
HAL Id: tel-01875701
https://theses.hal.science/tel-01875701

Submitted on 17 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contrôle adaptatif des feux de signalisation dans les
carrefours : modélisation du système de trafic

dynamique et approches de résolution
Biao Yin

To cite this version:
Biao Yin. Contrôle adaptatif des feux de signalisation dans les carrefours : modélisation du système
de trafic dynamique et approches de résolution. Automatique. Université de Technologie de Belfort-
Montbeliard, 2015. Français. �NNT : 2015BELF0279�. �tel-01875701�

https://theses.hal.science/tel-01875701
https://hal.archives-ouvertes.fr

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E T E C H N O L O G I E B E L F O R T - M O N T B É L I A R D

Contrôle adaptatif des feux de
signalisation dans les carrefours:
modélisation du système de trafic
dynamique et approches de
résolution

BIAO YIN

Thèse de Doctorat

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E T E C H N O L O G I E B E L F O R T - M O N T B É L I A R D

THÈSE présentée par

BIAO YIN
pour obtenir le

Grade de Docteur de
l’Université de Technologie de Belfort-Montbéliard

Spécialité : Automatique

Contrôle adaptatif des feux de signalisation dans les
carrefours: modélisation du système de trafic

dynamique et approches de résolution

Unité de Recherche :
Institut de Recherche sur les Transports, l’Énergie et la Société (IRTES)

Soutenue le 11 décembre 2015 devant le Jury :

PIERRE BORNE Rapporteur Professeur à l’Ecole Centrale de Lille
CHRISTIAN PRINS Rapporteur Professeur à l’Université de Technologie de

Troyes
SAÏD HAYAT Examinateur Chargé de recherche HDR à l’IFSTTAR
MOHAMED BENREJEB Examinateur Professeur à l’École Nationale d’Ingénieurs

de Tunis
ABDELLAH EL MOUDNI Directeur de thèse Professeur à l’Université de Technologie de

Belfort-Montbéliard
MAHJOUB DRIDI Co-Directeur Maı̂tre de Conférence à l’Université de

Technologie de Belfort-Montbéliard

N◦ X X X

ACKNOWLEDGEMENT

I would like to give my sincere gratitude to my supervisors Prof. Abdellah EL MOUDNI

and Associate Prof. Mahjoub DRIDI, for the continuous support of my Ph.D study and

research in Lab IRTES-SeT. Their patience, motivation, and immense knowledge, and

their inspiring guidance during my thesis deserve the most appreciation and respect in my

heart. It is really a great experience working with them. With their abundant research

experience, they show me how to become an independent researcher.

I would further like to give my gratitude to the financial support from the program of

China Scholarships Council (CSC). I would like also to thank to UTBM so that I could

do my thesis in such comfortable and inspiring environment.

Finally, I wish to take this opportunity to express my appreciation and thanks to all

my friends for their emotional supports and research help. Especially, they are Xinyi LIU,

Xuguang HAO, Hongjian WANG, Jianxing LIU, Binying YE, Jiawei ZHU, Abderrahim

CHARIETE, Haode LIU. I really cherish and engrave the friendship and all the beautiful

memories with them. I would also like to express special thanks to my parents who

provide me eternal love and supports. They encourage me to explore knowledge and

teach me to be a man with responsibility. With all the love and faith, tomorrow is going

to be better.

ii

CONTENTS

Acknowledgement i

Contents vi

List of Figures ix

List of Tables xi

General introduction 1

Chapter 1 Generalities of traffic signal control 5
1.1 Introduction . 5

1.2 Descriptions of traffic signal control systems 6

1.2.1 Principle concepts . 6

1.2.2 Traffic signal control systems 8

1.2.2.1 Established systems 8

1.2.2.2 Developing systems 10

1.3 Dynamic traffic models . 12

1.3.1 Intersection signal control models 12

1.3.2 Network loading models . 13

1.4 Traffic signal control methods review . 15

1.4.1 DP and search algorithm . 15

iv CONTENTS

1.4.2 Artificial intelligence methods 16

1.4.3 Reinforcement learning and ADP methods 20

1.5 Conclusion and objective of the thesis 24

Chapter 2 Dynamic traffic system modeling 27
2.1 Introduction . 27

2.2 Traffic flow organization patterns . 28

2.2.1 Fixed phase sequence . 29

2.2.2 Variable phase sequence . 31

2.2.3 Adaptive phase sequence . 32

2.3 System modeling at isolated intersection 34

2.3.1 Markov Decision Process . 34

2.3.2 Model definitions of characteristic in MDP 35

2.3.2.1 Model assumption . 35

2.3.2.2 Model framework . 36

2.4 System modeling at traffic network . 39

2.4.1 Network loading model in micro-simulation system 39

2.4.1.1 Network representations 39

2.4.1.2 Vehicle-following model 41

2.4.2 Coordinated signal control model at network 46

2.4.2.1 Multiagent MDP . 46

2.4.2.2 Tunable state control for coordination 47

2.5 Summary . 50

Chapter 3 Methods studied based on dynamic programming 53
3.1 Introduction . 53

3.2 Backward DP algorithm for control and analysis 54

3.2.1 DP introduction . 54

3.2.2 Value iteration algorithm for stochastic states system 60

3.2.3 Case study and analysis . 63

3.3 Forward search algorithm for control and analysis 65

3.3.1 Forward search A* introduction 65

3.3.2 Forward search algorithm for deterministic states system 69

3.3.3 Case study and analysis . 79

CONTENTS v

3.4 Limitation of DP based algorithms . 82

3.5 Summary . 84

Chapter 4 Approximate dynamic programming with RLS-TD(λ) learning al-
gorithm 87
4.1 Introduction . 87

4.2 Structure of ADP . 88

4.2.1 Neural networks approximation 89

4.2.2 linear function approximation 93

4.3 RLS-TD(λ) for linear function approximation 96

4.3.1 Multi-step temporal difference (TD(λ)) learning 96

4.3.2 RLS-TD(λ) . 98

4.3.3 Learning with multi-step value iteration 101

4.4 Algorithm for adaptive traffic signal control 102

4.4.1 Algorithm for isolated intersection 102

4.4.2 Algorithm for traffic network . 104

4.4.2.1 Independent network control 105

4.4.2.2 Coordinated network control 106

4.5 Summary . 108

Chapter 5 Applications and results 111
5.1 Introduction . 111

5.2 Application in isolated intersection . 112

5.2.1 Preparation . 112

5.2.2 Functional parameters simulation 116

5.2.3 Comparisons and analysis . 120

5.2.3.1 Different phase mode solutions 120

5.2.3.2 Fine planning solution 122

5.3 Application in traffic network . 126

5.3.1 Preparation . 126

5.3.2 Vehicle-following simulation . 130

5.3.3 Comparisons and analysis . 133

5.3.3.1 Independent traffic network 133

5.3.3.2 Coordinated traffic network 133

vi CONTENTS

5.4 Summary . 140

Conclusion and perspectives 143

Appendices 147

LIST OF FIGURES

1.1 Traffic time space diagram . 7

1.2 Types of control logics . 8

1.3 The fundamental diagram of the LWR model (q = V K) 14

2.1 Illustration of a typical intersection with conflicts 29

2.2 Illustration of fixed phase sequence (FPS) mode 29

2.3 Illustration of variable phase sequence (VPS) mode 31

2.4 Matrix of adaptive phase sequence (APS) mode 32

2.5 Example of APS mode . 33

2.6 5-intersection traffic network . 40

2.7 Inside link . 41

2.8 Cases in vehicle-following model: (a) Case 1, (b) Case 2, (c) Case 3, and

(d) Case 4 . 44

2.9 Explanation of X1, X2 in the case that n = 5 (n ∈ u) and nd = 7, 2, 8

(d = −1, 0, 1. nd ∈ v) . 50

3.1 Time series and stages . 54

3.2 A sample of state transition in stochastic dynamic programming 56

3.3 Value iteration of dynamic programming 58

3.4 Policy iteration of dynamic programming 59

3.5 A simple two-phase intersection . 60

viii LIST OF FIGURES

3.6 Example of two-phase traffic signal planning 60

3.7 Traffic state transition model in decomposition MDP 62

3.8 Vehicle length comparisons in three control methods (ρ = 0.6) 65

3.9 An example of weighted directed graph 68

3.10 A* solution for shortest path problem 68

3.11 Illustration of phase decision under phase modes of (a) FPS (2-connectors),

(b) VPS (4-connectors), and (c) APS (12-connectors) 70

3.12 Illustration of traffic signal control under decision tree 71

3.13 Explanation of different cases of the optimal positions (the dash-arrow in

(a) means existing the chosen action to the same states, but for simplicity,

we don’t choose it for next planning any more; the dash-arrow with ver-

tical bar in (b) means not existing the chosen action to the same state, but

it may still reach to other state determined by the optimal action.) 74

3.14 Example of fixed phase sequence based on optimal position (assume ini-

tial Φ = 1 and $ = p̂∗(τ)mod2) . 76

3.15 Rolling horizon approach . 77

3.16 Comparisons of queue evolutions and signal sequences among the Opti-

mal FC, Q-learning(VPS), and FSDP-R(VPS) 81

4.1 The schematic diagram of the ADHDP framework (the solid lines repre-

sent signal flow, while the dashed lines are the paths for parameter tuning) 90

4.2 The structure of the action network and critic network 91

4.3 Linear feature-based architecture . 94

4.4 Example of system action transition . 108

5.1 Traffic Scenario C-flow profile on average arrival rates during the simula-

tion . 114

5.2 Evolutions of functional parameters by using ADP with RLS-TD(λ) learn-

ing (in Traffic Scenario A-2, APS mode with λ=0, n=1, 2, 6, and 7) . . . 117

5.3 Comparisons of functional parameters by using ADP method between

RLS-TD(λ) and TD(λ) learning (in Traffic Scenario B-3, FPS mode with

λ = 0, n=1) . 118

LIST OF FIGURES ix

5.4 Comparisons of functional parameters by using TD(λ) learning between

2-s solution and 0.5-s solution (in Traffic Scenario B-3, VPS mode with

λ = 0, n=2) . 118

5.5 Comparisons of functional parameters by using ADP method between

RLS-TD(λ) and TD(λ) learning (in Traffic Scenario C, APS mode with

n=1) . 120

5.6 Comparisons of average delays by using ADP method between RLS-

TD(λ) and TD(λ) learning in APS . 121

5.7 Improvements of average delays by using different methods in FPS, VPS,

and APS, comparing with the Haijema-MDP in FC 123

5.8 Evolutions of queue length by using ADP_RLS-TD(λ) (λ = 0 in APS at

0.5-s and 2-s solutions in Traffic Scenario B-3) 124

5.9 Evolutions of average queue length by using ADP_RLS-TD(λ) (λ = 0 in

Traffic Scenario B-3) . 125

5.10 Traffic demand for network, except the inside link lanes represented by

short gray bars, (a) D-1: low; (b) D-2: medium; (c) D-3: high 128

5.11 Behavior of vehicle movements on lane (60 places) during samples of 100

steps . 130

5.12 Examples of the relationship between vehicle position (X-axis) and ve-

locity (Z-axis) in 3-Dimension . 131

5.13 Evolutions of vehicle position on lane, ADP for (a), (b), (c), and FC for (d) 132

5.14 Comparing results by different tunable e 135

5.15 Comparing results of average queue length (mean of 100 sample inter-

vals) at intersection I3 in Traffic Scenario D-2 137

5.16 Comparing results of total average queue length at network using FC,

SOA, Q-learning (VPS) and ADP_RLS-TD(λ) (λ = 0, with e = 0.95 in

VPS and e = 1 in APS) methods in Traffic Scenario D-2 138

5.17 Comparing results of total average queue length at network using SOA,

Q-learning (VPS) and ADP_RLS-TD(λ) (λ = 0, with e = 0.90 in VPS

and e = 1 in APS) methods in Traffic Scenario D-3 138

5.18 Comparing results of current vehicle average speed using SOA, Q-learning

(VPS) and ADP_RLS-TD(λ) (λ = 0, with e = 0.90 in VPS and e = 1 in

APS) methods in Traffic Scenario D-3 139

x LIST OF FIGURES

LIST OF TABLES

1.1 Summary of design programs for traffic signal control 10

3.1 Simulation results of average traffic delays 64

3.2 Computation of convergence in value iteration algorithm for solving MDP 65

3.3 Phase numbered in FPS, VPS, and APS 69

3.4 Traffic scenarios of asymmetric and symmetric average flow rates 79

3.5 Results of average traffic delay (s) in Scenario A and B 80

3.6 Comparisons of run time (s) . 80

5.1 Intersection system parameter settings 113

5.2 Asymmetric and symmetric average arrival rates for intersection 113

5.3 Results of average delay in asymmetric rates 122

5.4 Results of average delay in symmetric rates 122

5.5 Results of average delay in fine solution 123

5.6 Comparisons of run time for isolated intersection 126

5.7 Network system parameter settings . 127

5.8 Methods comparing on average delay (s) and improvements (%) 136

5.9 Comparisons of run time for network . 140

xii LIST OF TABLES

GENERAL INTRODUCTION

In urban area, traffic congestion has been a crucial problem for people’s daily lives and

environment. It results in excess delays, reduced safety and increased environmental pol-

lution [1]. Therefore, making efforts for solving the congestion problem is necessary,

especially for increasing traffic demand today. An efficient traffic signal control method

at intersection is required urgently when too many vehicles attempt to use a common

transportation infrastructure with limited capacity. As development of intelligent trans-

portation system (ITS), the research on intelligent traffic signal control is one of the most

important subject.

The term of intelligent or smart traffic signal control is that signal controllers can

truly think for themselves. That is to say, the controller implemented intelligent algo-

rithm adapts itself to traffic environment, using received traffic information. Of course,

besides the controller, some existing technologies for traffic detection and information

communication are also included in intelligent traffic system. These parts have a rich lit-

erature and practical study because of the importance. However, in the thesis, we mainly

focus on the modeling and algorithm study for controller decision making at signalized

intersections. And, the traffic information based on the level of entity is generated by sim-

ulation, which is declared to be a convenient and qualified way to investigate the control

mechanism.

In traffic control field, the studies of intelligent and adaptive traffic signal control

in real-time are very popular. Many researchers endeavor to develop online optimal al-

gorithms in high quality and efficiency. In general, three issues must be addressed in

2 LIST OF TABLES

formulating an online optimal control problem [2]: (1) development of a dynamic math-

ematical model that represents the current, or expected traffic condition of the controlled

system; (2) specification of the real-time control objective; (3) design of an appropriate

optimization technique such that the controlled system meets the specified criteria.

Mathematical models that correspond to signalized intersections can be classified into

two generalized categories. One refers to macroscopic models and the other one refers to

microscopic models. The former focuses on the fundamental relationships between speed,

flow, and density of traffic flow movements, such as kinematic wave models. Whereas

microscopic control models concentrate on the behaviors of individual vehicle or vehicle

queue length in discrete-time system. It is worth noting that, in recent years, the rise of

new technologies and smart vehicles pushes for the studies of autonomous or connected

vehicle control, as well as the related signal or autonomous management at intersections

[3, 4]. It could be seen that the behavior of individual vehicle plays an important role in

this trend. Unlike traffic flow theory study in a macroscopic way, this trend makes a mi-

croscopic perspective on vehicle with properties of position, speed, and direction. Each

vehicle can be viewed as an agent, which can communicate with its surrounding. Evi-

dently, an intersection is an agent too. Thus, traffic signal control model at intersections

based on the framework of discrete time Markov Decision Process (MDP) attracts much

attention, on account of its facile model framework for agent-based learning techniques

[5, 6].

On the other hand, a specified objective of traffic signal problem can be well defined in

model construction, and it usually corresponds to traffic delay. For easy implementation,

traffic delay is often replaced by calculating queue length on lane. In dynamic planning

system, such as the MDP modeled one, traffic state represented by queue length can be

easily obtained after each time step. Considering the conditions of queue length calcula-

tion, control models often refer to the types of deterministic or stochastic, steady state or

time-dependent. It is known that traffic arrivals are in random distribution. Fortunately,

actual arrival data can be detected and communicated by some techniques. With limited

information, some deterministic control models can also be well operated.

As for the appropriate optimization methods for traffic signal control, exact algorithm

and near-optimal algorithm are two important parts. In dynamic control system, dynamic

programming (DP) offers an exact optimal solution for this multistage decision making

problem. Some well-known adaptive traffic signal control systems are based on the con-

LIST OF TABLES 3

cepts of DP. However, the limitation of DP is the “curse of dimensionality” caused by a

large state space. The computational burden makes a constraint on DP applied to complex

or fine planning optimization problems. Thus, much research is concentrated on the learn-

ing algorithm that supports a near-optimal solution with computation efficiency. This way

is guaranteed to be more efficient and can be also designed online learning to adapt to the

environment. Besides traditional artificial intelligence methods, reinforcement learning

(RL) and approximate dynamic programming (ADP) are very popular and attract much

attention in past decade. In practice, RL and ADP are preliminarily well applied to traffic

signal control fields and have many advantages to real-time adaptive control, which inter-

ests us most in the thesis work. More details and reviews about the related methods can

be seen in Chapter 1.

Plan of the thesis

In the thesis, there are total five chapters as follows.

Chapter 1 introduces the state-of-the-art about traffic signal control systems, models,

and methods. After that, we conclude it and set up the objective of the thesis, which aims

to make a real-time adaptive traffic signal control in a distributed traffic network system.

Chapter 2 presents the model study of the system. At first, traffic flow organization

patterns make up the control rules of signal phase, and firstly propose to use adaptive

phase sequence (APS) mode. In the following parts, the modeling for intersection and

network using MDP is introduced in detail. A new vehicle-following model for network

loading and tunable state control for network coordination are two original points.

Chapter 3 and Chapter 4 are the studies of control methods. In Chapter 3, exact DP

and related search algorithms are investigated at isolated intersection. A backup DP algo-

rithm in steady-state stochastic problem is presented by using value iteration. A forward

search algorithm based on A* is proposed under deterministic state transition. By the

limitation of DP in practical case study, it is suggested to use an approximate optimal

technique, especially for APS mode and the whole network. In Chapter 4, to overcome

some shortcomings of DP algorithms, we try to use the ADP method for real-time adap-

tive traffic signal control both for the isolated intersection and the network. In particular,

the recursive least-squares temporal difference (RLS-TD(λ)) learning for linear function

4 LIST OF TABLES

approximation is adopted. The related theory and proposed algorithms are emphasized on

this chapter.

Finally, in Chapter 5, we do experiments in simulation to evaluate the proposed ADP

with RLS-TD(λ) algorithm comparing with other approaches. Results of performance

measures are illustrated and analyzed.

CHAPTER 1

GENERALITIES OF TRAFFIC SIGNAL

CONTROL

1.1 Introduction

In this chapter, we introduce the state-of-the-art about traffic signal control systems, mod-

els, and methods. After that, we make some conclusions and present the objective of the

thesis.

The reviews of three parts including systems, models, and methods are presented in

this chapter, especially the control methods and the related work that are served to the

thesis. In the first part, introduction of traffic signal control systems is given. We mainly

present the characteristics of existing systems and compare the systems in different prop-

erties. As new technologies applied to traffic signal control field, some developing sys-

tems based on artificial intelligence and autonomous or connected vehicle techniques are

very popular. For evaluation of system performance and the intention to rebuild analo-

gous traffic environment in reality, in the second part, we focus on traffic signal control

modeling and traffic network loading method, which contribute to the requirements of the

investigation of traffic signal control algorithm. More importantly, Reviews of traffic sig-

nal control methods are emphatically presented in the last part, especially reinforcement

6 Chap 1. Generalities of traffic signal control

learning and approximate dynamic programming. With further insight into the control

mechanisms, we drive basic ideas of adaptive traffic signal control algorithm in the thesis.

1.2 Descriptions of traffic signal control systems

1.2.1 Principle concepts

To recognize traffic signal control system, some terminologies and types of signal control

logic will be firstly introduced. The definitions of some key terminologies of traffic signal

control are described as follows [7, 8].

Phase: those green, change, and clearance intervals in a cycle assigned to any inde-

pendent movement(s) of traffic. A phase may be timed considering complex criteria for

determination of sequence and the duration of intervals.

Phase sequence: a predetermined order in which the phases of a cycle occur.

Phase split: the fraction of the cycle time that is allocated to each phase for a set of

traffic movements. It includes the green split, yellow, and red clearance interval.

Offset: the time difference between the start of green phases at adjacent intersections.

Offset is used for a continuous traffic movement at successive intersections that may give

rise to a “green wave” along an arterial.

Cycle: a complete sequence of signal indications. Cycle time is the total time for a

signal to complete one cycle.

Minimum (Maximum) Green: a parameter that defines the minimum (maximum) al-

lowable duration of the green display.

Inter-green: the period between the end of the green display duration and the start

of green display for the following phase, also called as all-red interval or red clearance

interval.

Saturation flow rate: the equivalent hourly rate at which previously queued vehicles

can traverse an intersection approach under prevailing conditions, assuming that the green

signal is available at all times and no lost times are experienced.

Isolated intersection: an intersection located outside the influence of and not coordi-

nated with other signalized intersections.

Coordinated intersections: at least two adjacent intersections sharing traffic informa-

tion and making collaborative decisions among them in a global view.

1.2 Descriptions of traffic signal control systems 7

Phase 1
Phase 2

Time

D
is

ta
nc

e

Green split
Cycle

Offset Green
wave

Inter
green

Figure 1.1: Traffic time space diagram

There are three types of traffic signal controllers, namely pre-timed, actuated, and

adaptive controller. The control logics are given as follows.

Pre-timed (fixed-time) control: a signal control in which the cycle length, phase plan,

and phase times are predetermined and fixed. Pre-timed (or fixed-time) controller, such

as TRANSYT[9], applied historical data to determine appropriate time for traffic signals.

Fixed-time controllers are best suitable for intersections where traffic volumes are pre-

dictable, stable, and fairly constant. It cannot handle unexpected conditions in traffic.

Actuated control: a type of signal control where time for each phase is at least partially

controlled by detector actuations. Actuated control uses demand-responsive logic to set

signal timing based on traffic demand as registered by detectors on upstream approaches.

The common feature of actuated control is the ability to extend the length of green interval

for a particular phase which changes the cycle length and phase split. MOVA [10] is the

sample of actuated traffic control system.

Adaptive control: a real-time signal timing control which seeks continuous optimal

system performance in response to variations based on measured and predicted traffic

demands. It can change more parameters than just interval length in actuated control.

Adaptive logic responds to traffic demand in real-time, realizing the adjustment of state

parameters such as traffic volume, stop times, delay, and queue length. Additionally, it can

change phase sequence and the allocation of cycle time with various phases of adjacent

intersections to make them cooperative. Adaptive traffic control systems are becoming

more widespread, such as SCAT[11], SCOOT[12], OPAC[13].

8 Chap 1. Generalities of traffic signal control

In fact, we cannot say which one of the control methods is good or not, especially

the software package has been a successful application in real life. They are appropriate

to different traffic environment. Meanwhile, the released versions are developed by im-

proving the control mechanism progressively. However, the adaptive traffic signal control

system is very popular nowadays and owns many advantages.

The applications of control logics in different control scopes can be seen in Fig. 1.2. In

our study, we mainly focus on adaptive isolated intersection control and adaptive network

control.

Control Scope

C
o

n
tr

o
l

L
o

g
ic Pre-timed

Actuated

Adaptive

Isolated

Intersection

Arterial

Coordination

Network

Control

Figure 1.2: Types of control logics

1.2.2 Traffic signal control systems

1.2.2.1 Established systems

Several well-known packages of traffic signal control system are briefly introduced as

follows.

TRANSYT (Traffic Network Study Tool [9]) is a software package for offline opti-

mum fixed-time traffic signal timings. TRANSYT has two main elements. One is the

traffic model which is used to calculate the performance index for a given set of signal

timings. The other one is an optimizing process that makes changes to the settings and

determines whether they improve the performance index or not. Because of TRANSYT’s

international appropriateness TRANSYT is now one of the most widely used signal tim-

ing programs in the world. It has continued to be developed by research institutes ever

since its first release. For example, it is performed using a combination of a Cell Trans-

1.2 Descriptions of traffic signal control systems 9

mission Model (CTM) and a Platoon Dispersion Model (PDM). The most recent develop-

ments (introduced in TRANSYT 14.1) include the addition of a traffic assignment model,

various GUI improvements.

MOVA (Microprocessor Optimised Vehicle Actuation [10]) generates signal timings

cycle-by-cycle for isolated intersection. MOVA uses vehicle gap detected from pairs of

upstream detectors to determine green extension. The criterion for extension is whether

the gap reaches certain critical values. The system typically uses the actuated control

logic.

SCATS (Sydney Coordinated Adaptive Traffic System [11]) and SCOOT (Split Cycle

and Offset Optimasation Tool [12]) are two well-known and widely used as the coordi-

nated centralized systems. They are basically online variants of offline optimisation signal

plan. The online capability then enables the selection of the most appropriate plan from

the library according to detected traffic, adjusts offsets between adjacent intersections to

facilitate traffic flow, and makes small adjustments to the signal plan.

UTOPIA (Urban Traffic Optimisation by Integrated Automation [14]) is a hybrid con-

trol system that combines online and offline optimisation. The system is constructed in

a hierarchy with an area level and a local level. The area controller generates reference

plan, and local controllers adapt this reference plan and dynamically coordinate signals in

adjacent intersections. UTOPIA offers unmatched performance, especially in congested

and unpredictable traffic conditions.

DYPIC (Dynamic Programmed Intersection [15]), PRODYN ([16]), and OPAC (Op-

timised Policies for Adaptive Control [13]) are developed based on the dynamic program-

ming (DP) approach or related optimization schemes. DYPIC uses a backward DP and

PRODYN optimizes timings via a forward DP. OPAC makes a distributed strategy featur-

ing a dynamic optimization algorithm and has progressed through four versions. As for

a practical issue, a rolling horizon approach is all used to allow the optimization to take

advantage of the most recent predictions and observations. This rolling approach implies

that: firstly, a planning horizon is split into a ‘head’ period with detected traffic informa-

tion and a ‘tail’ period with predicted traffic information; secondly, an optimal policy is

calculated for the entire horizon, but is only implemented for the ‘head’ period; finally,

when the next time step arrives and new information becomes available, the process rolls

forward and repeats itself.

10 Chap 1. Generalities of traffic signal control

RHODES (Real-time Hierarchical Optimized Distributed Effective System [17]) also

uses a DP based algorithm. It has an architecture in three levels. From the highest level

to the lowest one, they refer to dynamic network loading model, network flow control,

and the intersection control, respectively. RHODES does not set timing plans in terms of

cycle times, splits, and offsets, but rather in terms of phases duration for any given phase

sequence. Additionally, the PREDICT algorithm is well designed in RHODES. There-

fore, the emphasis shifts from changing timing parameters in reacting to traffic conditions

just observed to pro-actively setting phase duration for predicted traffic conditions [18].

RHODES appears to take advantage of the natural stochastic variations in traffic flow.

In summary, see Table 1.1, we make some comparisons of the related traffic signal

control systems on the areas of system design programs [19].

Table 1.1: Summary of design programs for traffic signal control
Program Decision on signal settings Signal Signal Performance Organization Origin

profile coordination measures country

TRANSYT Splits, offsets Cyclic Offset Stops, delay Centralized/ UK

optimization Offline

MOVA Green extension or not N/A Nil Stops, delay Decentralized/ UK

and capacity Online

SCATS Predetermined signal plan Cyclic Offset Capacity Centralized/ Australia

selection optimization Online

SCOOT Adjustment of signal Cyclic Offset Stops, delay Centralized/ UK

timing increments, offsets optimization and congestion Online

UTOPIA Green start times, durations Cyclic Offset Stops, delay Centralized/ Italy

and offsets optimization Online

OPAC Change of current signal Acyclic A virtual cycle Stops, delay Decentralized USA

settings rolling forward length, offset Online

PRODYN Change of current signal Acyclic Possible Total delay Decentralized/ France

settings Online

DYPIC Complete signal settings Acyclic Nil Delay Decentralized/ UK

Offline

RHODES Change of phase duration Acyclic Bandwidth based Stops, delay Decentralized/ USA

and sequence on platoons Online

1.2.2.2 Developing systems

Although the commercial systems are implemented widely in real world, some research

on this field has been continued to develop more intelligent and autonomous traffic control

systems.

1.2 Descriptions of traffic signal control systems 11

Intelligent traffic signal control system

Intelligent traffic signal control system is that the system combines existing technology

with artificial intelligence to create traffic signal timings. For example, it makes the use

of sensor networks along with embedded technology to receive the information about the

position, speed, and direction of vehicles. After that, intelligent traffic signal control algo-

rithm is programmed to make decisions in real-time to adapt to certain traffic conditions.

Artificial intelligence algorithms are normally used to make signals decisions which can

change the traffic conditions to avoid congestion wherever possible. It attracts much atten-

tion in the past decades. A detailed review about this domain can be seen in this chapter,

Section 1.4.

Autonomous traffic control system

Intelligent vehicle technology is progressing very rapidly and recent advances suggest

that autonomous vehicle navigation will be possible in the near future.

Recently, autonomous traffic management system at un-signalized intersection inter-

ests many researchers [4, 20, 21, 22]. An early typical example is the research of K.

Dresner and P. Stone [23]. They proposed a reservation-based system for alleviating traf-

fic congestion, specifically at intersections, and under the assumption that the vehicles

are controlled by agents. The research figured out that the reservation-based approach

drastically outperforms the traffic light system. They extended their work in [3], which

suggested an alternative mechanism for coordinating the movement of autonomous vehi-

cles through intersections.

Actually, an important factor for improving traffic control efficiency is that autonomous

traffic control system provides a two-way wireless communication environment enabling

vehicle-to-infrastructure (V2I) [21] and vehicle-to-vehicle (V2V) [24] communications.

Moreover, the cooperation among vehicles associated to Cooperative Adaptive Cruise

Control system [25], is designed to optimally manipulate vehicles maneuvers based on

nearby vehicles conditions. In [22], authors present that the connected vehicles can pass

through the intersection with 99% and 33% of stop delay and total travel time reductions,

respectively, comparing with the conventional actuated intersection control.

However, many challenges in this field need to be overcome in the future work, such

as safety, faithful communication, and priority.

12 Chap 1. Generalities of traffic signal control

1.3 Dynamic traffic models

Dynamic traffic models mainly refer to two aspects. One is dynamic traffic modeling and

the other one is dynamic traffic assignment associated with route choice model and traffic

network loading model. On the scale of the thesis, we focus on dynamic traffic modeling

at intersections and traffic network loading model in a simulation environment.

1.3.1 Intersection signal control models

In conventional traffic signal control system, the intersection model represented in a math-

ematic way is often modeled by using static data for optimization. The optimal signal tim-

ings are calculated by empirical formula. A classical method is using Webster’s method

for fixed-time signal control. Subsequently, dividing all day history data into various traf-

fic condition periods, pre-defined signal timings are set, according to the dynamic traffic

data in different periods. As the development of detected technologies, it is convenient to

receive the limited traffic arrival information in real-time. Traffic signal control based on

the dynamic traffic information is possible and proved to be more efficient.

Here, two kinds of dynamic control models at intersections are mentioned. One is the

macroscopic model and the other one is the microscopic model. The former focuses on

the fundamental relationships between speed, flow, and density of traffic flow movements

controlled by the conventional phases with split and offset settings. The fundamental

diagram is normally implemented for traffic network control. In the works of Lo et al.

[26, 27], authors proposed the cell-based traffic dynamics representations for traffic sig-

nal control formulation, which automatically adjusts to the changing traffic conditions.

In [28], the traffic flow process is modeled and the constraint problem of network-wide

signal control is formulated as a quadratic-programming one that aims at minimizing and

balancing the link queues so as to minimize the risk of queue spillback.

Whereas the microscopic control model concentrates on the behaviors of individual

vehicle or vehicle queue length in a discrete-time system. The various phase duration

and sequence may be considered for variant traffic conditions. The intersections are co-

ordinated for the consideration of network equilibrium as well. Recently, traffic signal

control model based on the framework of discrete time Markov Decision Process (MDP)

[29] attracts much attention [19, 30, 31]. An MDP is characterized by a set of states,

actions, reward function, and state transition function. For traffic signal control, the states

1.3 Dynamic traffic models 13

can be defined by queue lengths and signal status; the actions are the available control

strategies for each state; the reward function defines the immediate reward of each action

under a specific state; and the state transition function defines the probabilities for the

system to shift from one state to another given the current state and action taken. The

MDP traffic model can be solved via DP and reinforcement learning. Sometimes, in order

to reduce state space, traffic density is classified as low, medium, or high level [30]. It

is more popular to use reinforcement learning and agent-based techniques to achieve an

efficient solution of traffic signal control problem formulated by MDP. Reviews of the

related literature can be seen in Section 1.4.3.

1.3.2 Network loading models

To seek a solution of traffic network control, an important way is to simulate behaviors

of traffic flow or vehicles at network. There are two common kinds of network loading

models, namely macroscopic model and microscopic (micro-simulation) model, the same

classification for the intersection signal control models mentioned above. Even combining

these two models, some research works on the so-called “mesoscopic” approach for traffic

simulation [32, 33] and it will not be discussed here.

In macroscopic models, the earliest dynamic network loading methods are mainly

based on the kinematic wave model [34, 35] also frequently referred to LWR model (see

Fig. 1.3) and subsequently developed by many researchers. These models assume that

traffic behaves like an incompressible fluid and they are space-continuous. Limitation

was found that hydrodynamic analogy is available only for high traffic densities. Other

macroscopic models such as cell transmission model [36, 37] and other space-discrete

models [38] for flow propagation are implemented. Actually, they are not suitable enough

for the real-time adaptive control by using learning optimization approach because of a

complex mathematic model and control variables.

14 Chap 1. Generalities of traffic signal control

Flow

Density Kj

qmax

V

Kj : jam density

qmax : maximum flow rate

Figure 1.3: The fundamental diagram of the LWR model (q = V K)

The micro-simulation model can provide the traffic flows composed of individual ve-

hicles in one network loading step. There are many popular micro-simulation models

developed in universities and industries, such as PARAMICS [39], MITSIM [40], and

VISSIM [41]. These models use some basic approaches, which make vehicles to move

on network in equal small time intervals. In Nagel-Schreckenberg (NaSch) model [42],

some basic rules of vehicle movement are proposed for traffic freeway based on cellular

automata (CA) theory. In [43], a new CA-based approach is developed for traffic mobility

model in urban area. Research has shown that CA-based model can yield realistic behav-

ior [44, 45]. However, in [46], it indicates that the successful use of micro-simulation is

commonly limited to relatively small size networks. The application for large network

may lead to high computation time. We believe that it is easy to overcome this chal-

lenge as the development of computation techniques and embedded devices in the future.

Moreover, the small size network subsystem in a distributed system, as well as the precise

planning in discrete-time procedure for adaptive traffic signal control, is well suitable for

the study based on a micro-simulation model [47, 48].

1.4 Traffic signal control methods review 15

1.4 Traffic signal control methods review

In past years, traffic signal timing and optimization has been researched in a wide range

of approaches. This section reviews sorts of these approaches, which refer to intelligent

traffic signal controllers.

1.4.1 DP and search algorithm

The exact algorithms such as dynamic programming (DP) [49], search algorithm [50], are

traditional optimization methods.

DP method is capable of solving multistage decision making problems. It decom-

poses a complex problem into a series of sub-problems with discrete time steps between

them, often using backward search algorithms to obtain a global optimum policy. Some

well-known adaptive traffic signal control systems based on the concepts of DP are widely

applied, such as OPAC, PRODYN, and RHODES. They all uniformly recognized the im-

portance of DP in solving sequential decision making for multistage systems. Although,

DP for these complex systems is not directly used because of its weakness in computa-

tion. Sometimes, DP needs to connect heuristic techniques or simplify the state variables

defining the real-word problem in some assumptions. There is some literature related DP

for traffic control problems. In [51], DP with forward recursion is employed directly to

derive the green time for each phase with objective of traffic delay reductions. In [52],

the forward DP algorithm is used to calculate the shortest path problem about the optimal

traffic control decisions, according to the total released time of intelligent vehicles. In

[53], an “intelligent” traffic signal control algorithm is proposed based on the combina-

tion of DP and neural networks. DP is used to find the optimal green times for all the

approaches at isolated intersection. But it assumes that the future vehicle arrival pattern

is known.

A search algorithm is an algorithm for finding an item with specified properties among

a collection of items. Some forward research algorithms, such as branch and bound, A*

algorithm are used to find the optimal policy under the decision tree. In [54, 55], author

uses branch and bound algorithm to solve autonomous intersection management problems

via V2I communications. The traffic performance is significantly improved by comparing

with other traffic signal control techniques. In [56], a forward search method using A*

algorithm is proposed for real-time adaptive traffic signal control at isolated intersection.

16 Chap 1. Generalities of traffic signal control

A rolling forward approach is applied, considering the limited future information to make

the short term optimal planning of variable signal phase duration and sequence.

Actually, DP algorithm as well as some search algorithms, is hard and impractical to

apply in global optimization of traffic signal control problems by some limitations. For

example, the computation burden and the incomplete information are limited for opti-

mization when the high-dimension of problem and the limitation of available detected

information have to be considered. The related studies about these are investigated and

discussed in Chapter 3.

1.4.2 Artificial intelligence methods

The use of artificial intelligence (AI) methods to control traffic signals started in 1990’s.

In some research, it is found that traffic signal planning models usually involve the si-

multaneous optimization of phasing sequence, split, cycle length, and offset. It is often

difficult to find the globally optimal solutions to such models within a reasonable amount

of time using exact algorithms [57]. AI methods have been extensively researched as an

alternative to exact algorithms to address this issue. Multiple optimization and estimation

methods, such as evolutionary algorithm, fuzzy logic, neural networks, have been well

applied for adaptive traffic signal control. In recent years, reinforcement learning [58]

and agent-based control, are very popular with the ability to control unpredictable traffic

condition issues, which will be more detailed in Section 1.4.3.

Evolutionary algorithms

Evolutionary algorithms use mechanisms inspired by biological evolution, such as re-

production, mutation, recombination, and selection. The common types of evolutionary

algorithms include genetic algorithm (GA), particle swarm optimization (PSO), and ant

colony optimization (ACO), etc. They often perform well approximating solutions to all

types of problems, and also play an important role in traffic signal control field.

GA is very popular for traffic signal timing and optimization [59, 60, 61] in past

years. Advances in the optimization of fixed-time traffic signal timings have provided

evidence of GA optimization of traffic network performance evaluated via simulator [62].

For example, GA is implemented by calling TRANSYT traffic model for optimization of

traffic control parameters (i.e., cycle length, green split, offset, and phase sequence). In a

1.4 Traffic signal control methods review 17

typical research [59], Park et al. proposed a near-optimization traffic signal timing plan

for oversaturated conditions generated by GA optimizer on the basis of a fitness value

obtained from the mesoscopic simulator. In [61], GA is used to optimize the traffic signal

timing with performance improved at road network. The proposed system can solve the

equilibrium network design problem, by integrating the GA, traffic assignment, and traffic

control. On the other hand, in [63], an acyclic adaptive traffic signal control system using

real-time genetic optimization was proposed, with components of a genetic optimizer, a

database manager, and an internal traffic simulator for fitness evaluation.

The metaheuristic PSO was proposed by Kennedy and Eberhart [64]. PSO has not

been widely used for solving traffic problems, but it is a very promising technique which

is capable to solve complex traffic problems [65]. Wei et al. applied the PSO to fine

tune the parameters of a fuzzy-logic traffic signal controller and found that it can effec-

tively improve the performance of the original fuzzy logic controller [66]. Garcia-Nieto

proposed a PSO approach to find successful cycle programs of traffic lights, using a mi-

croscopic traffic simulator [67, 68].

Another interesting evolutionary method for traffic signal timing is ACO. In the re-

search of Putha et al. [69], ACO is used to solve oversaturated network traffic signal co-

ordination problem. It demonstrates that ACO is consistently more effective for a larger

number of trials and to provide more reliable solutions than GA, traditionally employed

to solve oversaturated conditions. The authors further pointed out that the structure of the

ACO algorithm makes it particularly suitable for parallel computing, which can substan-

tially shorten the computation time.

Techniques from evolutionary algorithms applied to the modeling of biological evo-

lution are generally limited to explorations of micro-evolutionary processes and plan-

ning models based upon cellular processes. This optimization approach requires a large

amount of simulation to determine the performance of the proposed signal plans and may

require re-optimization with changing traffic conditions. As the network size increases,

the cost of simulation increases, as does the population/generation size. With sufficiently

large networks, then, real-time control may be impossible as the computation may not

complete in a suitable amount of time [70]. Thus, the applications of evolutionary al-

gorithms in traffic signal control have to date been primarily for small-scale or offline

optimization problems. With continued advancements in computational technology and

new developments in evolutionary algorithms, it is expected that more applications will

18 Chap 1. Generalities of traffic signal control

emerge, applying evolutionary algorithms for large-scale or real-time traffic signal opti-

mization and coordination in the future [57].

Fuzzy logic

Numerous studies of traffic signal control have been developed based on fuzzy logic [71,

72, 73, 74, 75, 76]. The majority of existing fuzzy logic traffic control studies use queue

lengths (e.g., short, medium, and long) and traffic arrivals (e.g., low, medium, and high) as

the input to set fuzzy rules, and the control action usually is to either extend or terminate

the current green phase.

Some previous studies ignore the traffic left-turn movement, or only consider two

phases for each intersection in order to defining easier fuzzy rules [71, 72]. More realistic

multiple-phase control are studied in [73, 74]. In [73], authors use a two-stage fuzzy logic

to design the traffic signal timing plan for an isolated intersection. In the first stage, the

observed approaching traffic flows are used to estimate relative traffic intensities. These

traffic intensities are then used in the second stage to determine whether the current signal

phase should be extended or terminated. In both studies [73, 74], fuzzy logic is used to de-

cide whether to extend the current green phase or not. The phasing sequence optimization

is not explicitly considered in their works.

Obviously, it is desirable to consider phase sequence optimization for better control

performance. Motivated by this view, Murat and Gedizlioglu [75] proposed a Fuzzy

Logic Multi-phased Signal Control (FLMuSiC) model for isolated signalised intersec-

tions. FLMuSiC consists of two modules. One is the signal time controller to arrange

phase green splits and the other is the phase sequencer to schedule phase sequences using

traffic queue lengths.

Lee et al. [77] designed a more complicate fuzzy control method to adjust phase

sequences and splits for coordination between intersections. Recently, fuzzy logic with

combination of multiagent learning technique is implemented for traffic networks [76,

78]. In [76], Choy et al. implemented cooperative, hierarchical, multiagent system for

the real-time traffic signal control of a complex traffic network. The subproblem of the

distributed system is handled by an intelligent agent with fuzzy neural decision making

(FNDM) module. An example of a rule in the FNDM is given as follows:

IF{(overall aggregate occupancy is high) and (overall aggregate flow is high) and (overall

1.4 Traffic signal control methods review 19

aggregate rate of change of traffic volume is high)}

THEN{(traffic loading is high) and (level of cooperation needed is high)}

Using fuzzy logic for traffic signal control has two advantages. One is that the im-

plementation cost of fuzzy controllers is low. So fuzzy systems have attracted increased

attention for traffic signal control. The other one is that a priori expert knowledge of ob-

jects can be easily reflected in well-designed fuzzy rules, which make it simpler and more

intuitive to construct a fuzzy controller of traffic signal control [79].

Neural networks

Neural networks (NNs) have a potential capacity for traffic signal control problem, espe-

cially integrated with other AI methods, such as fuzzy logic [80, 81], multi-agent control

[82]. The fuzzy NNs integrates and coordinates objectives and activities of agents hierar-

chical architecture in the traffic network, see [83].

Actually, Bingham [84] designed a two-phased single intersection fuzzy controller

that is formulated by an NN and constructed an additional critic NN to optimize the con-

troller, providing an early basic idea of fuzzy NNs and reinforcement learning in traffic

signal control. There are several limitations of the approach adopted in [84] as reported

by authors. Firstly, the neural learning is not effective under certain circumstances due to

the lack of stochastic exploration. Secondly, the time needed to adjust the membership

functions is too long. Finally, it is not known if the fuzzy-NNs implemented in [84] can

yield good performance in a more complex traffic network. In [80], Choy et al. extented

this work and proposed a hybrid NN model of a real-world traffic network to seek the so-

lution of the limitations mentioned above. A multistage online learning process has been

introduced and implemented in the hybrid NN model. The performance of the hybrid

NN model indicated the efficacy in solving large-scale traffic signal control problem in a

distributed way.

In the similar related works of [80], the research in [82] and [83] by Srinivasan et al.

presented hybrid NNs model to solve real-time traffic signal control problem based on

independent and cooperative multi-agent system, respectively. The weight update algo-

rithm for the hybrid NNs model is performed at various stages, each involving tuning the

weight parameters, learning rate, and the neural connection in response to the changes in

the environment. This indicates that the hybrid NN-based multiagent system is able to

adjust its weights parameters effectively throughout the duration of the simulation, so that

20 Chap 1. Generalities of traffic signal control

the signal plans it generates can accommodate the periodic as well as random fluctuations

of traffic volumes.

1.4.3 Reinforcement learning and ADP methods

Classical DP algorithm has some drawbacks in high dimension problem. As for search

algorithm, it is difficult to find appropriate heuristic information. Machine learning tech-

niques can support a near-optimal solution by using an approximation in learning method

on policy search. The related theory research is developed in recent years. Such as re-

inforcement learning (RL) [58, 85], approximate dynamic programming (ADP) [86, 87],

have been already established for solving difficult multi-stage decision problems in the

fields of operation research, computer science, and robotics, etc.

Introduction of RL and ADP

Reinforcement learning, one of machine learning methods, attracts much attention, espe-

cially the Q-learning. RL method is essentially to solve the problem formulated by the

fundamental framework of Markov Decision Process (MDP). On the other hand, an agent-

based control is quite well combined with RL method [88]. Similar to neural networks,

agents need to be trained by RL algorithms before they can actually be used. Different

from neural networks, the training of an agent is a dynamic process based on the contin-

uous interactions between the agent and environment (unsupervised), not a fixed set of

paired input-output training samples (supervised). It is well-known that RL can optimize

system behavior by interacting with the environment and learning from the feedback.

Thus, RL is beneficial to create adaptive controller, which is able to process unpredictable

traffic conditions. The multi-agent by using RL can online learn from the environment in-

dependently or share the information between agents in a coordinated way. These advan-

tages attract the considerable attention in the application of a distributed traffic network

control system.

The formulation of ADP is firstly proposed by Werbos [89] and developed by many

researchers. The related literature about the development of ADP can be seen in [90].

Several synonyms of ADP are used in literature. The representative related works are like

the “Neuro-Dynamic Programming” by Bertsekas and Tsitsiklis [86], “Heuristic Dynamic

Programming” by Si et al.[91]. The main idea of ADP is to use a structure of approxima-

1.4 Traffic signal control methods review 21

tion function to estimate the cost-to-go value function in Bellman’s equation. So, it can

effectively avoid the “curse of dimensionality” caused by large state space in the recur-

sive calculation of Bellman’s equation. In ADP, it is possible to step forward in time to

calculate objective function of current state, unlike classical DP algorithm which requires

that we loop over all possible states. Essentially, ADP works in a similar way of RL.

Differently, ADP operates as a model-based RL with function approximation [92]. That

is to say, ADP optimizes the user-defined cost function conditioned on prior knowledge

of the system and its state, while RL maximizes performance by the way of exploration

and exploitation about the environment and does not require any a priori knowledge.

Application of RL and ADP

For online and multistage decision making, RL and ADP have the advantages on com-

putation and learning techniques to solve complex system problems. Many researchers

focus on RL and ADP approaches in applications of traffic signal control fields [5, 19,

93, 94, 95, 96]. Two perspectives of the application in this field using RL and ADP are

figured out. One is the learning process of function approximation and the other one is

the point of view in agent-based coordination. We thereby select a representative set of

approaches that allow us to get insight into the state-of-the-art.

Learning process: The learning process in RL and ADP includes two parts: approxi-

mate structure and learning technique. Generally, with regard to different approximations,

such as tabular Q-value, function approximation, several kinds of learning techniques are

used for the update process. Some important ones are like gradient descent [97], temporal

difference (TD(λ)) [98], least-squares TD(λ) [99, 100], and kernel based [101].

In [6, 102, 103], Q-learning method is adopted to update the cooperative multiagent,

according to the best-response of Q-value at next state. The likelihood of Q-value is eval-

uated by using the count of visit states. This is a tabular Q-value representation method.

However, in complex environments, it takes a long simulation period for the RL agent to

visit each state action pair infinitely often to ensure convergence.

Thus, a technique called function approximation is described in RL. In ADP, the

function approximation is normally applied. The explicit tabular representations of each

state-action pair are not required. Instead, it is possible to generalize across different

state-action pairs using the estimated values, which are defined by using a set of tunable

22 Chap 1. Generalities of traffic signal control

parameters [104]. Three typical function approximation methods with the corresponding

learning techniques are reviewed as follows.

In [93, 94, 105], the authors proposed RL with function approximation for traffic

network control, where neural networks are trained to provide approximation to the state-

action value function. Action and critic neural networks are adopted. The learning pa-

rameters of these networks use gradient descent method or single-step TD. In the study

of [19], it suggests that a simple linear approximation is sufficient for online opera-

tion. Because non-linear functions for exploring complex approximation may not prove

cost-effective. Therefore, the linear function approximation of ADP based on feature-

extraction function are successfully applied at isolated intersection, using the TD learning

and perturbation learning to update the parameters. In [95], underlying RL, the linear

approximation with the features like time elapsed and queue lengths are used in differ-

ent traffic network scenarios. The parameter update process adopts the rule of gradient

descent.

Another function approximation is the tile coding method [106]. In tile coding, the

receptive fields of the features are grouped into partitions called tilings in which each

element is called a tile, and the overall number of features that are present at one time is

strictly controlled and independent of the input state [58]. Pham et al. [107] presented the

RL traffic signal control system based on SARSA using tile coding. Each SARSA agent

is completely independent, and the tile coding is used only as a method of approximating

the value function for the local agent states. By contrast, Abdoos et al. [108] presented

hierarchical control of traffic signal system considering the coordination between agents,

using Q-learning combined with the tile coding approximation.

Coordinated multi-agent RL: One of the most significant early works of multi-agent

RL (MARL) for traffic signal control is that of Wiering [47]. Wiering developed a model-

based approach and found that the RL systems clearly outperformed fixed-time controllers

at high levels of network saturation, when testing on a simple 3 x 2 grid network. Another

interesting aspect of this research is that a type of co-learning is implemented; value

functions are learned by signal controllers and driver agents, and the drivers also learn

to compute policies that allow them to select optimal routes through the network. Much

research has extended the work of Wiering and has a successful application for traffic

network control system [48, 102, 109, 110].

1.4 Traffic signal control methods review 23

As individual agents at local intersections do not coordinate their behaviors, recently,

more and more research has been done on the coordination of multi-agent for traffic net-

work control [6, 109, 111, 112, 113, 114, 115, 116]. The coordination mechanisms mainly

focus on the agent hierarchical architecture[113, 114], learning in group games[6, 115],

and coordination graphs[116, 117].

In [113], a multi-agent system based on a hierarchical architecture is proposed to

achieve a balance between the local and global aspects of an urban traffic system. Local

Traffic Agents (LTAs) and Coordinator Traffic Agents (CTAs) make up the fundamental

levels of the hierarchy, in which the LTAs meet the needs of the specific intersection,

and the CTAs determine if the chosen patterns of an LTA are suited to meet any global

concerns. In addition, a solitary Global Traffic Agent (GTA) may exist for networks of

sufficient size, and an Information Traffic Agent (ITA) provides a central location for the

storage of all shared information within the system. It shows that the system efficiently

managed the network in traffic accident and morning rush hour scenarios.

In Bazzan’s work [109], the coordination of game theory is used for MARL. This is

a simple stage game for synchronization of traffic signals. Interactions are modeled as

coordination games where the highest reward is given when neighbor traffic signals co-

ordinate their actions so that they synchronize their green phases. His extended work in

[115], presents a supervised learning with three stage games by the approach, which is to

have agents divided into groups that are then supervised by further agents. In the work

of El-Tantawy and Abdulhai [6, 102], authors deal with the dimensionality problem by

utilizing the principle of locality of interaction among agents, and the modular Q-learning

technique based on agent groups. The former principle means that each agent communi-

cates only with its immediate neighbors, while the latter allows partitioning of the state

space into partial state spaces consisting of only two agents. This approach significantly

reduces the complexity of the problem, while still producing promising results. The re-

sults presented in [102] are very encouraging, and this work is one of the largest and most

realistic simulation tests of an RL traffic signal control approach to date, due to the use of

a real urban network, along with real world traffic data and signal timings.

Kuyer et al. [116] developed a coordinated model-based MARL traffic signal con-

trol system using the Max-Plus algorithm [118] as a coordination strategy. Max-Plus

algorithm is used to approximate the optimal joint action by means of message passing

between connected agents in the coordination graph. The experimental result outperforms

24 Chap 1. Generalities of traffic signal control

the comparing studies of Wiering [47]. Similar work is in [117], where the MARL is com-

bined with an implementation of the max-plus algorithm to control the traffic signals in a

network with congested conditions.

Challenges of applying RL and ADP

According to the above reviews of RL and ADP applications in traffic signal control field,

we conclude two main challenges as follows.

In order to design an online adaptive traffic signal control system, the computation

efficiency is required. With respect to model framework of RL and ADP, the “curse of

dimensionality” is frequently encountered, especially in the case when problem complex-

ity increases vastly in larger road networks. Beside the use of model-free RL to reduce

complexity, approximation method is usually used to tackle these difficulties both for RL

and ADP. Of course, it is not difficult to deal with the challenge of computation in the

future when available computational power is increased. Currently, true challenges are

how we can approximate value function effectively and how to pick up strategies even

knowing value function [119].

Another significant challenge is the coordination implementation and the information

sharing between agents. A control policy selected by a local agent can generate a local

optimum in terms of traffic movements, but may have a detrimental effect on traffic flows

in network as a whole, limiting the effectiveness of other agents. Thus, having multiagent

in a greedy or self-interested way is not a proper choice, and some sort of coordination or

information sharing mechanism is necessary to implement the system relevant to the real

world [120].

1.5 Conclusion and objective of the thesis

As we can see from the review of the existing traffic signal control systems and the related

traffic signal optimization research, the approaches in offline system, using historically

measured data to determine optimal signal timings, is inferior than those operate online.

Because historical data typically does not accurately describe current traffic states, and

traffic conditions do not remain static over time. Secondly, the signal control system

using centralized control architecture is not good as the one designed in a distributed

way. Because many centralized systems may be unable to make real-time signal plan

1.5 Conclusion and objective of the thesis 25

updates. Moreover, failures of communication in centralized system maybe appear. By

comparing, the online distributed control system is superior to the offline or centralized

one. As the development of intelligent transportation system, the adaptive traffic signal

control system which operates on real-time in the coordinated and distributed network

attracts much attention. In addition, research on autonomous traffic control system is

emerging recently. This field exceeds the scale of the thesis, but it is worth learning from

the related research.

Today, it is required to satisfy the increasing traffic demand, as well as the reductions

of traffic delay and traffic congestion. To seek an efficient traffic signal control mecha-

nism is an urgent task. Much research focuses on this field by using artificial intelligent

methods, especially the reinforcement learning technique combining with agent theory.

Notably, RL is an important branch of AI and has shown promising potential in solv-

ing adaptive traffic signal control problems. RL method offers a convenient and efficient

way to obtain a near-optimal solution of traffic signal control problem. Meanwhile, the

coordinated MARL has some successful applications at network. It usually makes de-

cisions with model-free traffic environment or simplifies traffic conditions in real-word.

Of course, there are many interesting topics in this area that deserve further exploration,

including how to properly define the reward function, how to identify the best state vari-

ables, etc.

In another aspect of the review, RL and ADP offers efficient solution of the traffic

signal control problem formulated by MDP. Under the umbrella of MDP, it is beneficial

for us to model a problem with discrete states and decisions in discrete-time. Therefore,

by using a micro-simulation model, traffic signal control algorithm at network will be

studied based on the similar traffic environment in reality. Knowing from the literature,

CA-based model can update dynamic system in parallel for all behaviors of individual

vehicles. It means all vehicles moving on network in a discrete-time procedure, which is

suitable for the case study by using RL or ADP approach.

As for control algorithm, MDP is usually solved by the conventional DP with global

optimum solution. However, this may cause “curse of dimensionality” when large state

space appears in traffic control problems. Previous work interests us to do some inves-

tigation by using DP algorithm and related research algorithm. More importantly, with

function approximation, RL and ADP are designed to estimate the value function in DP

26 Chap 1. Generalities of traffic signal control

algorithm. This can achieve computational efficiency as opposed to traverse all the states

in DP.

Research in related works also show that with function approximation, ADP and RL

are appropriate to be used in adaptive controllers, especially in high-dimension setting of

a multi-intersection network. In particular, ADP has some advantages to make a fine plan-

ning based on dynamic state model. Moreover, there are still two purposes driving us to

study ADP approach and related schemes. One is that having the function approximation

in ADP with efficient learning process needs to be studied further. The other one is that

coordination in ADP for traffic network control is rarely studied in the literature. These

interest us to seek an ADP approach with a special learning technique for adaptive traffic

signal control at coordinated network.

In total, the objective of the thesis is that we attend to make a real-time adaptive traffic

signal control in a distributed traffic network system. In order to pursue this goal, in this

study, three main works are required as follows.

• Traffic dynamic model in a microscopic way will be formed. It will support for

traffic signal control modeling and network loading environment which aims to

investigate a proper traffic signal control algorithm.

• Study on exact DP based algorithms for an isolated intersection and develop a new

near-optimal learning algorithm to improve decision making efficiency.

• A real-time adaptive traffic signal control algorithm is required to develop for iso-

lated intersection and traffic network, considering the coordination. Experimental

validation of the algorithm needs in simulation.

CHAPTER 2

DYNAMIC TRAFFIC SYSTEM

MODELING

2.1 Introduction

In general, mathematical model and appropriate optimization technique are two main

issues that must be addressed for an optimal control problem. In this chapter, we focus

on the first issue about the model study of adaptive traffic signal control system. Three

aspects of the system model are briefly introduced as follows.

From the knowledge about characteristics of “adaptive” system, we know that adap-

tive traffic signal controller works in an intelligent way by using detected traffic infor-

mation to make real-time decisions. Control performance could be improved by adaptive

capability for various traffic conditions. Thus, optimizations of signal plan are very im-

portant not only for phase intervals, e.g., when to extend or terminate green split, but also

for phase sequence, e.g., variable phase sequence or more adaptive one. Conventional

adaptive signal control mechanism is that control action is to either extend or terminate

current green phase, and phase sequence is either fixed or variable. In this case, whatever,

the flow combination related to phase is always constant. We will discuss the fixed and

variable phase sequences, additionally propose a new adaptive phase control mode. This

part refers to traffic flow organization pattern, which is detailed in Section 2.2.

28 Chap 2. Dynamic traffic system modeling

As we know that the basic control unit of traffic signal control system is signal con-

troller at intersection. The fields of operation research and artificial intelligence work a

lot with discrete states and decisions (or actions). The problems that are modeled with

continuous states and decisions (and typically in continuous time) are often addressed un-

der the umbrella of “control theory”, whereas the problems modeled in discrete time with

discrete states and decisions, are often studied at length under the umbrella of “Markov

decision processes”. In Section 2.3, we formulate the signal control model at intersection

by using the framework of MDP.

As for traffic network modeling, the problem formulation is more complex than MDP

based model at isolated intersection. Two subproblems are considered in this part. One

is the network loading model. The other one is the coordination mechanism between

intersections. By the reviews of related research, microscopic simulation model for traf-

fic network loading is very popular and it is appropriate for the investigation of vehicle

behaviors and control performances, such as travel time, stops. Besides network layout

representation, more importantly, we propose a new vehicle-following model based on

cellular automata theory for network loading. On the other hand, coordinated signal con-

trol model at network will use the idea of tunable system state. In this multiagent problem,

joint action is generated. All about these will be studied in Section 2.4.

2.2 Traffic flow organization patterns

A typical four-approach intersection is shown in Fig. 2.1. There are eight movements and

the numbers of the movements are labeled according to NEMA (National Electrical Man-

ufacturers Association) convention [121]. The right-turn movement is integrated into the

straight one sharing same signal. It is known that for safety, flow organization is necessary

and it requires traffic movements avoiding to the conflicts between them. Traffic move-

ments can be partitioned into combinations, which are grouped by the non-conflicting

flows that will have the right-of-way to occupy the conflict zone.

To authors’ knowledge, the works on traffic flow organization at a typical intersec-

tion are usually about fixed flow combinations, which consist of the fixed non-conflicting

movements in conventional four-phase signal mechanism, and the phase sequence oper-

ates in a fixed or variable way, see the survey in [103]. We call these two phase sequence

control modes as fixed phase sequence (FPS), variable phase sequence (VPS), respec-

2.2 Traffic flow organization patterns 29

tively. Moreover, we will propose a more adaptive way for signal phase control, named

adaptive phase sequence (APS). These three patterns of traffic flow organization will be

illustrated in detail, and pedestrian passing is not considered in the thesis.

1

3

5

7

2

4

6

8

Conflict
Zone

Figure 2.1: Illustration of a typical intersection with conflicts

2.2.1 Fixed phase sequence

G1 =(1,5)

Barrier

Phase loop

G2 =(2,6) G3 =(3,7) G4 =(4,8)

Figure 2.2: Illustration of fixed phase sequence (FPS) mode

30 Chap 2. Dynamic traffic system modeling

Traffic flows or movements can be grouped into flow combinations, which have compati-

ble flows sharing the same signal simultaneously. In FPS mode, as shown in Fig. 2.2, the

intersection is controlled typically by four-phase signal, providing green indication to the

flow combination of each phase. In this case, the eight movements are divided into four

flow combinations, denoted by G1 , G2, G3, and G4 that

G1 = (1, 5), G2 = (2, 6), G3 = (3, 7), G4 = (4, 8). (2.1)

Notice that, the definition in (2.1) is not the only way to group the movements. For

example, it can also be defined by

G1 = (1, 6), G2 = (2, 5), G3 = (3, 8), G4 = (4, 7) (2.2)

or

G1 = (1, 4), G2 = (2, 7), G3 = (3, 6), G4 = (5, 8). (2.3)

Whatever, in conventional signal control system, these flow combinations are pre-

determined and not changed any more during the operation. In real-world, it is often to

see the combinations in (2.1), which will be chosen for our case study in FPS mode.

On the other hand, signal controller organizes these phases by grouping movements

in a continuous phase loop. That is to say, the phase may operate one another as follows,

and it is a typical pattern to organize the conflicting phases in a particular order, e.g.,

G1 → G2 → G3 → G4 → G1. Generally, the inter-green interval or red clearance time

represented by the barrier is used to separate the phase for different flow directions.

FPS is a common phase control mode and applied widely to current signal control

systems. For fixed-time control system, the phase sequence operates in the way of FPS

mode, and the phase splits are pre-determined with constant values. For some actuated

or adaptive signal control systems, FPS mode is used to organize the movements whereas

the phase splits are varied in real-time with different values, according to detected traffic

information. Thus, adaptive signal control adopts FPS mode as a common way and its

control decision is to either extend or terminate current green phase.

2.2 Traffic flow organization patterns 31

2.2.2 Variable phase sequence

Barrier

Phase skip

G1 =(1,5) G2 =(2,6) G3 =(3,7) G4 =(4,8)

Figure 2.3: Illustration of variable phase sequence (VPS) mode

In VPS mode, the combination of signal phase chosen is the same with FPS in (2.1).

Diversely, the phases in VPS may operate one after another in uncertain and unordered

way. For example, in Fig. 2.3, the phase sequence operates as G1 → G3 → G2 → G4 →
G1. The barriers of red clearance time are used to separate each phase in time.

With VPS mode, actually, signal controller makes phase skip to another one consid-

ering the performances, such as queue length, vehicle waiting time, from other phases.

We can see that both FPS and VPS can be applied to adaptive signal control system for

changing traffic conditions. With FPS mode, controller focuses on the phase split itself

being either extend or terminated. However, with VPS mode, controller not only consid-

ers the duration of phase split, but also takes the possibility of other phases into account,

namely the phase sequence optimization.

As VPS mode supports multiple decisions for signal phases control, the action space

of VPS is larger than FPS. That is why previous research in literature focuses less on

the control methods with VPS. Recently, due to artificial intelligence techniques with

advantages of intelligent computation, the state-action space increased by VPS is not

hard to overcome. Importantly, from the reviews of literature, some research especially

about RL learning uses VPS mode [47, 75, 93, 105, 111]. VPS mode may promote the

performance of adaptive traffic signal control.

32 Chap 2. Dynamic traffic system modeling

2.2.3 Adaptive phase sequence

L a ne 1 2 3 4 5 6 7 8

1 0 0 1 1 1 0 0

2 0 0 0 1 1 1 0

3 0 0 0 0 1 1 1

4 1 0 0 0 0 1 1

5 1 1 0 0 0 0 1

6 1 1 1 0 0 0 0

7 0 1 1 1 0 0 0

8 0 0 1 1 1 0 0

Figure 2.4: Matrix of adaptive phase sequence (APS) mode

In APS mode, both of the phase sequence and the components (lanes) of flow combination

are varied. In other words, the possibilities of phase choice are more than four-phase

mechanism. In detail, there are many but limited additional traffic flow combinations

which can also avoid flow conflicts, e.g., lane 1 can be combined with one of lanes 4, 5,

and 6. The possible combinations are selected, the performances may be different. We

can list all the combination possibilities (in total 12 only considering the upper triangular

matrix as symmetry), as shown in Fig. 2.4. Note that for the relationship (combination

coefficient) between two lanes, assign 1 if they are non-conflicting, or assign 0 otherwise.

Therefore, one possible phase sequence may operate like (1, 5)→ (1, 6)→ (2, 6)→ (3,

8)→ (4, 7)→ It shows clearly in Fig. 2.5.

2.2 Traffic flow organization patterns 33

1

3

5

7

2

4
6

8

Conflict
Zone

1

3

5

7

2

4
6

8

Conflict
Zone

1

3

5

7

2

4
6

8

Conflict
Zone

1

3

5

7

2

4
6

8

Conflict
Zone

1

3

5

7

2

4
6

8

Conflict
Zone

Figure 2.5: Example of APS mode

APS contains all the possible flow combinations without any sequence required. It is

firstly investigated in our algorithm, and will be implemented in the later case study.

From the discussion above, we can find that the adaptive capability of FPS, VPS,

or APS is strengthened one by one. For adaptive traffic signal control, normally, signal

phase duration is not fixed, but phase sequence is still cyclic, it is the way of FPS mode.

While, the next alternative phase may not work in a particular phase order. According

to different traffic conditions, phase sequence can work in an acyclic way, like the VPS

mode. Moreover, in the case of APS, the combination grouped by non-conflicting flows

can also be selected properly as long as other non-conflicting flow combinations exist,

and phases have no sequence required as well.

It is well-known that intelligent vehicle technology is progressing very rapidly. Re-

cently, autonomous traffic management at un-signalized intersections interests many re-

searchers. Vehicles can be guided using wireless communication to pass through the

intersection automatically. Although APS mode is based on the concept of signal phase

organization, it offers a highly adaptive way to schedule vehicles passing (or turning)

through the conflict zone. Even without regard to signalized infrastructures, it can extend

to some situations of Vehicle-to-Vehicle and Vehicle-to-Infrastructure communication. In

some degree, it almost approaches the autonomous traffic management system, with both

considerations of the safety for flows passing and the efficiency of adaptive control.

34 Chap 2. Dynamic traffic system modeling

2.3 System modeling at isolated intersection

Normally, traffic signal control system at intersection can be seen as a stochastic discrete

event system. The discrete intervals can be represented by the stages decomposed in the

optimization dynamic process. Traffic signal control problem can be processed by a multi-

stage decision making procedure in discrete-time. It is very useful and efficient to solve a

complex problem, especially for adaptive traffic signal control problem. For example, the

widespread adaptive signal systems, such as DYPIC [15], PRODYN [16], and OPAC [13]

are all based on the multi-stage decision making. Recently, traffic signal control model

based on the framework of discrete-time Markov Decision Process (MDP) attracts much

attention. Because MDP can describe stochastic traffic environment and the based model

is usually solved by DP and related schemes, especially RL and ADP techniques. We will

introduce related knowledge of MDP and use MDP for signal control system modeling at

isolated intersection.

2.3.1 Markov Decision Process

As for an MDP (only discrete-time MDP in the thesis), we mean a stochastic process {Yt}
that takes values in a state set which is governed by a control sequence {Zt}, and satisfies

the following controlled Markov property:

P (Yt+1 = st+1|Yt = st, Zt = at, Yt−1 = st−1, Zt−1 = at−1, . . . , Y0 = s0, Z0 = a0)

= P (Yt+1 = st+1|Yt = st, Zt = at) = p(st, at, st+1).
(2.4)

The environment of the decision problem we discuss is described by a finite MDP [88].

Definition 1 A finite MDP is a tuple < S,A, p,R > where S is the finite discrete set of

environment states, A is the finite set of actions, p : S × A × S → [0, 1] is the state

transition probability function, and R : S × A× S → R is the reward function.

The state st ∈ S describes the environment at each time t. The controller can choose

the state at each time by taking actions at ∈ A. As a result of the action at, the en-

vironment changes its state from st to some st+1 ∈ S, according to the state transition

probabilities given by p which is represented as p(st, at, st+1) . The controller receives

immediate scalar reward rt ∈ R according to the reward function R : rt = R(st, at, st+1).

2.3 System modeling at isolated intersection 35

For deterministic models, the transition probability function is replaced by a transfer

function σ(st, at) simply expressed as σ : S × A → S. It follows that the reward is

completely determined by the current state and action: rt = R(st, at), R : S × A→ R.

Given an initial state s0 and a sequence of decisions at, the optimization problem is

to minimize (or maximize depending on the problem) the expected total reward, which is

expressed as

min
at∈A

E

{
T−1∑
t=0

γtrt|s0 = s

}
, (2.5)

where T is the horizon, γ (0 < γ < 1) is the discount factor.

2.3.2 Model definitions of characteristic in MDP

2.3.2.1 Model assumption

Traffic signal control problem can be formulated by using the framework of MDP. Assume

that one interval is from t to t+ 1. At first, the following principal assumptions are given.

(1) The indications of traffic signals are formulated in discrete-time and divided into unit

intervals. The size of one interval is 2 seconds.

(2) Queue lengths are calculated at the end of each temporal interval, and signals may

only be changed at the boundary between intervals.

(3) Signal phases are composed of effective greens and reds only, thus excluding amber

intervals.

(4) Each phase contains at least mandatory intervals including inter-green interval and

minimum green interval, during which no signal switching is admissible. The exten-

sion of green signal is one interval per step.

(5) There is no lost time for vehicle receiving green signal.

(6) The discharge rate (saturation flow) on each lane is one vehicle per interval. This rate

is equivalent to 1800 vehicles per hour.

36 Chap 2. Dynamic traffic system modeling

2.3.2.2 Model framework

From the definition of MDP in 2.3.1, the problem formulation requires the characteriza-

tion of state, action, transition probability, and objective criterion of reward (cost) func-

tion. Traffic signal control problem can be well described as follows.

Traffic state

At time t, for an isolated signalized intersection having total N lanes, traffic state can

be expressed by st = (kt, xt), st ∈ S, where kt is the vehicle state vector and xt is

the signal state vector. For each lane n (n = 1, . . . , N), traffic state is expressed as

st(n) = (kt(n), xt(n)) and we have

st = (st(1), st(2), . . . , st(N))T,

kt = (kt(1), kt(2), . . . , kt(N))T,

xt = (xt(1), xt(2), . . . , xt(N))T.

(2.6)

We define the vehicle state kt(n) on each lane n by the actual number of queuing

vehicles. Assume that the maximum capacity of lane n is Ln, thus

0 ≤ kt(n) ≤ Ln. (2.7)

The signal state xt(n) on each lane n is either green or red indication. We define xt(n) to

be a binary variable satisfying

xt(n) =

{
1, if signal is green on lane n

0, if signal is red on lane n.
(2.8)

Traffic action

The decision or action of the signal controller is at = (at(1), at(2), . . . , at(N))T, at ∈ A.

In adaptive traffic signal control system, the definition of action at time t on lane n is to

switch the current green phase to next one or unchanged, namely extending the current

green phase. We define at(n) to be binary variable, which is expressed as

at(n) =

{
1, for signal switch on lane n

0, unchanged on lane n.
(2.9)

In addition, the mandatory minimum green interval gmin and inter-green interval gint are

executed for safety. During the mandatory intervals, we have at(n) = 0.

2.3 System modeling at isolated intersection 37

State transition

Traffic signal control problem is a stochastic discrete event for decision making. Traffic

state transition probability p(st, at, st+1) is generated when state st transforms to st+1 by

taking action at. Since traffic movements are independent, the transition probability of

the whole intersection is given by

p(st, at, st+1) =
N∏
n=1

pn(st(n), at(n), st+1(n)). (2.10)

Since st(n) = (kt(n), xt(n)), for simplicity, we use pn(kt(n), at(n), kt+1(n)) to express

the transition probability of vehicle state changing from kt(n) to kt+1(n) in the condition

of the signal state xt(n), and it depends on random arrivals and the chosen action at(n)

for departures. Let qn be the constant probability of vehicle arriving during one interval

on lane n. Thus, 1−qn is the probability of no arrival. According to the stochastic control

problem with a finite state space, the transition probabilities are defined as follows. If

taking action at(n), traffic flow on lane n receives green signal during the coming interval,

the transition probabilities on lane n are given by
pn(kt(n), at(n), kt+1(n)− 1) = 1− qn; (0 < kt(n) ≤ Ln, kt(n) ∈ N),

pn(kt(n), at(n), kt+1(n)) = qn; (0 < kt(n) ≤ Ln, kt(n) ∈ N),

pn(kt(n), at(n), kt+1(n)) = 1; (kt(n) = 0).

(2.11)

Otherwise, the action at(n) implies red signal switch. Then,
pn(kt(n), at(n), kt+1(n)) = 1− qn; (0 ≤ kt(n) < Ln, kt(n) ∈ N),

pn(kt(n), at(n), kt+1(n) + 1) = qn; (0 ≤ kt(n) < Ln, kt(n) ∈ N),

pn(kt(n), at(n), kt+1(n)) = 1; (kt(n) = Ln).

(2.12)

Normally, the probability model describing the information process is hard to be

obtained. Thus, we can use the power of computer to generate random observations,

which satisfy a specific distribution. The process is generally referred as Monte Carlo

sampling. Deterministic state transitions with the stochastic arrival information wt =

(wt(1), wt(2), . . . , wt(N))T using Monte Carlo method can factually describe traffic en-

vironment in a simulation way. Actually, there are differences between a distribution

model and a sample model. Given a starting state and action, a distribution model gen-

erates all possible transition weighted by their probabilities of occurring, and a sample

38 Chap 2. Dynamic traffic system modeling

model produces a possible model. In many applications it is much easier to obtain sample

models than distribution models [58].

We use transfer functions instead of transition probabilities to describe the determin-

istic state transitions in system. Once the system has made a decision on signal status at

time t, the state of intersection will be changed. The transition of signal state is described

as

xt+1(n) = (xt(n) + at(n))mod2 (2.13)

and the vehicle state represented by queue length kt(n) is transferred as

kt+1(n) = kt(n) + wt(n)− yt(n) (2.14)

where wt(n) denotes the traffic arrivals satisfying the distribution according to traffic

arrival rates. It adopts the value of either 0 or 1 vehicle/interval (veh/int). The traffic

departure rate yt(n) is also a binary variable constricted by

yt(n) =

{
1, if xt(n) = 1 and kt(n) + wt(n) ≥ 1

0, otherwise.
(2.15)

As we can see that the vehicle state at the next time step is determined by the system

state st, information of future vehicle arrivals wt, and policy decision at at the current

step t. The state transition at each step is deterministic. However, traffic arrivals satisfy

a stochastic process. Since state transitions are influenced by random arriving traffic, the

process of vehicle state can be seen as a stochastic process with Markov property.

Reward function

The objective of traffic signal control is to minimize the overall average waiting time per

vehicle. In the end of each interval, the total number of vehicles can be calculated easily.

In a rational way, the one-step transition reward r is measured by the sum of queue lengths

at the next time t + 1 (or in a simple way, the sum of maximums of two queue lengths

measured in the combination), which is defined as

rt =
N∑
n=1

kt+1(n). (2.16)

Thus the objective of optimization for traffic signal control at intersection can be de-

termined by expected total reward function in (2.5).

2.4 System modeling at traffic network 39

2.4 System modeling at traffic network

For traffic network control in a simulation way, normally, a simulation model is required

for network time-varying loading. A microscopic way for network loading model is con-

sidered here. Vehicle moves on the network with properties of varying speed, position,

and direction. In particular, a new vehicle-following model is emphasized. On the other

hand, the traffic signal control mechanism is based on the isolated intersection control

model discussed in Section 2.3. Moreover, the coordination between intersections is taken

into account by using the idea of tunable state control.

2.4.1 Network loading model in micro-simulation system

2.4.1.1 Network representations

A classical type of 5-intersection network is studied, as shown in Fig. 2.6. In this typical

network system, essential elements are the intersections, links, lanes, individual vehicles,

and signal controllers. System elements have some properties that are essential to con-

struct dynamic traffic models. The network contains several intersections connected with

links. The link consists of two lanes where vehicles are involved. The signal controllers at

intersections send the right-of-way for vehicles passing through (or turning) the conflict

zones.

Intersection

For each intersection, eight movements are depicted (assume that the right-turn movement

is integrated into the straight one sharing the same signal). In the small boxes represented

by S1, S2, etc., traffic demand for system simulation is generated for each lane of the link.

The input random traffic data satisfies Bernoulli 0-1 distribution in a discrete-time proce-

dure. The traffic signal controller located at each intersection coordinates with neighbors

and controls the different directions of traffic flows.

Links

The link has two lanes referring to the left-turn lane and the lane of straight forward

combined with the right-turn. There are three kinds of links described in the network.

These are called entrance link, inside link, and exit link. The entrance link does not have

40 Chap 2. Dynamic traffic system modeling

1

3

5

7

2

4

6

8

1

3

5

7

2

4

6

8

1

3

5

7

2

4

6

8

1

3

5

7

2

4

6

8

1

3

5
2

6

8

I2 I3

I5

link 3 link 5 link 7

link 13link 15link 17

link 9

link 11

link 1

link 19

li
n

k
 2

li
n

k
 2

0

li
n

k
 4

li
n

k
 6

li
n

k
 8

li
n

k
 1

4
li

n
k

 1
6

li
n

k
 1

8

li
n

k
 1

0

li
n

k
 1

2

I4

I1

Entrance link Inside link Exit linkInside link

S1

S2

S3

S20

S19

S4

S9

S11

S14

S10

S13

S12

74

Figure 2.6: 5-intersection traffic network

any upstream link belonging to the network. Traffic data sources are all positioned there.

The inside link is between two intersections. Individual vehicles move on the inside links

after evacuating the intersection. The exit link is the one that vehicles output from the

network.

Lane choice

The lanes are discretized into unit places with equal length, as shown in Fig. 2.7. Note

that the length of each unit place equals to the minimum head-head distance in queue.

Thus, the place is occupied only by one vehicle or empty. From the beginning of the link

to the end of the link, places are numbered from 1 to maximum length. The intersection

zone (node) is the buffer place set by L+ 1.

2.4 System modeling at traffic network 41

... 1234L L-1 L-2 ... 5L+1

Pmer

Pdiv

Pd=-1

Pd=0

Pd=1Pd=1

Pd=0

Pd=-1

Beginning of the link End of the linkNode A Node B

Figure 2.7: Inside link

The lane choice in our model is carried out by proportions at nodes of the network.

Three merging and diverging movements are indicated in node A and B, respectively. Let

Pd=−1, Pd=0, and Pd=1 be the proportions of left-turn, straight forward, and right-turn,

respectively. In node B, we define

Pd=−1 = P 1
mer,

Pd=0 = P 2
merP

1
div,

Pd=1 = P 2
merP

2
div,

(2.17)

where the merging proportions Pmer = [P 1
mer, P

2
mer] are two random distributions to the

left-turn and straight (right-turn) lanes after vehicles leaving A, and the diverging propor-

tions Pdiv = [P 1
div, P

2
div] are two random distributions assigned to the directions of straight

forward and right-turn before vehicles entering B.

2.4.1.2 Vehicle-following model

In a microscopic way, the very popular network loading model about vehicle-following

mechanism is based on cellular automata (CA) theory. From a theoretical point of view,

four main ingredients play an important role in cellular automata models [45]. (1) The

physical environment is the underlying structure consisting of a discrete lattice of cells.

(2) Each cell can be in a certain state, where typically an integer represents the number of

distinct states. (3) For each cell, define a neighborhood that locally determines the evo-

lution of the cell. (4) A local transition rule acts upon a cell and its direct neighborhood,

such that the cell’s state changes from one discrete time step to another (i.e., the system’s

iterations).

In a traffic problem, CA-based model can update the dynamic system in parallel for

all the behaviors of individual vehicles. It presents all vehicles moving on the network in

a discrete-time procedure. Research has shown that CA-based model can yield realistic

42 Chap 2. Dynamic traffic system modeling

behavior. One of the most popular CA-based model for vehicle-following is the Nagel-

Schreckenberg (NaSch) model [42].

NaSch model

The NaSch model was originally defined on a single-lane road. The road is subdivided

into cells, which can be either empty or occupied by one vehicle. Every vehicle has a

non-negative integer velocity. For the update of the road, the following four steps are

performed simultaneously for all vehicles:

• Acceleration: if the velocity v of a vehicle is lower than vmax, and if the distance

to the next vehicle ahead is larger than v + 1, the velocity is advanced by one.

• Slowing down: if a vehicle at place a looks ahead the next vehicle at place a + b

with b ≤ v, it reduces the velocity to b− 1.

• Randomization: with probability ρ, the velocity of each vehicle (if v > 0), is

decreased by one.

• Vehicle motion: each vehicle is advanced v places.

The randomization takes into account that individual driving behaviors for different vehi-

cles result in non-deterministic dynamics of vehicle motions in reality.

A new vehicle-following model

Before studying the vehicle-following model, general notations and definitions are given,

and all variables assume integral values on lane n. Let:

• Ll be the length of link l, defined by the total number of unite places;

• pi,t be the position of vehicle i in the unit place at time t, pi,t ∈ [0, Ll+1], especially

pi,t equals 0 or Ll + 1 when vehicle is in the conflict zone after leaving the stop line

or before entering the lanes of downstream link, respectively;

• vi,t be the velocity (place/int) of vehicle i, vi,t ∈ [0, vmax], especially vi,t = 1 when

vehicle is in the conflict zone;

• ∆pi,j,t be the total empty places between the adjacent vehicles i and j;

2.4 System modeling at traffic network 43

• ∆vi,j,t be the difference of velocities between the adjacent vehicles i and j;

• kt be the queue length (veh).

In NaSch freeway model, traffic lane is divided into cells of equal size and each ve-

hicle can move with an integer velocity. Vehicle velocity has properties of acceleration,

slowing down, and randomization. The underlying traffic model moves the individual

vehicles on the discrete sites of lane. The new position as well as the velocity of each

vehicle is updated during the time interval. That is to say, in a discrete-time procedure,

all vehicles move in parallel according to their current positions and velocities. In the

study of the urban traffic network, the link distance between two adjacent intersections

is not so long as a freeway. Thus, we just consider the acceleration and deceleration of

vehicle velocity. The randomization, which presents the probability of velocity depending

on human behaviors or external varying conditions, is not taken into account in our case.

For simplicity, vehicles between lanes in the link are independent and the first-in-first-out

(FIFO) rule is accepted in the model. In the case of the traffic network system, a new

vehicle-following model will be discussed.

Note that places on lane are indexed from Ll to 1 for the entering place to the ap-

proaching place at intersection. Vehicle moving on lane is related to the position and

velocity, and those of the vehicle ahead. The relations about the position and velocity

between post-vehicle i and pre-vehicle j can be expressed as

∆pi,j,t = pi,t − pj,t − 1, 0 ≤ ∆pi,j,t ≤ Ll;

∆vi,j,t = vi,t − vj,t, 0 ≤ ∆vi,j,t ≤ vmax.
(2.18)

We know that the post-vehicle can accelerate, decelerate, and move with constant ve-

locity, according to the distance and velocity of the pre-vehicle. In the vehicle-following

model, two basic procedures are considered in order. Firstly, the post-vehicle i acceler-

ates or decelerates the same velocity with the pre-vehicle j simultaneously. After that,

the additional ∆vi,j,t is considered into the post-vehicle i. Note that post-vehicle i always

moves in the maximum relative velocity ∆vi,j,t under the security distance. Meanwhile, it

satisfies vi,t ≥ vj,t. For safety, ∆vi,j,t is the required value that can be uniformly reduced

from maximum to zero depending on the distance ∆pi,j,t. In order to obtain ∆vi,j,t and

update the states of post-vehicle i, there are total four cases discussed as follows in the

conditions of queue length kt and the position of pre-vehicle j.

44 Chap 2. Dynamic traffic system modeling

... 1234L L-1 L-2 L-d L-d-1... 5

stop line

conflict
zone

i j∆pi,j,t ≥1

entering

(a)

... 1234L L-1 L-2 L-d L-d-1... 5

stop line

conflict
zone

i j∆pi,j,t ≥0

entering

(b)

... 1234L L-1 L-2 L-d L-d-1... 5

stop line

conflict
zone

i j

entering

(c)
∆pi,j,t=0

... 1234L L-1 L-2 L-d L-d-1... 5

entering

(d)

i j∆pi,j,t ≥1 j'∆pj,j',t ≥0 stop line

conflict
zone

p:

p:

p:

p:

Figure 2.8: Cases in vehicle-following model: (a) Case 1, (b) Case 2, (c) Case 3, and (d)

Case 4

Case 1: kt 6= 0 and pj,t > kt. It indicates that there exists a queue length and the

pre-vehicle j is not in the queue. Thus, the post-vehicle i is also not in the queue. As-

suming the distance ∆pi,j,t ensures that the ∆vi,j,t can be reduced from maximum to zero

uniformly, as shown in Fig. 2.8(a). Therefore, the minimum ∆pi,j,t can be determined

during ∆vi,j,t + 1 steps. Moreover, in order to move vehicles under the security distance

(set to be one place in this paper) when ∆vi,j,t = 0, the distance ∆pi,j,t should be increased

by one. Thus, the restriction can be expressed as

∆pi,j,t ≥
(1 + ∆vi,j,t)∆vi,j,t

2
+ 1. (2.19)

Case 2: kt 6= 0 and pj,t = kt. In this case, the pre-vehicle j is the last vehicle in the

queue and post-vehicle i is not yet added, as shown in Fig. 2.8(b). As the same with Case

1, the maximum relative velocity ∆vi,j,t can be determined by ∆pi,j,t. The only difference

is that the security distance is zero. It means when ∆pi,j,t = 0, post-vehicle i just arrivals

2.4 System modeling at traffic network 45

at the end of queue length. Thus, we have,

∆pi,j,t ≥
(1 + ∆vi,j,t)∆vi,j,t

2
. (2.20)

Case 3: kt 6= 0 and pj,t < kt. In this case, the pre-vehicle j as well as the post-vehicle

i is in the queue, as shown in Fig. 2.8(c). We assume that, if green signal is accepted

for lane n, all the vehicles in this queue have velocity one; otherwise zero. Thus, we can

conclude that if ∆vi,j,t = 0 and ∆pi,j,t = 0, vehicles i and j in the queue indicate the

same velocities being of either 1 or 0. In this case,

∆pi,j,t = ∆vi,j,t = 0. (2.21)

Case 4: kt = 0. In this case, the relation of ∆pi,j,t and ∆vi,j,t between the pre-vehicle

j and post-vehicle i is the same with Case 1. However, in Case 4, there is no vehicle

in the queue. Therefore, we should define the limited velocity of the first pre-vehicle j.

It should be guaranteed that the first pre-vehicle j at least can uniformly decelerate the

velocity to zero before the stop-line when receiving red signal. Imagine that a virtual

vehicle j′ locates in front of the place ’1’ with velocity 0 in red signal or 1 otherwise, as

shown in Fig. 2.8(d). According to Case 2, the relative velocity ∆vj,j′,t can be determined

as well. It satisfies

∆pj,j′,t ≥
(1 + ∆vj,j′,t)∆vj,j′,t

2
. (2.22)

Solving (2.22), the maximum ∆vj,j′,t can be obtained by

∆vj,j′,t = b
√

8∆pj,j′,t + 1− 1

2
c, (2.23)

where the function y = bxc is defined as that y is the maximum integer not larger than x.

Thus, for next time step, the velocity and position of the first pre-vehicle j can be respec-

tively written as
vj,t+1 = min(vj′,t + ∆vj,j′,t, vmax),

pj,t+1 = max(pj,t − vj,t+1, 0)
(2.24)

where vj′,t = 0 if receiving red signal and vj′,t = 1 otherwise.

In conclusion, the relative velocity ∆vi,j,t can be obtained by solving (2.19), (2.20),

and (2.21). That is,

∆vi,j,t =

 b
√

8(∆pi,j,t−1)+1−1

2
c, if pj,t > kt ≥ 0 and ∆pi,j,t ≥ 1

b
√

8∆pi,j,t+1−1

2
c, if kt 6= 0, pj,t ≤ kt and ∆pi,j,t ≥ 0.

(2.25)

46 Chap 2. Dynamic traffic system modeling

According to the Case 4 and ∆vi,j,t in (2.25), the vi,t and pi,t of post-vehicle i can be

updated eventually by

vi,t+1 = min(vj,t + ∆vi,j,t, vmax),

pi,t+1 = max(pi,t − vi,t+1, 0).
(2.26)

In total, the vehicle-following model is based on (2.24) and (2.26). On each lane, all

the vehicles from the head one to the last have the ergodic process to update the velocity

and position in each time step. The process is extended to the network. We use pi,t+1

to judge that either vehicle i at next time t + 1 will leave the stop line or join the queue

length. Therefore, the traffic departure and arrival can be determined in the model.

2.4.2 Coordinated signal control model at network

2.4.2.1 Multiagent MDP

If the isolated intersection can be formulated by a single agent MDP framework, the

network case can be modeled in its extension called multiagent MDP. The generalization

of multiagent MDP is defined as follows.

Definition 2 A finite multiagent MDP is a tuple < S,A, p,R > where S is the finite

discrete set of environment states and S = S1 × · · · × SM with M agents, A is the finite

set of joint actions and A = A1× · · ·×AM , p : S×A×S → [0, 1] is the state transition

probability function, and R : S × A× S → R is the reward function.

Being similar definition to a single agent MDP, in multiagent case, the state st =

(s1
t , s

2
t , . . . , s

M
t), st ∈ S, describes the environment at each time t. The controller can

choose the state at each time by taking joint actions at = (a1
t , a

2
t , . . . , a

M
t), at ∈ A. As a

result of the action at, the environment changes its state from st to some st+1 ∈ S, accord-

ing to the state transition probabilities given by p which is represented as p(st,at, st+1) .

The controller receives immediate a scalar reward rt ∈ R according to the reward function

R : rt = R(st,at, st+1). For deterministic models, the transition probability function p is

simply expressed as p : S × A→ S. It follows that the reward is completely determined

by the current state and action: rt = R(st,at), R : S × A→ R.

2.4 System modeling at traffic network 47

Given the initial state s0 and a sequence of decision at ∈ A, (t = 0, 1, 2, . . . , T − 1),

the objective is to minimize the discount expected total reward

min
at∈A

E

{
T−1∑
t=0

γtrt|s0 = s

}
(2.27)

where γ (0 < γ < 1) is the discount factor.

It is known that transition probability function is hard to receive in complex prob-

lem. Usually, Monte Carlo sampling is applied to multiagent MDP. So that the stochastic

problem is formulated by deterministic models using observed stochastic distribution data

referring to traffic arrivals.

2.4.2.2 Tunable state control for coordination

For traffic network control, an individual intersection can self-organize by using local

information or coordinate its action by using the information from neighbors, just like the

communication between agents. Generally, Markov decision process (MDP) is regarded

as the mathematic foundation for RL and ADP. Here, the tunable state and joint action

between two adjacent intersections are discussed when the coordination at network is

considered.

By using the basic assumptions and notations at isolated intersection control, some

definitions of variables for network control are given as follows. Let:

• kt be the vehicle queue length matrix with dimension N ×M that kt = (kmt ,m =

1, . . . ,M) and kmt = (kmt (n), n = 1, . . . , N)T , where M is the total number of

intersections at network and N is the total number of lanes at intersection;

• k̃t be the total vehicles occupied on lane with dimension N ×M ;

• xt be the system signal state with dimension N × M , and assign the element

xmt (n)=1 to signal green and assign xmt (n)=0 to red on lane n at intersection m;

• at be the system action with dimension N ×M and assign the element amt (n)=1 to

switch signal and assign amt (n)=0 to signal unchanged on lane n at intersection m;

• wt be the traffic arrival information for queue length with dimension N ×M ;

• w̃t be the traffic arrival information for the lane with dimension N ×M ;

48 Chap 2. Dynamic traffic system modeling

• y be the traffic departure rate (veh/int) on lanes, assuming all lanes have the same

value 1 veh/int, which is equivalent to 1800 veh/h.

It is found that, in the case of short and fine planning stages, the influence from the

intersection to the other one cannot appear immediately. In other words, the vehicle pla-

toon generated from upstream to arrive at downstream makes a delayed influence on the

decision making of the local intersection. In the view of independent agent system, only

the local information approaching intersection is normally used. We use vehicle queue

length to act as a local state. In a global view, the adjacent intersection affects the local

one implicitly in some future time. However, in adaptive traffic signal control, it is hard

to determine and synchronize this effect. The influence only happens on the lane of inside

link where the vehicle states, including the queuing one and moving one, are changed

by the joint action of two adjacent intersections. On the other hand, vehicles in the link

are normally viewed as the stability performance of the network. Thus, we use the total

number of vehicles on lane to act as a coordinated state. Rather than processing the local

state and the coordinated state separately, such as an agent hierarchical structure referring

to a local agent and a supervisor agent, our system state is the integration of these two

states with tunable weights. In this way, it can not only reduce the computation com-

plexity caused by too many agents, but also overcome the negative effects from the single

aspect of independent agent control or coordinated agent control at network. In addition,

the joint action is only considered in the inside link. Especially for the entrance link, state

transitions depend on the data generator and the actions of local intersection. Here, we

discuss the definition of tunable system state in the view of intersection and analysis the

dynamic state transition in the view of traffic lane.

At local intersection u, the local state is expressed as ŝut = (kut , x
u
t), which will be

transfered to ŝut+1 with action aut . As for the coordinated state, which refers to local

intersection u and adjacent intersection v, it is expressed as ŝu,vt = (k̃ut , x
u
t , x

v
t) and will

be transfered to ŝu,vt+1 with action aut and avt . According to ŝut and ŝu,vt , the tunable state at

intersection u can be written as

sut = (ekut + (1− e)k̃ut , xut , xvt), v ∈ Γ (u) (2.28)

where e (0 ≤ e ≤ 1) is the tunable parameter, and Γ (u) is the neighbor set of u. Then, the

integration system state at network is st = (s1
t , s

2
t , ..., s

M
t), where M is the total number

of intersections.

2.4 System modeling at traffic network 49

It is easy to calculate the dynamic transition of binary signal state xt according to the

binary action at. For the dynamic state transitions of kt and k̃t, more details are given.

Considering the lane n in inside link between local intersection u and adjacent intersection

v, the transitions of queuing vehicles and all vehicles on lane n are respectively expressed

as follows
kut+1(n) = kut (n) + wut (n)− gut (n),

k̃ut+1(n) = k̃ut (n) + w̃ut (n)− g̃ut (n),
(2.29)

where for vehicles in queuing, the arrival wut (n) and departure gut (n) are given by

wut (n) =

{
1, if pi,t+1 = kut (n) + 1

0, if pi,t+1 > kut (n) + 1
(2.30)

gut (n) =

{
1, if xut (n) = 1 and kut (n) + wut (n) ≥ y

0, otherwise
(2.31)

and for vehicles on lane, the arrival w̃ut (n) and departure g̃ut (n) are given by

w̃ut (n) =

{
1, if gvt (nd) = 1 and X1 = 1, X2 = 1

0, otherwise
(2.32)

g̃ut (n) = gut (n). (2.33)

Some notes in (2.32) are given in detail. For the traffic flows before entering the link,

assign d = −1, d = 0, and d = 1 to the left, straight forward, and right directions,

respectively. nd is the traffic lane in the adjacent intersection v releasing vehicles to lane

n. After vehicle entering the link, vehicle directions are randomly distributed again as

the proportion predetermined. In detail, according to the direction proportions allocated

by (2.17) in lane choice mechanism, the judgments of X1, X2 are binary variables in the

following conditions. X1 = 1 means that the direction of vehicle on lane nd points at the

entering link, and X1 = 0 otherwise (it is possible for straight and right-turn sharing one

lane). Meanwhile, in the link, X2 = 1 is for the selection of lane n of being left-turn or

straight-right lane, and X2 = 0 for the alternate. See Fig. 2.9.

50 Chap 2. Dynamic traffic system modeling

1

3

5

7

2

4

6

8

1

3

74

6

8

5

2

Local uAdjacent v

Lane choice

X1=1

X1=0

X1=0

X1=1

X2=1

X2=0X1=1

Figure 2.9: Explanation of X1, X2 in the case that n = 5 (n ∈ u) and nd = 7, 2, 8

(d = −1, 0, 1. nd ∈ v)

In addition, by reason of different capacities of links, we unify the k̃ut+1(n) to be

multiplied by Lmin/Ll.

From the discussion above, we can see the difference between the independent and

coordinated intersection control in this study. The coordinated intersections use the ar-

riving information not only on the queue (independent) but also on the lane. Thus, the

system state is affected by the joint action of adjacent intersections.

According to the definition of tunable system state for traffic network signal control,

the immediate cost function rt is defined by

rt =
M∑
m=1

N∑
n=1

(ekmt+1(n) + (1− e)k̃mt+1(n)). (2.34)

Thus the objective of optimization for traffic signal control at network can be deter-

mined by expected total reward function in (2.27).

2.5 Summary

This chapter mainly makes the dynamic modeling for the adaptive traffic signal control

system. Three parts are presented. Firstly, beside the introduction of the fixed and variable

phase sequence mode, we especially propose the adaptive phase sequence (APS) mode

for traffic flow organization. APS has total 12 phase possibilities, one of which is waited

for the proper choice by phase optimization, according to traffic conditions in real time.

2.5 Summary 51

It is suggested that the organization of APS will be more adaptive than FPS and VPS.

Secondly, the signal control model of an isolated intersection is constructed based on the

framework of MDP in discrete time. The characteristics including traffic state, traffic

action, state transition, and reward function are formulated. Two formulations of state

transition are proposed. One is the stochastic state transition with probability transition

function. The other one is the determined state transition which works by the way of

Monte Carol sampling in simulation. Lastly, considering the modeling at network case,

the network loading model and multiagent based signal control model are presented. In

network loading, a new vehicle-follow model is proposed as the underlying traffic model

for updating system. The signal control at network is based on the multiagent MDP

framework. For traffic network coordination, the tunable system state with components of

queue length and total number of vehicles on lane, is proposed for this control mechanism.

52 Chap 2. Dynamic traffic system modeling

CHAPTER 3

METHODS STUDIED BASED ON

DYNAMIC PROGRAMMING

3.1 Introduction

To solve MDP problem, there are two types of classical DP based methods. One is the

backward DP algorithms [29], such as value iteration algorithm and policy iteration algo-

rithm. The other one is the forward search algorithms, such as A* [122] and real-time DP

algorithm [123]. We try to use two DP related algorithms to solve traffic signal control

problems and discuss the feasibilities of these DP based algorithms.

The first algorithm we proposed is based on a backward DP. It is the value iteration

algorithm with stochastic traffic state transitions. The objective is to obtain an optimal

stationary policy when state value converges. The second algorithm is a forward search

algorithm based on A*. It works with deterministic state transitions under a decision tree

and obtains the optimal policy in this shortest path problem. These two algorithms are

applied to stochastic states system and deterministic states system, and the related works

are published in [124, 56], respectively. The difference between stochastic state and de-

terministic state is that the former considers the state transition probability function while

the latter uses the deterministic state transitions in a Monte Carlo simulation. Whatever,

54 Chap 3. Methods studied based on dynamic programming

they both belong to stochastic traffic problems. We have already discussed this in Section

2.3, Chapter 2.

The proposed algorithms can realize the adaptive traffic signal control in some cases.

However, some drawbacks still appear as the limitations of DP. We will present these

algorithms in detail and a case study of each algorithm is discussed. Based on related DP

methods and their applications, then, we will abstract some limitations of DP.

3.2 Backward DP algorithm for control and analysis

3.2.1 DP introduction

For a control problem defined on time series, DP can decompose the problem into stages,

which correspond to successive discrete epochs on time series, as shown in Fig. 3.1.

t t+1 t+2 t+3 t+T t+T-1

Stage 0 Stage T-1Interval ∆t

Figure 3.1: Time series and stages

Recall the MDP definition mentioned in Section 2.3.1. Solving a control problem

modeled as MDP is equivalent to finding an optimal policy π∗ (a mapping from states to

actions) to minimize the value function of each state. With initial state s0 following the

optimal policy π∗ during horizon T , the optimal value function is defined by

J(s0) = min
at∈A

E

{
T−1∑
t=0

γtrt

}
. (3.1)

The DP solution by following Bellman’s equation recursively computes (3.1). That is

J(st) = min
at∈A

E {rt + γJ(st+1)} , for t = 0, 1, . . . , T − 1, (3.2)

where decision at is selected from a finite set of A at each time step t, and the expecta-

tion operator is taken in respect to the probability in state transition from st to st+1 with

decision at.

3.2 Backward DP algorithm for control and analysis 55

The optimal deterministic action a∗t at each time t can be greedily calculated by the

minimum value J(st). Thus, we have

π∗(st) = a∗t = arg min
at∈A

E {rt + γJ(st+1)} , (3.3)

where argmin means the argument of the minimum. It returns the action that minimizes

the value of state.

Finite and infinite DP

A finite DP problem is said to have a finite horizon T if the value function J accumulates

over a finite number of steps, which can be expressed as

J(s0) = min
at∈A

E

{
J(sT) +

T−1∑
t=0

γtrt

}
. (3.4)

Often we simply use J(sT) = 0, because we are primarily interested in what to do now,

given by a0, or in projected activities over some horizon t = 0, 1, . . . T − 1. Problems

of this sort often bear interest of achieving optimization over a specific horizon. A good

example of such is the shortest path problem.

Similarly, an infinite DP problem is said to have an infinite horizon T if the value

function J accumulates over an infinite number of steps, which can be expressed as

J(s0) = min
at∈A

E

{
∞∑
t=0

γtrt

}
. (3.5)

The infinite horizon problem is of particular interest to understand steady-state prop-

erties in Markov process. At steady-state, state transition probabilities become time in-

variant, and the value of J converges. Solving the infinite horizon problem, it requires an

iteration algorithm that leads to convergence in values of J and a stopping criterion that

specifies the region of convergence. There are two common iteration algorithms: value

iteration and policy iteration. The two algorithms are discussed later.

Stochastic and deterministic DP

A stochastic (or probabilistic) DP problem is that the state is subsequently transfered with

probability by the state and decision at the current step, as shown in Fig. 3.2. The state

56 Chap 3. Methods studied based on dynamic programming

transition probability function is p(st, at, st+1), p : S × A× S → [0, 1]. Since S is finite

state space, the Bellman’s equation in (3.2) for a stochastic problem is explicitly rewritten

as

J(st) = min
at∈A

∑
st+1∈S

p(st, at, st+1) [rt + γJ(st+1)] . (3.6)

1

1t
s

2

1t
s

1

D

t
s

t
s

t
a

1

1
(, ,)
t t t

p s a s

2

1
(, ,)
t t t

p s a s

1
(, ,)

D

t t t
p s a s

1

t
r

2

t
r

D

t
r

Decision

Probability

Feedback reward

()
t

J s

1

1
()
t

J s

2

1
()
t

J s

1
()

D

t
J s

Figure 3.2: A sample of state transition in stochastic dynamic programming

A deterministic DP problem is that the state at the next step is completely determined

by the state and decision at the current step. Standard formulation takes this into account

by using transfer function σ(st, at) instead of a transition probability to specify the next

state. That is to say, in MDP the transition probability function is defined by

p(st, at, st+1) =

{
1, if σ(st, at) = st+1

0, if σ(st, at) 6= st+1.
(3.7)

The Bellman’s equation in (3.2) for a deterministic problem can be rewritten as

J(st) = min
at∈A
{rt + γJ(st+1)} . (3.8)

In a deterministic problem, sometimes the exogenous stochastic information wt adds

to the system so that the transfer function is σ(st, at, wt). In this case, the process of st
can be seen as a stochastic process with Markov property, i.e., a Markov process. This

usually appears in Monte Carlo simulation. We may rewrite (3.8) as

J(st) = min
at∈A

Ewt {rt + γJ(st+1)} (3.9)

where wt is the exogenous information or noise. In traffic model, it is the random traffic

arrival information.

3.2 Backward DP algorithm for control and analysis 57

Value iteration and policy iteration

In an infinite horizon DP problem, the steady-state in value convergence can be obtained

by iteration algorithms. We can think of a steady-state problem as one without the time

dimension. In stochastic DP formulation, the steady-state optimality equations can be

expressed as

J(s) = min
a∈A

∑
s′∈S

p(s, a, s′) [r + γJ(s′)] . (3.10)

Correspondingly, a policy is called stationary if it does not change over time in steady-

state. Normally an infinite horizon DP problem is to determine an optimal stationary

deterministic policy π∗(s), ∀s ∈ S in (3.10), which refers to the MDP optimal policy in

(3.3) under the optimality criterion of expected total discounted reward. Value iteration

and policy iteration are the two common DP algorithms to achieve the MDP optimal

policy.

Value iteration It is the most widely used algorithm in DP. It involves iteratively es-

timating the value function. At each iteration the estimate of value function determines

which decisions we will make and as a result defines a policy. The basic version of value

iteration algorithm is given in Fig. 3.3.

58 Chap 3. Methods studied based on dynamic programming

Initialize J0(s) for all .s S

0.Fix a tolerance parameter

Set iteration 0.n

For s S

1
() m in (, ,) () .

n n

a A
s S

J s p s a s r J s

End For

1,n n

1
(1) / 2

n n
J J

Output *
()s wherefor all ,s S

* 1
() arg m in (, ,) () .

n

a A
s S

s p s a s r J s

Yes

No

Figure 3.3: Value iteration of dynamic programming

Policy iteration It has two iterative processes, i.e., policy evaluation and policy im-

provement. Given a certain policy π, policy evaluation tries to approximate the values of

each state under this policy. The values of each state are the inputs to policy improvement

process. The purpose of policy improvement process is to adjust the policy according to

new state values. The basic version of policy iteration algorithm is given in Fig. 3.4.

3.2 Backward DP algorithm for control and analysis 59

Initialize J
0
(s) and π

0
(s) for all .s S

0.Fix a tolerance parameter

Set iteration 0.n

For s S

1
() (, ,) () .

n n

s S

J s p s a s r J s

End For

1,n n

1
(1) / 2

n n
J J

Output *
() ()

n
s s for all s S

Yes

No

Given a policy π
n-1

(s)

For s S

End For

1
() arg m in (, ,) () .

n n

a A
s S

s p s a s r J s

1
() (),

n n
s s s

Yes

No

Policy improvement

Policy evaluation

Figure 3.4: Policy iteration of dynamic programming

By comparing value iteration and policy iteration, it can be seen that both policy eval-

uation and policy improvement need to visit each state multiple times and are computa-

tionally inefficient. On the contrary, value iteration method effectively integrates policy

evaluation and policy improvement and has better computational efficiency. Next, we will

study a simple traffic signal control problem by using value iteration algorithm.

60 Chap 3. Methods studied based on dynamic programming

3.2.2 Value iteration algorithm for stochastic states system

Based on the MDP formulation of traffic signal control problem and the conventional

DP algorithm, we will investigate a control method for a simple two-phase signalized

intersection by using value iteration algorithm.

Consider a simple two-phase isolated signal intersection, as shown in Fig. 3.5. For

sake of readability, the turn-left and turn-right movements are not presented.

1

2

3

4

1

2

3

4

Figure 3.5: A simple two-phase intersection

The intersection controlled by two-phase signal provides green signal to the E-W

and N-S approaches alternately, as shown in Fig. 3.6. To avoid interference between

antagonistic movements, the inter-green interval gint (all red) is necessary, set by gint = 1

int. Moreover, the minimum green time gmin for each phase is predetermined and set by

gmin = 3 ints. The incremental interval each step is ∆t = 2s. Other model assumptions

can be seen in Section 2.3.2.

...

G1=(1,3)
3Δt

Δt= 2s

...

2Δt

4Δt

2Δt

Δt

Phase 2

Phase 1

Phase 2

Phase 1

red green

tint gmin tint gmin tint gmin

tint gmin tint gmin

G2=(2,4)

Phase 1

Figure 3.6: Example of two-phase traffic signal planning

In DP algorithm, the obtained state values need to traverse all state space and these

values are stored in a look-up table. We propose an idea of decomposition MDP that

3.2 Backward DP algorithm for control and analysis 61

makes probability transition matrix into several small matrices related to two signal rules.

One rule is the fixed phase sequence (Phase 1 and 2) and the other rule is the naturally

constant sequence of signal indications (e.g., in each phase signals indicate as sequence of

all-red, minimum green, green extension, and red). Thus, the decomposition method only

calculates the relative states owning the available probabilities between the small matrices

or in its local matrix, and avoids to calculate all the transition probabilities of the states

(the properties of signal status and the number of vehicles) in one tremendous transition

matrix. This idea refers to the following traffic state transition model.

At first, some notations are defined as follows.

• Gc, is the cth (c = 1, 2) traffic flow combination;

• G1R2, the green signal for G1 and the red for G2;

• R1G2, the red signal for G1 and the green for G2;

• R1R2, the red signals for the whole intersection;

• G1minR2, minimum green for G1 and the red for G2;

• R1G2min, minimum green for G2 and the red for G1;

• aij , the action to switch the phase from Gi to Gj , where i, j = 1, 2;

• Jζ , the value set with the same dimensionality of vehicle states under each signal

state, ζ = 1, 2, ..., 6.

The traffic state transition model is shown in Fig. 3.7. In this model, the transition states

are organized by two layers in the structure. The first layer contains the six traffic signal

states which are described by circles. The second layer that is covered by the first one,

consists of the same structures of vehicle states under each signal state. Thus, the state

transition should be considered in two aspects, namely the signal state transition and the

vehicle state transition.

It is obviously that there are two big loops among the six signal states. One is the state

transition which is marked by the solid arrow lines and the other is the value transmission

marked by the dashed arrow lines. In state transition loop, the vehicle state is changed

under the guide of signal state transition. Moreover, the transfered vehicle states under

the current signal are just relevant to the successors in the following signal state. In value

62 Chap 3. Methods studied based on dynamic programming

transmission loop, the value of the current state is backward of the next state, and it acts as

the evaluation for next step according to the value function. In simplified way, the unique

and deterministic action between two signal states is not presented.

Notice that two small loops are attached to signal state G1R2 and R1G2, respectively.

The signal states in these cases have alternative choice to extend the intervals during cur-

rent green phase or switch signal to another one. Actually, all signal states are transformed

sequentially between two phase groups. By iteratively calculating the value of each state

in time sequence, stationary optimal policy can be obtained.

G1R2

a11

R1R2

G1minR2 R1G2

R1G2min

R1R2

J1

J2 J3

J4

J4

J5J6

J1

a12

a22

a21

Figure 3.7: Traffic state transition model in decomposition MDP

By using the MDP model definition and DP algorithm, the traffic signal control prob-

lem can be solved. The basic characteristics of MDP for the modeling are introduced in

Section 2.3.2. In the model, probability transition matrix is generally hard to find. In

order to obtain the matrix, it is not necessary to search all the elements, i.e., probabilities

in the matrix. Only relevant vehicle state transitions are marked, available probabilities

can be obtained. In the traffic state transition model, both of the signal state layer and

the vehicle state layer make sequential transitions, and the former is illustrated evidently

in Fig. 3.7. In the vehicle state layer, all ordered states own the same properties of each

traffic signal. Once state transitions are determined, the probabilities from s to s′ can be

calculated by transition probability function defined in (2.11) and (2.12) and then they

3.2 Backward DP algorithm for control and analysis 63

Algorithm 1 Value iteration algorithm for traffic signal control based on decomposition

of MDP
1: Initialization of states s = (k, x), s ∈ S, value function J0(s) = 0;

2: Set iteration n = 0;

3: repeat
4: n← n+ 1;

5: for all traffic signal states xζ , (ζ = 1, 2, . . . , 6) do . Transition sequence of xζ is

based on the state transition model in Fig. 3.7;

6: allocate all vehicle states kζ to xζ ;

7: for all state s ∈ S and action a ∈ A in xζ do
8: calculate Jnζ (s) = min

a∈A

∑
s′∈S

p(s, a, s′)
[
r + γJn−1

ζ (s′)
]
;

9: end for
10: end for
11: Jn ← ((Jn1), (Jn2), . . . , (Jn6));

12: until ‖Jn − Jn−1‖ < (1− γ)/2γ is satisfied;

13: For all s ∈ S in xζ , calculate the stationary optimal policy according to π∗ζ (s) =

arg min
a∈A

∑
s′∈S

p(s, a, s′)
[
r + γJn−1

ζ (s′)
]
;

14: π∗(s)← (π∗1(s), π∗2(s), . . . , π∗6(s)).

are recorded into the transition matrix. Based on the value iteration algorithm of DP, the

traffic signal control optimal policy can be obtained by Algorithm 1.

3.2.3 Case study and analysis

The proposed algorithm is implemented to the case of two-phase isolated intersection il-

lustrated in Fig. 3.5. The traffic demand data is generated by the uniform random data 0

and 1, using Inverse Transformation Method (ITM) which meets a Bernoulli probability

distribution. Meanwhile, the “heaviest” flow rate qn in the traffic combination Gc deter-

mines the contribution to the overall workload, which is called relative traffic load ρ and

defined by

ρ=
∑
c

max
n∈Gc

{qn}, (3.11)

where n is the traffic flow that n = 1, 2, 3, and 4 in the case.

64 Chap 3. Methods studied based on dynamic programming

Table 3.1: Simulation results of average traffic delays
Relative traffic load ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

Traffic volume by ITM (veh/h) (181, 163, 187, 172) (368, 362, 383, 346) (526, 569, 524, 521) (717, 708, 725, 725)

FC 4.06 0 5.68 0 8.36 0 17.64 0

ADC (delay/s & reduction/%) 3.72 -8.4 5.17 -9.0 7.38 -11.7 16.30 -7.6

MDP 3.26 -19.7 4.64 -18.3 6.07 -27.4 12.85 -27.2

The performance measures are average traffic delay at whole intersection and vehicle

queue length in each traffic flow combination. In simulation, we compare the proposed

algorithm by MDP with the fixed-time control (FC) and actuated control (ADC).

In Tab. 3.1, the comparisons of average traffic delay in these three control methods

are given. From the traffic scenarios with different relative traffic loads, obviously, we

see that MDP outperforms FC and ADC with less delays. Especially in high traffic load

(ρ=0.8), MDP has about 27.2 % reductions from FC. It is much better than ADC, which

has only about 7.6% reductions from FC.

In Fig. 3.8, the comparisons of vehicle length (represented by the maximum one in

traffic flow combinations) in these three control methods are given. Obviously, MDP can

control the vehicle length efficiently in each phase period. The shadow areas in figures

indicate that the vehicle length in MDP is relatively less and more stable than those in FC

and ADC.

However, the proposed algorithm based on MDP is offline. When the steady-state

is obtained in the value convergence, we use Monte-Carlo sampling of the arrival infor-

mation to calculate the system state, then the corresponding optimal control decision in

the stationary policy is implemented. The iteration convergence often takes much time,

especially in large state space. In our case of two-phase signal control with 6 signal state

divisions, assuming the largest vehicle length of each lane is L = 19, the state space is

6 × 204, and the computation time for convergence is list in Tab. 3.2. Moreover, when

traffic arrival rate changes, the steady-state is different and needs to be calculated again.

Therefore, this algorithm is impractical for real-time traffic signal control problem. Next,

we will present another algorithm, which uses the forward search algorithm based on DP

and can solve the mentioned problems to realize the control for a more complex case in

real-time.

3.3 Forward search algorithm for control and analysis 65

Table 3.2: Computation of convergence in value iteration algorithm for solving MDP

Relative traffic load ρ=0.2 ρ=0.4 ρ=0.6 ρ=0.8

Iterations 62 75 88 95

Computation time (h) 2.05 2.52 2.97 3.23

100 110 120 130 140 150 160 170 180 190 200
0

1

2

3

4

5

6

7

8

9

Phase periods

Ve
hi

cl
e

le
ng

th
 p

er
 p

ha
se

 [v
eh

]

FC(G1)
FC(G2)

(a) FC

100 110 120 130 140 150 160 170 180 190 200
0

1

2

3

4

5

6

7

8

9

Phase periods

Ve
hi

cl
e

le
ng

th
 p

er
 p

ha
se

 [v
eh

]

AC(G1)
AC(G2)

3

4

33

44

(b) ADC

100 110 120 130 140 150 160 170 180 190 200
0

1

2

3

4

5

6

7

8

9

Phase periods

Ve
hi

cl
e

le
ng

th
 p

er
 p

ha
se

 [v
eh

]

MDP(G1)
MDP(G2)

2

3

(c) MDP

Figure 3.8: Vehicle length comparisons in three control methods (ρ = 0.6)

3.3 Forward search algorithm for control and analysis

3.3.1 Forward search A* introduction

Without evaluating the complete state space in conventional backward DP algorithm,

some algorithms use the knowledge of start state to focus computation on just those states

66 Chap 3. Methods studied based on dynamic programming

that are reachable from the start state by following an optimal policy. Subsequently, the

forward search (heuristic search DP) algorithms based on state accessibility were pro-

posed, such as A* [122, 125], LAO* [126], real-time DP[123]. The previous study of

these algorithms are proved that they can improve computational efficiency and save

much computation time, which seems possible to be implemented for real-time traffic

signal control. In the fundamental work of the thesis, we propose a new adaptive traffic

signal control algorithm based on the forward search A* algorithm.

Thus, in this part, we briefly introduce the classical A* algorithm, which is the basis

for the forward search traffic signal control algorithm presented in the next part.

The A* algorithm was originally presented by Hart et al. [122]. It was designed to

solve the shortest path problem between an origin and a destination. As A* traverses the

graph, it builds up a tree of partial paths. The leaves of this tree (called the open set or

fringe) are stored in a priority queue that orders the leaf nodes by a cost function, which

combines a heuristic estimate of the cost to reach a goal and the distance traveled from

the initial node. Specifically, in each node n̂ the cost function f(n̂) is

f(n̂) = g(n̂) + h(n̂) (3.12)

where g(n̂) is the known cost from initial node to n̂, and h(n̂) is a heuristic estimate of

the cost from node n̂ to any goal node. For the algorithm to find the actual shortest path,

the heuristic function must be admissible, meaning that it never overestimates the actual

cost to get to the nearest goal node. The heuristic function is problem-specific and must

be provided by the user of the algorithm. Sometimes, it is difficult to find a good h(n̂).

If the heuristic function h(n̂) = 0 for all nodes n̂, then A* is essentially the same as the

Dijkstra’s shortest path algorithm.

From [127] by Nils Nilsson, we list the pseudocode of A* algorithm as follows:

Pseudocode

1. Create a search graph G, consisting solely of the start node n̂0. Put n̂0 on a list called

OPEN.

2. Create a list called CLOSED that is initially empty.

3. If OPEN is empty, exit with failure.

3.3 Forward search algorithm for control and analysis 67

4. Select the first node on OPEN, remove it from OPEN, and put it on CLOSED. Call

this node n̂.

5. If n̂ is a goal node, exit successfully with the solution obtained by tracing a path along

the pointers from n̂ to n̂0 in G. (The pointers define a search tree and are established

in Step 7.)

6. Expand node n̂, generating the set,M, of its successors that are not already ancestors

of n̂ in G. Install these members ofM as successors of n̂ in G.

7. Establish a pointer to n̂ from each of those members ofM that were not already in G
(i.e., not already on either OPEN or CLOSED). Add these members ofM to OPEN.

For each member, n̂′, ofM that was already on OPEN or CLOSED, redirect its pointer

to n̂ if the best path to n̂′ found so far is through n̂. For each member ofM already

on CLOSED, redirect the pointers of each of its descendants in G so that they point

backward along the best paths found so far to these descendants.

8. Reorder the list OPEN in order of increasing f values. (Ties among minimal f values

are resolved in favor of the deepest node in the search tree.)

9. Go to Step 3.

In the pseudocode above, the part of step 7 is to find the shortest path by using pointers.

Step 7 is often not implemented. Some of these pointers will ultimately be redirected in

any case as the search progress. In Section 3.3.2, our proposed forward search algorithm

for traffic signal control will give a labeled position method to search backward along the

best paths.

In order to understand well about the solution procedure of A* algorithm, we intro-

duce a simple example of shortest path problem.

Example Given a weighted, directed graph G, find the shortest path from the start node

V0 to the destination node V5 by passing any other nodes V1, V2, V3, and V4.

68 Chap 3. Methods studied based on dynamic programming

V0

V5

V1

V3

V2

V4

100

60

20

50

5

10

10
30

Figure 3.9: An example of weighted directed graph

(V0, 0)OPEN

CLOSED NULL

(V2, 10) (V4, 30) (V5, 100)OPEN

(V0, 0)

(V4, 30) (V3, 60) (V5, 100)OPEN

(V0, 0) (V2, 10)

(V3, 50) (V3, 60) (V5, 90) (V5, 100)OPEN

(V0, 0) (V2, 10) (V4, 30)

 (V5, 60) (V5, 90) (V5, 100)OPEN

(V0, 0) (V2, 10) (V4, 30) (V3, 50)

NULLOPEN

(V0, 0) (V2, 10) (V4, 30) (V3, 50) (V5, 60)

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

Figure 3.10: A* solution for shortest path problem

3.3 Forward search algorithm for control and analysis 69

In the list, the cost value f(·) of each node is written with the node together. When

the OPEN list is empty, the CLOSED list obtains the shortest path from V0 to any nodes

in the graph.

3.3.2 Forward search algorithm for deterministic states system

In this part, we introduce an algorithm for adaptive traffic signal control problem, for-

mulated by MDP with deterministic state transitions. This algorithm is a forward search

based on A* algorithm. It is shorten by FSDP in the thesis.

In FSDP algorithm, there are three important processes. The first one is that FSDP

under a decision tree has state variables constrained by the planning time where multi-

step iteration of mandatory transformation is executed. The second one is the process

optimization of repeated or invalid traffic states. the repeated states will be cutting off

and the next states in leaf nodes will not appear any more. Those will reduce a mass of

calculations of irrelevant states. Moreover, the solve-labeling procedure named labeled

position rule is included in the algorithm to improve efficiency after reaching the goal

state. Normally, in the planning period, it is often difficult to find the best solution in

each step although the optimum value of the goal state is obtained. The labeled position

method we proposed is a good way to solve this problem.

In order to verify the efficiency of FSDP, we consider the typical traffic intersection

given in Fig. 2.1 and the traffic flow organization patterns by using phase sequence FPS,

VPS, and APS. Notice that the application refers to the case of deterministic state tran-

sition for the traffic problem with stochastic arrivals. The basic MDP traffic model is no

more expressed here and some donations are additionally given.

We denote Φ to the numbered phase. According to FPS, VPS, and APS modes in

Section 2.2, we define the values Φ in Tab. 3.3.

Table 3.3: Phase numbered in FPS, VPS, and APS
Φ(Φ = c) 1 2 3 4 5 6 7 8 9 10 11 12

FPS(Gc) (1,5) (2,6) (3,7) (4,8)

VPS(Gc) (1,5) (2,6) (3,7) (4,8)

APS(Gc) (1,4) (1,5) (1,6) (2,5) (2,6) (2,7) (3,6) (3,7) (3,8) (4,7) (4,8) (5,8)

70 Chap 3. Methods studied based on dynamic programming

According to the definition of binary signal state variable x in (2.8), we know that

each phase Φ corresponds to the x vector, e.g., Φ = 1: x = (1, 0, 0, 0, 1, 0, 0, 0)T. Thus,

the original definition of state s = (k, x) can be rewritten as s = (k, Φ), where k is the

vehicle queue length state.

In deterministic problem, the state st is transfered to the following state st+1 definitely

with decision at. In different traffic phase sequence mode, the next phase decision is

different. Using circle as state node and rectangle as decision node, three types of these

phase decisions are illustrated in Fig. 3.11.

st

(Φ=1)

st+1

(Φ=1)

st+1

(Φ=2)

at

(Φ=1)

at

(Φ=2)

st

(Φ=1)

st+1

(Φ=1) st+1

(Φ=2)

at

(Φ=1)
at

(Φ=2)

st+1

(Φ=4)

at

(Φ=4)

st+1

(Φ=3)

at

(Φ=3)

st

(Φ=1)

st+1

(Φ=1) st+1

(Φ=2)

at

(Φ=1)
at

(Φ=2)

st+1

(Φ=12)

at

(Φ=12)

...

...

(a) FPS (b) VPS (c) APS

Figure 3.11: Illustration of phase decision under phase modes of (a) FPS (2-connectors),

(b) VPS (4-connectors), and (c) APS (12-connectors)

Assume that we can know the traffic arrival information in the near future. It includes

two parts. One is that the upstream roadside sensors provide the exact information of

arriving traffic of the next certain seconds. The other part is to use some predicted model

to generate the estimated arrivals. The arrival information and decision making in real-

time refer to the rolling horizon approach, which we will discuss in this chapter. Here, we

make the knowing entire decision horizon Tp, which can roll ahead to the all simulation

period. The queue lengths of each lane and the signal state (using Φ) at any stage can be

obtained by using the traffic model. The optimization goal is to find an optimal control

strategy consisting of a sequence of actions π = {a0, a1, . . . , aTp−1} that minimize the

utility (cost) function. Based on the initial signal state, queue length of each lane, and

future traffic arrival information, the entire decision process can be illustrated by decision

tree. A simple phase sequence using FPS mode in the decision tree is shown in Fig. 3.12.

Then, some discussions and conclusions are carried out surrounding FPS, and can also

extend to the cases of VPS and APS.

3.3 Forward search algorithm for control and analysis 71

Decision horizon

τ=0 τ=1 τ=2 τ=3 τ=4

0=keep green

1=switch

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

1

2

3

4

1

2

2
5

6

7

8

1

(t=4<T)

(t=1<T)

(t=Tp=16)

(t=2+4<T)

(t=8+4<T)

3

4
=1 (t=0)

(t=4+1<T)

(t=4+4<T)

(t=1+1<T)

=2

=2

=3

=1

=1

=4

=2

=1

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Figure 3.12: Illustration of traffic signal control under decision tree

We construct an explicit graph with FPS mode that initially consists only the start state.

A tip or leaf state signed by solid black circle is said to be terminal; otherwise, it is said to

be nonterminal. A nonterminal tip state can be expanded by adding to the explicit graph

its outgoing b-connectors (one for each action), e.g., 2-connectors in FPS (0 for keeping

signal green and 1 for switching). In our case, set the planning horizon Tp=16 intervals.

The sum of inter-green and minimum green time is 4 intervals after phase changed. Thus,

in the planning horizon, all phases can be changed alternately at most one time, which

is shown in the bold black route. Note that when the states in mandatory intervals are

omitted, the decision step τ is not the same meaning with the normal planning step t. In

the following part, we use τ related to the step and t related to time.

In every step (or stage), the number of state variables will increase in geometrical

progression. The whole tree in the last step, will possess 216 states if the constraints for

pruning are unconsidered. It will become a large scale programming problem. In our

study, there are two ways to reduce the number of states. At first, when the traffic signal

72 Chap 3. Methods studied based on dynamic programming

is switched, the current phase adds one unless it has already been phase 4 and will return

to phase 1 cyclically. This will take four mandatory intervals, including one inter-green

interval and three minimum green intervals. So when the total time equals to the planning

period Tp, it will not create new branch anymore. Meanwhile, the information and the

evaluation value of the state will be in storage. Secondly, the same states will be merged

and the best strategy of the current interval can be made based on the evaluation function.

It is equivalent to cutting off the identical states owning the non-optimal cumulative eval-

uation values, as well as the successor states going to be produced. Note that the judgment

of the values of same states must have the same time properties, namely the total planning

time has already been implemented. That’s because the multi-step iteration processing

of the mandatory intervals makes the evaluation level different from possessions accumu-

lated step by step. Hypothetically, the states of mandatory execution will virtually add to

the queue list of the comparing states with the same steps.

A state in circle is labeled solved if it is a terminal state or if all of its subsequent

states are labeled solved. Labeling procedure can improve the efficiency in search of the

states which have the optimal evaluation values, because it is unnecessary to search below

a solved state for other sub-optimal evaluations. State position acts as the label for each

state.

With outgoing 2-connectors, there will be 2τ states positions in decision step τ . The

state position p̂(τ) = (p̂i(τ), i ∈ [1, 2τ])T of step τ can be classified as the following

recursion formula. Assume that each state owns its particular location no matter whether

the states are the same or not.
p̂(τ + 1) = (2p̂(τ)− 1, 2p̂(τ))

p̂(0) = 1

τ ∈ [0, Tp − 1], τ ∈ N.
(3.13)

It is clear that really not all the states own their positions due to the time constraints

and the repeated states. The time t should satisfy the following condition:

t(τ + 1) =

{
t(τ) + (gint + gmin), if switch signal, t(τ) ≤ Tp − (gint + gmin)

t(τ) + 1, if keep green, t(τ) ≤ Tp − 1.
(3.14)

When the planning is completed (t = Tp), the evaluation values of states in the last

step will be compared ultimately, and the optimal strategy during the planning period

can be confirmed. During one decision τ , the single step forward evaluation function is

3.3 Forward search algorithm for control and analysis 73

defined as

Jt = min
at∈A

Ewt{rt + γJt−1}. (3.15)

and the multi-step (the mandatory intervals tM = gint + gmin) forward evaluation function

is defined as

Jt+tM−1 = min
at∈A

Ewt

{
t+tM−1∑
t′=t

γt
′−trt′ + γtMJt−1

}
. (3.16)

According to (3.15) and (3.16), the optimal strategy a∗τ of the particular state in the

current stage τ can be found. All the values of the available states with the properties of

positions and planning time t should be compared. Actually, the states in the compara-

ble states set at different time t own the chance to be branched, but we just choose the

minimum one until the goal state (t = Tp) is reached. This seems like the A* algorithm.

Differently, with the multi-step iteration as the assumption in the case, our method re-

duces the branching possibilities and reaches the goal state fast. Moreover, we just retain

the state of being the optimal accumulative value among the same states at time t. During

the multi-step iteration, we should declare that, the states (exclude the start and the end

step states) transferred in mandatory intervals are ignored. They are not participated in

the process optimization. As for the reduction of the same states, it has no influence on

generating the successor states and the planning. Totally speaking, when the whole plan-

ning Tp is completed, the policy namely the set of strategies a∗τ is an optimum policy to

reach the final state. For obtaining that, two important properties are given below.

Property 1: Suppose that L denotes the number of optimal trajectory l∗ determined

by the optimal cost value J during the planning horizon Tp. There exists L ≥ 1.

Proof: The trajectory li(τ) denotes the ith position set of successor states during τ steps

(τ ≤ T − 1). The s(p̂j(τ), li(τ)) denotes the traffic state in position p̂j(τ) of trajectory

li(τ), where j = 1, 2, . . . , Nj and i = 1, 2, . . . , Ni.

It is easy to know that the optimal state s(p̂∗(τ), l∗(τ)) and the corresponding position

p̂∗(τ) exist uniquely in each step, according to (3.15) and (3.16) and the pruning con-

straints in the decision tree. The p̂∗(τ) belonging to l∗ will be discussed in the following

two cases.

Case 1: there exists J
(
p̂∗j (τ − 1)

)
= J

(
p̂∗
j̃

(τ − 1)
)
, (j 6= j̃), surely know that

s(p̂∗j(τ − 1), l∗(τ − 1)) 6= s(p̂∗
j̃
(τ − 1), l∗(τ − 1)). Suppose that, with different actions

taken to reach the next same states s(p̂∗j(τ), l∗(τ)) = s(p̂∗
j̃
(τ), l∗(τ)), the same one-step

rewards are obtained. Eliminate either of two positions (assume this one to be p̂∗
j̃
(τ)).

74 Chap 3. Methods studied based on dynamic programming

The remaining position p̂∗j(τ) is determined by different actions, see Fig. 3.13(a). Con-

sequently, p̂∗j(τ) simultaneously belongs to different l∗(τ), i.e., l∗i (τ) and l∗
ĩ
(τ),(i 6= ĩ).

Thus, L ≥ 1 is satisfied.

Case 2: there exists J
(
p̂∗j (τ − 1)

)
6= J

(
p̂∗
j̃

(τ − 1)
)
, (j 6= j̃) of different traffic

states. Suppose that, with different actions taken to reach the next same states, we have

s(p̂∗j(τ), l∗(τ)) = s(p̂∗
j̃
(τ), l∗(τ)), the same one-step rewards are obtained. Reserve the

position (assume this one to be p̂∗j(τ)) which can obtain the optimal cost value, and re-

move the other one p̂∗
j̃
(τ). Thus, the remaining position p̂∗j(τ) is determined by the optimal

action. Nevertheless, there may exist J
(
p̂∗j (τ)

)
= J

(
p̂∗
j̃′

(τ)
)
, (j 6= j̃′) , and two differ-

ent optimal states and the corresponding positions exist, see Fig. 3.13(b). Consequently,

p̂∗j(τ) and p̂∗
j̃′

(τ) belong to l∗i (τ) and l∗
ĩ′
(τ) (i 6= ĩ′), respectively. Thus, L ≥ 1 is satisfied.

Actually, in each step, the position belongs to at least one trajectory. Therefore, Nj ≤ Ni.

�

* *

ˆ ˆ()
j j

p or p

*

ˆ 1
j

p

*

ˆ 1
j

p

*
a

*
'a

*

ˆ 1
j

p

*

ˆ 1
j

p

*
a

'a

*
''a

*

'
ˆ ()

j
p

* *

ˆ ˆ()
j j

p or p

(b)(a)

Figure 3.13: Explanation of different cases of the optimal positions (the dash-arrow in (a)

means existing the chosen action to the same states, but for simplicity, we don’t choose

it for next planning any more; the dash-arrow with vertical bar in (b) means not existing

the chosen action to the same state, but it may still reach to other state determined by the

optimal action.)

As in the proof above, the optimal trajectory is likely not unique. But during the

planning horizon, the performances are almost the same due to the same evaluation values.

In this global optimization, just one of the optimal trajectories l∗ is adopted. Based on this

assumption, we have the following property.

3.3 Forward search algorithm for control and analysis 75

Property 2: The optimal state s(p∗(τ), l∗(τ)) determined by one of the optimal tra-

jectories l∗(τ) has the position p∗(τ) which is exclusive as well as the position p∗(τ − 1)

of its previous node that is related to the particular previous state.

Proof: The chosen optimal trajectory l∗(τ) is determined by the optimal position p̂∗(τ) ∈
p̂(τ). According to the rule of position labeled arrangement, after the optimal position

p̂∗(τ) in the planning horizon is found, the position of previous state p̂∗(τ − 1) can be

written as:

p̂∗(τ − 1) =

{
p̂∗(τ)/2, if p̂∗(τ)mod2 = 0

(p̂∗(τ) + 1)/2, if p̂∗(τ)mod2 = 1.
(3.17)

Obviously, when the position p̂∗(τ) we choose is unique (other optimal position has

been eliminated in the rule), the position of previous state p̂∗(τ − 1) is exclusive, and the

optimal trajectory l∗ chosen is uniquely determined. �

Corresponding to this proof, the action also can be derived backward as

u∗(τ) =

{
1, if p̂∗(τ)mod2 = 0

0, if p̂∗(τ)mod2 = 1.
(3.18)

Consequently, the optimal phase can also be obtained successively while the action

u∗(τ) is occurred, namely the phase is unchanged as u∗(τ) = 0 and plus one as u∗(τ) = 1.

Actually, after we obtain all the optimal position during planning horizon Tp, with the

initial phase setting Φ(p̂(0)), the optimal phase can be found as follows:

Φ(p̂∗(τ + 1)) =

{
Φ(p̂∗(τ)), if p̂∗(τ + 1) = 2p̂∗(τ)− 1

Φ(p̂∗(τ)) + 1, if p̂∗(τ + 1) = 2p̂∗(τ).
(3.19)

When the phase spills, it will return to phase 1 cyclically.

For example, the optimal position (may not be unique) of the goal state is supposed to

be p̂∗(7) = 12. According to (3.17) and (3.18), we can get the plan in Fig. 3.14. The dash

arrows between the optimal positions represent the backward search based on the rule.

After all the optimal positions are found, the optimal policy and the green phase of traffic

states will be planned regularly.

With outgoing b-connectors (e.g., VPS mode with outgoing 4-connectors and APS

with outgoing 12-connectors), the basic principle in FPS can extend to a normal way.

Thus, (3.13) can be developed as
p̂(τ + 1) = (bp̂(τ)− (b− 1), bp̂(τ)− (b− 2), . . . , bp̂(τ))

p̂(0) = 1

τ ∈ [0, Tp − 1], τ ∈ N.
(3.20)

76 Chap 3. Methods studied based on dynamic programming

12

3

62

1

1

1

1

0 1 2 3 4 5 6 7
Step τ:

State s:

Tp=16

ˆ (7) 12, 0p

ˆ (0) 1p

*
(0) 0, 1u Φ

(3) 1, 2u Φ

(5) 1, 3u Φ

(6) 1, 4u Φ

ˆ ˆ(6) (7) / 2 , 0p p

(1) 0 , 1u Φ

(2) 0, 1u Φ

(4) 0, 2u Φ

...

Figure 3.14: Example of fixed phase sequence based on optimal position (assume initial

Φ = 1 and $ = p̂∗(τ)mod2)

Once the optimal policy is found, the position of previous state p̂∗(τ − 1) can be

calculated inversely. Thus, (3.17) can be normalized as

p̂∗(τ − 1) =

p̂∗(τ)/b, if p̂∗(τ)modb = 0

(p̂∗(τ) + (b− 1))/b, if p̂∗(τ)modb = 1

. . ., . . .

(p̂∗(τ) + 1)/b, if p̂∗(τ)modb = b− 1.

(3.21)

After we obtain all the optimal position during planning horizon Tp, with the initial phase

setting Φ(p̂(0)), the optimal phase in (3.19) can extend as follows:

Φ(p̂∗(τ + 1)) =

Φ(p̂∗(τ)), if p̂∗(τ + 1) = bp∗(τ)− (b− 1)

Φ(p̂∗(τ)) + 1, if p̂∗(τ + 1) = bp∗(τ)− (b− 2)

.

Φ(p̂∗(τ)) + b− 1, if p̂∗(τ + 1) = bp∗(τ).

(3.22)

When the phase spills, it will return to the corresponding phase calculated according to

Φ′(p̂∗(τ + 1)) =

{
Φ(p̂∗(τ + 1)), if Φ(p̂∗(τ + 1)) ≤ Φm

Φ(p̂∗(τ + 1))modΦm , if Φ(p̂∗(τ + 1)) > Φm
(3.23)

where Φm is the maximum phase in each mode.

Rolling horizon approach

DP assures a global optimum solution, and it requires complete knowledge of arrivals

over entire control period. In real-time traffic control problem, a rolling planning horizon

3.3 Forward search algorithm for control and analysis 77

approach is commonly used with the new available information from detectors. The signal

planning horizon to make the optimal policy consists of two parts: the ‘head’ and the ‘tail’.

Every interval in the ‘head’ of the horizon can receive the real-time available data from

detectors, whilst the intervals in the ‘tail’ of the horizon are supplied with the predicted

data obtained by a variety of approaches. Fixed-tail comes very close to the optimal and

represents a feasible and very promising approach to real-time control [19]. In our model,

the fixed-tail will be used. Accordingly, the ‘tail’ consists of a fixed flow related to the

moving average of the flow rate.

It is noteworthy that the optimal policy is calculated for the entire horizon, but only

the head period of the newly generated plan is implemented due to the actual data. When

the head period expires and new arrival information becomes available, the process rolls

forward and repeats itself as shown in Fig. 3.15. The process optimization to find the

optimal or near optimal policy which is implemented for the next time horizon should be

done in real-time, at least before new information becomes available. Actually, rolling

period tr can be set to various values, just satisfying less than the ‘head’ period.

Planning Horizon Tp

Head(detected) Tail(predicted)

Time:

Rolling tr:

0 th Tp

tr th+tr Tp+tr0

Implementation New information

()
r h
t t

Figure 3.15: Rolling horizon approach

In the thesis, the traffic model is about the time-varying function of the state transfers

which are executed by taking the optimal policy in planning horizon. During the horizon,

we make a plan by using the detected data of the future vehicle arrivals and predicted data

obtained by the estimation based on the arrival rates. The rolling horizon approach makes

the controller to implement the strategies of the ‘head’ (or less then ‘head’) intervals of

the horizon. As long as the running time of the optimization is less than the period of

rolling forward, new arrival information can be planned during the next rolling horizon

78 Chap 3. Methods studied based on dynamic programming

successively. Hence, traffic states will be transferred continuously by taking the optimal

policy. In the simulation section, we will show that the most time consumed is much

less than the implemented intervals of the ‘head’ period in practice. The real-time traffic

control could be guaranteed.

In summary, the procedure of our approach with phase sequence control mode is

shown in Algorithm 2.

Algorithm 2 FSDP with phase sequence mode (b=2, 4, 12) signal control algorithm
1: choose an initial state s0, set decision step τ = 0, planning time t = 0;

2: while t ≤ Tp do
3: compare the cumulative evaluation values J(s) for all available states s ∈ S ; choose the

optimal value J(s∗) and its corresponding position p̂∗(τ) of step τ ;

4: search p̂(τ + 1) by using (3.20) under p̂∗(τ);

5: τ = τ + 1;

6: for all p̂i(τ) ∈ p̂(τ) do
7: if mod(p̂i(τ),b)=1; then
8: t = t+ 1 . case of signal unchanged, one more green extention

9: calculate the transfered state and its value by solving (3.15) under satisfying (3.14);

10: else
11: t = t+ 4 . case of signal switched, 4 more mandatory intervals

12: calculate the transfered state and its value by solving (3.16) under satisfying (3.14);

13: end if
14: end for
15: add the new transfered states into the states set S;

16: search and compare the values of same states, then record the position of the optimal one,

whereas other positions to be null;

17: set the position of previous branched state to be null until the goal state (t = Tp) appears;

18: set states with positions being null to be unavailable;

19: end while
20: according to (3.21), (3.22) and (3.23), the optimal strategy of each step is achieved.

In the next section, we discuss the application of the FSDP algorithm in numerical

experiments.

3.3 Forward search algorithm for control and analysis 79

3.3.3 Case study and analysis

The proposed algorithm is implemented to the cases of kinds of phase control modes at

a typical isolated intersection illustrated in Fig. 2.1. Here, we use the traffic flow ratio ρ̂

instead of relative traffic load ρ in (3.11). ρ̂ is more precise than ρ to represent the traffic

load, which is defined as follows based on the conventional 4-phase combinations.

ρ̂=
V

Sa
=

1800
4∑
c

T∑
t

max
n∈Gc

{kt(n)}

T · Sa
(3.24)

where T is the entire simulation horizon; V is the sum of maximum volume of each traffic

flow combination; Sa is the saturation flow per lane, i.e., 1800 veh/h; n = 1, 2, . . . , 8.

The performance measures are the average traffic delay at whole intersection and the

vehicle queue length in each traffic flow combination. The algorithm efficiency is also

important. In simulation, we compare the proposed algorithm (FSDP) and its rolling

version (one step ahead FSDP-R) with the optimal fixed-time control method and adaptive

control method Q-learning. All the experiments are implemented in MATLAB 64-bits

with 3.8 GiB, Intelr Core i5 CPU 750, 2.67GHz × 4.

The traffic scenarios with symmetric and asymmetric arrival flows are simulated, as

shown in Tab. 3.4. The entire simulation time is T = 1600 intervals.

Table 3.4: Traffic scenarios of asymmetric and symmetric average flow rates

Flow rate (veh/int) Traffic volume by ITM (veh/h) Ratio ρ̂

Traffic Scenario A (0.10,0.20,0.10,0.20) (356,732,363,735) 0.6262

Traffic Scenario B (0.20,0.20,0.20,0.20) (746,720,739,721) 0.8231

The results of average traffic delay are shown in Tab. 3.5. It is clearly shown that as

a whole our proposed algorithm FSDP (FSDP-R) has a good performance to reduce the

traffic delays by comparing with Optimal FC and Q-learning methods. Notably, the phase

sequence modes play an important role in these delay reductions. In Traffic Scenario B,

using Q-learning the results of APS mode have about 55% delay reductions from FPS and

VPS, and using FSDP the results of APS mode have about 68% and 72% improvements

from FPS and VPS, respectively. Thus, on the other hand, it indicates that APS mode has

a great potential to adaptive traffic signal control. Meanwhile, VPS mode is better than

FPS mode. However, in practical, with rolling horizon approach (one step rolling ahead

in our case), FSDP will take much computation time and be hard to operate in real-time.

80 Chap 3. Methods studied based on dynamic programming

Table 3.5: Results of average traffic delay (s) in Scenario A and B

Traffic Scenario A B

Phase sequence FPS VPS APS FPS VPS APS

Optimal FC 1 24.63 50.04

Q-learning 20.08 18.43 12.30 49.35 48.88 22.35

FSDP 18.55 14.65 8.78 45.38 40.48 12.65

FSDP-R 2 14.16 12.20 - 37.88 36.64 -
1 In FC, only operate in FPS.
2 In FSDP-R with APS, results are not obtained as computation complexity.

Table 3.6: Comparisons of run time (s)

Traffic Scenario A B

Phase sequence FPS VPS APS FPS VPS APS

Optimal FC 0.1 0.1

Q-learning 197.1 368.2 824.3 198.4 370.6 830.2

FSDP 4.4 16.1 369.2 10.5 74.4 1010.7

FSDP-R 55.1 243.6 - 125.6 1139.5 -

The simulation results of vehicle queues (the maximum queue length in each combi-

nation) and the duration of green phase are shown in Fig. 3.16, where the traffic demand in

Scenario A is chosen. For comparison, FSDP-R(VPS) performers the best than optimal

FC and Q-learning. FSDP-R(VPS) and Q-learning(VPS) can adjust the green duration

and sequences intelligently according to the changing traffic arrivals, especially in FSDP-

R(VPS) method. In the phase 1 and phase 3 with flow rate 0.10 veh/int, the total green

phase duration of FSDP-R(VPS) and Q-learning(VPS) are both less than optimal FC, the

less appearances as well. On the other hand, in phase 2 and phase 4 with high flow rates

0.20 veh/int, the total green phase duration of FSDP-R(VPS) and Q-learning(VPS) are

both more than optimal FC and with more appearances.

3.3 Forward search algorithm for control and analysis 81

800 810 820 830 840 850 860 870 880 890 900
0

5

10

15

Ve
hic

leF
Qu

eu
eFi

nFP
ha

se
F1F

(L
an

eF1
an

dF5
)

OptimalFFC
Qlearning(VPS)
FSDP−R(VPS)

Optimal FC

FSDP-R(VPS)

Qlearning(VPS)

(a) The evolution of queue (Y-axis) in Phase 1 (Lane 1 and 5) between time step 800 and 900 (X-axis)

800 810 820 830 840 850 860 870 880 890 900
0

5

10

15

Ve
hic

leF
Qu

eu
eFi

nFP
ha

se
F2F

(L
an

eF2
Fan

dF6
)

OptimalFFC
Qlearning(VPS)
FSDP−R(VPS)

Optimal FC

FSDP-R(VPS)

Qlearning(VPS)

(b) The evolution of queue (Y-axis) in Phase 2 (Lane 2 and 6) between time step 800 and 900 (X-axis)

800 810 820 830 840 850 860 870 880 890 900
0

5

10

15

Ve
hic

leF
Qu

eu
eFi

nFP
ha

se
F3F

(L
an

eF3
Fan

dF7
)

OptimalFFC
Qlearning(VPS)
FSDP−R(VPS)

Optimal FC

FSDP-R(VPS)

Qlearning(VPS)

(c) The evolution of queue (Y-axis) in Phase 3 (Lane 3 and 7) between time step 800 and 900 (X-axis)

800 810 820 830 840 850 860 870 880 890 900
0

5

10

15

Ve
hic

leF
Qu

eu
eFi

nFP
ha

se
F4(

La
ne

F4F
an

dF8
)

OptimalFFC
Qlearning(VPS)
FSDP−R(VPS)

Optimal FC

FSDP-R(VPS)

Qlearning(VPS)

(d) The evolution of queue (Y-axis) in Phase 4 (Lane 4 and 8) between time step 800 and 900 (X-axis)

Figure 3.16: Comparisons of queue evolutions and signal sequences among the Optimal

FC, Q-learning(VPS), and FSDP-R(VPS)

82 Chap 3. Methods studied based on dynamic programming

Details about the computation run time in seconds by different methods are given in

Tab. 3.6. Obviously, the run time in FSDP with APS is taken much more than it with FPS

and VPS. It could be explained by that the APS has 12-connectors (phase possibilities) so

that the state space in decision tree possesses huge representations. The chance of same

states get decreased as signal states increased. In this condition, the algorithm can not

omit the branches largely so that it occupies much memory and time in computation. It

ensures that in FSDP-R with APS, the computation is impractical for the traffic signal

control although the traffic delay may be more reduced. However, from the comparisons

of performance measures and time cost (e.g., 74.4/(1600 × 2) = 0.02 s/step), FSDP

is after all a good choice in real-time adaptive signal control with conventional 4-phase

modes of FPS and VPS.

3.4 Limitation of DP based algorithms

Despite the simple form exhibited by Bellman’s equation and the global optimality it

guarantees, DP is often of little practical value. A problem formulated in DP usually has

the difficulty of computational requirement for finding optimal solution. Powell in his

study [87] refers to the computation problem as “three curses of dimensionality”, which

is related to the dimensions of state space, information space (space of random noise),

and decision space. Bellman’s equation uses the state variable, information variable, and

decision variable to calculate the value function and make optimal decision. The compu-

tation complexity is in exponential order to the size of each variable space. For example,

there is an isolated intersection with 8 lanes in 4-phase mechanism. Each lane can occupy

19 at most vehicles, the arrival information is either 0 or 1 for each lane and the signal

decision for each lane is either 0 remaining green or 1 switching the current status. Thus,

the computation order is 4× 208 × 28 × 28. The memory requirement for a look-up table

approximation of value function J is “tremendously high” and impossible for a controller

to find optimal solutions in real-time.

In addition, another difficulty of DP is that a complete set of information for the whole

problem is required. For operations in real-time, we usually do not have complete infor-

mation a priori. This makes DP problem in a short term planning, which effects the

performance in whole horizon. Research has been found that some approaches, such as

3.4 Limitation of DP based algorithms 83

rolling horizon approach, model predictive control, can weaken this effects. But, it will

cost additional time especially in DP problems.

To verify the DP issues above in the application of traffic signal control, we proposed

two DP based algorithms for practical investigation and understood the difficulties of DP

in depth. Also, some valuable information was discovered.

In our early research, an optimal policy can be found using DP algorithms such as

value iteration and policy iteration. Both of them are backward search algorithms to

obtain the global optimum policy whereas having some disadvantages of evaluating the

complete state space. In MDP, the transition probability p(st, at, st+1) is the probability

of state st transforming to next state st+1 by taking action at, and the reward function

Rt(st, at, st+1) is the immediate effect of action at. By using traditional DP algorithms to

solve Bellman’s equation, the knowledge of transition probability and reward function are

required. It is very hard to obtain the possibility matrix in the whole state space. More-

over, state values are stored in a look-up table, where the dimension of the table is equal

to the dimension of the state space. We have to loop over the entire state-action space

to evaluate the optimal decision so that the optimal stationary deterministic policy can be

obtained in the convergence of iteration. In our case study, the value iterative algorithm

works for a simple traffic signal control problem. Although the controller appears satis-

fied performance, this algorithm is offline with impractical results due to the drawbacks

of DP mentioned above.

In order to bring principles of DP to real-time control, there are two immediate tasks:

first, reducing the dimensionality of control problem; second, accumulating limited sensor

information progressively to improve knowledge of underlying control process.

Therefore, in the second type algorithm, we try to investigate a forward DP using

the search tree. The planning problem can be formulated by the shortest path problem

from the predefined original state to the goal state (or termination of time horizon). By

introducing Monte-Carlo method, the state transition can be completed in a deterministic

way. The problem can still be a stochastic one when it processes the independent extra-

neous random information (noise). Meanwhile, rolling horizon approach is applied to the

algorithm in order to guarantee the most use of limited receiving information. In FSDP

algorithm, although we use the accessible states represented in a graph without evaluat-

ing all the states in traditional DP, limitations of the planning horizon time (Tp) and the

increased action space (b-connectors) still exist. These limitations largely reduce the com-

84 Chap 3. Methods studied based on dynamic programming

putation efficiency, which impairs the capability for practical operations, such as the case

of FSDP with APS mode for adaptive traffic signal control. In detail, assuming the tree

is completed, when we have Tp = 16 with APS mode that b = 12, the last stage has 1216

states. In the proposed algorithm with time constraints and same states brunches omitted,

this huge state space will not appear, but still too large to compute.

Fortunately, a great number of studies are investigating learning systems based on DP

for solving stochastic optimal control problems, arguing that DP provides the appropriate

basis for compiling planning results into reactive strategies for real-time control, as well

as for learning such strategies when applied to the tasks involving uncertainty. Actually,

heuristic function such as in A* is usually hard to find. Therefore, learning technique to

estimate this heuristic information should be reasonably noticed. Approximate dynamic

programming (ADP) based on this becomes a good candidate to address the limitation

of DP. We will introduce ADP approach in the next chapter and propose an algorithm

using ADP with the machine learning technique, i.e., recursive least-squares temporal

difference learning (RLS-TD(λ)), for real-time adaptive traffic signal control.

3.5 Summary

In this chapter, we discussed two proposed DP based algorithms for adaptive traffic signal

control. Then, some limitations of DP were discovered and concluded in the perspective

of methodology.

For a simple 2-phase intersection problem, the value iteration algorithm is imple-

mented by using stochastic state transition model. The idea of decomposition of traffic

states is proposed for the construction of probability transition matrix, which is usually

hard to receive but is really done in our case. The optimal stationary policy is obtained by

calculating the value iteratively for convergence. By the case study, this method performs

better than traditional fixed-time and actuated control. Unfortunately, it is an offline op-

eration and costs much time for convergence. Even in changing traffic conditions, the

optimal stationary policy should be computed repeatedly.

Consequently, we developed a forward search DP algorithm based on A*. This algo-

rithm tries to save computation time and is applied to the deterministic state transition.

The application of FSDP is in a typical intersection problem. Importantly, the achieve-

ment of FSDP algorithm is about the successful application of real-time adaptive signal

3.5 Summary 85

control. Additionally, rolling horizon approach can be implemented into the algorithms

for realistic application with limited traffic arrival information in real-time. But the phase

optimization limits in FPS (fixed phase sequence) and VPS (variable phase sequence)

modes, which are conventional 4-phase mechanisms. In extended work, this algorithm

appears computation burden for the proposed concept of APS (adaptive phase sequence)

mode due to the states largely increased. It is found that FSDP and its rolling version

operate well on the performances of reductions of average traffic delay and vehicle queue

length. As long as not with too small rolling steps ahead (such as one step), FSDP could

guarantee the real-time operations in FPS and VPS.

As we can see that many improvements are achieved by using APS mode in FSDP.

Whereas, DP has the limitations of computation in large state space and incomplete in-

formation in real-time. We try to use another potential approach, namely approximate

dynamic programming (ADP) to address these difficulties. The ADP with a particular

learning method that we prepare to use will be introduced in the next chapter, which is

the final approach for real-time adaptive traffic signal control at isolated intersection and

whole network.

86 Chap 3. Methods studied based on dynamic programming

CHAPTER 4

APPROXIMATE DYNAMIC

PROGRAMMING WITH RLS-TD(λ)

LEARNING ALGORITHM

4.1 Introduction

Approximate dynamic programming is a derivative of DP. The formulation of ADP is

firstly proposed by Werbos [89] and developed by many researchers. In general, there are

three distinctive features of ADP approach, regardless of the specific applications [19].

First, ADP aims to significantly reduce computational requirement by using approxima-

tion techniques estimating the true value function in Bellman’s equation. Second, ADP

adopts a forward process rather than the backward recursive calculation in conventional

DP algorithm. In forward process, value function is calculated only upon visiting the

actual state rather than the entire state space. The state transition only happens after

exogenous information is observed and a decision is taken. Third, the adaptation of ap-

proximation using machine learning technique is employed in ADP. The parameters in

adaptation are tuned incrementally and finally converge to optimal ones.

In principle, ADP should be able to approximate the solution of any problem in control

or planning which can be formulated as an optimization problem [128]. For traffic signal

88 Chap 4. Approximate dynamic programming with RLS-TD(λ) learning algorithm

control problem formulated in dynamic modeling system, research has been found that

ADP has a potential to solve the computational requirement which DP cannot tackle.

In this chapter, we try to make ADP practical for the real-time implementation of

adaptive traffic signal control system. The system process is stochastic because it is influ-

enced by exogenous and random vehicle arrivals. The state transition here is deterministic

and the system receives real-time information of future arrivals before evaluating a deci-

sion. In the following context, we will introduce some fundamentals of ADP and machine

learning. Online algorithms for the traffic problems will be designed. This chapter is or-

ganized as follows.

Firstly, we introduce approximation structures of ADP, which often adopts the esti-

mated function of neural network or linear function. Secondly, the normal learning tech-

niques, such as gradient descent, temporal difference (TD(λ)), for updating approximation

are presented. Then, we will suggest to integrate recursive least-squares temporal differ-

ence learning (RLS-TD(λ)) and related scheme to ADP approach. Lastly, we propose

algorithms for isolated intersection signal controller and traffic network control based on

the previous model constructions.

4.2 Structure of ADP

In ADP, we define a continuous approximation function J̃(·, θ): S × RK → R to replace

the exact cost-to-go function J(·): S → R, where θ is a K-dimensional parameter vector

of J̃ , and S is state space. At each discrete temporal interval t, we can calculate a greedy

decision a∗t (st) by using J̃ . That is,

a∗t (st) = arg min
at∈A

Ewt

{
rt + γJ̃(st+1, θt)

}
. (4.1)

Meanwhile, the objective value function in (3.9) can be observed by

Ĵ(st) = min
at∈A

Ewt

{
rt + γJ̃(st+1, θt)

}
, (4.2)

where Ĵ(st) is the observed value of the current state according to the environment.

To approximate the cost-to-go function, one usually tries to choose a parameter vector

θ so as to minimize some error metric between the function J(·) and J̃(·, θ). A common

objective for updating approximation function is to find

θ∗ = arg min
θ∈RK

∥∥∥J − J̃∥∥∥ , (4.3)

4.2 Structure of ADP 89

by calculating correction increment ∆θ and to update estimation through

θt+1 = θt + ∆θt (4.4)

where ‖·‖ is the Euclidean norm, and the correction increment ∆θ is usually obtained

from machine learning process.

Convergence of θ to θ∗ by using an incremental process expressed by (4.4) is guaran-

teed if specific approximation structures and learning techniques are used [129].

As we can see from (4.2) and (4.4), instead of computing the optimal J which is huge-

dimensional, we compute the low-dimensional parameter vector θ. By using machine

learning technique, ADP makes the estimated value of being the current state to approach

the true value function in Bellman’s equation. Thus, it can avoid the tremendous computa-

tion in DP and just operates forward in time to calculate the estimated value of the visiting

actual state. Next, we will discuss ADP approximation function and learning techniques

in detail. Once appropriate approximation architecture is established, learning techniques

can then be applied to update parameters of the approximation function progressively.

An approximation function is also called an approximator in this thesis. There are

two common groups for continuous functions. One is the non-linear approximator, such

as neural networks, and the other one is the linear approximator. Other forms of being not

continuous are aggregation, look-up table, etc. Here, we mainly introduce the continuous

approximators and their gradient descent rules for updating parameters.

4.2.1 Neural networks approximation

ADP architecture employed by neural networks has a rich literature. The early research

about this refers to Neuro-Dynamic Programming (NDP)[89, 86] and its related schemes,

such as Adaptive Critic Designs (ACDs) [130]. The extensive research in NDP can also be

categorized as [91] (1) heuristic dynamic programming (HDP); (2) dual heuristic dynamic

programming (DHP); and (3) globalized dual heuristic dynamic programming (GDHP).

Variations from these three basic design paradigms are also available, such as action de-

pendent (AD) versions of the above architectures. AD refers to the fact that the action

value is an additional input to the critic network. Action dependent variants from the

original three paradigms will be denoted with an abbreviation of “AD” in front of their

specific architecture, such as ADHDP. Noticeably, the ADP with neural networks is usu-

ally analyzed in continuous-time problems.

90 Chap 4. Approximate dynamic programming with RLS-TD(λ) learning algorithm

Normally in NDP, there are three modules, namely the model module, action module,

and critic module. Considering an online learning algorithm using ADHDP, the neural

networks in ADP just refer to action network and critic network. The action network is

used to generate the control value and the critic network is used to evaluate the efficiency

of the control value generated by the action network. The outputs of both networks will be

adjusted through tuning the weights in them in order to make the equation of the principle

of optimality more balanced. The structure of ADHDP [131] can be described in Fig. 4.1.

+

+

Action
st

Model

Critic

rt

Z
-1

 Z
-1

-

st+1at

tJ

1t
J

Figure 4.1: The schematic diagram of the ADHDP framework (the solid lines represent

signal flow, while the dashed lines are the paths for parameter tuning)

The structure of the action network and the critic network is shown in Fig. 4.2. The

basic idea in NDP (or ACDs) is to adapt the weights of critic network to make the approx-

imation function satisfy the modified Bellman’s equation in (4.2). The design of critic

network and its training are very important. Control value generated from action network

is adjusted through the tuning weights in action network, according to the feedback value

of critic network. Based on [91], non-linear three layered (one hidden layer) feed-forward

neural networks with hyperbolic tangent activation function

Th(y) =
1− exp(−y)

1 + exp(−y)
(4.5)

is considered. The structure and tuning weights of critic network and action network are

presented as follows.

4.2 Structure of ADP 91

a

Action network Critic network

(1)

a
W

(1)

c
W

(2)

c
W

(2)

a
W

J

1

s
x

in

s

N
x

1

s
x

in

s

N
x

in 1

s
:

N
x a

Figure 4.2: The structure of the action network and critic network

Critic network

In the critic network, the estimated value J̃t is

J̃t =

Nch∑
i=1

W (2)i
c (t)gic(t), (4.6)

gic(t) = Th(hic(t)), i = 1, 2, ..., Nch, (4.7)

hic(t) =

Nin+1∑
j=1

W (1)i,j
c (t)xjs(t), i = 1, 2, ..., Nch, (4.8)

where hic is the ith hidden node input the critic network; gic is corresponding output of the

hidden node; W (1)i,j
c is the generic input weight of the critic network to be learned and

W
(2)i
c is the generic output weight; Nch is the number of neurons in the hidden layer and

Nin + 1 is the number of inputs into the critic network including the action at from the

action network; xjs is the jth state (or action when j = Nin + 1) input for critic network.

The critic network is used to provide J̃t as an approximation of Jt at time t. The

prediction error is defined as

ec(t)=rt + γJ̃t − J̃t−1 (4.9)

and the critic network is trained by minimizing the objective function

Ec(t) =
1

2
e2

c(t). (4.10)

The weight update rule for the critic network using a gradient descent adaptation is given

by

Wc(t+ 1) = Wc(t) + ∆Wc(t) (4.11)

92 Chap 4. Approximate dynamic programming with RLS-TD(λ) learning algorithm

∆Wc(t) = lc(t)(−
∂Ec(t)

∂Wc(t)
) (4.12)

∂Ec(t)

∂Wc(t)
=
∂Ec(t)

∂J̃t

∂J̃t
∂Wc(t)

(4.13)

where lc(t) > 0 is the learning rate of the critic network at time t, which usually decreases

with time to a small value, and Wc is the weight vector in critic network.

Action network

In the action network, the output control (action) value at can be derived from

at = Th(ν(t)), (4.14)

ν(t) =

Nah∑
i=1

W (2)i
a (t)gia(t), (4.15)

gia(t) = Th(hia(t)), i = 1, 2, ..., Nah, (4.16)

hia(t) =

Nin∑
j=1

W (1)i,j
a (t)xjs(t), i = 1, 2, ..., Nah, (4.17)

where hia is the ith hidden node input the action network; gia is corresponding output of

the hidden node; W (1)i,j
a is the generic input weight of the action network to be learned

and W (2)i
a is the generic output weight; Nah is the number of neurons in the hidden layer

and Nin is the number of inputs into the action network.

The principle in adapting the action network is to indirectly back propagate the error

between the desired ultimate objective, denoted by Ut, and the approximate function J̃t
from the critic network.

The weight updating in the action network can be formulated as follows. Let

ea(t) = J̃t − Ut (4.18)

and the action network is trained by minimizing the objective function

Ea(t) =
1

2
e2

a(t). (4.19)

4.2 Structure of ADP 93

The weight update rule for the action network is given by using a gradient descent adap-

tation

Wa(t+ 1) = Wa(t) + ∆Wa(t) (4.20)

∆Wa(t) = la(t)(− ∂Ea(t)

∂Wa(t)
) (4.21)

∂Ea(t)

∂Wa(t)
=
∂Ea(t)

∂J̃t

∂J̃t
∂at

∂at
∂Wa(t)

(4.22)

where la(t) > 0 is the learning rate of the action network at time t, which usually de-

creases with time to a small value, and Wa is the weight vector in action network.

From the structure of neural networks in ADP and the corresponding gradient descent

rules for adaptation, this ADP proposes a feasible and effective solution for reinforcement

learning problem with continuous states and actions, avoiding the “ curse of dimension-

ality” problem in DP. However, there are still some problems as follows [131]. Firstly,

the poor choice of initial values of network weights may lead to poor effects. Sometimes

we need do some offline training by simulation for initial weights setting. Secondly,

limitation is the desired ultimate objective U setting. Usually, the reward is set to 0 for

encouragement and -1 for punishment, and the total return is zero if the action is an opti-

mal one. But in complex cases, a continuous reward J̃ (not be 0) would be a better choice.

Thus, the large discrepancy on U might lead to a large training error in action network.

In a word, despite computation advantages in ADP, the neural network approximation

appears some difficulties in network training, especially for a complex and discrete time

problem. Next, we will introduce another approximation architecture, namely the linear

function approximation which is easy to train and implement.

4.2.2 linear function approximation

The literatures on ADP with linear approximator are relatively rich and well proved, be-

cause the linear function is simpler for both implementation and training than the neural

network approximator mentioned above. More importantly, the linear case has a broad ap-

plication for practical discrete-time problems with discrete space. In supervised learning,

such as the neural network training, targets are the corresponding exact outputs. While in

unsupervised learning, we do not have the source of exact outputs. Reinforcement learn-

94 Chap 4. Approximate dynamic programming with RLS-TD(λ) learning algorithm

ing technique allows a system to learn from its own interactions with the process, which

belongs to unsupervised learning and is well applied to linear approximator application.

A linear approximator can be expressed as

J̃(s, θ) =
K∑
i=1

θ(i)φi(s) (4.23)

where θ(i) is the parameter and φi is a mapping function defined on state s ∈ S. The

function φi refers to the feature-extraction function (or basis function) that maps state to

valued feature vector. Each parameter θ(i) refers to the associated weight.

Using vector expression, (4.23) can also be written as

J̃(s, θ) = θTφ(s) (4.24)

or

J̃(θ) = Φθ (4.25)

where θ = (θ(1), θ(2), . . . , θ(K))T is a column parameter vector, and

φ(s) = (φ1(s), φ2(s), . . . , φK(s))T is the column vector of feature functions, and Φ is

viewed as an |S| ×K matrix whose ith column is equal to φi.

Based on feature-extraction function, the architecture of linear function approximation

is illustrated in Fig. 4.3.

s Feature Extraction

Mapping

State ()s
Feature

Vector

Parameter Vector

Linear Mapping

Approximator

(,) ()J s s

Figure 4.3: Linear feature-based architecture

To analysis the adaptation of parameter vector θ, as usual, the state value function Jπ

is estimated from experience generated using policy π. It means that we use the action

determined by policy π to choose the next state that we visit. This is known as on-policy

learning. The true value of policy Jπ is defined as

Jπ(s) = E

{
∞∑
t=0

γtrt(s, A
π(s))

}
(4.26)

4.2 Structure of ADP 95

where Aπ(s) is the fixed policy on state s.

It turns out that if we use on-policy learning, the linear approximator J̃ with parameter

vector θ is used to approximate true value function Jπ under the selected policy π. The

function approximation should be fitted to minimize the function

min
θ

∑
s

dπs (Jπ − J̃)
2

(4.27)

where dπs is the steady-state probability of being in state s while following policy π.

The θ can be optimized by using method in supervised learning. However, the func-

tion approximator has limited state resources and limited solutions. To address this, we

use the observed output Ĵt in (4.2) under the greedy policy solved in (4.1), and we can

approximate it using J̃ with adaptation parameter learned in unsupervised learning (rein-

forcement learning). Thus, in order to find the best value of θ, we can do by

min
θ

1

2
E(Ĵ − J̃)2 (4.28)

where constant 1
2

is just to be added when doing the derivative of quadratic function.

The expected value refers to a stochastic distribution, which can be solved on observed

examples. An ideal goal in (4.28) would be to find a global optimum θ∗. Reaching this

is sometimes possible for simple function approximators such as linear ones rather than

the complex ones such as neural networks. In addition, in linear case there is only one

optimum θ∗. Thus, any method guaranteed to converge to or near a local optimum is

automatically guaranteed to converge to or near the global optimum [58]. It is natural to

apply a gradient descent rule for the adaptation step,

θt+1 = θt + ∆θt

= θt − ηt(1
2
∇θt(Ĵ(st)− J̃(st, θt))

2)

= θt + ηt(Ĵ(st)− J̃(st, θt))∇θt J̃(st, θt)

(4.29)

where ηt > 0 is the step-size learning parameter that satisfies the following conditions for

convergence.
∞∑
t=0

ηt =∞ ;
∞∑
t=0

ηt
2 <∞. (4.30)

96 Chap 4. Approximate dynamic programming with RLS-TD(λ) learning algorithm

Since J̃(s, θ) =
K∑
i=1

θ(i)φi(s) = θTφ(s), the gradient with respect to θt is given by

∇θt J̃(st, θt) =

∂J̃(st,θt)
θt(1)

∂J̃(st,θt)
θt(2)

...
∂J̃(st,θt)
θt(K)

 =

φ1(st)

φ2(st)
...

φK(st)

 = φ(st). (4.31)

Thus, the updating equation (4.29) is given by

θt+1 = θt + ηt(Ĵ(st)− J̃(st, θt))φ(st). (4.32)

As the linear approximator is easy to be completed in complex problem, we will focus

on this linear form and search some superior learning methods instead of the gradient de-

scent one. In the next section, we will introduce a popular learning technique for updating

parameter vector in linear approximator. The learning method refers to temporal differ-

ence learning and its developed version combining with recursive least-squares method.

4.3 RLS-TD(λ) for linear function approximation

4.3.1 Multi-step temporal difference (TD(λ)) learning

Suppose that we observe a sequence of states st based on simulation implementation

with random information wt, i.e., (s0, a0, w1, s1, a1, w2, . . . , sT , aT , wT+1). The temporal

difference δt (also called TD error) is defined corresponding to the transition from st to

st+1 by

δt = rt + γJ̃(st+1, θt)− J̃(st, θt). (4.33)

In linear case J̃(st, θt) = θT
t φ(st), we simply use φ′tθt (‘′’ means the transpose) to sub-

stitute the approximation J̃ in (4.33). Thus, the TD error at time t can be rewritten as

δt = rt − (φt − γφt+1)′θt. (4.34)

Then, for t = 0, 1, . . . , T , the multi-step TD (also called TD(λ)) learning method updates

θt according to the formula

θt+1 = θt + ηtδt

t∑
k=0

(γλ)t−k∇θt J̃(st, θt) (4.35)

4.3 RLS-TD(λ) for linear function approximation 97

where θ0 is initialized to some arbitrary vector, ηt is a sequence of scalar step-size satisfy-

ing (4.30), λ is a parameter in [0,1] , and the gradient ∇θt J̃(st, θt) is the vector of partial

derivatives with respect to the components of θt.

In the case of linear function approximation, a more convenient representation of

TD(λ) is obtained by defining a sequence of eligibility vectors zt,

zt =
t∑

k=0

(γλ)t−k∇θt J̃(st, θt)

=
t∑

k=0

(γλ)t−kφt.
(4.36)

With this notation, (4.35) can be rewritten as

θt+1 = θt + ηtδtzt (4.37)

and the eligibility vectors can be updated recursively according to

zt+1 = γλzt + φt+1 (4.38)

initialized with zt = 0.

In the study of Tsitsiklis & Van Roy [98], the above linear TD(λ) algorithm is proved

to converge with probability 1 under certain assumptions and the limit of convergence θ∗

is also derived, which is satisfied the following equation,

E0[A(Xt)]θ
∗ − E0[b(Xt)] = 0 (4.39)

whereXt = (st, st+1, zt) (t = 0, 1, . . .), is a Markov process, E0[·] is the expectation with

respect to the unique invariant distribution ofXt, or called “steady-state” expectation, and

A(Xt) and b(Xt) are matrix and vector valued functions, respectively, which are defined

as

A(Xt) = zt(φt − γφt+1)′ (4.40)

b(Xt) = ztrt. (4.41)

Especially for TD(0),

A(Xt) = φt(φt − γφt+1)′ (4.42)

b(Xt) = φtrt. (4.43)

98 Chap 4. Approximate dynamic programming with RLS-TD(λ) learning algorithm

Using A = E0[A(Xt)] and b = E0[b(Xt)], according to (4.39), θ∗ can be solved by

θ∗ = A−1b (4.44)

where A is invertible.

For special case λ = 0, TD(0) is an equivalent to single-step TD algorithm where only

the most recent observation matters to calculate the value function as well as the update

of approximation. The details of proof of TD(λ) convergence is excellently given in [98].

We omit it to avoid repetition.

In order to improve the efficiency of linear TD(λ) algorithm, recursive least-squares

method in the next section is used for the linear TD(λ) learning.

4.3.2 RLS-TD(λ)

One of the most appealing features of linear regression is the ease with which models

can be updated recursively. Using recursive least-squares method and TD(λ), the linear

function approximation could be updated recursively. Bradtke and Barto in [99] firstly

proposed Least-Squares TD (LS-TD) and its recursive version RLS-TD in the linear re-

gression. Then, in the work of Boyan and Xu [100, 132], they proposed that the LS-TD(λ)

and RLS-TD(λ) can be viewed as the extension of LS-TD and RLS-TD from λ=0 to gen-

eral 0 ≤ λ ≤ 1, respectively. As mentioned in [100], LS-TD(λ) offers several significant

advantages. At first, least-square algorithms would be expected to converge with fewer

training samples. Secondly, TD(λ)’s convergence can be slowed dramatically by a poor

choice of the step-size parameters but LS-TD(λ) eliminates these parameters. Thirdly,

performance of TD(λ) is sensitive to the initial estimate value while LS-TD(λ) does not

rely on an arbitrary initial estimate. The RLS-TD(λ) has the similar advantages. More-

over, RLS-TD(λ) has an advantage in computation and is more suitable for online learning

than LS-TD(λ).

Before this, we introduce firstly the least-squares TD (LS-TD(0)) and recursive least-

squares TD (RLS-TD(0)) learning suggested in [99].

In linear function approximation problem, let us study the simple linear regression

form,

ψt = θTφt + υt (4.45)

where ψt and φt are measured quantities and θ is to be determined. The variable υt is the

equation error and it is natural to select θ so that the variance of υt is minimized, i.e., to

4.3 RLS-TD(λ) for linear function approximation 99

find

min
θ
O(θ) (4.46)

where
O(θ) =

1

2
Eυ2

t

=
1

2
E(ψt − φt′θ)2.

(4.47)

The function O(θ) is quadratic in θ, therefore (4.46) can be found by solving[
− d

dθ
O(θ)

]T

= Eφt(ψt − φt′θ) = 0. (4.48)

Eq. (4.48) cannot be solved exactly, since the probability distribution of (ψt, φt) is not

known and the expectation cannot be evaluated. One way around this would be to replace

expectation with sample means, i.e., Eυ2
t could be approximated by (1/t)

t∑
i=1

υ2
i , and it

brings us the least-squares method. Thus, we prefer to write the criterion function as

O(θ) =
1

t

t∑
i=1

(ψi − φi′θ)
2
. (4.49)

In unsupervised learning, there is not output source ψt. The temporal difference in

(4.34) can be applied to sample the errors. In LS-TD(0), the least-squares approximation

to θ∗ at time t (t ≥ 1) is the vector θt that minimizes the quadratic objective function

O(θt) =
1

t

t∑
i=1

(
ri − (φi − γφi+1)′θt

)2
. (4.50)

By employing the instrumental variables approach [133], the LS-TD(0) solution of (4.50)

give us the tth estimate to θ∗. That is,

θt =

(
1

t

t∑
i=1

φi(φi − γφi+1)′
)−1(

1

t

t∑
i=1

φiri

)

=

(
t∑
i=1

φi(φi − γφi+1)′
)−1(t∑

i=1

φiri

)

=

(
t∑
i=1

A(Xt)

)−1(t∑
i=1

b(Xt)

)
(4.51)

where φi is the instrumental variable chosen to be uncorrelated with the input and output

noise.

100 Chap 4. Approximate dynamic programming with RLS-TD(λ) learning algorithm

Using LS-TD(0) builds explicit estimates of the A matrix and b vector expressed by

expectation in (4.44). We use the estimations Ã and b̃, which are expressed as follows:

Ãt =
t∑
i=1

A(Xi) =
t∑
i=1

φi(φi − γφi+1)′ (4.52)

b̃t =
t∑
i=1

b(Xi) =
t∑
i=1

φiri. (4.53)

By inserting the expressions of (4.52) and (4.53) into (4.51) we obtain

θt = Ã−1
t b̃t. (4.54)

After κ independent trajectories have been observed, Ãt is an unbiased estimate of κA

and b̃t is an unbiased estimate of κb. Thus, θ∗ can be estimated as Ã−1
t b̃t.

LS-TD(0) method requires the computation of a matrix inverse at each time step.

Thus, recursive least-squares technique is used to derive a modified algorithm, namely

RLS-TD(0), to decrease the computational complexity of LS-TD(0). The weight update

rules of RLS-TD(0) are as follows

δ̃t = rt − (φt − γφt+1)′θt−1 (4.55)

Pt = Pt−1 −
Pt−1φt(φt − γφt+1)′Pt−1

1 + (φt − γφt+1)′Pt−1φt
(4.56)

θt = θt−1 +
Pt−1

1 + (φt − γφt+1)′Pt−1φt
δ̃tφt. (4.57)

The detailed derivation of RLS-TD(0) can be found in Appendix A1 when λ = 0 and

zt = φt.

Notice that (4.57) looks like the TD(0) learning rule for function approximations that

are linear in the parameters, except that the scalar step-size parameter is replaced by a

gain matrix. To use the RLS-TD(0) method, users must specify θ0 and P0. P0 is typically

to use P0 = εI , where I is the identity matrix and ε is some small positive constant.

According to [132], RLS-TD(λ) can be viewed as the extension of RLS-TD with

0 ≤ λ ≤ 1. Firstly, we consider the LS-TD(λ) algorithm.

Instead of performing TD(λ) based on (4.39), LS-TD(λ) builds explicit estimates of

theAmatrix and b vector. We use the estimations Ã and b̃, which are expressed as follows:

4.3 RLS-TD(λ) for linear function approximation 101

Ãt =
t∑
i=1

A(Xi) =
t∑
i=1

zi(φi − γφi+1)′ (4.58)

b̃t =
t∑
i=1

b(Xi) =
t∑
i=1

ziri. (4.59)

Thus, θ∗ can be estimated as Ã−1
t b̃t.

By making use of recursive least-squares methods so that the computational burden of

LS-TD(λ) can be reduced. The weight update rules of standard RLS-TD(λ) are given by

δ̃t = rt − (φt − γφt+1)′θt−1 (4.60)

Pt = Pt−1 −
Pt−1zt(φt − γφt+1)′Pt−1

1 + (φt − γφt+1)′Pt−1zt
(4.61)

θt = θt−1 +
Pt−1

1 + (φt − γφt+1)′Pt−1zt
δ̃tzt. (4.62)

The detailed derivation of RLS-TD(λ) can be found in Appendix A1.

Under the similar assumptions of TD(λ) convergence proof in [98], RLS-TD(λ) is

proved to converge with probability one. The proof refers to Appendix A2.

4.3.3 Learning with multi-step value iteration

During the mandatory intervals considered in our study, the multi-step tM planning is

adopted by

J(st) = min
at∈A(st)

Ewk

{
t+tM−1∑
k=t

γk−trk + γtMJ(st+tM)

}
. (4.63)

With function approximation J̃(·, θ), (4.63) can be rewritten as

Ĵ(st) = min
at∈A(st)

Ewk

{
t+tM−1∑
k=t

γk−trk + γtM J̃(st+tM , θt)

}
. (4.64)

And the controller aims to find the implemented action greedily by

a∗t = arg min
at∈A(st)

Ewk

{
t+tM−1∑
k=t

γk−trk + γtM J̃(st+tM , θt)

}
. (4.65)

102 Chap 4. Approximate dynamic programming with RLS-TD(λ) learning algorithm

According to(4.60), (4.61), and (4.62) in RLS-TD(λ), the multi-step planning of RLS-

TD(λ) can be expressed as

δ̃t =

t+tM−1∑
k=t

γk−trk − (φt − γtMφt+tM)′θt−1 (4.66)

Pt = Pt−1 −
Pt−1zt(φt − γtMφt+tM)′Pt−1

1 + (φt − γtMφt+tM)′Pt−1zt
(4.67)

θt = θt−1 +
Pt−1

1 + (φt − γtMφt+tM)′Pt−1zt
δ̃tzt. (4.68)

The deviation of multi-step planning of RLS-TD(λ) can be found in Appendix A3.

4.4 Algorithm for adaptive traffic signal control

4.4.1 Algorithm for isolated intersection

For traffic signal control problem, the decision making of controller and the information

of its surroundings are two important issues, especially when the controller is viewed as

an agent, which has interaction with the environment over time and adjusts its behavior

to receive better rewards. Based on the traffic dynamic model presented in Section 2, we

specify some control variables in detail for the adaptive traffic signal control application

implemented by ADP approach and the related RLS-TD(λ).

Specifying traffic control variables

There are three aspects of declared knowledges in traffic signal control at isolated inter-

section, where we prepare to use ADP with RLS-TD(λ) for the solution. The first one is

the deterministic state transition in traffic dynamic model, which assures to be more facile

than the stochastic state transition in practical problem solving by reinforcement learning.

The second, it refers to the choice of traffic control decisions by implementing the three

kinds of signal phase modes, namely FPS, VPS, and APS. And the last one, we should

make specific definitions of traffic control variables in the particular learning method, i.e.,

ADP with RLS-TD(λ) learning. Details about these are discussed as follows.

4.4 Algorithm for adaptive traffic signal control 103

Deterministic dynamic state As a sample model can generate random arrival informa-

tion, it is usually to use the deterministic state transition rather than the stochastic state

transition in the distributed model, which is weighed by probabilities when current state

is transferred to next one with action taken. In many applications, it usually shows that

the deterministic state transition by samples satisfying a certain distribution is easier to

implement in practice. It is investigated in our case study in Section 3.3.

Control decisions As we mentioned before, the signal control at isolated intersection

can adopt the three kinds of phase sequence modes, namely the FPS, VPS, and APS mode.

We want to integrate these three modes into the ADP approach. Recall the system state

st = (kt, xt), we know that the elements in the signal state vector xt are binary values. For

example, the current signal status is that signals of line 1 and lane 5 are in green and others

are in red, i.e., xt = (1, 0, 0, 0, 1, 0, 0, 0)T. In FPS mode, the phase sequence is fixed, the

action space AFPS(st) has only 2 possible action vectors, namely AFPS(st) = {a0
t , a

1
t}.

The action of signal unchanged is a0
t = (0, 0, 0, 0, 0, 0, 0, 0)T and the action of signal

switching is a1
t = (1, 1, 0, 0, 1, 1, 0, 0)T for next particular phase. The action a1

t indicates

that signals on line 1 and lane 5 will change from being in green to red, and on lane

2 and lane 6 they do contrarily. As calculated by (2.13), the next changed signal state

is xt+1 = (xt + a1
t) mod2 = (0, 1, 0, 0, 0, 1, 0, 0)T . Similarly, in VPS mode, the action

spaceAVPS(st) has 4 possible action vectors, namelyAVPS(st) = {a0
t , a

1
t , a

2
t , a

3
t}. Except

the a0
t , all of the other actions can make a change sequentially from the current signal to

another one. For example, if the current phase is numbered by 2, then, a1
t , a

2
t , and a3

t can

switch the current phase 2 to the next phase 3, 4, and 1, respectively. More complicated

case is in APS mode, where there are total 12 various combinations. When the current

combination has the right-of-way, the action of signal switch can be selected in the rest of

11 possibilities. By adding the unchanged action a0
t , therefore, the action space AAPS(st)

has 12 possible action vectors.

Control variables specified Recall the traffic dynamic system model and the suggested

solution by ADP with RLS-TD(λ) learning approach, some details are expressed and re-

defined according to the practical control system. We will focus on the objective function

of multi-step value iteration, which is defined in (4.63). The approximate solution will be

obtained by solving (4.64) using linear function approximation J̃(·, θ). The linear approx-

104 Chap 4. Approximate dynamic programming with RLS-TD(λ) learning algorithm

imator includes the feature-based function φ(s) on traffic state s and specified parameter

vector θ. We can extract the features of state s expressed by the state (queuing vehicles

and signal state) on each lane n of an intersection, namely st(n) = (kt(n), xt(n)). Thus,

the linear approximator can be expressed as

J̃(st, θt) =
N∑
n=1

θt(n)′φt(kt(n), xt(n)) = θ′tφt (4.69)

where θt = (θt(n), n = 1, 2, . . . , N)T, and φt = (φt(kt(n), xt(n)), n = 1, 2, . . . , N)T, N

is the total number of lanes of intersection. We define θt(n) as

θt(n) = (θgt (n), θrt (n))T (4.70)

and assign θgt (n) to queue length variable kt(n) if lane n receives green signal, or assign

θrt (n) otherwise. φt(kt(n), xt(n)) is defined by

φt(kt(n), xt(n)) =

{
(kt(n), 0)T, if xt(n) = 1 (signal green)

(0, kt(n))T, if xt(n) = 0 (signal red).
(4.71)

Thus, to verify the gradient ∇θt J̃(st, θt) with respect to the components of θt, we have

∇θt J̃(st, θt) =

∂J̃(st,θt)
∂θt(1)
∂J̃(st,θt)
∂θt(2)

...
∂J̃(st,θt)
∂θt(N)

 =

(
∂J̃(st,θt)
∂θgt (1)

, ∂J̃(st,θt)
∂θrt (1)

)T(
∂J̃(st,θt)
∂θgt (2)

, ∂J̃(st,θt)
∂θrt (2)

)T

...(
∂J̃(st,θt)
∂θgt (N)

, ∂J̃(st,θt)
∂θrt (N)

)T

=

φt(kt(1), xt(1))

φt(kt(2), xt(2))
...

φt(kt(N), xt(N))

 = φt.

(4.72)

In summary, the online operation of adaptive traffic control algorithm using ADP with

RLS-TD(λ) learning can be summarized in Algorithm 3.

4.4.2 Algorithm for traffic network

In a distributed system, traffic network control can be accomplished by optimizing the

subsystems which are partially adjacent intersections of network. Independent network

4.4 Algorithm for adaptive traffic signal control 105

Algorithm 3 ADP_RLS-TD(λ) for adaptive traffic signal control algorithm
1: choose an initial state s0(n) = (k0(n), x0(n)), parameter θ0(n) = (θg0(n), θ

r
0(n))

T for each

lane n; set time t = 0, planning step tm = tM ;

2: choose the action space AFPS (or AVPS, AAPS);

3: while t ≤ T do
4: if tm > 0 then
5: signal unchanged with a∗t = 0;

6: tm = max(tm − 1, 0);

7: else
8: for each at ∈ AFPS(st) do
9: pre-calculate and store the accumulated rewards and estimated values;

10: end for
11: find the optimal decision a∗t using Eq. (4.65);

12: if a∗t = 1 then
13: change signal into all-red;

14: set tm = tM − 1;

15: end if
16: end if
17: update functional parameter vector θt using Eqs. (4.66), (4.67), and (4.68);

18: implement optimal decision a∗t at time interval t;

19: transfer system state st(n) including signal state xt(n) and vehicle state kt(n) using Eqs.

(2.13) and (2.14), respectively;

20: t = t+ 1;

21: end while

control and coordinated network control are given by algorithms based on the ADP with

RLS-TD(λ).

4.4.2.1 Independent network control

In a distributed network, the intersection can be independently controlled. This can be

viewed as the independent multi-agent system. It means that the signal controller (agent)

makes decision only depend on its local information and not take other neighbor intersec-

tions into account. Thus, we just view each intersection as an independent agent and make

near-optimal policy for the isolated intersection. Although in this way, it is not considered

106 Chap 4. Approximate dynamic programming with RLS-TD(λ) learning algorithm

about all intersections at network in a global way, but it operates easily and sometimes it

performs well, especially an intersection needs a highly adaptive and autonomous control.

For example, it is probably to implement the APS mode approaching this case.

Recall the network loading model and the traffic signal control model at multi-intersection.

We can design an algorithm to find the solution of signal control for the independent in-

tersections.

The independent network control algorithm refers to the extension of adaptive traffic

signal control at isolated intersection by using ADP with RLS-TD(λ). In other words,

each intersection m = 1, 2, . . . ,M (M is the total number of intersections) at network

can directly execute the Algorithm 3 for the self-control service.

4.4.2.2 Coordinated network control

In coordinated network control, the coordination between intersections is considered.

This can be viewed as the coordinated multi-agent system. Despite the local informa-

tion of each agent, the communicating information is shared mainly between adjacent

intersections. The control system acts in a global view that joint action rather than local

decision is taken.

Recall the definitions of tunable state of intersection m in (2.28) and the system state

st = (s1
t , s

2
t , ..., s

M
t). Recall the immediate cost function rt defined in (2.34), which is

based on tunable states at network. Similarly in (4.69), the feature-based function φt(·)
and the parameter θt with dimension N × M are adopted to act as a linear function

approximation. That is,

J̃(st,θt) =
M∑
m=1

(θmt)T · φt(smt), (4.73)

where θmt = (θmt (n), n = 1, 2, ..., N)T and φt(smt) = (φt(s
m
t (n)), n = 1, 2, ..., N)T . N

is the total number of lanes at intersection and M is the total number of intersections at

network. We define θmt (n) as

θmt (n) = (θmgt (n), θmrt (n))T (4.74)

and assign θmgt (n) to tunable state smt (n) receiving green signal on line n at intersection

m, or assign θmrt (n) otherwise. φt(smt (n)) is defined by

φt(s
m
t (n)) =

{
(ekmt (n) + (1− e)k̃mt (n), 0)T, if xmt (n) = 1 (signal green)

(0, ekmt (n) + (1− e)k̃mt (n))T, if xmt (n) = 0 (signal red)
(4.75)

4.4 Algorithm for adaptive traffic signal control 107

where e(0 ≤ e ≤ 1) is the tunable parameter. Note that the estimated value of the

tunable state only refers to the parameters of local intersection for reducing the parameter

dimension, but the tunable state transition is still related to the joint action between two

adjacent intersections.

By using the ADP approach, the one step objective function is expressed by

Ĵ(st) = min
at∈A

E
{
rt + γJ̃(st+1,θt)

}
, (4.76)

the controller aims to find a sequence of joint actions greedily by

a∗t = arg min
at∈A

E
{
rt + γJ̃(st+1,θt)

}
. (4.77)

At each time step t, the joint action of all intersections at network needs to be calculated.

At first, we discuss the system action space denoted by A = {A1, A2, ..., AM}. Recall the

system action at ∈ A and the phase definition. In 4-phase mechanism (FPS and VPS), de-

fine the signal phase ϕ1, ϕ2, ϕ3, and ϕ4 that receive green signal for lane combination {1,

5}, {2, 6}, {3, 7}, and {4, 8}, respectively. In FPS, the action space at intersection m can

be defined asAmFPS = {amt (ϕi), a
m
t (ϕi+1)} (where i = 1, 2, 3, 4 and if ϕi+1 > 4, then ϕi+1

is replaced by ϕ1). In VPS, AmVPS = {amt (ϕ1), amt (ϕ2), amt (ϕ3), amt (ϕ4)}. For the pro-

posed adaptive phase sequence (APS), the action space at intersection m can be defined

as AmAPS = {amt (ϕ1), amt (ϕ2), . . . , amt (ϕ12)}, where signal phase ϕc (c = 1, 2, . . . , 12) to

receives green signal for lane combination Gc, which is defined in Tab. 3.3. For example,

the VPS mode is used for intersection phase control. For the whole network, there are

total 4M possibilities of groups of joint action. In the case of Fig. 2.6, assume that the

joint action at time t is at = (a1
t (ϕ1), a2

t (ϕ4), a3
t (ϕ2), a4

t (ϕ1), a5
t (ϕ3)) and at time t + 1,

it changes to at+1 = (a1
t+1(ϕ3), a2

t+1(ϕ2), a3
t+1(ϕ2), a4

t+1(ϕ3), a5
t+1(ϕ1)), which can be il-

lustrated by the matrices in Fig. 4.4. In addition, for security within the minimum green

intervals and all red, changing traffic signal is not permissible.

108 Chap 4. Approximate dynamic programming with RLS-TD(λ) learning algorithm

1 0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0 1 0

0 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0 1 0

0 1 0 0 0 0 0 0 0 0

at at+1

Figure 4.4: Example of system action transition

In order to obtain the optimal a∗t , entire 4M computations need to be traversed. With

the small M , such as the network studied in our case, it is easier to exhaust the solutions

to find the optimal a∗t . For a large network with big M or in APS mode with 12M possi-

bilities, the max-plus algorithm can be used to compute the near-optimal joint action by

iterations, which could send locally optimized messages between connected nodes in the

graph. This method refers to the research in [116, 118]. We just use the exhausted search

to obtain a∗t .
In summary, the online coordinated network control is given in Algorithm 4.

4.5 Summary

ADP has a great advantage for the reduction of computational complexity. Rather than DP

using backward recursive calculation to traverse all state space, ADP applies the function

approximation and machine learning technique to simplify the calculation in Bellman’s

equation. In this chapter, we found that linear function approximation is easier to imple-

ment and train than neural network approximator. It has been well studied, especially in

reinforcement learning. More importantly, the linear case offers enough a potential for

the complexed discrete-time problem in practice, using the unsupervised reinforcement

learning method, such as TD(λ). In our study, the recursive least-squares TD(λ) method

is highlighted for the ADP with linear approximator. Meanwhile, we propose the formu-

lation of multi-step iteration in RLS-TD(λ). Moreover, we design the real-time adaptive

traffic signal control algorithms using ADP with RLS-TD(λ), both for the isolated in-

4.5 Summary 109

Algorithm 4 ADP_RLS-TD(λ) for coordinated traffic network control algorithm
1: choose an initial state s0, parameter θ0; set t = 0;

2: initialize the tunable parameter e;

3: while t ≤ T do
4: receive traffic arrival information wt and w̃t according to the micro-simulation dynamic

model;

5: use φt(st) and θt to calculate estimate value in (4.73);

6: compute evaluation values in (4.76);

7: find the optimal decision a∗t = (amt ,m = 1, 2, ...,M) using (4.77) by exhausted search

(AFPS, AVPS) or max-plus algorithm (AAPS);

8: for all intersection m do
9: if changing traffic singal is not permissible then

10: ãmt = 0;

11: else
12: ãmt = amt ;

13: end if
14: end for
15: update functional parameter vector θt = (θ̃mt ,m = 1, 2, ...,M) related to (4.66), (4.67),

and (4.68);

16: implement optimal decision ã∗t = (ãmt ,m = 1, 2, ...,M) at time interval t;

17: transfer system state st including signal state xt related to (2.13) and vehicle state kt, k̃t
in (2.29);

18: t = t+ 1;

19: end while

tersection and the whole network, which includes the independent multi-intersection and

coordinated multi-intersection.

In next chapter, we will implement the proposed algorithms in numerical experiments

of isolated intersection control and traffic network control. Some results by simulation

will be compared and analyzed.

110 Chap 4. Approximate dynamic programming with RLS-TD(λ) learning algorithm

CHAPTER 5

APPLICATIONS AND RESULTS

5.1 Introduction

In this chapter, the ADP with linear function approximation using RLS-TD(λ) learning

will be implemented to the signal control at isolated intersection and traffic network.

The related algorithms are mentioned in Chapter 4. For both applications, performance

measures are commonly defined. Different traffic demand scenarios are simulated for the

implementation of ADP_RLS-TD(λ) comparing with methods cited from some literature.

In application to isolated intersection using the proposed algorithm, solutions includ-

ing three kinds of phase sequence modes and fine planning will be considered. The phase

sequence modes mentioned previously refer to the FPS, VPS, and APS. The planning

solutions are normal planning with 2 s (one interval) per step and fine planning with 0.5

s (0.25 interval) per step. The evolutions of the functional parameters in approximation

function will be illustrated and analyzed. In traffic scenarios, experiments are imple-

mented by comparing the ADP_RLS-TD(λ) with other control methods with analysis of

performances.

In application to traffic network using the proposed algorithm, solutions include the in-

dependent traffic network solution and the coordinated traffic network solution. They are

also investigated in different phase sequence modes in 2-s solution. Before we do experi-

ments in network case, an important part is traffic network loading, which provides traffic

112 Chap 5. Applications and results

environment for network. Thus, simulation results of a new vehicle-following model,

which presents the vehicle behaviors in a microscopic way, will be described and ana-

lyzed. At last, we will evaluate ADP_RLS-TD(λ) compared by other control methods for

traffic network control in different traffic scenarios. All experiments are implemented in

MATLAB.

5.2 Application in isolated intersection

In this section, the case of signal control at isolated intersection depicted in Fig. 2.1, is

simulated. Different traffic arrival rates are simulated under three patterns of traffic flow

organization (or phase mode), i.e., FPS, VPS, and APS. Moreover, 2-s solution (normal)

and 0.5-s solution (fine) are both considered in our algorithm ADP_RLS-TD(λ). If there

is not special statement, results refer to the normal solution. Experiments are also imple-

mented by using different methods.

5.2.1 Preparation

System settings

In the simulation of the traffic signal control system, at first, some value settings of pa-

rameters are given in Tab. 5.1. Actually, learning parameter ηt in TD(λ) is step-size

scheduling as a time-varying form. From experience of some related studies, we use a

constant leaning rate at η =0.001. Assumptions of the control system are mentioned in

Section 2.3.2. We omit it to avoid repetition.

The other aspect of the system setting is about traffic data generation (or traffic de-

mand in scenario). The method of arrival data generation in the case study of Chapter 3 is

employed here. The random data generation is adopted by the computer simulation using

Inverse Transformation Method (ITM) method, which meets a Bernoulli probability dis-

tribution. In reality, traffic data is detected from the inductive loops embedded upstream

of each lane or other detecting techniques. The detected information contains traffic ar-

rivals in the limited future time. In the simulation, traffic arrival per temporal step adopts

the value of either 0 or 1, which satisfies the probability distribution. It is known that

the binary variable represents one vehicle arrival during one interval or otherwise. If we

want to plan the fine solution, the value of either 0 or 1 in each increment, which is the

5.2 Application in isolated intersection 113

Table 5.1: Intersection system parameter settings

Parameters Definitions Value settings

T simulation period 40000 intervals 1

N total lanes at intersection 8

gmin minimum green time 3 intervals

gint inter-green (all red) time 1 interval

tM mandatory multi-step 4 intervals

θg0(n) initial parameter to green signal 5 or 3 2

θr0(n) initial parameter to red signal 5 or 3

γ discount factor 0.90

η learning rate constant 0.001

ε parameter in matrix P0 0.01

Sa saturation (departure) flow 1 veh/int=1800 veh/h
1 1 interval=2 seconds.
2 initial value 5 for Traffic Scenario A-x, B-x, and initial value 3 for Traffic Scenario C defined later.

Table 5.2: Asymmetric and symmetric average arrival rates for intersection

Traffic Scenario Arrival rate (veh/int) Traffic volume by ITM (veh/h)

A-1 (0.05, 0.20, 0.05, 0.20) (188, 702, 201, 705)

A-2 (0.10, 0.20, 0.10, 0.20) (350, 722, 365, 735)

A-3 (0.15, 0.20, 0.15, 0.20) (527, 720, 562, 715)

B-1 (0.10, 0.10, 0.10, 0.10) (350, 358, 342, 365)

B-2 (0.15, 0.15, 0.15, 0.15) (560, 562, 567, 548)

B-3 (0.20, 0.20, 0.20, 0.20) (742, 725, 740, 735)

component of one interval, randomly appears to satisfy that the sum of the values in all

increments is either 0 or 1. For example, if there are 4 increments in one interval and the

situation of vehicles arriving is (0, 0, 0, 0) or (0, 1, 0, 0), etc.

Different traffic arrival rates are tested in our study. Simulator generates all the traf-

fic arrival data as the way of traffic rates in FPS or VPS combination (G1, G2, G3, G4).

Asymmetric and symmetric traffic arrival rates as well as the corresponding traffic vol-

umes are shown in Tab. 5.2. Notice that the highest traffic arrival rate in B-3 owns the

intensity, calculated by the method in [134], almost 0.9 which is already close to road

saturation. Traffic Scenarios A-x and B-x keep the arrival rates unchanged during the

simulation. We will also investigate another scenario called Traffic Scenario C, which

gives changing arrival rates in time-varying during the simulation. In Traffic Scenario C,

114 Chap 5. Applications and results

0 0.5 1 1.5 2 2.5 3 3.5 4

xn104

0.05(90)

0.10(180)

0.15(270)

0.20(360)

0.25(450)

Timensteps

Tr
af

fic
na

rr
iv

al
nra

te
s:

nv
eh

/in
t.n

(v
eh

/h
)

Peaknperiod

Post−peaknperiod

Pre−peaknperiod

Figure 5.1: Traffic Scenario C-flow profile on average arrival rates during the simulation

symmetric arrival rates are processed smoothly ranging from 0.10 veh/int to 0.20 veh/int,

as shown in Fig. 5.1.

Performance measures

In the case of the signal control at isolated intersection, performance measures are the

average traffic delay and vehicle queue length. In detail, we note that

• Average delay. The average delay is donated by D, which is expressed in seconds

and calculated according to the following form in OPAC system [134]. That is

D =
TD

TA

=

2
N∑
n

T∑
t

kt(n)

N∑
n

T∑
t

wt(n)

(5.1)

where TD (veh·int) is to measure the total vehicle-intervals (in 2-s units) which is

the sum of queue lengths of all lanes N during the simulation period T ; TA (veh) is

the total number of vehicle arrivals or vehicles released into the intersection.

• Queue length. The queue length is calculated by the number of waiting vehicles

on lane. We also use the average of queue length at intersection when comparing

performance as a whole.

5.2 Application in isolated intersection 115

Comparing methods

In order to see the characteristics of RLS-TD(λ) learning in traffic signal control, firstly,

the comparisons of the properties of RLS-TD(λ) learning and TD(λ) learning under ADP

approach are illustrated in a simulation way. Secondly, regarding to the performance of

ADP with RLS-TD(λ) learning in FPS, VPS, and APS patterns, we compare the proposed

algorithm with Webster and Haijema-MDP in the optimal FC and other algorithms in

adaptive control (AC), such as Greedy algorithm, Heuristic algorithm, and Q-learning.

The details about these algorithms are introduced as follows.

• FC. In this control method, Webster [135] and Haijema-MDP [31] algorithms are

considered. In Haijema-MDP, fixed cycle time is optimized by the evaluation of

MDP based on expected traffic arrival rates. This approach has a better phase time

distribution than Webster’s method when the asymmetric traffic volume appears at

intersection.

• Greedy algorithm. In this method, the multi-step planning evaluation function lacks

the part of heuristic information and has several steps for look forward planning.

Decisions are greedily chosen by evaluating the reward function.

• Heuristic algorithm. This is a forward search dynamic programming algorithm,

shorten by FSDP (see Chapter 3, Section 3.3), and the heuristic information is used

in Bellman’s equation. Because this method has a global optimization solution,

computation complexity is very high by increasing the planning forward steps.

Considering the detected information of the limited future time (actually, the ex-

tended information could be solved by prediction model), we set planning horizon

Tp = 16.

• Q-learning. In this method, normal rules for updating value function are used.

Qt+1(s, a) = Qt(s, a) + ηt(rt(s, a) + γmin
a′∈A

Qt(s
′, a′)−Qt(s, a)), (5.2)

where ηt is learning rate, s′ is the transfered state from s taken action a. In this

method, the entire traffic states need to be looped over because their values need

to be updated overall. So that, states are reduced by choosing three density levels,

i.e., low, medium, or high. Thresholds between different levels are various settings

based on the traffic arrival rates.

116 Chap 5. Applications and results

5.2.2 Functional parameters simulation

The functional parameters in linear function approximation have some interesting proper-

ties when we do the simulation. Evolutions of the functional parameters in time-varying

can help us to understand the performance of related learning algorithms. We will list and

compare some results of the functional parameters in the TD(λ) and RLS-TD(λ) learning.

At first, let us look at the parameter properties of RLS-TD(λ) learning, illustrated in

Fig. 5.2. By the samples of parameter evolutions, it is clearly shown that these parameters

trend to relative steady levels after some steps. Differences appear in the parameters θgt ,

which correspond to feature-extraction (basis) function when receiving green signal. As

we can see, the values of steady level in θgt (1) (Fig. 5.2(a)) and θgt (7) (Fig. 5.2(d)) are

smaller than those in θgt (2) (Fig. 5.2(b)) and θgt (6) (Fig. 5.2(c)). This could be possibly

explained by that, in Traffic Scenario A-2, the arrival rates of lane 1, 2, 6, and 7 are 0.1,

0.2, 0.2, and 0.1 veh/int, respectively. Therefore, lane 1 and 7 receive less green durations

than lane 2 and 6, and go faster to reach the lower values at steady level. As for the

parameters θrt giving almost the same values at steady levels, it indicates that waiting time

for red signal on each lane is nearly the same. In other words, it is fair for vehicles waiting

at the intersection.

In theory, we know that the performance of functional parameter in RLS-TD(λ) is

better than the conventional TD(λ) learning referred to the literature. For the traffic signal

control simulation in Traffic Scenario B-3, we compare the experiment results between

these two learning techniques, as shown in Fig. 5.3. Obviously, the parameters θgt (n)

and θrt (n) in RLS-TD(λ) obtain much less variance than those in TD(λ) (in case λ = 0

, n = 1). Moreover, RLS-TD(λ) refers to the earlier stable trend, especially shown by

the parameter θgt (n). In other experiments with different parameter settings of λ and n,

similar results are also obtained. It verifies that the recursive least-squares approach can

speed up the convergence of TD(λ) learning process in our case.

5.2 Application in isolated intersection 117

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

5

6

7

8

9

10

11

12

13

14

Time steps

P
ar

am
et

er
 v

al
ue

θ
g(1)

θ
r(1)

(a) n = 1

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

5

6

7

8

9

10

11

12

13

14

Time steps

P
ar

am
et

er
 v

al
ue

θ
g(2)

θ
r(2)

(b) n = 2

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

5

6

7

8

9

10

11

12

13

14

Time steps

P
ar

am
et

er
 v

al
ue

θ
g(6)

θ
r(6)

(c) n = 6

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

5

6

7

8

9

10

11

12

13

14

Time steps

P
ar

am
et

er
 v

al
ue

θ
g(7)

θ
r(7)

(d) n = 7

Figure 5.2: Evolutions of functional parameters by using ADP with RLS-TD(λ) learning

(in Traffic Scenario A-2, APS mode with λ=0, n=1, 2, 6, and 7)

It is found that the TD(λ) learning has the relative large variances in the normal 2-s

solution. Interestingly, as shown in Fig. 5.4, we find that TD(λ) reduces vibrations of

parameters when the fine 0.5-s solution is implemented. Moreover, θgt (n) (n = 2) in 0.5-s

solution has the larger values than those in 2-s solution. It indicates that in the condition

of traffic arrival on lane 2, it is proper to give more intervals and times in 0.5-s solution

than the case of 2-s solution. Actually, it is more clear to show these phenomena in TD(λ)

than in RLS-TD(λ). That is why we use TD(λ) to analyze the difference between the 2-s

solution and the 0.5-s solution.

118 Chap 5. Applications and results

0 0.5 1 1.5 2 2.5 3 3.5 4

xS104

5

6

7

8

9

10

11

12

13

14

TimeSsteps

P
ar

am
et

er
Sv

al
ue

θ
g(n)STD(λ)

θ
r(n)STD(λ)

θ
g(n)SRLS-TD(λ)

θ
r(n)SRLS-TD(λ)

Figure 5.3: Comparisons of functional parameters by using ADP method between RLS-

TD(λ) and TD(λ) learning (in Traffic Scenario B-3, FPS mode with λ = 0, n=1)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

5

6

7

8

9

10

11

12

13

14

Time steps

P
ar

am
et

er
 v

al
ue

θ
g(n) (2−s)

θ
r(n) (2−s)

θ
g(n) (0.5−s)

θ
r(n) (0.5−s)

Figure 5.4: Comparisons of functional parameters by using TD(λ) learning between 2-s

solution and 0.5-s solution (in Traffic Scenario B-3, VPS mode with λ = 0, n=2)

5.2 Application in isolated intersection 119

The discussion above refers to the scenarios with fixed traffic arrival rates. We also in-

vestigate the parameter properties of RLS-TD(λ) and TD(λ) in Traffic Scenario C, which

owns various traffic arrival rates during the simulation. In Fig. 5.5, we can find that the

parameters θgt (n), θrt (n) (n = 1) by ADP with RLS-TD(λ) (λ = 0) occur much less

frequently than those by ADP with TD(λ), and the former are faster to reach to stable

tendency, which has the same conclusion from Fig. 5.3. While TD(λ) learning updates

the parameters easily effected by the current data with some vibrations. Moreover, the

differences of performances appear in ADP with TD(λ) control when λ are set to be dif-

ferent values, see Fig. 5.5(b), Fig. 5.5(c), and Fig. 5.5(d). Obviously, setting λ to be 0.2

has less vibration than the others.

From the characteristics of parameters discussed above, we really care about influ-

ences of the ADP approaches using RLS-TD(λ) learning and TD(λ) learning for practical

problem. In Fig. 5.6, control performances of average delay are compared between the

RLS-TD(λ) learning and the TD(λ) learning with different settings of λ. Two typical

Traffic Scenario A-2 and B-3 are implemented, respectively. It is clearly shown that the

performance of RLS-TD(λ) learning is better than TD(λ) learning, by reason of the ad-

vantage for updating parameters. In the condition of higher demands in Traffic Scenario

B-3, TD(1) even obtains a bad value. In Sutton’s view [58], TD(λ) can be understood

as one particular way of averaging n-step backups. This average contains all the n-step

backups, each weighed proportional to λn−1, where 0 ≤ λ ≤ 1. If λ = 0, then the overall

backups reduce to the first component, i.e., the one-step TD backup, whereas if λ = 1,

then the overall backups reduce to the last one component. We can conclude from the

simulation results that the small λ, which indicates a nearby few backups mainly deter-

mining the TD error, can guarantee the satisfied performance. It could be explained by

that the values of traffic states calculated in short time backups are better than many steps

backups when traffic states are frequently visited.

From the analysis of parameter properties and performance of delay, RLS-TD(λ) is

superior to TD(λ) learning under the ADP approach for adaptive traffic signal control. By

the following experiments, performances of ADP with RLS-TD(λ) learning comparing

with other control methods are discussed in the next section.

120 Chap 5. Applications and results

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

0

2

4

6

8

10

12

14

Time steps

θ
r(n)

θ
g(n)

(a) RLS-TD(0)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

0

2

4

6

8

10

12

14

Time steps

θ
r(n)

θ
g(n)

(b) TD(0.2)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

0

2

4

6

8

10

12

14

Time steps

θ
r(n)

θ
g(n)

(c) TD(0.5)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

0

2

4

6

8

10

12

14

time steps

θ
g(n)

θ
r(n)

(d) TD(1)

Figure 5.5: Comparisons of functional parameters by using ADP method between RLS-

TD(λ) and TD(λ) learning (in Traffic Scenario C, APS mode with n=1)

5.2.3 Comparisons and analysis

In this section, we mainly compare ADP_RLS-TD(λ) with different control methods in

the aspects of different phase modes (FPS, VPS, and APS) and the two kinds of planning

solutions (2-s and 0.5-s solution).

5.2.3.1 Different phase mode solutions

In this part, we focus on the comparisons of control methods in different phase modes

under the normal 2-s solution. Some analysis is given.

In Tab. 5.3 and Tab. 5.4, results of average traffic delay are given by using different

algorithms in Traffic Scenario A-x (asymmetric) and B-x (symmetric). Being different

5.2 Application in isolated intersection 121

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10.4

10.6

10.8

11

11.2

11.4

λ

A
ve

ra
ge

 d
el

ay
 (s

)

TD(λ)

RLS−TD(λ)

(a) A-2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

19.5

20

20.5

21

21.5

22

λ

A
ve

ra
ge

 d
el

ay
 (s

)

TD(λ)

RLS−TD(λ)

(b) B-3

Figure 5.6: Comparisons of average delays by using ADP method between RLS-TD(λ)

and TD(λ) learning in APS

from FC methods, AC methods that operate in an adaptive way can adjust phase dura-

tion and phase sequence in time. Thus, the performances of FPS, VPS, and APS modes

are included. Analysing the FC methods, Haijema-MDP works better than Webster’s

method. In fact, this will be more obvious in the unbalanced arrival rates if we set traffic

scenario with the arrival rate of being (0.05, 0.20, 0.05, 0.20) in A-1. In the following

study, Haijema-MDP represents the FC methods to compare with the AC methods. As a

whole, the AC methods are better than the FC methods, except some results in the Greedy

algorithm, such as the FPS and VPS modes in Traffic Scenario A-3, B-3. It indicates that

the adaptive control mechanism maybe generate a bad control policy when the algorithm

is not suitable for this kind of control. Without learning techniques, the heuristic algo-

rithm FSDP is much better than Greedy algorithm. In the learning methods, the proposed

ADP_RLS-TD(λ) algorithm (in case λ=0) performs very well, especially in the case of

higher flow rates in Traffic Scenario B-3, owning the delay reduction about 7 s comparing

with Q-learning in FPS and VPS, and 2.7 s in APS. More importantly, the FPS, VPS, and

APS modes in each control algorithm make a difference in traffic delays.

In order to see performances of different phase modes, we pick up the results of A-2

and B-3 and obtain the improvements of these modes illustrated in Fig. 5.7.

By using proper control algorithms, APS outperforms on average traffic delays than

FPS and VPS, which are related to the cyclic and acyclic signal control ways, respec-

tively. APS can operate in a highly adaptive way, where not only the phase sequence

is acyclic but also all the possible phase chances are mostly traversed and adaptively

122 Chap 5. Applications and results

Table 5.3: Results of average delay in asymmetric rates
Traffic Scenario A-1 A-2 A-3

FC delay(s)
Webster 48.25 25.25 30.24

Haijema MDP 18.85 23.68 29.79

Phase mode FPS VPS APS FPS VPS APS FPS VPS APS

AC delay(s)

Greedy 18.91 13.95 8.40 23.21 21.88 12.37 35.27 35.49 15.76

FSDP 15.86 10.39 5.90 18.65 14.80 8.74 21.09 19.47 10.04

Q-learning 17.15 13.18 8.25 20.03 18.23 12.02 28.43 27.55 14.86

ADP_RLS-TD(0) 18.29 11.86 7.96 20.60 17.44 10.57 26.75 26.03 14.17

Table 5.4: Results of average delay in symmetric rates
Traffic Scenario B-1 B-2 B-3

FC delay(s)
Webster 16.05 24.55 50.05

Haijema MDP 15.08 23.56 49.02

Phase mode FPS VPS APS FPS VPS APS FPS VPS APS

AC delay(s)

Greedy 14.50 11.43 7.42 23.91 23.11 12.25 59.90 55.85 24.52

FSDP 12.14 9.50 5.58 18.16 15.74 9.01 45.30 40.53 12.58

Q-learning 14.15 11.20 7.38 20.86 19.39 11.87 49.32 48.90 22.10

ADP_RLS-TD(0) 14.42 11.18 7.21 20.65 18.77 11.40 42.24 41.91 19.43

selected. Consequently, the average delays in APS are about 44.48% and 54.65% im-

provements comparing with those in FPS in Traffic Scenario A-2 and B-3, respectively.

As for VPS, the average delay reductions are only 14.58% in Traffic Scenario A-2 and

5.51% for the higher demands in Traffic Scenario B-3.

However, in Fig. 5.7, it is shown that FSDP method looks like an appropriate approach

as a whole with the lower traffic delays and higher improvements. Actually, FSDP method

costs much time in the total simulation because of its large state space computation. This

conclusion is mentioned in the previous case study, in Section 3.3. We will also give some

related knowledge to discuss it later.

5.2.3.2 Fine planning solution

In [58], Sutton presented the evidence that planning in very small steps may be the most

efficient approach even on pure planning problems if the problem is too large to be solved

exactly. In [19], a fine solution was obtained from perturbation learning which was better

than a coarse solution. We just investigate a fine step to see whether the ADP with RLS-

TD(λ) learning is also suitable for these cases. Let a small step be 0.25 interval (0.5 s)

5.2 Application in isolated intersection 123

Greedy FSDPQlearning Greedy FSDPQlearning Greedy FSDPQlearning
−T_

−L_

−R_

_

R_

L_

T_

4_

5_

6_

7_

8_

Im
pr

ov
em

en
ts

 o
f F

P
S

) V
P

S
 .

 A
P

S
 V

s:
 H

ai
je

m
a

M
D

P
 jA

M

Scenario: A−L
Scenario: B−TAPSVPSFPS

ADP_
RLS−TDj_M

ADP_
RLS−TDj_M

ADP_
RLS−TDj_M

Figure 5.7: Improvements of average delays by using different methods in FPS, VPS, and

APS, comparing with the Haijema-MDP in FC

Table 5.5: Results of average delay in fine solution
Traffic Scenario A-1 A-2 A-3 B-1 B-2 B-3

Phase mode FPS APS FPS APS FPS APS FPS APS FPS APS FPS APS

ADP_TD(0) 15.83 7.51 15.57 9.32 15.78 10.74 11.15 7.20 13.52 9.55 20.79 14.20

Delay ratio1 (%) -14.9 -52.6 -25.7 -39.0 -40.8 -31.9 -22.5 -35.4 -34.5 -29.4 -52.1 -31.7

ADP_RLSTD(0) 14.77 7.27 14.78 9.30 15.79 10.71 11.22 7.08 13.30 9.39 20.09 13.41

Delay ratio1 (%) -19.2 -50.8 -28.3 -37.1 -41.0 -32.2 -22.2 -36.9 -35.6 -29.4 -52.4 -33.3

1 Delay ratio in FPS, is defined by 100%(DFPS(0.5−s) − DFPS(2−s))/DFPS(2−s) ; Delay ratio in APS, is defined by 100%(DAPS(0.5−s) −
DFPS(0.5−s))/DFPS(0.5−s) .

in the experiments. Considering ADP with TD(0) and RLS-TD(0) algorithms, the results

of traffic delay are really better than the original step setting of being one interval, as

shown in Tab. 5.5. Meanwhile, APS mode is obviously better than FPS mode with delay

reductions from -29.4% to -52.6%.

On the other hand, the performance of queue length in a microscopic way is shown

in Fig. 5.8. Note that the first line bars represent arrival vehicles; the second and the

third line bars are green indications counted by intervals (2 s per interval). It can be

seen that different green signal settings result in different number of queuing vehicles and

evolutions. By planning the green durations more intelligently and adaptively in this case,

0.5-s solution performs better than 2-s solution as a whole.

124 Chap 5. Applications and results

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

La
ne

 1

0.5−s
2−s

0.5−s
2−s

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

La
ne

 2

0.5−s
2−s

2−s
0.5−s

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

La
ne

 3

0.5−s
2−s

2−s
0.5−s

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

La
ne

 4

0.5−s
2−s

2−s
0.5−s

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

La
ne

 5

0.5−s
2−s

2−s
0.5−s

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

La
ne

 6

0.5−s
2−s

2−s
0.5−s

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

La
ne

 7

0.5−s
2−s

2−s
0.5−s

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

La
ne

 8

0.5−s
2−s

2−s
0.5−s

Figure 5.8: Evolutions of queue length by using ADP_RLS-TD(λ) (λ = 0 in APS at 0.5-s

and 2-s solutions in Traffic Scenario B-3)

5.2 Application in isolated intersection 125

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1

2

3

4

5

6

7

8

9

10

Time steps

A
ve

ra
ge

 q
ue

ue
 le

ng
th

FPS(2−s)

(a) Length in FPS (2-s)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1

2

3

4

5

6

7

Time steps

A
ve

ra
ge

 q
ue

ue
 le

ng
th

FPS(0.5−s)

(b) Length in FPS (0.5-s)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1

2

3

4

5

6

7

Time steps

A
ve

ra
ge

 q
ue

ue
 le

ng
th

VPS(0.5−s)

(c) Length in VPS (0.5-s)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1

2

3

4

5

6

7

Time steps

A
ve

ra
ge

 q
ue

ue
 le

ng
th

APS(0.5−s)

(d) Length in APS (0.5-s)

Figure 5.9: Evolutions of average queue length by using ADP_RLS-TD(λ) (λ = 0 in

Traffic Scenario B-3)

The performances of average queue length at the whole intersection are also clearly

shown in Fig. 5.9, which demonstrates the relevant effects executed by different phase

control patterns. Obviously, The flexible and adaptive control mode APS works very well

with less variance and lower queue length. Accordingly, these fine solutions cost more

computational time. However, it is also enough to guarantee online operation by using

the ADP with RLS-TD(λ) learning.

Computation time

Besides the traffic delay and queue length, computation efficiency is an important perfor-

mance index of the algorithm. In Tab. 5.6, it is clearly shown that the ADP approaches

126 Chap 5. Applications and results

Table 5.6: Comparisons of run time for isolated intersection
Methods Haijema-MDP FSDP ADP_TD(λ) ADP_RLS-TD(λ)

Phase mode Fixed FPS VPS APS FPS VPS APS APS1 FPS VPS APS APS1

Run time (min) 0.09 4.5 10.4 166.3 0.27 0.58 1.06 4.15 0.30 0.65 1.12 4.40

1 fine 0.5-s solution.

with TD(λ) and RLS-TD(λ) learning take a little time for computation during the whole

simulation. Even for APS mode, it runs about 0.002 s per step. On contrary, FSDP method

costs much time, especially in APS mode. Therefore, a pure optimized DP method such as

FSDP can’t conveniently expand to a complex application. For example, it is hard to work

in the cases of APS mode and the finer planning solution, or the traffic network control

referring to a large state space. While, the approximate DP combining with the learning

technique RLS-TD(λ) could show great potential to tackle the dimension problem, as well

as good performances on average delay and queue length. The computational efficiency

of ADP with RLS-TD(λ) learning could make it fully capable for the online control at the

isolated intersection. In the next section, we investigate the ADP_RLS-TD(λ) algorithm

for the traffic network control.

5.3 Application in traffic network

In this section, the case of signal control at the traffic network depicted in Fig. 2.6,

is simulated. Different traffic arrival rates are simulated in 2-s solution under the three

phase modes, i.e., FPS, VPS, and APS. ADP_RLS-TD(λ) and the other control methods

are implemented in the experiments of the independent and coordinated traffic network.

5.3.1 Preparation

System settings

At first, besides the same parameters in Tab. 5.1, we give additional value settings of

parameters in the traffic network system, as shown in Tab. 5.7. In detail about designing

the urban traffic network, the equal size of place is set to be the head-to-head minimum

distance of queuing vehicles, it assumes to be 8 meters. The lengths of links at network

have the setting values of being 45~60 unit places (360~480 m). Assume that the maxi-

5.3 Application in traffic network 127

Table 5.7: Network system parameter settings

Parameters Definitions Value settings

T simulation period 40000 intervals 1

N total lanes at intersection 8

M total intersections at network 5

Ll inside link lengths (unit place 2)

L5 = L17 = 45

L7 = L15 = 60

L6 = L18 = 48

L8 = L16 = 50

vmax maximum vehicle velocity 4 place/interval

Pmer merging proportions [30%,70%]

Pdiv diverging proportions [80%,20%]
1 1 interval=1 step=2 seconds.
2 1 unit place = 8 m.

mum of velocity is 4 place/int (57.6 km/h). Note that, near the entrance of lane (around 10

places), vehicles can be accelerated gradually with the constraints of final velocity under-

lying the vehicle-following model. Traffic distributions for left-turn, straight forward, and

right-turn are determined as proportion 30%, 56% (70%× 80%), and 14% (70%× 20%),

respectively.

Similarly, traffic demands in the network system are set by using the random traffic

data generation, which satisfies the Bernoulli 0-1 distribution. Traffic data inputs into the

network from the entrance link. They are shown in Fig. 5.10. There are total three kinds

of traffic demands expressed by low, medium, and high arrival rates in Traffic Scenario

D-x.

Performance measures

In the case of signal control at the network, performance measures include three parts.

Besides average traffic delay and vehicle queue length, current vehicle mean speed is

purposely added. In detail, we note that

• Total average delay. It is an evaluation of delay at whole network and expressed in

seconds. According to [110], it is calculated by

TAD =
M∑
m=1

TD/TN (5.3)

128 Chap 5. Applications and results

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

(b) Medium
(veh/int)

rate (veh/int)

1 2 3 4 5 6 7 8

I2I1 I4I3 I5

I2I1 I4I3 I5

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 Lanes

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 Lanes

0

0.05

0.1

0.15

0.2
I2I1 I4I3 I5

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 Lanes
(c) High

rate (veh/int)

(a) Low

rate (veh/int)

Figure 5.10: Traffic demand for network, except the inside link lanes represented by short

gray bars, (a) D-1: low; (b) D-2: medium; (c) D-3: high

where M is the number of intersections, TD is the delay experienced by vehicles at

one intersection and TN is the total number of vehicles released into the network.

• Queue length. It is calculated by the number of waiting vehicles on lane. The

evaluation of traffic signal control at intersection gives whether or not the stability

and fairness of queue length on each lane. For simplicity, we evaluate it by the

maximum queue length associated to each phase.

• Current vehicle average speed. This performance measure presents traffic travel

efficiency inside network. It is calculated as total moving vehicle speeds divided by

total number of vehicles at network and expressed in place/int.

5.3 Application in traffic network 129

Comparing methods

To see the performance of ADP_RLS-TD(λ) algorithm for independent network and co-

ordinated network, the independent multi-intersection extended from Algorithm 3 and the

coordinated one in Algorithm 4 are both implemented. In order to compare the proposed

traffic network control algorithms with others, we introduce the following algorithms.

• Fixed time (FC). This algorithm, at first, calculates the optimal fixed cycle time and

phase splits according to Webster’s method considering the expected traffic arrival

rates at each intersection (assuming arrival rate in the inside link has an average

value). Secondly, the setting of initial phases and the offset between intersections

are determined by numerical experiments. For example, in short-term 5000 inter-

vals, execute that Step 1: determine the initial phase of each intersection; Step 2:

the initial phase starting time is determined by looping the discrete intervals of the

phase duration. The best performance of each traffic scenario in FC is compared

with the proposed algorithm.

• Self-Organization Algorithm (SOA). This algorithm basically uses the control mech-

anism named SOTL, which is proposed in [136]. The basic rule is that a counter

is used to calculate the approaching or waiting vehicles at each time step on the

lane of red signal. After minimum green time of the current phase and satisfying

the conditions of crossing platoons, green light can switch to red one with counter

being zero while the counter reaches a threshold. In SOA, we set additionally a

maximum green time of signal phase.

• Q-learning. In this method, normal rules for updating value function are used.

Qt+1(s,a) = Qt(s,a) + ηt(rt(s,a) + γ min
a′∈A

Qt(s
′,a′)−Qt(s,a)), (5.4)

where ηt is learning rate, s′ is the transfered state from s taken action a. Each

intersection is an independent agent. To avoid computation complicity of full-state

representations, the state of queue length at any time is simplified as traffic low,

medium, or high. Thus, the state-action space of the network is reduced. Threshold

is differently set depending on the traffic demands.

130 Chap 5. Applications and results

50 40 30 20 10
0

10

20

30

40

50

60

70

80

90

100

Lane places

T
im

e
st

ep
s

Acceleration

Constant velocity

Deceleration

Entrance

Queuing

Stopline

Figure 5.11: Behavior of vehicle movements on lane (60 places) during samples of 100

steps

5.3.2 Vehicle-following simulation

Before giving performance of the proposed algorithm, some properties of the traffic net-

work loading based on the vehicle-following model are presented. We pick up one lane

at the network for analysis.

In Fig. 5.11, the profile of vehicle movements on the lane in each time step is shown.

We choose two vehicle movements represented in red line. According to the vehicle po-

sitions from the lane entrance to the stop line, behaviors of vehicle moving, including

acceleration, constant velocity, and deceleration, could be clearly shown. Moreover, ve-

hicles are queuing behind the stop line when receiving red signal.

In order to see the changes of vehicle velocity, we transform the figure 2-D (X-axis for

lane spaces and Y-axis for time steps) to a figure 3-D with velocity illustrated in Z-axis, as

shown in Fig. 5.12. For simplicity, in Fig. 5.12(a), we just choose samples of 0-10 steps

to show the evolution of vehicle velocity, which is changing from 1 to vmax = 4 place/int

when vehicles are entering the lane until to stop before the stop line meeting red signal or

directly pass when having right-of-way in green signal. In Fig. 5.12(b), samples of 0-100

steps are depicted. The whole tendency of velocities can be expressed by the dash red

line. Obviously, three basic characteristics of velocity are implicated in the simulation.

5.3 Application in traffic network 131

Entrance50 40 30 20 10 Stopline

0

5

10
0

1

2

3

4

Lane places
Time steps

V
e
lo

ci
ty

 (
p
la

ce
/in

t)

pass

stop
A

B

C

D
E

(a) 0-10 steps

Entrance50 40 30 20 10 Stopline

0

50

100
0

1

2

3

4

Lane places
Time steps

V
e
lo

ci
ty

 (
p
la

ce
/in

t)

(b) 0-100 steps

Figure 5.12: Examples of the relationship between vehicle position (X-axis) and velocity

(Z-axis) in 3-Dimension

Actually, different traffic signal control methods and traffic demands make different

vehicle positions and velocity distributions, which in some degree can illustrate traffic

flow intensity and queue length on lane. For example, as shown in Fig. 5.13, we do some

comparisons in different cases and focus on the changes of the queue lengths in 2-D. In

Fig. 5.13(a), 5.13(b), and 5.13(c), the queue lengths appear some differences by using

ADP approach in high, medium, and low traffic demand, respectively. Obviously, the

higher traffic demand makes more vehicles moving on the lane and more vehicles in the

queue. On the other hand, the vehicle platoons generated by green split really appear on

the lane. This characteristic is clearly shown in Fig. 5.13(d), in which FC method is used.

The wide brands representing big platoons come from the released vehicles in upstream

intersection. The appearance of single vehicle is also possible because of the right-turn

proportion only being 14% in our case.

Totally speaking, the behaviors of vehicle movements are reasonable and imitate to

realistic environment by the simulation, which supports us to implement some control

algorithms for traffic signal control at each intersection of the network. In the next section,

we will focus on comparisons and analysis of control performance.

132 Chap 5. Applications and results

Entrance 50 40 30 20 10 Stopline
0

10

20

30

40

50

60

70

80

90

100

Lane places

T
im

e
st

ep
s

(a) High

Entrance 50 40 30 20 10 Stopline
0

10

20

30

40

50

60

70

80

90

100

Lane places

T
im

e
st

ep
s

(b) Medium

Entrance 50 40 30 20 10 Stopline
0

10

20

30

40

50

60

70

80

90

100

Lane places

T
im

e
st

ep
s

(c) Low

Entrance 50 40 30 20 10 Stopline
0

10

20

30

40

50

60

70

80

90

100

Lane places

T
im

e
st

ep
s

(d) Medium

Figure 5.13: Evolutions of vehicle position on lane, ADP for (a), (b), (c), and FC for (d)

5.3 Application in traffic network 133

5.3.3 Comparisons and analysis

In this section, we will discuss the related algorithms for independent and coordinated

traffic network control. We will emphasize on the coordinated one, as the proposed con-

cept of tunable system states is employed for traffic network coordination.

5.3.3.1 Independent traffic network

The independent traffic network control is that for each intersection, the controller is in-

dependently to operate the signal plan, according to the local traffic information. It is easy

to implement when we make a distributed traffic system and only do (near) optimization

of the isolated intersection. So, the implementation of independent traffic network control

is an extension of isolated intersection to multi-intersection. At each intersection, we also

use the queue length and signal indication on lane as system state and define the cost func-

tion by using total queue lengths, which is the same definition for the isolated intersection

control in (2.16).

Let us recall the definition of tunable system state in Section 2.4 of Chapter 2. We

know that the tunable state parameter e (0 ≤ e ≤ 1) weights the state components of

queue length and total number of vehicles on lane, underlying signal conditions of a local

intersection and neighboring one. Thus, the system state is affected by joint actions of

adjacent intersections. We view the tunable state parameter e as the factor of control

coordination. It is easy to find that when e = 1 the coordination problem is transferred

to the independent one. Mentioned that the independent traffic network control algorithm

adopts the extension of the isolated intersection Algorithm 3 rather than the coordinated

one in Algorithm 4 with e = 1. Because the later costs more time in exhausted search (or

max-plus method) for calculation of joint actions, whereas simulation results are the same.

In order to avoid repetition, performance of the independent traffic network control will

be compared and analyzed in the following part, which is about discussion on coordinated

traffic network control.

5.3.3.2 Coordinated traffic network

In this part, simulations of the coordinated traffic network with tunable state will be im-

plemented by ADP_RLS-TD(λ) and some comparing methods. Signal control modes of

FPS, VPS, and APS are also taken into account.

134 Chap 5. Applications and results

Before we do performance comparisons of the algorithms, the influence of tunable

parameters will be analyzed. In Fig. 5.14, performances of average delay by using var-

ious tunable parameter e are presented. Some interesting results emerge in three traffic

scenarios, namely low, medium, and high demand, where the best performance appears in

e = 1, e = 0.95, and e = 0.90, respectively. When e is 1, it is an independent control that

decision making is only based on the queuing information at local intersection. However,

it is found that relatively efficient e values are almost in a range of 0.6 to 1 and the lower

delays are near to e = 1. It could be explained in two aspects. One is that the number

of vehicles on lane has already contained a part of queue length. The other one is that,

more importantly, ADP can make a fine planning by small steps so that signal phase can

be switched adaptively and frequently. Therefore, the state of queue length approaching

the intersection has much more influence on decision making than the state of vehicles

on the whole lane. In low traffic demand, the independently distributed control by using

ADP_RLS-TD(λ) is enough for the traffic network system. But in high demand, the local

information is not enough and the two state components, i.e., the local queue length and

the total number of vehicles on lane are both needed.

In Tab. 5.8, we list average delays and improvements by using different methods. It

is clearly shown that ADP_RLS-TD(λ) (λ = 0) method outperforms all others in traffic

scenarios of low, medium, and high demands, especially in APS mode that has large delay

reductions. Q-learning in VPS also performs well. Although, it is a coarse planning and

learning approach in the condition of all state representations replaced by low, medium,

or high level of vehicle queue length with thresholds. With parameters settings, SOA is

a common adaptive self-organization method (actually it operates in VPS mode) but still

owning large improvements compared by FC. It could be also found that large differ-

ences are effected by different phase modes in the same method, such as Q-learning and

ADP_RLS-TD(λ). Notice that, in Traffic Scenario D-3, using FC and Q-learning in FPS

causes vehicle spillback beyond the end of the link. That’s why the delays about these

two cases are empty in the table. In this way, Q-learning in FPS is not a good choice.

From the discussion of tunable parameters, we know that in low traffic demand the

independent network control (e = 1) is simple to be implemented with its performance

guaranteed. Actually, when an adaptive control mode (such as APS) and a planning step

enough small (such as 2-s solution or finer solution) are satisfied, it is also convenient to

use an independent control algorithm for traffic network, where isolated intersections are

5.3 Application in traffic network 135

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0
13.8

14

14.2

14.4

14.6

14.8

Tunable e

A
ve

ra
ge

 d
el

ay
s (

s)

Traffic Scenario (low)

(a) Low

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0
20.5

21

21.5

22

22.5

Tunable e

A
ve

ra
ge

 d
el

ay
s (

s)

Traffic Scenario (medium)

(b) Medium

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0
39

40

41

42

43

Tunable e

A
ve

ra
ge

 d
el

ay
s (

s)

Traffic Scenario (high)

(c) High

Figure 5.14: Comparing results by different tunable e

highly self-organized by this intelligent algorithm. Therefore, we just consider e = 1 for

the method of ADP_RLS-TD(λ) in APS in the following experiments.

On the other hand, the performance of queue length will be analyzed. It is easy to

know that queue length is the cause of different average delays.

In Fig. 5.15, during the simulation period, queue lengths (by the mean of 100 sam-

ple steps) of all signal phase combinations at the central intersection I3 are presented.

Traffic Scenario D-2 with medium traffic demand is tested. The normal four-phase flow

combinations, i.e., G1 = (1, 5), G2 = (2, 6), G3 = (3, 7), G4 = (4, 8), are abstracted by

using the maximum length on the lane of the combination. Obviously, using FC method

makes some longest queue lengths, as shown in Fig. 5.15(a). Whereas, by using SOA,

Q-learning, and ADP_RLS-TD(λ), we observe that the performances are better than FC.

Comparing these three methods, the stability and fairness of queue lengths in phases can

be analyzed. By using SOA, in Fig. 5.15(b), queue lengths are stable but unfair with dif-

ferences appearing between phases. By using Q-learning, in Fig. 5.15(c), queue lengths

136 Chap 5. Applications and results

Table 5.8: Methods comparing on average delay (s) and improvements (%)
Traffic Scenario D-1 (Low) D-2 (Medium) D-3 (High)

FC 30.25 (0 %) 56.58 (0 %) – –

SOA 19.65 (-35.0 %) 28.79 (-49.1 %) 57.74 (0 %)

Q-learning
FPS 23.06 (-23.8 %) 31.14 (-45.0 %) – –

VPS 17.13 (-43.4 %) 24.34 (-57.0 %) 49.75 (-13.8 %)

ADP_RLS-TD(0)
VPS1 13.93 (-54.0 %) 20.92 (-63.0 %) 39.17 (-32.2 %)

APS2 6.60 (-78.2%) 10.80 (-80.9 %) 15.05 (-73.9 %)

1 In D-1, D-2 and D-3, e is set to be 1, 0.95 and 0.90, respectively.
2 For simplicity, we choose e = 1 (independent) in APS mode.

are fair but unstable with long queue lengths at certain time steps. However, by using

ADP_RLS-TD(λ), queue lengths are both relative stable and fair, as shown in 5.15(d) by

VPS and in 5.15(e) by APS. Especially in APS mode, the queue lengths of all combina-

tions are very low with a little variance. From the queue length performances in VPS and

APS of ADP_RLS-TD(λ), we can find the reason of the lower traffic delays they have.

In Fig. 5.16 and 5.17, the total average queue length for the whole network is mea-

sured in medium traffic demand scenario D-2 and high traffic demand scenario D-3,

respectively. Results comparisons are among FC (only in D-2), SOA, Q-learning, and

ADP_RLS-TD(λ). During the simulation, the average sample results of every 100 inter-

vals are given for analysis. Obviously, FC control has the largest fluctuations and highest

queue lengths. While SOA, Q-learning, and ADP_RLS-TD(λ), which are all used for

adaptive signal control, have relatively gentle variances and much lower vehicle lengths.

In addition, by comparing ADP_RLS-TD(λ) with the SOA and the Q-learning both in

VPS mode in Traffic Scenario D-2, as shown in Fig. 5.16, ADP_RLS-TD(λ) performs a

little better than the others. While advantage of ADP_RLS-TD(λ) in VPS mode appears

when high traffic demand D-3 is tested, as shown in Fig. 5.17. Obviously, the differences

between these three methods are increased and the larger variations of them are also gen-

erated. More importantly, as for influences of phase control modes, ADP_RLS-TD(λ)

in APS has much better performance than SOA and Q-learning in VPS, and ADP_RLS-

TD(λ) in VPS. In both D-2 and D-3, the average queue lengths of this method stay in the

lowest level with little variations. Totally speaking, we can see that ADP_RLS-TD(λ) can

operate quite well, especially combined with APS mode for adaptive traffic signal control.

5.3 Application in traffic network 137

0 5000 10000 15000 20000 25000 30000 35000 40000
0

5

10

15

20

25

Time steps

A
ve

ra
ge

 le
ng

th
 (v

eh
)

length in G

1
length in G

2
length in G

3
length in G

4

(a) FC

0 5000 10000 15000 20000 25000 30000 35000 40000
0

1

2

3

4

5

6

Time steps

A
ve

ra
ge

 le
ng

th
 (v

eh
)

length in G

1
length in G

2
length in G

3
length in G

4

(b) SOA

0 5000 10000 15000 20000 25000 30000 35000 40000
0

1

2

3

4

5

6

Time steps

A
ve

ra
ge

 le
ng

th
 (v

eh
)

length in G

1
length in G

2
length in G

3
length in G

4

(c) Q-learning (VPS)

0 5000 10000 15000 20000 25000 30000 35000 40000
0

1

2

3

4

5

6

Time steps

A
ve

ra
ge

 le
ng

th
 (v

eh
)

length in G

1
length in G

2
length in G

3
length in G

4

(d) ADP_RLS-TD(λ) (VPS) (in λ = 0, e = 0.95)

0 5000 10000 15000 20000 25000 30000 35000 40000
0

1

2

3

4

5

6

Time steps

A
ve

ra
ge

 le
ng

th
 (v

eh
)

length in G1 length in G2 length in G3 length in G4

(e) ADP_RLS-TD(λ) (APS) (in λ = 0, e = 1)

Figure 5.15: Comparing results of average queue length (mean of 100 sample intervals)

at intersection I3 in Traffic Scenario D-2

138 Chap 5. Applications and results

0 5000 10000 15000 20000 25000 30000 35000 40000
0

5

10

15

20

25

30

Time steps

T
ot

al
 a

ve
ra

ge
 q

ue
ue

 le
ng

th
 (

ve
h)

FC

SOA

Q learning (VPS)

ADP_RLS−TD(0) (VPS)

ADP_RLS−TD(0) (APS)

Figure 5.16: Comparing results of total average queue length at network using FC, SOA,

Q-learning (VPS) and ADP_RLS-TD(λ) (λ = 0, with e = 0.95 in VPS and e = 1 in

APS) methods in Traffic Scenario D-2

0 5000 10000 15000 20000 25000 30000 35000 40000
0

5

10

15

20

25

30

35

Time steps

T
ot

al
 a

ve
ra

ge
 q

ue
ue

 le
ng

th
 (

ve
h)

SOA

Q learning (VPS)

ADP_RLS−TD(0) (VPS)

ADP_RLS−TD(0) (APS)

Figure 5.17: Comparing results of total average queue length at network using SOA, Q-

learning (VPS) and ADP_RLS-TD(λ) (λ = 0, with e = 0.90 in VPS and e = 1 in APS)

methods in Traffic Scenario D-3

5.3 Application in traffic network 139

0 5000 10000 15000 20000 25000 30000 35000 40000
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Time steps

C
ur

re
nt

 v
eh

ic
le

 a
ve

ra
ge

 s
pe

ed
 (

pl
ac

e/
in

t)

SOA

Q learning (VPS)

ADP_RLS−TD(0) (VPS)

ADP_RLS−TD(0) (APS)

Figure 5.18: Comparing results of current vehicle average speed using SOA, Q-learning

(VPS) and ADP_RLS-TD(λ) (λ = 0, with e = 0.90 in VPS and e = 1 in APS) methods

in Traffic Scenario D-3

In the simulation of high traffic demand scenario D-3, we also obtain the current vehi-

cle average speed at the whole network with all road lanes considered. The comparisons

of SOA, Q-learning in VPS and ADP_RLS-TD(λ) in VPS and APS are shown in Fig.

5.18. As a whole, ADP_RLS-TD(λ) method can get the best performance with relative

high average speed, which mainly ranges from 1.8 to 2.2 place/int. Especially in APS, the

speeds are mostly concentrated in the range of 2.0 to 2.2 place/int. It means that the traffic

network is smooth and drivers can save the travel time on the road by using this efficient

control mechanism. In addition, Q-learning with main results from 1.5 to 1.9 place/int

is better than SOA, which only has average speed from about 1.4 to 1.7 place/int. In-

terestingly, the vehicle average speed and average queue length discussed previously are

negative relevances. For example, the low average queue length has the high vehicle

average speed correspondingly.

Computation time

Besides the performance measures discussion above, let us look at computation efficiency

of the algorithm. In Tab. 5.9, a list of run time in every simulation step by different

140 Chap 5. Applications and results

Table 5.9: Comparisons of run time for network
Methods FC SOA Q-learning ADP_RLS-TD(λ)

Phase mode Fixed VPS FPS VPS FPS VPS APS

Run time (10−3s/step) 3.7 5.9 16.8 28.1 4.3 7.0 20.6

algorithms is given. As a whole, the cost time by implementing ADP_RLS-TD(λ) in

three phase modes is much less than those of Q-learning. Although the APS mode takes

20.6×10−3 s/step, it can satisfy online operation enough for adaptive traffic signal control.

Actually, Q-learning takes much time to update tabular values of state-action representa-

tions. It is known that APS mode (12 phases) is more complex than VPS mode (4 phases).

If Q-learning is combined with APS mode, undoubtedly, it will take the most time for this

control. In addition, SOA takes less time than Q-learning, but the performance is not so

good as Q-learning in VPS.

5.4 Summary

By doing numerous experiments in the isolated intersection and traffic network, the in-

vestigation of ADP method using RLS-TD(λ) shows great advantages in the performance

measures and computation efficiency.

In the experiments of the isolated intersection, firstly, the importance of properties

of functional parameters in function approximation is mentioned. By comparing with

TD(λ), parameters in recursive least-squares TD(λ) (RLS-TD(λ)) refer to the earlier

stable trends and less vibrations. After all, this may lead to different performances of

traffic delays and RLS-TD(λ) operates better in the experiments of numerical λ. Sec-

ondly, the comparisons of performances on traffic delay and queue length by implement-

ing ADP_RLS-TD(λ) and other methods are discussed. Furthermore, three phase modes

FPS, VPS, and APS are compared. Consequently, ADP_RLS-TD(λ) performs very well,

especially in APS mode with less traffic delay and computation time. Although exact

algorithm FSDP makes the largest delay reduction, the computational cost is too high and

can not conveniently expand to traffic network application. In addition, ADP with RLS-

TD(λ) learning is also suitable for the fine planning solution, which obtains even better

results.

5.4 Summary 141

In the experiments for network, at first, we analyze the simulation results of vehicle-

following model. This ensures the environment of algorithms implemented in the network

application. Then, by comparing and analyzing performances of total average delay, av-

erage queue length, and current average vehicle speed, the proposed ADP_RLS-TD(λ)

still performs very well in the traffic network control. Considering the tunable param-

eter for network coordination, difference appears between the independent control and

coordinated control. However, the performance of the independent control in APS mode

can also be guaranteed with easy implementation. In a word, advantages of the computa-

tion efficiency and facility of learning make ADP_RLS-TD(λ) enough for online adaptive

operation in a traffic network.

142 Chap 5. Applications and results

CONCLUSION AND PERSPECTIVES

Concluding remarks

This thesis addressed an urban real-time adaptive traffic signal control problem at inter-

section and network, which were modeled as a distributed and dynamic system in discrete-

time. The efficient and near-optimal algorithm using ADP with RLS-TD(λ) was finally

confirmed after the exploration of the exact DP algorithms. This study also investigated

kinds of signal phase control mechanisms called FPS, VPS, and APS, which were inte-

grated into the algorithms and obtained different performances.

After generalities of traffic signal control system introduced and related work re-

viewed, the thesis was mainly completed by the following three parts.

The first part of the thesis focused on the dynamic modeling for adaptive traffic sig-

nal control problems. With discussion about phase control modes FPS, VPS, and APS,

the proposed APS would be more adaptive than FPS and VPS in prediction. As for the

modeling of the intersection and multi-intersection network, problems were formulated

respectively by MDP and multiagent MDP with a set of characteristic definitions, includ-

ing traffic state, traffic action, state transition, and reward function. Two formulations of

state transition were presented. One was the stochastic state transition with probability

transition function. The other one was the determined state transition which works by the

way of Monte-Carol sampling. In addition, we proposed a new vehicle-following model

to support the traffic network loading environment as well as the algorithm study later.

144 Chap 5. Applications and results

Covering the case of independent network control, the concept of tunable system state

was proposed for the traffic network coordination.

The second part of the study investigated optimal solutions at isolated intersection

by using two exact DP algorithms. For a simple 2-phase intersection problem, a value

iteration algorithm was implemented by using the stochastic state transition model. The

optimal stationary policy was finally obtained after the convergence of value iteration.

With case study, this method performed well but much time was taken for convergence

in offline operation. The improved algorithm referred to the second one. We developed a

forward search DP algorithm called FSDP. This algorithm was applied to a deterministic

state transition for a typical intersection problem and performed quite well with traffic

delay reduction. But it just guaranteed the real-time operation in FPS and VPS. For the

extension work of APS or more complicated case, FSDP encountered the computation

burden as well. From these two algorithms, it was suggested that for simple designing of

complex control problem, the determined state transition with environment noise working

by Monte-Carol sampling could be easier implemented than the stochastic state transition

with probability transition function, which is hard to be obtained in the model with a

large state space. Whatever, these two algorithms were both limited by the computational

problem in DP, which has the “curse of dimensionality”. Subsequently, this problem was

settled successfully in the final part.

The final part of the thesis found near-optimal algorithm both for the isolated intersec-

tion and the network study. The ADP method has a great advantage for the reduction of

computational complexity by using approximation function. Rather than neural network

approximator, we chose the linear function approximation, in which the functional pa-

rameters for feature function were adjusted by the recursive least-squares TD(λ) method

in multi-step version. RLS-TD(λ) was tested in the experiments with better performances

than TD(λ). Therefore, the ADP with RLS-TD(λ) algorithms were developed for an iso-

lated intersection, especially in APS mode and the fine solution, and for the extension

to multi-intersection including the independent and coordinated one. By doing numer-

ous experiments at the isolated intersection and traffic network, ADP with RLS-TD(λ)

indicated great advantages in performance measures and computation efficiency. It was

enough to guarantee the real-time operation by using ADP with RLS-TD(λ). Moreover,

different performances appeared among the FPS, VPS, and APS mode. In particular, APS

is very suitable in our algorithms, and the results by implementing APS were surely to

5.4 Summary 145

be the best satisfied. With both considerations of safety for flows passing and efficiency

of adaptivity control, its potential supports us to explore more intelligent and adaptive

forms combining the vehicle control in autonomous traffic intersection management at

un-signalized intersection.

Future research

This thesis may be extended in the future in the following aspects:

• The proportion of traffic merging or diverging flow in thesis is constant although it

satisfies stochastic distribution. For the traffic network loading, route choice mech-

anism should be integrated into the system with validation of the algorithms.

• The control algorithms could be integrated and implemented robustly in other visual

simulation platforms, or the developing one in our own task. It is also significant to

test realistic traffic data from urban traffic.

• The thesis is to further work especially in the coordination of more intersections.

It is required to find a coordinative mechanism in the larger network study in or-

der to reduce the computational complexity in a microscopic way. Meanwhile, an

appropriate algorithm to find joint action is still required.

• The study of thesis offers a highly adaptive control method at signalized intersec-

tions. It will be an interesting work to extend the study to autonomous intersection

management (AIM), where the autonomous or connected vehicles are employed

with speed advisory associated to cooperative adaptive cruise control system.

146 Chap 5. Applications and results

APPENDICES

A1. Derivation of RLS-TD(λ)

Before we do the derivation of RLS-TD(λ), the matrix inverse lemma is given as follows:

Lemme .1 ([137]) If A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, and A is invertible, then

(A+BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1 (5)

Let

Pt = Ã−1
t (6)

P0 = εI (7)

Ht = Ptzt (8)

According to Lemma .1 and (4.58) (4.59),

Pt = Ã−1
t

= (Ãt−1 + zt(φt − γφt+1)′)−1

= Pt−1 − Pt−1zt(1 + (φt − γφt+1)′Pt−1zt)
−1(φt − γφt+1)′Pt−1

(9)

148 Chap 5. Applications and results

Ht = Ptzt

= (Pt−1 − Pt−1zt(1 + (φt − γφt+1)′Pt−1zt)
−1(φt − γφt+1)′Pt−1)zt

= Pt−1zt −
Pt−1zt(φt − γφt+1)′Pt−1zt
1 + (φt − γφt+1)′Pt−1zt

=
Pt−1zt

1 + (φt − γφt+1)′Pt−1zt

(10)

θt = Ã−1
t b̃t

= Pt

t∑
i=1

ziri

= Pt(Ãt−1Ã
−1
t−1b̃t−1 + ztrt)

= Pt((Ãt − zt(φt − γφt+1)′)θt−1 + ztrt)

= PtP
−1
t θt−1 + Pt(ztrt − zt(φt − γφt+1)′θt−1)

= θt−1 + Ptzt(rt − (φt − γφt+1)′θt−1)

(11)

Use Ht = Ptzt and TD error δ̃t = rt − (φt − γφt+1)′θt−1, thus

θt = θt−1 +Ht(rt − (φt − γφt+1)′θt−1)

= θt−1 +
Pt−1

1 + (φt − γφt+1)′Pt−1zt
δ̃tzt

(12)

A2. The Proof of RLS-TD(λ) Convergence

Firstly, the formal statements are the following.

Assumption .1 The Markov chain {st} is ergodic with transition probability matrix P ,

and there is an unique distribution π that satisfies

π′P = π′ (13)

with π(s) > 0 for all s ∈ S and π is a finite or infinite vector, depending on the cardinality

of S.

Assumption .2 Let E0(·) stand for expectation with respect to distribution of π. Transi-

tion rewards rt satisfy

E0(r2
t) <∞. (14)

5.4 Summary 149

Assumption .3 The matrix Φ = (φ1, φ2, ..., φK) ∈ R|S|×K has full column rank, that is,

the basis function φk(k = 1, 2, ..., K) are linear independent.

Assumption .4 For every k, the basis function φk satisfies

E0[(φk(st))
2] <∞. (15)

Assumption .5 The matrix [P−1
0 + 1

t

t∑
i=1

A(Xi)] is non-singular for all t > 0.

Theorem .1 [132] For a Markov chain which satisfied Assumption 1-5, the asymptotic

estimate found by RLS-TD(λ) converges, with probability 1, to θ∗ determined by

E0[A(Xt)]θ
∗ − E0[b(Xt)] = 0 (16)

Proof: According to [98], E0[A(Xt)] and E0[b(Xt)] are well defined and finite. Further-

more, E0[A(Xt)] is negative definite, thus it is invertible.

Consider the condition of t = 0. According to (11), we have

θ = (Ã0 +
t∑
i=1

A(Xi))
−1(Ã0θ0 +

t∑
i=1

b(Xi))

= (P−1
0 +

t∑
i=1

A(Xi))
−1(P−1

0 θ0 +
t∑
i=1

b(Xi))

= (
1

t
P−1

0 +
1

t

t∑
i=1

A(Xi))
−1(

1

t
P−1

0 θ0 +
1

t

t∑
i=1

b(Xi))

(17)

Since

E0[A(Xt)] = lim
t→∞

1

t

t∑
i=1

A(Xi) (18)

E0[b(Xt)] = lim
t→∞

1

t

t∑
i=1

b(Xi) (19)

and E0[A(Xt)] is invertible,

lim
t→∞

θ = E−1
0 [A(Xt)]E0[b(Xt)] = θ∗ (20)

Thus, θ converges to θ∗ with probability 1. �

150 Chap 5. Applications and results

A3. Derivation of Multi-step Planning of RLS-TD(λ)

In multi-step planning, according to (4.66), the objective function (4.50) can be rewritten

as:

O(θt) =
1

t

t∑
i=1

(
i+tM−1∑
k=i

γk−irk − (φi − γtMφi+tM)
′
θt

)2

. (21)

It is easy to see that ri and (φi − γφi+1)′ in (4.50) are substituted by
i+tM−1∑
k=i

γk−irk and

(φi − γtMφi+tM)
′, respectively. According to related theory in [133] and [99], we can

rewrite (4.51) as following by using φt as the instrumental variable in LS-TD(0). That is,

θt =

(
1

t

t∑
i=1

φi(φi − γtMφi+tM)
′

)−1(
1

t

t∑
i=1

φi

i+tM−1∑
k=i

γk−irk

)
(22)

In LS-TD(λ), θt can be estimated as

θt =

(
1

t

t∑
i=1

zi(φi − γtMφi+tM)
′

)−1(
1

t

t∑
i=1

zi

i+tM−1∑
k=i

γk−irk

)
(23)

=

(
t∑
i=1

zi(φi − γtMφi+tM)
′

)−1(t∑
i=1

zi

i+tM−1∑
k=i

γk−irk

)
(24)

where using the eligibility vector zi in (4.38) substitutes the φi.

According to matrix inverse Lemma .1 and derivation of RLS-TD(λ) in Appendix A1,

the parameter vector θt in (4.68) of multi-step planning of RLS-TD(λ) can be guaranteed.

BIBLIOGRAPHY

[1] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y. Wang, “Review

of road traffic control strategies,” Proceedings of the IEEE, vol. 91, no. 12, pp.

2043–2067, 2003.

[2] X. Zheng and W. Recker, “An adaptive control algorithm for traffic-actuated sig-

nals,” Transportation Research Part C: Emerging Technologies, vol. 30, pp. 93–

115, 2013.

[3] K. Dresner and P. Stone, “A multiagent approach to autonomous intersection man-

agement,” Journal of artificial intelligence research, pp. 591–656, 2008.

[4] S. I. Guler, M. Menendez, and L. Meier, “Using connected vehicle technology to

improve the efficiency of intersections,” Transportation Research Part C: Emerg-

ing Technologies, vol. 46, pp. 121–131, 2014.

[5] A. L. Bazzan, “Opportunities for multiagent systems and multiagent reinforcement

learning in traffic control,” Autonomous Agents and Multi-Agent Systems, vol. 18,

no. 3, pp. 342–375, 2009.

[6] S. El-Tantawy and B. Abdulhai, “Multi-agent reinforcement learning for integrated

network of adaptive traffic signal controllers (MARLIN-ATSC),” in Proceedings of

IEEE Conference on Intelligent Transportation Systems, 2012, pp. 319–326.

152 BIBLIOGRAPHY

[7] P. Koonce, L. Rodegerdts, K. Lee, S. Quayle, S. Beaird, C. Braud, J. Bonneson,

P. Tarnoff, and T. Urbanik, “Traffic signal timing manual,” Tech. Rep., 2008.

[8] Transportation Research Board, “Highway capacity manual,” National Research

Council,Washington, DC, 2000.

[9] D. I. Robertson, “TRANSYT method for area traffic control,” Traffic Engineering

& Control, vol. 11, no. 6, 1969.

[10] R. Vincent and C. Young, “Self-optimising traffic signal control using micropro-

cessors. the trrl mova strategy for isolated intersections,” Traffic engineering &

control, vol. 27, no. 7-8, pp. 385–387, 1986.

[11] P. Lowrie, “The Sydney coordinated adaptive traffic system-principles, methodol-

ogy, algorithms,” in International Conference on Road Traffic Signalling, London,

no. 207, 1982.

[12] P. Hunt, D. Robertson, R. Bretherton, and M. Royle, “The SCOOT on-line traffic

signal optimisation technique,” Traffic Engineering & Control, vol. 23, no. 4, 1982.

[13] N. H. Gartner, “OPAC: A demand-responsive strategy for traffic signal control,”

Transportation Research Record, no. 906, pp. 75–81, 1983.

[14] V. Mauro and C. Di Taranto, “UTOPIA,” in Proceedings of IFAC/IFORS Confer-

ence on Control, Computers and Communications in Transport, 1989.

[15] D. Robertson and R. Bretherton, “Optimum control of an intersection for any

known sequence of vehicle arrivals,” in Proceedings of the 2nd IFAC/IFIP/IFORS

Symposium on Traffic Control and Transportation Systems, 1974.

[16] J.-J. Henry, J.-L. Farges, and J. Tuffal, “The PRODYN real time traffic algorithm,”

in IFACIFIP-IFORS Conference on control in transportation systems, 1984.

[17] K. L. Head, P. B. Mirchandani, and D. Sheppard, “Hierarchical framework for real-

time traffic control,” Transportation Research Record, no. 1360, pp. 82–88, 1992.

[18] P. Mirchandani and L. Head, “A real-time traffic signal control system: architec-

ture, algorithms, and analysis,” Transportation Research Part C: Emerging Tech-

nologies, vol. 9, no. 6, pp. 415–432, 2001.

BIBLIOGRAPHY 153

[19] C. Cai, C. K. Wong, and B. G. Heydecker, “Adaptive traffic signal control using

approximate dynamic programming,” Transportation Research Part C: Emerging

Technologies, vol. 17, no. 5, pp. 456–474, 2009.

[20] J. Wu, A. Abbas-Turki, and A. El Moudni, “Cooperative driving: an ant colony

system for autonomous intersection management,” Applied Intelligence, vol. 37,

no. 2, pp. 207–222, 2012.

[21] V. Milanés, J. Villagrá, J. Godoy, J. Simó, J. Pérez, and E. Onieva, “An intelligent

v2i-based traffic management system,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 13, no. 1, pp. 49–58, 2012.

[22] J. Lee and B. Park, “Development and evaluation of a cooperative vehicle intersec-

tion control algorithm under the connected vehicles environment,” IEEE Transac-

tions on Intelligent Transportation Systems, vol. 13, no. 1, pp. 81–90, 2012.

[23] K. Dresner and P. Stone, “Multiagent traffic management: A reservation-based

intersection control mechanism,” in Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems, vol. 2, 2004, pp. 530–

537.

[24] L. Li, D. Wen, and D. Yao, “A survey of traffic control with vehicular communi-

cations,” IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 1,

pp. 425 – 432, 2014.

[25] B. Van Arem, C. J. Van Driel, and R. Visser, “The impact of cooperative adap-

tive cruise control on traffic-flow characteristics,” IEEE Transactions on Intelligent

Transportation Systems, vol. 7, no. 4, pp. 429–436, 2006.

[26] H. K. Lo, “A novel traffic signal control formulation,” Transportation Research

Part A: Policy and Practice, vol. 33, no. 6, pp. 433–448, 1999.

[27] H. K. Lo, E. Chang, and Y. C. Chan, “Dynamic network traffic control,” Trans-

portation Research Part A: Policy and Practice, vol. 35, no. 8, pp. 721–744, 2001.

[28] K. Aboudolas, M. Papageorgiou, A. Kouvelas, and E. Kosmatopoulos, “A rolling-

horizon quadratic-programming approach to the signal control problem in large-

154 BIBLIOGRAPHY

scale congested urban road networks,” Transportation Research Part C: Emerging

Technologies, vol. 18, no. 5, pp. 680–694, 2010.

[29] M. L. Puterman, Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons, 2014.

[30] X.-H. Yu and W. W. Recker, “Stochastic adaptive control model for traffic signal

systems,” Transportation Research Part C: Emerging Technologies, vol. 14, no. 4,

pp. 263–282, 2006.

[31] R. Haijema and J. van der Wal, “An mdp decomposition approach for traffic control

at isolated signalized intersections,” Probability in the Engineering and Informa-

tional Sciences, vol. 22, no. 04, pp. 587–602, 2008.

[32] M. Dell’Orco, “A dynamic network loading model for mesosimulation in trans-

portation systems,” European Journal of Operational Research, vol. 175, no. 3, pp.

1447–1454, 2006.

[33] H. B. Celikoglu and M. Dell’Orco, “Mesoscopic simulation of a dynamic link load-

ing process,” Transportation Research Part C: Emerging Technologies, vol. 15,

no. 5, pp. 329–344, 2007.

[34] M. J. Lighthill and G. B. Whitham, “On kinematic waves I: flood movement in

long rivers II: a theory of traffic flow on long crowded roads,” the Royal Society of

London A 229, no. 281-345, 1955.

[35] P. I. Richards, “Shock waves on the highway,” Operations research, vol. 4, no. 1,

pp. 42–51, 1956.

[36] C. F. Daganzo, “The cell transmission model: A dynamic representation of high-

way traffic consistent with the hydrodynamic theory,” Transportation Research

Part B: Methodological, vol. 28, no. 4, pp. 269–287, 1994.

[37] A. Sumalee, R. Zhong, T. Pan, and W. Szeto, “Stochastic cell transmission model

(SCTM): A stochastic dynamic traffic model for traffic state surveillance and as-

signment,” Transportation Research Part B: Methodological, vol. 45, no. 3, pp.

507–533, 2011.

BIBLIOGRAPHY 155

[38] H. Abouaissa, M. Fliess, and C. Join, “Fast parametric estimation for macroscopic

traffic flow model,” in 17th IFAC World Congress, 2008.

[39] “PARAMICS.” [Online]. Available: www.paramics-online.com

[40] “MITSIM.” [Online]. Available: https://its.mit.edu/software

[41] “VISSIM.” [Online]. Available: http://vision-traffic.ptvgroup.com/en-uk/products/

ptv-vissim/

[42] K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,”

Journal de physique I, vol. 2, no. 12, pp. 2221–2229, 1992.

[43] O. K. Tonguz, W. Viriyasitavat, and F. Bai, “Modeling urban traffic: a cellular

automata approach,” IEEE Communications Magazine, vol. 47, no. 5, pp. 142–

150, 2009.

[44] J. Esser and M. Schreckenberg, “Microscopic simulation of urban traffic based on

cellular automata,” International Journal of Modern Physics C, vol. 8, no. 05, pp.

1025–1036, 1997.

[45] S. Maerivoet and B. De Moor, “Cellular automata models of road traffic,” Physics

Reports, vol. 419, no. 1, pp. 1–64, 2005.

[46] M. Florian, M. Mahut, and N. Tremblay, “Application of a simulation-based dy-

namic traffic assignment model,” European Journal of Operational Research, vol.

189, no. 3, pp. 1381–1392, 2008.

[47] M. Wiering, “Multi-agent reinforcement learning for traffic light control,” in Inter-

national Conference on Machine Learning (ICML), 2000, pp. 1151–1158.

[48] M. Wiering, J. Vreeken, J. Van Veenen, and A. Koopman, “Simulation and opti-

mization of traffic in a city,” in IEEE Intelligent Vehicles Symposium, 2004, pp.

453–458.

[49] R. E. Bellman, Dynamic Programming. Princeton University Press, Princeton,

1957.

www.paramics-online.com
https://its.mit.edu/software
http://vision-traffic.ptvgroup.com/en-uk/products/ptv-vissim/
http://vision-traffic.ptvgroup.com/en-uk/products/ptv-vissim/

156 BIBLIOGRAPHY

[50] R. J. Dakin, “A tree-search algorithm for mixed integer programming problems,”

The Computer Journal, vol. 8, no. 3, pp. 250–255, 1965.

[51] T. H. Heung, T. K. Ho, and Y. F. Fung, “Coordinated road-junction traffic control by

dynamic programming,” IEEE Transactions on Intelligent Transportation Systems,

vol. 6, no. 3, pp. 341–350, 2005.

[52] J. Wu, A. Abbas-Turki, and A. El Moudni, “Discrete methods for urban intersection

traffic controlling,” in IEEE 69th Vehicular Technology Conference (VTC Spring).

IEEE, 2009, pp. 1–5.

[53] D. Teodorović, V. Varadarajan, J. Popović, M. R. Chinnaswamy, and S. Ramaraj,

“Dynamic programming-neural network real-time traffic adaptive signal control

algorithm,” Annals of Operations Research, vol. 143, no. 1, pp. 123–131, 2006.

[54] F. Yan, M. Dridi, and A. El Moudni, “A scheduling approach for autonomous ve-

hicle sequencing problem at multi-intersections,” International Journal of Opera-

tional Research, vol. 9, no. 1, pp. 57–68, 2011.

[55] F. Yan, M. Dridi, and A. El-Moudni, “New vehicle sequencing algorithms with ve-

hicular infrastructure integration for an isolated intersection,” Telecommunication

Systems, vol. 50, no. 4, pp. 325–337, 2012.

[56] B. Yin, M. Dridi, and A. El Moudni, “Forward search algorithm based on dynamic

programming for real-time adaptive traffic signal control,” IET Intelligent Trans-

portation Systems, vol. 9, no. 7, pp. 754–764, 2015.

[57] Y. Zhang and Y. Xie, “Traffic signal timing and optimization,” Artificial Intelli-

gence Applications to Critical Transportation Issues, p. 11, 2012.

[58] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 1998.

[59] B. Park, C. Messer, and T. Urbanik, “Traffic signal optimization program for

oversaturated conditions: genetic algorithm approach,” Transportation Research

Record: Journal of the Transportation Research Board, no. 1683, pp. 133–142,

1999.

BIBLIOGRAPHY 157

[60] B. Park, C. Messer, and T. Urbanik II, “Enhanced genetic algorithm for signal-

timing optimization of oversaturated intersections,” Transportation Research

Record: Journal of the Transportation Research Board, no. 1727, pp. 32–41, 2000.

[61] H. Ceylan and M. G. Bell, “Traffic signal timing optimisation based on genetic

algorithm approach, including drivers’ routing,” Transportation Research Part B:

Methodological, vol. 38, no. 4, pp. 329–342, 2004.

[62] K. B. Kesur, “Advances in genetic algorithm optimization of traffic signals,” Jour-

nal of Transportation Engineering, 2009.

[63] J. Lee, B. Abdulhai, A. Shalaby, and E.-H. Chung, “Real-time optimization for

adaptive traffic signal control using genetic algorithms,” Journal of Intelligent

Transportation Systems, vol. 9, no. 3, pp. 111–122, 2005.

[64] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International

Conference on Neural Networks, vol. 4. IEEE, 1995, pp. 1942–1948.

[65] D. Teodorović, “Swarm intelligence systems for transportation engineering: Prin-

ciples and applications,” Transportation Research Part C: Emerging Technologies,

vol. 16, no. 6, pp. 651–667, 2008.

[66] Y. Wei, Q. Shao, Y. Han, and B. Fan, “Intersection signal control approach based

on pso and simulation,” in Second InternationalConference on Genetic and Evolu-

tionary Computing. IEEE, 2008, pp. 277–280.

[67] J. García-Nieto, E. Alba, and A. C. Olivera, “Swarm intelligence for traffic light

scheduling: Application to real urban areas,” Engineering Applications of Artificial

Intelligence, vol. 25, no. 2, pp. 274–283, 2012.

[68] J. Garcia-Nieto, A. C. Olivera, and E. Alba, “Optimal cycle program of traffic lights

with particle swarm optimization,” IEEE Transactions on Evolutionary Computa-

tion, vol. 17, no. 6, pp. 823–839, 2013.

[69] R. Putha, L. Quadrifoglio, and E. Zechman, “Comparing ant colony optimiza-

tion and genetic algorithm approaches for solving traffic signal coordination under

oversaturation conditions,” Computer-Aided Civil and Infrastructure Engineering,

vol. 27, no. 1, pp. 14–28, 2012.

158 BIBLIOGRAPHY

[70] D. McKenney and T. White, “Distributed and adaptive traffic signal control within

a realistic traffic simulation,” Engineering Applications of Artificial Intelligence,

vol. 26, no. 1, pp. 574–583, 2013.

[71] S. Chiu and S. Chand, “Adaptive traffic signal control using fuzzy logic,” in Second

IEEE International Conference on Fuzzy Systems. IEEE, 1993, pp. 1371–1376.

[72] J. Niittymäki and M. Pursula, “Signal control using fuzzy logic,” Fuzzy sets and

systems, vol. 116, no. 1, pp. 11–22, 2000.

[73] M. B. Trabia, M. S. Kaseko, and M. Ande, “A two-stage fuzzy logic controller for

traffic signals,” Transportation Research Part C: Emerging Technologies, vol. 7,

no. 6, pp. 353–367, 1999.

[74] L. Zhang, H. Li, P. D. Prevedouros, et al., “Signal control for oversaturated in-

tersections using fuzzy logic,” in Transportation Research Board Annual Meeting,

Washington DC, USA, 2005.

[75] Y. S. Murat and E. Gedizlioglu, “A fuzzy logic multi-phased signal control model

for isolated junctions,” Transportation Research Part C: Emerging Technologies,

vol. 13, no. 1, pp. 19–36, 2005.

[76] M. C. Choy, D. Srinivasan, and R. L. Cheu, “Cooperative, hybrid agent architec-

ture for real-time traffic signal control,” IEEE Transactions on Systems, Man and

Cybernetics, Part A: Systems and Humans, vol. 33, no. 5, pp. 597–607, 2003.

[77] J.-H. Lee and H. Lee-Kwang, “Distributed and cooperative fuzzy controllers for

traffic intersections group,” Systems, Man, and Cybernetics, Part C: Applications

and Reviews, IEEE Transactions on, vol. 29, no. 2, pp. 263–271, 1999.

[78] B. P. Gokulan and D. Srinivasan, “Distributed geometric fuzzy multiagent urban

traffic signal control,” IEEE Transactions on Intelligent Transportation Systems,

vol. 11, no. 3, pp. 714–727, 2010.

[79] D. Zhao, Y. Dai, and Z. Zhang, “Computational intelligence in urban traffic signal

control: A survey,” IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol. 42, no. 4, pp. 485–494, 2012.

BIBLIOGRAPHY 159

[80] M. C. Choy, D. Srinivasan, and R. L. Cheu, “Neural networks for continuous online

learning and control,” IEEE Transactions on Neural Networks, vol. 17, no. 6, pp.

1511–1531, 2006.

[81] G. Shen and X. Kong, “Study on road network traffic coordination control tech-

nique with bus priority,” IEEE Transactions on Systems, Man, and Cybernetics,

Part C: Applications and Reviews, vol. 39, no. 3, pp. 343–351, 2009.

[82] D. Srinivasan, M. C. Choy, and R. L. Cheu, “Neural networks for real-time traffic

signal control,” IEEE Transactions on Intelligent Transportation Systems, vol. 7,

no. 3, pp. 261–272, 2006.

[83] D. Srinivasan and M. Choy, “Cooperative multi-agent system for coordinated traf-

fic signal control,” in IEE Proceedings-Intelligent Transport Systems, vol. 153,

no. 1. IET, 2006, pp. 41–50.

[84] E. Bingham, “Reinforcement learning in neurofuzzy traffic signal control,” Euro-

pean Journal of Operational Research, vol. 131, no. 2, pp. 232–241, 2001.

[85] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement learning and

dynamic programming using function approximators. CRC Press,USA, 2010.

[86] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming: an overview,”

in Proceedings of IEEE 34th International Conference on Decision and Control

(CDC), vol. 1, 1995, pp. 560–564.

[87] W. B. Powell, Approximate Dynamic Programming: Solving the curses of dimen-

sionality. John Wiley & Sons,USA, 2007.

[88] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey of multia-

gent reinforcement learning,” IEEE Transactions on Systems, Man, and Cybernet-

ics, Part C: Applications and Reviews, vol. 38, no. 2, pp. 156–172, 2008.

[89] P. J. Werbos, “Approximate dynamic programming for real-time control and neu-

ral modeling,” Handbook of intelligent control: Neural, fuzzy, and adaptive ap-

proaches, vol. 15, pp. 493–525, 1992.

[90] F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: an introduc-

tion,” Computational Intelligence Magazine, IEEE, vol. 4, no. 2, pp. 39–47, 2009.

160 BIBLIOGRAPHY

[91] J. Si and Y.-T. Wang, “Online learning control by association and reinforcement,”

IEEE Transactions on Neural Networks, vol. 12, no. 2, pp. 264–276, 2001.

[92] X. Xu, L. Zuo, and Z. H. Huang, “Reinforcement learning algorithms with function

approximation: Recent advances and applications,” Information Sciences, vol. 261,

pp. 1–31, 2014.

[93] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, “Reinforcement learning-based multi-

agent system for network traffic signal control,” IET Intelligent Transportation Sys-

tems, vol. 4, no. 2, pp. 128–135, 2010.

[94] S. Box and B. Waterson, “An automated signalized junction controller that learns

strategies by temporal difference reinforcement learning,” Engineering Applica-

tions of Artificial Intelligence, vol. 26, no. 1, pp. 652–659, 2013.

[95] L. Prashanth and S. Bhatnagar, “Reinforcement learning with function approxi-

mation for traffic signal control,” IEEE Transactions on Intelligent Transportation

Systems, vol. 12, no. 2, pp. 412–421, 2011.

[96] T. Li, D. B. Zhao, and J. Q. Yi, “Adaptive dynamic programming for multi-

intersections traffic signal intelligent control,” in Proceedings of IEEE Conference

on Intelligent Transportation Systems, 2008, pp. 286–291.

[97] L. Baird and A. W. Moore, “Gradient descent for general reinforcement learning,”

Advances in neural information processing systems, pp. 968–974, 1999.

[98] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning with

function approximation,” IEEE Transactions on Automatic Control, vol. 42, no. 5,

pp. 674–690, 1997.

[99] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms for temporal differ-

ence learning,” Machine Learning, vol. 22, no. 1-3, pp. 33–57, 1996.

[100] J. A. Boyan, “Technical update: Least-squares temporal difference learning,” Ma-

chine Learning, vol. 49, no. 2-3, pp. 233–246, 2002.

[101] D. Ormoneit and Ś. Sen, “Kernel-based reinforcement learning,” Machine learn-

ing, vol. 49, no. 2-3, pp. 161–178, 2002.

BIBLIOGRAPHY 161

[102] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent reinforcement learn-

ing for integrated network of adaptive traffic signal controllers (MARLIN-ATSC):

Methodology and large-scale application on downtown Toronto,” IEEE Transac-

tions on Intelligent Transportation Systems, vol. 14, no. 3, pp. 1140–1150, 2013.

[103] ——, “Design of reinforcement learning parameters for seamless application of

adaptive traffic signal control,” Journal of Intelligent Transportation Systems,

vol. 18, no. 3, pp. 227–245, 2014.

[104] M. Wiering and M. van Otterlo, Reinforcement Learning: State-of-the-art.

Springer Science & Business Media, 2012, vol. 12.

[105] S. Richter, D. Aberdeen, and J. Yu, “Natural actor-critic for road traffic optimisa-

tion,” in Advances in neural information processing systems, 2006, pp. 1169–1176.

[106] A. A. Sherstov and P. Stone, “Function approximation via tile coding: Automating

parameter choice,” in Abstraction, Reformulation and Approximation. Springer,

2005, pp. 194–205.

[107] T. T. Pham, T. Brys, M. E. Taylor, T. Brys, M. M. Drugan, P. Bosman, M.-D.

Cock, C. Lazar, L. Demarchi, D. Steenhoff, et al., “Learning coordinated traffic

light control,” in Proceedings of the Adaptive and Learning Agents workshop (at

AAMAS-13), vol. 10, 2013, pp. 1196–1201.

[108] M. Abdoos, N. Mozayani, and A. L. Bazzan, “Hierarchical control of traffic signals

using q-learning with tile coding,” Applied intelligence, vol. 40, no. 2, pp. 201–213,

2014.

[109] A. L. Bazzan, “A distributed approach for coordination of traffic signal agents,”

Autonomous Agents and Multi-Agent Systems, vol. 10, no. 1, pp. 131–164, 2005.

[110] P. Balaji, X. German, and D. Srinivasan, “Urban traffic signal control using rein-

forcement learning agents,” IET Intelligent Transportation Systems, vol. 4, no. 3,

pp. 177–188, 2010.

[111] A. Salkham, R. Cunningham, A. Garg, and V. Cahill, “A collaborative reinforce-

ment learning approach to urban traffic control optimization,” in Proceedings of

162 BIBLIOGRAPHY

the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intel-

ligent Agent Technology-Volume 02, 2008, pp. 560–566.

[112] M. A. Khamis and W. Gomaa, “Adaptive multi-objective reinforcement learning

with hybrid exploration for traffic signal control based on cooperative multi-agent

framework,” Engineering Applications of Artificial Intelligence, vol. 29, pp. 134–

151, 2014.

[113] J. France and A. A. Ghorbani, “A multiagent system for optimizing urban traffic,”

in International IEEE/WIC Conference on Intelligent Agent Technology, 2003, pp.

411–414.

[114] Z. S. Yang, X. Chen, Y. S. Tang, and J. P. Sun, “Intelligent cooperation control

of urban traffic networks,” in International Conference on Machine Learning and

Cybernetics, vol. 3, 2005, pp. 1482–1486.

[115] A. L. Bazzan, D. de Oliveira, and B. C. da Silva, “Learning in groups of traffic

signals,” Engineering Applications of Artificial Intelligence, vol. 23, no. 4, pp. 560–

568, 2010.

[116] L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis, “Multiagent reinforcement

learning for urban traffic control using coordination graphs,” in Machine Learn-

ing and Knowledge Discovery in Databases. Springer, 2008, pp. 656–671.

[117] J. C. Medina and R. F. Benekohal, “Traffic signal control using reinforcement

learning and the max-plus algorithm as a coordinating strategy,” in Proceedings

of IEEE Conference on Intelligent Transportation Systems, 2012, pp. 596–601.

[118] J. R. Kok and N. Vlassis, “Collaborative multiagent reinforcement learning by pay-

off propagation,” Journal of Machine Learning Research, vol. 7, pp. 1789–1828,

2006.

[119] P. J. Werbos, “Reinforcement learning and approximate dynamic programming

(RLADP)-foundations, common misconceptions, and the challenges ahead,” Re-

inforcement Learning and Approximate Dynamic Programming for Feedback Con-

trol, pp. 1–30, 2012.

BIBLIOGRAPHY 163

[120] P. Mannion, J. Duggan, and E. Howley, “An experimental review of reinforcement

learning algorithms for adaptive traffic signal control,” Autonomic Road Transport

Support Systems, Autonomic Systems. Birkhauser/Springer, 2015.

[121] NEMAStandardsPublicationTS2-Traffic Controller Assemblies with NTCIP Re-

quirements, National Electrical Manufacturers Association Std., 2003.

[122] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic de-

termination of minimum cost paths,” IEEE Transactions on Systems Science and

Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[123] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using real-time dynamic

programming,” Artificial Intelligence, vol. 72, no. 1, pp. 81–138, 1995.

[124] B. Yin, M. Dridi, and A. El Moudni, “Traffic control model and algorithm based on

decomposition of MDP,” in IEEE International Conference on Control, Decision

and Information Technologies, 2014, pp. 225–230.

[125] R. Dechter and J. Pearl, “Generalized best-first search strategies and the optimality

of A*,” Journal of the ACM (JACM), vol. 32, no. 3, pp. 505–536, 1985.

[126] E. A. Hansen and S. Zilberstein, “LAO*: a heuristic search algorithm that finds

solutions with loops,” Artificial Intelligence, vol. 129, no. 1, pp. 35–62, 2001.

[127] N. J. Nilsson, Artificial intelligence: a new synthesis. Morgan Kaufmann, 1998.

[128] P. J. Werbos and X. Pang, “Generalized maze navigation: SRN critics solve what

feedforward or hebbian nets cannot,” in IEEE International Conference on Systems,

Man, and Cybernetics, vol. 3, 1996, pp. 1764–1769.

[129] C. Cai, “Adaptive traffic signal control using approximate dynamic programming,”

Ph.D. dissertation, UNIVERSITY COLLEGE LONDON, 2009.

[130] D. V. Prokhorov, D. C. Wunsch, et al., “Adaptive critic designs,” IEEE Transactions

on Neural Networks, vol. 8, no. 5, pp. 997–1007, 1997.

[131] D. Zhao, Z. Hu, Z. Xia, C. Alippi, Y. Zhu, and D. Wang, “Full-range adaptive cruise

control based on supervised adaptive dynamic programming,” Neurocomputing,

vol. 125, pp. 57–67, 2014.

164 BIBLIOGRAPHY

[132] X. Xu, H.-g. He, and D. Hu, “Efficient reinforcement learning using recursive least-

squares methods,” Journal of Artificial Intelligence Research, vol. 16, no. 1, pp.

259–292, 2002.

[133] T. Söderström and P. Stoica, “Instrumental variable methods for system identifica-

tion,” Circuits, Systems and Signal Processing, vol. 21, no. 1, pp. 1–9, 2002.

[134] N. H. Gartner, P. J. Tarnoff, and C. M. Andrews, “Evaluation of optimized policies

for adaptive control strategy,” Transport Research Record, no. 1324, pp. 105–114,

1991.

[135] F. V. Webster, “Traffic signal settings,” Road Research Laboratory, London, U.K.,”

Road Res. Tech. Paper no. 39, 1958.

[136] S. B. Cools, C. Gershenson, and B. D’Hooghe, “Self-organizing traffic lights: A

realistic simulation,” in Advances in Applied Self-organizing Systems. Springer,

2008, pp. 41–50.

[137] L. Ljung and T. Söderström, “Theory and practice of recursive identification,”

1983.

Document réalisé avec LATEX et :
le style LATEX pour Thèse de Doctorat créé par S. Galland — http://www.multiagent.fr/ThesisStyle

la collection de paquets tex-upmethodology— http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

Résumé :

La régulation adaptative des feux de signalisation est un problème très important. Beaucoup de chercheurs
travaillent continuellement afin de résoudre les problémes liés à l’embouteillage dans les intersections
urbaines. Il devient par conséquent très utile d’employer des algorithmes intelligents afin d’améliorer les
performances de régulation et la qualité du service. Dans cette thèse, nous essayons d’étudier ce problème
d’une part à travers une modèlisation microscopique et dynamique en temps discret, et d’autre part en
explorant plusieurs approches de résoltion pour une intersection isolée ainsi que pour un réseau distribué
d’intersections.
La première partie se concentre sur la modélisation dynamique des problèmes des feux de signalisation ainsi
que de la charge du réseau d’intersections. Le mode de la “séquence de phase adaptative” (APS) dans un
plan de feux est d’abord considéré. Quant à la modélisation du contrôle des feux aux intersections, elle est
formulée grâce à un processus décisionnel de markov (MDP). En particulier, la notion de “l’état du système
accordable” est alors proposée pour la coordination du réseau de trafic. En outre, un nouveau modèle de
“véhicule-suiveur” est proposé pour l’environnement de trafic.
En se basant sur la modélisation proposée, les méthodes de contrôle des feux dans cette thèse comportent des
algorithmes optimaux et quasi-optimaux. Deux algorithmes exacts de résolution basées sur la programmation
dynamique (DP) sont alors étudiés et les résultats montrent certaines limites de cette solution DP surtout
dans quelques cas complexes où l’espace d’états est assez important. En raison de l’importance du temps
d’execution de l’algorithme DP et du manque d’information du modèle (notamment l’information exacte
relative à l’arrivée des véhicules à l’intersection), nous avons opté pour un algorithme de programmation
dynamique approximative (ADP). Enfin, un algorithme quasi-optimal utilisant l’ADP combinée à la méthode
d’amélioration RLS-TD (λ) est choisi. Dans les simulations, en particulier avec l’intégration du mode de phase
APS, l’algorithme proposé montre de bons résultats notamment en terme de performance et d’efficacité de
calcul.
Mots-clés : Contrôle de trafic, Intersections, Processus décisionnel markovien (MDP), Programmation dy-

namique (DP), Programmation dynamique approximative (ADP) avec RLS-TD (λ)

Abstract:

Adaptive traffic signal control is a decision making optimization problem. People address this crucial problem
constantly in order to solve the traffic congestion at urban intersections. It is very popular to use intelligent
algorithms to improve control performances, such as traffic delay. In the thesis, we try to study this problem
comprehensively with a microscopic and dynamic model in discrete-time, and investigate the related algorithms
both for isolated intersection and distributed network control.
At first, we focus on dynamic modeling for adaptive traffic signal control and network loading problems. The
proposed adaptive phase sequence (APS) mode is highlighted as one of the signal phase control mechanisms.
As for the modeling of signal control at intersections, problems are fundamentally formulated by Markov
decision process (MDP), especially the concept of tunable system state is proposed for the traffic network
coordination. Moreover, a new vehicle-following model supports for the network loading environment.
Based on the model, signal control methods in the thesis are studied by optimal and near-optimal algorithms
in turn. Two exact DP algorithms are investigated and results show some limitations of DP solution when large
state space appears in complex cases. Because of the computational burden and unknown model information
in dynamic programming (DP), it is suggested to use an approximate dynamic programming (ADP). Finally, the
online near-optimal algorithm using ADP with RLS-TD(λ) is confirmed. In simulation experiments, especially
with the integration of APS, the proposed algorithm indicates a great advantage in performance measures and
computation efficiency.

Keywords: Traffic control, Intersections, Markov decision process (MDP), Dynamic programming (DP), Ap-
proximate dynamic programming (ADP) with RLS-TD(λ)

	thesis.pdf
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	General introduction
	Chapter Generalities of traffic signal control
	Introduction
	Descriptions of traffic signal control systems
	Principle concepts
	Traffic signal control systems
	Established systems
	Developing systems

	Dynamic traffic models
	Intersection signal control models
	Network loading models

	Traffic signal control methods review
	DP and search algorithm
	Artificial intelligence methods
	Reinforcement learning and ADP methods

	Conclusion and objective of the thesis

	Chapter Dynamic traffic system modeling
	Introduction
	Traffic flow organization patterns
	Variable phase sequence
	Adaptive phase sequence

	System modeling at isolated intersection
	Markov Decision Process
	Model definitions of characteristic in MDP
	Model assumption
	Model framework

	System modeling at traffic network
	Network loading model in micro-simulation system
	Network representations
	Vehicle-following model

	Coordinated signal control model at network
	Multiagent MDP
	Tunable state control for coordination

	Summary

	Chapter Methods studied based on dynamic programming
	Introduction
	Backward DP algorithm for control and analysis
	DP introduction
	Value iteration algorithm for stochastic states system
	Case study and analysis

	Forward search algorithm for control and analysis
	Forward search A* introduction
	Forward search algorithm for deterministic states system
	Case study and analysis

	Limitation of DP based algorithms
	Summary

	Chapter Approximate dynamic programming with RLS-TD() learning algorithm
	Introduction
	Structure of ADP
	Neural networks approximation
	linear function approximation

	RLS-TD() for linear function approximation
	Multi-step temporal difference (TD()) learning
	RLS-TD()
	Learning with multi-step value iteration

	Algorithm for adaptive traffic signal control
	Algorithm for isolated intersection
	Algorithm for traffic network
	Independent network control
	Coordinated network control

	Summary

	Chapter Applications and results
	Introduction
	Application in isolated intersection
	Preparation
	Functional parameters simulation
	Comparisons and analysis
	Different phase mode solutions
	Fine planning solution

	Application in traffic network
	Preparation
	Vehicle-following simulation
	Comparisons and analysis
	Independent traffic network
	Coordinated traffic network

	Summary

	Conclusion and perspectives
	Appendices

