. , Traitement thermique du PEDOT:PSS/DMSO (PH1000)

. , Modulation de la concentration de porteurs de charge dans le PEDOT

. , Stabilité du PEDOT:PSS/DMSO après réduction par hydrazine

P. , D. Dmso, and P. Du,

. .. Ha)x, , vol.2

I. , Instrumentations et systèmes de mesures

. , Propriétés thermoélectriques de TiS2(HA)x imprimé

. , Encre PEDOT:PSS (PJET 700)

. , 1. Forme de la source de chaleur et la température appliquée, II. Modélisation et calculs numériques de dispositifs thermoélectriques pour la génération de puissance électrique

. , III. Fabrication et caractérisation de générateurs thermoélectriques organiques et hybrides

. , III. 1. Fabrication de dispositifs thermoélectriques organiques et hybrides

. , III. 5. Générateurs à base de PEDOT:PSS et de TiS2

. , Discussion sur les résultats de performances des générateurs

.. .. Conclusion-générale,

.. .. Références,

. Références-personnelles and . .. Interventions,

. .. Annexes,

, Licence CC BY

, Références bibliographiques

E. Brynjolfsson and A. Mcafee, The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies, 2014.

P. Domingos, The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World, 2015.

D. Kellmereit and D. Obodovski, The Silent Intelligence: The Internet of Things. DnD Ventures, 2013.

Y. N. Harari, Sapiens: A Brief History of Humankind, 2015.

P. S. Kireev, Semiconductor Physics. Mir, 1978.

R. F. Pierret, Semiconductor Device Fundamentals, 1996.

R. F. Pierret, Advanced Semiconductor Fundamentals, 2003.

S. M. Sze, Physics of Semiconductor Devices, 1981.
DOI : 10.1002/0470068329

URL : http://cds.cern.ch/record/1092737/files/9780471143239_TOC.pdf

M. Lundstrom and C. Jeong, Near-Equilibrium Transport: Fundamentals and Applications, 2012.

J. Goldsmid, The Physics of Thermoelectric Energy Conversion, 2017.
DOI : 10.1088/978-1-6817-4641-8

H. J. Goldsmid, Introduction to Thermoelectricity, 2016.

C. Uher, Materials Aspect of Thermoelectricity, 2016.

A. G. Samoilovich, Thermoelectric and Thermomagnetic Methods of Power Conversion, 2007.

«. , , p.131138, 2010.

L. P. Bulat and E. V. Buzin, Thermoelectric cooling systems, 2001.

W. Brostow, G. Granowski, N. Hnatchuk, J. Sharp, J. White et al., J. Mater. Educ, vol.36, p.175185, 2014.

C. Kittel, I. To, 7. State-physics, and . Ed, , 2007.

M. V. Vedernikov, E. K. Iordanishvili, and «. A. , Ioffe and origin of modern semiconductor thermoelectric energy conversion, Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No.98TH8365), p.3742, 1998.

G. S. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, 2013.

A. Ioffe and . Fedorovich, Semiconductor thermoelements and Thermoelectric cooling. London: Infosearch, ltd, 1957.

D. M. Rowe, CRC Handbook of Thermoelectrics, 1995.

R. Decher, Direct Energy Conversion: Fundamentals of Electric Power Production, 1996.

J. G. Stockholm, La thermoélectricité, applications et perspectives », Sciences, vol.953, 1995.

G. J. Snyder and T. S. Ursell, « Thermoelectric efficiency and compatibility, Phys. Rev. Lett, vol.91, p.148301, 2003.

, Licence CC BY

H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, and A. J. Heeger, « Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x », J. Chem. Soc. Chem. Commun, vol.0, p.578580, 1977.

, « Twenty-five years of conducting polymers, vol.0, p.14, 2003.

C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa et al., « Electrical Conductivity in Doped Polyacetylene, Phys. Rev. Lett, p.10981101, 1977.

L. D. Hicks and M. S. Dresselhaus, « Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B, vol.47, p.1663116634, 1993.

J. P. Heremans, M. S. Dresselhaus, L. E. Bell, and D. T. Morelli, When thermoelectrics reached the nanoscale, vol.8, p.471473, 2013.

B. T. Mcgrail, A. Sehirlioglu, and E. E. Pentzer, Polymer Composites for Thermoelectric Applications, vol.54, p.17101723, 2015.

P. Gómez-romero, O. Ayyad, J. Suárez-guevara, and D. Muñoz-rojas, Hybrid organic gy applications, vol.14, 2010.

P. L. Kapitza, « Heat Transfer and Superfluidity of Helium II, Phys. Rev, vol.60, issue.4, p.1941

A. Moliton, Optoélectronique moléculaire et polymère: des concepts aux, 2003.

D. M. De-leeuw, M. M. Simenon, A. R. Brown, and R. E. Einerhand, « Stability of ntype doped conducting polymers and consequences for polymeric microelectronic devices, Synth. Met, vol.87, issue.1, p.5359, 1997.

O. Bubnova and X. Crispin, « Towards polymer-based organic thermoelectric generators, Energy Environ. Sci, vol.5, issue.11, p.93459362, 2012.
DOI : 10.1039/c2ee22777k

F. Li, A. Nathan, Y. Wu, and B. S. Ong, Organic Thin Film Transistor Integration: A Hybrid Approach, 2011.

A. Moliton, Électronique et optoélectronique organiques, 2011.

H. Kiess, Conjugated Conducting Polymers, 2012.

T. A. Skotheim and J. Reynolds, Conjugated Polymers: Theory, Synthesis, Properties, and Characterization, 2006.

A. R. Blythe and D. Bloor, Electrical Properties of Polymers, 2005.

L. D. Landau, . Sov, . Phys, and . Uspekhi, , vol.12, p.135, 1969.

P. W. Anderson, « Absence of Diffusion in Certain Random Lattices, Phys. Rev, vol.109, issue.5, p.14921505, 1958.

M. H. Cohen, H. Fritzsche, and S. R. Ovshinsky, Simple Band Model for Amorphous Semiconducting Alloys, Phys. Rev. Lett, vol.22, p.10651068, 1969.

N. F. Mott, Electrons in disordered structures, vol.16, p.49144, 1967.

N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2012.

, Licence CC BY

J. M. Marshall and A. E. Owen, Drift mobility studies in vitreous arsenic triselenide, vol.24, p.12811305, 1971.

S. Mott and N. F. , Conduction in non-crystalline materials

T. Holstein, Ann. Phys, vol.8, p.325342, 1959.

N. F. Mott, « Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids, vol.1, issue.1, p.117, 1968.

J. L. Brédas, F. Wudl, and A. J. Heeger, Polarons and bipolarons in doped polythiophene: A theoretical investigation, vol.63, p.577580, 1987.

K. Lee, S. Cho, S. H. Park, A. J. Heeger, C. Lee et al., Nature, vol.441, p.6568, 2006.

S. Ihnatsenka, X. Crispin, and I. V. Zozoulenko, Understanding hopping transport and thermoelectric properties of conducting polymers, Phys. Rev. B, vol.92, p.35201, 2015.

M. Cutler and N. F. Mott, « Observation of Anderson Localization in an Electron Gas, Phys. Rev, vol.181, issue.3, p.13361340, 1969.

J. P. Heremans, B. Wiendlocha, and A. M. Chamoire, « Resonant levels in bulk thermoelectric semiconductors, Energy Environ. Sci, vol.5, issue.2, p.55105530, 2012.

Q. Zhang, Y. Sun, W. Xu, and E. D. Zhu, Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently, vol.26, p.68296851, 2014.

Y. Du, S. Z. Shen, K. Cai, P. S. Casey, and . Research, Prog. Polym. Sci, vol.37, issue.6, p.820841, 2012.

H. J. Goldsmid, Review of Thermoelectric Materials, p.153195, 2016.

B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, vol.320, p.634638, 2008.

H. Sadeghi, S. Sangtarash, and C. J. Lambert, « Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons, Beilstein J. Nanotechnol, vol.6, p.11761182, 2015.

H. J. Wu, L. Zhao, F. S. Zheng, D. Wu, Y. L. Pei et al., He, « Broad temperature plateau for thermoelectric figure of merit ZT>2 in phaseseparated PbTe0, Nat. Commun, vol.7, issue.0, p.4515, 2014.

N. Toshima, Conductive polymers as a new type of thermoelectric material, vol.186, p.8186, 2002.

Y. W. Park, Structure and morphology: relation to thermopower properties of conductive polymers, Synth. Met, vol.45, issue.2, p.173182, 1991.

D. Moses and A. Denenstein, « Experimental determination of the thermal conductivity of a conducting polymer: Pure and heavily doped polyacetylene, Phys. Rev. B, vol.30, p.20902097, 1984.

, Licence CC BY

H. Yan, T. Ohta, and E. N. Toshima, « Stretched Polyaniline Films Doped by (±)-10Camphorsulfonic Acid: Anisotropy and Improvement of Thermoelectric Properties, Macromol. Mater. Eng, vol.286, issue.3, p.139142, 2001.

N. Mateeva, H. Niculescu, J. B. Schlenoff, and E. L. Testardi, « Correlation of Seebeck Coefficient and Electric Conductivity in Polyaniline and Polypyrrole, J. Appl. Phys, vol.83, issue.6, 1998.

K. Hiraishi, A. Masuhara, H. Nakanishi, H. Oikawa, and Y. Shinohara, « Evaluation of Thermoelectric Properties of Polythiophene Films Synthesized by Electrolytic Polymerization », Jpn. J. Appl. Phys, vol.48, p.71501, 2009.

R. B. Aïch, N. Blouin, A. Bouchard, and E. M. Leclerc, Electrical and Thermoelectric Properties of Poly, vol.21, p.751757, 2009.

Y. Hiroshige, M. Ookawa, and E. N. Toshima, 5dimethoxyphenylenevinylene) and its derivatives, High thermoelectric performance of poly, vol.156, p.13411347, 2006.

O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman et al., « Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4ethylenedioxythiophene), Nat. Mater, vol.10, issue.6, p.429433, 2011.

R. Yue, J. Xu, and . Poly, 4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review », Synth. Met, vol.3, issue.11, p.912917, 2012.

G. Kim, L. Shao, K. Zhang, and K. P. Pipe, « Engineered doping of organic semiconductors for enhanced thermoelectric efficiency, Nat. Mater, vol.12, issue.8, p.719723, 2013.

R. A. Schlitz, F. G. Brunetti, A. M. Glaudell, P. L. Miller, M. A. Brady et al., Solubility-Limited Extrinsic n-Type Doping of a High Electron Mobility Polymer for Thermoelectric Applications, vol.26, p.28252830, 2014.

, A study on the synthesis and electrical properties of chelate polymers, Angew. Makromol. Chem, vol.79, issue.1, p.133145, 1979.

Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu et al., Organic thermoelectric materials and devices based on p-and n-type poly, vol.24, p.932937, 2012.

F. Jiao, C. Di, Y. Sun, P. Sheng, W. Xu et al., « Inkjet-printed flexible organic thinfilm thermoelectric devices based on p-and n-type poly(metal 1,1,2,2ethenetetrathiolate)s/polymer composites through ball-milling », Philos. Transact. A Math. Phys. Eng. Sci, vol.372, 2013.

P. M. Chaikin, R. L. Greene, and E. E. Engler, « Thermopower of an isostructural series of organic conductors, Phys. Rev. B, vol.13, p.16271632, 1976.

H. Itahara, M. Maesato, R. Asahi, H. Yamochi, and G. Saito, « Thermoelectric Properties of Organic Charge-Transfer Compounds, J. Electron. Mater, vol.38, issue.7, p.11711175, 2009.

K. Harada, M. Riede, K. Leo, O. R. Hild, and C. M. Elliott, « Pentacene homojunctions: Electron and hole transport properties and related photovoltaic responses, Phys. Rev. B, vol.77, p.195212, 2008.

T. Minakata, H. Imai, and M. Ozaki, « Electrical properties of highly ordered and amorphous thin films of pentacene doped with iodine, J. Appl. Phys, vol.72, issue.9, p.41784182, 1992.

, Licence CC BY

A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum et al., Superconductivity at 18 K in potassium-doped C60, vol.350, p.600601, 1991.

K. Tanigaki, T. W. Ebbesen, S. Saito, J. Mizuki, J. S. Tsai et al., Superconductivity at 33 K in CsxRbyC60, vol.352, p.222223, 1991.
DOI : 10.1038/352222a0

T. Inabe, H. Ogata, Y. Maruyama, Y. Achiba, S. Suzuki et al., « Electronic structure of alkali metal doped ${\mathrm{C}}_{60}$ derived from thermoelectric power measurements, Phys. Rev. Lett, vol.69, p.37973799
DOI : 10.1103/physrevlett.69.3797

M. Sumino, K. Harada, M. Ikeda, S. Tanaka, K. Miyazaki et al., Thermoelectric properties of n-type C60 thin films and their application in organic thermovoltaic devices, Appl. Phys. Lett, vol.99, issue.9, p.93308, 2011.
DOI : 10.1063/1.3631633

A. Barbot, C. D. Bin, B. Lucas, B. Ratier, and M. Aldissi, « N-type doping and thermoelectric properties of co-sublimed cesium-carbonate-doped fullerene, J. Mater. Sci, vol.48, issue.7, p.27852789, 2013.
DOI : 10.1007/s10853-012-6824-1

Y. Nonoguchi, K. Ohashi, R. Kanazawa, K. Ashiba, K. Hata et al., « Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants, Sci. Rep, vol.3, 2013.
DOI : 10.1038/srep03344

URL : https://www.nature.com/articles/srep03344.pdf

E. J. Bae, Y. H. Kang, K. Jang, and S. Y. Cho, Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment, vol.6, p.18805, 2016.

P. Gómez-romero, O. Ayyad, J. Suárez-guevara, and D. Muñoz-rojas, Hybrid organicinorganic materials, vol.14, 2010.

C. Cho, K. L. Wallace, P. Tzeng, J. Hsu, C. Yu et al., « Outstanding Low Temperature Thermoelectric Power Factor from Completely Organic Thin Films Enabled by Multidimensional Conjugated Nanomaterials, Adv. Energy Mater, vol.6, issue.7, 2016.
DOI : 10.1002/aenm.201502168

C. Yu, K. Choi, L. Yin, J. C. Grunlan, and . Light, Weight Flexible Carbon Nanotube Based Organic Composites with Large Thermoelectric Power Factors, ACS Nano, vol.5, issue.10, p.78857892, 2011.
DOI : 10.1021/nn202868a

C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang et al., « Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2, Nat. Mater, vol.14, issue.6, p.622627, 2015.
DOI : 10.1038/nmat4251

C. Wan, R. Tian, A. B. Azizi, Y. Huang, Q. Wei et al., Flexible thermoelectric foil for wearable energy harvesting, vol.30, p.840845, 2016.
DOI : 10.1016/j.nanoen.2016.09.011

H. Yoshino, G. C. Papavassiliou, and E. K. Murata, « Low-Dimensional organic conductors as thermoelectric materials, J. Therm. Anal. Calorim, vol.92, issue.2, p.457460, 2008.
DOI : 10.1007/s10973-007-8970-2

Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and E. T. Ishida, Polymer thermoelectric modules screen-printed on paper, RSC Adv, vol.4, p.2880228806, 2014.
DOI : 10.1039/c4ra04946b

S. J. Kim, J. H. We, B. J. Cho, «. A-wearable, and . Thermoelectric, Energy Environ. Sci, vol.7, issue.6, p.19591965, 2014.

, Licence CC BY

«. Energy, , pp.15-2016, 2016.

. Disponible,

J. Swithenbank, K. N. Finney, Q. Chen, Y. B. Yang, A. Nolan et al., Waste heat usage, vol.60, p.430440, 2013.
DOI : 10.1016/j.applthermaleng.2012.10.038

H. Fang, J. Xia, K. Zhu, Y. Su, and Y. Jiang, « Industrial waste heat utilization for low temperature district heating, Energy Policy, vol.62, p.236246, 2013.
DOI : 10.1016/j.enpol.2013.06.104

C. B. Vining, « An inconvenient truth about thermoelectrics, Nat. Mater, vol.8, issue.2, p.8385, 2009.
DOI : 10.1038/nmat2361

, « Power Sources for the Internet-of-Things: Markets and Strategies | n-tech Research

, Thermoelectric Generators Market worth 715.8 Million USD by, 2022.

. Disponible,

Y. Du, K. Cai, S. Chen, H. Wang, S. Z. Shen et al., Thermoelectric Fabrics: Toward Power Generating Clothing, vol.5, 2015.
DOI : 10.1038/srep06411

URL : https://www.nature.com/articles/srep06411.pdf

M. Hyland, H. Hunter, J. Liu, E. Veety, and E. D. Vashaee, Wearable thermoelectric generators for human body heat harvesting, Appl. Energy, vol.182, p.518524, 2016.
DOI : 10.1016/j.apenergy.2016.08.150

URL : https://manuscript.elsevier.com/S0306261916312594/pdf/S0306261916312594.pdf

F. Suarez, A. Nozariasbmarz, D. Vashaee, and M. C. Öztürk, Designing thermoelectric generators for self-powered wearable electronics, Energy Environ. Sci, vol.9, issue.6, p.20992113, 2016.
DOI : 10.1039/c6ee00456c

A. Bonfiglio, D. D. Rossi, and É. , Wearable Monitoring Systems, 2011.

S. Gorgutsa, V. Bélanger-garnier, B. Ung, J. Viens, B. Gosselin et al., Novel Wireless-Communicating Textiles Made from Multi-Material and Minimally-Invasive Fibers », Sensors, vol.14, 2014.

P. N. Service, « Body heat could electrically power IoT devices, medical monitors using a woven, thermoelectric flexible fabric-Purdue University

H. Atkins, «. ». , and F. ,

R. R. Søndergaard, M. Hösel, N. Espinosa, M. Jørgensen, and F. C. Krebs, « Practical evaluation of organic polymer thermoelectrics by large-area R2R processing on flexible substrates, Energy Sci. Eng, vol.1, issue.2, p.8188, 2013.

H. Shi, C. Liu, Q. Jiang, and E. J. Xu, Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review, vol.1, p.1500017, 2015.

, Licence CC BY

E. G. Vitoratos, S. A. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos et al., Thermal degradation mechanisms of PEDOT:PSS », 2009.

K. Chang, M. Jeng, C. Yang, Y. Chou, S. Wu et al., « The Thermoelectric Performance of Poly(3,4-ethylenedi oxythiophene)/Poly(4styrenesulfonate) Thin Films », J. Electron. Mater, vol.38, issue.7, p.11821188, 2009.

J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, « Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synth. Met, vol.126, issue.2, p.311316, 2002.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-meskamp et al., « Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal PostTreatment for ITO-Free Organic Solar Cells, Adv. Funct. Mater, vol.21, issue.6, p.10761081, 2011.

A. M. Nardes, R. A. Janssen, and E. M. Kemerink, A Morphological Model for the Solvent-Enhanced Conductivity of PEDOT:PSS Thin Films, Adv. Funct. Mater, vol.18, issue.6, p.865871, 2008.

B. Friedel, P. E. Keivanidis, T. J. Brenner, A. Abrusci, C. R. Mcneill et al., « Effects of Layer Thickness and Annealing of PEDOT:PSS Layers in Organic Photodetectors, Macromolecules, vol.42, p.67416747, 2009.

Y. Kim, A. M. Ballantyne, J. Nelson, and D. D. Bradley, « Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells, Org. Electron, vol.10, issue.1, p.205209, 2009.

M. Scholdt, H. Do, J. Lang, A. Gall, A. Colsmann et al., « Organic Semiconductors for Thermoelectric Applications, J. Electron. Mater, vol.39, issue.9, p.15891592, 2010.

F. Faghani, Linkop. Univ, 2010.

T. Tsai, H. Chang, C. Chen, Y. Huang, and W. Whang, « A facile dedoping approach for effectively tuning thermoelectricity and acidity of PEDOT:PSS films, vol.15, p.641645, 2014.

N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval et al., « Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films, J. Mater. Chem. C, vol.2, issue.7, p.12781283, 2014.

A. Zykwinska, W. Domagala, A. Czardybon, B. Pilawa, and M. Lapkowski, « In situ EPR spectroelectrochemical studies of paramagnetic centres in poly(3,4ethylenedioxythiophene) (PEDOT) and poly(3,4-butylenedioxythiophene) (PBuDOT) films », Chem. Phys, vol.292, issue.1, p.3145, 2003.

J. L. Bredas and G. B. Street, « Polarons, bipolarons, and solitons in conducting polymers, Acc. Chem. Res, vol.18, issue.10, p.309315, 1985.

A. J. Heeger, « Polymeric Materials, J. Phys. Chem. B, vol.105, p.84758491, 2001.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans et al.,

«. Crispin and . Semi, Nat. Mater, vol.13, issue.2, p.190194, 2014.

, Licence CC BY

Y. Xia and J. Ouyang, 4ethylenedioxythiophene): Poly(styrenesulfonate) Films through a Treatment with Organic Carboxylic Acids and Inorganic Acids, Significant Conductivity Enhancement of Conductive Poly, vol.3, p.474483

G. Greczynski, T. Kugler, and W. R. Salaneck, « Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy, Thin Solid Films, vol.354, issue.1, p.129135, 1999.

T. P. Nguyen and S. A. De-vos, « An investigation into the effect of chemical and thermal treatments on the structural changes of poly(3,4ethylenedioxythiophene)/polystyrenesulfonate and consequences on its use on indium tin oxide substrates, Appl. Surf. Sci, vol.221, issue.1, p.330339, 2004.

S. H. Lee, H. Park, S. Kim, W. Son, I. W. Cheong et al., « Transparent and flexible organic semiconductor nanofilms with enhanced thermoelectric efficiency, J. Mater. Chem. A, vol.2, p.72887294, 2014.

Y. Peng, Z. He, A. Diyaf, A. Ivaturi, Z. Zhang et al., « Manipulating hybrid structures of polymer/a-Si for thin film solar cells », Appl. Phys. Lett, vol.104, issue.10, p.103903, 2014.

K. A. Nagamatsu, S. Avasthi, J. Jhaveri, and J. C. Sturm, A 12 #x0025; Efficient Silicon/PEDOT:PSS Heterojunction Solar Cell Fabricated at lt; 100 #x00B0;C », IEEE J. Photovolt, vol.4, issue.1, p.260264, 2014.

H. Jung, D. Ho-kim, C. Su-kim, T. Bae, K. B. Chung et al., « Organic-inorganic hybrid thin film solar cells using conducting polymer and gold nanoparticles », Appl. Phys. Lett, vol.102, p.183902, 2013.

M. A. Guziak, T. Nishizaki, Y. Honma, K. Watanabe, and E. T. Sasaki, « Electrical Conductivity of PEDOT:PSS Film Prepared through Organic Compound Addition, Trans. Mater. Res. Soc. Jpn, vol.38, issue.3, p.363367, 2013.

J. Livage, Vanadium pentoxide gels, Chem. Mater, vol.3, issue.4, p.578593, 1991.
URL : https://hal.archives-ouvertes.fr/jpa-00248256

M. G. Kanatzidis, C. G. Wu, H. O. Marcy, D. C. Degroot, and C. R. Kannewurf, Conductive polymer/oxide bronze nanocomposites. Intercalated polythiophene in vanadium pentoxide (V2O5) xerogels », vol.2, p.222224, 1990.

Y. Wang and G. Cao, « Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides, Chem. Mater, vol.18, p.27872804, 2006.
DOI : 10.1002/chin.200634227

C. Wu, D. C. Degroot, H. O. Marcy, J. L. Schindler, C. R. Kannewurf et al., Redox Intercalative Polymerization of Aniline in V2O5

. Xerogel, The Postintercalative Intralamellar Polymer Growth in Polyaniline/Metal Oxide Nanocomposites Is Facilitated by Molecular Oxygen, Chem. Mater, vol.8, issue.8, 1996.

D. Vernardou, « State-of-the-art Of Chemically Grown Vanadium Pentoxide Nanostructures With Enhanced Electrochemical Properties, Advanced Materials Letters, vol.4, issue.11, p.798810, 2013.

M. Lira-cantú and P. Gómez-romero, « Synthesis and Characterization of Intercalate Phases in the OrganicInorganic Polyaniline/V2O5 System, J. Solid State Chem, vol.147, issue.2, p.601608, 1999.

N. Ozer and C. M. Lampert, « Electrochromic performance of sol-gel deposited WO3 V2O5 films, Thin Solid Films, vol.349, issue.1, p.205211, 1999.

, Licence CC BY

Y. Yue, H. Liang, and N. , Vanadium Pentoxide (V2O5) for Electrodes of Lithium-Ion Batteries, Adv. Energy Mater, vol.7, 2017.

M. Benmouss, A. Outzourhit, R. Jourdani, A. Bennouna, and E. L. Ameziane, Optical and Electrochromic Properties of SolGel V2O5 Thin Films », Active and Passive Electronic Components, 2003.

. Disponible,

S. Ferhat, C. Domain, J. Vidal, D. Noël, B. Ratier et al., Sustain. Energy Fuels, vol.2, issue.1, 2017.

P. N. Trikalitis, V. Petkov, and M. G. Kanatzidis, Structure of Redox Intercalated (NH4)0.5V2O5·mH2O Xerogel Using the Pair Distribution Function Technique, vol.15, p.33373342, 2003.

O. Monfort, T. Roch, L. Satrapinskyy, M. Gregor, T. Plecenik et al., « Reduction of V2O5 thin films deposited by aqueous solgel method to VO2(B) and investigation of its photocatalytic activity, Appl. Surf. Sci, vol.322, p.21, 2014.

L. Abello, E. Husson, Y. Repelin, and G. Lucazeau, « Vibrational spectra and valence force field of crystalline V 2O 5 », Spectrochim. Acta Part Mol. Spectrosc, vol.39, p.641651, 1983.

E. Londero and E. Schroder, Role of van der Waals bonding in layered oxide: Bulk vanadium pentoxide », ArXiv10062494 Cond-Mat Physicsphysics, 2010.

Y. Wang and G. Cao, « Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides, Chem. Mater, vol.18, p.27872804, 2006.

E. Londero and E. Schröder, « First-principles density-functional calculations, Phys. Rev. B, vol.82, p.54116, 2010.

M. Lira-cantú and P. Gómez-romero, « Synthesis and Characterization of Intercalate Phases in the Organic-Inorganic Polyaniline/V 2O 5 System, J. Solid State Chem. Fr, vol.147, p.601608, 1999.

A. V. Murugan, B. B. Kale, C. Kwon, G. Campet, and E. K. Vijayamohanan, Synthesis and characterization of a new organoinorganic poly, vol.3, p.4

, PEDOT/V2O5 nanocomposite by intercalation, J. Mater. Chem, vol.11, issue.10, p.24702475, 2001.

A. V. Murugan, B. B. Kale, C. Kwon, G. Campet, and E. K. Vijayamohanan, Synthesis and characterization of a new organoinorganic poly, vol.3, p.4

, PEDOT/V2O5 nanocomposite by intercalation, J. Mater. Chem, vol.11, issue.10, p.24702475, 2001.

M. Sayer and A. Mansingh, « The application of small polaron theory to transition metal oxide glasses, J. Non-Cryst. Solids, vol.58, issue.1, p.9198, 1983.

J. Livage, « Small Polarons in Transition Metal Oxide Glasses, Issues, p.408418, 1985.

G. N. Barbosa, C. F. Graeff, and H. P. Oliveira, Thermal annealing effects on vanadium pentoxide xerogel films, vol.30, p.715, 2005.

E. Yimam, « Fabrication of Vanadium Oxide Nanoparticles by Pulsed Laser Ablation », févr, 2015.

, Licence CC BY

A. V. Grigorieva, A. B. Tarasov, E. A. Goodilin, V. V. Volkov, and Y. D. Tretyakov, « Synthesis, structure, and properties of vanadium pentoxide nanotubes, Glass Phys. Chem, vol.33, issue.3, p.232236, 2007.

A. Talledo and C. G. Granqvist, « Electrochromic vanadiumpentoxidebased films: Structural, electrochemical, and optical properties, J. Appl. Phys, vol.77, issue.9, p.46554666, 1995.

J. Haemers, E. Baetens, and J. Vennik, « On the electrical conductivity of V2O5 single crystals, Phys. Status Solidi A, vol.20, issue.1, p.381386, 1973.

T. Sujatha, T. Sankarappa, J. S. Ashwajeet, R. Ramanna, and S. M. Hanagodimath, « Electrical Conduction in V2O5 Doped Borophosphate Glasses, Journal of Advanced Chemical Sciences, vol.1, p.157159, 2015.

D. W. Bullett and «. , J. Phys. C Solid State Phys, vol.13, issue.23, p.595, 1980.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., « Electric Field Effect in Atomically Thin Carbon Films, vol.306, p.666669, 2004.

V. V. Ivanovskaya, G. Seifert, and A. L. Ivanovskii, Electronic structure of titanium disulfide nanostructures: Monolayers, nanostripes, and nanotubes, vol.39, p.10581065, 2005.

C. Tan and H. Zhang, « Two-dimensional transition metal dichalcogenide nanosheetbased composites, Chem. Soc. Rev, vol.44, issue.9, p.27132731, 2015.

H. Wang, H. Yuan, S. S. Hong, Y. Li, and Y. Cui, « Physical and chemical tuning of twodimensional transition metal dichalcogenides, Chem. Soc. Rev, vol.44, issue.9, p.26642680, 2015.

G. Decher, J. D. Hong, and J. Schmitt, Buildup of ultrathin multilayer films by a selfassembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces, Thin Solid Films, vol.210, p.831835, 1992.

D. Gerchman and A. Kopp-alves, « Solution-processable exfoliation and suspension of atomically thin WSe2, J. Colloid Interface Sci, vol.468, 2016.

J. N. Coleman, « Liquid Exfoliation of Defect-Free Graphene, Acc. Chem. Res, vol.46, issue.1, p.1422, 2013.

B. P. Grady, Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications, 2011.

L. H. Thompson and L. K. Doraiswamy, Ind. Eng. Chem. Res, vol.38, issue.4, p.12151249, 1999.

M. J. Mckelvy, W. S. Claunsinger, G. Ouvrard, and . Titanium-disulfide, , p.2832, 1995.

C. Wan, R. Tian, A. B. Azizi, Y. Huang, Q. Wei et al., Flexible thermoelectric foil for wearable energy harvesting, vol.30, p.840845, 2016.
DOI : 10.1016/j.nanoen.2016.09.011

R. Aksoy, E. Selvi, R. Knudson, and E. Y. Ma, « A high pressure x-ray diffraction study of titanium disulfide, J. Phys. Condens. Matter, vol.21, issue.2, p.25403, 2009.

J. A. Plateau, On the recent theories of the constitution of jets of liquid issuing from circular orifices, Philos. Mag, vol.12, p.286, 1856.

, Licence CC BY

. Lord-rayleigh and . On, The Instability Of Jets, Proc. Lond. Math. Soc, issue.1, p.413, 1878.

S. D. Hoath, Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets, 2016.

R. G. Sweet, High Frequency Recording with Electrostatically Deflected Ink Jets, vol.36, p.131136, 1965.

H. P. Le, Progress and Trends in Ink-jet Printing Technology, J. Imaging Sci. Technol, vol.42, issue.1, p.4962, 1998.

P. Gassin and «. De-la-tensiométrie, , 2013.

C. Maze and G. Burnet, « A non-linear regression method for calculating surface tension and contact angle from the shape of a sessile drop, Surf. Sci, vol.13, p.451470, 1969.

Y. Yuan and T. R. Lee, Contact Angle and Wetting Properties, p.334, 2013.
DOI : 10.1007/978-3-642-34243-1_1

R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias et al., Jet printing flexible displays », Mater. Today, vol.9, p.3237, 2006.

R. C. Daniel and J. C. Berg, « Spreading on and penetration into thin, permeable print media: application to ink-jet printing, Adv. Colloid Interface Sci, vol.123126, p.439469, 2006.

L. Nilsson and S. Stenström, Int. J. Multiph. Flow, vol.23, issue.1, p.131153, 1997.

P. De-gennes, F. Brochard-wyart, and E. D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, 2004.

J. Chung, S. Ko, C. P. Grigoropoulos, N. R. Bieri, C. Dockendorf et al., « Damage-Free Low Temperature Pulsed Laser Printing of Gold Nanoinks On Polymers, J. Heat Transf, vol.127, issue.7, p.724732, 2005.

A. A. Khalate and X. , Bombois Performance improvement of a drop-on-demand inkjet printhead using an optimization-based feedforward control method, Control Eng. Pract, vol.19, issue.8, p.771781, 2011.

K. S. Kwon, « Waveform Design Methods for Piezo Inkjet Dispensers Based on Measured Meniscus Motion, J. Microelectromechanical Syst, vol.18, issue.5, p.11181125, 2009.

K. Kwon and W. Kim, « A waveform design method for high-speed inkjet printing based on self-sensing measurement, Sens. Actuators-Phys.-Sens. ACTUATOR-PHYS, vol.140, p.7583, 2007.
DOI : 10.1016/j.sna.2007.06.010

«. Chemicals and |. Noaa,

. Disponible,

J. Livage, Vanadium pentoxide gels, Chem. Mater, vol.3, issue.4, p.578593, 1991.
URL : https://hal.archives-ouvertes.fr/jpa-00248256

B. M. Reddy, S. Mehdi, and E. P. Reddy, « Dispersion and thermal stability of vanadium oxide catalysts supported on titania-silica mixed oxide, Catal. Lett, vol.20, p.317327, 1993.

, Licence CC BY

W. Lee, M. Song, S. Park, S. Nam, J. Seo et al., « Acidity-Controlled Conducting Polymer Films for Organic Thermoelectric Devices with Horizontal and Vertical Architectures, Sci. Rep, vol.6, p.33795, 2016.

A. K. Menon and S. K. Yee, « Design of a polymer thermoelectric generator using radial architecture, J. Appl. Phys, vol.119, issue.5, p.55501, 2016.

J. P. Rojas, D. Singh, D. Conchouso, A. Arevalo, I. G. Foulds et al., Stretchable helical architecture inorganic-organic hetero thermoelectric generator, Nano Energy, vol.30, p.691699, 2016.
DOI : 10.1016/j.nanoen.2016.10.054

URL : https://repository.kaust.edu.sa/bitstream/10754/621261/1/10.1016-j.nanoen.2016.10.054.pdf

M. Gomez, R. Reid, B. Ohara, and H. Lee, « Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting, J. Appl. Phys, vol.113, p.174908, 2013.

P. M. Mayer and R. J. Ram, « Optimization of Heat SinkLimited Thermoelectric Generators, Nanoscale Microscale Thermophys. Eng, vol.10, issue.2, p.143155, 2006.

R. Mccarty and Z. T. About, J. Electron. Mater, vol.42, issue.7, p.15041508, 2013.

J. W. Stevens, « Optimal design of small T thermoelectric generation systems, Energy Convers. Manag, vol.42, issue.6, p.709720, 2001.

C. Wu, Analysis of waste-heat thermoelectric power generators, Appl. Therm. Eng, vol.16, issue.1, p.6369, 1996.

C. Wu and R. L. Kiang, « Finite-time thermodynamic analysis of a Carnot engine with internal irreversibility, vol.17, p.11731178

D. M. Rowe and G. Min, « Evaluation of thermoelectric modules for power generation, J. Power Sources, vol.73, issue.2, p.193198, 1998.

S. W. Angrist, Direct energy conversion, 1982.

M. Dannowski, W. Beckert, L. Wagner, and H. P. Martin, 3D-Model of Asymmetric Thermo-Electric Generator Modules for High Temperature Applications », Proc. 2013 COMSOL Conf. Rotterdam, 2013.

M. Jaegle and . Multiphysics, Simulation of Thermoelectric Systems Modeling of Peltier Cooling and Thermoelectric Generation, Proc. COMSOL Conf, 2008.

S. P. Yushanov, L. T. Gritter, J. S. Crompton, and K. C. Koppenhoefer, « Multiphysics analysis of thermoelectric phenomena, Proc. 2011 COMSOL Conf, 2011.

K. Pietrzyk, J. Soares, B. Ohara, and H. Lee, « Power generation modeling for a wearable thermoelectric energy harvester with practical limitations, Appl. Energy, vol.183, p.218228, 2016.
DOI : 10.1016/j.apenergy.2016.08.186

J. Meng, X. Zhang, and X. Wang, « Characteristics analysis and parametric study of a thermoelectric generator by considering variable material properties and heat losses », Int. J. Heat Mass Transf, vol.80, p.227235, 2015.
DOI : 10.1016/j.ijheatmasstransfer.2014.09.023

W. Li, M. C. Paul, J. Siviter, A. Montecucco, A. R. Knox et al., « Thermal performance of two heat exchangers for thermoelectric generators », Case Stud, Therm. Eng, vol.8, p.164175, 2016.
DOI : 10.1016/j.csite.2016.06.008

URL : https://doi.org/10.1016/j.csite.2016.06.008

F. Jonas, W. Krafft, B. Muys, and . Poly, Conductive coatings, technical applications and properties », vol.3, p.169173, 1995.
DOI : 10.1002/masy.19951000128

, Licence CC BY

C. Y. Ho, R. W. Powell, and P. E. Liley, Thermal Conductivity of the Elements, vol.1, p.279421, 1972.

R. A. Matula, « Electrical resistivity of copper, gold, palladium, and silver, J. Phys. Chem. Ref. Data, vol.8, p.11471298, 1979.

A. Bitschi, « Modelling of thermoelectric devices for electric power generation, Swiss Fed. Inst. Technol. Zurich, 2009.

H. Lee, « Optimal design of thermoelectric devices with dimensional analysis, Appl. Energy, vol.106, p.7988, 2013.

M. T. Dunham, M. T. Barako, S. Leblanc, M. Asheghi, B. Chen et al., Power density optimization for micro thermoelectric generators, vol.93, 2015.

Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, and E. P. Lecoeur, « Optimal working conditions for thermoelectric generators with realistic thermal coupling, Europhys. Lett, vol.97, issue.2, p.28001, 2012.

T. L. Floyd, Principles of electric circuits, 1997.

P. Horowitz and W. Hill, The Art of Electronics, 2015.

Y. Apertet, H. Ouerdane, C. Goupil, and E. P. Lecaeur, « Internal convection in thermoelectric generator models, J. Phys. Conf. Ser, vol.395, issue.1, p.12103, 2012.

I. Dani, A. Roch, L. Stepien, C. Leyens, M. Greifzu et al., Printing of Thermoelectric Generators », présenté à 6th Programming Languages for Manufacturing (PROLAMAT), p.181184, 2013.

X. Hu, A. Yamamoto, M. Ohta, and H. Nishiate, « Measurement and simulation of thermoelectric efficiency for single leg, Rev. Sci. Instrum, vol.86, p.45103, 2015.

S. Lemonnier, C. Goupil, J. Noudem, and E. E. Guilmeau, « Four-leg Ca0.95Sm0.05MnO3 unileg thermoelectric device, J. Appl. Phys, vol.104, issue.1, p.14505, 2008.

W. Liu, X. Yan, G. Chen, and E. Z. Ren, Recent advances in thermoelectric nanocomposites », vol.1, p.4256, 2012.

S. Paengson, Uni-leg and-shape thermoelectric cells, 2016.

T. Nemoto, T. Iida, J. Sato, T. Sakamoto, T. Nakajima et al., « Power Generation Characteristics of Mg2Si Uni-Leg Thermoelectric Generator, J. Electron. Mater, vol.41, issue.6, p.13121316, 2012.

T. Nemoto, T. Iida, J. Sato, Y. Oguni, A. Matsumoto et al., Characteristics of a PinFin Structure Thermoelectric Uni-Leg Device Using a Commercial n-Type Mg2Si Source, vol.39, p.15721578, 2010.

S. K. Yee, S. Leblanc, K. E. Goodson, and C. Dames, « $ per W metrics for thermoelectric power generation: beyond ZT, Energy Environ. Sci, vol.6, issue.9, p.25612571, 2013.