem of learning the decision-making model for an
agent behaving based upon the library is cast as a multinomial logistic regression. A recursive
neural network is trained to learn the vector representation of plan hypotheses, and compute
a score for each one of them. A softmax classifier is then used to train the model to yield high
scores for correct hypotheses and a low score for incorrect ones to allow score-based ranking
of hypotheses.

Deep learning has also been used in the field of goal recognition (restricted form of plan
recognition focused on identifying a player’s high-level and end-level objectives in a game,
given a sequence of low-level gaming actions). For example, in (Min et al., 2016a), players’
goals’ are recognized based on long short-term memory (LSTM) networks. With reference
to data from the game CRYSTAL ISLAND in the form of logs of player actions, players’
current actions are hypothesized to influence their upcoming goals. Thus extracting patterns
from player gameplaying sequences is likely to provide inference to predict the players’ next
goal. For this, the next action is predicted based on a prior action sequence, and the model
is trained using only player action data without goal labels. The output vector of the final
memory cell in the LSTM is used to predict the most likely goal for the sequence of actions
in a softmax layer (Min et al., 2016a).

3.4.8 MAX-SAT based approaches

The action model may be learnt by representing the inter- and intra-action dependencies in the
form of a weighted MAX-SAT (maximum satisfiability) problem, and solving them with the
help of a MAX-SAT solver to reconstruct the underlying action model. A weighted MAX-
SAT problem can be stated as: given a collection C of m clauses (C1, ..., Cm) involving
the disjunction of n logical variables, with clause weights wi, find a truth assignment of the
logical variables that maximizes the total weight of the satisfied clauses inC (Zhuo and Yang,
2014).

Among works that use MAX-SAT, the LAWS (Learn Action models with transferring
knowledge from a related source domain via Web search) system (Zhuo et al., 2011) makes
use of action models already created beforehand in other source domains, to help learn mod-
els in the target domain. The target domain and a related source domain are bridged by
searching web pages related to the two domains, and then building a mapping between them
by means of a similarity function which calculates the similarity between their corresponding
web pages. The similarity is calculated using the Kullback-Leibler (KL) divergence. Based
on the calculated similarity, a set of weighted constraints, called web constraints, are built.
Other constraints such as state, action and plan constraints, are also built from traces in the
target domain. All the above constraints are solved using a weighted MAX-SAT solver, and
target domain action models are reconstructed from the satisfied clauses.
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The ARMS (Action-Relation Modelling System) (Yang, Wu, and Jiang, 2007) system
learns action models from traces which consist of action sequences occasionally interleaved
with intermediate states. The parsed predicates are encoded in the form of intra-operator
constraints called information and action constraints respected by these predicates. Fre-
quent action pairs in the traces are identified with the help of the apriori algorithm (Agrawal
and Srikant, 1994), which are then used to obtain a set of intra-operator plan constraints.
These constraints are then solved with the help of a MAX-SAT solver. The constraints which
amount to true are used to reconstruct the actions of the domain model. The process iterates
until all actions are modeled.

The RIM (Refining Incomplete planning domain Models through plan traces) system
(Zhuo, Nguyen, and Kambhampati, 2013) enriches its partial model during the process of
learning. It constructs sets of soft and hard constraints from incomplete models and plan
traces. These constraints are again intra-operator and inter-operator ones that must be satis-
fied by atomic actions as well as macro-actions. The novelty of this approach is that it learns
macro-actions as well. Macro-actions increase the accuracy of the incomplete model. These
constraints are solved with the help of a SAT solver. The constraints which amount to true
are used to obtain sets of macro-actions and refined action models.

The Lammas (Learning Models for Multi-Agent Systems) system (Zhuo, Muñoz-Avila,
and Yang, 2011) learns action models from input plan traces in the same lines of ARMS,
however extended to a multi-agent setting. Lammas also encodes the input plan traces as
constraints which fall into one of the following three categories: (1) correctness constraints
imposed on the relationship between actions in plan traces to ensure that causal links in
the plan traces is not broken, (2) action constraints encoding the actions based on STRIPS
semantics and (3) coordination constraints encoded from an Agent Interaction Graph (AIG)
describing inter-agent interactions. The learnt actions are represented in the MA-STRIPS
language which is more adapted for a multi-agent setting (Brafman and Domshlak, 2008).

3.4.9 Supervised Learning Based Approaches

In (Mourao, Petrick, and Steedman, 2008), the authors learn the effects of an agent’s actions
given a set of actions and their preconditions, in a partially observable and noisy environment.
The input to the learning mechanism uses a vector representation that encodes a description of
the action being performed and the state at which the action is applied. The final input vector
representing a particular action applied to a certain state has the form: (actions, object −
independent properties, object−dependent properties). The output vector has the form:
(object− independent properties, object− dependent properties). The task is to learn
the associations between action-precondition pairs and their effects. The learning problem
has a set of binary classification problems, and the perceptron is used as a classifier. The
prediction consists of calculating the kernel matrix, and the kernel trick is used in the case of
non-linearly separable data (Mourao, Petrick, and Steedman, 2008).

Another work by the same authors (Mourao, Petrick, and Steedman, 2010) is based on the
same lines, except that a voted kernel perceptron learning model with a DNF kernel, allowing
the perceptron to run over the feature space of all possible conjunctions of bits in the input
space i.e. the entire space of possible rules (Sadohara, 2001). Action and state information
are encoded in a vector representation as input to the learning model, and resulting state
changes are produced in the form of an output vector.

A very recent work by the same authors (Mourao et al., 2012) learns probabilistic plan-
ning operators from noisy traces. While the precedent approaches find the most probable
outcome, this approach emphasizes on generating alternately less probable outcomes from
noisy traces. It decomposes the learning problem into two stages: learning implicit action
models and progressively deriving explicit rules from the implicit models. Rules are extracted
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from classifiers based on the notion that more discriminative features will contribute more to
the classifier’s objective function. The classifiers use the k-DNF kernel with k = 2, 3 and
5. The rule fragments (partial precondition and single effect predicates) derived from clas-
sifiers that only contributed to the preconditions provide for a source of alternative effects
for the planning operator. An alternative rule is created by reusing the precondition from the
planning operator, and by one-by-one combining the effects of the rule fragments. Each new
effect is accepted if the resulting rule gives better F1-scores than the previous rule on the
remaining training examples. The F1 measure is a standard metric in information retrieval
F1, numerically the harmonic mean between precision and recall. Precision is the percentage
of predicted classes that are correct, while recall is the percentage of correct classes that were
correctly predicted. Precision is therefore the quality of the predictions. Recall measures
how much of the correct classes are predicted.
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TABLE 3.1: State of the art planning algorithms (PDM = Partial Domain Model, OCL = Object Centered Language, D = Deterministic, P =
Probabilistic, FO = Fully Observable, PO = Partially Observable, PDL = Prodigy Description Language, MAXSAT = Maximum Satisfiability, PGM

= Probabilistic Graphical Model, GDA = Goal Driven Autonomy, FOL = First Order Logic), Granularity = {+ (high), i (intermediate), − (low)}
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arity Technique Merits Limitations Envir

onment

Robust
to
Noise

Inductive Learning Based Approaches

ERA

Map of area
and error models
that determine how
robot’s actions will
behave in different
terrain conditions

Action Models/
Simulation based − Regression tree

induction

Ability to model
noise and predict
continuous variables
in data

Cannot make
multi-variate
predictions

D, FO Y

LOCM
Action
Sequences

Action Models/
PDDL i

Inductive learning
on state machine
representation
of objects.

Does not
require
background
information

(i) Induced models
may contain
detectable flaws
(ii) Static background
information not
analysed by system

D, FO N

LOCM2
Action Sequences/
Action Schema

Action Models/
PDDL i

Allows many
possible solutions
to same problem,
further using
heuristic criteria
to select a
single solution.

Does not
require
background
information

Does not work in case
of domains with:
(i) Dynamic many-many
relationships
(ii) Same object more
than once in
action arguments

D, FO N

NLOCM
Action Sequences/
Action Schema

Action
Models/PDDL +

Inductive Logic
Programming

Requires only final plan cost
as additional information

Not equipped to
handle complex domains D, FO N

OpMaker
Partial Model,
Action
sequences

Operators/OCL − Operator induction by
mixed initiative

(i) Ease of operator
encoding
(ii) Useful for
non-experts

Needs user input
for intermediate state
information

D, FO Y

OPMaker2
PDM, Action
sequences/OCL Operators +

Computes intermediate
states using
combination of
heuristics, inference
from PDM, training
tasks and solutions

(i) Overcomes drawback
of Opmaker by negating
need for user input
for intermediate state
information
(ii) Does not require too
many examples

Expert required
to transfer heuristic
knowledge

D, FO Y
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PELA
Planning problem,
PDM and
action sequences

Enriched action
model/PDDL i TDIDT

Based on
off-the-shelf planning
and learning components

Assumes correct
initial action model P, FO N

Genetic Algorithm Based Approaches

Newton et al.
(2007)

Domain and
example problems Macros/PDDL + Genetic Algorithms

(i) Allow planning of
several steps at
a time
(ii) Capture action sequences
that help avoid troublesome
regions

Macros, when
replaced by constituent
actions, often result
in longer plans

D, FO N

Reinforcement Learning Based Approaches

LOPE
Number of execution
cycles, possible action set

Operators/
Propositional
Logic

+ Reinforcement Learning

Allows knowledge sharing
among agents,
increasing percentage of
successful plans

Sensor differences
among agents causes
different ways of
perception thus
different biases towards
operator generation

D, FO N

Safaei &
Ghassem-
Sani (2007)

Action sequences Operators/FOL
without functions + Incremental Learning

(i) Removes redundant
predicates in precondition
(ii) Doesn’t need
prior knowledge

Conditional effects
not supported in
learned operators

P, FO N

Relational Reinforcement Learning (RRL) Based Approaches

MARLIE
Episodes
(Action Sequences)

Transition and
reward function/
Expressive
relational
language

+
Learning Relational
Decision Trees

Relational thus
widely applicable

Decision tree not
restructured when new
examples appear

P, FO N

Uncertainty Based Approaches

AMAN Action Sequence Operators/STRIPS +
PGM,
Reinforcement Learning

No background knowledge
needed, can learn
directly from traces

Model sampling
mechanism unclear D, PO Y

LAMP
State-Action
Interleavings Action Models/PDDL +

Markov
Logic
Network (MLN)

More expressive models with
quantifiers
and logical implications

Looses efficiency
with increasing
domain size

D, FO N

Pasula et al.
(2007)

State-Action
Interleavings

Probabilistic
STRIPS-like rules/
STRIPS-like

i
Learn action structure,
action outcomes
and parameter estimation

Allows learning of models
of more realistic worlds

Rules cannot
be applied
in parallel

P, FO N

Surprise Based Learning (SBL) Approaches
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ARTUE
Initial state,
goal state,
model

Expectations,
discrepancies
and goals/PDDL+

i GDA

Integrates AI research
in planning, environment
monitoring, explanation, goal
generation, and
goal management.

Cannot be applied
to complex
environments

D, FO N

EXPO
PDM,
traces of state sequences

New preconditions,
effects, conditional
effects, operators,
attribute values/PDL

−
Learning-by-
experimentation
for operator refinement

(i) Learns conditional effects
(ii) Methods are goal-directed
and learning is incremental

Rules learnt from
general to specific D, FO N

LGDA

Initial state,
dummy goal,
dummy discrepancy,
policy

Expectations,
discrepancies
and goals

i

Uses case-based
reasoning and intent
recognition in order
to build GDA agents
that learn from
demonstrations

Case-based reasoning (CBR)
and Reinforcement
Learning (RL)

Lacks capabilities
to learn explanations
of discrepancies

D, FO N

Surprise Based Learning (SBL) Approaches

LIVE
Sequence of states,
actions and predictions

Prediction rule
(condition, action
and precondition)/
CNF of condition,
action and precondition

i

Surprise and explanation
generation. Uses a set
of domain-dependent
search heuristics
during planning

Hidden predicates can
also be determined.

Exploration method is
brute force D, FO N

OBSERVER
Action Sequences, practice
problems

Operators/
STRIPS-like i

Conservative
specific-to-general
inductive generalization
process

(i) Can find out
negated preconditions
(ii) Does not require
strong background
knowledge.

May suffer
from incomplete
or incorrect
domain knowledge

D, FO N

Transfer Learning Based Approaches

TRAMP

Action schemas,
predicate set,
small set of
plan traces T
from the target
domain, set of
action models from
source domain.

Action models in
target domain Dt/
STRIPS

i Transfer Learning
Minimum training examples
needed to learn
target action model

Possibility of
negative transfer D, FO N

MAX-SAT Based Approaches
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ARMS
Action sequence
with partial/no
state information

Operators/STRIPS i

Builds weighted
propositional satisfiability
problem and solves
it using weighted
MAX-SAT solver

Can handle
cases when intermediate
state observations
are difficult to acquire

(i) Cannot learn action
models with quantifiers
or implications
(ii) Cannot learn
complex action models

D, FO N

LAWS

Action models,
predicate set,
small set of
plan traces T
from the target
domain, set of
action models from
source domain.

Action models in
target domain Dt/
STRIPS

i
Transfer Learning+
KL divergence

Web can be exploited
as knowledge source

Possibility of
negative transfer D, FO N

Lammas Action sequences Operators/
MA-STRIPS i

Builds inter-agent and
intra-agent constraints and
solves it using
weighted MAX-SAT solver

Can capture interactions
between agents Not tested exhaustively D, FO N

Supervised Learning Based Approaches
Mourao et al.
(2008)

Actions and states Operators/PPDDL +
Kernel perceptrons+
sequential covering

Can handle noisy
domains

Cannot handle
incomplete observations P, FO Y
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3.5 Algorithmic “Cheat Sheet”

To choose a learning approach closer to a requirement set, this study proposes a “cheat sheet"
with the intent of helping researchers starting out in the domain to choose a specific learn-
ing technique based on the characteristics defined in this section. This “cheat sheet" (see
figure 3.3) is not exhaustive, and conceptualized bearing in mind the methodology adopted
by the paper and the learning techniques discussed in section 3.4. The branch in this figure
dedicated to the learning of heuristics is not detailed as it is beyond the scope of this study.

FIGURE 3.3: Guideline for choosing appropriate learning approach based
on input requirements (OCL = Object Centered Language, D = Determin-
istic, P = Probabilistic, FO = Fully Observable, PO = Partially Observable,
MAXSAT = Maximum Satisfiability, PGM = Probabilistic Graphical Model,

RL = Reinforcement Learning, SBL = Surprise Based Learning)

3.6 Our Approach vis-a-vis the Literature

Vis-a-vis the literature described in this chapter, we introduce two approaches which are in-
spired by various learning systems and approaches. PDDL has been chosen as the represen-
tation language it is by far the most comprehensive representation language in the planning
domain and offers the possibility to integrate temporal aspects of the context as well. These
approaches are introduced as:

• SAT-based Learning Techniques: the SRMLearn system
This approach is explored as it is one of the more classical approaches in the literature
with a fair enough possibility of generalization. Various approaches in the literature
are based on SAT based approaches to learn the underlying action model (Yang, Wu,
and Jiang, 2007; Zhuo et al., 2010; Zhuo, Yang, and Kambhampati, 2012; Zhuo and
Yang, 2014). We exploit the hypothesis that it is possible to equate intra-operator and
inter-operator dependencies to constraints and represent them in the form of a SAT
problem. While the intra-operator constraints deal with the syntax of the operator,
the inter-operator ones exploit the semantic relationship between successive operators
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in a plan sequence. We present an approach called SRMLearn (Sequential Rules-
based Model Learner), which encodes the aforementioned constraints in the form of
a maximum satisfiability problem (MAX-SAT), and solves it with a MAX-SAT solver
to learn the underlying action model. Unlike previous MAX-SAT driven approaches,
our chosen constraints exploit the relationship between consecutive actions, rendering
more accurately learnt models in the end. This approach is capable of learning purely
from plan execution sequences, subtracting the need for domain knowledge.

• Connectionist Techniques: the PDeepLearn system
Most approaches mentioned in the literature fall short of being used in the case of
a real life scenario as anything less than a flawless reconstruction of the underlying
model renders it unusable in certain domains. This can clearly be seen in the case
of HRI, as any domain expert intervention to complete a partially learnt model will
always fall short owing to the sheer subtlety of interleavings between speech, body
movements and facial expressions. Also, learning approaches that fail to generalize
to new contexts (e.g. Q-learning) do not evoke our interest as one of the underlying
requirements of our problem is to find a learning algorithm with the capability to gen-
eralize (since the algorithm will be developed with benchmark traces and tested with
real HRI traces).Keeping this in mind, we propose a system called PDeepLearn, which
stands for PDDL domain Deep Learner, and is capable of flawless reconstruction of
the underlying action model. It is inspired in part by the kernel perceptron approaches
introduced in (Mourao, Petrick, and Steedman, 2008; Mourao, Petrick, and Steedman,
2010; Mourao et al., 2012), however extended to a memory-based neural network set-
ting. It uses long short-term memory (LSTM) techniques for the acquisition of the
underlying action model. We use the sequence labelling capabilities of LSTMs to pre-
dict the next action in a plan execution sequence based on previously observed actions.
This is done by iteratively testing the sequence labelling capabilities of each of the
models sampled from an exhaustively generated then trimmed set of all possible ac-
tion models. Empirical results highlight that the sequence labelling achieved with an
empirically isolated model speculated to be identical to the hand woven model attains
the highest accuracy compared to other models in the set. The structural consistency
of the acquired model with the hand woven model renders this LSTM-based sequence
labelling approach to learn action models as an effective one.

3.7 Conclusion

This chapter provides a brief account of the learning approaches used in the learning of
action models in the literature, classifying them together and characterising them wherever
appropriately possible. It can be seen that the approaches range from all walks of possible
machine learning approaches, chosen broadly based on certain characteristics discussed in
the Section 3.3. Furthermore, we justify the choice of our learning approaches vis-a-vis the
literature and characteristics of our learning problem.
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Chapter 4

SAT-based Techniques: SRMLearn

4.1 Introduction

Constraint satisfaction techniques can be employed to learn an action model. In this first
part of the study, we follow a more classical approach to learn action models which is closer
to the literature in terms of underlying principle and methodology. It looks to reconstruct
from traces a model ground upwards. Since this model runs the possibility of being incom-
plete hence inherently not reusable for subsequent planning, services of a domain expert are
employed to minimally fill in the gaps with this reconstructed model in a bid to render it
complete. To learn this model, it is possible to exploit intra-operator and inter-operator de-
pendencies and constraints. While the intra-operator constraints deal with the syntax of the
operator, the inter-operator ones exploit the semantic relationship between successive opera-
tors in a plan sequence. We present an approach called SRMLearn (Sequential Rules-based
Model Learner), which encodes the aforementioned constraints in the form of a maximum
satisfiability problem (MAX-SAT), and solves it with a MAX-SAT solver to learn the under-
lying action model. Unlike previous MAX-SAT driven approaches, our chosen constraints
exploit the relationship between consecutive actions, rendering more accurately learnt mod-
els in the end. Our approach is capable of learning purely from plan execution sequences,
subtracting the need for domain knowledge. SRMLearn uses a bare minimum of domain
knowledge in the form of state-action interleaved traces in the input to learn an action model
as the output. It proceeds in the following fashion: it defines a set of intra-operator constraints
and inter-operator constraints. The intra-operator constraints are required to be satisfied in
order to adhere to the semantics of STRIPS (Fikes and Nilsson, 1971). It then defines certain
inter-operator constraints which exploit short and long-term dependencies between operators
in the sequence by means of pattern mining techniques. Finally, it encodes all the afore-
mentioned constraints in the form of a satisfiability problem and solves the problem with the
help of a MAX-SAT solver. The solved constraints are used to reconstruct the underlying
action model. While there are other approaches in the literature that learn action models
by encoding it in the form of a satisfiability problem (for example ARMS (Yang, Wu, and
Jiang, 2007)), empirical results of our evaluation demonstrates a higher accuracy of the learnt
model with SRMLearn. This suggests that our approach is an effective approach to learn ac-
tion models. This chapter is divided into the following sections: we detail the functioning of
the SRMLearn system in Section 4.2, and present our empirical evaluations over 5 domains
in section 4.3. We include some preliminary work done in the direction of learning temporal
models using the SAT approach in Section 4.4, and conclude the chapter in section 4.5.

4.2 The SRMLearn Algorithm

The approach followed in this learning system is divided into three phases, which are sum-
marized in figure 4.1. In the first phase, we generalize the actions and predicates in the trace
set by replacing the variables by their types to obtain a trace set of generalized actions and
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predicates respectively. Phase 2 is dedicated to constraint generation. These constraints are
constituted by:

• Intra-operator constraints: primarily hard constraints i.e. are required to be solved by
the MAX-SAT solver without fail, and

• Inter-operator constraints: these are primarily soft (no strict obligation on the solver
to solve them) and short-range constraints on frequent action pairs and long-range
constraints on the action chain as a whole.

In phase 3, these constraints are supplied to a MAX-SAT solver and the constraints that
evaluate to true are used to reconstruct the underlying domain model. These phases are
further elaborated in the forthcoming sections. They can also be understood in the form of
pseudo code demonstrated in the algorithm 1.

FIGURE 4.1: Approach phases of SRMLearn

Algorithm 1 SRMLearn
1: Input: set of plan traces T, dictionary V T associating objects with their types (type,

object)
2: Output: domain model m
3: Relevant Predicate Dictionary RPD = generalization (T, VT)
4: Constraint Adherence: Identify frequent action pairs from TRulesGrowth Algorithm and

proceed with pruning phase to eliminate improbable models from M;
5: Build intra-operator constraints using RPD:
6: Build inter-operator constraints like short-range constraints and long range constraints

using RPD.
7: Solve all constraints, build m
8: Return m

All the phases in SRMLearn are illustrated with an example in Figure 4.5.

4.2.1 Generation of Traces

The traces used in the course of our experimentation are solutions to plans. These plans
have been generated with the help of problem generators which are publicly available in
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Algorithm 2 Procedure generalization (T)

1: Input: Set of plan traces T, dictionary V T associating objects with their types as (type,
object)

2: Output: Relevant Predicate Dictionary RPD
3: for j = 1 to T do
4: Replace all objects in signatures of action and predicates in T with their types referenced

from the (type, object) pairs to build generalized action schema As and
predicate schema Ps respectively

5: for ai in As do
6: for pi in Ps do
7: If pi relevant to ai, then add to list relPreai containing

relevant predicates for ai
8: Add to relevant predicate dictionary RPD an entry with (key, value) as (ai,
relPreai)

9: Return RPD

the planning domain. These generators are usually scripts custom built for every planning
domain which accept a certain set of user defined parameters (such as the number of problems
to generate among others) and generate problems in accordance to the parameters defined. 1.
These problems were then fed to the PDDL4J planner which is customized to produce the
plans in the format used in this study (i.e. alternating state-action pairs) 2. The planner then
resolves the problems fed to it one-by-one and adds the solutions of each plan to our data
corpus (for more implementation details see Appendix). Since the problems generated by
the generator are unique, it is ensured that each generated plan that is added to the corpus is
unique as well.

4.2.2 Annotation and Generalization

In this subsection, each trace is taken one by one, and each action as well as each predicate
in the initial, goal and intermediate states of the plan trace is scanned to substitute the instan-
tiated objects in the signatures with their corresponding variable types. This substitution is
done by referencing the dictionary V T that associates instantiated objects with their types.
These associations are drawn from the problem definition. This builds the corresponding
generalized action schema As and predicate schema Ps respectively. Each action in the ac-
tion schema is associated with its relevant predicates from the predicate schema, where a
predicate pai ∈ Ps is said to be relevant to an action ai ∈ As if they share the same variable
types. The objective is to find for every action, the predicates that can be applied to it and
thus constitute the (pre, add, del) lists of that specific action. For example, the predicate
at-robby (?robot, ?room) is relevant to the action find (?robot, ?object, ?room, ?gripper)
as both of them contain the parameter types (robot, room) in their signatures and the types
(robot, room) ⊂ (robot, object, room, gripper). The set of relevant predicates to an action
ai can be denoted as relPreai . With schemas As and Ps, a relevant predicate dictionary is
built, where the key is the name of the action and the value is a list of all relevant predicates
to that action. This procedure is detailed in Algorithm 2.

For example, let us perform the above mentioned steps in the case of the move action of
the gripper domain. In this action a robot moves an object from one room to the other. The

1The problem generators used for this study have been sourced from http://www.plg.inf.uc3m.es/ipc2011-
learning/Domains.html

2This planner is available for download at https://github.com/pellierd/pddl4j
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generalization procedure for the move action is represented in Listing 4.1 and in Figure 4.2.

trace snippet before generalization phase::
[(action) (move robot3 room2 room4)
(state) (at-robby robot3 room4)]
trace snippet after generalization phase::
[(action) (move robot3 - robot room2 - room room4 - room)
(state) (at-robby robot3 - robot room4 - room)]
Relevant predicates for action move:
(at-robby)

LISTING 4.1: Generalization procedure (the predicate at-robby signifies the
room that the robot is present in)

4.2.3 Constraint Generation

In this phase, we account for certain intra-operator hard constraints that individual actions
must follow and inter-operator soft constraints that actions observe with other actions. The
constraint generation procedure is illustrated in the Figure 4.3.

Intra-operator constraints

The intra-operator constraints are accounted for during the course of creating elements of
the relevant predicate dictionaryRPD. In order to qualify as legitimate, each predicate of the
set RPDai of action ai must satisfy some intra-operator constraints proposed by STRIPS
(Fikes and Nilsson, 1971). Thus, for an action ai ∈ [a1, a2, . . . , an] and relevant predicate
p ∈ relPreai :

• p cannot be in the add list and the del list for the same action.

• p cannot be in the add list and the pre list for the same action.

These constraints can be summarized in the Listing 4.2.

Relevant predicates for action move:
(at, at-robby)
Semantic constraints for action move:
at ∈ delmove ⇒ at ∈ premove

at ∈ addmove ⇒ at /∈ premove

at− robby ∈ delmove ⇒ at− robby ∈ premove

at− robby ∈ addmove ⇒ at− robby /∈ premove

LISTING 4.2: intra-operator constraints for action move

Soft Constraints

Next, we generate a set of soft constraints which direct the MAX-SAT algorithm to learn the
most approximate representation of the action models. These constraints explore the inter-
dependencies between the actions which constitute the traces. These dependencies may be
short-term and long-term, and are detailed in the section below.
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FIGURE 4.2: Diagram representing the first phase of the SRMLearn algo-
rithm consisting of annotation and generalization. The generalization tags
the objects in the signatures of the actions and predicates (i.e. robot2, robot3,
obj1, room2, room3, room4) with their types as referenced from the dictio-
nary (“robot”: robot2, robot3, robot4), (“room”: room2, room3, room4),

(“object”: obj1)

Short-Term Constraints: We hypothesize that if a sequential pair of actions appears fre-
quently in the traces, there must be a reason for their frequent co-existence. We are thus
interested in the branch of pattern mining algorithms which treat frequent sequential action
pairs. Other algorithms in the pattern mining literature, like the apriori algorithm (Agrawal
and Srikant, 1994) (used in ARMS (Yang, Wu, and Jiang, 2007)) are not equipped to sat-
isfy this requirement. Bearing this requirement in mind, we parse the input traces and feed
them to an algorithm called TRuleGrowth (Fournier-Viger, Nkambou, and Tseng, 2011), an
algorithm for mining sequential rules common to several sequences that appear in a sequence
database. It belongs to a family of algorithms constituting a data mining library called SPMF
(Fournier-Viger et al., 2014), a comprehensive offering of implementations of data mining
algorithms for association rule mining, sequential rule mining and sequential pattern mining
among others. TRuleGrowth is a variation of the RuleGrowth algorithm (Fournier-Viger,
Nkambou, and Tseng, 2011) with a window size constraint (representing the number of con-
secutive actions to consider). The input to TRuleGrowth is (1) a sequence database T, (2)
three user-specified thresholds, namely support (a value in [0, 1]) and confidence (a value
in [0, 1]) and (3) a parameter named window_size (an integer ≥ 0 representing the number
of successive actions to consider, which in our case is 1 since we consider action pairs). Given
a sequence database T, and the parameters support, confidence and window_size, TRule-
Growth outputs all sequential rules having a support and confidence higher than support
and confidence respectively and which contain window_size number of consecutive ac-
tions. We test our system with a trace set consisting of 200 traces. Starting with 20 traces,
we consistently double the number of traces till we reach 200. In the process, we identify
frequent rules (action pairs) which consistently maintain the confidence and support over an
increasing number of traces. These frequent pairs can be suspected to share a “semantic"
relationship among themselves, in terms of a correlation between their pre, add and del lists.
These constraints have been proposed by the ARMS (Yang, Wu, and Jiang, 2007) system,
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FIGURE 4.3: Diagram representing the second phase of the SRMLearn al-
gorithm consisting of constraint generation. The relevant predicates of each
of the actions are represented in the form of variables. The association of
the relevant predicate relPreai in the (pre, add, del) list of the action is
labelled in the form of positive integers. The representation of these vari-
ables in the form of intra-operator and inter-operator constraints is encoded
with the help of De-Morgan’s laws. These encodings are then converted into
CNF form and passed to a weighted MAX-SAT solver which the objective

of constraint satisfaction.

and serve as heuristics to explain the frequent co-existence of these actions. These heuristics
are the only ones available in the literature which fit into our scheme of things, also producing
good results in the case of the ARMS system. This serves as incentive to us for re-using the
same. More precisely, if there is an action pair (ai, aj), 0 ≤ i < j ≤ (n− 1) where n is the
total number of actions in the plan; and prei, addi and deli represent ai’s pre, add and del
list, respectively:

• A predicate p such that (p ∈ relPreai , p ∈ relPreaj ) added by the first action (p ∈
addi), which serves as a prerequisite for the second action aj (p ∈ prej), cannot be
deleted by the first action ai. That is, a predicate which serves as a pre-requisite for
two successive actions cannot be deleted by the first action.

• A relevant predicate p (p ∈ relPreai , p ∈ relPreaj ) is added by the first action ai
thus also appears in the pre list of the second action aj . That is, a predicate that is
added by the first action appears as a prerequsite for the second action in an action
pair.

• A predicate p that is deleted by the first action ai is added by aj . In other words, an
action re-establishes a predicate that is deleted by a previous action.

• The above plan constraints can be combined into one constraint and restated as: ∃p ∈
(relPreai , relPreaj ) : ((p ∈ (prei∩prej)∧p 6∈ (deli))∨ (p ∈ (addi∩prej))∨ (p ∈
(deli ∩ addj))

The aforementioned constraints can be summarized in the listing 4.10.
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FIGURE 4.4: Diagram representing the third phase of the SRMLearn algo-
rithm consisting of model reconstruction. The variables that evaluate to true
by the weighted MAX-SAT solver are translated back to the predicates they

represent, thus reconstructing the entire model back piece by piece.

Frequent action pairs for gripper domain: (pick, move)
Common relevant predicate for actions
move and pick: (at-robby)
constraint:: ∃(at − robby)((at − robby ∈ (prepick ∩ premove)) ∧ at − robby /∈
(delpick)) ∨ (at− robby ∈ (addpick ∩ premove)) ∨ (at− robby ∈ (delpick ∩ addmove))

LISTING 4.3: Short term constraints for action pair (move, pick)

Long-Term Constraints: We introduce this set of soft constraints to explore the relation-
ships between a chain of actions constituting a plan. While the first two are proposed by the
ARMS implementation (Yang, Wu, and Jiang, 2007), the third one is our contribution.

• If a predicate p is observed to be true for an action an of a plan sequence and p is
a relevant predicate to a1, . . . , ai, . . . , an where 0 ≤ i < n, then the predicate p
must be generated, that is, exist in the add list of ai. This can be expressed as p ∈
adda1 ∨ adda2 ∨ . . .∨ addan−1 . This constraint, however, ceases to be true in the case
that the predicate in question pre-exists in the initial state (Yang, Wu, and Jiang, 2007).

• The initial states of a plan contains many predicates, some of which are often applica-
ble to the first action of a plan. In this case, we hypothesize that these predicates are
preconditions of the first executed action in the trace (Yang, Wu, and Jiang, 2007).

• If a predicate p is observed to be true in the intermediate states right before an action ak
of a plan sequence and p is a relevant predicate to ak, ak+1, . . . , an, then the predicate
pmust serve as a precursor to these following actions, that is, exist in the pre-list of ak.
This can be expressed as p ∈ (preak ∨ preak+1

∨ preak+2
∨ . . .∨ prean) (Arora et al.,

2017).

The aforementioned constraints can be summarized in the listing 4.4.

trace Snippet::
[(state) (at-robby (..)) (action) (pick) (action)
(pick (..)) (action) (move (..)) (action) (drop (..))][(state)
(at (..)) (action) (pick (..))][(action) (drop (..)) (action)
(move (..))][(action)(drop (..))]

Long Term Constraints for predicate at-robby::
(at− robby) ∈ (prepick ∨ predrop)
(at− robby) ∈ (addmove ∨ addpick ∨ adddrop)
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FIGURE 4.5: Illustration of our learning problem. The learnt action model
is written in PDDL (Planning Domain Description Language) (McDermott
et al., 1998) and conforms to the semantics of STRIPS (Fikes and Nilsson,

1971).

(at− robby) ∈ (prepick)

LISTING 4.4: Long term constraints for gripper domain

4.2.4 Constraint Resolution and Model Reconstruction

As seen in the previous subsections, the relevant predicates to each action can be encoded in
the form of constraints. For each relevant predicate relPreai to an action ai, we create three
constraints: one each for the pre, add and del list. Thus the number of relevant constraints
relConsai for an action ai is thrice the number of relevant predicates for the same action.
These relevant constraints are then used to generate inter and intra-operator constraints. This
process is better illustrated in Figure 4.3. Each of these constraints has a specific weight.
While the weights of the intra-operator constraints and the long term constraints is varied
between 50-100, the weight of the short term constraints is equivalent to the support of the
rules which are associated with the frequent action pairs obtained with the TRuleGrowth
algorithm. A CNF formula which is formed by the conjunction of these weighted constraints
is then fed to a weighted MAX-SAT solver (Borchers and Furman, 1998). This solver finds a
truth assignment that maximizes the total weight of the satisfied constraints, thus producing
as output the constraints which evaluate to true. The constraints which evaluate to true are
used for the reconstruction of the entire model.

4.3 Evaluation

The objective of our evaluation is to convert the hard and soft constraints generated from the
traces into clauses, feed them to a MAX-SAT solver, record the resolved constraints, and use
these resolved constraints to reconstruct the action model. We measure the accuracy of our
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learning algorithm by performing a syntactic comparison between the reconstructed model
and the ground truth action model for each of our evaluated domains. The details of this
evaluation are listed in the following subsections.

The traces for the domains must be parsed and converted into a specific format which
can serve as an input to the TRulesGrowth algorithm. The emerging rules emerging from
the TRulesGrowth algorithm along with their confidence and support are recorded. This
is iteratively done while doubling the number of traces from 20, 50, 100, 200. The rules
maintaining a consistently high value of confidence and support with increasing number of
traces for domains are recorded since they represent a highly frequent and sequential pair of
actions. The confidence and support are varied between the values of 0.8 and 1.0 for all the
tests.

The relevant predicates to each action are encoded in the form of intra and inter-operator
constraints. A CNF formula which is formed by the conjunction of these weighted constraints
(weighted with the scheme mentioned in Section 4.2.4) is then fed to a weighted MAX-SAT
solver. This solver finds a truth assignment that maximizes the total weight of the satisfied
constraints, thus producing as output the constraints which evaluate to true. The constraints
which evaluate to true are used for the reconstruction of the entire model. This reconstructed
model is termed as the empirical model. This model is compared with artificial models which
are considered as the ground truth. The difference between the ground truth model and the
empirically determined model is represented in the form of a reconstruction error. This error
is based on the similarity among the predicates between the empirical model and ground truth
model. Let diffpreai represent the syntactic difference in pre lists of action ai in the ground
truth (or ideal) model and the empirical model. Each time the pre list of the ideal model
presents a predicate which is not in the pre list of the empirical model, the count diffpreai
is incremented by one. Similarly, each time the pre list of the empirical model presents a
predicate which is not in the pre list of the ideal model, the count diffpreai is incremented
by one. Similar counts are estimated for the add and del lists as diffaddai and diffdelai
respectively. This total count is then divided by the number of relevant constraints for that
particular action relConsai to obtain the cumulative error per action. This error is summed
up for every action and averaged over the number of actions of the model to obtain an average
error E for the entire model.

The cumulative error for the model is thus represented by:

E =
1

n

n∑
i=1

diffPreai + diffAddai + diffDelai
relConsai

(4.1)

During the course of our experiments, we evaluate the performance of SRMLearn with
our implementation of ARMS over five domains as follows: for each of the domains, we
set the number of traces as (20, 50, 100, 200), solve them with the help of two SAT solvers
((Borchers and Furman, 1998; Kautz, Selman, and Jiang, 1996)) and calculate the cumula-
tive error for SRMLearn and our implementation of ARMS. It should be noted that the key
difference between SRMLearn and ARMS lies in the constraint set and chosen data min-
ing algorithm. The error is calculated whilst augmenting the number of traces till 200, after
which the obtained error percentages are plotted against each other. The evaluation domains
include depots, parking, mprime, gripper and satellite and are represented in the figures 4.6,
4.7, 4.8, 4.9 and 4.10. In the first four domains, the error percentages with SRMLearn are
lower than with ARMS, which can be attributed to the injection of short term constraints. As
these constraints are directly obtained from the traces and signal the presence of correlated
action pairs, they guide the SAT solver accordingly by reinforcing the constraints represented
by the action pairs. This produces a more accurate model. The higher accuracy of SRMLearn
in these domains can be attributed to the fact that sequential frequent action pairs with the
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TRuleGrowth algorithm demonstrate a stronger correlation than frequent action pairs in the
case of the apriori algorithm. The near equal error percentage in the case of the satellite
domain is assumed to be due to a reduced influence of short term constraints with 200 traces,
resulting in near identical errors produced by the two algorithms. A summary of the number
of traces per domain, average number of actions per trace, the number of constraints evalu-
ated per domain, and the execution times for a range of traces are summarized in Table 4.1.

FIGURE 4.6: Plot for error comparison in depots domain (number of traces
v/s error)

FIGURE 4.7: Plot for error comparison in parking domain (number of traces
v/s error)

4.4 Future Perspectives: Learning temporal models

The planning community has increasingly oriented its research towards solving real life
problems. For example, interest in planning demonstrated by the space research commu-
nity principally in observation scheduling and planetary rover exploration, logistics planning,
and manufacturing processes among others. The International Planning Competitions have
acted as an important motivating force behind the progress that has been made in planning
since 1998. This re-orientation, however, inevitably brings problems involving time into the
scheme of things. In the third competition the authors therefore took the initiative in defining
an expressive language capable of modeling temporal domains. This language was called
PDDL 2.1, and has been designed to be backward compatible with the version of PDDL
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FIGURE 4.8: Plot for error comparison in mprime domain (number of traces
v/s error)

FIGURE 4.9: Plot for error comparison in gripper domain (number of traces
v/s error)

prevalent since 1998 (Fox and Long, 2003). This version of the language re-introduces ac-
tions laced with temporal properties as durative actions. There may be two forms of durative
actions, namely discretised durative actions and continuous durative actions. State changes
induced by action application are considered to be instantaneous, thus the continuous as-
pects of a continuous durative action refer only to how numeric values change over the action
interval of the action.

The preconditions and effects of actions are also annotated with various durative termi-
nologies. The duration of the action is represented by the :duration attribute. The annotation
of a precondition signifies whether the associated predicate must hold at the start of the in-
terval (the instant of action application, illustrated with the at start construct), the end of the
interval (the instant at which the final effects of the action are visible, illustrated with the at
end construct) or over the interval from the start to the end (invariant over the duration of the
application of the action, illustrated with the overall construct). The annotation of an effect
signifies whether the effect is instantaneous (occurring at the start of the interval) or delayed
(occurring at the end of the interval). Invariant predicates that hold over an interval that is
open at both ends (starting and ending at the end points of the action) are expressed using the
over all construct. If it is required to specify that predicate p holds in the closed interval over
the duration of a durative action, then three conditions are required: (at start p), (over all p)
and (at end p). If a condition is required as a precondition as well as an invariant condition,
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FIGURE 4.10: Plot for error comparison in satellite domain (number of
traces v/s error)

it means that any action that affects the invariant must start after the end of the action re-
quiring that invariant. Prior to the introduction of time into PDDL, all plans were interpreted
sequentially. However, durative actions incentivize the exploitation of concurrency. That is,
actions can have pre- and postconditions that are local to the two end-points of the action, and
a planner can choose to exploit a durative action for effects it has at its start or at its end. An
example of a durative action for the parking domain is mentioned in the Listing 4.5 below.

(:durative-action move-curb-to-curb
:parameters (?car - car ?curbsrc ?curbdest - curb)
:duration (= ?duration 1)
:condition (and

(at start (car-clear ?car))
(at start (curb-clear ?curbdest))
(at start (at-curb-num ?car ?curbsrc))

)
:effect (and

(at start (not (curb-clear ?curbdest)))
(at end (curb-clear ?curbsrc))
(at end (at-curb-num ?car ?curbdest))
(at start (not (at-curb-num ?car ?curbsrc)))

)
)

LISTING 4.5: Durative PDDL domain

For an action with precondition p to hold at time t,there must be a half open interval
immediately preceding t in which p holds. To tackle concurrency, an approach which is
considered to be on the lines of the mutual exclusion principle in the case of shared memory
is implemented. It is identical to the idea of prohibiting the simultaneous read and write of a
variable in the case of POSIX threads abiding by the law of mutual exclusion. Precisely, no
two actions can simultaneously access value if one of the two is accessing the value to update
it. To implement the mutual exclusion principle, we require non-zero-separation between
mutually exclusive action end points. Planners can thus exploit concurrency by ensuring
only that there is non-zero separation between conflicting start and end points of actions.
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TABLE 4.1: Summary of characteristics of traces and their execution time

Domain Number of Constraints Number of Traces
Average number of
actions per trace

Execution time
(seconds)

Mprime 42 20 4 4.68
42 50 7.02
42 100 17.87
42 200 75.67

Depots 129 20 21 41.32
132 50 233.24
129 100 1134.22
129 200 5420.12

Parking 69 20 6 5.39
69 50 10.83
69 100 34.37
68 200 194.33

Gripper 30 20 13 13.39
30 50 63.10
30 100 223.92
30 200 1018.52

Satellite 45 20 7 12.01
54 50 79.19
53 100 303.48
54 200 1327.04

4.4.1 Temporal intra-operator and inter-operator constraints

The temporal intra-operator constraints are identical to the constraints presented in Sec-
tion 4.2, with the addition of a temporal perspective. In this perspective, all the predicates
potentially figuring in the pre list are augmented with conditions start, overall and end. This
gives rise to three possible constraints for each predicate in place of one possible constraint
(as in the case of intra-operator constraints in Section 4.2). For example, if these three tempo-
ral labels are associated to each predicate p in the precondition list of action a, it gives rise to
three representations, namely: (p) ∈ (pre, start)a, (p) ∈ (pre, overall)a, (p) ∈ (pre, end)a
representing that the predicate p which is relevant to the action a may be associated to
any one of the start, overall or end labels respectively. Similarly in the case of the ef-
fects, the predicate may either be associated with the start or with the end temporal la-
bel. This association may be represented as follows, for the predicate p and action a:
(p) ∈ (add, start)a, (p) ∈ (add, end)a, (p) ∈ (del, start)a, (p) ∈ (del, end)a.

The modified temporal intra-operator constraints are represented in the Listing 4.6:

intra-operator temporal constraints for predicate at-robby::
(at− robby) ∈ (add, start)move ⇒ (at− robby) /∈ (pre, start)move

(at− robby) ∈ (add, overall)move ⇒ (at− robby) /∈ (pre, start)move

(at− robby) ∈ (add, end)move ⇒ (at− robby) /∈ (pre, start)move

(at− robby) ∈ (add, start)move ⇒ (at− robby) /∈ (pre, overall)move

(at− robby) ∈ (add, overall)move ⇒ (at− robby) /∈ (pre, overall)move

(at− robby) ∈ (add, end)move ⇒ (at− robby) /∈ (pre, overall)move

(at− robby) ∈ (add, start)move ⇒ (at− robby) /∈ (pre, end)move

(at− robby) ∈ (add, overall)move ⇒ (at− robby) /∈ (pre, end)move

(at− robby) ∈ (add, end)move ⇒ (at− robby) /∈ (pre, end)move

(at− robby) ∈ (del, start)move ⇒ (at− robby) /∈ (pre, start)move
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(at− robby) ∈ (del, end)move ⇒ (at− robby) /∈ (pre, end)move

LISTING 4.6: Intra-operator temporal constraints for gripper domain

Similarly, the short-term constraints mentioned in Section 4.4 are modified and presented
as follows, for a common relevant predicate at-robby for two successive actions pick and
move:

• A predicate which serves as a pre-requisite for two successive actions cannot be deleted
by the first action. That is:

∃(at − robby)(at − robby ∈ (((pre, beg)pick ∩ (pre, beg)move)) ∧ at − robby /∈
((del, beg)pick)∨(((pre, overall)pick∩(pre, overall)move))∧at−robby /∈ ((del, beg)pick)∨
(((pre, end)pick∩(pre, end)move))∧at−robby /∈ ((del, beg)pick)∨(((pre, beg)pick∩
(pre, beg)move))∧at−robby /∈ ((del, end)pick)∨(((pre, overall)pick∩(pre, overall)move))∧
at − robby /∈ ((del, end)pick) ∨ (((pre, end)pick ∩ (pre, end)move)) ∧ at − robby /∈
((del, end)pick)))

LISTING 4.7: First subset of short term temporal constraints for ac-
tion pair (move, pick)

• A relevant predicate p (p ∈ relPreai , p ∈ relPreaj ) is added by the first action ai
thus also appears in the pre list of the second action aj . That is, a predicate that is
added by the first action appears as a prerequsite for the second action in an action
pair. That is:

∃(at− robby)(at− robby ∈ (((add, beg)pick ∩ (pre, beg)move) ∨ ((add, beg)pick ∩
(pre, overall)move)∨((add, beg)pick∩(pre, end)move)∨((add, overall)pick∩(pre, beg)move)∨
((add, overall)pick ∩ (pre, overall)move) ∨ ((add, overall)pick ∩ (pre, end)move) ∨
((add, end)pick∩(pre, beg)move)∨((add, beg)pick∩(pre, overall)move)∨((add, end)pick∩
(pre, end)move)))

LISTING 4.8: Second subset of short term temporal constraints for
action pair (move, pick)

• A predicate p that is deleted by the first action ai is added by aj . In other words, an
action re-establishes a predicate that is deleted by a previous action. That is:

∃(at− robby)(at− robby ∈ ((((del, beg)pick ∩ (add, beg)move) ∨ ((del, beg)pick ∩
(add, overall)move)∨((del, beg)pick∩(add, end)move)∨((del, end)pick∩(add, beg)move)∨
((del, beg)pick ∩ (add, overall)move) ∨ ((del, end)pick ∩ (add, end)move))))

LISTING 4.9: Third subset of short term temporal constraints for ac-
tion pair (move, pick)

• The above plan constraints can be combined into one constraint and restated as:

Frequent action pairs for gripper domain: (pick, move)
Common relevant predicate for actions
move and pick: (at-robby)
∃(at − robby)(at − robby ∈ (((add, beg)pick ∩ (pre, beg)move) ∨ ((add, beg)pick ∩
(pre, overall)move)∨((add, beg)pick∩(pre, end)move)∨((add, overall)pick∩(pre, beg)move)∨
((add, overall)pick ∩ (pre, overall)move) ∨ ((add, overall)pick ∩ (pre, end)move) ∨
((add, end)pick∩(pre, beg)move)∨((add, beg)pick∩(pre, overall)move)∨((add, end)pick∩
(pre, end)move)∨((del, beg)pick∩(add, beg)move)∨((del, beg)pick∩(add, overall)move)∨
((del, beg)pick∩(add, end)move)∨((del, end)pick∩(add, beg)move)∨((del, beg)pick∩
(add, overall)move)∨((del, end)pick∩(add, end)move)∨(((pre, beg)pick∩(pre, beg)move))∧
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at − robby /∈ ((del, beg)pick) ∨ (((pre, overall)pick ∩ (pre, overall)move)) ∧ at −
robby /∈ ((del, beg)pick)∨(((pre, end)pick∩(pre, end)move))∧at−robby /∈ ((del, beg)pick)∨
(((pre, beg)pick∩(pre, beg)move))∧at−robby /∈ ((del, end)pick)∨(((pre, overall)pick∩
(pre, overall)move))∧at−robby /∈ ((del, end)pick)∨(((pre, end)pick∩(pre, end)move))∧
at− robby /∈ ((del, end)pick))))

LISTING 4.10: Combined set of short term temporal constraints for
action pair (move, pick)

While the theoretical foundations of this approach have been put into place during the
course of this study, the implementation and evaluation of the results is left as a scope for
future work.

4.5 Conclusions

To learn operators in APS, it is possible to exploit intra-operator and inter-operator con-
straints. While the intra-operator constraints deal with the structure of the operator as a
whole, the inter-operator ones exploit the semantic relationship between successive operators.
We present an approach called SRMLearn, which encodes the aforementioned constraints in
the form of a maximum satisfiability problem (MAX-SAT) and solves it with a weighted
MAX-SAT solver to obtain the underlying operator blueprint (action model). Unlike previ-
ous MAX-SAT driven approaches, our chosen constraints exploit the relationship between
consecutive actions, rendering more accurately learnt actions in the end. Our approach is
capable of learning purely from traces, subtracting the need for domain knowledge. Em-
pirical results demonstrate that our approach outperforms the ARMS implementation (Yang,
Wu, and Jiang, 2007) due to its choice of constraints and pattern mining algorithm. As the
planning community strives to tackle problems which are closer to the real world, there is
a growing need to include the notion of time in the domain representations. To cater to this
need, version 2.1 of PDDL is equipped with durative actions equipped with an execution du-
ration and various temporal conditions to label the execution instant of a predicate during the
course of action execution. The intra and inter-operator constraints developed in the SRM-
Learn system are extended to integrate a temporal aspect. While the theoretical foundations
of this extension have been laid out in this study, the implementation and evaluation of the
results is left as a scope for future work.
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Chapter 5

Connectionist Techniques: The
PDeepLearn System

5.1 Introduction

In a bid to reconstruct the underlying action model with the intent of using it to subsequently
plan again, the margin of error is very small. The learnt model may be missing predicates or
these predicates may be misplaced in the wrong lists. The displacement of a single predicate
can render the model to be unusable to plan again without the intervention of a human domain
expert to fill in the blanks. Most approaches in literature have used upward model building
approaches to learn action models, gradually building the model component by component.
These approaches either begin with a partial model or no model at all, which is eventually
completed after the application of the learning algorithm. These approaches, however, fall
short in providing a complete reconstruction of the domain model. To sum up, most ap-
proaches fall short of using a learned model to plan again as anything less than a flawless
reconstruction of the underlying model renders it unusable.

We turn the problem on its head and look at it from a different perspective: given a set of
all possible and exhaustively generated candidate models specific to a domain, are we able
to devise a method to identify the speculated ideal model which best explains the traces? By
means of this exhaustive generation, we ensure that we do not skip any predicate or sensitive
information, and are eventually able to isolate a model speculated to be identical to the hand
woven model. This hand woven model is necessary to serve as a benchmark to help evaluate
the accuracy of our learning algorithm. The stronger the match between the learnt and the
hand woven model, the more precise our learning algorithm is. This isolated model is thus
called the speculated ideal model, and can directly be plugged into a planner to generate a
fresh sequence of plans.

To do this, we explore the short-term and long-term dependencies between actions to con-
verge to the speculated ideal model. Given the candidate model set, we explore short-term
dependencies by pattern mining techniques and long-term dependencies based on sequence
labeling techniques by using long short-term memory (LSTM) techniques for the acquisition
of the underlying domain model in the output. Empirical results highlight that the sequence
labelling achieved with an empirically acquired model proven to be syntactically identical to
the hand woven model (ground truth model used to generate training data) attains the highest
accuracy compared to other models in the set. This structural consistency of the acquired
model with the hand woven model renders this LSTM-based sequence labelling approach to
learn action models as an effective one. The biggest advantage of our approach can be seen
from the fact that given a set of state-action interleaved traces, our approach is capable of
learning a domain model which is structurally consistent to the hand woven model. Connec-
tionist models in general are known to provide good performance, both in terms of training
time as well as the quality of the learnt models (Mourão et al., 2012). Since deep learning
by virtue is capable of learning intricate structures in high-dimensional data (LeCun, Bengio,
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and Hinton, 2015), it is a viable option to explore in the case of complex domains where
learners tend to struggle (Yang, Wu, and Jiang, 2007). Our approach is called PDeepLearn,
which stands for PDDL domain Deep Learner. As the name suggests, the approach learns
PDDL (McDermott et al., 1998) domain models with the help of deep learning techniques. In
particular, the noteworthy successes of LSTM (Hochreiter and Schmidhuber, 1997), a deep
learning technique being increasingly used in learning long range dependencies in the fields
of speech and handwriting recognition (LeCun, Bengio, and Hinton, 2015; Goodfellow, Ben-
gio, and Courville, 2016), are exploited. A plan is an orchestrated execution of a series of
actions which are by virtue interdependent in order to execute. Since a plan exhibits long-
term dependencies and the LSTM by virtue exploits the same; there is a direct link between
the principle of operation of the LSTM and plan execution, which this chapter seeks to ex-
plore. This chapter details out the specifics of our approach in Section 5.2, as well as the
obtained results in Section 5.3. It concludes with Section 5.4.

5.2 The PDeepLearn Algorithm

The approach followed in PDeepLearn is divided into three phases, which are summarized
in Figure 5.1. In the first phase, we enumerate all possible candidate action models. In
phase two, we identify frequent action pairs using pattern mining algorithms. Action pair
constraints are applied to the frequent action pairs to eliminate improbable candidate mod-
els. In the final phase, LSTM based techniques are used to label action sequences with the
intent of identifying the speculated ideal model which produces the best labelling accuracy.
This model is structurally consistent with the hand woven model. The algorithm for the
PDeepLearn approach is specified in figure 5.1.

5.2.1 Overview and Definitions

Any sequence of actions are likely to exhibit implicit patterns and regularities within them.
These patterns may be of the form of frequently co-occurring actions, which indicate the
possible presence of inter-action dependencies and relationships. These relationships can
be uncovered by means of pattern mining techniques to facilitate the process of learning.
Each action name (signature omitted) in plan traces is viewed as an itemset, which has only
one element, and a plan trace as a sequence. Whilst uncovering inter-action relationships
with the aid of pattern mining, we lay emphasis on the actions constituting the traces and
not the states. The set of traces T can now be treated as a Sequence Database (SD) in the
pattern mining domain. An SD is a set of sequences of itemsets T = [s1, s2, . . . , ss] where
each sequence represents a trace. Each sequence is an ordered list of items (in our context,
each item in the sequence is equivalent to an action) si = [a1, a2, . . . , an]. A sequential
rule ax → ay is a relationship between two actions ax, ay ∈ A such that if ax occurs in a
sequence, then ay will occur successively in the same sequence. Two measures are defined
for sequential rules. The first one is the sequential support. For a rule ax → ay, it is defined
as sup(ax → ay) = |ax → ay|/|T |. The second one is the sequential confidence and it is
defined as conf(ax → ay) = |ax → ay|/|ax|, where |ax → ay| represents the number of
times the ax and ay appear in succession in T , and |ax| represents the number of times ax
appears in T . The values of the confidence and support of ax and ay is directly proportional
to the frequency of the sequential co-occurrence of ax and ay in the SD (Fournier-Viger et al.,
2012).

The phases of the algorithm can be better understood from the pseudo code outlined in
Algorithms 3,4 and 5.
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Algorithm 3 Overview of the PDeepLearn Algorithm

1: Input: set of plan traces T, dictionary V T associating objects with their types (type,
object)

2: Output: speculated ideal model specm
3: Generate candidate model set M = generateAllPossiblemodels(T, VT)
4: Semantic Constraint Adherence: eliminate models from M which do not satisfy semantic

constraints;
5: Action Pair Constraint Adherence: Identify frequent action pairs from TRuleGrowth

Algorithm and proceed with pruning phase to eliminate improbable models from M;
6: Identify the speculated ideal model specm = encodeLSTM(T,M)
7: Return specm

Algorithm 4 Procedure generateAllPossible models (T, VT)

1: Input: Set of plan traces T, dictionary V T associating objects with their types (type,
object)

2: Output: Candidate model set M consisting of all possible combinations of predicates
giving rise to all possible candidate action models

3: for j = 1 to T do
4: Replace all objects in signatures of action and predicates in T with their types referenced

from the (type, object) pairs to build generalized action schema As and
predicate schema Ps respectively

5: for ai in As do
6: for pi in Ps do
7: If pi relevant to ai, then add to list relPreai containing

relevant predicates for ai
8: Find all possible combinations of relPreai to generate candidate action set CASai for

ai
9: Add to candidate action dictionary an entry with (key, value) as (ai, relPreai)

10: for ai in As do
11: Append to M the CASai
12: Return M

Algorithm 5 Procedure encodeLSTM (T, M)

1: Input: Set of plan traces T, reduced set of possible candidate action models M
2: Calculate the maximum length among all the traces and store in batchLen
3: for j = 1 to T do
4: Encoding for Training Phase: Encode each action in the form of input and output vector

with encoding scheme mentioned in Section 5.2.6
5: Pad length of trace with vectors containing zeros so that each trace has uniform length

batchLen
6: Sample set m′ from M
7: for i = 1 to m′ do
8: Encoding for Validation Phase: Encode each action in the form of input and output vector

with encoding scheme mentioned in Section 5.2.6 with model i;
9: Run the computational graph and identify speculated ideal model specm from m′ as one

with highest prediction accuracy
10: Return specm
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FIGURE 5.1: PDeepLearn approach phases

5.2.2 Candidate model Generation

In this subsection, all possible candidate action models are generated from the input plan
traces. Firstly, each trace is taken one by one, and each action as well as each predicate in the
initial, goal and intermediate states of the plan trace is scanned to substitute the instantiated
objects in the signatures with their corresponding variable types. This substitution is done
by referencing the dictionary V T that associates instantiated objects with their types. These
associations are drawn from the problem definition. This builds the corresponding gener-
alized action schema As and predicate schema Ps respectively. Each action in the action
schema is associated with its relevant predicates from the predicate schema, where a pred-
icate pai ∈ Ps is said to be relevant to an action ai ∈ As if they share the same variable
types. The objective is to find for every action, the predicates that can be applied to it and
thus constitute the (pre, add, del) lists of that specific action. For example, the predicate
at-robby (?robot, ?room) is relevant to the action find (?robot, ?object, ?room, ?gripper)
as both of them contain the parameter types (robot, room) in their signatures and the types
(robot, room) ⊂ (robot, object, room, gripper). The set of relevant predicates to an action
ai can be denoted as relPreai . With schemas As and Ps, a candidate action dictionary is
built. An illustration of this generalization and dictionary construction step is given in Fig-
ure 5.2. Each key in the dictionary is the name of the action (ai ∈ As) and the value is a
list of all predicates relevant to that particular action (relPreai ∈ Ps). All possible combi-
nations of relevant predicates per key are represented as elements of a candidate action set
CAS. We represent the elements of the candidate action set of each action ai ∈ As (CASai)
in the format (pre, add, del). For example, the number of elements of the candidate action
set for action ai containing m relevant predicates is represented as (

∏n
i=1

(
m
i

)
)3. At this

stage, the semantic constraints mentioned in the fourth coming Section 5.2.3 are applied to
the elements of the the candidate action sets of each of the actions. This step eliminates
various semantically incorrect models from propagating further into the chain. The cartesian
product of all these remaining candidate action sets (after the elimination step with the se-
mantic constraints) per action constitute the set of all possible candidate models M for the
domain. The size of M is directly proportional to the complexity of the domain i.e. number
of actions and predicates constituting the domain. We use the gripper domain to illustrate the
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aforementioned steps, taking the example of the pick action. The candidate model generation
procedure for the pick action is represented in Listing 5.1. It is also detailed in the algorithm
represented by the Figure 4.

trace snippet before generation phase:: [
(state) ((at ball5 room1) (at-robby robot3 room1))
(action) (pick robot3 ball5 room1 rgripper3)
(state) ((carry robot3 ball5 room1))]
trace snippet after generation phase::
[(state) ((at ball room) (at-robby robot room))
(action) (pick robot ball room rgripper)
(state) ((carry robot ball room))]
Relevant predicates for action pick: (at, at-robby)
Candidate action set for action pick: {(at (obj0 - object, roo1 - room),
(), ¬at-robby (rob0 - robot, roo1 - room)), ((at-robby (rob0 -
robot, roo1 - room), (), ¬at (obj0 - object, roo1 - room)),...}

LISTING 5.1: Candidate model generation procedure for the pick action of
the gripper domain

FIGURE 5.2: Candidate model generation procedure for the pick action of
the gripper domain

5.2.3 Semantic Constraint Adherence

The semantic constraints are accounted for during the course of creating elements of the
candidate action set CAS. In order to qualify as legitimate, each element of the candidate
action set CASi of action ai must satisfy some semantic constraints proposed by STRIPS
(Fikes and Nilsson, 1971). Thus, for each action ai ∈ [a1, a2, . . . , an] and relevant predicate
p ∈ relPreai :

• p cannot be in the add list and the del list for the same action.
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• p cannot be in the add list and the pre list for the same action.

Elements which do not adhere to these constraints are deleted from CASi. This step is
quintessential in performing a first round of filtration, thus weeding out a large number of
improbable elements, leaving us with more accurate ones which are cross multiplied in order
to obtain the set of all possible candidate models M . These constraints can be summarized
in the listing 5.2.

Relevant predicates for action move:
(at, at-robby)
Semantic constraints for action move:
at ∈ delmove ⇒ at ∈ premove

at ∈ addmove ⇒ at /∈ premove

at− robby ∈ delmove ⇒ at− robby ∈ premove

at− robby ∈ addmove ⇒ at− robby /∈ premove

LISTING 5.2: Semantic constraints for action move

5.2.4 Sequence Pattern Mining

We hypothesize that if a sequential pair of actions appears frequently in the traces, there
must be a reason for their frequent co-existence. We are thus interested in the branch of
pattern mining algorithms which treat frequent sequential action pairs. Other algorithms in
the pattern mining literature, like the apriori algorithm (Agrawal and Srikant, 1994) (used in
ARMS (Yang, Wu, and Jiang, 2007)) are not equipped to satisfy this requirement. This is
because of the fact that the apriori algorithm identifies the itemsets which are frequent but
not necessarily sequential in a SD. This does not correspond to our requirement, which is to
isolate frequent sequential itemsets (actions in our case). Bearing this requirement in mind,
the input traces are parsed and fed to an algorithm called TRuleGrowth (Fournier-Viger et
al., 2012), an algorithm used for mining sequential rules common to several sequences that
appear in a sequence database. It belongs to a family of algorithms constituting a data mining
library called SPMF (Fournier-Viger et al., 2014), a comprehensive offering of implementa-
tions of data mining algorithms. The inputs to TRuleGrowth are (1) a sequence database T ,
(2) support (a value in [0, 1]) and confidence (a value in [0, 1]) and (3) a parameter named
window_size (an integer ≥ 0, set to 1 in our case since we consider action pairs). Given a
sequence database T , and the parameters support, confidence and window_size, TRule-
Growth outputs all sequential rules having a support and confidence higher than support and
confidence respectively containing window_size number of consecutive actions. Starting
with 10 traces, we consistently double the number of traces till we reach 1000. In the process,
we identify frequent rules (action pairs) which consistently maintain the values of confidence
and support (empirically determined) over an increasing number of traces.

5.2.5 Action Pair Constraint Adherence

After identifying frequent action pairs in the previous step, this step filters elements of the
candidate action set for the actions constituting the frequent action pairs. These frequent pairs
are suspected to share a “semantic" relationship among themselves, in terms of a correlation
between their pre, add and del lists. These relationships serve as action pair constraints, and
have been proposed by the ARMS (Yang, Wu, and Jiang, 2007) system, serving as heuristics
to explain the frequent co-existence of these actions. These heuristics produce good results
in the case of the ARMS system, which serves as incentive for re-using the same. More
precisely, if there is an action pair (ai, aj), 0 ≤ i < j ≤ (n− 1) where n is the total number
of actions in the plan; and prei, addi and deli represent ai’s pre, add and del list, respectively:
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• A predicate p which serves as a precondition in the pre lists of both ai and aj cannot
be deleted by the first action. Formally:
∃p(p ∈ (prei ∩ prej) ∧ p 6∈ (deli)).

• A predicate p added by the first action which serves as a prerequisite for the second
action aj , cannot not be deleted by the first action ai. That is:
∃p(p ∈ (addi ∩ prej)).

• A predicate p that is deleted by the first action ai is added by aj . In other words, an
action re-establishes a predicate that is deleted by a previous action. That is:
∃p(p ∈ (deli ∩ addj))

• The above plan constraints can be combined into one constraint and restated as: ∃p((p ∈
(prei ∩ prej) ∧ p 6∈ (deli)) ∨ (p(addi ∩ prej)) ∨ (p ∈ (deli ∩ addj))

All pairs of elements in the candidate action set which satisfy one or more of the afore-
mentioned constraints will be retained for the following learning step. For example, if
(move,pick) are identified to be frequent action pairs and ((at(obj0−object, roo1−room),¬(at−
robby(rob0 − robot, roo1 − room)))) ∈ CASmove; and ((carry(rob0 − robot, obj0 −
object, gr0−gripper), (at−robby(rob0−robot, roo0−room)), (¬at(obj0−object, roo1−
room)))) ∈ CASpick are two elements; then these two elements are retained in their respec-
tive action sets as they satisfy the third action pair constraint. Thanks to this heuristic, all
actions which occur in frequent pairs will have pruned candidate action sets for the learning
phase; thus speeding up learning by narrowing down the initial candidate set. This phase re-
duces the size of the candidate set M due to elimination. It is to be noted that all the actions
which not figure in frequent sequential pairs will not undergo this pruning phase, and will
directly pass to the following learning phase.

5.2.6 LSTM-based Classification

As previously mentioned, a plan is a chained series of actions orchestrating the accomplish-
ment of a goal. Each action in this chain is influenced by previously executed actions, and
will influence future actions further down the sequence. Thus, extracting patterns from se-
quences of previously executed actions is likely to provide strong evidence to predict the
label of the next action in the chain. Through the medium of sequence labelling, we can
narrow down and isolate the speculated ideal model among the reduced candidate set, as it
would hypothetically be the one delivering the highest prediction rates amongst all models in
the set. These dependency-driven and chained action executions inspire our investigation of
long short-term memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997) for action
sequence labelling, with the intent of identifying the speculated ideal model. In the follow-
ing subsections, we present our data encoding method for the input and output vector of the
LSTM, and an overview of the training and validation phases of our framework.

LSTM Background

LSTM (Hochreiter and Schmidhuber, 1997) is a special type of gated recurrent neural net-
work (RNN) which overcomes the limitation of traditional RNNs by demonstrating a ca-
pability of learning long-term dependencies. An LSTM network is formed exactly like a
simple RNN, except that the nonlinear units in the hidden layer are replaced by recurrently
connected subnets called memory blocks. These blocks can be thought of as a differentiable
version of the memory chips in a digital computer, thus serving as a form of “explicit mem-
ory" (LeCun, Bengio, and Hinton, 2015). Each block contains one or more self-connected
memory cells and three multiplicative units — the input, output and forget gates that provide
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continuous analogues of write, read and reset operations respectively for the cells. The input
and output gates scale the input and output of the cell, while the forget gate scales the internal
state, controlling whether the previous state of the memory cell is remembered or forgotten
(Min et al., 2016b). These multiplicative gates allow LSTM memory cells to store and access
information over long periods of time.

In this implementation of LSTM, three principal decisions are made by three distinct
layers. The decision as to what to throw away from a cell state is made by a sigmoid layer
called the forget gate ft. The second step is deciding what is to be stored in the cell state.
This is divided into 2 phases: a first sigmoid layer called the ’input gate layer’ decides what
values will be updated. Next, a tanh layer creates a vector of new candidate values C̃t that
could be added to the state. These two steps are summarized in the Equations 5.1- 5.3.

ft = σ(Wf .[ht−1, xt] + bf ) (5.1)

it = σ(Wi.[ht−1, xt] + bi) (5.2)

C̃t = tanh(Wc.[ht−1, xt] + bc) (5.3)

Now the old cell state Ct−1 must be updated to the new cell state Ct. The old cell state
is multiplied with ft, forgetting what we decided to forget earlier. Then it ∗ C̃t is added to
obtain the new candidate values (demonstrated in equation 5.4):

Ct = ft ∗ Ct−1 + it ∗ C̃t (5.4)

Finally the output must be decided. Firstly, a sigmoid layer decides what part of the
cell state will propagate to the output. Then, the cell state is put through a tanh layer and
multiplied with the output of the sigmoid gate, so as to output only the decided parts. This is
summarized in Equations 5.5 and 5.6.

ot = σ(Wo.[ht−1, xt] + bo) (5.5)

ht = ot ∗ tanh(Ct) (5.6)

Once the cell output ht of the LSTM memory block is calculated, the next step is to use
the computed cell output vectors to predict the next action in the plan sequence. This is done
with the help of ht, assuming that it is capable of capturing long-term dependencies from
previous time steps.

Data Encoding for Labelling of Action Sequences

We use the sequence labelling capabilities of LSTM to identify the speculated ideal model
from the reduced candidate set M . The sequence labelling in this case is in fact a classifica-
tion of the most likely action that succeeds a given one. The input to our LSTM system is
a large corpus comprising vector representations of each action of each trace. Each trace is
taken one by one, and the comprising actions are sequentially encoded into input and output
vectors; thus producing a large corpus of vectors. Each action of each trace is represented by
two distinct vectors: an input vector which encodes the action, and an output vector which
classifies the next action succeeding the action currently being encoded (we refer to this ac-
tion as the current action for the sake of simplicity). These vectors serve as the input and
output respectively to the LSTM cells, the encoding of which represents the heart of this sec-
tion. This corpus of vector representations is divided into a training and validation set aimed
at training the LSTM on the training set and gauging its performance on the validation set.
At the output of this learning system, we obtain an accuracy of prediction on the folds of
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validation data. The encoding of the input and output vectors is represented in the following
paragraphs.

The input vector representing an action in a trace is encoded in the following fashion. It
is divided into two sections: one section which labels the entire set of actions in the domain,
and the other which labels the relevant predicates for the actions in the domain. In the first
section, there is a slot for each action in the domain. The slot for the action currently being
encoded is labeled as 1, and the slots for the remaining actions in the domains are labeled as
0. Thus if (a1, a2, . . . , an) ∈ A is the set of domain-applicable actions, the first n elements of
the vector will be representing this first section, with the entry for the action currently being
encoded being switched to 1, the other (n− 1) slots for the remaining (n− 1) actions being
kept at 0. Once this first section has been assigned, we dedicate in the second section blocks
of elements in the vector specific to each action in the domain. Thus for n actions in the
domain, there are n different blocks (plus the one block for all the domain applicable actions
as explained above). Each action-specific block contains one entry for each predicate relevant
to that particular action. Revisiting the example in section 5.2.2 for the gripper domain, if
[at-robby (rob0 - robot, roo0 - room), at (obj0 - object, roo0 - room)] are two predicates
relevant to the action pick, they will constitute two entries in the pick action block. We
thus create action-specific blocks and for each action, assign entries for all the predicates
relevant to that action, replicating this scheme for every action in the domain. Thus, the
number of blocks for the input vector stands at (n + 1). The dimension d of this input
vector is directly proportional to the number of actions in a domain, as well as the number
of predicates relevant to each action. The dimension d of a vector for a specific domain will
always remain the same, with the switching of a slot from 0 to 1 in the vector signalling
the execution of a particular action. If (a1, a2, . . . , an)εAs represents the action schema, the
dimension of the input vector is given as:

d = n+
n∑

i=1

relPreai (5.7)

Here relPreai are the number of relevant predicates for the action ai.
The output vector predicts the label of the action that follows the action currently being
encoded in the trace. Very much like the input, the output is encoded as a binary vector. It
consists of a single block which has as many slots as the number of actions in the domain,
one for each action. The slot representing the succeeding action to the action being currently
encoded is set to 1, the others being set to 0. Revisiting the example in section 5.2.2 for the
gripper domain, the action currently being encoded is pick and the next action in the trace is
move. While the number of actions in a trace, and thus the number of vectors representing
all the actions in a trace may vary, the LSTM requires a fixed sized input. This is ensured by
calculating the maximum trace length batchLen (maximum number of actions per trace for
all the traces) for all the traces, and padding the shorter lists with d-dimensional vectors filled
with zeros. This padding is done for all the traces till all the traces have the same batchLen
number of actions. The same padding procedure is adopted for the output vectors.

Training and Validation Phase

The training and validation phases vary in the fashion that the slots of the input vector are
labelled. This is because of the fact that the objective of the validation phase is to test the
individual models to isolate the one with the highest labelling accuracy. In the training phase,
two sections of the vector are filled out to represent the action currently being encoded. In
the first section, the label of the action currently being encoded is set to 1, the rest being kept
at 0. In the second section, slots of the predicates relevant to the currently encoded action
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which occur in the current state (that is, are potential preconditions for the action about to be
executed or about to be encoded) is set to 1. Also, all slots the newly introduced predicates
as a result of the execution of the current action (i.e. the difference between the current state
and the next state) which are relevant to the current action are set to 1, the other slots being
kept at 0. The other blocks are kept switched off at 0 as well. This mechanism of encoding
the training vector is elaborated as follows. Revisiting the example from Listing 5.1, if the
action currently being encoded is pick, the state prior to the application of the action has the
following predicates: at, at-robby. Both these predicates are relevant to the current action
pick. These predicates serve as potential precursors to the application of the action pick, and
are suspected to be the preconditions for the action. Thus, in the training vector, for the
block specific to the action pick, the slots representing these two predicates are set to 1. The
execution of the action introduces new predicates into the state represented after the action
execution, namely the predicate carry. This predicate is relevant to the action pick, and can
be suspected to constitute the effects of this executed action. Thus, in the case of the training
vector, the slot representing the carry predicate of the pick action is set to 1. In conclusion,
all the predicates slots relevant to the action being executed which are suspected to constitute
the preconditions and effects of the model are switched to 1, while the blocks of the other
actions in the training vector are kept at zero. This vector is similarly constructed with every
successive action being encoded. This encoding scheme is illustrated in Figure 5.3.

In the validation phase, the objective is to test models sampled from the candidate set M
in order to zero down to the speculated ideal model. Promising models are sampled from M
by passing each model one by one though a planner and tested for their capability to solve a
unitary problem. Models that fail to find a solution are discarded. Models that find a solution
are retained in m′. The encoding for each of these models for validation with the LSTM
is done in the following fashion. The first section is represented in the same way, with the
label of the current action set to 1. The sections are, however, labelled differently. In this
case, the slots in the vector which correspond to the relevant predicates present in the current
action of the current model being evaluated are set to 1. For example, as illustrated in the
Figure 5.4, if one of the candidate models are represented by (move: (at-robby, ¬(at-robby)),
pick: (free, carry), drop: (carry, ¬(not-free))), then the slots in the vector for themove action
which represent the predicates (at,¬(at−robby)) are switched to 1, the rest of the predicates
being kept at 0. This validation is done for each of the models of the set m′.

5.3 Evaluation

The objective of the evaluation is to identify the speculated ideal model which can then be
syntactically compared with the hand woven model for its identicalness. This section presents
the evaluation results for the PDeepLearn system tested on four domains, namely: satellite,
mprime, gripper and depots. The section is divided into three subsections which correspond
to the three phases of the PDeepLearn algorithm.

5.3.1 All Candidate Model Generation

The cumulative total of all candidate actions for each domain are represented in the second
column of Table 5.1. The size is proportional to the complexity of the domain i.e. the
number of predicates relevant to each action. Although the complexity of the generation
phase is proportional to the domain complexity, the generation time for each of the domains,
as shown in column 3 of Table 5.2, is fairly negligible.
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FIGURE 5.3: Input and output vectors to learning system for
the training phase for currently encoded action “pick” and successive action
“move”. As illustrated in Listing 5.1, the predicates at, at-robby constitutes
the state representation before the application of the action pick, and pred-
icate carry constitutes the state after the action application. Thus, the slots
representing the predicates at, at-robby, carry in the block designated to pick

are set to 1, the other slots and blocks being labelled with 0.

5.3.2 Sequence Pattern Mining

The traces must be parsed and converted into a specific format which can serve as an input
to the TRuleGrowth algorithm Fournier-Viger et al., 2012. The emerging rules with their
confidence and support are recorded. The rules maintaining a consistently high value of con-
fidence and support (empirically determined) with increasing number of traces for domains
are recorded, since they represent a high-frequency sequential pair of actions, and are further
pruned with action pair constraints detailed in Section 5.2.5.

5.3.3 Candidate Model Elimination

In accordance to the action pair constraints mentioned in Section 5.2.5, elements of the
candidate action sets of the frequent actions which satisfy atleast one of the three constraints
are retained, while the others are deleted. This elimination produces a reduced candidate
set of models. The resulting number of candidate actions and the eventual reduction in the
number of candidate actions of this phase are represented in the second and third column
of the Table 5.1. The highest reduction can be seen in the depots domain, while the least
reduction can be seen in the mprime domain. This can be explained by a stronger correlation
among actions of the depots domain than among the actions of the mprime domain. The
reduced candidate set is then passed on to the LSTM.

5.3.4 LSTM Based Speculated Ideal Model Identification

This subsection is used to isolate the speculated ideal model from the sampled candidate
model set m′ (sampling time recorded in Table 5.2). In this work, we explore two hyperpa-
rameters: the number of hidden units (set between (100, 200)), and the dropout rate (LeCun,
Bengio, and Hinton, 2015) (set between (0.5, 0.75)); both of which have significant poten-
tial to influence the proposed LSTM-based labelling predictions. Other than these, we use a



70 Chapter 5. Connectionist Techniques: The PDeepLearn System

FIGURE 5.4: Input and output vectors to learning system for the validation
phase with a candidate model for currently encoded action “pick” and suc-

cessive action “move”

softmax layer for classifying given sequences of actions. The batch size is set to batchLen.
We also use categorical cross entropy for the loss function and an adam optimizer (gradient
descent optimizer). Each dataset for each of the 4 evaluated domains consists of 700 exam-
ples each, which is divided using five-fold cross validation. Thus, the number of data points
available for cross validation is 700 multiplied by batchLen. For example, if batchLen is
20, the number of data points are 700*20 = 14000. Every training example is presented to
the network 10 times i.e. the network is trained for 10 epochs. The results are summarized
in the Table 5.3 and are the obtained with the speculated ideal model, which produces the
highest accuracy as compared to other models in the sampled set. The accuracy represented
here is the validation accuracy (accuracy measured on the validation set), which is the pro-
portion of examples for which the LSTM performs the correct classification. It is represented
as the fraction of examples classified correctly. The speculated ideal model demonstrates the
highest accuracy amongst all the models of the sampled candidate set which are tested. We
compare in Table 5.2 the performance of the PDeepLearn system with the ARMS system,
both in terms of the running time of the algorithm, and the syntactic similarity of the models
learnt respectively by the systems with the hand woven model used to generate the traces.
The results demonstrate that the execution time of PDeepLearn is close to that of ARMS for
700 traces.

The difference between the hand woven model and the empirically determined model
is represented in the form of a reconstruction error. This error is based on the similarity
among the predicates between the empirical model and hand woven (ideal) truth model. Let
diffpreai represent the syntactic difference in pre lists of action ai in the hand woven model
and the empirical model. Each time the pre list of the ideal model presents a predicate which
is not in the pre list of the empirical model, the count diffpreai is incremented by one.
Similarly, each time the pre list of the empirical model presents a predicate which is not in
the pre list of the ideal model, the count diffpreai is incremented by one. Similar counts are
estimated for the add and del lists as diffaddai and diffdelai respectively. This total count
is then divided by the number of relevant constraints for that particular action relConsai to
obtain the cumulative error per action. This error is summed up for every action and averaged
over the number of actions of the model to obtain an average error E for the entire model.
The reconstruction error for the model is thus represented by:
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TABLE 5.1: Model Pruning Results for PDeepLearn

Domain
Initial Number
of Candidate
Actions

Final Number
of Candidate
Actions post
Pruning

Percentage
Reduction
(%)

Satellite 1633 155 90.6
Mprime 2834 466 83.55
Gripper 292 6 97.94
Depots 2913364 10240 99.65

TABLE 5.2: Comparison of running time for ARMS and PDeepLearn in
seconds (PDL = PDeepLearn).

Domain
Running time
for ARMS

Generation
time
for PDL

Sampling
time
for PDL

Running
time
for PDL

Satellite 29781.24 102.61 3.10 47857.19
Mprime 1614.09 16.52 618.80 2167.07
Gripper 36873.72 110.03 0.08 17253.49
Depots 110415.61 153.88 4080.17 98878.02

E =
1

n

n∑
i=1

diffPreai + diffAddai + diffDelai
relConsai

(5.8)

The reconstruction errors are summarized in the Table 5.3. The empirically obtained
model is identical to the hand woven one, as exhaustive generation then filtration ensures
that this identical model is always part of the set and eventually narrowed down upon by the
LSTM. The error E of the model produced by ARMS fluctuates between 15-30 percent.

5.4 Conclusion

In this chapter, we have presented an approach called PDeepLearn, which uses state-action
interleaved traces to learn an action model (termed as speculated ideal model) syntacti-
cally identical to the hand woven model used to generate the traces (training data). First,
PDeepLearn generates a set of all possible action models from traces. This exhaustive gen-
eration ensures that we always generate the speculated ideal model in the set. Then, with
the help of intra-action semantic constraints and inter-action constraints on sequential action
pairs, we significantly prune improbable models to produce a reduced model set. Finally,
we use the sequence labelling capabilities of LSTMs to iteratively test the capability of each

TABLE 5.3: Action Labelling Results for PDeepLearn (700 traces, 128 hid-
den units, 0.8 dropout rate, 0.001 learning rate) vis-a-vis the reconstruction

error for ARMS

Domain Accuracy Rate (%) ARMS Reconstruction Error
Satellite 0.8571 28.88
Mprime 0.75 16.66
Gripper 1.00 22.22
Depots 0.72 24.07
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of the models of a sampled set of this reduced set to predict the next action based on the
previously observed ones. The highest prediction accuracy is obtained with the speculated
ideal model. While it is the first approach in our knowledge that makes use of deep learning
techniques to learn domain models, it has limitations worth highlighting. Since it is a deep
learning technique, it fundamentally thrives on more traces to learn better. While it is also
more accurate than SPMSAT and successfully reconstructs the speculated ideal model, its ex-
ecution time owing to the complexity of the process is subsequently higher. Future proposed
work would include integrating the possibility of PDeepLearn learning action models from
noisy traces, in an effort to bring it closer to a real world scenario.
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Chapter 6

Towards application of learning
techniques to HRI scenario

In the two previous chapters, we have introduced machine learning techniques which provide
optimal and non-optimal means of learning action models. The optimality in this definition
refers to the sheer comprehensiveness of the learnt model. The reader may recall that the
broad objective of this study is to develop learning techniques which are conceptualized and
validated with planning benchmark domains to then on apply to an HRI scenario and learn
the underlying behavioral model of the robot, which is a key to its autonomy during future
interactions. This objective in itself spells a stark difference between the state-of-the-art
approaches outlined in Chapter 2 and the objective of this study, as not too many of them
have been applied to a real life scenario. This chapter proposes to amalgamate the previously
introduced techniques with the intent of learning robot behavioral models from HRI dialog
sequences.

To refresh the nature of our problem in the mind of the user: given a set of human-robot
dialog exchange sequences, we aim to learn the robot’s behavioral model comprising of the
speech acts encoded in the form of operators alongwith their signatures, preconditions and
effects. The body of HRI dialog exchanges is drawn from the Vernissage corpus (Jayagopi
et al., 2012) and consists of exchanges between a Nao robot (operated by a skilled operator
in a Wizard-of-Oz setup) posing as a museum guide and two human visitors to the museum.
An example of the dialog exchange can be seen in the Listing 6.1.

LISTING 6.1: Example of dialog exchange between NAO as a museum
guide and museum visitors

Nao : My name is Nao, what is yours?
Human : My name is Alan
Nao : It’s a pleasure to meet you Alan, can I
tell you something about these paintings?
Human : Yes please

In the AP context, each utterance is considered ideologically equivalent to an action
(represented in the corpus in the form of an action name and signature). Thus, each dialog
sequence is represented as a sequential and orchestrated action name sequence which effec-
tuates transitions in the world state, gradually propelling it towards a predetermined goal.
By means of these utterances, the speaker plans to influence the listeners’ beliefs, goals and
emotional states (Breazeal, 2003; Breazeal, 2004); with the intent of fulfilling their own
goals. These utterances, interleaved with head and body movements (i.e. multi modal acts)
are then modeled as sequences of actions in an AP system, and frameworks can be devel-
oped for providing their semantics (Perrault, 1990; Sadek, 1991). However, for the sake of
simplicity, in this work we ignore the definite uncertainty in communication, as well as the
head and body movements comprising the acts, and concentrate solely on utterances. The
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objective is then to leverage the advancements in Machine Learning (ML) to learn the un-
derlying action model from the data i.e. learning the preconditions and effects of each of the
constituent actions from their signatures. Learning the underlying model comprising action
descriptions from action name-signature sequences could save the effort from having to code
these action descriptions from scratch, thus promoting re usability. This model can further
be fed to an automated planner to generate fresh dialogs, thus allowing the robot to commu-
nicate autonomously in future scenarios. We use the MAX-SAT framework for learning the
behavioral model. The constraints used as the input for this framework are constituted by
intra-operator and inter-operator specific constraints. These constraints are derived from the
intra-operator semantic relationships and inter-operator temporal relationships and depen-
dencies established during concurrent and near-concurrent execution of actions during the
exchanges. We evaluate the accuracy of our learning framework by comparing the syntactic
difference between the empirically obtained and ground truth behavioral model. This ground
truth model has been hand crafted, with actions and predicates are derived from the encoding
of speech acts in (Riviere et al., 2011). This hand woven model serves as a benchmark for
the comparison of the model learnt with the help of the learning techniques proposed in this
study.

Once the behavioral model of the robot is learnt, it can be fed again to a planner to plan
fresh interaction sequences . Thus, the learnt model can be re-usable to plan future dialogue
sequences between the robot and the human, in such a way that the need of a “teacher” to
govern the robot behavior is suppressed, and the robot can interact autonomously. Feeding
the learnt model to a planner to generate fresh interactions and testing them in a real scenario
is in the scope of future work. We also do not use the LSTM to learn action models, the
reasons for which are explained further down in this chapter. The framework is, however,
used to fulfill other objectives. The learnt model is used to label speech acts occurring in
the HRI exchanges using the sequence labeling capabilities of the LSTM (Long Short Term
Memory) recurrent networks. For example, in the traces we observe that each time the robot
encounters a human subject for the first time, it has a tendency to greet the individual followed
by an act of self-introduction. We use an LSTM trained on the features of the behavioral
model as a multi-class classifier, the classes in this case being the speech acts exchanged
during the course of the exchanges. With reference to our example, the accuracy of the
LSTM to predict the occurrence of the introduction act following the greet act is calculated.
This is performed with the aid of sequence labelling capabilities of LSTMs similar to the
implementation used in Chapter 5.

The listing 6.2 represents our hand crafted domain model which we call sombrero. It is
crafted with the intent of orchestrating the interaction between a robot and a human in a room
and geared towards a common objective. The types mentioned in the file and those specific to
the interaction are: robot, human, room and proposition. The room is the enclosure in which
the interaction occurs, and the proposition is the condition whose fulfillment is required at
each exchange. The predicates are derived from a simplification logic called MLC (Modal
Logic of Communication) (Guiraud et al., 2011) which is an extension of the BDI logic (Be-
lief, Desire, Intention) (Cohen and Levesque, 1990; Rao and Georgeff, 1991). Both the logics
are based on the ideology that beliefs and desires cause actions. MLC extends the BDI logic
with a the notion of responsibility and complex emotions (stemming from the realization of
responsibility). This logic is materialized in the form of a speech acts intended to be the com-
munication protocol between agents. This terminology which serves as the communication
protocol are termed as Expressive Multimodal Conversational Acts (EMCA). For example,
the first predicate bel (?r, ?p) represents the notion that agent ?r believes in the proposition
?p. The description of the predicates and their corresponding implications with reference to
the MLC logic are detailed in the Table 6.1. In the listing, the representation of the predi-
cates in the PDDL domain is followed by the definition (name-signature representations) and
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description (representations of preconditions and effects) of each action. These actions are
representations of the speech acts used during the dialog exchanges between a human and the
robot. Following are the speech acts encoded in the domain: (sayHello, farewell, inform, say,
ask, claim, deny, advise, thank, autoFeedback (feedback on last heard dialogue e.g. “oh”,
“great” etc. )). For example, the sayHello speech act is employed when the robot encounters
the human subject for the first time, and proceeds to greet the subject. The preconditions
and effects of this act represent this notion in logical form. These actions and predicates are
derived from the encoding of speech acts in (Riviere et al., 2011). The speech acts in this
work are represented in MLC logic, which we translate into PDDL operators (owing to the
logical equivalence of the speech acts in (Riviere et al., 2011) to PDDL operators) for our
study and represent in the listing below. The reader is invited to read the paper by (Riviere
et al., 2011) for more detailed information on the encoding scheme.

LISTING 6.2: Domain Description and Schema for an HRI domain labelled
’sombrero’

(define (domain sombrero)
(:requirements :strips :typing)
(:types

agent - object
robot human - agent
proposition - object
room - object

)
(:predicates

(bel ?i - agent ?p - proposition)
(goal ?i - agent ?p - proposition)
(ideal ?i - agent ?p - proposition)
(approval ?i - agent ?p - proposition)
(belbelapproval ?i - agent ?j - agent ?p - proposition)
(belideal ?i - agent ?j - agent ?p - proposition)
(notgoal ?i - agent ?p - proposition)
(notbel ?i - agent ?p - proposition)
(belbel ?i - agent ?j - agent ?p - proposition)
(belgoal ?i - agent ?j - agent ?p - proposition)
(notbelbel ?i - agent ?j - agent ?p - proposition)
(goalbel ?i - agent ?j - agent ?p - proposition)
(goalresp ?i - agent ?j - agent ?p - proposition)
(notgoalresp ?i - agent ?j - agent ?p - proposition)
(belbelgoalresp ?i - agent ?j - agent ?p - proposition)
(belbelnotgoalresp ?i - agent ?j - agent ?p - proposition)
(goalbelgoalresp ?i - agent ?j - agent ?p - proposition)
(goalbelstr ?i - agent ?j - agent ?p - proposition)
(goalbelgoalrespWeak ?i - agent ?j - agent ?p - proposition)
(belbelgratitude ?i - agent ?j - agent ?p - proposition)
(belresp ?i - agent ?j - agent ?p - proposition)
(belbelmoralsatisfaction ?i - agent ?j - agent ?p - proposition)
(look ?a - agent ?b - agent)
(at ?a - agent ?l - room)
(already-seen ?i - agent ?j - agent)
(never-seen ?i - agent ?j - agent)

)
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;; One agent greets another agent
(:action sayHello
:parameters (?i - agent ?j - agent ?r - room)
:precondition (and (at ?i ?r) (at ?j ?r) (look ?i ?j)
(never-seen ?i ?j))
:effect (and (already-seen ?i ?j) (not (never-seen ?i ?j)))

)

;; One agent bids farewell to another agent
(:action farewell

:parameters (?i - agent ?j - agent ?r - room)
:precondition (and (at ?i ?r) (at ?j ?r) (look ?i ?j)
(already-seen ?i ?j))
:effect ((not(look ?i ?j))

)

;;One agent informs another agent
(:action inform

:parameters (?i - agent ?j - agent ?p - proposition)
:precondition (and (bel ?i ?p) (goalbel ?i ?j ?p)
(notbelbel ?i ?j ?p) (already-seen ?i ?j))
:effect (belbel ?i ?j ?p)

)

;;One agent says something to another agent
(:action say

:parameters (?i - agent ?j - agent ?p - proposition)
:precondition (and (bel ?i ?p) (goalbel ?i ?j ?p)
(already-seen ?i ?j))
:effect (belbel ?i ?j ?p)

)

;;One agent asks/tells/suggests to another agent
(:action ask

:parameters (?i - agent ?j - agent ?p - proposition)
:precondition (and (goalresp ?i ?j ?p)
(goalbelgoalresp ?i ?j ?p) (already-seen ?i ?j))
:effect (and (belbelgoalresp ?i ?j ?p))

)

;;One agent claims something to another agent
(:action claim

:parameters (?i - agent ?j - agent ?p - proposition)
:precondition (and (bel ?i ?p) (goalbelstr ?i ?j ?p)
(already-seen ?i ?j))
:effect (belbel ?i ?j ?p)

)

;;One agent denies something to another agent
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(:action deny
:parameters (?i - agent ?j - agent ?p - proposition)
:precondition (and (bel ?i ?p) (goalbel ?i ?j ?p)
(already-seen ?i ?j))

:effect (belbel ?i ?j ?p)
)

;;One agent advises something to another agent
(:action advise

:parameters (?i - agent ?j - agent ?p - proposition)
:precondition (and (goalresp ?i ?j ?p)
(goalbelgoalrespWeak ?i ?j ?p) (already-seen ?i ?j))
:effect (belbelgoalresp ?i ?j ?p)

)

;;One agent thanks another agent
(:action thank

:parameters (?i - agent ?j - agent ?p - proposition)
:precondition (and (goal ?i ?p) (belresp ?i ?j ?p)
(already-seen ?i ?j))

:effect (belbelgratitude ?i ?j ?p)
)

;;One agent thanks another agent
(:action autoFeedback

:parameters (?i - agent ?j - agent ?p - proposition)
:precondition (and (goal ?i ?p) (belresp ?i ?j ?p)
(already-seen ?i ?j))

:effect (belbelmoralsatisfaction ?i ?j ?p)
)
)

This chapter unfolds as follows: we detail the functioning of our learning system in
Section 6.1, and present our empirical evaluations in Section 6.2. We conclude this chapter
of our work in the Section 6.3.

FIGURE 6.1: Our Approach Phases
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TABLE 6.1: Predicates in the domain sombrero and their implications in
speech acts

Predicate Interpretation
bel (?i ?p) agent ?i believes in the proposition ?p
goal (?i ?p) proposition ?p is the goal of agent ?i
ideal (?i ?p) proposition ?p should ideally be true for agent ?i

belbelapproval (?i ?j ?p)
agent ?i believes that agent ?j believes
that ?i gives its approval for proposition ?p

belideal (?i ?j ?p) agent ?i believes that proposition ?p should be the ideal for agent ?j
goal (?i ?p) proposition ?p is not the goal of agent ?i
notbel (?i ?p) agent ?i does not believe in the proposition ?p
belbel (?i ?j ?p) agent ?i believes that agent ?j believes in the proposition ?p
belgoal (?i ?j ?p) agent ?i believes that the goal of agent ?j is proposition ?p
notbelbel (?i ?j ?p) agent ?i believes that agent ?j does not believe in the proposition ?p
goalbel (?i ?j ?p) the goal of agent ?i is that agent ?j believes in proposition ?p

goalresp (?i ?j ?p)
the goal of agent ?i is that agent ?j
assumes responsibility of proposition ?p

notgoalresp (?i ?j ?p)
the goal of agent ?i is not that the agent ?j assumes responsibility
of proposition ?p

belbelgoalresp (?i ?j ?p)
agent ?i believes that agent ?j believes that the goal of ?i is
?j assumes the responsibility of proposition ?p

belbelnotgoalresp (?i ?j ?p)
agent ?i believes that agent ?j believes that the goal of
?i is not that ?j assumes the responsibility of proposition ?p

goalbelgoalresp (?i ?j ?p)
goal of agent ?i is that agent ?j believes that the goal of ?i
is that ?j assumes the responsibility of proposition ?p

goalbelgoalrespWeak (?i ?j ?p)
goal of agent ?i is that agent ?j believes that the goal of ?i
is that ?j assumes the responsibility of proposition ?p
to a lesser magnitude

goalbelstr (?i ?j ?p) goal of agent ?i is that agent ?j believes strongly in proposition ?p

belbelgratitude (?i ?j ?p)
goal of agent ?i is to express to agent ?j
its gratitude for proposition ?p

belresp (?i ?j ?p)
goal of agent ?i is that agent ?j
assumes responsibility for proposition ?p

belbelmoralsatisfaction (?i ?j ?p)
agent ?i believes that agent ?j believes that agent ?i
assumes moral satisfaction with proposition ?p

look (?i ?j) agent ?i looks at agent ?j
at (?i ?r) agent ?i is at room ?r
already-seen (?i ?j) agent ?i has already seen agent ?j
never-seen (?i ?j) agent ?i has never seen agent ?j
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6.1 Approach

Our problem remains the one mentioned in the two preceding chapters, however in an HRI
paradigm. It can be formulated as follows: given (i) a set of HRI traces T, each trace con-
sisting of a dialogue sequence with individual dialogs encoded in the form of signatures of
the speech acts represented in the Listing 6.2; our approach produces a complete domain
model m encompassing all the domain-applicable operators which best explain the observed
traces. The model comprises of the applicable speech acts which are encoded in the form
of operators alongwith their signatures, preconditions and effects. This is done by encoding
the inter-operator and intra-operator dependencies in the set T in the form of constraints and
solving them as a satisfiability problem, followed by reconstructing the domain model from
the satisfied constraints. It then proceeds to use the refined form of the learnt model to pre-
dict the label of the acts in the traces using LSTM techniques. Details of this approach are
explained in the following paragraphs.

The approach can be divided into four phases, a snapshot of which is illustrated in Fig-
ure 6.1. The dialogs of the HRI traces are first annotated in Phase 1 by replacing each dialog
with the most appropriate speech act definitions mentioned in Listing 6.2. This is done with
the intent of getting closer to the standard action sequence representation constituting a plan.
We then generalize the grounded actions in the trace set by replacing the variables by their
types to obtain a trace set of operators. Phases 2 and 3 constituting the model learning are
identical to those represented in the SPMSAT learning system. The second phase is dedicated
to constraint generation; namely intra-operator and inter-operator ones. In the third phase,
these constraints are supplied to a MAX-SAT solver and the satisfied ones are used to recon-
struct the action model. This model consists of operator signatures, preconditions (alias for
pre list), and effects (alias for add and del lists). It conforms to the semantics of STRIPS
(Fikes and Nilsson, 1971). In the fourth phase, using the operators learnt in the previous
phase, we classify the labels of the operators likely to be chosen by the robot during the dia-
log exchange highlighted in the corpus. This classification is done by encoding the operator
sequences of the corpus in the form of input and output vectors to an LSTM. While the learnt
model can serve many needs, in this work we demonstrate the utility of our learnt model to
classify speech acts. We elaborate these phases in the forthcoming subsections.

6.1.1 Annotation and Generalization

In this phase, dialogues in the dialogue corpus are first annotated to actions by replacing
each dialog with the most appropriate speech act definitions mentioned in Listing 6.2, then
generalized to operators. These dialogues are taken from the Vernissage corpus which is a
multimodal HRI dataset (Jayagopi et al., 2012), and has a total of 10 conversation instances
between Nao and human participants. The dialogues and gestures of Nao are controlled in
a “Wizard-of-Oz” fashion. It has been recorded and annotated to benchmark many relevant
perceptual tasks such as: speaker localization, key word spotting, speech recognition, track-
ing, pose estimation, nodding, visual focus of attention estimation, and addressee detection.
In the scenario, the robot explains paintings in a room and then performs a quiz with the par-
ticipants, allowing an analysis of the quality of the interaction and the behavior of the human
interaction partners. We annotate each robot dialogue within each trace as an action drawn
from the speech acts mentioned in Listing 6.2: (sayHello, farewell, inform, say, ask, claim,
deny, advise, thank, autoFeedback (feedback on last heard dialogue e.g. “oh”, “great” etc.
)). The participant responses are encoded in the form of (speech, silence, laughter). An ex-
ample of the annotation process can be seen in Table 6.3. In this example, the dialog sequence
in the second column (represented by the header “Utterance") is uttered at time mentioned
in the column “Timestamp", measured in seconds from the beginning of the interaction. The
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TABLE 6.2: Sample annotation of traces. The “Utterance” in the second col-
umn at the timestamp from the beginning of the interaction mentioned in the
column “Timestamp” is annotated with the speech act in the column “An-
notation”. The speech act chosen for the annotation (from the Listing 6.2)
is one that is deemed most suitable to characterize the utterance. The (..)

represents the operator parameters.

Timestamp (sec) Utterance Annotation
35.803 Hello sayHello (..)
35.803 Should I tell you something about these paintings? ask (..)
395.619 So, I am starting the quiz! claim (..)
556.885 Great, your answer is perfectly right. autoFeedback (..)
629.532 So. It’s the end of this quiz. say (..)

annotation associated with a certain utterance can be seen in the third column labeled “Anno-
tation". As can be seen from the rightmost column, the annotation to a each dialog consists
of the name of the act followed by deictic references (a deictic reference is a pointer to ob-
jects which have a particular role in the world, with object roles coded relative to the agent
or current action (Agre and Chapman, 1987)) in parenthesis (abstracted from the reader view
in this table).

The next step is generalization, which is done by scanning each action in each of the
traces and substituting the deictic references with their corresponding types. This produces a
trace set of operator sequences, with the generalized actions constituting an operator schema
Os. A snapshot of a trace produced from one of the dialog sequences of the Vernissage corpus
is illustrated in Listing 6.3. It can be seen that the interaction kicks off with the “sayHello”
act, followed by acts of “ask”, “say” used by Nao. The responses by the human subjects are
represented in the form of the “speech” and “laughter” acts. The dialog terminates with the
“thank” act wherein the robot thanks the subjects for their participation, and terminates on a
note of farewell depicted by the “farewell” act. We then create a dictionary of all possible
relevant predicates to each operator, the keys of the dictionary identified by the operator
names. Each operator in the operator schema is associated with its relevant predicates, where
a predicate p is said to be relevant to an operator o ∈ Os if they share the same variable types.
We denote the relevant predicate dictionary as relPre, with the set of relevant predicates to
an operator oi (represented as key) can be denoted as relPreoi (represented as value of key
oi). The generalization procedure is represented in Figure 6.2.

sayHello (..) say (..) offer (..) speech (..) laughter (..)
ask (..) say (..) inform (..) thank (..) farewell (..)

LISTING 6.3: Annotated trace produced for one of the conversation se-
quences featuring in the Vernissage corpus

6.1.2 Constraint Generation

In this phase, we detail the intra-operator hard constraints for individual operators and inter-
operator soft temporal constraints among operators.

Hard constraints

In order to satisfy the semantics of STRIPS (Fikes and Nilsson, 1971), each operator in Os

must satisfy certain intra-operator constraints. Thus, for each operator oi ∈ Os and relevant
predicate p ∈ relPreoi :
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FIGURE 6.2: Example of our approach

• p cannot be in the add list and the del list at the same time, and

• p cannot be in the add list and the pre list at the same time.

The relevant predicates of each operator are encoded to generate variables. Each association
of a relevant predicate with one of a (pre, add, del) list can be encoded as a variable. These
variables and constraints are illustrated in Figure 6.2. These constraints are also illustrated in
the listing 6.4.

Relevant predicates for action inform:
(at, look, belbel, know-if)
Hard constraints for action query-if:
bel ∈ delinform ⇒ bel ∈ preinform
bel ∈ addinform ⇒ bel /∈ preinform
bel ∈ delinform ⇒ bel ∈ preinform
bel ∈ addinform ⇒ bel /∈ preinform

LISTING 6.4: Intra-operator constraints for action inform
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Soft Constraints

Next we generate a set of inter-operator constraints by exploring the inter-dependencies be-
tween the operators which constitute the traces. Any sequence of operators exhibiting im-
plicit patterns of the form of frequently co-occurring operators indicates the possible pres-
ence of inter-operator dependencies and relationships. Any operator sequence exhibits inter-
operator dependencies which can be uncovered by means of data mining techniques to facil-
itate the process of learning. In the case of an HRI scenario, operators may be temporally
concurrent: for example, two agents may be speaking at the same time. These temporal de-
pendencies can be explored with the help of pattern mining techniques. The aforementioned
trace set T can thus be treated as a set S of transactions in the pattern mining domain. S can
be written as S = [s1, s2, . . . , sn] where each transaction sn represents a trace. A transaction
is a set of symbols, in our case representing operators. A time series is a set of unique time
points. A symbolic time series is generally used to represent series of ordered (but non time-
sampled) events (e.g. < a, b, d, a, c > ). A symbolic time sequence is a multi-set of time
points (i.e. elements may repeat). Contrary to time series, symbolic time sequences can deal
with several events defined at the same temporal location. This difference is also illustrated
in the Figure 6.3. Thus, relations between the events of a pattern is not limited to be “be-
fore" or “unconstrained" i.e. the events may be represented without order. In this problem,
the challenge is not only to select the events of the patterns, but also to extract the relations
(or constraints) between them (Guillame-Bert and Crowley, 2012). Since we deal with HRI
interactions composed of an interplay between utterances in a way that they may overlap, we
symbolize these interactions in the form of operators chaining together in a symbolic time
sequence (Guillame-Bert and Crowley, 2012). We symbolize the concurrent utterances in the
Vernissage corpus in the form of operators chaining together in a symbolic time sequence
(Guillame-Bert and Crowley, 2012). This symbolic time sequence is the most appropriate
approximation of the dialog corpus in the pattern mining domain with the intent of extracting
frequent association rules between the operators.

FIGURE 6.3: Difference between symbolic time series and symbolic time
sequences. While items in a symbolic time series are partially ordered and
do not repeat, items in a symbolic time sequence may be co-occurring and

repeat as well. (Guillame-Bert and Crowley, 2012).

Various approaches to mine temporal time sequences are present in the literature. Winepi
(Mannila, Toivonen, and Inkeri Verkamo, 1997) is a well known algorithm which learns
episodes and association rules based on the episodes. The face algorithm allows for mining
of chronicles from symbolic time sequences (Dousson and Duong, 1999). These approaches
are, however, not equipped to deal with temporal inaccuracies in the temporal events. We
choose the Temporal Interval Tree Association Rule Learning (Titarl) algorithm (Guillame-
Bert and Crowley, 2012) because it allows the representation of imprecise (non-deterministic)
and inaccurate temporal information between speech acts considered as symbolic events. Fol-
lowing is an example of a rule mined with Titarl: “If there is an event A at time t, then an
event of type B will occur between times t+5 and t+10 with a 95% chance". The temporal re-
lationships between operators can be uncovered by means of association rule learning, which
is the search for association rules. An association rule is a conditions→ implications pat-
tern. We hypothesize that if an association rule frequently correlates two operators, there
must be a reason for their frequent co-existence. We are thus interested in the branch of
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TABLE 6.3: Sample annotation of traces. The “Utterance” in the second
column at the timestamp from the beginning of the interaction mentioned
in the column “Timestamp” is annotated with the speech act in the column

“Annotation”. The (..) represents the operator parameters.

Timestamp (sec) Utterance Annotation
35.803 Hello sayHello (..)
395.619 So, I am starting the quiz! claim (..)
556.885 Great, your answer is perfectly right. autoFeedback (..)
629.532 So. It’s the end of this quiz. say (..)

pattern mining algorithms which treat frequent sequential action pairs. Other algorithms in
the pattern mining literature, like the Apriori algorithm (Agrawal and Srikant, 1994)(used in
ARMS (Yang, Wu, and Jiang, 2007)) are not equipped to satisfy this requirement. The input
traces are parsed and fed to the Titarl algorithm, which produces temporal association rules
(Guillame-Bert and Crowley, 2012). The operators featuring in the frequent temporal rules
are suspected to share a “semantic” relationship among themselves, which can be represented
in the form of inter-operator constraints. These constraints are identical to the constraints
mentioned in the Section 5.2.5. The reader is referred to Section 5.2.5 for more detail.

A snippet of the aforementioned constraints is illustrated for the action pair (ask, say)
and relevant predicate already-seen in the Figure 6.2 and summarized in the listing 6.5.

Frequent action pair for the domain: (ask, say)
Common relevant predicate for actions
ask and say: already-seen
∃(already − seen) : (((already − seen) ∈ (preask ∩ presay))) ∨ (already − seen) /∈
(delask)∨((already−seen) ∈ (addask∩presay))∨((already−seen) ∈ (delask∩addsay))

LISTING 6.5: Inter operator constraints for operators ask and say

The details pertaining to the resolution of the intra and inter-operator constraints with the
help of a SAT solver to reconstruct the underlying action model is detailed in the Section 6.2.

Data Encoding for Labelling of Operator Sequences

As previously mentioned, a plan is a chained series of interdependent operators directed to-
wards the accomplishment of a goal. Thus, extracting patterns from sequences of previously
executed operators is likely to provide strong evidence to predict the label of the next oper-
ator in the chain; inspiring our investigation of long short-term memory networks (LSTMs)
(Hochreiter and Schmidhuber, 1997) for action sequence labelling. In the following subsec-
tions we present our data encoding method for the input and output vector of the LSTM.

We use the sequence labelling capabilities of LSTM to identify the most likely operator
that succeeds a given one. The input to our LSTM system is a large corpus comprising
vector representations of each operator of each trace. Each trace is taken one by one, and the
comprising operators are sequentially encoded into input and output vectors; thus producing a
large corpus of vectors. Each operator of each trace is represented by two distinct vectors: an
input vector which encodes the operator, and an output vector which classifies the successive
operator. These vectors serve as the input and output respectively to the LSTM cells, the
encoding of which represents the core of this section. This corpus of vector representations
is divided into a training and validation set to eventually train the LSTM on the training set
and gauge its performance on the validation set. At the output of this learning system, we
obtain an accuracy of prediction on the folds of validation data. The encoding of the input
and output vectors is presented in the following paragraphs.
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The input vector representing an operator in a trace is encoded in the following fashion.
It is divided into two sections: one section which labels the entire set of operators in the
domain, and the other which labels the relevant predicates for the operators in the domain.
In the first block, there is a slot for each operator in the domain. The slot for the operator
currently being encoded is labeled as 1, and the slots for the remaining operators in the
domain are labeled as 0. Thus if (o1, o2, . . . , on) ∈ Os is the set of domain-applicable
operators, the first n elements of the vector will be representing this first block, with the
entry for the operator currently being encoded being switched to 1, the other (n − 1) slots
for the remaining (n− 1) operators being kept at 0. Once this first block has been assigned,
we dedicate blocks of elements in the vector specific to each operator in the domain. Thus
for n operators in the domain, there are n different blocks (plus the one block for all the
domain applicable operators as explained above). Each operator-specific block contains one
entry for each predicate relevant to that particular operator. For example, if [goalresp (Ag0
- Agent, Pr0 - Proposition), already-seen (Ag0 - Agent, Ag1 - Agent)] are two predicates
relevant to the operator ask, they will constitute two entries in the ask operator block. We
thus create operator-specific blocks and for each operator, the number of blocks for the input
vector standing at (n + 1). The dimension d of this input vector is directly proportional to
the number of operators in a domain, as well as the number of predicates relevant to each
operator. The dimension d of a vector for a specific domain will always remain the same,
with the switching of a slot from 0 to 1 in the vector signalling the execution of a particular
operator. If (o1, o2, . . . , on)εOs represents the operator schema, the dimension of the input
vector is given as:

d = n+

n∑
i=1

relPreoi (6.1)

Here relPreoi are the number of relevant predicates for the operator oi. The output vector
predicts the label of the operator that follows the operator currently being encoded in the
trace. Very much like the input, the output is encoded as a binary vector. It consists of
a single block which has as many slots as the number of operators in the domain, one for
each operator. The slot representing the succeeding operator to the operator being currently
encoded is set to 1, the others being set to 0. For example, let us assume that the operator
currently being encoded is ask and the next operator in the trace is say. The input and output
vectors for the ask operator are represented in Figure 6.4. While the number of operators
in a trace thus the number of vectors representing all the operators in a trace may vary, the
LSTM requires a fixed sized input. This is ensured by calculating the maximum trace length
batchLen (maximum number of operators per trace) for all the traces, and padding the shorter
lists with d-dimensional vectors filled with zeros. This padding is done for all the traces till
all the traces have the same batchLen number of operators. The same padding procedure is
adopted for the output vectors.

The input vectors are identical in the way they are labelled for the training and validation
set. The first section is represented in the same way, with the label of the currently encoded
operator set to 1. In this case, the slots in the vector which correspond to the relevant predi-
cates in each operator of the empirical model are set to 1. For example, as illustrated in the
Figure 6.4, if the empirical model is represented by (operator1: bel(Ag0 − Agent, Pr0 −
Proposition), not(already−seen(Ag0−Agent,Ag1−Agent)), operator2: (already−
seen(Ag0 − Agent,Ag1 − Agent), belbelgoalresp(Ag0 − Agent,Ag1 − Agent, Pr0 −
Proposition)), operator3: (bel(Ag0−Agent, Pr0−Proposition), already−seen(Ag0−
Agent,Ag1−Agent)), then the slots in the vector for the operator1 action which represent
the predicates (bel,¬(already − seen)) are switched to 1, the rest of the predicates being
kept at 0. This scheme is replicated for the other two operators as well.

In the evaluation phase, the aforementioned scheme is compared with an encoding scheme
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sans the presence of the speech model. In this alternative scheme, the first section is repre-
sented in the same way, with the label of the currently encoded operator set to 1. For the
second section, the slots in the vector which correspond to the relevant predicates in each
operator are set to 1. For example, as illustrated in the figure 6.5, if the action currently being
encoded is ask, the predicates relevant to the action ask i.e. the first block of the second sec-
tion corresponding to the first operator are labelled to 1, the rest of the blocks of this section
being kept at zero.

FIGURE 6.4: Vector representations for the operator “ask” and successive
operator “say” for the learnt behavioral model

6.2 Evaluation

The objective of our evaluation is to obtain the best possible accuracy of: (i) the learnt model
vis-a-vis the ground truth model and (ii) sequence labeling obtained with the learnt speech
model. Concerning inter-operator constraint representation, two measures are defined for as-
sociation rules of the form a ⇒ b, b being the head and a being the body of the rule. The
confidence of a rule is the percentage of occurrences of the rule’s body which also matches
the body and the head of the rule i.e. support(body)/support(head + body). The support
of a rule is the percentage of occurrences of the rule’s head which also matches the body and
the head of the rule i.e. support(head)/support(head + body) (Guillame-Bert and Crow-
ley, 2012). The Titarl-mined association rules along with their confidence and support are
recorded. The rules with a highest value of confidence and support (empirically determined)
are retained for inter-operator constraint generation (see Table 6.4).

Finally we encode all the intra and inter-operator constraints in the form of a weighted
MAX-SAT problem. The weights of the CNF clauses representing the constraints are de-
termined differently for the inter and intra-operator cases. While the weights of the intra-
operator clauses are empirically determined, the weights of the inter-operator clauses are
equal to the support of the association rules. This problem can be stated as: Given a collec-
tion C ofm clauses, (C1, . . . , Cm) involving n logical variables with clause weights wi , find
a truth assignment that maximizes the total weight of the satisfied clauses in C (Yang, Wu,
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FIGURE 6.5: Vector representations for the operator “ask” and successive
operator “say” for the features respective to the relevant predicates in the

encoding scheme sans speech model

(:action say-hello
:parameters( ?Ag0 - Agent ?Ag1 - Agent
?Roo0 - Room)
:precondition (and (already-seen ?Ag0 ?Ag1) (at ?Ag0 ?Ro0)
(at ?Ag1 ?Ro0))
:effect (and (not (already-seen ?Ag0 ?Ag1)) (not (at ?Ag0 ?Ro0))))

FIGURE 6.6: Snapshot of PDDL representation of the learnt action sayHello

and Jiang, 2007). We use 2 SAT solvers: the MaxSatSolver (Borchers and Furman, 1998)
and the MaxWalkSat (Kautz, Selman, and Jiang, 1996). The solution produced by either
solver contains all the variables which evaluate to true, which are then used to reconstruct the
empirical model.

The difference between the ground truth model and the empirically determined model
is represented in the form of a reconstruction error. This error is based on the similarity
between the relevant predicates and the empirically determined predicates per operator. Let
diffPreoi represent the difference in pre lists of operator oi in the ground truth model and
the empirical model. Each time the pre list of the ground truth model presents a predicate
which is not in the pre list of the empirical model, the count diffPreoi is incremented by
one. Similarly, each time the pre list of the empirical model presents a predicate which is not
in the pre list of the ground truth model, the count diffPreoi is incremented by one. Similar
counts are computed for the add and del lists as diffAddoi and diffDeloi respectively. This
total count is then divided by the number of relevant constraints for that particular operator
relConsoi to obtain the cumulative error per operator. This error is summed up for every
operator and averaged to obtain an average error E for the entire model. This cumulative
error for the model is represented by:
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TABLE 6.4: Representation of the temporal rules mined with Titarl algo-
rithm

Rule
Confi-
dence (%)

Supp-
ort (%)

ask→ say 73 96
inform→ deny 69 100
autoFeedback→ ask 100 60

TABLE 6.5: Cumulative error in model learning (* = with MaxWalkSat, **
= with MaxSatSolver)

Number
of
variables

Number
of
clauses

Model
Error (E)

Execution
Time (secs)

759 3606
41.78*
39.78**

36.44*
36.25**

E =
1

n

n∑
i=1

diffPreoi + diffAddoi + diffDeloi
relConsoi

(6.2)

The obtained cumulative error is mentioned in the third column of Table 6.5. The relatively
high error rates can be attributed to the fact that owing to the linear structure of the relevant
predicate dictionary, there is little variation among the constraints produced specific to each
operator, as well as their weights. A great deal of constraints are thus solved, thus introducing
a great deal of noise in the reconstructed model. We conclude from these results that the
ground truth model needs to be fine tuned and reworked upon to ensure that the operators
being learnt are not semantically as close to ensure a better learning rate.

FIGURE 6.7: LSTM operator labelling accuracy (128 hidden units, 0.8
dropout rate)

6.2.1 LSTM Based Sequence Labeling

In this work, we explore two hyperparameters: the number of hidden units (set between (100,
200)), and the dropout rate (LeCun, Bengio, and Hinton, 2015) (set between (0.5, 0.75)); both
of which have significant potential to influence the predictions. We use a softmax layer for
classifying given operator sequences. The batch size is set to batchLen. We also use categor-
ical cross entropy for the loss function and an adam optimizer (gradient descent optimizer).
Each of the 10 sequences consists of about of 400 dialogues each, which is divided using
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FIGURE 6.8: LSTM operator labeling accuracy with relevant predicates as
constituents of the feature vector (128 hidden units, 0.8 dropout rate)

five-fold cross validation. Every training example is presented to the network 10 times i.e.
the network is trained for 10 epochs. The results are summarized in the Figure 6.7 and are
the obtained with the encoded behavioral model. The accuracy represented in the figure is
the validation accuracy (accuracy measured on the validation set), which is the proportion
of examples for which the model produces the correct output. It is represented as the frac-
tion of examples classified correctly. The accuracy is recorded for 1, 2, 5 and 10 traces. As
can be seen, the accuracy improves with the number of traces. If we consider the learning
performance with the encoding scheme sans model in Figure 6.8, this prediction accuracy is
not so impressive. The highest accuracy obtained is in the range of the upper forties. This
demonstrates the fact that the presence of the behavioral model in the feature vector boosts
the sequence labeling capacity of the learning system.

6.2.2 Towards Subsequent Planning and Robot Animation

In this subsection, we highlight some of the early work being done with the intent of translat-
ing the learnt behavioral model to animate speech and gestures in the NAO robot. The BEAT
toolkit is used to map utterances produced from mapping of certain elementary propositions
observed in the Vernissage corpus directly into dialogues, and feeding those dialogues to the
BEAT toolkit. BEAT is the Behavior Expression Animation Toolkit that takes text as input
and generates a interleaved set of gestures, with the intent of animating a graphical or tangi-
ble agent (Aly and Tapus, 2013; Cassell, Vilhjálmsson, and Bickmore, 2001). It employs the
contextual and linguistic information of the text, supplemented by information from a knowl-
edge base, with the intent to control body and face gestures alongside voice intonation. This
mapping from text to gesture is implemented through a set of rules derived from extensive re-
search on the nonverbal conversational behaviors. The modularity of the system allows to add
new rules or modify existing ones. The BEAT pipeline is composed of different XML-based
modules supplemented with knowledge bases and user processes, as illustrated in Figure 6.9.
Each of the modules act take as input an XML object tree and produce a modified XML tree
as output. The language tagging module receives text from the aforementioned corpus, and
converts it into a parse tree with different discourse annotations (e.g., theme and rheme). The
behavior generation module uses the output tags of the language module and suggests all
possible gestures, inserting these gestural descriptions at appropriate places in the tree. The
types of nonverbal behaviors are specified in the NVBTypes.xml file, and currently include
the following:

1. Gaze: either towards or away from the hearer,

2. Eyebrows,



6.3. Conclusion and Perspectives 89

3. Intonation Accent,

4. Intonation Tone,

5. Gesture Right,

6. Head nod,

7. Posture Shift and

8. Pause

This tree is then passed to the behavior filtering module which filters out conflicting and
undesired behaviors from the XML. The user-defined data structures, like: the generator and
filter sets, provide the rules for the generation and filtration modules respectively. This is
supplemented with contextual information from the knowledge base for generating relevant
and precise nonverbal behaviors. The behavior scheduling module converts the surviving
behaviors in the input XML tree into a set of interleaved speech and gestures. It includes a
TTS (text-to-speech) engine that calculates the timings of words and phonemes, which helps
in constructing an animation script for the interleaved gestures with words. The script com-
pilation module compiles the animation script into execution commands that can be executed
by a virtual agent or a humanoid robot.

FIGURE 6.9: Architecture of the BEAT toolkit (taken from Cassell, Vil-
hjálmsson, and Bickmore, 2001)

Some of the dialogues and their Behaviour Modelling Language (BML) (Kopp et al.,
2006) outputs are mentioned in the Figures 6.10, 6.11 and 6.12.

In our future course of work, we intend to develop a module which converts the BML
markup into animations in the NAO. These animations will then be executed on the NAO and
be used to interface with human subjects to evaluate their feedback.

6.3 Conclusion and Perspectives

This chapter introduces an approach to learn robot behavioral models from HRI traces in the
form of PDDL action models using a MAX-SAT framework. This learning approach is very
much on the lines of SPMSAT, using the hard constraints and a portion of the soft constraints
which are mined with an algorithm used to mine temporal time sequences. The utility of
the learnt model is demonstrated by using it to label speech acts in the HRI exchanges using
the sequence labeling capabilities of the LSTM network. The relatively high error rates of
the reconstructed model are attributed to the linear structure of the predicates relative to
the operators of the hand woven model, introducing discrepancies in the form of falsified
predicates in the output. Some conclusions and perspectives are as follows:

• A reworking of the semantics of the hand woven model in terms of the utilized predi-
cates is required to boost the learning rate and reduce the error.
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FIGURE 6.10: BML representation of the dialog “So should I tell you some-
thing about these paintings?”

• The usage of the Titarl algorithm to represent the trace set in the form of symbolic
time sequences is done with the assumption that exchanges between humans are char-
acterized by an interplay of gesture and speech, which have a tendency to overlap (i.e.
overlaps between speech-gesture and speech-speech). The chosen algorithm is thus
equipped to deal with such overlaps. We, however, do not observe such an overlap in
the case of the Vernissage corpus. Thus, with respect to the dataset at hand, the chosen
algorithm can be considered as somewhat of an overkill.

• In future versions of this work, we look to include predicates which symbolize the
physical gestures accompanying the acts. For example, in the case of the “sayHello”
act, the definition would include predicates which symbolize the hand waving gesture.

• In our future course of work, we intend to develop an animation module which converts
the BML markup into animations in the NAO. These animations will then be executed
on the robot and be used to interface with human subjects to evaluate their feedback
and assess the quality and impact of our learning systems.



6.3. Conclusion and Perspectives 91

FIGURE 6.11: BML representation of the dialog “So I am starting the quiz!”

FIGURE 6.12: BML representation of the dialog “Great your answer is per-
fectly right”
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Chapter 7

Conclusion

This chapter summmarizes the contributions of this study, the lessons learnt, the limitations
of the proposed systems, and proceeds with some future perspectives of future directions of
work.

7.0.1 Contribution

This study proposes two novel approaches which view the problem of reconstruction from
two different perspectives and solves them accordingly. These approaches are first tested on
AI planning domains to validate the conceptual strength of the approaches. They are then
tested with HRI traces in a bid to validate the applicability of the approaches to a real-life
scenario. A snapshot of these approaches is provided as follows:

• SAT-based Techniques: SRMLearn
To learn the underlying action model, it is possible to exploit intra-operator and inter-
operator dependencies and constraints. While the intra-operator constraints deal with
the syntax of the operator, the inter-operator ones exploit the semantic relationship be-
tween successive operators in a plan sequence. We present an approach called SRM-
Learn (Sequential Rules-based Model Learner), which encodes the aforementioned
constraints in the form of a maximum satisfiability problem (MAX-SAT), and solves
it with a MAX-SAT solver to learn the underlying action model. Unlike previous
MAX-SAT driven approaches, our chosen constraints exploit the relationship between
consecutive actions, rendering more accurately learnt models in the end. This approach
is capable of learning purely from plan execution sequences, subtracting the need for
domain knowledge.

• Connectionist Techniques: PDeepLearn
We introduce our approach which is called PDeepLearn, which stands for PDDL do-
main Deep Learner. It uses long short-term memory (LSTM) techniques for the ac-
quisition of the underlying action model. We use the sequence labelling capabilities of
LSTMs to predict the next action in a plan execution sequence based on previously ob-
served actions. This is done by iteratively testing the sequence labelling capabilities of
each of the models sampled from an exhaustively generated then trimmed set of all pos-
sible action models. Empirical results highlight that the sequence labelling achieved
with an empirically isolated model speculated to be identical to the hand woven model
attains the highest accuracy compared to other models in the set. Subsequent planning
possibilities with this acquired model renders this LSTM-based sequence labelling ap-
proach to learn action models as an effective one.

• Application of Learning Systems to HRI scenario
One key source of validation of the learning capacity of the aforementioned learning
algorithms is to test them with real interaction traces and evaluate their capability to
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learn the underlying behavioral model of the robot. We introduce an approach to learn
robot behavioral models from HRI traces in the form of PDDL action models using a
MAX-SAT framework. This learning approach is very much on the lines of SPMSAT,
using the hard constraints and a portion of the soft constraints which are mined with the
Titarl algorithm which is originally used to mine temporal time sequences (Guillame-
Bert and Crowley, 2012). The utility of the learnt model is demonstrated by using it to
label speech acts in the HRI exchanges using the sequence labeling capabilities of the
LSTM network of memory-based recurrent neural networks. The results demonstrate
the need to re-work the semantics of the ground truth behavioral model to boost the
accuracy of the learnt model. The inclusion of symbolic representations of physical
gestures which accompany speech acts in the PDDL model representation is in the
scope of future work.

7.0.2 Open Issues

Despite the aforementioned joint advances in the fields of AP and ML, there remain some
issues which continue to cloud the domain. Some of the key issues are highlighted and
discussed below.

• Fully Automated Planning-boon or bane? The necessity of fully automated planning
can be debated in a two-fold fashion:

– Is it rational to envision a fully automated learning-planning-execution sys-
tem? Despite the usage of the most comprehensive and state-of-the-art ML tech-
niques, there is a certain amount of user-provided domain knowledge which can-
not be discounted; especially bearing in mind the direct correlation between the
speed of learning and the amount of domain knowledge furnished. Thus even the
highest level of automation cannot weed out the need and advantages of human
intervention.

– Is a fully automated system needed at all? Even the most competent ML sys-
tem is somewhat of questionable use if it is not designed to factor in human’s
desire of being able to control its surroundings and automated systems. Modern
day users, aware of the fact that an ideal system is difficult to envision, prefer
a system that can not only be useful in a real-life situation, but can also be at
the mercy of the user, such that the user gets autonomy over the representation
mechanism, language, kind of traces etc.

• Ignored Aspects:

– Re-usable knowledge: The cross domain transfer of knowledge from an existing
domain to enrich the model learning process in an alien domain (similar to the
source domain) with few training examples, is an approach which has come into
light recently with a series of works in transfer learning (Pan and Yang, 2010)).

– Learning during plan execution: this refers to a situation where the expected
and obtained system state after an action execution are not in accord with each
other. It arises due to a flawed domain theory. It has been a major topic of neglect
owing to the fact that a flawed domain theory is somewhat of an alien concept in
classical planning. This has, however, been a topic of greater attention given a
flurry of approaches which have been pivoted on Surprise Based Learning (SBL)
(Ranasinghe and Shen, 2008)).

• Learning with the time dimension: Time plays an imperative role in most real life do-
mains. For example, each dialogue in a Human-Robot Interaction (HRI) is composed
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of an utterance further accompanied by gestural, body and eye movements; all of them
interleaved in a narrow time frame. These interactions may thus be represented by a
time sequence, with the intent of learning the underlying action model. Barring some
initial works in this area, time remains an interesting dimension to explore (Zhang,
Sreedharan, and Kambhampati, 2015; Guillame-Bert and Crowley, 2012).

• Direct re-applicability of learned model: Direct re-use of a learned model by a plan-
ner continues to remain a concern. A model that has been learned by applying ML
techniques is more often than not incomplete, more concretely: inadept to be fed to a
planner to directly generate plans. It needs to be retouched and fine tuned by a domain
expert in order to be reusable. This marks a stark incapability of prominently used
machine learning techniques to be comprehensive, leaving scope for more research.

• Extension of classical planning to a full scope domain: The applicability of the
aforementioned approaches, most of which have been tested on highly simplified toy
domains and not in real scenarios, remains an issue to be addressed. As mentioned
in section 2.2, classical planning is founded on restrictive assumptions and dwells in
determinism. However, the real world is laced with unpredictability: a predicate might
switch its value spontaneously, the world may have hidden variables, the exact impact
of actions may be unpredictable and so on (Zimmerman and Kambhampati, 2003).
Thus, the application of a model learned on benchmark traces into the real world re-
mains a point to ponder about. A fair share of algorithms that treat noisy traces are
learning on benchmark traces which they have been “self-adulterated" to produce noisy
ones. This can be seen as a means of a conscious steering of the learning algorithm
towards a higher rate of learning, raising questions over its neutrality.

7.1 Overall Conclusion of Study

Automated Planning (AP) has been gaining steam ever since studies into human problem
solving, operations research (primarily state space search) and theorem proving started gain-
ing momentum. This is owing to the fact that the notion of a series of actions orchestrating
the accomplishment of a goal is one that resonates amongst all these fields. However, depend-
ing on the domain characteristics, its constituent actions are difficult to quantify and hence
codify. Planners are now equipped with the capability to reverse engineer the signatures, pre-
conditions and effects of the domain-applicable actions. This reverse engineering is achieved
by capitalizing on several state-of-the-art and classical machine learning (ML) techniques.
In recent times, with the explosion in computing power and the influx of ML techniques into
a considerable variety of computing fields, ML seems to have staged its comeback since the
late 1990s.

This study has introduced two promising learning systems, the second of which is incre-
mental to first. The study then proceeds to implement both systems in a chained fashion in
the context of an HRI scenario. We can also conclude the following:

• The Direct re-applicability of learning systems drawn from AI domains to HRI sce-
nario not as sound, and needs adaptation.

• Despite its fair share of drawbacks, study opens up the advantages of fusing symbolic
and statistical machine learning techniques with the intention of driving forward au-
tonomous HRI.
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• While a significant number of prominent and interesting techniques have been applied
to highly controlled experimental setups and simplified domains, their full-blown ap-
plication to diverse and uncertain real world scenarios remains a topic of further re-
search.

7.2 Future Work

• The learning of durative actions is a part of our future work. This is essential as the
time driven interleaving of coverbal and verbal components of a speech act render it
complete and “natural”. The duration of each of these acts, as well as the instance at
which they occur is essential.

• The behavioral model produced in this study is a starting point for more work in the
direction of planning dialog acts from recycled models. In its current state, it is pretty
naive to be used in a real life scenario. These speech acts are incomplete without
corresponding physical acts which supplement these acts and dialogue in general. The
introduction of physical acts in the speech act representations is core to the production
of multimodal acts in the case of a subsequent planning scenario. These physical acts
may be introduced as predicates or static predicates and must be conceptualized and
tested by carving a plan out of a behavioral model containing multimodal acts.
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Appendix A

Technical Aspects of Introduced
Learning Systems

A.1 Technical Outline of the SRMLearn system

This section of the thesis introduces the technical architecture of the SRMLearn system which
are spoken about during the course of this thesis.

A.1.1 Required Softwares

The softwares required are the following:

• Python (>version 3.0)

• SPMF Pattern mining library:
http://www.philippe-fournier-viger.com/spmf/

• Maxsat solver (Borchers and Furman, 1998) and Maxwalksat solver (Kautz, Selman,
and Jiang, 1996)

A.1.2 Implementation

The code specific to the SPMSAT implemetation can be found at the Github repository at the
URL:
https://gitlab.com/ankuj/spmsat
The reader is invited to download the project in the form of a zip file. The reader may then
scroll to the src/ folder which houses the main file called spmsat.py. The following command
may then be input into the command line to initiate the system:

bash: python3 spmsat.py [Domain Name] [Path to data file] [number of records] [path
to problem file] [path to domain file] [weight of first information constraint] [weight of sec-
ond information constraint] [weight of first action constraint] [weight of second action con-
straint] [choice of data mining algorithm] [confidence] [support] [satsolver]

A.1.3 Command Line Parameters

Each of the command line parameters are detailed as follows:

• Domain Name: This can be one of the five evaluated domains, namely: parking, de-
pots, mprime, satellite and gripper

• Name of the input data file: This file normally carries a .data extension, with each line
representing one trace. The data files usually consist of about 1000 traces each. The
format of a single trace or solution can be divided into four parts:
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– Action sequence

– Initial state of problem

– Goal of problem

– Alternating sequence of operator-state pairs: Each pair consists of the applied
operator and the resulting world state. These pairs represent the eventual tran-
sition of the system from the initial state to the goal. These traces can be gen-
erated first by generating problems with the help of various generators avail-
able at (http://www.plg.inf.uc3m.es/ipc2011-learning/Domains.html). The gen-
erated problems can then be resolved with the help of a planner to generate
the set of traces used in our algorithm. This work uses the PDDL4J planner
(https://github.com/pellierd/pddl4j) to resolve problems and generate traces. A
snippet of a trace is represented as:

[(move-car-to-curb car_2 car_0 curb_2),
(move-curb-to-car car_0 curb_1 car_2)];
[(at-curb-num car_0 curb_1),
(curb-clear curb_2),
(car-clear car_1)];
[(at-curb-num car_0 curb_0),
(at-curb-num car_1 curb_1)];
[(operator: move-car-to-curb car_2 car_0 curb_2),
(state: (behind-car car_1 car_3)),
(state: (at-curb car_3)),
(state: (at-curb car_2))];

Number of tested traces: This argument selects the number of traces out of a maximum of
1000 that will be used as input to SRMLearn. It is a positive integer between 1 and 1000.

Name of problem file: Subject to the domain chosen, this argument inputs the domain-specific
problem file specific to SRMLearn. This problem file is used to isolate the variables in the
traces and their corresponding types. This will then be used in the annotation and generaliza-
tion phase to replace the variables in the traces with their corresponding types.

Name of domain file: Subject to the domain chosen, this argument inputs the domain file to
SRMLearn. This domain file serves to compare the difference between the learnt empirical
model and the ground truth action model, and thus calculate the accuracy of SRMLearn.

[Weight of first information constraint] [weight of second information constraint] [weight of
first action constraint] [weight of second action constraint]: The following parameters help
input the weights of the hard and soft constraints. These total to 4 parameters: 2 for the hard
constraints, and 2 for the soft constraints (long term constraints to be specific) respectively.
Each of these arguments are positive integers.

Choice of data mining algorithm: This parameter inputs the chosen data mining algorithm in
order to find the frequent action pairs and use them as short term constraints. The available
algorithms include the apriori algorithm 3 or the TRuleGrowth algorithm 5. These form part
of the SPMF mining library (Fournier-Viger et al., 2014). This parameter can thus either be
“apriori” or “trulegrowth” depending on the user’s choice.

Confidence: In case the mining algorithm chosen happens to be “trulegrowth”, this parameter
allows to set the minimum confidence that the mined action pairs must satisfy. This parameter
is used by the SRMLearn system as an input parameter to the SPMF API during an internal
call to this API during SRMLearn’s course of execution. In the case of ARMS, this parameter
is not taken into account. This value is a decimal number between 0 and 1.
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Support: Irrespective of the choice of mining algorithm, this parameter allows to set the
minimum support that the mined action pairs must satisfy. This parameter is used by the
SRMLearn system as an input parameter to the SPMF API during an internal call to this API
during SRMLearn’s course of execution. This value is a decimal number between 0 and 1.

Choice of MAX-SAT solver: This parameter helps choose the kind of MAX-SAT solver for
solving the constraints which have been constructed by the original ARMS and our SRM-
Learn systems. The first of these solvers has been developed by (Borchers and Furman,
1998). In the first phase, they use a GSAT heuristic to find a good solution to solving the
problem. This solution serves as a seed in generating heuristics for the second phase. In
the second phase, they use an enumeration procedure based on the Davis–Putnam–Loveland
algorithm to find a provably optimal solution. The first heuristic stage improves the perfor-
mance of the algorithm by obtaining an upper bound on the minimum number of unsatisfied
clauses that can be used in pruning branches of the search tree, and use this upper bound to
guide further searches. The second one is MaxWalkSat (Kautz, Selman, and Jiang, 1996),
which maximizes the sum of weights of satisfied clauses, or conversely, minimizes the sum
of weights of unsatisfied clauses. This parameter thus has a string value of either “maxsat”
or “maxwalksat”.

A.1.4 Illustration

An example of the system in action is as follows:

spmsat.py gripper data/gripperWithStates.data 2
problems/p01gripper.pddl
domains/gripper.pddl 100 100 50 100
apriori 1.0 0.8 maxsat

A.2 Technical Outline of the PDeepLearn system

This page represents the technical Outline of the PDeepLearn system.

A.2.1 Required softwares

• Python (>version 3.0)

• SPMF Pattern mining library (http://www.philippe-fournier-viger.com/
spmf/)

• Tensorflow library (https://www.tensorflow.org/install/)

• TFLearn library (http://tflearn.org/installation/)

• Numpy library (https://docs.scipy.org/doc/numpy-1.13.0/user/install.
html)

The source code pertaining to the implementation of the PDeepLearn system may be
downloaded from the Github repository available at the link:
https://gitlab.com/ankuj/pdeeplearn
The reader may scroll to the src/ folder which houses the main file called pdeeplearn.py. The
following command may then be input into the command line to initiate the system:

bash: python3 pdeeplearn.py [Domain Name]
[Path to data file] [number of records]
[path to problem file]
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A.2.2 Command Line Parameters

Each of these parameters of the command line are detailed as follows:

• Domain Name: This can be one of the four evaluated domains, namely: depots,
mprime, satellite and gripper.

• Name of the input data file: This file normally carries a .data extension, with each line
representing one trace. The data files usually consist of about 700 traces each. The
format of a single trace or solution can be divided into four parts:

– Action sequence
– Initial state of problem
– Goal of problem
– Alternating sequence of operator-state pairs. Each pair consists of the applied op-

erator and the resulting world state. These pairs represent the eventual transition
of the system from the initial state to the goal. These traces can be generated first
by generating problems with the help of various generators available at (http:
//www.plg.inf.uc3m.es/ipc2011-learning/Domains.html). The
generated problems can then be resolved with the help of a planner to gener-
ate the set of traces used in our algorithm. This work uses the PDDL4J planner
(https://github.com/pellierd/pddl4j) to resolve problems and gen-
erate traces. A snippet of a trace is represented as:

[(move-car-to-curb car_2 car_0 curb_2),
(move-curb-to-car car_0 curb_1 car_2)];
[(at-curb-num car_0 curb_1),(curb-clear curb_2),
(car-clear car_1)];
[(at-curb-num car_0 curb_0),
(at-curb-num car_1 curb_1)];
[(operator: move-car-to-curb car_2 car_0 curb_2),
(state: (behind-car car_1 car_3)),
(state: (at-curb car_3)),
(state: (at-curb car_2))];

Number of tested traces: This argument selects the number of traces out of a maximum of
700 that will be used as input to PDeepLearn. It is a positive integer between 1 and 700.

Name of problem file: Subject to the domain chosen, this argument inputs the domain-specific
problem file specific to SRMLearn. This problem file is used to isolate the variables in the
traces and their corresponding types. This will then be used in the annotation and generaliza-
tion phase to replace the variables in the traces with their corresponding types.

A.2.3 Illustration

An example of the system in action is as follows:

python3 pdeeplearn.py gripper /data/gripperWithStates.data
10 /problems/p01gripper.pddl /depots/domains/gripper.pddl

Note: The reconstructed PDDL domain files can be found in the generatedFiles folder
starting with the names allModelF ile(...).txt. In order to test a model, the information
adjacent to the text ’;;model:’ in the first line of the generated model file must be copied into
the command prompt when the algorithm displays the prompt ’add the model to be tested
here’.
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