G. Indiveri and T. K. Horiuchi, Frontiers in neuromorphic engineering, Frontiers in Neuroscience, vol.5, p.118, 2011.

C. Mead, Neuromorphic electronic systems, Proceedings of the IEEE, vol.78, issue.10, pp.1629-1636, 1990.

, Analog VLSI and neural systems, vol.1, 1989.

R. P. Feynman, J. Hey, and R. W. Allen, Feynman lectures on computation, 1998.

B. Sengupta and M. B. Stemmler, Power consumption during neuronal computation, Proceedings of the IEEE, vol.102, issue.5, pp.738-750, 2014.

C. Bartolozzi, R. Benosman, K. Boahen, G. Cauwenberghs, T. Delbrück et al., Neuromorphic Systems, 2016.

S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, The SpiNNaker project, Proceedings of the IEEE, vol.102, issue.5, pp.652-665, 2014.

P. A. Merolla, J. V. Arthur, R. Alvarez-icaza, A. S. Cassidy, J. Sawada et al., A million spiking-neuron integrated circuit with a scalable communication network and interface, Science, vol.345, issue.6197, pp.668-673, 2014.

B. V. Benjamin, P. Gao, E. Mcquinn, S. Choudhary, A. R. Chandrasekaran et al., Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations, Proceedings of the IEEE, vol.102, issue.5, pp.699-716, 2014.

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier et al., A waferscale neuromorphic hardware system for large-scale neural modeling, Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp.1947-1950, 2010.

S. Scholze, H. Eisenreich, S. Höppner, G. Ellguth, S. Henker et al., A 32GBit/s communication SoC for a waferscale neuromorphic system, INTEGRATION, the VLSI journal, vol.45, issue.1, pp.61-75, 2012.

S. Furber, Large-scale neuromorphic computing systems, Journal of Neural Engineering, vol.13, issue.5, p.51001, 2016.

S. Caviglia, M. Valle, and C. Bartolozzi, Asynchronous, event-driven readout of POSFET devices for tactile sensing, Proceedings of 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp.2648-2651, 2014.

W. W. Lee, S. L. Kukreja, and N. V. Thakor, A kilohertz kilotaxel tactile sensor array for investigating spatiotemporal features in neuromorphic touch, 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp.1-4, 2015.

T. J. Koickal, A. Hamilton, S. L. Tan, J. A. Covington, J. W. Gardner et al., Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.54, issue.1, pp.60-73, 2007.

M. Mahowald and R. Douglas, A silicon neuron, Nature, vol.354, issue.6354, p.515, 1991.

M. Mahowald, VLSI analogs of neuronal visual processing: a synthesis of form and function, 1992.

E. Culurciello, R. Etienne-cummings, and K. A. Boahen, A biomorphic digital image sensor, IEEE Journal of Solid-State Circuits, vol.38, issue.2, pp.281-294, 2003.
DOI : 10.1109/jssc.2002.807412

URL : https://repository.upenn.edu/cgi/viewcontent.cgi?article=1027&context=be_papers

P. Lichtsteiner, C. Posch, and T. Delbrück, A 128×128 120 dB 15 µs latency asynchronous temporal contrast vision sensor, IEEE Journal of Solid-State Circuits, vol.43, issue.2, pp.566-576, 2008.
DOI : 10.1109/jssc.2007.914337

C. Posch, D. Matolin, and R. Wohlgenannt, An asynchronous time-based image sensor, 2008 IEEE International Symposium on Circuits and Systems (ISCAS)
DOI : 10.1109/iscas.2008.4541871

, IEEE, pp.2130-2133, 2008.

, A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS, IEEE Journal of Solid-State Circuits, vol.46, issue.1, pp.259-275, 2011.

R. F. Lyon and C. Mead, An analog electronic cochlea, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.36, issue.7, pp.1119-1134, 1988.
DOI : 10.1109/29.1639

URL : https://authors.library.caltech.edu/53125/1/388884.pdf

E. Fragnì, A 100-channel analog CMOS auditory filter bank for speech recognition," in ISSCC, IEEE International Digest of Technical Papers, pp.140-589, 2005.

V. Chan, S. Liu, and A. Van-schaik, AER EAR: A matched silicon cochlea pair with address event representation interface, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.54, issue.1, pp.48-59, 2007.

T. Delbrück, Silicon retina with correlation-based, velocity-tuned pixels, IEEE Transactions on Neural Networks, vol.4, issue.3, pp.529-541, 1993.

R. Etienne-cummings, J. Van-der-spiegel, and P. Mueller, A focal plane visual motion measurement sensor, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.44, issue.1, pp.55-66, 1997.
DOI : 10.1109/81.558442

URL : https://repository.upenn.edu/cgi/viewcontent.cgi?article=1280&context=ese_papers

J. Krammer and C. Koch, Pulse-based analog VLSI velocity sensors, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.44, issue.2, pp.86-101, 1997.
DOI : 10.1109/82.554431

K. A. Boahen, Point-to-point connectivity between neuromorphic chips using address events, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.47, issue.5, pp.416-434, 2000.
DOI : 10.1109/82.842110

URL : https://repository.upenn.edu/cgi/viewcontent.cgi?article=1006&context=be_papers

C. Posch, T. Serrano-gotarredona, B. Linares-barranco, and T. Delbrück, Retinomorphic event-based vision sensors: bioinspired cameras with spiking output, Proceedings of the IEEE, vol.102, issue.10, pp.1470-1484, 2014.
DOI : 10.1109/jproc.2014.2346153

URL : https://digital.csic.es/bitstream/10261/104042/1/accesoRestringido.pdf

R. Benosman, S. Ieng, P. Rogister, and C. Posch, Asynchronous event-based hebbian epipolar geometry, IEEE Transactions on Neural Networks, vol.22, issue.11, pp.1723-1734, 2011.
DOI : 10.1109/tnn.2011.2167239

R. Benosman, S. Ieng, C. Clercq, C. Bartolozzi, and M. Srinivasan, Asynchronous frameless event-based optical flow, Neural Networks, vol.27, pp.32-37, 2012.
DOI : 10.1016/j.neunet.2011.11.001

R. Benosman, C. Clercq, X. Lagorce, S. Ieng, and C. Bartolozzi, Event-based visual flow, IEEE Transactions on Neural Networks and Learning Systems, vol.25, issue.2, pp.407-417, 2014.
DOI : 10.1109/tnnls.2013.2273537

S. Agarwal, A. Awan, and D. Roth, Learning to detect objects in images via a sparse, part-based representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.11, pp.1475-1490, 2004.

M. A. Fischler and R. A. Elschlager, The representation and matching of pictorial structures, IEEE Transactions. on Computers, vol.100, pp.67-92, 1973.
DOI : 10.1109/t-c.1973.223602

Y. Lu and D. Song, Robust RGB-D odometry using point and line features, Proceedings of the IEEE International Conference on Computer Vision, pp.3934-3942, 2015.
DOI : 10.1109/iccv.2015.448

G. Schindler, P. Krishnamurthy, and F. Dellaert, Line-based structure from motion for urban environments, Third International Symposium on 3D Data Processing, Visualization, and Transmission, pp.846-853, 2006.
DOI : 10.1109/3dpvt.2006.90

T. Lemaire and S. Lacroix, Monocular-vision based SLAM using line segments, Proceedings of 2007 IEEE International Conference on Robotics and Automation, pp.2791-2796, 2007.

F. Chaumette and S. Hutchinson, Visual servo control. I. basic approaches, IEEE Robotics & Automation Magazine, vol.13, issue.4, pp.82-90, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00350283

, Visual servo control, IEEE Robotics & Automation Magazine, vol.14, issue.1, pp.109-118, 2007.

V. Lepetit and P. Fua, Monocular model-based 3D tracking of rigid objects: A survey, Foundations and Trends in Computer Graphics and Vision, vol.1, issue.1, pp.1-89, 2005.

M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, vol.24, issue.6, pp.381-395, 1981.

M. Litzenberger, B. Kohn, A. Belbachir, N. Donath, G. Gritsch et al., Estimation of vehicle speed based on asynchronous data from a silicon retina optical sensor, 2006 IEEE Intelligent Transportation Systems Conference (ITSC), pp.653-658, 2006.

M. Litzenberger, C. Posch, D. Bauer, A. Belbachir, P. Schon et al., Embedded vision system for real-time object tracking using an asynchronous transient vision sensor, 2006 IEEE 12th Digital Signal Processing Workshop 4th IEEE Signal Processing Education Workshop, pp.173-178, 2006.

G. L. Foresti, Object recognition and tracking for remote video surveillance, IEEE Transactions on Circuits and Systems for Video Technology, vol.9, pp.1045-1062, 1999.

I. Cohen and G. Medioni, Detecting and tracking moving objects for video surveillance, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'99), p.325, 1999.

R. J. Jacob and K. S. Karn, Eye tracking in human-computer interaction and usability research: Ready to deliver the promises, Mind, vol.2, issue.3, p.4, 2003.

U. Neumann and S. You, Natural feature tracking for augmented reality, IEEE Transactions on Multimedia, vol.1, pp.53-64, 1999.

B. Coifman, D. Beymer, P. Mclauchlan, and J. Malik, A real-time computer vision system for vehicle tracking and traffic surveillance, Transportation Research Part C: Emerging Technologies, vol.6, issue.4, pp.271-288, 1998.

M. Yang, D. J. Kriegman, and N. Ahuja, Detecting faces in images: A survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, pp.34-58, 2002.

P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'01), pp.511-518, 2001.

R. Lienhart and J. Maydt, An extended set of Haar-like features for rapid object detection, Proceedings of the IEEE International Conference on Image Processing, pp.900-903, 2002.

P. Viola and M. Jones, Robust real-time face detection, International Journal of Computer Vision, vol.57, issue.2, pp.137-154, 2004.

B. Wu, H. Ai, C. Huang, and S. Lao, Fast rotation invariant multi-view face detection based on real Adaboost, Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pp.79-84, 2004.

T. Mita, T. Kaneko, and O. Hori, Joint Haar-like features for face detection, Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV'05), vol.2, pp.1619-1626, 2005.

M. Jones and P. Viola, Mitsubishi Electric Research Lab, 2003.

B. Froba and A. Ernst, Face detection with the modified census transform, Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pp.91-96, 2004.

P. Menezes, J. Barreto, and J. Dias, Face tracking based on Haar-like features and eigenfaces, Proceedings of the IFAC/EURON Symposium on Intelligent Autonomous Vehicles, 2004.

S. Zafeiriou, C. Zhang, and Z. Zhang, A survey on face detection in the wild: past, present and future, Computer Vision and Image Understanding, vol.138, pp.1-24, 2015.

X. Lagorce, G. Orchard, F. Gallupi, B. E. Shi, and R. Benosman, HOTS: A Hierarchy Of event-based Time-Surfaces for pattern recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.

M. C. Burl, M. Weber, and P. Perona, A probabilistic approach to object recognition using local photometry and global geometry, European Conference on Computer Vision, pp.628-641, 1998.

R. Fergus, P. Perona, and A. Zisserman, Object class recognition by unsupervised scale-invariant learning, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'03), pp.264-271, 2003.

P. F. Felzenszwalb and D. P. Huttenlocher, Pictorial structures for object recognition, International Journal of Computer Vision, vol.61, issue.1, pp.55-79, 2005.

M. Andriluka, S. Roth, and B. Schiele, Pictorial structures revisited: People detection and articulated pose estimation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'09), pp.1014-1021, 2009.

Z. Ni, C. Pacoret, R. Benosman, and S. Ieng, Asynchronous event-based high speed vision for microparticle tracking, Journal of Microscopy, vol.245, issue.3, pp.236-244, 2012.

D. Drazen, P. Lichtsteiner, P. Häfliger, T. Delbrück, and A. Jensen, Toward realtime particle tracking using an event-based dynamic vision sensor, Experiments in Fluids, vol.51, issue.5, p.1465, 2011.

Z. Ni, A. Bolopion, J. Agnus, R. Benosman, and S. Régnier, Asynchronous eventbased visual shape tracking for stable haptic feedback in microrobotics, IEEE Transactions on Robotics, vol.28, issue.5, pp.1081-1089, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00767638

X. Lagorce, C. Meyer, S. Ieng, D. Filliat, and R. Benosman, Asynchronous event-based multikernel algorithm for high-speed visual features tracking, IEEE Transactions on Neural Networks and Learning Systems, vol.26, issue.8, pp.1710-1720, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01069808

W. Mendenhall, R. J. Beaver, and B. M. Beaver, Introduction to probability and statistics. Cengage Learning, 2012.

J. Taylor, Classical Mechanics, 2005.

V. I. Arnold, Mathematical methods of classical mechanics, vol.60, 1989.

C. S. Chane, S. Ieng, C. Posch, and R. B. Benosman, Event-based tone mapping for asynchronous time-based image sensor, Frontiers in Neuroscience, vol.10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01369653

L. Zhang and R. Koch, Structure and motion from line correspondences: representation, projection, initialization and sparse bundle adjustment, Journal of Visual Communication and Image Representation, vol.25, issue.5, pp.904-915, 2014.

W. Y. Jeong and K. M. Lee, Visual SLAM with line and corner features, pp.2570-2575, 2006.

J. Lv, Y. Kobayashi, A. A. Ravankar, and T. Emaru, Straight line segments extraction and EKF-SLAM in indoor environment, Journal of Automation and Control Engineering, vol.2, issue.3, 2014.

J. Illingworth and J. Kittler, Computer vision, graphics, and image processing, vol.44, pp.87-116, 1988.

D. H. Ballard, Generalizing the Hough transform to detect arbitrary shapes, Pattern recognition, vol.13, issue.2, pp.111-122, 1981.

P. Mukhopadhyay and B. B. Chaudhuri, A survey of Hough transform, Pattern Recognition, vol.48, issue.3, pp.993-1010, 2015.

J. B. Burns, A. R. Hanson, and E. M. Riseman, Extracting straight lines, IEEE Transactions on Pattern Analysis and Machine Intelligence, issue.4, pp.425-455, 1986.

A. Mansouri, A. S. Malowany, and M. D. Levine, Line detection in digital pictures: A hypothesis prediction/verification paradigm, Computer Vision, Graphics, and Image Processing, vol.40, pp.95-114, 1987.

V. G. Grompone, J. Jakubowicz, J. Morel, and G. Randall, LSD: a fast line segment detector with a false detection control, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.4, pp.722-732, 2010.

X. Clady, S. Ieng, and R. Benosman, Asynchronous event-based corner detection and matching, Neural Networks, vol.66, pp.91-106, 2015.

V. Vasco, A. Glover, and C. Bartolozzi, Fast event-based Harris corner detection exploiting the advantages of event-driven cameras, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.4144-4149, 2016.

X. Clady, J. Maro, S. Barré, and R. B. Benosman, A motion-based feature for event-based pattern recognition, Frontiers in Neuroscience, vol.10, p.594, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01449343

S. Seifozzakerini, W. Yau, B. Zhao, and K. Mao, Event-based Hough transform in a spiking neural network for multiple line detection and tracking using a dynamic vision sensor, Proceedings of the 2016 British Machine Vision Conference (BMVC), 2016.

C. Brändli, J. Strubel, S. Keller, D. Scaramuzza, and T. Delbruck, ELiSeD-An event-based line segment detector, IEEE Second International Conference on Event-based Control, Communication, and Signal Processing, pp.1-7, 2016.

D. R. Valeiras, S. Kime, S. Ieng, and R. B. Benosman, An event-based solution to the perspective-n-point problem, Frontiers in neuroscience, vol.10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01331126

E. H. Adelson and J. A. Movshon, Phenomenal coherence of moving visual patterns, Nature, vol.300, issue.5892, pp.523-525, 1982.

?. A. Björck, Numerical methods in matrix computations, 2015.

S. Chatterjee and A. S. Hadi, Regression analysis by example, 2015.

R. O. Duda and P. E. Hart, Use of the Hough transformation to detect lines and curves in pictures, Communications of the ACM, vol.15, issue.1, pp.11-15, 1972.

R. Larson and B. H. Edwards, Calculus of a single variable. Cengage Learning, 2013.

R. Brunelli, Template matching techniques in computer vision: theory and practice, 2009.

G. D. Evangelidis and E. Z. Psarakis, Parametric image alignment using enhanced correlation coefficient maximization, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.10, pp.1858-1865, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00864385

N. Snavely, S. M. Seitz, and R. Szeliski, Modeling the world from internet photo collections, International Journal of Computer Vision, vol.80, issue.2, pp.189-210, 2008.

S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless et al., Building Rome in a day, Communications of the ACM, vol.54, issue.10, pp.105-112, 2011.

T. Drummond and R. Cipolla, Real-time visual tracking of complex structures, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, pp.932-946, 2002.

D. Van-krevelen and R. Poelman, A survey of augmented reality technologies, applications and limitations, International Journal of Virtual Reality, vol.9, issue.2, p.1, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01530500

F. Janabi-sharifi, Visual servoing: theory and applications, pp.15-16, 2002.
DOI : 10.1201/9781420040692.ch15

F. Janabi-sharifi and M. Marey, A kalman-filter-based method for pose estimation in visual servoing, IEEE Transactions on Robotics, vol.26, pp.939-947, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00549107

Y. Abbel-aziz, Direct linear transformation from comparator coordinates in closerange photogrammetry, Proceedings of the American Society of Photogrammetry Symposium on Close-range Photogrammetry. American Society of Photogrammetry, 1971.

D. F. Dementhon and L. S. Davis, Model-based object pose in 25 lines of code, International Journal of Computer Vision, vol.15, issue.1, pp.123-141, 1995.

H. Kato and M. Billinghurst, Marker tracking and hmd calibration for a videobased augmented reality conferencing system, Proceedings of the 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99, pp.85-94, 1999.

F. Moreno-noguer, V. Lepetit, and P. Fua, Accurate non-iterative o (n) solution to the pnp problem, IEEE 11th International Conference on Computer Vision, pp.1-8, 2007.

D. Oberkampf, D. F. Dementhon, and L. S. Davis, Iterative pose estimation using coplanar feature points, Computer Vision and Image Understanding, vol.63, issue.3, pp.495-511, 1996.
DOI : 10.1006/cviu.1996.0037

M. , C. Kiel, and G. , BIAS: Basic Image AlgorithmS Library, 2008.

E. K. Chong and S. H. Zak, An Introduction to Optimization, 2001.
DOI : 10.1002/9781118033340

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118033340.fmatter

C. Harris, Tracking with rigid models," in Active vision, pp.59-73, 1993.

H. Kollnig and H. Nagel, 3D pose estimation by directly matching polyhedral models to gray value gradients, International Journal of Computer Vision, vol.23, issue.3, pp.283-302, 1997.

V. Lepetit, F. Moreno-noguer, and P. Fua, EPnP: An accurate O(n) solution to the PnP problem, International Journal of Computer Vision, vol.81, issue.2, pp.155-166, 2009.

Z. Ni, S. Ieng, C. Posch, S. Régnier, and R. Benosman, Visual tracking using neuromorphic asynchronous event-based cameras, Neural Computation, 2015.

H. S. Coxeter, Introduction to geometry, 1961.

R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge University press, 2003.

R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduction to robotic manipulation, 1994.

C. Lu, G. Hager, and E. Mjolsness, Fast and globally convergent pose estimation from video images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, pp.610-622, 2000.

M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy, Polygon mesh processing, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00538098

J. O'rourke, Computational geometry in C, 1998.

G. Orchard, J. G. Martin, R. J. Vogelstein, and R. Etienne-cummings, Fast neuromimetic object recognition using fpga outperforms gpu implementations, IEEE Transactions on Neural Networks and Learning Systems, vol.24, issue.8, pp.1239-1252, 2013.

G. Glaeser, Hidden-line removal, Fast Algorithms for 3D-Graphics, pp.185-200, 1994.

D. Q. Huynh, Metrics for 3D rotations: Comparison and analysis, Journal of Mathematical Imaging and Vision, vol.35, issue.2, pp.155-164, 2009.

K. Shoemake, Animating rotation with quaternion curves, ACM SIGGRAPH computer graphics, vol.19, issue.3, pp.245-254, 1985.

V. Lepetit and P. Fua, Keypoint recognition using randomized trees, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.9, pp.1465-1479, 2006.

M. M. Campos and L. De-souza-coelho, Autonomous dirigible navigation using visual tracking and pose estimation, Proceedings of the 1999 IEEE International Conference on Robotics and Automation, vol.4, pp.2584-2589, 1999.

I. Skrypnyk and D. G. Lowe, Scene modelling, recognition and tracking with invariant image features, Third IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR'04, pp.110-119, 2004.

B. M. Haralick, C. Lee, K. Ottenberg, and M. Nölle, Review and analysis of solutions of the three point perspective pose estimation problem, International Journal of Computer Vision, vol.13, issue.3, pp.331-356, 1994.

G. Schweighofer and A. Pinz, Robust pose estimation from a planar target, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.12, pp.2024-2030, 2006.

M. Hazewinkel and ;. .. , 19 2.9 Experimental results: tracking of a moving grid of points for different values of the stiffness, ser. Encyclopaedia of Mathematics, vol.6, 2013.

.. .. , 21 2.13 Experimental results: tracking error as a function of the stiffness for general deformation and motion

. , Experimental results: tracking error as a function of the stiffness for plane rotation

, Experimental results: description of the recording of the moving face, p.23

. .. , 18 Experimental results: error committed when tracking the face

. , Explanation of the segment detection strategy

. , Set up for the simple scene

. , Experimental results: ratio of processing time to the length of the recording as a function of the event rate

. , Experimental results: maximum event rate that can be processed in real time

, 52 4.3 3D matching: selection of the point that has generated an event, p.53

. , Geometry of the rotation problem

. , Real objects used in the experiments

, Experimental results: linear and angular speed of the icosahedron, p.58

, Experimental results: linear and angular speed of the house, p.60

.. .. House, , p.62

. , Experimental results: evolution of the errors when the temporal resolution is degraded

, Experimental results: computational time when tracking the icosahedron, vol.64

. , Experimental results: computational time as a function of the event rate when tracking the icosahedron

. , Experimental results: maximum event rate that can be processed in real time depending on the parameter

, Experimental results: computational time when tracking the house, p.65

. , Experimental results: maximum event rate that can be processed in real time depending on the parameter

. , Mathematical description of the PnP problem

. , Virtual mechanical system

. , Experimental results: evolution of the translation errors for the synthetic scene

. , Experimental results: evolution of the relative translation error for different sets of parameters

. , Experimental results: evolution of the relative translation error for different sets of parameters

. , 82 5.10 Evolution of the relative rotation error for different sets of parameters for the efficient method

. .. Experiments, 13 Experimental results: evolution of the translation vector T and the rotation vector r, compared with the ground truth, vol.83

. , Experimental results: evolution of the pose estimation errors and the computational time with the value of n, vol.87

A. , Standard set of weights

. , Dynamics of a damped harmonic oscillator

. , Disambiguation of the sign of the sinus

G. , Singular matrix system

, State of the system when the maximum torque is produced, p.123