
HAL Id: tel-01875211
https://theses.hal.science/tel-01875211

Submitted on 17 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization and Control of Large Systems: Fighting
the Curse of Dimensionality

Nicolas Gast

To cite this version:
Nicolas Gast. Optimization and Control of Large Systems: Fighting the Curse of Dimensionality.
Networking and Internet Architecture [cs.NI]. Université Grenoble Alpes, 2010. English. �NNT : �.
�tel-01875211�

https://theses.hal.science/tel-01875211
https://hal.archives-ouvertes.fr

Thèse

Optimisation et contrôle de systèmes à grande
échelle: comment combattre l’optimisation

combinatoire

English title: Optimization and Control of Large
Systems: Fighting the Curse of Dimensionality

pour obtenir

le grade de Docteur de l’université de Grenoble
Mention Informatique

par

Nicolas GAST

soutenue le mercredi 29 septembre 2010.

Composition du jury :

Bernard Ycart Président
Alain Jean-Marie Rapporteur
David McDonald Rapporteur
Francois Baccelli Examinateur
Jean-Yves Le Boudec Examinateur
Bruno Gaujal Directeur de thèse

i

Remerciements

Finir une thèse peut donner un sentiment d’accomplissement personnel mais il ne faut pas
oublier que ce travail n’aurait pu être mené au bout sans la contribution de nombreuses
personnes. J’espère que ces modestes paragraphes sauront leur rendre hommage.

La première personne que je tiens à remercier est mon directeur de thèse, Bruno Gaujal,
pour toute l’aide et le soutien qu’il a pu m’apporter durant ces trois années. J’ai eu la
chance de pouvoir travailler avec lui, tant pour ses qualités scientifiques qu’humaines. Je
n’hésiterai pas une seconde si c’était à recommencer.

Je tiens aussi à remercier tous les membres de mon Jury. En premier lieu, je suis
grandement reconnaissant à David McDonald et Alain Jean-Marie pour avoir accepté la
lourde tâche de relire et de rapporter sur mon manuscrit. Merci à Bernard Ycart d’avoir
accepter de présider le jury. Enfin, je remercie François Baccelli et Jean-Yves Le Boudec
d’avoir accepté de participer à ce jury. Je ne serais sûrement pas arrivé là si François
ne m’avait fait découvrir ce domaine de recherche et m’avait ensuite mis en contact
avec Bruno. C’est pour moi un grand honneur de voir toutes ces grandes personnalités
scientifiques participer à mon jury aujourd’hui.

Cette thèse s’est déroulée dans l’antenne de Montbonnot du laboratoire d’informatique
de Grenoble. Outre la force scientifique et la bonne ambiance générale qui règne dans le
bâtiment, deux éléments contribuent particulièrement à y rendre le travail agréable.

En premier lieu vient la cafet et ses discussions sans fin. Il serait trop long de citer tous
les contributeurs mais je pense particulièrement aux débats animés par Bruno, Jean-Louis,
Jean-Marc, Marc, Olivier ou encore Pierre C, chacun contribuant à la hauteur de sa
bonne foi.

L’autre point important du laboratoire est le groupe de travail post-repas sur la théorie
des jeux dans l’ensemble à 32 éléments. Il n’est pas facile de réussir à faire travailler
ensemble des personnalités si différentes, entre un PF qui n’aime pas perdre et un Pierre
N qui cherche le contraire, un Jean-Noël, optimiste mais aux intuitions trompeuses et des
Brice, Eric, Fred ou Swann plus conservateurs ou encore un Philippe et sa philippette
qui reste incompris de la majorité d’entre nous.

Je tiens aussi à remercier mes amis, dont la présence compte beaucoup pour moi.
Merci en particulier à tous les eybenstoriens que j’ai la chance de connâıtre depuis de
nombreuses années, à Mathieu D, Fabien, Mika, Clément, Thomas, Morgan et tous les
autres partenaires de montagne ou d’escalade et à tous les autres que je n’ai pas cité ici.

Enfin, je tiens à remercier tout particulièrement ma famille. En premier lieu Mathilde et
Elliot, pour leur présence quotidienne et les nombreux moments de joie qu’ils m’apportent.
Je tiens aussi à remercier mes parents, soeur, cousins et autres grands-parents qui ont
toujours été très patients et attentifs lorsque je tentais de leur expliquer sur quoi je
travaillais. À la fin de la soutenance, mon grand-père m’a dit : � J’ai eu l’impression
d’être dans une exposition d’art abstrait. C’était beau, ça avait l’air profond mais je n’ai
rien compris �. J’espère que la lecture du manuscrit saura l’éclairer.

iii

Contents

Résumé de la Thèse en Français ix
1. Chapitres 3 et 4 : Analyse du vol de travail xi
2. Partie II : Modèles champ moyen optimaux xv
3. Partie III : autres contributions . xxi
4. Conclusion . xxiv

Introduction xxvii
Organization of the Document . xxxi
Contributions . xxxiii
List of Notations . xxxvii

I. Foundations and First Examples 1

1. Markov Chains and Markov Decision Processes 3
1.1. Markov Processes . 4
1.2. Markov Decision Processes: Basic Concepts 7
1.3. Optimal policies . 9
1.4. Algorithmic Issues: the Curse of Dimensionality 15
1.5. Bibliographical notes . 16

2. A Survey on Mean Field Convergence 17
2.1. Mean field models . 18
2.2. Some Results on Point-wise Convergence 21
2.3. Path-space convergence . 27
2.4. Concluding Remark . 31

3. Transient Behavior of Work Stealing: Makespan analysis 33
3.1. Introduction . 34
3.2. Work Stealing Model . 35
3.3. Principle of the Analysis and Main Theorem 36
3.4. Unit Independent Tasks . 39
3.5. Tasks with Precedences . 42
3.6. Cooperation Among Thieves . 43
3.7. Experimental Study . 44
3.8. Appendix . 45
3.9. Bibliographical Notes . 48

4. Asymptotic Behavior of Work Stealing in Large-Scale Systems 51
4.1. Introduction . 52
4.2. Work Stealing in Grids . 53
4.3. Mean Field Approximation . 56

v

Contents

4.4. One Cluster Model . 58
4.5. Heterogeneous Clusters . 68
4.6. Conclusion and Future Work . 73

II. Optimal Mean Field 75

5. Optimization in Discrete Time 79
5.1. Introduction . 80
5.2. Notations and definitions . 81
5.3. Finite time convergence and optimal policy 83
5.4. Application to a brokering problem . 91
5.5. Extensions and Counter-Examples . 95
5.6. Computational issues . 101
5.7. Conclusion and future work . 102
5.8. Appendix: proofs . 102

6. From Discrete to Continuous Optimization 115
6.1. Introduction . 116
6.2. Notations and Definitions . 117
6.3. Mean Field Convergence . 120
6.4. Applications . 124
6.5. Appendix: proofs . 130

7. Non-smooth Mean-Field Models 137
7.1. Introduction . 138
7.2. Description of the Model and Notations 139
7.3. Convergence results . 141
7.4. Extension to Non-smooth Density Dependent Population Processes 143
7.5. Examples . 145
7.6. Proofs of Theorem 7.5 and Theorem 7.7 152

III. Other Contributions 161

8. Infinite Labeled Trees: from Rational to Sturmian Trees 163
8.1. Introduction . 164
8.2. Infinite Trees . 165
8.3. Rational Trees . 170
8.4. Balanced and Mechanical Trees . 174
8.5. Algorithmic issues . 184
8.6. Glossary . 189

9. Distributed Delay-Power Control Algorithms in Wireless Networks 195
9.1. Introduction . 196
9.2. Transmission Model . 197
9.3. Delay-Power Control (DPC) . 198
9.4. Delay-Power Control (DPC) Analysis . 201
9.5. DPC-Based Protocol Design . 210

vi

Contents

9.6. Conclusions and Further Research . 217
9.7. Appendix . 217

Conclusion and Bibliography 225

Conclusion 225

Bibliography 229

Abstracts 239

vii

Résumé de la Thèse en Français

Le but de cette thèse est de développer de nouvelles techniques pour l’analyse et le contrôle
de systèmes à grande échelle, en vue d’analyser et d’optimiser les performances d’un
système. Plus particulièrement, nous nous intéressons à l’étude de modèles stochastiques
de grande dimension.

Les premiers modèles stochastiques de performance ont été introduits au début du
XXième siècle par Erlang [60] qui étudiait le trafic téléphonique. Grâce à de nombreuses
campagnes de mesures, il proposa des modèles stochastiques simples mais très proches
de la réalité. Cela donna notamment naissance aux formules d’Erlang [61] qui ont
été très largement utilisés aux fils des ans pour le dimensionnement de nombreux
systèmes informatiques. Avec la généralisation des réseaux informatiques, les systèmes
informatiques deviennent de plus en plus complexes et notre volonté de réussir à analyser
les performances de tels systèmes n’en est qu’accrue. Une des principale manière d’analyser
un système est de construire un modèle et d’analyser les performances de ce modèle.

Les châınes de Markov sont le principal outil mathématique utilisé pour analyser
les performances d’un système. Le système à modéliser est représenté sous forme d’un
automate probabiliste. À un instant t donné, le système est dans un certain état X(t).
L’état du système peut évoluer au cours du temps en fonction de son état mais aussi
d’événements extérieurs. La séquence d’événements extérieurs est modélisée par un
processus aléatoire dépendant de l’état du système. Prenons l’exemple simple d’un
serveur web qui reçoit des demandes extérieures de clients. À chaque instant, le serveur
ne peut servir qu’un client à la fois et les autres clients sont mis en attente. L’état du
serveur X(t) est le nombre de clients en attente à l’instant t et évolue en fonction des
arrivées ou des départs des clients. Par exemple si un client a été servi ou a quitté le
système, X(t) devient X(t)− 1. Si on considère que les clients sont traités en moyenne
deux fois plus vite qu’ils n’arrivent, cela nous mène à la Figure 1 : si il y a x ≥ 1 clients
à l’instant t, à l’instant suivant, il y aura x+ 1 clients avec probabilité 2/3 et x− 1 avec
probabilité 1/3.

0 1 2 3 4 ...

1/3

2/3

1/3

2/3

1/3

2/3

1/3

2/3

1/3

2/3

2/3

Figure 1. : Un modèle de file d’attente.

Les intérêts des châınes de Markov sont nombreux. Leur pouvoir d’expression est très
grand et elles permettent de modéliser de nombreux systèmes de manière assez simple.
Elles permettent d’étudier de nombreuses propriétés du système, concernant le régime
transitoire ou le régime permanent. D’autre part, la notion de châıne de Markov se
généralise très simplement pour modéliser des problèmes d’optimisation, à l’aide de la
notion de processus de décision Markovien. Cette dernière fournit de nombreux outils

ix

Résumé de la Thèse en Français

permettant de calculer les meilleures politiques de contrôle à appliquer afin d’optimiser
les performances d’un système. Le Chapitre 1 présente les définitions rigoureuses de ses
différentes notions ainsi que quelque unes de leur principales propriétés.

Malgré toutes leurs bonnes propriétés, la modélisation par châınes de Markov souffre
d’un problème majeur : le nombre d’états nécessaires pour décrire un système explose
dès que le système à décrire devient un peu complexe. Prenons par exemple un système
composé de N machines reliées en réseau. Si l’état de la machine i à l’instant t est Xi(t),
l’état global du système peut être décrit par le vecteur (X1(t) . . . XN (t)). Si on suppose
que chaque machine peut être dans S = 20 états différents et qu’il y a N = 20 machines
en tout, le nombre d’états possibles pour le système est SN = 2020 ≈ 1026. Cela rend
impossible toute méthode qui devrait parcourir les SN états, même pour un système de
taille réduite.

Dans la suite du document, nous explorons différentes solutions afin d’essayer de
contourner ce problème d’explosion combinatoire. En particulier, nous nous intéresserons
beaucoup aux modèles champ moyen, décrits au Chapitre 2 dans lesquels on s’intéresse
au comportement du système quand le nombre N d’objets qui composent le système
tend vers l’infini.

0.1. Organisation générale du document

Cette thèse est découpée en trois parties. La Partie I contient quatre chapitres qui
posent les fondations de ce travail. Les deux premiers chapitres présentent un bilan de la
littérature. Le Chapitre 1 rappelle quelques résultats concernant le contrôle stochastique
optimal en présentant la notion de processus de décision Markovien. Le Chapitre 2
s’intéresse aux modèles champ moyen et présente en particulier différents résultats de
convergence concernant le comportement asymptotique de ces modèles. Les deux derniers
chapitres de la partie se concentrent sur l’étude du vol de travail. Le premier des deux,
Chapitre 3, présente une étude du temps de complétion d’un groupe de tâches à l’aide
d’une méthode de potentiel tandis que le Chapitre 4 utilise un modèle champ moyen pour
faire une analyse en régime stationnaire. Ces deux chapitres sont basés sur les articles
[140, 70].

Dans la Partie II, nous nous intéressons au lien entre le contrôle stochastique et
les modèles champ moyen. Dans les Chapitres 5 et 6, nous montrons comment un
problème d’optimisation stochastique peut se ramener à un problème d’optimisation
déterministe lorsque le nombre d’objets composants le système devient grand. Le dernier
chapitre de cette partie, Chapitre 7 étend les résultats champ moyen classique à des
systèmes dans lesquels la dynamique est discontinue. Cette partie est basée sur les articles
[69, 71, 74, 73, 72].

Dans la dernière partie de ce document, Partie III nous présentons deux problèmes
de natures différentes. Dans le Chapitre 8, nous nous posons la question de comment
distribuer une infinité de tâches sur un arbre infini de la manière la plus régulière possible.
Nous étudions la classe des arbres équilibrés. Enfin le dernier Chapitre 9 présente un
algorithme de contrôle de puissance pour des réseaux sans fils dont le but est de trouver
un équilibre entre l’énergie consommée et le délai subi par les communications. Ces deux
chapitres sont basés sur [67, 68, 10].

La Figure 2 montre le lien entre les différents chapitres. Les Chapitres 1 et 2 peuvent
être lus de manières indépendante et chacun d’entre eux conduit à un coté de l’analyse
du vol de travail. La Partie II repose à la fois des Chapitres 1 et 2. Les deux derniers

x

1. Chapitres 3 et 4 : Analyse du vol de travail

Introduction

Part 1 : Foundations and First Examples

1 : MDP 2 : Mean Field•

3 : Makespan 4 : Asymptotic

Work stealing

Part 2 : Optimal Mean Field

5 : Discrete Time

6 : Continuous Time

7 : Non-smooth Systems

Part 3 : Other Contributions

8 : Balanced Trees

9 : Power control

Figure 2. : Organisation générale du document

chapitres de la Partie III peuvent être lus de façon indépendante.

1. Chapitres 3 et 4 : Analyse du vol de travail

Actuellement, les ordinateurs deviennent de plus en plus des machines parallèles. Les
ordinateurs, même personnels, disposent de deux voir quatre coeurs de calcul et ce chiffre
est amené à grossir vite dans un futur proche. Un problème majeur lors de l’utilisation
de machines disposant de ressources parallèles est de réussir à répartir le travail sur les
différentes ressources disponibles afin d’utiliser au mieux toutes ces ressources.

Une façon simple et très populaire de nos jours pour répartir la charge entre les
différentes ressources est le vol de travail. Le principe du vol de travail est très simple.
Chaque ressource dispose d’une liste de tâches à exécuter. Tant que cette liste est non
vide, la ressource travail à finir une de ses tâches. Lorsque que sa liste de tâches est vide,
la ressource choisit une autre ressource au hasard et lui vole une partie de ses tâches.
Malgré son apparente simplicité, cette technique est très efficace et est implémentée dans
de nombreuses librairies comme Cilk [66], Intel TBB [99] ou KAAPI [78].

Les Chapitres 3 et 4 présentent deux approches différentes pour analyser les perfor-
mances du vol de travail.

xi

Résumé de la Thèse en Français

1.1. Temps de complétion total d’une application ordonnancée par vol de
travail

Dans le Chapitre 3, nous étudions le temps nécessaire pour exécuter un ensemble de tâches
sur une architecture parallèle utilisant le mécanisme de vol de travail. Nous considérons
une machine parallèle composée de N processeurs. A l’instant t, wi(t) représente la
quantité de travail dont dispose le processeur i. Dans le modèle le plus simple que nous
étudions dans la Partie 3.4, wi(t) est le nombre de tâches dont dispose le processeur
i. Tant que wi(t) > 0, le processeur exécute une tâche par unité de temps. Lorsque
wi(t) atteint 0, le processeur choisit un processeur cible j uniformément parmi les N − 1
processeurs restants et lui prend la moitié de ses tâches. Si le processeur cible j a une
tâche ou moins, le processeur i ne reçoit rien et retente de voler tant qu’il n’a pas de
tâches à exécuter.

L’état de la machine peut être représenté par le vecteur w(t)
def
= (w1(t) . . . wN (t)). Cet

état évolue de façon déterministe tant qu’aucun des wi(t) n’est égal à 0. Dans ce cas
l’état à l’instant t+ 1 est w(t+ 1) = (wi(t)− 1, . . . wN (t)− 1). Lorsqu’une ou plusieurs
coordonnées arrivent à 0, les processeurs correspondants tentent de voler quelqu’un
d’autre. À cause du caractère aléatoire du choix de la victime, ceci introduit du hasard
dans le processus.

Malgré la simplicité du modèle, le nombre d’états pour décrire le système est de
l’ordre de WN , où W est le travail total à l’instant 0 : W =

∑N
i=1wi(0). Ceci fait que

l’étude complète du processus w n’est pas envisageable. La Figure 3 montre un exemple
d’exécution de 2000 tâches par un machine possédant N = 25 processeurs. On voit en
particulier sur cette figure que les instants pendant lesquelles les machines volent ne
présentent aucune régularité.

Figure 3. : Exemple d’une exécution de W = 2000 tâches indépendantes par N = 25
processeurs utilisant le vol de travail. L’axe des abscisses représente le temps
et celui des ordonnées les différents processeurs. Une zone blanche indique
un processeur actif à l’instant t. Les zones grisées sont les moments où
les processeurs sont inactifs (i.e. wi(t) = 0), qui sont aussi ceux où les
processeurs font des requêtes de vol.

Afin de simplifier l’étude du problème, nous introduisons une fonction potentielle Φ(t)
définie par :

Φ(t) =
N∑
i=1

wi(t)
2.

Cette fonction décrôıt en fonction des différentes tâches exécutées mais surtout en fonction
du nombre de requêtes de vols. En particulier, on peut montrer qu’il existe une fonction

xii

1. Chapitres 3 et 4 : Analyse du vol de travail

h(α) ∈ (0; 1) telle que s’il y a α processeurs actifs à l’instant t, on a :

E[Φ(t)− Φ(t+ 1)|Φ(t) = Φ, α(t) = α] ≥ h(α) · Φ. (1)

Afin de finir l’analyse, il reste à étudier la séquence du nombre de processeurs actifs α(t).
Si Φ(t) ≤ 1, il reste au maximum une tâche dans le système et l’exécution des tâches sera
finie à l’instant suivant. Cela nous conduit à introduire un adversaire qui peut choisir la
séquence α. Le but de cet adversaire est de maximiser le nombre de vols qui auront lieu
avant que Φ(t) ≤ 1, partant de Φ(0) et sachant que Φ(t) respecte l’Équation (1).

Cela nous permet d’obtenir des bornes sur le nombre de vols à la fois en moyenne mais
aussi sur la probabilité de s’écarter de cette moyenne à travers un théorème générique
(Théorème 3.1). En particulier, dans le cas des tâches indépendantes, on peut montrer le
théorème suivant :

Théorème 1 (Théorème 3.2). Soit Cmax le temps de complétion d’un groupe de W
tâches indépendantes ordonnancées par vol de travail. On a :

(i) E (Cmax) ≤ W

N
+

2

1− log2(1 + 1
e)
· log2W + 1

(ii) P

(
Cmax ≥

W

N
+

2

1− log2(1 + 1
e)
·
(

log2W + log2

1

ε

)
+ 1

)
≤ ε.

En particulier, cela montre que le temps nécessaire pour exécuter W tâches sur N
processeurs est borné par W/N + 3.65 log2W .

Dans le Chapitre 3, nous étendons ces résultats au cas de tâches non indépendantes
(Théorème 3.4) ainsi qu’au cas du vol coopératif ou plusieurs processeurs peuvent voler
en même temps un processeur cible (Théorème 3.5). De plus, nous comparons ces bornes
à des simulations (Figure 3.2) qui montrent que la perte de précision liée à l’introduction
de l’adversaire est de moins de 50%.

1.2. Un modèle champ moyen du vol de travail sur grille de calcul

Le Chapitre 4 présente un modèle de vol de travail dans une grille de calcul. Nous
montrons que quand la taille du système grandit, le système converge vers un système
d’équations différentielles qui permettent de calculer efficacement des indicateurs de
performances, à la fois en moyenne mais aussi les distributions de ces fonctions.

Nous considérons un système composé de N machines. Ces machines sont groupées en
C clusters et chaque cluster est composé d’un grand nombre de machines homogènes.
Chaque processeur du cluster c reçoit des tâches à exécuter, à un taux λc et chaque
tâche à une taille distribuée selon une loi exponentielle (de paramètre 1) et est exécutée
à vitesse µc. Un processeur exécute les tâches une par une et stocke les autres dans
un buffer. On note jn(t) le nombre de tâches dont le processeur n dispose à l’instant
t. Lorsque jn(t) = 0, le processeur choisit un cluster cible c′ avec probabilité pcc′ et
choisit un processeur uniformément dans ce cluster. Un vol de c à c′ prend un temps
exponentiellement distribué de taux γcc′ .

Encore une fois, le nombre d’états nécessaires pour décrire le système est trop gros
pour permettre une étude détaillée. Pour pallier à ce problème, nous nous intéressons à
la proportion de processeurs dans chaque état. On note MN

cj la proportion de machines

qui sont dans le cluster c et ayant j tâches. MN
c0c′ désigne la proportion de machines du

xiii

Résumé de la Thèse en Français

cluster c ayant 0 tâche et en train de voler un processeur du cluster c′. On peut montrer

(Proposition 4.1) que le processus MN def
= (MN

cj ,M
N
c0c′)c,c′∈C,j∈K est une châıne de Markov.

De plus, la séquence MN est un density dependent population process (DDPP), ce qui
veut dire que la transition d’un état m à un état m+` se fait à un taux β`(m). En utilisant
des résultats sur les DDPP (voir Corollaire 4.2), on peut montrer que le comportement
de MN tend vers celui d’une équation différentielle quand N tend vers l’infini. Cette
équation différentielle peut s’écrire facilement depuis la description du système :

ṁc0c′ = −(λc + γcc′)mc0c′ + µcmc1pcc′ +
∑
c′′

γcc′′mc0c′′
mc′′0 +mc′′1

mc′′
pcc′ (2)

ṁc1 = −(µc + λc)mc1 + µcmc2 +
∑
c′

λcmc0c′ (3)

+
∑
c′

γc′cmc′0cmc2/mc +
∑
c′

γcc′mc0c′(mc′2 +mc′3)/mc′ (4)

ṁcj = −(µc + λc1j<K)mc,j + µcmc,j+1 + λcmc,j−1 (5)

+
∑
c′

γc′cmc′0c(mc,2j +mc,2j−1)/mc (6)

+
∑
c′

γcc′mc0c′(mc′,2j +mc′,2j+1)/mc′ (7)

−
∑
c′

γc′cmc′0cmcj/mc, (8)

Ce résultat permet une étude exhaustive de nombreux indicateurs de performance du
système. Nous présentons aussi un algorithme de simulation rapide, rappelé ci dessous, qui
permet de calculer la distribution de ces indicateurs. Si JN désigne l’état d’un processeur,
dans ce cas :

Théorème 2 (Théorème 4.3). Supposons que limN→∞ J
N (0) = j(0) et MN (0)→ m(0).

Alors, (JN (t),MN (t)) converge faiblement vers un processus (J(t),m(t)) où m(t) satisfait
l’ODE (2-8) et J(t) est un processus de saut non homogène de noyau K(m(t)).

Nous nous intéressons d’abord au cas où le système est homogène (composé d’un
seul cluster). En particulier, dans ce cas le régime stationnaire peut être calculé par
un algorithme très simple (Algorithme 4.1), ce qui permet de calculer rapidement de
nombreux indicateurs de performance. En particulier, nous montrons que les performances
du vol de travail sont très bonnes, même quand la latence est élevée. Par exemple, la
Figure 4 montre que même lorsque que le temps de vol est de l’ordre de 3 fois inférieur
au temps nécessaire pour exécuter une tâche, les performances sont déjà grandement
améliorées par rapport à une situation sans vol.

De nombreux autres résultats sont analysés dans la Partie 4.4 du Chapitre 4. En
particulier, à l’aide de la simulation rapide, on peut s’apercevoir que le vol de travail
améliore de beaucoup les hauts percentiles (voir Figure 4.7). Nous nous intéressons aussi
à des système hétérogènes et nous étudions plusieurs stratégies de vol, montrant en
particulier que la stratégie de vol optimale dépend plus de la charge des différents clusters
que de la géométrie du système (Partie 4.5).

xiv

2. Partie II : Modèles champ moyen optimaux

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e

γ

λ=0.3
λ=0.7
λ=0.9

Figure 4. : Temps de séjour moyen en fonction du taux de vol moyen γ pour différentes
valeurs de λ (.3, .7 and .9).

2. Partie II : Modèles champ moyen optimaux

La deuxième partie de la thèse étudie le lien entre modèles champ moyen et contrôle
stochastique. Nous étudions le contrôle optimal dans les Chapitres 5 et 6 avant de passer
aux systèmes contrôlés généraux dans le Chapitre 7.

Nous considérons des systèmes composés de N objets, avec N grand (typiquement
plusieurs dizaines ou centaines). Le temps est discret et à chaque pas de temps, l’état
XN
n (t) d’un objet n évolue en fonction d’un environnement commun et des états des

différents autres objets. L’état global du système est décrit par le couple (XN (t), CN (t))

où X (t)
def
= (XN

1 (t) . . . XN
N (t)) représente l’état des différents objets et CN (t) est l’état

du contexte – ou de l’environnement. Lorsque la dynamique du système est invariante
par permutation des objets, plutôt que de considérer l’état de chaque objet, on considère
la proportion d’objets dans chaque état, aussi appelée la mesure empirique à l’instant t,
MN (t) :

MN (t)
def
=

1

N

N∑
i=1

δXN
i (t),

De tels modèles sont appelés modèles champ moyen. L’intérêt de ces modèles et que sous
des hypothèses assez faibles, lorsque le nombre d’objets N devient grand, la dynamique du
système converge vers une dynamique déterministe, permettant de grandement simplifier
l’étude du système cible, comme au Chapitre 4. Une présentation de différents résultats
de convergence est faite au Chapitre 2.

Dans cette partie, nous considérons des modèles champ moyen contrôlés. À chaque
pas de temps, un contrôleur centralisé choisit une action a dans un ensemble prédéfini
d’actions A, qui lui permet d’influer sur la dynamique du système. En particulier, dans
les Chapitres 5 et 6, nous considérons le contrôle optimal de tels systèmes. Si le système
est dans l’état (MN (t), CN (t)) à l’instant t et que le contrôleur choisit une action a, il
reçoit une récompense rt(M

N (t), CN (t)). Le but du contrôleur est de trouver la meilleure
politique π afin d’optimiser sa récompense moyenne V N

π entre le temps 0 et T . La quantité

xv

Résumé de la Thèse en Français

V N
π se définit par :

V N
π (MN (0), CN (0))

def
= E

(
T−1∑
t=0

rt
(
MN
π (t), CNπ (t)

)
+ rT

(
MN
π (T), CNπ (T)

))
. (9)

Les Chapitres 5 et 6 étudient la convergence du système lorsque le contrôleur choisit la
politique qui maximise la récompense moyenne (9). En particulier, on s’intéresse à la
convergence de la récompense optimale V N

∗ définie par :

V N
∗
(
MN (0), CN (0)

) def
= sup

π
V N
π

(
MN (0), CN (0)

)
, (10)

ainsi qu’aux politiques optimales permettant d’atteindre cet optimal.
Le Chapitre 7 s’intéresse à la convergence de la dynamique du système MN (t) dans le

cas d’une dynamique non continue, ce qui est le cas en particulier lorsque l’on fixe la
politique.

2.1. Optimisation en temps discret

Le Chapitre 5 étudie un cas où le problème d’optimisation initial converge vers un
problème d’optimisation en temps discret. Nous montrons aussi des résultats du second
ordre qui permettent d’étudier la vitesse de convergence. Les résultats du Chapitre 5
concernent trois types de systèmes. Le coeur de ce chapitre est d’étudier la convergence
du système contrôlé lorsque qu’une politique est fixée. Cela nous permet ensuite d’en
déduire deux types de systèmes : les systèmes pour lesquels la séquence d’actions est fixée
(ce qui revient aux modèles champ moyen classiques) ainsi que les systèmes contrôlés par
une politique optimale (aussi appelé champ moyen optimaux).

Le modèle stochastique est le suivant. Le système est composé de N objets (XN
1 . . . XN

N)
et d’un contexte CN . Le contexte évolue de façon déterministe en fonction du contexte à
l’instant précédant CN (t), de l’action prise par le contrôleur et de la mesure empirique à
l’instant t+ 1.

CN (t+ 1) = g(CN (t),MN (t+ 1), at),

L’évolution des objets est indépendante une fois le contexte C et l’action a donnée.
Chaque objet évolue alors selon un noyau K(a,C). Pour un objet n donné, la probabilité
de passer d’un état i à un état j est :

P
(
XN
n (t+ 1) = j|XN

n (t) = i, at = a,CN (t) = C
)

= Ki,j(a,C). (11)

Les hypothèses précises du modèle sont décrites à la Partie 5.2.2. En plus de l’évolution
du système ainsi décrite, elles imposent à l’ensemble d’actions d’être compacte, aux
fonctions r,K, g d’être continues et à la condition initiale (MN (0), CN (0)) de converger
vers une valeur (m(0), c(0)).

Pour une séquence d’actions a = (a1, a2, . . .), on définit un système déterministe
correspondant à la moyenne des transitions (11) par :

ma(t+ 1) = ma(t)K(a, ca(t))
ca(t+ 1) = g (ca(t),ma(t+ 1), at) .

(12)

Considérons une politique π fixée. À toute réalisation aléatoire du système ANπ est associée

une séquence d’actions ANπ (t)
def
= πt(M

N
π (t), CNπ (t)). La séquence ANπ est une séquence

xvi

2. Partie II : Modèles champ moyen optimaux

...

A on/off
sources

Y (t)

tasks

a1(t)Y (t)

ad(t)Y (t)

Broker

...

µ1

µ1

P1 procsC1

...

µd

µd

Pd procsCd

...

Figure 5. : Le problème d’allocation de ressources.

d’action aléatoire admissible, c’est à dire qui ne dépend pas du futur. Utilisant la définition
de ANπ et la définition de l’équation (12), on définit une approximation du système initial
(mANπ

(t), cANπ (t)). Plusieurs théorèmes (Théorème 5.1, Proposition 5.6) bornent l’écart
entre le système stochastique et son approximation, montrant en particulier que l’écart
entre (MN (t), CN (t)) et (mANπ

(t), cANπ (t)) tend vers 0 à vitesse 1/
√
N quand N tend vers

0. Une conséquence directe pour le contrôle optimal est de montrer que la récompense
optimale du système initial V N

∗ converge vers la récompense optimale du système limite
v∗ définie par :

sup
a
{va(m(0), c(0))} def

= sup
a

{
T∑
t=1

rt(ma(t), ca(t))

}
.

La Proposition 5.4 et le Théorème 5.7 précisent ces résultats en montrant de plus que
l’écart est d’ordre 1/

√
N .

D’un point de vue pratique, les résultats permettent de résoudre de façon asymptotique
des problèmes d’optimisation stochastique jusque là impossibles à résoudre. En particulier,
ceci est illustré par un problème d’allocation de ressources, présenté à la Figure 5. Dans
ce cas, le problème d’optimisation déterministe peut être résolu à l’aide d’un algorithme
glouton. La performance de la politique optimale de la limite appliquée au système initial
est comparée avec plusieurs politiques classiques à la Figure 5.2. Nous mesurons le gain
asymptotique, ainsi que le seuil à partir duquel elle surpasse les politiques classiques.

Plusieurs extensions sont aussi présentées dans la Partie 5.5. Dans le cas d’un horizon
infini et d’un coût actualisé, nous montrons un théorème de convergence au premier ordre
ainsi qu’un théorème du second ordre si le facteur d’actualisation est suffisamment petit
(Théorème 5.11 et Proposition 5.12). Dans le cas d’un horizon infini et d’un coût non
actualisé, nous présentons plusieurs exemples et contre-exemples qui montrent que la
convergence n’a pas toujours lieu, voir Partie 5.5.3.

2.2. D’un problème optimisation stochastique discret à un problème continu

Dans le chapitre précédant, nous avons considéré un modèle dans lequel la probabilité
pour un objet donné de changer d’état ne dépend pas de N . Dans le Chapitre 6, nous
nous intéressons au cas où la probabilité pour un objet de changer d’état dépend de N et
tend vers 0 lorsque N tend vers l’infini. Alors que dans le cas précédant le système limite
restait en temps discret, ici le système limite devient un système en temps continu.

Nous considérons un système composé de N objets dans lequel la dynamique est
invariante par permutation des objets. Le temps est discret et est noté k. L’espérance de

xvii

Résumé de la Thèse en Français

la différence entre MN (k + 1) et MN (k) sachant que le système était dans l’état m et
que l’action prise est a est appelée le drift et notée FN (m, a) :

FN (m, a)
def
= E

(
MN (k + 1)−MN (k)|MN (k) = m,AN (k) = a

)
.

Alors que dans le chapitre précédant, ce drift était invariant en fonction de N , nous sup-
posons qu’il existe une fonction I(N) et une fonction f(m, a) telles que limN→∞ I(N) = 0

et limN→∞

∣∣∣ 1
I(N)F

N (m, a)− f(m, a)
∣∣∣ = 0. Les principales hypothèses de ce modèle sont

d’imposer au drift f d’être continue (plus précisément, une le drift doit être une fonction
lipschitzienne) et que le nombre d’objets qui fait une transition par unité de temps est
borné par NI0(N) où I0(N) tend vers 0 lorsque N grandit, voir Partie 6.2.5 pour plus
de détails.

En pratique, cela veut dire que l’espérance du changement entre deux pas de temps
tend vers 0 quand N tend vers l’infini. Cela conduit à considérer un processus dans

lequel le temps a été accéléré. On définit
(
M̂N (t)

)
t∈R+

le processus qui est une fonction

affine prenant la valeur MN (k) en kI(N). Une fonction d’action α : [0;T]→ A est une
fonction Lipschitz par morceau qui a t associe une action α(t). De façon similaire à la
partie précédente, on définie l’approximation champ moyen de MN (t) par :

m(t)−m(0) =

∫ t

0
f(m(s), α(s))ds. (13)

Le but du chapitre est de montrer l’équivalence entre le problème d’optimisation stochas-
tique entre 0 et T/I(N) (10) et le problème d’optimisation déterministe sur une équation
différentielle suivant :

sup
α
vα(m0)

def
= sup

α

∫ T

0
r (φs(m0, α), α(s)) ds. (14)

où φs(0, α) désigne l’unique solution de l’équation différentielle (13).

De façon similaire au chapitre précédant, nous introduisons dans la Partie 6.3 la fonction
d’action ANπ qui est une fonction en escalier prenant la valeur πk(M

N (k)) à l’instant
kI(N). Sous les hypothèses décrites à la Partie 6.2.5, on peut démontrer (Théorème 6.1)
que l’écart entre M̂N

π (t) et φt(m0, A
N
π) tend vers 0. Cela permet en particulier de prouver

le Théorème 6.4 qui montre la convergence du problème d’optimisation stochastique vers
son équivalent déterministe :

lim
N→∞

V N
∗
(
MN (0)

)
= v∗ (m0) .

Ces résultats sont illustrés Partie 6.4 par trois exemples qui concernent respectivement
des stratégies d’investissement, un contrôle d’épidémie ainsi qu’un problème d’allocation
de ressources. En particulier, le premier exemple présente un cas simple où le problème
déterministe peut être résolu entièrement. Le deuxième considère un problème de propa-
gation de virus. Alors que plusieurs papiers s’intéressent directement à l’optimisation sur
le modèle continu, notre approche permet de justifier l’approximation ainsi faite. Enfin le
dernier exemple illustre comment notre technique permet de réduire l’espace d’état à
explorer en vue d’une résolution numérique.

xviii

2. Partie II : Modèles champ moyen optimaux

2.3. Modèles champ moyen non réguliers et inclusions différentielles

Dans les Chapitres 5 et 6, nous avons toujours considéré que la dynamique d’évolution du
problème de départ était continue. Typiquement, dans le Chapitre 6, f(m) est supposée
lipschitzienne. Cette hypothèse est centrale dans la plupart des modèles champ moyen.
Le but du Chapitre 7 est d’étudier des cas où la dynamique du système présente des
discontinuités. Nous montrons que quitte à remplacer l’équation différentielle par une
inclusion différentielle, les résultats de convergence restent valables.

Considérons par exemple le modèle simple de file d’attente avec priorité présenté à
la Figure 6(a). Des paquets prioritaires arrivent avec un taux λ dans le système et des
paquets de priorité normale arrivent aussi avec un taux λ. Notons C1(t) le nombre de
clients prioritaires à l’instant t et C2(t) le nombre de clients normaux. Un serveur sert
les paquets avec un taux 3λ. Si C1(t) > 0, le serveur sert uniquement les clients 1. Il ne
sert les clients 2 que si C1(t) = 0.

λ

λ 3λ

(a) Une file d’attente avec
priorité

Taille de la file 1 : CN1 (t)T
ai

ll
e

d
e

la
fi

le
2

:
C
N 2

(t
)

(b) Drift du système

Figure 6. : La file d’attente avec priorité et le drift correspondant

Notons f le drift du système, autrement dit, l’espérance de changement entre t et
t+ dt :

f(c1, c2)
def
= lim

dt→0

1

dt
E ((c1(t+ dt), c2(t+ dt))− (c1(t), c2(t))|c1(t) = c1, c2(t) = c2) .

Un calcul direct montre que f est le champ de vecteurs représenté par la Figure 6(b),
c’est-à-dire défini par :

f(c1, c2) =

{
(−2λ, λ) si C1(t) > 0
(λ,−2λ) si C1(t) = 0.

(15)

En suivant la méthode classique utilisée notamment au chapitre précédant, on peut
penser que la dynamique du système est proche de celle de l’équation différentielle
ċ(t) = f(c(t)). Malheureusement, à cause de la discontinuité de f quand c1 = 0, cette
équation différentielle n’a pas de solution. Ceci vient du fait que la notion d’équation
différentielle n’est pas adaptée à l’étude de système présentant des discontinuités et que
la notion d’inclusion différentielle est mieux adaptée à ce cas.

Une inclusion différentielle est similaire à une équation différentielle dans laquelle
l’égalité ẏ(t) = f(y(t)) est remplacée par l’inclusion :

ẏ(t) ∈ F (y(t)), (16)

xix

Résumé de la Thèse en Français

où F est une fonction à valeur dans les parties de Rd. Une solution de l’inclusion
différentielle (16) est une fonction absolument continue telle que (16) est vérifiée presque
partout. Une inclusion différentielle peut éventuellement avoir plusieurs solutions.

Il existe une méthode systématique pour passer d’une équation différentielle non
continue, comme (15) à une inclusions différentielle en définissant F (y) par :

F (y) =
⋂
ε>0

lim
K→∞

⋃
N≥K

conv

{
fN (z)

I(N)
: ‖z − y‖ ≤ ε

}
. (17)

où conv désigne la fermeture de l’enveloppe convexe d’un ensemble.
Le Chapitre 7 étudie la relation entre les modèles champ moyen non continus et l’inclu-

sion différentielle définie par (17). De façon analogue au cas précédant, nous considérons
un système composé de N objets et d’une ressource CN qui évolue en temps discret. Si

MN (k) désigne la mesure empirique à l’instant k, on note Y N (k)
def
= (MN (k), CN (k))k,

l’état du système à l’instant k. Comme dans le chapitre précédant, le drift du système est

noté fN et est défini par fN (y)
def
= E

(
Y N (k + 1)− Y N (k)|Y N (k) = y

)
et on suppose que

le drift normalisé par l’intensité converge vers une fonction f :
∥∥fN (y)/I(N)− f(y)

∥∥→ 0.
Contrairement au chapitre précédent, aucune condition de régularité sur f n’est imposée.

Le principal résultat de ce chapitre est le Théorème 7.5 qui montre que le système
stochastique Y N (t) converge vers l’ensemble des solutions de l’inclusion différentielle où
F est définie par (17). Si ST (y0) désigne les solutions de l’inclusion différentielle (16)
telle que y(0) = y0, alors :

Théorème 3 (Théorème 7.5). Si le drift satisfait (7.7) et que :

• F is semi continue supérieurement et il existe c > 0 telle que ‖F (y)‖ ≤ c(1 + ‖y‖),

• Y N (0)
P−→ y0.

Alors, quel que soit T > 0 :

inf
y∈ST (y0)

sup
0≤t≤T

∥∥Ȳ N (t)− y(t)
∥∥ P−→ 0.

En particulier, dans le cas où l’inclusion différentielle a une unique solution y(.),
cela montre que pour tout t : Ȳ N (t) converge vers y(t). Ce résultat peut être appliqué
directement pour calculer la limite fluide de l’exemple de la file avec priorité de la Figure 6.
Un calcul direct montre que le drift défini par (17) est égal à F (c1, c2) = (−2λ, λ) si
c1(t) > 0 et égal à l’enveloppe convexe de (−2λ, λ) et (λ,−2λ) lorsque c1(t) = 0, voir
Figure 7(a). L’inclusion différentielle ainsi définie a une unique solution, représentée
Figure 7(b). Le Théorème 7.5 montre que la dynamique du système stochastique converge
bien vers celle du système décrit à la Figure 7(b).

Ce théorème peut être affiné lorsque l’inclusion différentielle vérifie une propriété de
one-sided Lipschitz (voir Équation (7.9) et Théorème 7.7) en montrant une convergence
en probabilité avec des bornes explicites. De plus, nous présentons aussi une version en
temps continu du théorème au Théorème 7.8.

Ces résultats permettent d’étendre l’applicabilité des techniques de champ moyen à des
systèmes présentant des dynamiques à seuil ou d’autres formes de discontinuité. Nous
présentons plusieurs exemples pour illustrer ces résultats à la Section 7.5. Nos exemples
concernent des modèles de systèmes de calcul volontaire, des modèles en théorie des jeux
ou encore un modèle de calcul auto-adaptatif.

xx

3. Partie III : autres contributions

c1 = 0

(a) L’ensemble des valeurs
du drift est l’ensemble des
vecteurs en pointillés.

Taille de la file 1 : CN1 (t)T
a
il

le
d

e
la

fi
le

2
:
C
N 2

(t
)

(b) Unique solution de l’inclusion différentielle.

Figure 7. : Enveloppe convexe du drift en c1=0 et l’unique solution de l’inclusion
différentielle.

3. Partie III : autres contributions

La dernière partie du document est consacrée à l’étude de deux problèmes distincts. Le
Chapitre 8 s’intéresse aux propriétés des arbres infinis équilibrés tandis que le Chapitre 9
étudie un algorithme de contrôle de puissance dans les réseaux sans fils.

3.1. Arbres équilibrés

Dans ce chapitre, nous étudions des classes d’arbres non orientés étiquetés par {0, 1}. Nous
introduisons les notions d’arbres rationnels et sturmiens ainsi que les définitions d’arbres
(fortement) équilibrés et étudions les relations entre ces différentes classes. Cette notion
généralise la notion de mots sturmiens, qui ont d’importantes propriétés d’optimalité
[77].

Contrairement à d’autres papiers qui considèrent des arbres ordonnés (voir Partie 8.2.1),
ce chapitre s’intéresse aux propriétés des arbres non orientés. Un arbre est un graphe
infini orienté dont chaque noeud a un degré entrant 1 et un degré sortant d ≥ 2 sauf un
noeud qui a un degré entrant 0, appelé la racine. Chaque noeud est étiqueté par la lettre
0 ou 1. Le but de ce chapitre est d’étudier comment répartir les 0 et les 1 sur cet arbre et
en particulier, comment répartir les 1 de manière aussi uniforme que possible.

1 2 3 40∞ ...

Figure 8. : L’arbre de Dyck et son graphe minimal. Les noeud en gras représentent les
noeuds étiquetés par 1.

xxi

Résumé de la Thèse en Français

Nous introduisons la notion de graphe minimal associé à un arbre. Le graphe minimal
d’un arbre est un multi-graphe fini ou infini. Chaque noeud est étiqueté par 0 ou 1 et
possède un degré sortant égal à d mais aucune contrainte n’est imposé sur le degré entrant.
À chaque multi-graphe est associé un arbre qui s’obtient en “développant” le graphe.
Respectivement, on peut associer à chaque arbre un multi-graphe minimal unique. La
Figure 8 donne un exemple d’arbre et de son multi-graphe minimal.

Pour un noeud v et une hauteur n ≥ 1, on note hv(n) le nombre de noeuds étiquetés
par 1 dans le sous arbre complet de racine v et de hauteur n. La proportion de 1 dans ce
sous arbre est dv(n) = hv(n)(d− 1)/(dn − 1). La densité d’un arbre est la limite (quand
n tend vers l’infini) de dv(n). Si cette limite dépend de v, l’arbre est dit avoir une densité
enracinée. Si cette limite n’existe pas mais que limn→∞ k

−1
∑n

k=1 dv(k) existe, la densité
est dite moyennée.

Nous étudions premièrement la notion d’arbres rationnels qui sont les arbres dont le
multi-graphe minimal est fini, en montrant en particulier qu’ils ont tous une densité
moyennée enracinée. L’irréductibilité de leur graphe minimal assure que la densité n’est
pas enracinée tandis que l’apériodicité de celui-ci implique que la densité n’a pas besoin
d’être moyennée (Théorème 8.3).

Le coeur du chapitre concerne la notion d’arbres équilibrés et fortement équilibrés,
présentée dans la Partie 8.4. Les arbres équilibrés sont des arbres pour lesquels les noeuds
étiquetés par 1 sont dispersés de façon aussi régulière que possible. Un arbre est équilibré
si pour tous noeuds v et v′ et toute hauteur n, le nombre de 1 dans deux sous arbres de
hauteur n diffèrent d’au plus 1 : |hv(n)− hv′(n)| ≤ 1. Il est dit fortement équilibré si pour
tout v, v′, n, k : |hv(n)− hv(k)− (hv′(n)− hv′(k))| ≤ 1. Nous montrons l’existence de ces
arbres et les caractérisons en montrant qu’ils cöıncident avec la notion d’arbres mécaniques
(Théorème 8.9). Cela permet d’une part de les construire par un procédé algorithmique
et de les caractériser. Cela nous permet aussi de décrire la forme du graphe minimal
d’un arbre fortement équilibré rationnel (Théorème 8.16) et de construire un algorithme
permettant de tester si un arbre rationnel est équilibré ou non (Algorithme 8.1).

Balanced Trees

Mechanical Trees

Ultimately
Mech.

Strongly balanced

R
at

io
n

al
T

re
es

Irreducible

Reducible

S
tu

rm
ia

n
T

rees

6

5

10

9

1

2

3

4

8

7

Figure 9. : Relation d’inclusion entre les différentes notions d’arbres. La numération
des zones sur la figure indique un des exemples détaillés à la Partie 8.6.

xxii

3. Partie III : autres contributions

Tous ces résultats sont illustrés par de nombreux exemples et résumés à la Figure 9.
La Partie 8.6 contient de nombreux exemples qui montrent les inclusions strictes qu’il
peut y avoir entre ces différentes classes. La numération des zones sur la figure indique
un des exemples détaillés à la Partie 8.6. Par exemple, la zone 9 correspond à l’ensemble
des arbre rationnels, irréductibles, équilibrés mais qui ne sont ni fortement équilibrés,
ni mécaniques, ni sturmiens. L’exemple correspondant à tous ces critères est donné par
l’arbre de la Figure 10 et détaillé au point 9 de la Partie 9.

1 2

3 4

Figure 10. : Un arbre rationnel équilibré qui n’est pas fortement équilibré : le graphe
minimal de l’arbre à gauche et les quelques premiers étages de l’arbre à
droite.

3.2. Algorithme de contrôle de puissance dans les réseaux sans fils

Dans le Chapitre 9, nous présentons un algorithme de contrôle de puissance pour les
réseaux sans fils. Ce mécanisme est un algorithme distribué dans lequel chaque émetteur
essaie de trouver un équilibre entre la puissance consommée et le délai subi par les
communications. Nous étudions la convergence de l’algorithme ainsi les propriétés de
l’équilibre vers lequel il converge.

Nous considérons un modèle de réseaux sans fils composés de L liens de communications
se partageant un même canal de communication. Chaque lien est composé d’un récepteur
et d’un émetteur qui peut choisir sa puissance d’émission. La géométrie du système est
modélisée par une matrice de gain G : si l’émetteur du lien j émet à puissance Pj , la
puissance du signal reçu par le récepteur i est GijPj . Chacun de ces termes contribue
aux interférences reçues par le lien i. À cela s’ajoute un bruit thermique Ni. Ainsi, le
rapport signal sur bruit reçu par le récepteur i est :

γi =
GiiPi

Ni +
∑

j 6=iGijPj
.

Pour un rapport signal sur bruit de γi, le débit estimé par le noeud i est Si(γi).
Si représente typiquement la probabilité qu’un paquet soit transmis avec succès, par
exemple Si(x) = 1− exp(−c · x), mais peut aussi être une fonction plus générale, comme
Si(x) = log(1+c ·x). Chaque émetteur essaie d’optimiser un compromis entre la puissance
dépensée par paquet P/S(γ) et le délai estimé de ces paquets 1/S(γ). À chaque pas de
temps, chaque émetteur met à jour sa puissance en minimisant la quantité α/S(γ)+P/S(γ)
où α est facteur de son choix représentant à quel point il accorde plus d’importance au

xxiii

Résumé de la Thèse en Français

délai ou à la puissance :

P t+1
i = Φi(b

t
i) = arg min

p∈[0;∞)

{
αi

Si(
p
bti

)
+

p

Si(
p
bti

)

}
. (18)

où bti = Ni/Gii +
∑

j 6=iGijPj/Gii. Nous nous intéressons à la généralisation de (18) en
incorporant des arrivées de paquets et où le délais est remplacé par 1/(S(γ)− λ), voir
Partie 9.3.1.

Le Chapitre 9 étudie l’algorithme DPC, défini par (18). La première propriété établie
(Théorème 9.12) est de montrer que sous des hypothèses faibles sur la fonction S décrites
Partie 9.4.1 et si les contraintes sur le délai λ sont faisables (ce qui est le cas en particulier
lorsque λ = 0, comme dans l’Équation (18)), alors DPC converge vers une assignation
de puissance Pα,N indépendante du point de départ. Ce théorème se démontre par des
arguments de topologie, en montrant certaines propriétés vérifiées par la fonction Φ de
l’Équation (18), voir Partie 9.4.2.

Nous étudions le point d’équilibre Pα,N et les rapports γα,N correspondant, en mon-
trant des propriétés de monotonie (Proposition 9.16) en fonction des paramètres ainsi
que des propriétés d’échelles lorsque les paramètres sont multipliés par une constante
(Proposition 9.17). De plus, nous montrons que la fonction α 7→ γα,N est une bijection
de l’ensemble des paramètres dans l’ensemble des rapports signal sur bruit atteignables.
En se basant sur DPC et sur le mécanisme de [64], nous développons en Partie 9.5 deux
protocoles dont le but est d’adapter les paramètres α.

4. Conclusion

Dans ce document, nous avons vu plusieurs approches pour le contrôle et l’optimisation
de grands systèmes à travers l’étude de modèles stochastiques. Un des principal problème
étudié est de combattre l’explosion combinatoire liée au trop grand nombre d’états de
ces modèles.

Une première solution, présentée au Chapitre 3, est d’agréger l’information conte-
nue dans l’état du système en une seule variable, appelée potentiel du système. Cette
méthodologie est générique. Elle est prouvée être très précise à travers l’étude du temps
de complétion d’un groupe de tâches ordonnancées par vol de travail. L’autre approche
présentée est l’étude des modèles champ moyen, présentés au Chapitre 2, et dont nous
montrons un exemple d’application au vol de travail dans le Chapitre 4. Partant d’un
modèle d’objets interagissant, il est souvent facile de construire des équations déterministes
décrivant le système permettant une étude rapide du comportement du système.

Une des principales avancées de ce document est le lien établi entre les modèles champ
moyen et le contrôle stochastique, présenté à la Partie II et résumé Figure 11. Nous
montrons comment la résolution d’un problème de contrôle optimal stochastique peut se
ramener à la résolution d’un problème d’optimisation déterministe lorsque la taille du
système grandit. Ces résultats permettent à la fois de résoudre de nouveaux problèmes,
comme à la Partie 5.4 ou de donner des intuitions sur les politiques asymptotiquement
optimales, comme à la Partie 6.4.3. Malheureusement, d’un point de vue pratique, la
résolution du problème déterministe reste souvent un problème compliqué et les méthodes
numériques “brute-force” sont souvent difficiles à mettre en place. Nous pensons que les
résultats sur les modèles champ moyen discontinus du Chapitre 7 peuvent nous aider
dans le cas où l’on s’intéresse à l’optimalité dans une classe réduite de politiques.

xxiv

4. Conclusion

Système stochastique
à grande échelle

Limite champ moyen

Champ moyen optimal
Système stochastique

optimal

N →∞

Optimisation déterministe

Résultats de la
Partie II

Figure 11. : Méthodologie générale concernant les champ moyen optimaux de la Partie II.
Les flèches bleues représentent des tâches faciles à faire tandis que la flèche
rouge indique un problème algorithmique.

Une généralisation de ces travaux serait de considérer le cas de coûts non additifs.
Prenons par exemple un problème d’allocation de ressources où des tâches arrivent dans
un système. Si X(t) est le nombre de tâches présentes dans le système à l’instant t, la
formule de Little nous montre qu’optimiser le temps de complétion moyen de chaque
tâche revient à minimiser

∑
tX(t). Néanmoins, dans le cas d’applications parallèles,

les tâches arrivent dans le système par paquets de 100 ou plus et le vrai problème
est d’optimiser le temps de complétion de chaque groupe de tâches et non de chaque
tâches indépendamment. Un problème similaire mais sans arrivée de tâches est étudié
au Chapitre 3, il serait intéressant de regarder une généralisation de ce problème en
considérant un processus d’arrivée de groupe de tâches et d’étudier des mécanismes
(distribués) afin d’adapter les ressources aux différentes applications en cours.

Une autre question serait d’étudier le cas d’optimisations multicritères. Dans tous
les problèmes considérés, la mesure de performance a toujours été l’optimisation d’un
objectif à valeur réelles, comme le temps de réponse moyen. De nos jours, l’énergie devient
un enjeu capital et l’on est souvent confronté à trouver un compromis entre réactivité
du système et puissance consommée. Cela amène à considérer des objectifs de la forme
(D,E) : délais et énergie. Malheureusement, décider qu’un couple (D,E) est meilleur
qu’un autre (D′, E′) n’est pas possible si D < D′ et E > E′. On est alors amené à étudier
l’ensemble des points Pareto optimaux, c’est à dire l’ensemble des points (D,E) tels qu’il
n’existe pas de points (D′, E′) avec D′ < D et E′ < E. Malheureusement, décider lequel
des points de Pareto choisir n’est pas quelque chose de facile.

Dans le Chapitre 9, ce problème est résolu en choisissant un paramètre α et en essayant
de minimiser αD + E. Néanmoins, les quantités D et E étant difficilement comparable,
le choix du paramètre α devient un problème en soit. Pour l’instant, il n’existe pas de
bonne solution à ce problème et cela est sûrement quelque chose à développer dans le
futur.

xxv

Introduction

While users, administrators or developers are all interested by performance evaluation
of systems, they all have different motivations. Users want to obtain a solution that
provide the best performance at the lower cost. A user may have the choice between
different alternatives and she wants to be able to quantify what are the gains or the
losses of each solution: having the choice between a cheap solution and an expensive one
would like to know how better is the expensive one. The motivation for administrators
is often the dimensioning of computing systems: knowing roughly how many users will
consult her website, an administrator wants to buy the smallest number of servers to
satisfy this demand. The designer of a new system will try to identify the critical factors
that will impact the application. In particular, knowing which piece is the bottleneck for
performance is very important for someone who wants to improve the performance at a
lower cost.

Model of performance started with the work of Erlang at the beginning of the twenties
century who studied telephone traffic [60]. Based on measurement of the characteristics
of telephone traffic and simple stochastic models, he came up with the Erlang’s formula
[61] that have been widely used for the dimensioning of many communication systems.
Throughout the years, the systems that we want to study became more and more complex.
Modern systems are now widely interconnected and one cannot neglect the interactions
between. This leads to consider large stochastic networks.

The performance evaluation of a system relies on two things: the objectives and the
methods. The objectives are quantified in term of performance metrics. A performance
metric is a quantity that captures an interesting property of the system, concerning
for example the average behavior or the probability of a particular event to appear. A
precise definition of the metric depends on the problem considered. Based on this metric,
the objective might either be to evaluate this particular performance metric – which
is called performance prediction – or to find a control policy of this system in order to
optimize this performance metric – in that case, we talk about optimal control.

The methods that can be used to achieve the objectives can be decomposed into
three categories: measurement, simulation or analytical modeling. Each of these three
approaches has its own advantages and drawbacks, illustrated in particular by the trade-
off between the precision and the complexity needed to implement it, illustrated in
Figure 1. The combination of the three is necessary in order to understand fully the
behavior of a system.

Measurement is not an easy thing to do. It is often hard to measure a system without
disturbing it and sometimes not possible, for example if the system does not exist yet.
It might be hard to avoid the bias of the measuring technique [51] and measurement
without modeling may lead to mistakes. Simulation is probably the most commonly used
method to study a system. It is often much cheaper and faster to build a simulator than
to build a real system. Moreover, the computation time to run a simulation is generally
some orders of magnitude faster than the one to run the real application. However,
the more complex is this model, the more time will be needed to build and to run the

xxvii

Introduction

complexity

p
re

ci
si

on

Simulation:
+ Good accuracy, simple
to study
−Modeling issue, hard to
interpret

Analytical model:
+ Good insight, easy to
study if simple.
− Poor accuracy if sim-
ple, strong assumptions Measurements:

+ Real world,
no assumptions
− Hard/impossible to
do, biased due to mea-
surements

Figure 1.: The trade-off between complexity and precision for the three methods of
performance evaluation illustrated by some advantages and drawbacks.

simulator. Interpreting the results of simulations raises several problems. It is often hard
to distinguish if what we observe is representative of the average behavior or if it is one
of many very different samplings.

The last aspect of performance evaluation and the focus of this thesis is the analytical
study of mathematical models. Studying a model analytically allows one to capture
structural properties of the system that cannot be measured via simulation, even if the
exact resolution of the model is impossible. The main problem with model analysis is the
complexity of its analysis. Without the appropriate tools, one needs wild assumptions or
a dramatic simplification of the model in order to be able to say something about the
model. This emphasizes the need for specific tools to study large stochastic models.

Stochastic models: the dimensionality issue

The purpose of this thesis is to develop new methods for the analysis and control of large
stochastic models. In most computing systems, randomness is not inherent in the model.
A software or a hardware device is totally deterministic (it is impossible to implement
real randomness on a computer) but reacts to external events. The randomness will
be introduced to represent the external environment in which the system evolves, as
shown in Figure 2(a). For example, let us consider a simple model of a server that serves
jobs sent by some customers (think about an Internet router for example). When the
server has more than one job to serve, they are stored in a buffer. The quantity we are
interested in is the number of jobs stored in the buffer. The possible events than can
happen to this buffer are either an arrival of job in the system (denoted A) or a departure
of job (denoted D) when the server has finished to serve a job. Given a sequence of events
A,A,D,A,D,A,D,D,A,D,A,A,A,A,D,D . . . and if the initial state of the system is
given, it is straightforward to compute what will be the state of the system at each time.

However, when one wants to study such a system, she has to know the sequence of
events that occurred. This could be done by measurements on a real system and applying
this sequence on our model. However, the main problem of this (apart from the difficulty

xxviii

Environment

Input of the system

System

outputSystem

(a) A deterministic system in a random envi-
ronment

0 1 2 3 4 ...
1/3

2/3

1/3

2/3

1/3

2/3

1/3

2/3

1

2/3

(b) A Markov chain (or stochastic au-
tomaton) for the server model

Figure 2.: Deterministic systems embedded in a random environment lead to Markov
chains.

of measurement) is that by doing so, one only captures one trajectory and looses a general
comprehension. Instead of considering one particular sequence of events, we consider that
each event occurs with some probability. This probability may depend on the current
state of the system. Going back to our server model, if the arrivals occur twice more
slowly than the departures, this can be represented by saying that if the number of jobs
in the buffer is non zero, the next event will be a departure with probability 2/3 and an
arrival with probability 1/3. If the buffer is empty, the next event is always an arrival
(i.e. with probability 1). This leads to the graph of Figure 2(b).

The type of mathematical object represented in Figure 2(b) is called a Markov chain.
A precise definition of what a Markov chain is and some of its properties is recalled in
Chapter 1. Informally, a Markov chain can be seen as a graph of states. The edges of
the graph represent the probability of going from one state to another. The interest of
Markov chains is twofold: it is generally simple to study and has a great expressive power.
Given the model of Figure 2(b), it is rather easy to study the steady-state behavior and
answer questions like what will be the average waiting time of customers entering in the
system? or what is the probability for someone to wait more than x seconds? It is also
easy to compute quantities pertaining to the transient behavior, like the average time to
empty the buffer starting from 10 jobs.

Yet another application of this stochastic modeling is to consider its controlled behavior.
Let us again consider the simple model of a server but this time, the router might decide
to accept or refuse incoming jobs. The more an accepted customer waits, the more it
gets frustrated. After some point, the customer would have been less frustrated if it had
not been accepted at all. Mixing stochastic models with controlled dynamics leads to the
theory of Markov Decision Processes (MDP) that we will describe in Chapter 1. In this
framework, the frustration of users is represented by a negative value (also called the
cost) and the goal of the controller is to minimize the average frustration. In particular,

xxix

Introduction

using this theory, one can show that under very general conditions, the acceptation policy
that minimizes the average frustration has a threshold j∗: if there are less than j∗ jobs
in the buffer, everyone is accepted, if there are more, everyone is rejected.

The curse of dimensionality

Let us consider a situation similar to the one of Figure 2(b) but with N servers instead
of one. We consider that jobs arrive in the system at rate λ and are routed to one of the
servers according to some rule, also called a policy. All servers run independently and a
job routed to a server cannot be moved after to another server. If Xi(t) is the size of the

queue i at time t, the state of the system is the variable X(t)
def
= (X1(t) . . . XN (t)). If

the routing rule is very simple, like routing a job to the queue i with some probability pi,
the behavior of X(t) can be studied analytically. However, as soon as the decision rule
becomes more complex, the process X becomes more and more complex and analytical
methods become intractable.

A first solution to overcome this problem is to use numerical methods to solve opti-
mization problems or compute the stationary regime. However, in general, numerical
methods need at least to enumerate all of the number of possible states of the system. If
there are 20 servers and if each server has S = 20 possible states, the possible states for
the whole system is SN = 2020 ≈ 1026. If we could enumerate 109 states per second on
a single computer, it would still take more than 3500 years for a single enumeration of
all the states with 106 computers. This makes numerical methods impossible to use for
large systems and emphasizes the need for specific tools for studying large systems.

Their are multiple methods to study large systems, analytically or numerically, de-
pending on the number N of objects.

• Closed-form solutions: N ≈ 3, 4, or product-form systems – when the size of
the system is very small or in particular cases, it is generally possible to obtain
close-form solutions for most indicators. This is the best way to have insight on the
behavior of a system but either this needs a very small system or specific properties
leading to product form solutions (see [118] Chapter 10.6 for example).

• Numerical methods, N ≈ 10 – when the state space is reasonably small, closed form
solutions are no more an easy way out and one has to consider numerical methods
that require to enumerate all states, also called brute-force algorithms.

• Ad-hoc methods, N ≈ 30 – when the state space grows, brute-force solutions become
intractable and one has to focus on specific solutions that use special properties of
the systems. Among these methods are the two following ones:

– Perfect simulation – introduced in [122] by Propp and Wilson, the perfect
simulation technique provides a way to sample the steady state of a system
without computing its steady-state distribution, see [93] for more details. In
some cases where the system can be described by a monotone mapping, this
method can be made very efficient [147]. The advantage of this approach is
to give samples distributed exactly according to the stationary distribution
without having to enumerate the whole state space.

– Stochastic automata networks – when a system can be described by many
objects with little interactions among them, it is often interesting to represent

xxx

the system by a stochastic automata network. The state space explosion is
handled by a decomposition technique that reduces the complexity of their
study. Specific numerical methods to study these objects are implemented for
example in the PEPS software [23].

– Decoupling assumption and fixed-point method – systems composed of many
interacting objects are hard to study because of the dependency between
objects induced by the interactions. This issue can be overpass by assuming
that the objects are statistically independent, like in [134, 37]. The mean
number of objects in each state is given by the fixed point of an ordinary
differential equation that greatly simplifies the resolution of the system. This
decoupling effect can be justify as the number of objects grows large using
mean field theory (see [44] and Chapter 2) but has to be handle with care:
the fact that the ODE has a unique fixed point does not guaranty the validity
of the method [53].

• Forward simulation: N > 50 – when all other techniques fail, the last solution is to
build a simulator of the model with all its drawbacks and advantages described
earlier.

Throughout this document, we will mainly focus on another method. Instead of
considering a system with N = 10, 20 or 50 objects and keeping track of who is in which
state, we let the number of objects goes to infinity and consider the limiting behavior
of this system. This technique, called mean field, is presented in Chapter 2. The ideas
behind the mean field approach is to consider a system with a large number of objects
evolving in a common environment. The behavior of these objects are not independent
but are in general weakly correlated, for example at each time step, an object meets with
another one at random and performs an action during this encounter. In many cases, one
can show that as N grows, the behavior of the system greatly simplifies: the behavior of
the system becomes deterministic and the objects become independent.

The first purpose of mean field theory is to study the behavior of such a population.
We present different mean field models and the main convergence results in Chapter 2.
Then these results are used to perform a study of the load balancing technique named
work-stealing in Chapter 4. A large part of this thesis is devoted to the study of the
relationship between mean field models and optimal control. These results are presented
in Part II. We consider a mean field interaction system controlled by a central controller
and study the limit of this controlled dynamics. There are two main questions addressed
in this part. The first one pertains to the dynamics of a controlled system: given a policy,
what is the limiting behavior of this controlled system. The other question is to study
the limiting dynamics of the optimal controlled system: given a set of policy that can be
applied, is the optimal policy of the limit also asymptotically optimal for the stochastic
system? These questions are addressed in Chapters 5 to 7

Organization of the Document

This document is organized in three main parts. Part I contains the foundations of this
work. The first two chapters provide an overview of the classical results that will be
useful in the rest of the document. Chapter 1 presents the notion of Markov Chains and

xxxi

Introduction

Introduction

Part 1: Foundations and First Examples

1: MDP 2: Mean Field•

3: Makespan 4: Asymptotic

Work stealing

Part 2: Optimal Mean Field

5: Discrete Time

6: Continuous Time

7: Non-smooth Systems

Part 3: Other Contributions

8: Balanced Trees

9: Power control

Figure 3.: Organization of the document

Markov Decision Processes and some related results. Chapter 2 is a survey on mean field
models. The contributions of this thesis start with Chapters 3 and 4 in which we study a
load balancing technique, namely work stealing. Chapter 3 is based on [140] and presents
an adversary-potential method to study its transient behavior while Chapter 4, based on
[70], presents a steady-state analysis.

The second part of this document focus on what we call the optimal mean field.
We study the relationships between the optimal control of large scale systems and the
optimization of deterministic systems. In Chapter 5 and Chapter 6, we show how a
complicated stochastic optimization problem can be solved using its mean field limit.
These two chapters are based on [69, 71, 74]. In Chapter 7, we extend the classical
mean field results to systems that have some sort of discontinuity, introducing differential
inclusions. This shows in particular that the behavior of any controlled system converges
to its mean field controlled limit. This chapter is based on [73, 72].

Finally, Part III contains two unrelated contributions. In Chapter 8, we study how to
distribute an infinite number of zeros and ones on an infinite tree as evenly as possible.
We show the existence of such trees, called balanced trees and state their main properties.
These results generalize the notion of Sturmian words that have been proved to have some
optimality properties in [77, 4]. This chapter is based on [67, 68]. The last Chapter 9
presents a distributed power-control algorithm for wireless networks. We study a scenario
in which each link tries to balance its delay and the power spent per packet. This work
is based on [10].

Figure 3 summarizes the organization of the document and the relationship between
the different chapters and provide a guide for the reader. Chapters 1 and 2 are mostly

xxxii

independent. Each of these chapters leads to one side of the analysis of work-stealing.
Part II depends on Chapters 1 and 2. The two chapters of Part III can be read
independently.

Outline of the Document and Contributions

Chapters 1 and 2: related work

The goal of Chapters 1 and 2 is to give an overview of the mathematical background
needed to read the rest of the document. The first chapter presents the concept of
optimal control of Markov chains by introducing the notion of Markov decision processes
(MDP). The theory of MDP gives the theoretical basis to study optimal control with
respect to different criteria, such as expected reward over different horizons of time. We
show in this chapter the main properties of optimal policies for such criteria, showing in
particular that memoryless policies are dominant.

Chapter 2 contains a survey on mean field models and in particular of the different
methods used to prove convergence to the mean field regime. The purpose of mean field
models is to study systems composed by a large number N of interacting objects. In
particular, we are interested in the limiting regime when the number N of objects goes to
infinity. We review two different approaches. The first approach is to study the evolution
of the proportion of objects in each state, which leads to systems of differential equations
or discrete time dynamical system. The second approach is to study the proportion of
objects that follows one or another trajectory.

Chapters 3 and 4 : performance of work stealing

A main issue when dealing with large computing systems is to distribute the load among
the different resources. Work stealing is a very popular load balancing technique, based
on the principle that when a processor has no task to execute, it steals some work from
an other processors. The goal of Chapters 3 and 4 is to present two different approaches
to study the performance of a system that uses work stealing.

In Chapter 3, we analyse the total completion time to execute a set of tasks when using
work stealing by introducing a generic method based on an adversary-potential function.
We compute an upper bound on the expected completion time as well as bounds on the
deviation from the mean on a generic model (Theorem 3.1) and then apply this technique
on various models (Sections 3.4 to 3.6). In particular, this technique shows that the
expected completion time for executing W unit independent tasks on N processors is
bounded by W/N units of time plus an additional term in 3.65 log2W . Simulations
reported in Section 3.7 indicate that this bound is less than 50% greater than the actual
bound.

The next Chapter 4 presents a generic model of work stealing in computational grids.
Using mean field theory, we show that the analysis of its performance can be greatly
simplified by considering the limiting behavior when the size of the system grows. This
allows one to compute the expectation of performance functions using Corollary 4.2 as
well as the distributions of these functions using a fast simulation algorithm, Theorem 4.3.
Then we focus on the case where all resources are homogeneous in Section 4.4, showing
in particular that work stealing is very efficient, even when the latency of steals is large.
We also consider an heterogeneous case in Section 4.5: the system is made of several

xxxiii

Introduction

clusters, and stealing within one cluster is faster than stealing between clusters. We
compare different work stealing policies, showing in particular that the optimal stealing
policy depends more on the load than on the geometry of the system.

Part II: mean field limits of (optimally) controlled systems.

In Chapter 2, we introduced mean field models and in Chapter 4, we have shown how
these models can be used to simplify the performance evaluation of systems. In fact, in
most of literature, mean field models have only been used to study the behavior of a
system. The second part of this thesis aims at filling the gap between Chapters 1 and 2
by studying the relationships between mean field models and optimal control.

In Chapters 5 and 6, we investigate the limit behavior of Markov decision processes
made of independent objects evolving in a common environment, when the number of
objects N goes to infinity. We show that when the number of objects becomes large,
the original stochastic optimization problem converges to a deterministic optimization
problem in discrete or continuous time. The nature of the limiting regime depends on
the intensity of the model I(N) which is the probability for an object to change state
at each time. If I(N) = O(1), the limiting dynamics is in discrete time and this case is
studied in Chapter 5. If limN→∞ I(N) = 0, the limiting regime is in continuous time.
This is the focus of Chapter 6.

In both cases, we show that when focusing on finite-horizon reward, the optimal
cost of the system converges when N grows to the optimal cost of a discrete time
system that is deterministic (Theorems 5.5 and 6.4). For the discrete time limit, we
further provide bounds on the speed of convergence by proving second order results
that resemble central limit theorems for the cost and the state of the Markov decision
process, Theorem 5.7 and 5.8. These bounds (of order 1/

√
N) are proven to be tight in

a numerical example, Section 5.4. One can even go further and get convergence of order√
logN/N for a stochastic system made of the mean field limit and a Gaussian term. In

the continuous time, speed of convergence is insured by the explicit probability bounds
of Theorem 6.1. These methods are illustrated by different examples in Sections 5.4 and
6.4, like brokering problem in grid computing, investment strategies or epidemic control.
For the brokering problem, several simulations with growing numbers of processors are
reported in Section 5.4. They compare the performance of the optimal policy of the limit
system used in the finite case with classical policies by measuring its asymptotic gain.

In the two first chapters of this part, we focus on optimal control of mean field systems.
In both cases, we have shown that the optimal cost of the stochastic system converges
to the optimal cost of its deterministic counterpart. However, these results do not give
any insight on the convergence of the controlled stochastic system to its deterministic
controlled limit. This is due to the fact that a controlled policy often shows some
discontinuity and classical results on mean field convergence assume that the limiting
dynamics has some regularity properties (typically a Lipschitz condition). In Chapter 7,
we show that these conditions are not necessary to prove convergence to a deterministic
system.

The price to pay for such general results is to introduce the notion of differential
inclusion, that we recall in Section 7.2.1. Then, we show that under mild assumptions
and without any condition on the smoothness of the limiting regime, the stochastic
system converges to the set of solutions of a differential inclusion (Theorem 7.5). When
this differential inclusion satisfies a one-sided Lipschitz condition, there exists a unique

xxxiv

solution of this differential inclusion and we show convergence in probability with explicit
bounds (Theorem 7.7). This extends the applicability of mean field techniques to systems
exhibiting threshold dynamics such as queuing systems with boundary conditions or
controlled systems. These results are illustrated by several examples in Section 7.5. They
also provide an easy proof for classical fluid limit regimes, as shown in Section 7.5.1.

Part III: distributing labels on trees and power-control algorithms

The last part of this document concerns two different problems.
In Chapter 8, we consider the question of how distribute an infinite number of jobs

as evenly as possible on an infinite tree. The original motivation of this question was
to extend Sturmian words in a multidimensional setting. Sturmian words are infinite
words on a binary alphabet {0, 1} such that the ones (and the zeros) are distributed as
evenly as possible. Sturmian words are important for optimization purposes since they
have been proved to have some optimality properties in [77, 4]. They have been proved
to be the optimal routing sequence for a broker that can route the jobs to two servers
without knowing their state [77]. These results have been extended to a situation with an
arbitrary number of processors: they are no more optimal but they significantly improved
classical policies [7, 130]. Chapter 8 studies an extension of Sturmian words to infinite
trees with nodes labeled by {0, 1}. We introduce the notions of rational and Sturmian
trees along with the definitions of (strongly) balanced trees and mechanical trees, and
study the relations among them. Section 8.4 shows the existence of (strongly) balanced
trees and that their coincide with mechanical trees in the irrational case (Proposition 8.8
and Theorem 8.9). Such trees also have a minimal factor complexity, hence are Sturmian
(Theorem 8.15). We also give several examples illustrating the inclusion relations between
these classes of trees that are summarized in Figure 8.10.

The next Chapter 9 introduces a Delay-Power Control (DPC) algorithm for wireless
networking, that tries to balance out communication delay against transmitter power on
each wireless link. The DPC algorithm is scalable, as each link autonomously updates
its power based on the interference observed at the receiver; no cross-link communication
is required. It is shown in Theorem 9.12 that DPC converges to a unique equilibrium
power and some key properties are established in Section 9.4.2, concerning the nature of
channel bandwidth sharing achieved by the links. Based on the DPC and FM algorithms,
two protocols are developed in Section 9.5, which leverage adaptive tuning of DPC
parameters. One of them is inspired by TCP and exhibits analogous behavior. The
chapter primarily focuses on the theoretical underpinnings of the DPC algorithm and
their practical implications for efficient protocol design. The DPC dynamics are also
investigated numerically.

Publications

This thesis is based on the following papers.

• Part I, Chapters 3 and 4:

[140] M. Tchiboukdjian, N. Gast, D. Trystram, J.-L. Roch, and J. Bernard. A
tighter analysis of work stealing. ISAAC 2010, 2010

[70] N. Gast and B. Gaujal. A Mean Field Model of Work Stealing in Large-Scale
Systems. SIGMETRICS’10, 2010

xxxv

Introduction

• Part II, Chapters 5, 6 and 7:

[69] N. Gast and B. Gaujal. A mean field approach for optimization in particle
systems and applications. Fourth International Conference on Performance
Evaluation Methodologies and Tools, ValueTools, 2009

[71] N. Gast and B. Gaujal. A mean field approach for optimization in discrete
time. Accepted for publication in Discrete Event Dynamic Systems, 2010

[74] N. Gast, B. Gaujal, and J.Y. Le Boudec. Mean field for Markov Decision
Processes: from Discrete to Continuous Optimization. Submitted for publication,
2010

[73] N. Gast and B. Gaujal. Mean field limit of non-smooth systems and differential
inclusions. MAMA Workshop, 2010

[72] N. Gast and B. Gaujal. Mean field limit of non-smooth systems: a differential
inclusion limit. Submitted for publication, 2010

• Part III, Chapters 8 and 9:

[67] N. Gast and B. Gaujal. Balanced labeled trees: density, complexity and
mechanicity. In Words, 6th international conference on words, Marseille,
France, 2007

[68] N. Gast and B. Gaujal. Infinite labeled trees: From rational to Sturmian trees.
Theoretical Computer Science, 2009

[10] F. Baccelli, N. Bambos, and N. Gast. Distributed delay-power control algo-
rithms for bandwith sharing in wireless networks. Submitted, under 2nd round
of revision, 2009

xxxvi

List of Notations

We recall here a list of notations that are used throughout the document.

General notations

x
def
= f(y) . Define a new notation

N,R,Z . set of natural numbers, real numbers, integers
〈x, y〉 . Classical inner product on Rd: 〈x, y〉 =

∑d
i=1 xiyi

‖x‖ . Norm of x. May be L1, L2 or L∞ depending on the context
|x| . Absolute value of x ∈ R
bxc .Largest integer not greater than x ∈ R
dxe . Smallest integer not less than x
P (x) . Probability of an event x
P (x|y) . Probability of an event x given y
P(S) . Set of probability measures on a set S
E (X) .Expectation of a variable X
E (X | Y) . Expectation of a variable X given Y
Var [X] . Variance of X

XN L−→ x .XN converges in law to x
XN a.s.−−→ x . XN converges almost surely to x

XN P−→ x .XN converges in probability to x
δx . Dirac measure (gives probability 1 to x)
1x≥k . Function equal to 1 if x ≥ k and 0 otherwise

Mean field systems

N . Number of objects
S . State space of an object
t . Time. t might be discrete, t ∈ N, or continuous, t ∈ R
XN
n (t) .XN

n (t) ∈ S – state of the object n at time t.

XN (t)State of the system of size N at time t: XN (t)
def
=
(
XN

1 (t) . . . XN
N (t)

)
CN (t) .Context for the system of size N

MN (t) . Empirical measure: MN (t)
def
= 1

N

∑N
n=1 δXN

n (t)

PN (S) .Set of possible values for MN (t)
fN (.) .Drift of stochastic system of size N
f(.) . Limit of the drift
F (.) . Set-valued limit of the drift
m(t) . (Deterministic) limit of MN (t) when N grows
c(t). .(Deterministic) limit of CN (t) when N grows

Controlled system

A . Action set
π . Policy: associates an action a ∈ A to each t,M

xxxvii

Introduction

α .Action function α : [0;T]→ A
πN∗ .Optimal policy for the system of size N
α∗ . Optimal action function for the deterministic limit
rt(m, c) or rt(m, c, a) . Instantaneous reward at time t
Eπ [X] .Expectation of X when the policy π is applied
Pπ (x) . Probability of x when π is applied
T . Finite time horizon
V N
π (.) Expected reward between time 0 and T for the stochastic system under policy π
V N
∗ (.) . Optimal expected reward: V N

∗ (.) = supπ V
N
π (.) = V N

π∗

vα(.) . Reward of the deterministic limit under action function α
v∗(.) Optimal reward of the deterministic limit: v∗(.) = supα vα(.) = vα∗

xxxviii

Part I.

Foundations and First Examples

1

Chapter 1.

Markov Chains and Markov Decision
Processes

Abstract of this chapter – This chapter gives some basic definitions
on Markov Chains and Markov Decision Processes. We also recall classical
properties needed in the rest of the document.

We introduce the notions of discrete and continuous time Markov chains.
We give classical representation and state some of their properties.

The rest of the chapter studies optimal control of Markov chains by intro-
ducing the notion of Markov decision processes. We define different objective
functions and study the properties of optimal policies for such criteria, showing
in particular that memoryless policies are dominant.

Résumé du chapitre – Ce chapitre contient une rapide présentation
des notions de châıne de Markov et de processus de décision Markovien. Nous
rappelons quelques propriétés qui forment les prérequis nécessaires pour lire la
suite du document.

Dans une première partie, nous rappelons brièvement la notion de châıne
de Markov, en temps continu ou discret ainsi que quelques propriétés comme
leur comportement asymptotique.

Puis nous nous attardons plus longuement sur la notion de contrôle optimal
de processus de Markov, à travers la notion de processus de décision Markovien.
Nous étudions plusieurs objectifs. Nous nous intéressons aux propriétés des poli-
tiques optimale, et en particulier à montrer qu’il existe des politiques optimales
sans mémoire pour tous ces objectifs.

3

Chapter 1. Markov Chains and Markov Decision Processes

1.1. Markov Processes

In all that follows, S will designate a set, called the state space. S may be either finite or
countable. Unless specified, if S is finite, its elements will be denoted {1 . . . S}. We will
consider random processes that takes value in S.

1.1.1. Basic Definition

A discrete time Markov chain on a set S is a random process taking values in S such that
its position at the next time step only depends on the position of the current time step.
More formally, a time-homogeneous Markov chain is a random sequence (X0, X1 . . .)
such that for all time t ∈ N and all states x, y ∈ S:

P (Xt+1 = y|X0, X1, . . . Xt = x) = P (Xt+1 = y|Xt = x) = Px,y.

Px,y denotes the (x, y) element of a matrix P – a S × S matrix if P is finite, an infinite
matrix otherwise. P is called the transition matrix – or transition kernel – of the chain.
The initial state X0 of the chain and the matrix P characterize the Markov chain.

Indeed, if the probability for the chain to be in state x at time t is denoted µt(x) =
P (Xt = x). Conditioning on the predecessors of a state y ∈ S, we have that

µt+1 = µtP = µ0P
t+1.

A matrix P is a stochastic matrix if

1. for all x ∈ S: Px,y ≥ 0.

2. for all x, y ∈ S:
∑

y∈S Px,y = 1.

A transition matrix of a Markov chain is a stochastic matrix. Reciprocally, any stochastic
matrix is a transition matrix of some Markov chain.

In the following, when we talk about a Markov chain, we will only be interested
in the law of the process (i.e. the law of (Xt)t≥0 and not a particular representation
((Xt)t itself). Again, this law is uniquely determined by the initial distribution and the
transition matrix.

1.1.2. Representation

There exist multiple ways to represent Markov chains. We present here two possible
representations: random mapping and stochastic automata.

A random mapping representation of a transition matrix P is a function f : S ×Λ→ S
along with a sequence of i.i.d. random variables Z such that:

P (f(x, Zt) = y) = Px,y.

If Xo has distribution µ0, then the sequence (X0, X1 . . .) is defined by

Xt+1 = f(Xt, Zt)

is a Markov Chain with transition matrix P . It should be clear that every transition
matrix P has a random mapping representation. As S is at most countable, it can be

4

1.1. Markov Processes

numbered S = {1, 2, 3 . . .}. Let Zt be i.i.d. random variable uniformly distributed on
[0; 1]. For any x, y ∈ S and u ∈ [

∑
z<y pxz;

∑
z≤y pxz], we define

f(x, u) = y.

It should be clear that P (Xt+1 = y|X0, X1, . . . Xt = x) = P (Xt+1 = y|Xt = x) = Px,y
and that (f, Z) is a random mapping representation of the Markov chain X.

Unlike transition matrices, this representation is not unique. In some cases, choosing
the best random mapping representation is very important and often non trivial (e.g. for
perfect simulation [147]). Random mapping are crucial for simulation but can also be a
convenient way to represent the chain itself.

0 1 2 3 4 ...

1/3

2/3

1/3

2/3

1/3

2/3

1/3

2/3

1/3

2/3

2/3

Figure 1.1.: The transition graph of a Markov chain. Vertices are labeled by the states
S. An edges (x, y) is labeled by probability pxy.

Yet an other way to represent a Markov chain is to consider its transition graph. If S
is the state space of the Markov chain, we consider a graph whose vertices are labeled
by S. There exists a edge between two vertices x and y if Px,y > 0. In that case, the
edge (x, y) is labeled by Px,y. The graph representation is often the most simple way to
represent a Markov chain. An example is drawn on Figure 1.1. It is also used to define
some basic properties of Markov chains like irreducibility or aperiodicity.

1.1.3. Irreducibility, Aperiodicity and Stationary Distributions

A Markov chain with transition matrix P is said to be irreducible if for any two states
x, y ∈ S, there exists t such that P tx,y > 0. This is equivalent to say that the graph of the
Markov chain is strongly connected: for any states x, y, there exists a path with positive
probability from x to y.

For a state x, we define T (x) = {t/P tx,x > 0}. On the graph, T (x) is the set of the
cycle lengths starting in x. If the chain is irreducible, then for all x, y, the greatest
common divisor (gcd) of T (x) and T (y) is the same. We call it the period of the chain:

p
def
= gcd(T (x)) = gcd(T (y)). If the period of the chain is 1, the chain is said to be

aperiodic.

A measure π is said to be an invariant measure of a chain P if for all i: πi ≥ 0 and

πP = π. (1.1)

If
∑

x∈S π(x) = 1, π is a probability distribution and is called a stationary distribution.
Irreducibility and aperiodicity plays a central role when studying the asymptotic behavior
of Markov chains, as expressed the following (classical) result on Markov chain.

Theorem 1.1 (see e.g. [136] Section 9.8). If S is finite and P is irreducible, there exists
a unique stationary distribution π which is the unique solution of (1.1) such that for all
i: πi > 0 and

∑
i πi = 1.

5

Chapter 1. Markov Chains and Markov Decision Processes

If S is infinite and P is irreducible, there exists a unique invariant measure π up to a
multiplicative factor. Moreover, if there exists a solution of (1.1) such that

∑
i πi <∞,

then there exists a unique stationary distribution.
If P is irreducible and admits a stationary distribution, then for any initial distribution

µ0:

lim
T→∞

1

T

T∑
t=1

µ0P
t = π. (1.2)

Moreover, if P is aperiodic, then:

limµ0P
t = π. (1.3)

Because of the convergence results (1.2) and (1.3), a Markov chain that admits a
stationary distribution is said to be stable. In particular, if the state space S is finite,
the system is always stable.

1.1.4. Continuous Time Markov Chains

When representing a real system, it is often more realistic to consider continuous time
model rather than discrete time. For this, a standard tool is to consider continuous time
Markov chains. Continuous time Markov chains combine both the advantages of having
a large expressive power as well as being simple to study.

We consider random processes (Xt)t≥0 taking values in a discrete space S with t ∈ [0;∞).
A process (Xt)t≥0 is called a homogeneous continuous time Markov chain if for all t, all
x 6= y ∈ S and all t1 < t2 < · · · < tn < t and x1 . . . xn ∈ S,

P (Xt+h = y|Xt = x, ∀i : Xti = xi) = P (Xt+h = y|Xt = x) = qxyh+ o(h) (1.4)

where o(h) is a function such that limh→0 o(h)/h = 0. Since (1.4) represents a probability,
this is positive and qxy ≥ 0.

If we define qxx
def
= −

∑
y 6=x qxy, then:

P (Xt+h = x|Xt = x) = 1 + qiih+ o(h).

The matrix Q which (x, y) coordinate is equal to qxy is called the transition rate matrix
or infinitesimal generator. For x 6= y, qxy is called the transition rate from x to y. As in
the discrete time case, the transition rate matrix and the initial distribution uniquely
determine the law of the process (Xt)t≥0.

An equivalent construction of a continuous time Markov chain is by studying the
sequence of jumps of the Markov chain. Let us define by induction a sequence of random

time Jk by J0
def
= 0 and Jk+1

def
= min{t > 0 : XJk+t 6= XJk}. Jk is the time between of

the k − 1th and the kth jump of (Xt). We recall the following characterization:

Theorem 1.2. Let (Xt)t≥0 be a continuous time Markov process with transition rate
Q and let assume that supx,y Qx,y <∞. Let us denote by Jk its sequence of jumps and

Yk
def
= X(J0 + J1 + · · ·+ Jk), then

1. Yk is a discrete time Markov chain of transition probability

Pxy = − qxy
qxx

if x 6= y;

Pxx = 0.

6

1.2. Markov Decision Processes: Basic Concepts

2. Given Yk = x, Jk+1 is exponentially distributed of parameter qx
def
= −qxx ≥ 0 and

is independent of Y0 . . . Yk−1 and J1 . . . Jk.

As for the discrete time case, it is often convenient to represent a continuous time
Markov chain by its transition graph. The set of vertices is S and there is an edge labeled
by qxy between two vertices x 6= y ∈ S if qxy > 0. There are no loops (i.e., edges between
a vertex x and itself). The Markov chain is irreducible if its graph is strongly connected.
There is no concept of periodicity for continuous time Markov chains.

In the discrete case, a distribution is stationary of the Markov chain is a probability
vector π solution of the equation πP = π. In the continuous case, this equation is
replaced by πQ = 0. It is rather straightforward to show that a solution of πQ = 0 is
indeed a stationary distribution (i.e., if X0 has law π then Xt has law π for all t > 0).

A basic yet fundamental example of continuous time Markov process is given by birth

and death processes. The state space of a birth and death process is S def
= {0, 1 . . .}.

If the chain is in state k, it goes with rate λk in k + 1 and with rate µk in k − 1. Its
transition graph is given by Figure 1.2.

0 1 2 3 4 ...

µ1

λ0

µ2

λ1

µ3

λ2

µ4

λ3

µ5

λ4

Figure 1.2.: The transition graph of a birth and death process.

Birth and death process are commonly used in queuing theory, Xt ∈ S representing
the number of jobs in the system at time t. If for all k, λk = λ and µk = µ the process
model an M/M/1 queue: jobs arrive following a Poisson process and the service time
of a job is exponentially distributed of parameter µ. In that case, the system is stable
(i.e. has a stationary distribution) iff µ < λ. Queuing system based on birth and death
processes have been intensively studied in the literature, see [95, 96, 11] for example. If
all µk = 0, (Xt) is increasing in t and is called a pure birth process. Pure-birth process
are used in particular to model the traffic arriving in a system. In particular, if for all k,
λk = λ, (Xt) is a Poisson process of intensity λ.

1.2. Markov Decision Processes: Basic Concepts

Markov processes are a simple and elegant way to represent the evolution of a complicated
systems. However, in many situations, one not only wants to study the behavior of the
system but also to control the system in order to improve its performance. The goal of
this part on Markov decision processes is to formalize these notions from a mathematical
point of view.

1.2.1. Definition

A discrete time Markov decision process is described by four elements: states, actions,
transition probabilities and reward. A decision maker (also called a controller) is faced
with the problem of influencing the dynamics of the stochastic system. The goal of the

7

Chapter 1. Markov Chains and Markov Decision Processes

decision maker is to choose a sequence of actions in order to optimize some predefined
performance criterion.

At time step t, the state of the system at time t is denoted by Xt ∈ S. If at time t
the system is in state x ∈ S, the decision maker chooses an action from a set Ax. Let
A =

⋃
x∈S Ax. S is called the state space and A is called the action set. In general, S

and A can be arbitrary sets.

Suppose that at time t, the system is in state x and the decision maker chooses action
a. Then the following events occur:

1. The decision maker receives a reward rt(x, a).

2. The state of the system at time t+ 1 becomes y ∈ S with probability Pa,xy.

rt(x, a) is a real-valued function defined for x ∈ S and a ∈ Ax. rt(x, a) may be positive
or negative. When rt(x, a) is negative, rt(x, a) is often called a cost. For an action a,
we denote by Pa the matrix composed by all values Pa,xy. Pa is a stochastic matrix.
Therefore, a Markov decision process may be viewed as a family of transition kernels Pa
along with a reward function.

1.2.2. Decision Rules and Policies

A decision rule is a procedure that specifies the action to be selected at each time step.
The decision taken at time t can not depend on the future of the process. A decision
rule may depend on all the history of the process but we may also consider decision rules
that only depend on the current state of the process.

Let πt be the decision rule for the time step t. A decision rule is said to be deterministic
if πt is a deterministic function: it specifies exactly one action to be taken. It is said to
be randomized if πt specifies a distribution of probabilities on all possible actions. πt is
said to be Markovian if it only depends to the current state of the process (i.e. the value
of Xt) and history-dependent if it depends on all the history of the process (i.e. the
values of X1 . . . Xt). A decision rule that is deterministic and Markovian is a function
πt : S → A.

Deterministic Markovian decision rules are the simplest decision rules to consider.
Therefore a fundamental question in the Markov decision process theory is to determine
whether deterministic Markovian policies are dominant1 for a given performance criterion.

A policy is a sequence of decision rules: π = (π1, π2 . . .) that specifies the decision
rules to be applied at each time step. In the case where all decision rules are equal: for
all t: πt = π1, this policy is called stationary. Stationary policies are fundamental when
considering infinite horizon criteria.

1.2.3. Objectives

There are multiple objectives that can be considered. A first issue is to choose the
time horizon. For example, we may want to optimize the total reward over a finite
horizon, the total reward over an infinite horizon, the average reward over an infinite
horizon,. . . A second and big issue when choosing a reward criterion is that given some
policy, the reward obtained by the decision maker is a random function that depends on

1A set of policies π is dominant on all policies if for every policies, there exists a policy of π that
outperforms it.

8

1.3. Optimal policies

the stochastic evolution of the process. Therefore, to compare two policies, one needs to
decide a method to compare the two rewards: for example, is it better to compare the
expectation or the probability to exceed some threshold?

In the following, we will focus on three reward criteria:

1. Finite-horizon expected reward – the decision maker wants to maximize the expected
reward over an interval [0;T]. If Xt designates the state of the system at time t and
At the action taken by the decision maker, the expected reward of a policy π is:

vTπ (x) = Eπ
[
T−1∑
t=1

rt(Xt, At) + rT (XT)|X1 = x

]
,

where the expectation is taken over all values of Xt and At with X1 = x and under
policy π. The goal of the controller is to find π∗ such that vπ∗(x) = supπ vπ(x) or
at least to get as close as possible to this supremum.

2. Discounted expected reward – in this situation, δ designates a discount factor,
0 ≤ δ < 1. The reward at time t is multiplied by δt. The discount factor δ
represents the deprecation of the value: an euro of today is worth more than an
euro of tomorrow. In that case, we assume that the reward and the probability of
transition are invariant over time and that the reward is bounded. The expected
discounted of a policy π is:

vδπ(x) = Eπ
[∞∑
t=1

δt−1r(Xt, At)|X1 = x

]
.

Again, the goal of the controller is to find a policy maximizing this reward.

3. Average reward – For a policy π, and using the notation vTπ (x) to denote the reward
of policy π over horizon [O;T], the average reward starting from x is

gπ(x) = lim
T→∞

1

T
vTπ (x).

The average reward criterion is often more complicated to study than the two
previous criteria. A first issue is that the limit of its definition may not exist. In
that case, one can also consider lim sup or lim inf.

1.3. Optimal policies

In this section, we state several theorems that characterize the optimal policies for the
three criteria presented before. These theorems are often constructive and provide ways
to compute optimal policies. The beginning of this section shows that memoryless policies
(also called Markovian policies) are dominant. Then some results for the three criteria
above are presented.

1.3.1. Optimality of Markovian policies

In this section, we recall that for any history-dependent policy π and each initial state s,
there exists an equivalent Markovian policy.

9

Chapter 1. Markov Chains and Markov Decision Processes

Let Π = (π1, π2, . . .) be a history-dependent policy. A Markov decision process can
be described by two variables (Xt, At) where Xt denotes the state at time t and At the
action taken by the controller at time t.

Theorem 1.3 (Theorem 5.5.1 of [123]). Let Π be a history-dependent policy. For each
state x ∈ S, there exists a Markovian policy Π′ such that

PΠ (Xt = j, At = a|X1 = x) = PΠ′ (Xt = j, At = a|X1 = x) , (1.5)

where PΠ denotes the probability when applying policy Π.

This theorem is fundamental in the theory of Markov decision processes since it allows
to restrict the class of interesting policies to the class of Markov policies, see Sections 5.2.1
and 6.2.2). Because of the elementary nature of the proof and the importance of this
results, we give a proof of the theorem, following the one of Theorem 5.5.1 of [123].

Proof. For each y ∈ S and each a ∈ A, we define qty,a by:

qty,a = PΠ (At = a|Xt = y,X1 = x) .

We define a randomized Markovian policy Π′ = (π′1, . . .). At time step t, the probability
of choosing action a if the state is y is PΠ′ (At = a|Xt = y) = qty,a. We show (1.5) by
induction on t. It clearly holds for t = 1. Assume that (1.5) holds for t′ < t. Then:

PΠ (Xt = y|X1 = x) =
∑
z∈S

∑
a∈A
PΠ (Xt−1 = z,At−1 = a|X1 = s)Pa,z,y

=
∑
z∈S

∑
a∈A
PΠ′ (Xt−1 = z,At−1 = a|X1 = s)Pa,z,y

= PΠ′ (Xt = y|X1 = x) .

where the second inequality comes from the induction hypothesis. It follows that

PΠ (Xt = y,At = a|X1 = s) = PΠ (At = a|Xt = y,X1 = s)PΠ (Xt = y|X1 = s)

= qty,sPΠ′ (Xt = y|X1 = s)

= PΠ′ (Xt = y,At = a|X1 = s) .

In particular, this shows that for any value of X1, and any history-dependent policy Π,
there exists a randomized Markovian policy Π′ such that

PΠ′ (Xt = x,At = a) = PΠ (Xt = x,At = a) .

In particular, the expected reward gained at time t is the same for Π and Π′.

EΠ [rt(Xt, At)] = EΠ′ [rt(Xt, At)] .

Theorem 1.4 (Theorem 5.5.3 of [123]). For each initial state x and each history-
dependent policy Π, there exists a Markovian policy Π′ such that

• vTπ (x) = vTπ′(x),

• vδπ(x) = vδπ′(x),

• gπ(x) = gπ′(x).

10

1.3. Optimal policies

1.3.2. Finite-horizon reward

In this section, we focus on finite-horizon reward. We give some basic properties of
optimal policies in that case. In particular, we give an algorithm to compute an optimal
deterministic Markovian policy. For a more complete description, we refer to [123],
Chapter 4.

Recall that the reward of a policy π starting from X1 = x is

vTπ (x) = Eπ
[
T−1∑
t=1

rt(Xt, At) + rT (XT)|X1 = x

]
,

where rT (.) is a final cost that depends on where the state of the process at the end of
the time-horizon.

The goal of the decision maker is to find the best history-dependent policy to maximize
its reward. As we have just seen in the previous part, we may restrict to Markovian
policies. The first question that arises is the evaluation of such a policy.

Let π = (π1π2 . . .) be a (randomized) Markovian policy. For a state x and an action a,
we denote by πt(x, a) the probability for the controller to take action a knowing that the
state is x. Let us call ut...Tπ (x) the expected reward starting from Xt = x:

ut...Tπ (x) = Eπ
[

T∑
s=t

rs(Xs, As) + rT (XT)|Xt = x

]
.

By linearity of the expectation, ut...Tπ (x) can be decomposed in:

ut...Tπ (x) = Eπ [rt(Xt, At)|Xt = x] + Eπ
[

T∑
s=t+1

rs(Xs, As) + rT (XT)|Xt = x

]

=
∑
a

rt(x, a)P (At = a) + Eπ
[

T∑
s=t+1

rs(Xs, As) + rT (XT)|Xt+1 = y

]
·Pπ (Xt+1 = y|Xt = x,At = a)Pπ (At = a|Xt = x)

=
∑
a∈A

rt(x, a)πt(x, a) +
∑
a∈A

∑
y∈S

ut+1...T
π (y)πt(x, a)Pa,xy. (1.6)

This provides a backward method to compute the expected reward of a policy π,
implemented by Algorithm 1.1.

Require: Description of the MDP, Markovian policy π, initial state x1 ∈ S.
Ensure: u0...T

π (x1) = vTπ (x1).
For all x ∈ S, set uTπ (x) = rT (x).
for t = T − 1 to 1 do

for x ∈ S do
ut...Tπ (x)←

∑
a∈A rt(x, a)πt(x, a) +

∑
a∈A

∑
y∈S u

t+1...T
π (y)πt(x, a)Pa,xy.

end for
end for
return u1...T

π (x1).

Algorithm 1.1: Finite-horizon policy evaluation

11

Chapter 1. Markov Chains and Markov Decision Processes

This backward induction is the key of the resolution of finite-horizon Markov decision
processes. It provides a way to compute the optimal reward as well as the optimal policy.
Indeed, let ut...T∗ (x) = supπ u

t...T
π (x). By Equation (1.6), we have:

ut...T∗ (x) = sup
π
ut...Tπ (x)

= sup
π

∑
a∈A

rt(x, a)πt(x, a) +
∑
a∈A

∑
y∈S

ut+1...T
π (y)πt(x, a)Pa,xy


= sup

πt

rt(x, a)πt(x, a) +
∑
a∈A

∑
y∈S

sup
π=πt+1...πT

ut+1...T
π (y)πt(x, a)Pa,xy


= sup

πt

rt(x, a)πt(x, a) +
∑
a∈A

∑
y∈S

ut+1...T
∗ (y)πt(x, a)Pa,xy


= sup

a

rt(x, a) +
∑
y∈S

ut+1...T
∗ (y)Pa,xy

 (1.7)

Equation (1.7) is often referred as the optimality equation. It provide an efficient
algorithm to compute by a backward induction the optimal reward as well as the optimal
policy of the system. In particular, if the state space and action space are finite (of
cardinal S and A), then Algorithm 1.2 computes an optimal policy and an optimal cost
in time O(S ·A · T). Using this equation, we directly have the following result.

Theorem 1.5. (i) For any ε > 0, the exists an ε-optimal policy that is deterministic
and Markovian.

(ii) If for all s, t, there exists a ∈ A such that the supremum in (1.7) is attained for a.
Then, there exists an optimal policy that is deterministic and Markovian.

(iii) In particular, if S is finite or countable and A is compact, there exists a deterministic
Markovian policy, computed by Algorithm 1.2.

The proof of this proposition is straightforward from Equation (1.7). For more details,
see [123], Sections 4.4 and 4.6.

Ensure: u1...T
∗ (x) = supπ v

T
π (x) = vTπ∗(x).

For all x ∈ S, set uT∗ (x) = rT (x).
for t = T − 1 to 1 do

for x ∈ S do
ut...T∗ (x)← maxa∈A

(
rt(x, a) +

∑
y∈S u

t+1...T
∗ (y)Pa,xy

)
.

π∗t (x)← arg maxa∈A

(
rt(x, a) +

∑
y∈S u

t+1...T
∗ (y)Pa,xy

)
.

end for
end for
return u1...T

∗ (x1), π.

Algorithm 1.2: Finite-horizon optimal policy

12

1.3. Optimal policies

1.3.3. Discounted reward

The discounted reward problem is very similar to the finite-horizon reward. Therefore,
we will only emphasize the differences. Again, we focus on randomized Markovian policy
because of Proposition 1.4. In all that follows, we assume that reward and probability
transitions are time-homogeneous. We further assume that the reward is bounded and
that the discount factor δ is in [0; 1). Therefore, up to adding a constant to all reward,
without any loss of generality, we assume that the reward is positive.

Let π = (π1π2 . . .) be a Markovian policy. The expected discounted reward starting
from point x is defined by:

vδπ(x) = Eπ
[∞∑
t=1

δt−1r(Xt, At)|X1 = x

]
.

Again, this expression can be decomposed in:

vδπ(x) = Eπ [r(X1, A1)|X1 = x] + δEπ
[∞∑
t=2

δt−2r(Xt, At)|X1 = x

]
=

∑
a∈A

(
r(x, a) + δPa,xyv

δ
π′(y)

)
π1(x, a), (1.8)

where π′ = (π2π3 . . .).
Let π = (π1π2 . . .) be a policy. Using a vector notation (vδπ designates the vector

of the values vδπ(x), Rπ1 the vector of R(x) =
∑

a∈A r(x, a)π1(x, a) and (Pπ1)xy =∑
a∈A Pa,xyπ1(x, a)), (1.8) can be rewritten

vδπ1π2... = Rπ1 + δPπ1v
δ
π2π3....

It should be clear that for any policy π, since 0 ≤ δ < 1 and the reward is bounded, vδπ is
equal to:

vδπ(x) =

∞∑
t=1

δt−1P t−1
π Rπt

where P 0
π = Id and P tπ = PπtP

t−1
π for t ≥ 1.

This equation suggests an optimality equation similar to Equation (1.7) of the finite-
horizon case. In the following, we will see that this is indeed the case. For a bounded
value function v : S → R+, we define the value function Lv by

Lv(x) = sup
π∈MR

(Rπ + δPπv) = sup
a∈A

(Ra + δPav)

where MR designates all the possible randomized Markovian decision rules, i.e. functions
π(., .) such that for all x ∈ S

∑
a∈A π(x, a) = 1 with π(x, a) ≥ 0. The supremum has to

be understood component-wise (i.e. for each x). The supremum on π ∈ MR is clearly
equal to the supremum on a ∈ A. L : v → Lv is a nonlinear operator on the set of
bounded value functions.

It should be clear that since the reward is bounded, there exists a bounded value

function vδ∗ such that for all x: vδ∗(x)
def
= supπ v

δ
π(x). The following results link vδ∗ and

the operator L. The order ≤ has to be understood component-wise: for two functions v
and v′, we say that v ≤ v′ if for all x: v(x) ≤ v′(x).

13

Chapter 1. Markov Chains and Markov Decision Processes

Theorem 1.6. (i) If v ≥ Lv, then v ≥ vδ∗;

(ii) If v ≤ Lv, then v ≤ vδ∗;

(iii) If Lv = v, then v = vδ∗.

The previous proposition gives basic properties that should satisfy the optimal reward
of the system. The next proposition shows there exists a unique value function such that

v = Lv = sup
π∈MR

(Rπ + δPπv) . (1.9)

Equation (1.9) is called the Bellman’s equation. This equation also allows one to compute
ε-optimal policy by iterating this equation.

Theorem 1.7. (i) There exists a unique v∗ satisfying Bellman’s equation v∗ = Lv∗.

(ii) For each v0, the iteration vn+1 = Lvn converges to v∗.

(iii) If the action set A is either finite or compact, then there exists an optimal stationary
deterministic Markovian policy.

This theorem proves that the algorithm that consists at iterating Equation (1.9)
converges to the solution of Bellman’s equation.

1.3.4. Average reward

In this part, we assume that the reward function is time-homogeneous and bounded. The
case of average reward is more complicated than the case of finite-horizon and discounted
reward and there exist many different cases depending on the geometry of the problem
(i.e. properties on the matrices Pa). Therefore, we will only present some basic results
and examples.

Recall that for a policy π, the average reward is the quantity gπ where

gπ(x) = lim
T→∞

1

T
vTπ (x).

Since this limit may not exist, we denote

g+
π (x) = lim sup

T→∞

1

T
vTπ (x) and g−π (x) = lim inf

T→∞

1

T
vTπ (x).

A policy π∗ is said to be average optimal if for all policy π, g−π∗(x) ≥ g+
π (x). π∗ is lim-sup

average optimal if g+
π∗(s) ≥ g+

π (s). π∗ is lim-inf average optimal if g−π∗(s) ≥ g
−
π (s). Note

that in general, there may not exist average optimal policies although there exist lim-inf
and lim-sup average-optimal policies, [123] Example 8.1.2.

Let us fix a Markovian stationary policy π (recall that a stationary policy means
that the same decision rule is applied at each time step). For the two previous criteria
(finite-horizon and discounted reward), we ignored the chain structure under the policy π
since we were mainly interested in the transient behavior of the process.

In the case of average reward, one can not ignore this fact and the result on Markov
decision process will strongly depend on the nature of the chain. For example, if the
MDP is unichain – meaning that every deterministic stationary policy generate a Markov

14

1.4. Algorithmic Issues: the Curse of Dimensionality

Chain with one single recurrent class plus a finite set of transient states – one can show
that when S and A are finite, the average reward exists and does not depend on the
initial state, see [123], Section 8.4.1. Moreover, there exists a unique g ∈ R such that
there exists h : S → R with

h(x) = max
a∈A

r(x, a)− g +
∑
y∈S

Pa,xyh(y)

 .

In the equation above, g is the average reward. The equation above defines h up to an
additive constant. There exists a constant c such that the expected reward between time
1 and t starting form x is

vT∗ (x) = gT + h(x) + c+ o(1).

However, in that case, the iteration vn+1 = Lvn does not necessarily converges and often
oscillates or diverges.

If the MDP is multi-chain – i.e. there exists a stationary policy that generates a
Markov chain with two recurrent classes – results are more complex. In that case, the
optimal reward depends on the initial state g(s) and satisfies the two equations

g(x) = max
a∈A

∑
y

Pa,xyg(y) and h(x) = max
a∈Bx

r(x, a)− g(x) +
∑
y∈S

Pa,xyh(y).

where Bx = {a′ ∈ A : g(x) =
∑

y Pa,xyg(y)} (see [123], Section 9.1.1). Here, g(x)
represents the average reward starting from x while h(x) is the asymptotic difference
between vT∗ (x) and Tg(x). In that case, building a policy iteration to compute optimal
policy is again feasible but more complex.

1.4. Algorithmic Issues: the Curse of Dimensionality

Markov models are very popular in the performance evaluation’s community because
they are often very simple to analyze. In particular they have two interesting features.

• There exist many theoretical tools to show the existence and uniqueness either
of the transient behavior or of the stationary behavior. The conditions are often
simple to verify.

• These theorems are often constructive and provide algorithms to compute perfor-
mance indicators or solve optimal control problems.

However, as pointed out in the introduction, page xxx, Markov models suffer from one
main drawback: the size of the state space. Consider for example that we want to model
a small network of computers. Say that there are 100 computers and that each of them
have 10 possible states. In that case, the total number of states of the system is 10100!
Therefore, an algorithm that needs to search all the states cannot be used in practice.

This problem is even more important in the case of Markov decision problems since
the algorithm are often at least linear in the size of the state space and often more
complicated (like PSPACE-complete [149]) . In the following of this document, we will
see how to tackle this problem by studying a limiting system when the size of the state
space of the system goes to infinity.

15

Chapter 1. Markov Chains and Markov Decision Processes

1.5. Bibliographical notes

Markov chains have been first introduced by Markov in [111] and named after him, see
[14] for an history on the early development on Markov chains. For a more modern view
on Markov chains and in particular the speed of convergence to its stationary regime, we
refer to [108] and [3].

Markov processes play a central in the theoretical study of computer networks, in
particular via the development of queuing theory. See [92] or [95, 96] for classical
references on this subject or [11] for more recent work.

Markov decision processes have been introduced by Bellman in [15] which introduced the
principle of dynamic programming. The mathematical foundation were established in [58]
and [39]. More recent references include [35, 36]. The book [123] gives a comprehensive
reference on MDP.

16

Chapter 2.

A Survey on Mean Field Convergence

Abstract of this chapter – Despite the great expressive power of
Markov chain, Markov models often suffer from a problem of dimensionality:
the state space needed to describe a complex system is too big. In this chapter,
we study a way to overcome this difficulty by introducing mean field models.

The purpose of mean field models is to study systems composed by a large
number of interacting objects. When the role of the objects exhibits some
symmetry, one can show that when the number of objects goes to infinity, the
system converges to a deterministic limit.

In this chapter, we review two different approaches and compare the different
methods of proof. The first approach is to study the evolution of the proportion of
objects in each state, which leads to dynamical systems of differential equations or
discrete time dynamical system. The second approach is to study the proportion
of objects that follows one or an other trajectory.

Résumé du chapitre – Dans le chapitre précédant, nous avons vu que
malgré une grande puissance d’expression, les modèles reposants sur les châınes
de Markov souffrent souvent d’un problème d’explosion combinatoire. Dans ce
chapitre, nous étions une façon de contourner le problème en considérant les
modèles champ moyen.

Les modèles champs moyen s’intéressent au comportement de système
composés d’un grand nombre d’objets interagissant et plus particulièrement aux
propriétés de limite quand le nombre de ces objets tend vers l’infini.

Nous présentons deux approches différentes. La première est de s’intéresser
à l’évolution du nombre moyens d’objets dans chaque état. La deuxième est
de considérer l’espace des trajectoires et de regarder la proportion d’objets
empruntant telle ou telle trajectoire.

17

Chapter 2. A Survey on Mean Field Convergence

2.1. Mean field models

In this chapter, we are interested in studying the behavior of a system composed by a
large number N of objects evolving in a common environment (ofter called the context).
These objects may be similar objects or can be decomposed in different classes of objects,
each class being composed by a large number of objects. The behavior of each object is
not independent of the others. It depends on the context and often also depends on the
interaction with other objects.

Mean-field models arise in many situations, ranging from population dynamics to
models of computing systems. As there is no commonly admitted definition of what is
called a mean field model, we start by giving some examples and refer the reader to
Sections 2.2 and 2.3 for a precise definitions of some mean field models.

2.1.1. Examples

We give here some examples of classical mean field models of the literature.

Epidemic models – our first example concerns the model of the evolution of an
epidemic in the population, studied for example in [62] or [106]. The population is
composed by a fixed number of persons N . Each person can be either susceptible,
infected or recovered. A susceptible person becomes infected when meeting someone
who is infected. A infected can either recover or infect a susceptible. After some time, a
recovered person becomes susceptible again.

If the meeting among the different people are uniform, the probability of each event to
occur only depend on the proportion of person in each state. When N is large but finite,
the behavior of such system is quite complicated. However, studying the limit when N
goes to infinity makes it simpler to study.

Queuing systems – let us consider a network of N processors, representing for
example a cluster of computers or a computational grid. There are jobs arriving in the
system that are routed according to some rules to each processor. Each processor treats
one job at a given time and stores other jobs in its queue. The state of a processor is the
number of jobs a processor has in backlog.

In practice, the management of such systems relies on load balancing techniques which
aim at distributing the work among the different resources. Without load balancing,
every job arriving in the system is rooted to one processor at random and stays with this
processor until the end of its computation. A simple way to improve this situation is
for every arriving job to choose a small number of processor at random and sends the
jobs to the processor with the smallest load. This has been proved to be very efficient in
practice [115].

The dynamics of such systems is complex because of the interactions between the
different processors caused by the rooting policy. However, mean field theory can greatly
reduce its complexity when studying the limit N →∞ [80, 137]. We will also see how
mean field theory can be used to study another load balancing technique [114, 70], namely
work stealing, in Chapter 4.

Medium access control – medium access control (MAC) is used in wireless or
self-organizing networks to guarantee the access of a shared communication channel to a
large number of users without using a central controller. Performance studies of such
systems often assume independence properties among users or retransmission of packets

18

2.1. Mean field models

[37]. Studying limiting properties of the system when the number of connecting users is
large allows one to overpass and justify these limitations [43].

Congestion control – Yet an other big issue when modeling communication network
is to study congestion control mechanisms, such as TCP. Consider for example, a system
with N computers that are all sending some packets through the same bottleneck server.
As long as the queue of the bottleneck is not full, all connexions will increase linearly their
sending rate. However, when its queue become full, the bottleneck starts dropping packets
and the connexions decreases their sending rate exponentially. Such a mechanism is called
additive increase, multiplicative decrease and is implemented in a lot of implementations
of TCP.

In this situation, the different connexions are only dependent through the shared
bottleneck which makes it a good candidate for mean field techniques. The limiting
regime is then much simpler to study that the original model with a large number of
connexions [13, 106]. In particular, people have shown that even when using the variant
RED (random early detection), a main issue of this mechanism is that in some situation,
it leads to oscillations in the system [143, 12].

2.1.2. Reducing the State Space: Point-wise and Path-space Convergence

In this section, we present the different objects of study of mean field theory that will be
developed in Sections 2.2 and 2.3.

We consider a collection of N objects. Objects are numbered from 1 to N . Each object
lives in a state space S and the state of the object i at time t is represented by a variable
XN
i (t) ∈ S. In some mean field model, the state of the system is composed by the state

of the objects in the system but also by the state of a shared resource, see Section 2.2.3.
In this section, in order to simplify the presentation of the concept, we omit this resource
and consider that the state of the system is described as:

XN (t)
def
=
(
XN

1 (t) . . . XN
N (t)

)
∈ SN .

The basic assumption of our model is that the process (XN (t))t≥0 is a Markov chain
on the state space SN (either in continuous time or discrete time). If S is a finite set of
size S, the cardinal of SN is SN . For example, if we consider a network of 20 computers,
each with 20 possible states representing the state of their memory for example, this leads
to a state space of size 2020 ≈ 1026. Just to cover the complete state space, a computer
that explores 109 states per second would take about 3 billions years to cover the entire
state space. This raises the need of a method to simplify the study of such systems.

In all that follows, we will consider systems in which the objects are only distinguishable
through their state. This means that if we permute the objects 1 . . . N , the law of the
corresponding process is the permutation of the law of the original process (XN). In
particular, this means that the identity “i” of the ith object does not contain any
information and that this information is contained in its state.

This leads to think that the process to study is not the process containing the
information about which object is in which state but rather to consider the proportion of
objects in each state. We define the process MN (t), called the empirical measure of the
process XN (t) by

MN (t)
def
=

1

N

N∑
i=1

δXN
i (t),

19

Chapter 2. A Survey on Mean Field Convergence

where δx is the Dirac measure of the singleton x: δx is a probability measure such that
δ({x}) = 1. MN (t) is a measure on S and for each x ∈ S, (MN (t))(x) is the proportion
of objects that are in state x:

(MN (t))(x) =
1

N

N∑
i=1

1{XN
i (t)=x}.

For each t, MN (t) ∈ P(S), the set of probability measures on S and t 7→ MN (t) is a
càdlàg (continue à droite, limite à gauche which means right-continuous with left limits)
random process taking values in P(S). Thus, MN can be seen as a random variable
taking values in D(R+,P(S)), the Skorokhod space, see Section 2.3.1 for some definitions
and properties of the Skorokhod space. A first object of study of mean field theory is to
study the convergence of the random variable MN and in particular of its law which is
in P(D(R+,P(S))). This point of view is developed in Section 2.2.

We will see in Section 2.2 that under very general conditions, the process MN (.)
converges to a deterministic process m : R+ → P(S) and that m satisfies a set of
differential equations that can be easily deduced from the original model, which simplifies
greatly the study of the performance of this systems. However, when studying the
dynamics of the empirical measure (MN (t))t, one loses all information about the trajectory
of a particular object (XN

1 (t))t. A natural question would be study the convergence of
the trajectory of one object (XN

1 (t))t.
Instead of studying MN (t), the empirical measure at time t, we consider the empirical

measure of the trajectories QN , where

QN
def
=

N∑
i=1

δXN
i
.

A trajectory XN
i is a càdlàg function from R+ to S: XN

i ∈ D(R+,S). Therefore, QN is
a (random) measure on P(D(R+,S)). Studying the convergence of the random measure
QN ∈P(P(D(R+,S))) is much more complicated than studying the process MN but
leads to stronger convergence results. In particular, the convergence of QN implies the
convergence of MN but also leads to properties of the trajectories of tuples of objects.
This ideas will be developed in Section 2.3. We will introduce the notion of chaoticity
of a sequence of a sequence of measure and see how this can be used to show that QN

converges to some δQ where Q is the unique solution of a martingale problem.

2.1.3. Comparison of the two Approaches

Convergence results for path-space are stronger than the ones concerning point-wise
processes. However, in the rest of the document and in particular in Part II, we will
mainly focus on point-wise convergence. There are multiple reasons for this.

The main reason is the nature of the limit. While in the point-wise case the limit is
described by a “simple” ordinary differential equation or a dynamical system, the limiting
behavior of QN is only determined in terms of martingale problem. Therefore, the
limiting behavior of MN (t) is more explicit and much simpler to study, either analytically
or numerically. The limiting behavior of QN makes it more interesting from a theoretical
point of view (for example to show asymptotic independence of objects like in [43]). We
will see in Section 4.3.1 that fast simulation can be used to study the trajectory of one
object in the point-wise framework.

20

2.2. Some Results on Point-wise Convergence

The second reason comes from the centralized nature of the results presented in Part II
where we present the links between optimal control and mean field limits. In this part,
a centralized controller tries to optimize a cost that depends on MN (t). A path-space
correspondence of these results would be to study a scenario where a controller would like
to optimize the trajectory of each objects. This is similar to game-theoretic approaches
in which each object tries to optimize its own behavior like in [142] or [105].

The last but not least reason is due to the generality of the results. Results on point-
wise convergence shows that under very mild assumptions (mainly some continuity of the
transition parameters and some sort of asymptotic independence) the limiting behavior
can be approximated by a deterministic one. Moreover, the limiting dynamics can be
described explicitly starting from the initial system. On the opposite side, path-space
results need stronger assumptions and explicit results can only be obtained for very
particular cases. For example, the extension to a system with more than one class
of objects is not straightforward [81, 82] in the path-space case whereas there are no
differences in the point-wise case.

2.2. Some Results on Point-wise Convergence

Throughout this section, we present some classical model on the convergence of the

process t 7→ MN (t)
def
= 1

N

∑N
i=1 δXN

i (t). In particular, under simple conditions, MN (t)
converges to a deterministic process m, that can either be a continuous time or discrete
time process. When m is a continuous time process, as in Sections 2.2.1 or 2.2.2, m
satisfies a system of differential equations ṁ = f(m). When the limit m is in discrete
time, as in Section 2.2.3, m is a dynamical satisfying m(t+ 1) = f(m(t)).

2.2.1. Density Dependent Population Processes

In this section, we recall some definitions and convergence results of density dependent
population processes. For a more complete description, the reader is referred to [103]
chapter 8 or [62] chapter 11.

Let MN be a continuous Markov chain on 1
NNd (d ≥ 1) for N ≥ 1. MN is called

a density dependent population process if there exists a finite number of transitions,
say L ⊂ Nd, such that for each ` ∈ L, the rate of transition from MN to MN + `/N is
Nβ`(M

N) ≥ 0, where β`(.) does not depend on N . Here, MN is the empirical measure
corresponding to a population living in a finite state space {1 . . . d}. The ith component
of the vector MN represents the proportion of persons in state i.

Let us call F the function F (m) =
∑

`∈L `β`(m) (if the sum is well defined) and let us
consider the following ordinary differential equation:{

m(0) = m0

ṁ(t) = F (m(t))
.

Theorem 2.1 below shows that the stochastic process MN (t) converges to the deterministic
system m(t). In all that follows, ‖.‖ denotes the classical L2 norm on Rd: ‖x‖ =√∑d

i=1 |xi|
2.

Theorem 2.1 ([62], chapter 11). Assume that for all compact K ⊂ Rd, F is Lipschitz
on E and

∑
`∈L ‖`‖ supm∈K β`(m) < ∞. If limN→∞M

N (0) = m0 in probability, then

21

Chapter 2. A Survey on Mean Field Convergence

for all T > 0:
lim
N→∞

sup
t≤T

∥∥MN (t)−m(t)
∥∥ = 0 in probability,

uniformly in the initial condition.

The proof of this result is very classical and can be extended to many other situations
to obtain convergence results on MN . The main idea is to write∥∥MN (t)−m(t)

∥∥ ≤
∥∥MN (0)−m(0)

∥∥+

∥∥∥∥MN (t)−MN (0)−
∫ t

0
F (MN (s))ds

∥∥∥∥
+

∥∥∥∥∫ t

0
F (MN (s))ds−

∫ t

0
F (m(s))ds

∥∥∥∥ .
Then the first part is bounded using a martingale argument and we use Grönwall’s lemma
to conclude. The method used to prove this result is the basis of the proof of Chapters 6
and 7 and in particular Theorems 6.1 and 7.7. Therefore, we recall the proof here. This
proof is inspired by the one of [62], chapter 11.

Proof. Following Theorem 4.1 of Chapter 6 of [62], MN (t) is the unique solution of

MN (t) = MN (0) +
∑
`∈L

`Y`

(
N

∫ t

0
β`
(
MN (s)

)
ds

)
,

where Y` is a collection of independent Poisson processes with rate 1.
We will assume that

∑
`∈L ‖`‖ supm∈Rd β`(m) <∞ and that F is lipschitz of constant

L on all Rd and we define β̄` = supm∈Rd β`(m). To prove the general case, one has to
show that MN (t) is almost surely bounded.

Let us define εN (T) by:

εN (T)
def
= sup

t≤T

∥∥∥∥MN (t)−MN (0)−
∫ t

0
F (MN (s))ds

∥∥∥∥
≤ sup

t≤T

∑
`∈L
|`|
∥∥∥∥ 1

N
Y`

(
N

∫ t

0
β`
(
MN (s)

)
ds

)
−
∫ t

0
β`(M

N (s))ds

∥∥∥∥ .
The random process

∑
`∈L |`|

∥∥∥ 1
N Y`

(
N
∫ t

0 β`
(
MN (s)

)
ds
)
−
∫ t

0 β`(M
N (s))ds

∥∥∥ is a posi-

tive submartingale.
Therefore by Doob’s Martingale inequality:

P
(
εN (T) ≥ ε

)
≤ 1

ε
E

(∑
`∈L
|`|
∥∥∥∥ 1

N
Y`

(
N

∫ T

0
β`
(
MN (s)

)
ds

)
−
∫ T

0
β`(M

N (s))ds

∥∥∥∥
)

=
1

ε

∑
`∈L
|`|E

(∥∥∥∥ 1

N
Y`

(
N

∫ T

0
β`
(
MN (s)

)
ds

)
−
∫ T

0
β`(M

N (s))ds

∥∥∥∥)
≤ 1

ε

∑
`∈L
|`|E

(∣∣∣∣ 1

N
Y`(Nβ̄`T)− β̄`T

∣∣∣∣) .
Since E

(∣∣ 1
N Y`(Nβ̄`t)− β̄`t

∣∣) ≤ 2β̄`t and
∑

` |`| β̄` < ∞, the dominated convergence
theorem shows that P

(
εN (T) > ε

)
→ 0. Moreover, since F is Lipschitz of constant L,

we have:∥∥MN (t)−m(t)
∥∥ ≤ ∥∥MN (0)−m(0)

∥∥+ εN (t) +

∫ t

0
L
∥∥MN (s)−m(t)

∥∥ ds.

22

2.2. Some Results on Point-wise Convergence

Grönwall’s lemma concludes the proof.

This theorem does not provide any insight on the speed of convergence. In fact,
if
∑

` |`|
√
β̄l < ∞, the proof can be adapted to show that there exists a function f

independent of N such that P
(
sup0≤t≤T

∥∥MN (t)−m(t)
∥∥ ≥ ε) ≤ 1√

N
f(ε). Without this

condition, one can show that for all function b(N) such that limN→∞ b(N) = 0, there
exists a set {β`}`∈L such that

b(N) = o

(
P

(
sup

0≤t≤T

∥∥MN (t)−m(t)
∥∥ ≥ ε)) .

Moreover, Kurtz has proved second order results for the previous convergence, showing

that the gap between MN (t) and m(t) is of order
√
N . Let V N (t)

def
=
√
N(MN (t)−m(t)),

and V (t)
def
= V (0) + U(t) +

∫ t
0 ∂F (M(s))V (s)ds, where U(t) is a time inhomogeneous

Brownian motion and ∂F denotes the Jacobian matrix of F . For a sequence of random
variables XN , we say that XN converges weakly to a random variable X, denoted

XN weak−−−→ X if for all continuous bounded function h, limN→∞ E
(
h(XN)

)
= E (h(X)).

Using this notation, we have:

Theorem 2.2 ([62], Chapter 11). Assume that for all compact set E: F is Lipschitz on

E,
∑

`

∥∥`2∥∥∑m∈E β`(m) <∞, and that F is continuously differentiable and V N (0)
weak−−−→

V (0). Then for all t,
√
n(MN −m)

weak−−−→ V .

This result indicates that for all fixed t, the gap between MN (t) and x(t) behaves like
1√
N
G, where G is a Gaussian random variable.

Steady state convergence

Other interesting results of convergence concern the behavior of the steady state of the
system. In the following, we will assume that MN (t) in bounded for all t. Assume for
example that the stochastic process with N objects has an invariant measure, say πN .
A natural question is whether πN converges (or not) to a fixed point of F and whether
second order results exist in that case. In general, convergence for the steady state only
holds under several restrictions.

Let Bf (m0) be the set of accumulation points of the trajectory of the differential

equation starting in m0: Bf (m0)
def
= Acc{m(t) : t ≥ 0 ∧ ṁ = f(m) ∧m(0) = m0} and

Bf
def
= ∪m0Bf (m0). Bf is the closure of the set of accumulation points of the ODE

ṁ = F (m). In particular, BF contains the invariant point of the ODE as well as the
possible limit cycles. There is no general method to study BF and it is in particular very
hard to show the existence or the non-existence of limit cycles. The following proposition
links the stationary distributions πN and BF .

Proposition 2.3. The support of any limit point (for the weak convergence) of the
stationary distributions πN is included in the closure BF of the accumulation points of
the solutions of the equation ṁ = F (m), for all possible initial conditions.

The proof presented here is inspired by classical proofs for stochastic approximation
(see Corollary 3.2 of [16] for example). It is based on the Poincaré recurrence theorem.

23

Chapter 2. A Survey on Mean Field Convergence

Proof. Let h be a continuous bounded function and δ > 0. For a measure πN , we denote∫
m h(m)πN (dm) the expectation of h(M) if the distribution of M is πN . Em(MN (t))

denotes the expectation over the trajectories of MN (t) starting in MN (0) = m. Moreover,
the system of differential equations ẏ = F (y) starting in y(0) = m has a unique solution.
Its value at time t is denoted Φt(m).

Let πN be an invariant measure of MN and π a limit point of πN . Since πN is an
invariant measure of MN :∫

m
Em(h(MN (t)))πN (dm) =

∫
m
h(m)πN (dm).

Since E is compact, h is uniformly continuous and there exists ε > 0 such that ‖m− y‖ < ε
implies ‖h(m)− h(y)‖ < δ and

Em(
∣∣h(MN (t))− h(Φt(M

N (0)))
∣∣)

≤ δ + ε ‖h‖P
(∥∥MN (t)− Φt(M

N (0))
∥∥ > ε

)
,

where ‖h‖ def
= supm ‖h(m)‖.

Proposition 2.1 shows that limN→∞ P
(∥∥MN (t)− Φt(M

N (0))
∥∥ > ε

)
= 0 which shows

that:

lim
N→∞

∣∣∣∣∫
m
Em(h(MN (t))πN (dm))−

∫
m
h(Φt(M

N (0)))πN (dm)

∣∣∣∣ ≤ δ.
Using the fact that πN goes weakly to π and since h and δ are arbitrary, this shows

that π is an invariant measure of Φt. Let us call H the support of π and B the set of
accumulation point of Φt. H is a closed invariant set and π is an invariant measure for
Φ. By the Poincaré recurrence theorem, π(B) = 1, which shows that B ⊂ H.

An immediate corollary is the case where the solutions of the differential equation all
converge to a single global attractor.

Corollary 2.4. If F has a unique stationary point m∗ to which all trajectories converge,
then the stationary measures πN concentrate around m∗ as N goes to infinity:

lim
N→∞

πN
weak−−−→ δm∗ ,

where δm∗ is the Dirac measure in m∗.

Proof. Since MN is bounded, the measures πN have a compact support. Thus, the
sequence πN is tight. By Proposition 2.3, it converges to δx∗ .

In the case where a linear Lyapounov function exists, second order results for the
steady state behavior exist. Norman [119] shows that under technical assumptions and if
there exists a scalar product 〈·〉 such that 〈m−m∗, F (m)〉 < 0 and 〈m,F ′(m∗)m〉 < 0,
then

√
N(πN −m∗) converges to a Gaussian variable. Unfortunately, this theorem is not

very useful in practice since the construction of such a scalar product is complicated in
general.

24

2.2. Some Results on Point-wise Convergence

2.2.2. Stochastic Approximation Method

Stochastic models either involve continuous time or discrete time models. When modeling
a real system, it may sometimes be more natural to start from a discrete or a continuous
time model. In this section, we show how discrete time models can also lead to continuous
time limits and in particular, how to use results on stochastic approximation algorithms
to study convergence of a large class of mean field models.

A stochastic approximation algorithm is a discrete random process xn ∈ Rd that can
be written

xn+1 = xn + an+1(F (xn) + Un+1), (2.1)

where F (xn) is a deterministic function, Un+1 is a random variable of mean 0 and an a
“small” step-size. One can think of Equation (2.1) of a Euler discretization of the ODE

ẋ = F (x), (2.2)

plus a random error term Un+1.
The theory of stochastic approximation algorithm focuses on studying the relationship

between (2.1) and (2.2). The original goal of stochastic approximation was to provide
numerical algorithms to compute the solutions of an equation f(x) = 0 [125] by building
a sequence xn that would converge to one the solution. During the years, this method
has been extended to study numerous problems such as learning algorithms, adaptive
control or signal processing. We refer the reader in particular to [104] that contains many
examples as well convergence results and [17] that contains many theoretical results on
the asymptotic behavior of (2.1) when the step-size an vanishes as n goes to infinity.

The stochastic approximation method is a simple and powerful way to prove mean field
convergence. To each system of size N corresponds a stochastic approximation algorithm
(XN

n)n≥0 whose step-size is constant: an = I(N). In particular, the constant-step size
algorithm has been studied in [18] from a stochastic algorithm point of view. Apart from
mean field models, this has also applications in game-theory [21]. In the following, we
show how to apply this result to mean-field models, following the presentation of [20].

We consider of model similar to the one of [20]. The system is composed of N objects
evolving in a finite state space S = {1 . . . S}. Time is discrete and the state of object
n at time step k is denoted XN

n (k). In [20], the system also contains a resource but we
omit this detail here in order to simplify the presentation. The state of the global system

at time k is XN (k)
def
= (XN

1 (k) . . . XN
N (k)). We denote by MN (k) the empirical measure

associated with the N objects:

MN (k)
def
=

1

N

N∑
n=1

δXN
n (k).

Since an object has S possible states, MN (k) can be represented by a vector with S
components, its ith component being the proportion of objects in state i.

The system (MN (k))k is assumed to be a Markov chain. In particular, this is true if
the evolution of (XN) is invariant by any permutation of the N objects.

If at time step k, the system is in state MN (k) = m, the expected difference between
MN (k + 1) and MN (k) is called the drift and is denoted fN (m):

fN (m)
def
= E

(
MN (k + 1)−MN (k)|MN (k) = m

)
.

25

Chapter 2. A Survey on Mean Field Convergence

We assume that as N grows, the drift vanishes with speed I(N) where I(N) > 0 is called
the intensity. The intensity of the model corresponds to the length of a time step (the
step-size of the stochastic approximation algorithm). The means that limN→∞ I(N) = 0
and that there exists a function f such that:

lim
N→∞

fN (m)

I(N)
= f(m) uniformly in m. (2.3)

We define the normalized process M̄N (t) by for all k ∈ N: M̄N (kI(N)) = MN (k) and
MN (.) is linear between kI(N) and (k + 1)I(N).

The evolution of the system MN (t) can be written:

MN (k+1) = MN (k)+I(N)

(
fN (MN (k))

I(N)
+

1

I(N)

(
MN (k + 1)−MN (k)−fN (MN (k))

))
Using that fN (m)/I(N)→ f(m) and E

(
MN (k + 1)−MN (k)− fN (MN (k))|MN (k)

)
=

0, this equation defines a stochastic approximation algorithm as in (2.1). Using ideas of
the stochastic approximation theory, the following result is shown in [20], Theorem 1.

Proposition 2.5. If f is Lipschitz and if the number of objects that change their state
during one time step is bounded in expectation by NI1(N) and in second moment by
N2I(N)I2(N) with I1(N)→ 0 and I2(N)→ 0, then for all T > 0 there exists constants
C1(T) and C2(T) such that

P

(
sup

0≤t≤T

∥∥MN (t)−m(t)
∥∥ ≥ ε+ C1(T)

(
1 +

∥∥MN (0)−m(0)
∥∥)) ≤ C2(T)

ε2
,

where m(t) is the unique solution of the ODE ṁ = f(m) starting in m(0).

The proof of this result is very similar to the one of Proposition 2.1 for density
dependent population processes, using a martingale argument to bound the stochastic
part and Grönwall’s lemma to conclude. Similar results pertaining to asymptotic behavior
as Proposition 2.3 and 2.4 are also provided in [20].

2.2.3. Discrete Time Limits

In the first model presented in Section 2.2.1, the original system is in continuous time as
well as its limiting regime. In the second model, 2.2.2, the original model is in discrete
time and its limit in continuous time. In this section, we give an example of a discrete
time model converging to a discrete time (deterministic) dynamical system.

We consider a similar model as the one in [106]. The system is composed of N objects.
Each object evolves in a finite state space S = {1, . . . , S}. The state of the nth object at
time t ∈ N is denoted XN

n (t). We call MN (t) the empirical measure of the collection of
objects (XN

n). MN (t) is a vector with S components and the ith component of MN (t) is

MN
i (t)

def
= N−1

N∑
n=1

1XN
n (t)=i,

the proportion of objects in state i. The set of possible values for MN is the set of
probability measures p on {1 . . . S}, such that Np(i) ∈ N for all i ∈ S, denoted by

26

2.3. Path-space convergence

PN (S). For each N , PN (S) is a finite set. When N goes to infinity, it converges (for
the Hausdorff metric) to P(S) the set of probability measures on S.

The system of objects evolves depending on their common environment. We call
CN (t) ∈ Rd the context of the environment. Its evolution depends on the empirical
measure MN (t), itself at the previous time slot:

CN (t+ 1) = g(CN (t),MN (t+ 1)),

where g : P(S)×Rd → Rd is a continuous deterministic function. Moreover, there exists
a transition probability kernel K(C) such that the probability that knowing that the
context is in state C at time t, the object n goes from state i to state the j is Ki,j(C),
where

P
(
XN
n (t+ 1) = j|XN

n (t) = i, CN (t) = C
)

= Ki,j(C).

Moreover, we assume that the evolution of the objects are independent once C is fixed.
The assumption of independence of the users is a rather common assumption in mean
field models [106]. However other papers [20, 45] have shown that similar results can
be obtained using asymptotic independence only. The kernel K is not assumed to be
irreducible. This allows for several classes of objects interacting under context C, as in
[41, 106].

This model has been studied in [106]. In particular, the authors gave results on the
asymptotic behavior of MN (.), CN (.) such as the following result.

Theorem 2.6 (Theorem 4.1 of [106]). Assume that MN (0), CN (0) converge almost
surely to deterministic m(0), c(0) as N goes to infinity. Then for all t, MN (t), CN (t)
converge almost surely to m(t), c(t) where m(t), c(t) are defined by:

m(t+ 1) = m(t)K(c(t))

c(t+ 1) = g (c(t),m(t+ 1)) .

Authors also give a fast-simulation algorithm that shows that the dynamics of the
different objects can be decoupled as N goes to infinity.

Although this system could seem unnatural because we force the behavior of the
N objects to take place during the same time step and be independent, it has many
applications for example in the study of reputations systems [106] or congestion avoidance
[143, 106]. The main advantage of this model is that the limiting process is very simple
to describe and to study, at least numerically.

2.3. Path-space convergence

The purpose of mean field model is to study the behavior of systems composed of a large
number of objects, when the number of these objects goes to infinity. In the previous

section, we have seen that if XN (t)
def
= (XN

1 (t) . . . XN
N (t)) denotes the state of the system

of particles at time t, there exist various models to study the convergence of the process

t 7→ MN (t)
def
= 1

N

∑N
i=1 δXN

i (t) which is a D(R+,P(S)) random variable. In particular,

we have seen that under mild conditions, the limiting behavior of MN (.) is deterministic
and can be described by simple differential equations or discrete time dynamical systems.

27

Chapter 2. A Survey on Mean Field Convergence

In this section, we will focus on a more complex object, which is

QN
def
=

1

N

N∑
i=1

δXN
i
.

QN is no longer a random process but a measure on the path space of the processes XN
i .

Since each XN
i is a D(R+,S)-valued process, QN is a P(D(R+,S))-valued process. The

behavior of QN is much complicated to study than the one of (MN (t))t and convergence
results on QN are stronger than their analogue on MN .

In this section, we will present a method to prove convergence of QN to a Dirac
measure δQ where Q is a deterministic process. This method is based on propagation
of chaos and has been developed in [138] and further investigated in [80]. We will not
go deep into the details since in the rest of the document we will focus on convergence
properties of (MN (t))t and the reader is referred to [80] for a more complete description
of the method.

We first recall some basic results on the space P(D(R+,S)) in Section 2.3.1. Then, we
recall some results on propagation of chaos and martingale problem. Finally, we describe
the generic method to prove mean-field convergence in Section 2.3.4.

2.3.1. Skorokhod Space and Weak-Convergence Topology

In this section, we recall some basic properties about the Skorokhod space and the
weak-convergence topology. The reader is referred to Chapter 3 of [62], or [38].

In this section, (E, r) denotes a complete and separable metric space. For an interval
I in R, we denote by D(R+, E) the set of right continuous functions from R+ to E, i.e.,
the set of function x : R+ → E such that:

• for all t ∈ Ix(t+)
def
= limh>0,h→0 x(t+ h) exists and x(t+) = x(t).

• for all t ∈ I, x(t−)
def
= limh<0,h→0 x(t+ h) exists.

Functions having these properties are also called càdlàg functions (continue à droite,
limite à gauche). A time t such that x(t−) 6= x(t+) is a discontinuity point of x. A
càdlàg function has at most a countable set of discontinuity points.

The topology of uniform convergence is not interesting on D(R+, E) since it is too
restrictive. Instead, we will consider the topology induced by the Skorokhod distance.
Let Λ denote the class of Lipschitz continuous functions mappings of R+ onto itself. If x
and y are two càdlàg functions, we define a distance d(x, y) by:

d(x, y)
def
= inf

λ∈Λ

{
max

{
sup
s>t≥0

log

(
λ(s)− λ(t)

s− y

)
,

∫ ∞
0

sup
t≥0

r(x(t ∧ u), y(λ(t) ∧ u))du

}}

where t ∧ u def
= min(t, u). d(., .) is called the Skorokhod distance. It is well known that

d(., .) is indeed a distance and that D(R+, E) is complete and separable as soon as E is
complete and separable (see Chapter 3.5 of [62]).

Let us now consider a distance on P(S), the space of probability measures on a metric
space (S, d). We define the Prohorov distance ρ between two measures µ, ν ∈P(S) by:

ρ(µ, ν) = inf {ε > 0 : µ(F) ≤ ν(F ε) + ε for all closed set F} ,

28

2.3. Path-space convergence

where F ε = {x ∈ S : infy∈F d(x, y) < ε}. Again, we refer to Chapter 3 of [62] to see that
ρ(., .) is indeed a distance and that (P(S), ρ) is separable and complete as soon as (S, d)
is.

A collection of measures M ⊂P(S) is said to be tight if for each ε > 0, there exists
a compact space K ⊂ S such that P (K) ≥ 1− ε for all P ∈M . Tightness of measures
and convergence of measures are closely related as expressed by the next result. This
characterization is important when one wants to study the convergence of a sequence of
probability measures.

Theorem 2.7 (Prohorov’s Theorem). Assume that (S, d) is a complete and separable
metric space. A sequence of probability measures M ⊂P(S) is tight if and only if M is
relatively compact.

Note that a set X ∈P(S) is said to be relatively compact if any sequence in X has a
convergent subsequence in (P(S), d).

The Prohorov’s metric is not very practical to show convergence of probability measures.
For that, we define another notion of convergence, called weak convergence, which is in
fact equivalent to the Prohorov’s metric. A sequence of probability measures µn ∈P(S)
is said to be converge weakly to a probability µ if for all bounded continuous function f
on the metric space (S, d),

lim
n→∞

∫
fdµn =

∫
fdµ. (2.4)

If S is separable, then a sequence of measures µn converges weakly to µ if and only if
µn converges to µ for the Prohorov’s topology, i.e., limn→∞ ρ(µn, µ) = 0 (Chapter 3.3 of
[62]).

2.3.2. Chaotic and Exchangeable Sequences

Recall that the initial problem is to study the convergence properties of the random
variable QN = N−1

∑N
i=1 δXN

i
where XN

i has sample path in D(R+,S). QN is a measure

on P(D(R+,S)) and in general, it is not easy to check that the convergence of Equa-
tion (2.4) for all function f . Fortunately, when the original process X is exchangeable,
weak convergence of QN is closely related to the chaoticity of the sequence X .

We begin with two definitions. Let XN = (XN
1 . . . XN

N) be a sequence of tuples of
random variables on some space E.

The vector XN is said to be exchangeable if the law of XN is invariant under any
permutation of the order of the random variables. If L (X) denotes the law of a random
variable, this means that for any permutation σ : [1 : N]→ [1 : N],

L
(
XN

1 . . . XN
N

)
= L

(
XN
σ(1) . . . X

N
σ(N)

)
.

If Q is a probability measure on E, the sequence XN is called Q-chaotic if for any k, the
marginal distribution of the first coordinate of (XN

1 . . . XN
k) is asymptotically a product

of k copies of Q. This means that for any continuous function f1 . . . fk:

lim
N→∞

E
(
f(XN

1)f(XN
2) . . . f(XN

k)
)

=
k∏
i=1

∫
fidQ.

The following theorem, due to Sznitman [138] shows that for exchangeable sequences,
chaoticity is equivalent to the convergence of the empirical measure QN .

29

Chapter 2. A Survey on Mean Field Convergence

Theorem 2.8 (Proposition 2.2 of [138]). Let Q ∈P(E).

(i) If XN is exchangeable and Q-chaotic, then QN converges weakly to the deterministic
law δQ.

(ii) If XN is exchangeable and QN converges to δQ, then XN is Q-chaotic.

(iii) The sequence of random variables (QN)N is tight if and only if the law of (XN
1)N

is tight.

This result, and in particular point (iii) greatly simplifies the proof of convergence of
QN since verifying the tightness of the first variable (XN

1) is much simpler than verifying
the same property for QN .

2.3.3. Markov processes and Martingale Problems

Once QN is proved tight, the last step to prove mean field convergence is to characterize
the limit of QN . This is often done by showing that the limit points of QN satisfy a
martingale problem.

Let (X(t))t≥0 be a stochastic process with value in a space E. Let (Ft) denotes
the canonical filtration associated to X(.): Ft = σ(X(s), s ≤ t). X is called a time-
homogeneous Markov process if

P (X(t+ s) ∈ Γ|Ft) = P (X(t+ s) ∈ Γ|X(t)) = P (s,X(t),Γ),

for all s, t ≥ 0 and Γ a measurable set. The function P (.) is called the transition function
of the process X. The transition function P (.) and the distribution of the initial condition
uniquely determine the finite dimensional distribution of X (see Chapter 4.1 of [62]) and
therefore the distribution of X.

The full generator A of the chain X is defined by:

A =

{
(f, g) ∈ B(E) : E (f(X(t))|X(0))− f(X(0)) =

∫ t

0
E (g(X(s))|X(0)) ds

}
.

Let us consider the example of a case of a continuous time Markov chain of transition
rate matrix Q – meaning that if the chain is in x, it jumps with rate qx and selects a
state y with probability pxy, see Section 1.1.4. The generator of the chain contains all
function (f, g) such that

g(x) = qx
∑
y∈S

(f(y)− f(x)) pxy.

By definition of the generator, if A is the full generator of a Markov process X, then for
all (g, f) ∈ A,

Mt = f(X(t))−
∫ t

0
g(X(s))ds (2.5)

is an Ft-martingale.
Given A, any process such that (2.5) is a martingale for all (f, g) ∈ A is said to be a

solution of the martingale problem associated to A. Martingale problems are often a good
way to characterize a Markov chain. In particular, if there is a unique solution to the
martingale problem associated to A with sample-path in D(R+, E), then this solution is
a time-homogeneous Markov chain.

30

2.4. Concluding Remark

2.3.4. Proving Mean-Field Convergence

The previous sections give us the theoretical basis that are used to prove mean field
convergence. We present here a technique that can be applied to prove that QN converges
to some deterministic measure. This technique is generic and has been used in several
papers, such as [80, 43, 44, 45].

The mean-field analysis is based on three steps.

1. Tightness – The first step is to prove that QN is tight in P(P(D(R+,N))).
Thanks to Proposition 2.8, if the objects are exchangeable, one only has to show
that the law of XN

i are tight.

2. Characterization of the limit – The second step of the analysis is to show that
any probability measure in the support of any limit point of the sequence of QN

satisfies a measure determining equation, for instance a martingale problem.

3. Uniqueness of the limit – It remains to show that the martingale problem has
a unique solution Q.

Because of step 1, the law of QN is tight which implies the relative compactness of the
measure QN . Together with steps 2 and 3, this implies that the law of QN converges to
δQ and therefore QN converges to Q.

For an example of the application of this method, the reader is referred to [80], in
which authors consider a system with N queues, each with a single server with rate µ
and infinite buffer. Tasks arrive at rate Nλ in the system. When a task arrives in the
system, it selects L queues uniformly and joins the shortest one. The state of a queue is
the number of jobs in its queue: XN

i ∈ N. XN has same path in D(R+,NN) and QN has
values in P(D(R+,N)).

The state XN is clearly exchangeable. Using this property, tightness of the law of
XN1 is proved using the compactness criteria in P(D(R+,N)) in terms of modulus of
continuity (Theorem 7.2 of Chapter 1.7 of [62]). Then, authors exhibit a martingale
problem in closed-form satisfied by any probability measure in the support of any limit
point of QN and shows the uniqueness of the solution of this martingale problem. They
also show that chaoticity holds at equilibrium and that stationary distribution can be
characterized by the stationary distribution of the martingale problem.

2.4. Concluding Remark

In this section, we have seen mainly two different objects of study that lead to completely
different techniques of proof. Although the second leads to more powerful results, in the
following of the document, we will mainly focus of results of the first type, concerning
MN (.). There are multiple reasons for this. Firstly the convergence results are more
general and one can show convergence in probability with explicit bounds for a large
class of models. This gives insights on the accuracy of the limits. Secondly, the equation
satisfied by the limits of MN (.) are much simpler to study than the one defined by
martingale problem. The limiting equations for MN (.) are generally easy to simulate, at
least numerically while Martingale problem is only a description of the process. Moreover,
the definition of optimization problems is straightforward on MN (.) and not on QN .

In Chapter 4, we will apply convergence results to a model of work-stealing in hetero-
geneous systems. In Part II, we will link results on Markov decision processes and mean

31

Chapter 2. A Survey on Mean Field Convergence

field models and show how the optimal control of a mean-field stochastic system can be
simplified by studying its limit MN (.).

32

Chapter 3.

Transient Behavior of Work Stealing:
Makespan analysis

Abstract of this chapter – A main issue when using a large computing
system is to distribute the load among the processors. In this chapter, we analyse
the total completion time to execute a set of tasks when using work stealing.
Work stealing is a very popular load balancing technique, based on the principle
that when a processor has no task to execute, it steals some work from an other
processors.

The difficulty of this analysis is that it is impossible to track the exact
number of tasks per processor during the time. To reduce the dimension of
the problem, we present a generic method based on potential function and an
adversary.

We compute expected completion time as well as bounds on the deviation
from the mean. This technique shows that the expected makespan for executing
W unit independent tasks on N processors is bounded by W/N unit of time
plus an additional term in 3.65 log2W .

Résumé du chapitre – Un problème majeur lors de l’utilisation de
grandes grilles de calcul est de réussir à distribuer le travail sur les différentes
ressources disponibles. Dans ce chapitre, nous étudions le temps nécessaire
pour exécuter un ensemble de tâches sur une architecture parallèle utilisant le
mécanisme de vol de travail, dans lequel une ressource qui n’a rien n’a exécuter
va voler des tâches à d’autres ressources.

Afin de contourner le problème d’explosion du nombre d’états du modèle,
notre analyse est basée sur l’étude d’une fonction potentielle et d’un adversaire.
Nous obtenons des bornes à la fois sur la moyenne et la probabilité de s’écarter
de cette moyenne montrant que le temps nécessaire pour exécuter W tâches sur
N processeurs est borné par W/N + 3.65 log2W .

33

Chapter 3. Transient Behavior of Work Stealing: Makespan analysis

3.1. Introduction

List scheduling is one of the most popular technique for scheduling the tasks of a parallel
program. This algorithm has been introduced by Graham [83]. Its principle is to build
a list of ready tasks and schedule them as soon as there exist available resources. List
schedules are low-cost (greedy) algorithms that are not too far from optimal solutions.
Most proposed list algorithms always consider a centralized management of the list.
However, today parallel platforms involve more and more processors. Thus, the time
needed for managing such a centralized data structure can not be ignored anymore [89].
Practically, implementing such schedulers induces synchronization overheads when several
processors access the list concurrently. Such overheads involve low level synchronization
mechanisms.

A suitable approach to reduce the contention is to distribute the list among the
processors: each processor manages its own list of tasks. When a processor becomes idle,
it randomly chooses another processor and steals some work, i.e. it transfers some tasks
from the victim’s list to its own list. Such a strategy is called work-stealing (WS). WS
has been implemented in many languages and parallel libraries including Cilk [66], Intel
TBB [99] and KAAPI [78].

This scheduling policy is very easy to implement and does not require any information
on the system to work efficiently. It can be made processor oblivious since it automatically
adapts to the number and to the size of jobs as well as to the speed of the processors
[28]. Several models have been proposed to study the performance of work stealing. We
briefly describe some of these results at the end of this chapter, in Section 3.9.

We present a simple Markovian model of work stealing in discrete time and analyze
the transient behavior of this model. In order to tackle the problem of dimensionality,
our analysis is based on a potential function that aggregates the information on the state
of the system. To counter the loss of information induced by the use of this potential
function, we introduce an adversary that will simulate the worst possible scenario for the
missing information. While in this chapter, we focus on the transient behavior, we will
see in Chapter 4 how mean field models can be applied to study steady-state behavior.

Based on the analysis of the load balancing between two processors during a steal
request, the expected number of steals can be deduced and a bound on the makespan is
derived. The methodology is generic and it is applied to the case of independent tasks and
to the WS algorithm of [8]. Our new analysis improves the classical bound on the number
of steal requests of WS for scheduling precedence graphs. Constant factors are greatly
reduced and are less than 50% away from values obtained by simulation. Moreover, our
analysis enables us to evaluate precisely the impact of several modifications of the WS.

After presenting the model and notation in Section 3.2, we give the principle of the
analysis in Section 3.3. We apply this analysis to the case of unit independent tasks and
study the influence of the initial distribution of tasks in Section 3.4. Then we extend the
analysis for tasks with dependencies in Section 3.5. Section 3.6 quantifies the reduction
of steals when several thieves are allowed to steal the same victim simultaneously. We
analyze simulation results in Section 3.7, showing in particular that the gap between
simulation and bounds is small. Finally, Section 3.8 contains some technical computation
used in the proofs.

34

3.2. Work Stealing Model

3.2. Work Stealing Model

We consider a parallel platform composed of N identical processors. At time t, let wi(t)
represent the amount of work on processor i. When wi(t) > 0, processor i is active and
executes some work: wi(t+ 1) ≤ wi(t). When wi(t) = 0, processor i is idle and intents
to steal from a random processor j. If processor j has no work, i.e. wj(t) = 0, the steal
fails and processor i will steal again at the next time slot. Otherwise, a certain amount
of work is transfered from processor j to processor i: wi(t + 1) + wj(t + 1) ≤ wj(t).
Processor i will resume execution at time t+ 1. The execution terminates when all the
processors are idle, i.e. ∀i, wi(t) = 0. We also denote the total amount of work on all
processors by w(t) =

∑N
i=1wi(t) and the number of active processors by α(t) ∈ [0, N].

Between time t and t+ 1, there are N − α(t) steal requests.

To model the contention on the queues, no more than one steal request per processor
can succeed in the same time slot. If several requests target the same processor, a random
one succeeds and all the others fail. This assumption will be relaxed in Section 3.6.

This is a high level model of a distributed list. We will show in Sections 3.4 and 3.5 how
these properties accurately model the case of independent tasks and the WS algorithm
of [8]. We justify here some choices of this model. There is no explicit communication cost
as WS algorithms most often target shared memory platforms. A steal request is done in
constant time independently of the amount of work transfered. This assumption is not
restrictive: for the case of independent tasks, the description of a large number of tasks
can be very short. For instance a whole subpart of an array of tasks can be represented
in a compact way by the range of the corresponding indices, each cell containing the
effective description of a task (a STL transform in [144]). For more general cases with
dependencies, it is usually enough to transfer a task which represents a part of the
graph [8].

3.2.1. The Curse of Dimensionality

The state of the system is described by the amount of work on all processors and is
represented by the vector (w1(t) . . . wN (t)). At the start, the total work in the system is
distributed arbitrarily among the processor. It can be distributed arbitrarily, depending
on the situation. Therefore, the state of the system can be any vector (w1(t) . . . wN (t))
such that

∑N
i=1wi(t) ≤W .

Because of the mechanism of work stealing, the behavior of the system does not show
any regularity, in particular, there is no monotonicity. A first idea to tackle this problem is
to consider the process (x0(t), . . . xW (t)) where xj(t) represents the number of processors
having a work of j at time t. But again, this state space is too large and does not contain
sufficient regularity to be studied. Figure 3.1 is an example of a schedule obtained using
work-stealing which shows the complex repartition of the idle times. At the beginning
of the schedule, the work is concentrated on the first processor: W1(0) = 2000 and for
all i ≥ 2: Wi(0) = 0. There are 25 processors in total. Each processor is represented by
a line and the columns represents the time slots. The first processor is represented by
the first line. At each time step, a processor is either working if it has one or more jobs
(represented by a white area) or trying to steal (represented by a gray area).

Our approach is to introduce a potential function Φ (w1(t) . . . wN (t)), denoted Φ(t) for
simplicity. The prototype of potential function we will use is Φ(t) =

∑m
i=1wi(t)

2 although
this will vary for some situations. Then we will show that we can compute the decrease of

35

Chapter 3. Transient Behavior of Work Stealing: Makespan analysis

Figure 3.1.: A typical execution of W = 2000 unit independent tasks on N = 25 proces-
sors using work stealing. Grey area represents idle times (which are also
stealing times). Figure taken from [141].

Φ as a function of the number of active processors α(t)
def
= N − x0(t). Since α(t) is again

a complicated process, we introduce an adversary that model a worst-case scenario for
the sequence of α(t). This adversary can be seen as the controller of a Markov Decision
Process (see Chapter 1) whose goal is to maximize the completion time of the system.

3.3. Principle of the Analysis and Main Theorem

This section presents the principle of the analysis. The main result is Theorem 3.1 that
gives bounds on the expectation of the number of steal requests done by the schedule as
well as the probability that the number of requests exceeds this bound.

The main idea of our analysis is that we study the decrease of a potential function
Φ(t), instead of studying directly the number of processors that will run out of work and
become idle. The definition of Φ(t) varies depending on the scenario (see Sections 3.4 to
3.6) but Φ satisfy the following properties:

• Φ(t) is decreasing

• When Φ(t) ≤ 1, the schedule is finished or almost finished.

• There exists a function h(.) ∈ [0; 1) such that E (Φ(t)− Φ(t+ 1)|Φ(t) = φ, α(t) = α) ≥
h(α).

If T = min{t|Φ(t) ≤ 1}, the number of steal requests before Φ(t) ≤ 1 is given by
R =

∑T−1
t=0 N −α(t). Since α(t) is a complicated random process, we tackle this problem

by assuming that an adversary is choosing the number of active processors α(t) at each
step of the schedule. At the beginning, the adversary starts with Φ(0) potential. She
tries to maximize the number of steal requests, before running out of potential. This
gives the optimization problem:

maximize

T−1∑
t=0

N −α(t) with


Φ(0) = Φ0

T
def
= min{t|Φ(t) ≤ 1}

E (Φ(t)− Φ(t+ 1)|Φ(t) = φ, α(t) = α) ≥ h(α)

. (3.1)

The value of this maximization problem provides an upper bound on the number of
stealing requests, both in expectation and in probability, as precised by Theorem 3.1.

In the real system, α(t) is determined by the evolution of the system and cannot be
chosen at time t. The introduction of an adversary provides an upper-bound on the
number of steal requests and has two main advantages. First, its simplicity makes it

36

3.3. Principle of the Analysis and Main Theorem

applicable in several scenarios, such as the ones presented in Sections 3.4 to 3.6. Moreover,
we show in Section 3.7 that the gap between the obtained bound and the value obtained
by simulation is relatively small.

The analysis of the scenarios of sections 3.4 to 3.6 will be done in three steps.

1. First, we define a potential function and we compute the potential decrease δki (t)
when the processor i receives k work requests.

2. Then we compute the expected decrease of the potential between step t and t+ 1,

∆Φ(t)
def
= Φ(t)− Φ(t+ 1). By linearity of expectation,

E[∆Φ(t)] =
N∑
i=1

N−1∑
k=0

E[δki |i receives k requests]P (i receives k requests) ,

where E[X|Y] denotes the expectation of X knowing Y . Using the properties of
δki (t), we show that there exists a function h(α) ∈ (0, 1] such that

E[∆Φ(t)|Φ(t) = Φ, α(t) = α] ≥ h(α)Φ.

3. Finally, we obtain a bound on the expected number of steal requests E[R] using
Theorem 3.1 presented in this section. An upper bound on the expected makespan
E[Cmax] can be obtained using the bound on the number of steal.

The following theorem gives an upper bound on the number of steal requests using a
lower bound on the expected decrease of the potential in one step.

Theorem 3.1. Assume that the potential function Φ(t) satisfies:

• There exists a constant d > 0 such that dΦ(t) ∈ N.

• Φ(t) is non-increasing.

• There exists a function h(α) ∈ (0, 1] such that if α ∈ [1, N − 1] processors are active
at time t and Φ(t) = Φ, then the potential decreases on average by

E[Φ(t)− Φ(t+ 1)|Φ(t) = Φ, α(t) = α] ≥ h(α) · Φ.

Let λ = max1≤α≤N−1
N−α

−N log2(1−h(α)) and Φ(0) be the potential at t = 0. Then

(i) the expected number of steal requests R until Φ(t) ≤ 1 is bounded by

E[R] ≤ λ ·N · log2 Φ(0);

(ii) The deviation from the mean can be bounded by:

P (R ≥ λ ·N · log2 Φ(0) + u) ≤ 2−u/(λN).

37

Chapter 3. Transient Behavior of Work Stealing: Makespan analysis

Proof. Without loss of generality and to simplify the notation, we assume d = 1.

Let T be the random variable indicating the end of the schedule: T = min{t|Φ(t) ≤ 1}.
The number of steal requests is equal to the number of idle processors at each time step.
The number of steal requests after time t is R(t):

R(t) =
T−1∑
s=t

N − α(s).

The total number of steals is R
def
= R(0).

The sequence α(t) is difficult to study since it depends on the number of processors at
time t− 1 with 0 or 1 tasks, but also the successful or unsuccessful steals. Therefore, we
perform the analysis assuming a worst-case scenario: at each time t, an adversary can
choose α(t) knowing the history of the system but not the future random choices. This
can be seen as a Markov decision process with total reward criteria, see [123] for more
details about Markov decision processes.

We prove by induction on Φ that for all t,

E[R(t)|Φ(t) = Φ] ≤ λN log2(Φ). (3.2)

For Φ = 1, this is clearly true since in that case T ≤ t and R(t) = 0. Assume that (3.2)
holds for all t and all φ < Φ. E[R(t)|Φ(t) = Φ] is equal to:

E[R(t)|Φ(t) = Φ] = E[N − α(t) +R(t+ 1)|Φ(t) = Φ]

= N − α(t) + E[R(t+ 1)|Φ(t) = Φ]. (3.3)

By definition of ∆Φ(t), if Φ(t) = Φ, then Φ(t + 1) is equal to Φ − φ with probability
P (∆Φ(t) = φ|Φ(t) = Φ). Since Φ(t) is non-increasing, ∆Φ(t)≥0. Therefore:

E[R(t+ 1)|Φ(t)=Φ] =

Φ∑
φ=0

E[R(t+ 1)|Φ(t+ 1)=Φ− φ]P (∆Φ(t) = φ|Φ(t)=Φ) .

Let us denote p0
def
= P (∆Φ(t) = 0|Φ(t) = Φ). Using the induction hypothesis, and the

fact that E[R(t+ 1)|Φ(t+ 1) = Φ] = E[R(t)|Φ(t) = Φ], we get from (3.3)

(1−p0)E[R(t)|Φ(t)=Φ] ≤ N−α(t)+
Φ∑
φ=1

λN log2(Φ− φ)P (∆Φ(t)=φ|Φ(t)=Φ)

= N−α(t)+λNE[log2(Φ−∆Φ(t))|Φ(t)=Φ]−λN log2(Φ)p0 (3.4)

where we used the fact that
∑Φ

φ=1(. . .) =
∑Φ

φ=0(. . .)− λN log2(Φ)p0.

Moreover, by Jensen’s inequality (log is concave), we have:

E[log2(Φ−∆Φ(t))|Φ(t) = Φ] ≤ log2(Φ− E[∆Φ(t)|Φ(t) = Φ])

≤ log2(Φ− h(α(t))Φ). (3.5)

Combining equations (3.4) and (3.5), we get:

(1− p0)E[R(t)|Φ(t) = Φ] ≤ (1− p0)λN log2(Φ) +N − α(t) + λN log2(1− h(α(t))).

38

3.4. Unit Independent Tasks

If α(t) = N , the sum of the two last terms of the equation is negative since 1− h(α) ≤ 1.
If α(t) = 0, the schedule is finished. If 0 < α(t) < N , the sum of the two last terms is
negative by definition of λ (λ corresponds to the worst choice of α(t)). Dividing on both
sides by 1− p0 concludes the proof of (i).

The proof of (ii) is quite similar to the proof of (i). We prove by induction on Φ that
E[2R(t)/(λN)−log2(Φ)|Φ(t) = Φ] ≤ 1. It clearly holds for Φ = 1 since in that case it is equal
to 0. E[2R(t)/(λN)−log2(Φ)|Φ(t) = Φ] is equal to

Φ∑
φ=0

E
(

2R(t)/(λN)−log2(Φ)|Φ(t+ 1)=Φ− φ
)
P (∆Φ(t)=φ|Φ(t)=Φ) .

Using R(t+ 1) = N−α+R(t) and introducing log2(Φ−φ)− log2(Φ−φ), this equals

Φ∑
φ=1

2
N−α
λN

+log2(1− φ
Φ

)E[2
R(t+1)
λN

−log2(Φ−φ)|Φ(t+1)=Φ−φ]P (∆Φ(t)=φ|Φ(t)=Φ)

+ 2
N−α
λN E[2

R(t+1)
λN

−log2(Φ)|Φ(t+ 1)=Φ]p0

≤
Φ∑
φ=1

2
N−α
λN

+log2(1− φ
Φ

)P (∆Φ(t)=φ|Φ(t)=Φ) + 2
N−α
λN E[2

R(t)
λN
−log2(Φ)|Φ(t)=Φ]p0

where we used the induction hypothesis for the inequality.
Then, adding and subtracting the first term of the sum

∑Φ
φ=1, this leads to

(1− 2
N−α
λN p0)E[2

R(t)
λN
−log2(Φ)|Φ(t)=Φ] ≤ 2

N−α
λN E[1−∆Φ/Φ|Φ(t)=Φ]− 2

N−α
λN p0

≤ 2
N−α
λN

+log2(1−h(α)) − 2
N−α
λN p0

≤ 1− 2
N−α
λN p0.

where we used the definition of λ to show that the first term is less than one. This shows
that E[2

R(t)
λN
−log2(Φ)|Φ(t)=Φ] ≤ 1. Therefore by Markov’s inequality:

P (R(t) ≥ λN log2 Φ + u|Φ(t)=Φ) = P
(

2
R(t)
λN
−log2 Φ ≥ 2

u
λN |Φ(t)=Φ

)
≤ 2−

u
λN .

3.4. Unit Independent Tasks

We apply the analysis presented in the previous section for the case of independent unit
tasks. In this case, each processor i maintains a local queue Qi of tasks to execute. At
every time slot, if the local queue Qi is not empty, processor i picks a task and executes
it. When Qi is empty, processor i sends a steal request to a random processor j. If Qj is
empty or contains only one task (currently executed by processor j), then the request
fails and processor i will have to send a new request at the next slot. If Qj contains more
than one task, then i is given half of the tasks (after that the task executed at time t by
processor j has been removed from Qj). The amount of work on processor i at time t,
wi(t), is the number of tasks in Qi(t). At the beginning of the execution, w(0) = W and
tasks can be arbitrarily spread among the queues.

39

Chapter 3. Transient Behavior of Work Stealing: Makespan analysis

Applying the method presented in Section 3.3, the first step of the analysis is to define
the potential function and compute the potential decrease when a steal occurs. For this
example, Φ(t) is defined by:

Φ(t) =
N∑
i=1

(
wi(t)−

w(t)

N

)2

=
N∑
i=1

wi(t)
2 − w2(t)

N
.

This potential represents the load unbalance in the system. If all queues have the same
wi(t) = w(t)/N , then Φ(t) = 0. Φ(t) ≤ 1 implies that there is at most one processor
with at most one more task than the others. In that case, there will be no steal until
there is just one processor with 1 task and all others idle. Moreover, the potential
function is maximal when all the work is concentrated on a single queue. That is
Φ(t) ≤ w(t)2 − w(t)2/N ≤ (1− 1/N)w2(t).

Assume that at time t, the queue i has wi(t) ≥ 1 tasks. If it receives one or more steal
requests, it chooses a processor j among the thieves. At time t+1, i has executed one task
and the rest of the work is split between i and j. Therefore, wi(t+ 1) = d(wi(t)− 1)/2e
and wj(t + 1) = b(wi(t)− 1)/2c. Thus wi(t + 1)2 + wj(t + 1)2 = d(wi(t)−1)/2e2 +
b(wi(t)−1)/2c2 ≤ wi(t)2/2−wi(t) + 1. Therefore, this generates a difference of potential
of

δki (t) = δ1
i (t) ≥ wi(t)2/2 + wi(t)− 1. (3.6)

If i receives zero steal requests, it potential goes from wi(t)
2 to (wi(t)− 1)2, generating

a potential decrease of 2wi(t) − 1. The last event contributing to the change of the
potential is that (

∑m
i=1wi(t))

2/N goes from w(t)2/N to w(t+ 1)2 = (w(t)− α(t))2/N ,
generating a potential increase of 2α(t)w(t)/N − α(t)2/N .

Recall that at time t, there are α(t) active processors and therefore N −α(t) processors
that send steal requests. A processor i receives zero steal requests if the N − α(t)
thieves choose another processor. Each of these events is independent and happens with
probability (N − 2)/(N − 1). Therefore, the probability for the processor to receive one
or more steal requests is pr(α(t)):

pr(α(t)) = 1−
(

1− 1

N − 1

)N−α(t)

.

If Φ(t)=Φ and α(t)=α, by summing the expected decrease on each active processor δ1
i ,

the expected potential decrease is greater than:∑
i/wi(t)>0

[
pr(α)

(wi(t)2

2
+ wi(t)−1

)
+ (1− pr(α))(2wi(t)−1)

]
− 2w(t)

α

N
+
α2

N

=
pr(α)

2
Φ +

pr(α)

2

(
w(t)2

N
− 2w(t) + 2

N − α
Npr(α)

(2w(t)− α)

)
(3.7)

≥ pr(α)

2

(
Φ +

w(t)2

N
− 2

w(t)

N
+ 2

(
1− 1

N

)
(w(t)− α)

)
≥ pr(α)

2
Φ.

The details of the computation of (3.7) can be found in Appendix 3.8.1.
Using Theorem 3.1 of the previous section, we conclude the analysis by the following

theorem.

Theorem 3.2. Let Cmax be the makespan of W unit independent tasks scheduled by work
stealing. Then:

40

3.4. Unit Independent Tasks

(i) E (Cmax) ≤ W

N
+

2

1− log2(1 + 1
e)
· log2W + 1.

(ii) P

(
Cmax ≥

W

N
+

2

1− log2(1 + 1
e)
·
(

log2W + log2

1

ε

)
+ 1

)
≤ ε.

These bounds are optimal up to a constant factor in log2W .

Proof. Equation (3.7) shows that E[∆Φ(t)|Φ(t) = φ, α(t) = α] ≤ h(α)Φ with h(α) =
pr(α)/2. Using Theorem 3.1 (i) and the fact that Φ(0) ≤W 2, the expected number of
steal requests before Φ(t) ≤ 1 is bounded by:

E[R] ≤ λN log2(W 2) = 2λN log2(W),

with λ = max1≤α≤N−1(N − α)/(−N log2(1 − h(α))). We show in appendix 3.8.2 that
(N −α)/(−N log2(1− h(α))) is decreasing in α. Thus its minimum is attained for α = 1.
This shows that λ ≤ 1/(1− log2(1 + 1

e)).

As said before, when Φ(t) ≤ 1, there is at most one processor with at least one more
task than the others. Therefore, there will be a steal request only when this processor
will have one task and the others zero. This happens only once and generates at most
N − 1 steal requests.

At each time step of the schedule, a processor is either computing one task or stealing
work. This shows that N · Cmax = W +R. Thus:

E[Cmax] ≤ W

N
+

2

1− log2(1 + 1
e)

log2W + 1.

The proof of the (i) applies mutatis mutandis to prove the bound in probability (ii)
using Theorem 3.1 (ii).

We now give a lower bound for this problem. Consider W = 2k+1 tasks and N = 2k

processors, all the tasks being on the same processor at the beginning. In the best case,
all steal requests target processors with highest loads. In this case the makespan is
Cmax = k + 2: the first k = log2N steps for each processor to get some work; one step
where all processors are active; and one last step where only one processor is active. In
that case, Cmax ≥ W

N + log2W − 1.

This theorem shows that the factor before log2W is bounded by 1 and 2/(1− log2(1 +
1/e)) < 3.65. Simulations reported in Section 3.7 seem to indicate that the factor of
log2(W) is slightly less. This shows that the constants obtained by our analysis are
sharp.

Initial repartition of tasks. In practical situations, the number of tasks of an application
is unknown before the beginning of the execution of this application and in the worst
case, all tasks are in the same queue at the beginning of the execution. Using bounds in
terms of Φ0, one can show that a more balanced initial repartition leads to fewer steal
requests on average. Suppose that we take a balls-and-bins assignment as the initial
repartition: for each task, we choose a processor at random and put the task in its queue.
The expected value of Φ0 is:

41

Chapter 3. Transient Behavior of Work Stealing: Makespan analysis

E (Φ0) =
∑
i

E
(
w2
i

)
− W 2

N
=
∑
i

(
Var [wi] + E (wi)

2
)
− W 2

N
=
(

1− 1

N

)
·W

as wi follows a binomial distribution. Since the number of work requests is proportional
to log2 Φ0, this initial distribution of tasks reduces the number of steal requests by a
factor of 2 on average.

3.5. Tasks with Precedences

In this section, we show how the well known non-blocking work stealing of Arora et al. [8]
(denoted ABP in the sequel) can be analyzed with our method which provides tighter
bounds for the makespan. Following [8], a multithreaded computation is modeled as a
directed acyclic graph G with a single root node; each node corresponds to a unit task
and edges define precedence constraints. The out-degree of each node is either 0, 1 or 2.
The critical path of G is denoted by T∞ and W is its total number of nodes.

ABP schedules the DAG G as follows. Each process i maintains a double-ended
queue (called a deque) Qi of ready nodes (the notion of process here corresponds to our
processors). At each slot, an active process i with a non-empty deque executes the node
at the bottom of its deque Qi; once its execution is completed, this node is popped from
the bottom of the deque, enabling – i.e. making ready – 0, 1 or 2 child nodes that are
pushed at the bottom of Qi. At each top, an idle process j with an empty deque Qj
becomes a thief: it performs a steal request on another randomly chosen victim deque; if
the victim deque contains ready nodes, then its top-most node is popped and pushed into
the deque of one of its concurrent thieves. If j becomes active just after its steal request,
the steal request is said successful. Otherwise, Qj remains empty and the steal request
fails which may occur in the three following situations: either the victim deque Qi is
empty; or, Qi contains only one node currently in execution on i; or, due to contention,
another thief performs a successful steal request on i simultaneously.

Let us first recall the definition of the enabling tree of [8]. If the execution of node
u enables node v, then the edge (u, v) of G is an enabling edge. The sub-graph of G
consisting of only enabling edges forms a rooted tree called the enabling tree. If d(u) is
the depth of a node u in the enabling tree, then its weight is defined as ω(u) = T∞−d(u).
The weight of the root node is T∞.

To represent the amount of work on each processor, we define wi(t) = 2max{ω(u):u∈Qi(t)},
i.e. the maximum number of tasks that can be activated by a task in Qi. We first study
the repartition of the work during a steal request.

Lemma 3.3. For any active process i, we have wi(t+ 1) ≤ wi(t). Moreover, after any

steal request from a process j on i, wi(t+ 1) ≤ wi(t)

2
and wj(t+ 1) ≤ wi(t)

2
.

Proof. The proof is derived from [8], Corollary 4 in Section 3: if at t, Qi contains the k+1
nodes v0, v1, . . . , vk from bottom to top, then ω(v0) ≤ ω(v1) < . . . < ω(vk−1) < ω(vk).
After the execution of a node u, the maximum weight of its two enabled children is less
than ω(u)− 1. Thus the potential work wi cannot increase.

We now state that the potential is halved after any steal request by distinguishing
two cases. First, when a successful steal occurs on i from j, then the node vk has

42

3.6. Cooperation Among Thieves

been stolen and executed by j. Thus, either wi(t + 1) = 0 if Qi is empty at t + 1;
or wi(t + 1) = 2ω(vk−1) ≤ 2ω(vk)−1 ≤ wi(t)/2. Besides, after execution of vk by j,
wj(t + 1) ≤ 2ω(vk)−1 ≤ wi(t)/2. Secondly, if all steal requests that occur on i are
unsuccessful, then there was only one node v0 in Qi whose execution was processed by i.
Then, at t+ 1, wi(t+ 1) ≤ 2ω(v0)−1 ≤ wi(t)/2 and wj(t+ 1) = 0.

We can now state the following theorem.

Theorem 3.4. The expected makespan of ABP work stealing verifies:

(i) E (Cmax) ≤ W

N
+

2

1− log2(1 + 1/e)
· T∞ + 1 <

W

N
+ 3.65 · T∞ + 1.

(ii) P
(
Cmax ≥

W

N
+

2

1− log2(1 + 1/e)
·
(
T∞ + log2

1

ε

)
+ 1

)
≤ ε.

Proof. The proof is a direct application of Theorem 3.1 using the potential function
Φ(t) =

∑
iwi(t)

2. Note that we cannot use the same potential as in Section 3.4 because
the total amount of work may be reduced when a steal occurs1.

Remark. In [8], the authors established the upper bounds

E (Cmax) ≤ W

N
+ 32 · T∞ and P

(
Cmax ≥

W

N
+ 64 · T∞ + 16 · log2

1

ε

))
≤ ε

in Section 4.3, proof of Theorem 9. Our bounds greatly improve the constant factors of
this previous result and are close to simulation values (cf. Section 3.7).

3.6. Cooperation Among Thieves

In this section, we modify the protocol for managing the distributed list. Previously, when
k > 1 steal requests were sent on the same processor, only one of them could be served
due to contention on the list. We now allow the k requests to be served in unit time.
This model has been implemented in the middleware Kaapi [78] which allow to build
parallel application scheduled by work stealing. When k steal requests target the same
processor, the work is divided into k + 1 pieces. In practice, allowing concurrent thieves
increase the cost of a steal request but we neglect this additional cost here. We assume
that the k concurrent steal requests can be served in unit time. We study the influence of
this new protocol on the number of steal requests in the case of unit independent tasks.

We use the potential function2 Φ(t) =
∑N

i=1wi(t)
2. Let us first compute the decrease

of the potential when processor i receives k ≥ 1 steal requests. If wi(t) > 0, it can be
written wi(t) = (k + 1)q + r + 1 with 0 ≤ r < k + 1. After one time step and k steal
requests, the work will be divided in r parts with q + 1 tasks and k + 1− r parts with q
tasks. By a direct computation, the potential generated by these steal requests at time
t+ 1 can be bounded by:

r(q + 1)2 + (k + 1− r)q2 = (k + 1)q2 + r(2q + 1) ≤ 1

k + 1
((k + 1)q + r)2 ≤ wi(t)

2

k + 1
.

1This can happen when the sibling of the stolen task has only one child.
2The same potential function as in Section 3.4 could be used but leads to more complex computations.

43

Chapter 3. Transient Behavior of Work Stealing: Makespan analysis

If N − α processors send steal requests, the probability for an active processor to
receive k steal requests is

pk(α) =

(
N − α
k

)
1

(N − 1)k

(
N − 2

N − 1

)N−α−k
.

The expected diminution of the potential caused by the steals on processor i is equal
to
∑N−α

k=0 δki pk(α). By a direct computation, this is bounded by

N−α∑
k=0

δki pk(α) ≥
N−α∑
k=0

(
1− 1

k + 1

)
wi(t)

2pk(α)

= wi(t)
2

(
1− N − 1

N − α+ 1

(
1−

(
N − 2

N − 1

)N−α+1
))

.

This shows that E[∆Φ(t)|Φ(t) = Φ|α(t) = α] ≤ h(α)Φ where

h(α) = 1− N − 1

N − α+ 1

(
1−

(
N − 2

N − 1

)N−α+1
)
.

Differentiating with respect to α shows that (N − α)/ − log2(1 − h(α)) is decreasing.
Thus λ = max1≤α≤N (N − α)/ − N log2(1 − h(α)) = (N − 1)/ − N log2(1 − h(1)). A
direct computation shows that λ ≤ 1/− log2(1− 1/e). See Appendix 3.8.3 for details.
Therefore we can copy mutatis mutandis the proof of Theorem 3.2 to show that:

Theorem 3.5. The makespan Ccoop
max of W unit independent tasks scheduled with cooper-

ative work stealing satisfies:

(i) E (Ccoop
max) ≤ W

N
+

2

− log2(1− 1
e)
· log2W + 1.

(ii) P

(
Ccoop

max ≥
W

N
+

2

− log2(1− 1
e)
· log2W + 1 ≥ 2

− log2(1− 1
e)

log2(ε)

)
≤ ε.

Compared to the situation with no cooperation among thieves, the number of steal
requests is reduced by a factor 1−log2(1+1/e)

− log2(1−1/e) ≈ 1.20. We will see in Section 3.7 that this
is close to the value obtained by simulation.

3.7. Experimental Study

Theorem 3.1 provides upper bound on the expected value of the makespan for the models
considered in Sections 3.4,3.5,3.6. In this section, we experimentally study the constant
factor of the log2W term and show that it is close to the theoretical result. We focus on
independent tasks as it is difficult to generate a realistic random DAG. Moreover, the
DAG with the maximum number of tasks, out-degree at most 2 and critical path T∞
is a complete binary tree of height T∞. This is the worst case for the bound given in
Section 3.5 and it is similar to the independent tasks case.

We developed a simulator that strictly follows the model of Sections 3.4 and 3.6. At
the beginning, all the tasks are given to processor 0 in order to be in the worst case, i.e.

44

3.8. Appendix

101 102 103 104 105 106

1

1.5

2

2.5

number of processors N

co
n

st
a
n
t

fa
ct

or
o
f

lo
g

2
W

Standard Steal
Cooperative Steal

101 102 103 104 105 106

1.1

1.12

1.14

number of processors N

Ratio of Steal Requests

Figure 3.2.: (Left) Constant factor of log2W against the number of processors for the
standard steal and the cooperative steal. (Right) Ratio of steal requests
(standard/cooperative).

when the initial potential Φ0 is maximum. Each pair (N ,W) is simulated 10000 times to
get accurate results. The empirical coefficient of variation is less than 2%.

We computed the constant factor 2λ of the log2W term for various number of processors
and tasks. According to Theorem 3.2 and Theorem 3.5, these values are bounded by 3.65
for the standart steal and 3.02 for the cooperative steal. Figure 3.2 seems to indicate
that the real values should be around 2λ ≈ 2.37 for unit independent tasks with standard
steal and 2λcoop ≈ 2.08 for unit independent tasks with cooperative steal. The difference
between the theoretical bounds and the simulations can be explained by the use of an
adversary in Theorem 3.1 which captures a worst-case scenario for the number of active
processors.

Our theoretical analysis predicts an advantage of the cooperative steal with a gain of
20% over the standard steal. Surprisingly, this value is very close to the experimental
gain of 14%.

3.8. Appendix

3.8.1. Proof of Inequality 3.7 of Theorem 3.2

In this section, we show that in the case of independent tasks, the expectation of the
potential decrease is greater than Φpr(α)/2.

Recall that the expectation of the potential decrease is greater than:

∑
i/wi(t)>0

[
pr(α)

(
wi(t)

2

2
+ wi(t)−1

)
+ (1−pr(α))(2wi(t)−1)

]
− 2w(t)

α

N
+
α2

N

=
pr(α)

2

(∑
wi(t)

2 − w(t)2

N

)
+ pr(α)

(
w(t)2

2m
+ w(t)− α

)
+(1− pr(α)) (2w(t)− α)− 2w(t)

α

N
+
α2

N

45

Chapter 3. Transient Behavior of Work Stealing: Makespan analysis

where we used the fact that
∑

i/wi(t)>0wi(t) = w(t) and that
∑

i/wi(t)>0 1 = α since α is
the number of active processors. A direct computation shows that this is equal to

pr(α)

2
Φ + pr(α)

(
w(t)2

2m
+ w(t)− α− 2w(t) + α

)
+ 2w(t)− α− 2w(t)

α

N
+
α2

N

=
pr(α)

2
Φ +

pr(α)

2

(
w(t)2

N
− 2w(t) +

2

pr(α)

(
1− α

N

)
(2w(t)− α)

)
=
pr(α)

2
Φ +

pr(α)

2

(
w(t)2

N
− 2w(t) +

2

N

N − α
pr(α)

(2w(t)− α)

)
. (3.8)

Let define f by

f(α)
def
=

N − α
pr(α)

=
N − α

1−
(

1− 1
N−1

)N−α
and compute the derivative f ′.(

1−
(

1− 1

N − 1

)N−α)2
· f ′(α) = −

(
1−

(
1− 1

N − 1

)N−α)
+ (N − α) · ln

(
1− 1

N−1

)
·
(

1− 1

N − 1

)N−α
= −1 +

(
1− 1

N − 1

)N−α
·
(

1 + (N − α) ln
(

1− 1

N−1

))
≤ −1 +

(
1− 1

N − 1

)N−α
·
(

1 + (N − α)
−1

N − 1

)
≤ −1 +

(
1− 1

N − 1

)N−α
· α− 1

N − 1

≤ 0.

As f is non increasing for 1 ≤ α ≤ N − 1,

min
1≤α≤N−1

f(α) = f(N − 1) =
1

1−
(

1− 1
N−1

)1 = N − 1.

(3.8) is greater than:

pr(α)

2
Φ +

pr(α)

2

(
w(t)2

N
− 2w(t) + 2

N − 1

N
(2w(t)− α)

)
=
pr(α)

2
Φ +

pr(α)

2

(
w(t)2

N
− 2w(t) + 2w(t)

(
1− 1

N

)
+ 2

(
1− 1

N

)
(w(t)− α)

)
=
pr(α)

2
Φ +

pr(α)

2

(
w(t)2

N
− 2w(t)

N
+ 2

(
1− 1

N

)
(w(t)− α)

)
.

As w(t)− α(t) ≥ 0 (an active processor has at least one task) the last term is positive.

Moreover, for all w(t) > 1, the second term is positive. Thus, this is greater than pr(α)
2 Φ

which concludes the proof of the inequality:∑
i/wi(t)>0

[
pr(α)

(
wi(t)

2

2
+ wi(t)−1

)
+ (1−pr(α))(2wi(t)−1)

]
−2w(t)

α

N
+
α2

N
≥ pr(α)

2
Φ.

46

3.8. Appendix

3.8.2. Computation of λ for the unit tasks

In this section, we compute the constant λ for the unit tasks. We first show that the
quantity (N − α)/ (− log2(1− pr(α)/2)) is decreasing in α. Then we bound the value
(N − 1)/ (− log2(1− pr(1)/2)) by (N − 1)/(1− log2(1 + 1/e)).

Let g(α)
def
= − log2(1 − pr(α)/2) and f(α)

def
= (N − α)/g(α). By definition of pr(α),

g(α) can be written:

g(α) = − log2

(
1

2
+

1

2

(
1− 1

N − 1

)N−α)
= 1− log2

(
1 +

(
1− 1

N − 1

)N−α)
.

Denoting p
def
= 1− 1/(N − 1) and x

def
= pN−α, the derivative of f with respect to α is:

f ′(α) =
ln(1 + pN−α)− ln 2 + pN−α

(
ln(1 + pN−α)− ln 2

)
+ pN−α ln(p)(α−N)

(1 + pN−α)g(α)2 ln 2

=
(ln(1 + x)− ln 2)x+ ln(1 + x)− x lnx− ln 2

(1 + x)g(α)2 ln 2

=
(1 + x) ln(1 + x)− x lnx− (1 + x) ln 2

(1 + x)g(α)2 ln 2
.

The derivative of (1+x) ln(1+x)−x lnx− (1+x) ln 2 w.r.t. x is ln(1+x)− ln(x)− ln 2 =
ln(1 + 1/x)− ln 2 > 0. As x < 1, this shows that (1 + x) ln(1 + x)− x lnx− (1 + x) ln 2 <
(1 + 1) ln(1 + 1)− 1 ln 1− (1 + 1) ln 2 = 0.

Thus, f(α) is decreasing and

λ = max
1≤α≤N−1

1

N
f(α) =

1

N
f(1) ≤ 1

1− log2

(
1 +

(
1− 1

N−1

)N−1
) .

Using the fact that for all N ≥ 2:(
1− 1

N − 1

)N−1

= exp

(
(N − 1) ln(1− 1

N − 1
)

)
≤ exp

(
−(N − 1)

1

N − 1

)
=

1

e
,

we get that 1− log2

(
1 + (1− 1/(N − 1))N−1

)
≥ 1− log2(1 + 1/e). This shows that

λ ≤ 1

1− log2(1 + 1/e)
.

3.8.3. Computation of λ for the cooperative steal

In this section, we compute the maximum of (N −α)/− log2(1−h(α)) for 1 ≤ α ≤ N − 1
in the case of cooperative thieves. We first show this function is decreasing in α and then
we bound its value in for α = 1.

Let g(α)
def
= − log2(1− h(α)) with h(α) defined as in Section 3.6. g(α) is equal to

g(α) = − log2

(
N − 1

N − α+ 1

(
1−

(
1− 1

N − 1

)N−α+1
))

.

47

Chapter 3. Transient Behavior of Work Stealing: Makespan analysis

Let f(α)
def
= (N − α)/g(α). Let f ′(α) be the derivative of f(α) w.r.t. α. Denoting

p
def
= 1− 1/(N − 1) and n

def
= N − α+ 1, we define k(p) by:

k(p)
def
= f ′(α)g2(α) ln 2 = − ln(n(1− p)) + ln(1 + pn) +

n− 1

n

(
1 +

pn ln(p)n

1− pn

)
.

The derivative of k(p) w.r.t. p is

k′(p) =
ln(pn)(n− 1)pn−1(p− 1) + (pn − 1)(1− pn−1)

(p− 1)(pn − 1)2

=
1− pn−1

(p− 1)(pn − 1)2

(
pn−1 ln(pn)

(1− n)(p− 1)

1− pn−1
+ pn − 1

)
.

Moreover, (1− pn−1)/(1− p) = 1 + p+ p2 · · ·+ pn−2 ≤ n− 1 and since ln(pn) < 0 and
pn−1 > pn, we have:

ln(pn)pn−1 (1− n)(p− 1)

1− pn−1
+ pn − 1 ≤ pn−1 ln(pn) + pn − 1 ≤ pn ln(pn) + pn − 1.

Since pn < 1, pn ln(pn) < 0 and pn−1 < 0. Thus, the last part of the equation is negative.
Since 1− p is negative, k′(p) ≥ 0. This shows that k′(p) ≤ k(1) = 0. Therefore f ′(α) ≤ 0
and f(α) ≥ f(1) = (N − 1)/g(1) for 1 ≤ α ≤ N − 1. We have:

g(1) = − log2

N − 1

N
− log2

(
1−

(
1−

(
1

N − 1

))N)
≥ − log2(1− e−1).

This shows that

λ =
1

N
f(1) ≤ 1

N

N − 1

− log2(1− 1
e)
≤ 1

− log2(1− 1
e)
.

3.9. Bibliographical Notes

WS has been analyzed in a seminal paper of Blumofe and Leiserson [40] where they
show that the expected makespan of series-parallel precedence graph with unit tasks is
bounded by E (Cmax) ≤W/N + O(T∞) where T∞ is the critical path of the graph. This
analysis has been improved in [8] using a proof based on a potential function. The case
of varying processor speeds has been analyzed in [22].

A practical consideration for work stealing implementations is the stability of the
algorithm. Such issues have been tackled in [25], where a system of homogeneous
processors and a total arrival rate smaller than the total service rate is proved to be a
positive recurrent Markov chain in a discrete time setting, the general case being still
open. A steady state analysis of work stealing has been proposed in [114]. We extend
this model in Chapter 4.

The analysis presented in this chapter shows some similarities with the work of
Berenbrink et al. [26]. It is based on computing the expected decrease of a potential
function. However, to simplify the analysis, we introduce an adversary that controls one
parameter of the model, the number of steal requests at each time step.

48

3.9. Bibliographical Notes

Another related approach which deals with load balancing is balls into bins games [9, 27].
Some works have been proposed for the analysis of algorithms in data structures and

combinatorial optimization (including variants of scheduling) using potential functions.
Our analysis is also based on a potential function representing the load unbalance between
the local queues. This technique has been successfully used for analyzing basic load
balancing [26] and WS [8] which improved the result of [40].

49

Chapter 4.

Asymptotic Behavior of Work Stealing in
Large-Scale Systems

Abstract of this chapter – In this chapter, we consider a generic model
of computational grids, seen as several clusters of homogeneous processors. We
present a Markovian model for performance evaluation of the load balancing
technique named work stealing (idle processors steal work from others). Using
mean field theory, we show that when the size of the system grows, it converges
to a system of deterministic ordinary differential equations that allows one to
compute the expectation of performance functions (such as average response
times) as well as the distributions of these functions.

We first study the case where all resources are homogeneous, showing in
particular that work stealing is very efficient, even when the latency of steals is
large. We also consider an heterogeneous case: the system is made of several
clusters, and stealing within one cluster is faster than stealing between clusters.
We compare different work stealing policies.

Résumé du chapitre – Dans ce chapitre, nous présentons un modèle de
grille de calcul, grace auquel nous analysons les performances du vol de travail,
une stratégie de répartition de ressource. En utilisant la théorie du champs
moyen, nous montrons que quand la taille du système grandit, le système
converge vers un système d’équations différentielles qui permettent de calculer
efficacement des indicateurs de performances, à la fois en moyenne mais aussi
les distributions de ces fonctions.

Nous nous intéressons d’abord au cas où le système est homogène (composé
d’un seul cluster), et montrons en particulier que les performance du vol de
travail sont très bonnes, même quand la latence est élevé. Puis nous nous
intéressons à un système plus hétérogène et nous étudions plusieurs stratégies
de vol.

51

Chapter 4. Asymptotic Behavior of Work Stealing in Large-Scale Systems

4.1. Introduction

A key issue when exploiting large-scale computer systems is to efficiently distribute
the workload among the different resources.As described in the previous chapter, work
stealing is a classical load balancing strategy that tries to tackle this problem. Its main
principle is that when a resource becomes idle, it chooses another resource and steals part
of its work. The choice of the resource to steal from depends on the implementation of
work stealing. Work stealing have received a considerable amount of attention in the past.
Some of these results are summarized at the end of the previous chapter, in Section 3.9.

In the previous chapter, we presented a simple model to study the total completion
time of a bag of tasks scheduled by work stealing. Using a potential function, we obtained
a bound on the average number of steal requests needed to complete the whole bag of
tasks. However, this analysis only focuses on a worst case scenario and does not provide
a analysis of the performance of work stealing when there are arrivals of tasks or when
the parameters (such as the average time needed to steal tasks) change.

In [134], a continuous time Markov model of work stealing over a small number of
processors is analyzed using a decoupling assumption. In [6], a numerical method based
on a M/G/1 model of a work stealing system is presented. These two approaches do not
scale with the number of processors and become intractable with more than 10 processors.

In this chapter, we consider the case where the number of processors N is large. This
is important in practice if work stealing is to be used in computational grids. We use
mean field techniques to derive a system of ordinary differential equations that is the
limit of a Markovian system when N goes to infinity. Such techniques have been used
for the first time in [114] where the author derives differential equations for a system
of homogeneous processors who steal a single job when idle. Here, we consider the case
where, at every steal, half of the jobs in the queue of the victim are stolen. This strategy
is closer to what is actually implemented in available work stealing libraries and is also
much more efficient, as shown in the experimental section. It also makes the resulting
model (both the Markov chain and the differential limit) more complicated because it
contains non-local dependencies. Another important difference with [114] is the fact
that we consider the case where the geometry of the system is taken into account as
well as the heterogeneity of the processors. Communication times between processors in
the same cluster are homogeneous, however stealing from a remote cluster takes more
time and depends on the distance between the clusters. Finally, we also provide a new
numerical technique that allows one to sample the distribution of the response times
of one job, rather than just compute the average response time. This is more useful in
practice because it provides guaranties to the users.

The chapter is structured as follows. In Section 4.2, we describe a working stealing
model in computational grids and the corresponding Markov process that falls in the
category of density dependent population processes.

Section 4.3 discusses the convergence properties of the work stealing process when the
number of processors goes to infinity. We provide the limit under the form of a set of
deterministic ordinary differential equations (ODEs).

Section 4.4 focuses on the case where the system is made of a single cluster of
homogeneous processors. We show that the ODEs have a single equilibrium point and
we provide bounds on the speed of convergence to the mean field limit in extreme cases.
A fast numerical method to compute the equilibrium point is given as well as a fast
simulation algorithm to sample the distribution of the response times of jobs.

52

4.2. Work Stealing in Grids

Finally, Section 4.5 extends the analysis to the case where processors are partitioned
into several clusters. We study several scenarios (clusters with equal or unbalanced loads,
master-slave cases) and we provide insight on the best stealing strategies. For example, is
it worth stealing from remote clusters to balance the load at the expense of large stealing
costs? So far, such issues have only been investigated experimentally in [124, 146] where
real tests (with a small number of processors) have been conducted. This study shows
that there is no universal answer to this question. Nevertheless, the rule of thumb is that
the load factor is more critical to performance than the cost of stealing.

4.2. Work Stealing in Grids

4.2.1. Computational grids

The motivation of this work comes from computational grids. Such grids abound and
have often replaced single supercomputers to provide high performance computing at a
lower cost. The main architectural feature of computational grids is the fact that they
are made of several clusters. Each cluster is composed of a large number of homogeneous
processors, with homogeneous communications inside the cluster. However clusters are
all different and the speed of communication between clusters depends on the couple of
clusters considered. A typical example is Grid 5000 [49], an experimental grid deployed
in Brazil, France and Luxemburg. The French part is made of 9 clusters spread all over
the country, the most recent one being Digitalis (digitalis.inria.fr), a cluster of 700 Intel
Nehalem processors over an InfiniBand internal network at 40 Gb/s. The clusters are
inter-connected by a dedicated network at 10Gb/s. The parameters used in this chapter
all come from measurements made on Grid 5000.

Users of computational grids submit jobs to a selected cluster, or to a central broker.
Jobs are allocated to processors by a batch scheduler (oar.imag.fr for Grid 5000) whose
role is to minimize the response times (also called sojourn times) of jobs i.e., the time
spent by the jobs in the system. The goal of this work is to analyse the performance of
such systems when a work-stealing strategy is used by the scheduler.

4.2.2. Work stealing model

Let us consider a model of a computational grid made of N processors. Here, a processor
represents a generic computing unit such as a single CPU core, an entire CPU (i.e., all
cores in the CPU), an entire GPU, or a multi-CPU/GPU server. The processors are
grouped into C clusters. Each cluster is composed of a large number of homogeneous
processors with homogeneous communications inside the cluster. However, clusters are
heterogeneous in size and processing speeds, and communications between clusters depend
on their distance as well as the network type.

We consider that each processor in each cluster c receives jobs from outside. The jobs
arrive according to a Poisson process of rate λc. Each job has a size that is exponentially
distributed with mean 1. Actually, more general distributions can be taken into account,
as long as they can be represented by finite Markov processes (such as Cox distributions).
We further assume that tasks are independent and cannot be divided to be executed by
two different processors. The processors in cluster c have a speed µc: the time taken by
one of these processors to serve a job of size S is S/µc.

53

Chapter 4. Asymptotic Behavior of Work Stealing in Large-Scale Systems

If a processor has more than one job to serve, it stores them in a buffer of maximal
capacity K. If a job arrives when the buffer is full, it is discarded. We denote by jn(t)
the number of jobs present in the nth processor. By definition, jn(t) = 0 means that the
processor has no job to serve and that its buffer is empty. Otherwise jn(t) is the number
of jobs in its buffer plus one (corresponding to the job it is currently serving). From a
queuing theory point of view, this means that all processors can be seen as M/M/1/K
queues.

If the processor i has no job to serve, it tries to steal some jobs from a different
processor, called the victim. For that, it selects another processor, say k, at random
(according to probabilities, defined later) and asks for jobs. This operation may take
some time (exponentially distributed). If after this time the processor i is still idle and if
k has jk ≥ 2 jobs, the jobs of processor k are shared between processors i and k: bjk/2c
for i and the rest stay in k. If i is in cluster ci and k in cluster ck, we consider that the
time to wait for the answer is exponentially distributed of mean 1/γcick . The selection of
the victim is not completely uniform: the processor first selects a cluster according to the
probability law pcc′ and then picks uniformly a processor in this cluster. For simplicity,
we neglect the time to transfer a job and only take into account the time to get an answer.
This means in particular that the time to steal jobs does not depend on the number
of stolen jobs but only on the localization of the two processors (i.e., the clusters they
belong to).

4.2.3. A Density dependent population process

Recall from Section 2.2.1 that a sequence of Markov processes MN on 1
NNd (d ≥ 1) is

called a density dependent population process if there exists a finite number of transitions,
say L ⊂ Nd, such that for each ` ∈ L, the rate of transition from MN to MN + `/N is
Nβ`(M

N), where β`(.) does not depend on N .

This model has been well studied in the literature. In particular, the work of Kurtz
[62, 103] shows that as N grows, the behavior of the system goes to a deterministic limit.
Moreover, this limit satisfies a set of ordinary differential equations that can be derived
from the transition rates. In Chapter 2 Section 2.2.1, we presented some convergence
results for this model. These results are adapted to our case in Section 4.3. Here, we will
show that our system can be described by a density dependent population process.

The state of a processor is given as follows. Let C be set of clusters C def
= {1, . . . , C}

and K be the set of buffer sizes: K def
= {0, . . . ,K}. If the processor p belongs to cluster

cp and has jp ∈ K jobs in its queue, its state is (cp, jp). Note that the cluster cp of the
processor p is fixed by the geometry of the system. If the processor p has no job in its
queue, this means that it is trying to steal some jobs from another processor, say q. If p
is in cluster cp and q in cluster cq, then the state of p is (cp, 0, cq). Finally, MN

cpjp
denotes

the proportion of processors in state (cp, jp) and MN
cp0cq the proportion of processors in

state (cp, 0, cq).

Proposition 4.1. (MN
cj ,M

N
c0c′)c,c′∈C,j∈K is a continuous time Markov process on RCK+C2

.

Moreover, the sequence of Markov processes MN is a density dependent population process.

Proof. Let us fix N and assume that at time t, the system is in state
MN (t) = (Mcj(t) . . .Mc0c′(t))c,c′∈C,j∈K. There are four types of events that can happen:

54

4.2. Work Stealing in Grids

arrivals, departures, successful steals and unsuccessful steals. Let t′ be the time of the
next event and let us compute the rate at which each event occurs.

If an arrival occurs on a processor of cluster c that has 1 ≤ j ≤ K − 1 jobs, the
corresponding modification of the state will be that (Mcj ,Mc,j+1) will become (Mcj(t)−
1/N,Mc,j+1(t) + 1/N). The jobs arrive according to a Poisson process of rate λc. This
means that this transition occurs at rate NXcj(t)λc. Similarly, an arrival on a processor
of cluster c that has 0 jobs and is stealing from c′ occurs at rate NXc0c′(t)λc.

The case of departures is similar for processors that have j ≥ 2 jobs. If a processor
has 0 jobs, no departure is possible. When there is a departure from a processor of
cluster c that has 1 job, this processor chooses a cluster c′ to steal from (with probability
pcc′) and then a processor among them, uniformly. Therefore, (Mc1,Mc0c′) becomes
(Mc1 − 1/N,Mc0c′ + 1/N) at rate NXc1µcpcc′ .

Once a processor of cluster c is empty and has chosen a victim cluster, namely c′, it
asks for work to steal and gets its response with rate γcc′ . If Mc′ is the proportion of
processors in cluster c′, this is equivalent to saying that the processor gets a response
from each processor of cluster c′ with a rate γcc′/(NXc′). If the victim in cluster c′ has j
jobs, we distinguish two cases. If j ≥ 2, the steal is successful and the processor gets
bj/2c jobs. If j = 0 or 1, the steal is unsuccessful and the processor has to choose a new
processor to steal from. Thus we can write the two following transitions:

• The successful steal of the jobs of a processor in cluster c′ with j jobs from a
processor in cluster c occurs with rate Nγcc′Mc0c′Mc′j/Mc′ and changes
(Mc0c′ ,Mcbj/2c,Mc′j ,Mc′dj/2e) in (Mc0c′−1/N,Mcbj/2c+1/N,Mc′j−1/N,Mc′dj/2e+
1/N).

• The unsuccessful steal of a processor in cluster c trying to steal from cluster c′

occurs when it steals 0 jobs. After that it chooses to steal from cluster c′′. This
event occurs with rate Nγcc′pcc′′Mc0c′(Mc′0 +Mc′1)/Mc′ and changes (Mc0c′ ,Mc0c′′)
in (Mc0c′ − 1/N,Mc0c′′ + 1/N).

4.2.4. Examples

To illustrate the power of expression of our model, we present some examples that will
be studied.

• Homogeneous cluster – in this case, all processors are homogeneous and each
processor receives jobs at the same rate. This model is studied in detail in Section 4.4.
We show that the steady state can be computed by a simple algorithm and we
compute the main performance indicators.

• Two homogeneous clusters – we consider in Section 4.5.1 the case of two
homogeneous clusters: they have the same parameters λ, µ. However, the rate of
steal is 10 times larger inside a cluster than between clusters: γii = 10γij if i 6= j.

• Two heterogeneous clusters – there is again two clusters and stealing is faster
inside the cluster: γii = 10γij . The clusters are homogeneous in speed but one
is more loaded than the other: λ2/µ2 > λ1/µ1. Section 4.5.2 studies the optimal
stealing probability pij .

• Master-Worker – in this case, we consider a network of homogeneous clusters
but the arrivals only occur in a fraction of the processors (called the masters). This

55

Chapter 4. Asymptotic Behavior of Work Stealing in Large-Scale Systems

is modeled by using two clusters per real cluster (one for the masters, one for the
slaves) with the same parameters and with γij = γii inside these two clusters. In
Section 4.5.3, we study the performance of the system as a function of the fraction
of masters in the system.

4.3. Mean Field Approximation

In Section 4.2.3 (MN
c0c′(t),M

N
cj (t))c,c′∈C,1≤j≤K is proved to be a density dependent popu-

lation process. In Chapter 2, Section 2.2.1, we have seen some convergence results of
density dependent population processes when the number of objects goes to infinity. In
particular, Theorem 2.1 shows that if MN (0) converges weakly to a deterministic measure
m(0), then (MN (s))0≤s≤t converges weakly to the solution of the differential equation
ṁ(t) = F (m) over [0, t]. In our case, the system of ordinary differential equations
ṁ(t) = F (m) has the following form.

ṁc0c′ = −(λc + γcc′)mc0c′ + µcmc1pcc′ +
∑
c′′

γcc′′mc0c′′
mc′′0 +mc′′1

mc′′
pcc′ (4.1)

ṁc1 = −(µc + λc)mc1 + µcmc2 +
∑
c′

λcmc0c′ (4.2)

+
∑
c′

γc′cmc′0cmc2/mc +
∑
c′

γcc′mc0c′(mc′2 +mc′3)/mc′ (4.3)

ṁcj = −(µc + λc1j<K)mc,j + µcmc,j+1 + λcmc,j−1 (4.4)

+
∑
c′

γc′cmc′0c(mc,2j +mc,2j−1)/mc (4.5)

+
∑
c′

γcc′mc0c′(mc′,2j +mc′,2j+1)/mc′ (4.6)

−
∑
c′

γc′cmc′0cmcj/mc, (4.7)

where 1j<K equals 1 for j < K and 0 for j ≥ K. Other boundary conditions are mcj = 0
for j > K.

These equations can be directly computed from the transitions described in Section 4.2.3.
They can be interpreted as follows.

The first term in line 4.1 is the rate at which processors exit from state (c, 0, c′): This
happens if an arrival occurs (λc) or if a steal from c′ occurs (γc0c′). The second term
corresponds to the rate at which processors end up in state (c, 0, c′). The line (4.2) of
this equation represents the fraction of processors that were in cluster c trying to steal
jobs from cluster c′′ and that did not succeed and but decided to steal from the cluster
c′. The following lines have a similar interpretation. For the last equation, line (4.6)
represents the processors in cluster c that had 2j or 2j + 1 jobs and have been stolen by
someone else and line (4.6), the processors from cluster c that are stealing from others.
The last line (4.7) represents the processors in cluster c that had j jobs and have been
stolen by someone else.

The two technical conditions for applying Theorem 2.1 are clearly satisfied: The
function F in the differential equation is a rational function of degree 2 and is Lipschitz
on all compacts. The transition set L is finite and the transition rate β` are bounded

56

4.3. Mean Field Approximation

so that the second condition is also satisfied. Theorem 2.1 can be rewritten in this
framework as:

Corollary 4.2. Using, the foregoing notations, if MN (0) converges to m(0) in probability,
then sup0≤t≤T |MN −m(t)| → 0 in probability.

Section 2.2.1 also recalled other results of convergence concerning the behavior of the
steady state of the system. The Markov chain with N processors is clearly irreducible
aperiodic and therefore the stochastic process with N processors has an invariant measure,
say πN . A natural question is whether πN converges (or not) to a fixed point of F and
whether second order results exist in that case.

In general, convergence for the steady state only holds under several restrictions (see
Proposition 2.3 in Chapter 2). The interesting situation for Proposition 2.3 if when F
has a unique stationary point m∗ to which all trajectories converge. In that case, the
stationary measures πN concentrate around m∗ as N goes to infinity:

lim
N→∞

πN
weak−−−→ δm∗ ,

see Corollary 2.4 of Chapter 2.

In the following we will show that the system of equations (4.1 - 4.7) has a unique fixed
point. However, to apply Corollary 2.4, one needs to show that this point is a global
attractor, which is a very difficult task for the set of equations (4.1 - 4.7) that do not
admit a natural Lyapounov function. Unfortunately, we were unable to prove that this
fixed point is an attractor, although this is what numerical experiments suggest.

Moreover, in the case where a linear Lyapounov function exists, second order results
for the steady state behavior exist (see Section 2.2.1). Unfortunately, we have not been
able to construct such a scalar product for our case. Partial results on second order
results are shown in Section 4.4.2.

4.3.1. Fast simulation algorithm

The previous theorem shows that the average number of processors in each state can be
approximated by a system of differential equations. Here we show that as N grows large,
the behavior on one particular processor can be approximated by a simpler process.

Let us consider a system with a finite number of processors N < ∞. Let JN (t) be
the state of one particular processor at time t. It should be clear that the process
(JN (t),MN (t)) is a continuous time Markov chain. For each population value m, we
define the kernel (Kjj′(m))j,j′∈C∪K as follows. If the population process MN (t) is m
and j, j′ ∈ K, then Kjj′(m) is the rate of transition of JN (t) from (c, j) to (c, j′). The
definition for j ∈ K and j′ ∈ C is similar, representing the rate of transition from (c, j) to
(c, 0, j′). The transition kernel K(m) can be directly derived from the transitions written
in Section 4.2.3 and is illustrated by Figure 4.1.

For finite N , the behavior of the processor JN (t) is not independent of the behavior
of MN (t) as each transition of JN (t) will result in a change of MN (t). The process
JN (t) is not Markovian and is very complicated. In the limit however, JN (t) goes to a
non-homogeneous Markovian process.

Theorem 4.3. Let us assume that limN→∞ J
N (0) = j(0) and MN (0) → m(0). Then

(JN (t),MN (t)) converges weakly to a continuous time jump and drift process (J(t),m(t))

57

Chapter 4. Asymptotic Behavior of Work Stealing in Large-Scale Systems

. . . c, j c, j−1 c, dj/2e . . . c, 1 c, 0, c′

c, 0, c1

c, 0, cC

γcc′(mc′0 +mc′1)/mc′pc1

γcc′(mc′0 +mc′1)/mc′pccC

γcc′mc′2/mc′ + λc

γcc1(mc1,2j +mc1,2j+1)/mc1

µcpc1

µcpcc′

µcpccC

λc

µc∑
c′ γc′cmc′,0,c

Figure 4.1.: Graph of the transition kernel of the state of one processor for the fast
simulation algorithm. Due to the numerous transitions, only a fraction of
the transitions are represented on this graph.

where m(t) satisfies the ODE (4.1-4.7) and J(t) is a non-homogeneous jump process of
kernel K(m(t)).

Proof. (sketch) This result is similar to Theorem 3.2.1 of [142] and can be proved using
similar ideas. Conditionally to MN , JN is a non-homogeneous Markovian process with
kernel K(MN (t)). Since MN (t) converges in probability to m(t), limN→∞K(MN (t)) =
K(m(t)). Finally, the convergence of JN to J comes from Theorem 17.25 of [90].

From a practical point of view, this theorem is important because it allows one to
use the mean field approximation to compute distributions instead of average values.
Moreover, the case of steady-state is of particular interest. Assume that the system of
ODE has a unique stable point m∗ to which all trajectories converge and that MN (0)
is chosen according to the steady state distribution. In that case, MN (t) is distributed
according to the steady state distribution and limN→∞M

N (t) = m∗ (Corollary 2.4).
Theorem 4.3 shows that the behavior of one processor chosen at random converges to a
continuous time Markov chain of transition kernel K(m∗). In Section 4.4.5, we will see
how to use this result to compute the distribution of sojourn times.

4.4. One Cluster Model

In this part, we focus on the case where all processors belong to one homogeneous cluster.
The system is described by 3 parameters: the arrival rate λ, the service rate µ and the
rate of stealing γ.

Algorithms 4.1 and 4.2 provide very efficient ways to perform a steady state analysis.
The total time to generate all curves of this section is less than ten minutes on a desktop
computer.

4.4.1. Steady state limit

In this section, we show that the differential equations (4.1-4.7) without the boundary
conditions (j ≤ K) have a unique equilibrium point. We will also show that this relaxation
is justified when λ < µ, because the number of queues with more than j jobs decreases
as αj with α < 1. In the rest of this section, we assume that λ < µ to ensure stability.

58

4.4. One Cluster Model

An equilibrium point must satisfy the equation ṁj(t) = 0 for all j ∈ N. With a single
cluster, this can be expressed as:

1 =

∞∑
j=0

mj , (4.8)

0 = −λm0 + µm1 − γm0

∞∑
j=2

mj , (4.9)

0 = −(λ+ µ+ γm0)mj + λmj−1 + µmj+1

+ γm0(m2j−1 + 2x2j +m2j+1),
(4.10)

where Equation (4.10) holds for all j ≥ 1.
The variation of the number of jobs in steady state is

∑∞
j=0 jṁj(t) = 0. By a direct

computation, this leads to λ− µ
∑∞

j=1mj = 0 and using (4.8), m0 = 1− λ/µ. Moreover,

using Equation (4.9), m1 = λ(1− λ) γ+µ
(1−λ)γ+µ2 .

Therefore solving the whole system of equations is the same as solving a linear system
with free variables (mj)j≥1. This system can be rewritten as a matrix equation AX = Y
where A is of the form:
−(λ+ µ) µ+ 2γm0 γm0

λ −(λ+ µ+ γm0) µ+ γm0 2γm0 γm0

λ −(λ+ µ+ γm0) µ γm0 2γm0 γm0

λ −(λ+ µ+ γm0) µ
...

...
. . .

 ,
The main diagonal is composed of −(λ+µ+γx0), the first diagonal below it is composed
of λ and the first diagonal above is composed of µ. To this, one has to add 2γm0 to
the cases (j, 2j) and γm0 to the cases (j, 2j − 1) and (j, 2j + 1) (thus the top left term
is −(λ + µ). Let x be the vector defined by x1 = 1 and xj = 1

λ

∑j−1
i=1 Ajixi. All the

solutions of ATX = 0 can be written c · x for some c ∈ R. Therefore the dimension of
the kernel of the matrix A is 1. This shows that there is a unique solution of the system
of Equations (4.8-4.10).

So far, however, there is no guarantee that this fixed point is non-negative. To prove
this, we designed an iteration algorithm over non-negative sequences that converges to
the fixed point.

Require: λ, µ, γ.
m0 ← 1− λ/µ
m1 ← λ(1− λ) γ+µ

(1−λ)γ+µ2

∀j ≥ 2 : mj ← 0.
repeat
∀j ≥ 2

mj← 1
λ+µ+γm0

(
λmj−1 + µmj+1 + γm0(m2j−1+2x2j+m2j+1)

)
Algorithm 4.1: Steady-state computation

Proposition 4.4. The successive sequences (mt
j)j∈N computed in Algorithm 4.1 satisfy

the following:

59

Chapter 4. Asymptotic Behavior of Work Stealing in Large-Scale Systems

(i) They converge to a sequence (m∞j)j∈N with m∞j ≥ 0.

(ii) There exists j∗ such that m∞j is increasing with j up to m∞j∗ and is decreasing after.

(iii) ∀ε > 0, limj→∞m
∞
j /(α+ ε)j = limj→∞(α− ε)j/m∞j = 0,

where α=(λ+ µ+ γm0 −
√

(λ+µ+γm0)2−4µλ)/(2µ) < 1.

(iv) m∞j is the only solution of (4.8)- (4.10).

This implies that m∞j decreases with an exponential rate: mj ≈j→∞ cαj .

Proof. (i) Let (mt
j)j∈N be defined by mt

0 = 1− λ, ∀t ∈ N, m0
j = 0 and

mt+1
j = 1

λ+µ+γm0

(
λmt

j−1 + µmt
j+1 + γmt

0(mt
2j−1+2xt2j+m

t
2j+1)

)
.

By induction on t, one can show that mt
j is positive and increasing in t for all j.

Moreover, at each t, there is only a finite number of mt
j that are non 0 (the first t)

and the quantities yt
def
=
∑

j≥0m
t
j and zt

def
=
∑

j≥1 jm
t
j are well defined and finite. The

recurrence equation leads to:

zt+1 (λ+µ+γm0) = (1− yt)(µ− λ) + (λ+µ+γm0) zt. (4.11)

Since mt is increasing in t, zt is also increasing in t and 1−zt ≥ 0. This shows that mt
j ≤ 1.

Since mt
j is increasing in t, it converges to some m∞j ≥ 0 that satisfies (4.9)-(4.10).

(ii) Let j∗ be the minimal j such that m∞j∗ ≥ m∞j∗+1 (it exists since
∑∞

i=0mj ≤ 1 and

limj→∞mj = 0). We define a sequence ytj by y0
j = mj for j ≤ j∗ and y0

j = 0 for j > j∗

and yt+1
j is updated as in Algorithm 4.1 for j > j∗. By a direct induction, one can show

that ytj is increasing in t and is less than mj and decreasing for j ≥ j∗. Therefore it
converges to m∞j and m∞j satisfies (i).

(iii) µM2 − (λ+ µ+ γm0)M + λ = 0 has two solutions α and ᾱ with 0 < α < 1 < ᾱ.
Moreover, it is positive on (α; 1). This shows that for δ ∈ (α; 1) and j ≥ jδ (jδ big
enough),

δi (λ+µ+γm0) ≤ λδi−1+µδi+1+γm0

(
δ2i−1+2δ2i+δ2i+1

)
.

Let us define ytj by ytj = mj for j ≤ jδ and y0
j = mjδ

j−jδ for j > jδ and yt+1
j is updated

as in Algorithm 4.1 for j > jδ. ytj is decreasing and converges to m∞j , showing that

limm∞j /(δ + ε)j = 0 for all δ > α and ε > 0. The other limit lim(δ − ε)j/mj = 0 can be
proved similarly.

(iv) since limj→∞m
∞
j /(α + ε)j = 0,

∑∞
j=1m

∞
j < ∞. This shows that when t goes

to infinity, both parts of Eq. (4.11) go to a finite limit. This shows that
∑∞

j=0m
∞
j =

limt y
t = 1.

The shape of the fixed point computed by Algorithm 4.1 is displayed in Figure 4.2. A
posteriori, this can be seen as a justification to consider the ODEs without boundaries
since the solution is concentrated almost entirely on small values of j. For all the
numerical simulations, we used K = 500 and the values of mcK have always been less
than 10−10.

In order to apply Corollary 2.4, one need to show that this unique fixed point is also a
unique attractor of the ODEs. Unfortunately, we were unable to prove this fact (although
this is what our numerical experiments suggest). Therefore, our only assertion is that,
whenever the steady state distribution of the finite stochastic system converges to a single
point, it should converge to this fixed point.

60

4.4. One Cluster Model

 0.001

 0.01

 0.1

 0 5 10 15 20 25 30

F
re

qu
en

cy

Number of jobs per processor

steady state distribution

Figure 4.2.: General shape of the steady state distribution. Here for λ = 0.99, µ = 1 and
γ = 3. The m-axis is the number of jobs and the y-axis shows the fraction
of processors with j jobs (in log-scale).

4.4.2. Gap between mean field and steady-state

In this section, we study two extreme values of γ for which we are able to compute
exactly the steady state distribution and compare these results with the mean field
approximation.

When γ = 0, no stealing ever occurs and the N processors behave like independent
M/M/1/K queues. The steady state distribution Π0 has a product form. In steady state,
the probability of having j jobs in one M/M/1/K queue is πj = (λµ)jπ0 and satisfies the
Equations (4.8-4.10). The steady state of the whole cluster is made of N independent
variables picked according to this distribution. The law of large number shows that Π0

converges to m almost surely and the central limit theorem shows that the speed of
convergence is in O(1/

√
N). Also, the marginal of the distribution of the steady state

for one processor is the mean field steady state.
When γ =∞, the system can also be replaced by a simpler one. In that case, there is

either no idle processor or no processor with 2 or more jobs since in that case an idle
processor would instantly steal the second job. Thus the state of the system can be
modeled by the total number of jobs in the system that we call jN (t). Moreover, jN (t)
behaves like one M/M/N/KN queue (i.e., a queue with N independent processors with
arrival rate Nλ and service rate µ for each processor). The probability that jN (t) is j is:

Π∞(j) = Π∞(0)N
jλj

j!µj
(j < N),

Π∞(j) = Π∞(0) Njλj

N !Nj−Nµj
(KN ≥ j ≥ N),

where Π∞(0) is a normalization constant.
As N grows, it can be shown that P (jN (t)≥N) = o(βN) and Π∞(0) = exp(−Nλ) +

o(βn) with (β = λ exp(1− λ) ∈ (0; 1)). Let us compute the characteristic function Φ() of
the steady state distribution of (jN (t)−Nλ)/

√
N :

Φ(ξ) =

∞∑
j=0

Π∞(j) exp(iξ
j −Nλ√

N
) = exp(−λξ2 +O(

1

N
)).

61

Chapter 4. Asymptotic Behavior of Work Stealing in Large-Scale Systems

Therefore
√
N(jN (t)/N − λ/µ) converges to a Gaussian law. In that case, the gap

between the steady state of the system of finite N and the mean field is of order 1/
√
N .

For both extremal cases γ = 0 and γ =∞, the gap between the mean field approxima-
tion and the real steady state is of order O(1/

√
N). We conjecture that this should also

be the case for all γ in between.

4.4.3. Average sojourn time

The first set of experiments given in Figure 4.3 measures the effect of the cost of stealing,
1/γ, on the average sojourn time of the jobs (the average time spent by a job in the
system).

Let Sλ(γ) be the average sojourn time of a job in the limit system (in steady-state). By
Little’s formula, the number of jobs Lλ(γ) verifies Lλ(γ) = λSλ(γ), therefore it suffices
to compute the average number of jobs in steady state. As mentioned in the previous
part, the analytical computation of the steady-state seems impossible to do when N is
large and we were not able to compute analytically the whole curve Sλ(γ). Nevertheless
we can compute two interesting points for γ = 0 and γ =∞.

When γ = 0, the system is just a system of N independent M/M/1/K queues and
the average sojourn time is a classical result of queuing theory (e.g., [11]). When K is
large, this is approximately

Sλ(0) =
1

µ− λ
. (4.12)

The second quantity that we can compute is the limit of Sλ(γ) when γ goes to infinity.
In that case the steady state is composed of processors with either 0 or 1 job. A new
job entering in the system either arrives directly on an empty processor or arrives in an
occupied processor and is immediately stolen by an empty processor (there are empty
processors with probability one), and the average sojourn time is

Sλ(∞) =
1

µ
, (4.13)

and the average number of jobs in the system is Lλ(∞) = λ
µ .

Figure 4.3 displays the average sojourn time Sλ(γ) as a function of γ for various values
of λ. As expected, the average sojourn time is decreasing from 1/(1− λ) to 1/µ = 1. In
particular, we can see that when γ is small, the average number of jobs in the system
decreases drastically.

The gap between Sλ(0) and Sλ(∞) is λ/(1− λ). Therefore the gain obtained by work
stealing is more important when the system is more congested (i.e., λ is close to 1) as we
can see in Figure 4.3. To provide a better estimate of the gain from using work stealing,
Figure 4.4 shows the difference between the response time with a finite γ and γ = ∞
Sλ(γ)− 1 divided by the maximum gain Sλ(0)− Sλ(∞). One can observe that when the
rate of stealing is of the same order of the service rate γ = 1 (resp. γ = 4 or γ = 8), the
gain is 50% (resp. 80% or 90%) of what one could gain with a work stealing at no cost.
This makes work stealing very efficient in real life systems since the time to steal a job is
typically small compared to the service time of a job.

These facts can be explained by studying the behavior of mj when γ grows. Intuitively,
as γ goes to infinity, the distribution mj concentrates in m0 = 1− λ/µ and m1 = λ/µ.
Moreover, mj decreases quickly. In Equation 4.10, all term in mj+1,m2i−1 . . . becomes

62

4.4. One Cluster Model

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e

γ

λ=0.3
λ=0.7
λ=0.9

Figure 4.3.: Average sojourn time as a function of the rate of stealing γ for various values
of λ (0.3, 0.7 and 0.9).

negligible compared to mi−1 and mi leading to

0 = −γm0mj + λmj−1.

This gives the intuition that mj ≈
(

λ
m0γ

)j−1
m1 and is confirmed by the following

proposition.

Proposition 4.5. (i) For all i, mj =
(

λ
m0γ

)j−1
m1 +Oγ→∞

(
γ−j
)

(ii) The mean number of jobs in the system is
∑∞

j=1 jmj = λ/µ+ λ
m0γ

+O
(
γ−2

)
.

Proof. (i) Following the proof of Proposition 4.4-(ii), one can show that for all ε > 0,
there exists γ∗ such that γ > γ∗ implies that for all j ≥ i ≥ 1

mj ≤
(

λ

m0γ
+ ε

)j−i
mi.

In particular, this shows that for all i ≥ j + 1, mi = O(γ−j).

If we assume that for some j ≥ 1, mj =
(

λ
m0γ

)j−1
m1 + Oγ→∞

(
γ−j
)
, then by

Equation 4.10 and the previous remarks:

mj+1 =
λ

λ+ µ+ γm0
mj +O(γ−j)

=
λ

γm0

((
λ

m0γ

)j
+O(γ−j)

)(
1 +O(γ−1)

)
=

(
λ

m0γ

)j+1

+O(γ−(j+1)).

(ii) Using the fact that
∑∞

j=0mj = 1, we have m1 = 1−m0−m2 +O(γ−2). Therefore,

∞∑
j=0

jmj = 1−m0 +m2 +O(γ−2) = λ/µ+
λ

m0γ
+O

(
γ−2

)
.

63

Chapter 4. Asymptotic Behavior of Work Stealing in Large-Scale Systems

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

(S
λ(

γ)
-1

)/
(S

λ(
0)

-1
)

γ

λ=0.3
λ=0.7
λ=0.9

Figure 4.4.: Gain of work stealing as a function of γ.

4.4.4. Average number of steals

We want to study the average number of steals that a job undergoes, as a function of γ.
Similar to the previous case, let Sλ(γ) be the average number of steals per job. Again, it
is impossible to solve the problem analytically but we can compute the two extremal
values for γ = 0 and γ =∞. When γ = 0, no job is stolen and Sλ(0) = 0. When γ =∞,
all jobs arriving in the processors with 1 job are stolen while the jobs entering in the
processors with 0 jobs are not stolen. Thus Sλ(∞) = λ/µ.

For 0 < γ <∞, we can compute Sλ(γ) numerically. The rate of steals from processors
with j jobs is γm0mj (where mj corresponds to the number of processors with j jobs
in steady state); each steal corresponding to bj/2cmj jobs stolen. On average there are
γm0

∑∞
j=2bj/2cmj jobs stolen per unit of time. Since the rate of arrivals is λ, we have

Sλ(γ) =
γ

λ
m0

∞∑
j=2

b j
2
cmj .

Figure 4.5 shows that the number of steals increases when the cost of stealing decreases
and converges to λ, as expected.

4.4.5. Distribution of the number of steals and sojourn time

In many practical cases, the average response time is not a good measure of performance
and it is more important to improve the probability of being under a certain threshold.
Using our fast simulation algorithm introduced in Section 4.3.1, we are able to sample
the distribution of the number of steals and of the sojourn time in the steady state. Our
simulations show that work stealing is indeed efficient at reducing the probability of
having a large sojourn time.

To compute the distribution of sojourn times, we have to specify the order in which
the jobs are served as well as which jobs are stolen when there is a steal. We consider

64

4.4. One Cluster Model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 n
um

be
r

of
 s

te
al

s

γ

λ=0.3
λ=0.7
λ=0.9

Figure 4.5.: Average number of successful steal per job Sλ(γ) viewed as a function of γ
for different values of λ (0.3, 0.7 and 0.9).

that the jobs are served in the FCFS order (First Come First Served). When there is
a steal, the stealing processor steals the oldest jobs (except for the one that is being
served) and the order of the jobs in the processor is preserved i.e., if the jobs in the first
processor are {1, 2 . . . j} then after the steal the remaining jobs in the victim processor
will be {1, 2 + bj/2c . . . j} and the jobs in the stealing processor will be {2 . . . bj/2c+ 1}.

Let us now consider a job arriving in the system. Let size of queue and place in queue
be respectively the size of the queue and the place in the queue of this job, and let
us consider the next event. If this event is an arrival (respectively a departure), then
size of queue is increased by 1 (resp. both size of queue and place in queue are decreased
by 1). If the event is a steal, then if place in queue ∈ [2 . . . bsize of queue/2c] then
the variable size of queue becomes bsize of queue/2c and place in queue decreases by 1.
Otherwise, size of queue becomes dsize of queue/2e and the variable place in queue is
decreased by bsize of queue/2c. The three events occur respectively with rates λ, µ, γm0.

Using these considerations, the sojourn time of a job entering the system as well as
the number of steals can be simulated by Algorithm 4.2.

We ran several simulations for various values of λ and γ. The percentage of jobs that
undergo two steals or more is displayed in Figure 4.6 as a function of γ. Notice that in all
cases, the distribution of the number of steals is mostly concentrated in 0 or 1 (less than
2% of the jobs are subjected to more than two steals). Moreover, the shape of the curve
is the same for all λ: it starts from 0 when γ = 0; quickly reaches its maximum and then
decreases slowly as γ goes to infinity. The main consequence of this is that there are few
useless steals (if a job is stolen twice, then the first steal was actually useless).

Another interesting measure is the sojourn time distribution. When γ = 0 (i.e., in the
M/M/1/K case), the sojourn time distribution is exponential of parameter µ(1− λ/µ)
when K goes to infinity. When γ goes to infinity, the sojourn time distribution follows
an exponential law of parameter µ. Using our fast simulation algorithm, we can also
sample the distribution of the sojourn time.

The sojourn time of a job in the system is denoted Tλ(γ). When γ = 0 or γ =∞, the
distribution of Tλ(γ) is an exponential distribution. Therefore for these values of γ, the

65

Chapter 4. Asymptotic Behavior of Work Stealing in Large-Scale Systems

Require: λ, µ, γ
Pick size of queue according to the steady state distribution.
m0 ← 1− λ/µ.
size of queue← size of queue + 1
place in queue← size of queue.
soj time← 0.
while place in queue > 0 do

soj time← soj time + Exp(λ+ µ+ γm0)
Pick an event e ∈ {arrival, departure, steal} with probabilities proportional to
{λ, µ, γm0} respectively.
Modify place in queue and size of queue according to the event e.

end while
Return soj time.

Algorithm 4.2: Sojourn time simulation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

of
 jo

bs
 w

ith
 >

=
 2

 s
te

al
s

γ

λ=0.3
λ=0.5
λ=0.7

Figure 4.6.: Fraction of jobs that are stolen twice or more as a function of γ.

99th percentile is log(100)Sλ(γ). Figure 4.7 reports the empirical 99th percentile of the
distribution of Tλ(γ) as well as the 99th percentile of an exponential variable of the same
mean log(100)Sλ(γ). For intermediate values of γ, the percentile is strictly less than for
exponential distributions.

4.4.6. Fraction of stolen jobs

In all of our analysis, we choose to consider that if there were j ≥ 2 jobs in a queue,
the processor that is stealing would steal bj/2c jobs. This is the most natural strategy
in the sense that it optimizes the balance between the processors. Works such as [114]
study the case where every steal concerns only one job. This has a negative impact on
performance, as shown in the following experiments. In this section, we further show the
advantage of stealing half of the jobs instead of stealing a smaller fraction of the work.

When an empty processor steals from a processor with j ≥ 2 jobs, then it steals
max(1, bδjc), i.e., a fraction 0 ≤ δ < 1 of the total work or a single job if this fraction

66

4.4. One Cluster Model

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8

99
th

 p
er

ce
nt

ile
 o

f s
oj

ou
rn

 ti
m

e

γ

99th percentile
99th percentile of an exp. of same mean

99th percentile of an exp. of mean 1

Figure 4.7.: 99 percentiles of the distribution of sojourn time and of an exponential
variable of the same mean as functions of γ, for λ = 0.7.

is less than one. The case δ = 0 corresponds exactly to the steal of one job while the
condition δ < 1 insures that we always leave at least one job in the processor (since
j − bδjc) ≥ 1).

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e

Fraction of stolen jobs

Figure 4.8.: Average sojourn time as a function of the fraction of jobs stolen at each time
for λ = 0.9 and γ = 3.

Algorithm 4.1 can be modified to compute the steady-state in that case. Figure 4.8
shows the average sojourn time as a function of δ for λ = 0.9, µ = 1 and γ = 3.

Figure 4.8 highlights two interesting properties. The first one is that the optimal
fraction to steal is one half and the difference in speed is approximately 25%. The second
interesting property is that this curve is not symmetric in 1/2 and it is not continuous in
δ. Indeed, in such systems the processors generally have a small number of jobs and the
function bδjc is not continuous in j. In particular, the figure shows discontinuities at p/q
for small values of q (1/2, 1/3, 2/3 . . .).

67

Chapter 4. Asymptotic Behavior of Work Stealing in Large-Scale Systems

4.4.7. Batch arrivals

In this section, we consider that jobs arrive in batches of b jobs according to a Poisson
point process of rate λ/b (the rate is divided by b to keep an arrival rate λ). We will see
that work stealing is a very efficient way to diminish the effect of these batch arrivals.

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e

Size of batch

no stealing
stealing

Figure 4.9.: Average sojourn time as a function of the batch size for λ = 0.7. The higher
curve represents a system without work stealing while the bottom one shows
the results for γ = 3.

In a system with no load balancing mechanism, when the size b of the batches increases,
it can be shown that the average sojourn time grows linearly in b [117].

Algorithm 4.1 can be easily modified to take into account the batch arrivals. Using
this, we can compute the average sojourn time for various values of the size of batches
(from 1 to 30) for λ = 0.7 and γ = 3. In Figure 4.9 we compare the average sojourn
time in the system with work stealing to the system without work stealing. Once again,
work stealing has a tremendous impact on the performance. In fact when computing the
average sojourn time for large values of b, it seems to grow as the logarithm of b. This is
in agreement with known results on the performance of work stealing in transient cases
(i.e., over a finite number of tasks), like the ones of the previous chapter.

4.5. Heterogeneous Clusters

As mentioned in the introduction, we are interested in evaluating the performance of
work stealing in a system made of several clusters. Each cluster is made of homogeneous
processors with the same processing rate. Also the time to steal between two clusters
depends on their “distance” and is much larger than the time to steal within one cluster.
The main problem addressed here is to come up with a stealing strategy (namely, values
for the stealing probabilities pij) that minimizes the response times for jobs.

If the system is heterogeneous, the natural work stealing algorithm which is to steal
uniformly at random among all the resources may suffer from communication cost
since it is much faster to steal inside a cluster. Several modifications of this algorithm
have been proposed to take into account the geometry of the system. Many of the

68

4.5. Heterogeneous Clusters

proposed algorithms rely on a master-worker paradigm: some resources, called masters,
are dedicated to balance the load between clusters while the others try to balance the
work insider a cluster. Other strategies are based on tuning the preferences between
internal and external steals. All these strategies are experimentally compared in [146, 124]
and the latter proved more efficient. In our framework, this corresponds to tuning the
probabilities pcc′ for choosing a victim.

In the following, we focus on the average sojourn time as the performance indicator to
compare different strategies. We used a numerical algorithm to compute the fixed point
of the system of ODEs (4.1-4.7). The time to generate one curve is less than ten minutes,
allowing us to explore many scenarios.

4.5.1. Two homogeneous clusters

A first case of interest is the case with two homogeneous clusters: µ0 = µ1, λ0 = λ1 and
γ00 = γ11. Each cluster can be viewed as a network of closely interconnected processors.
The two clusters are connected by a slow network. Generally, communication between
two hierarchies (intra-processor, intra-cluster, inter-cluster) is about 10 to 100 times
slower (as in Grid 5000 [49]). For our simulations, γij=γii/10 for i 6=j.

Let pij be the probability for a processor in cluster i to choose to steal from cluster j.
As the system is symmetric, we choose p00 = p11 and p01 = p10 = 1− p00. We want to
study the effect of this probability p00 on the performance.

The loads of the two clusters are the same and communications are much slower if the
two processors are in two different clusters. Therefore the optimal p00 is 1: it is always
better to steal inside one’s own cluster. Figure 4.10 displays the average sojourn time of
a job entering the system as a function of p00, called the probability of self-stealing. The
parameters of the system displayed in the figure are λ = 0.7, µ = 1 and γii = 10, γij = 3
and the clusters have the same size; the results are very similar for other values.

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e

Proportion of self-stealing

λ=.3
λ=.7
λ=.9

Figure 4.10.: Average sojourn time in a system with two homogeneous clusters as a
function of the probability for a processor to steal inside its cluster.

This figure exhibits the two main features of such systems. First, as expected in this
case, it is much more efficient to pick p00 = 1 rather than a uniform stealing probability,

69

Chapter 4. Asymptotic Behavior of Work Stealing in Large-Scale Systems

p00 = 1/2. Moreover, the dependence of the sojourn time on p00 is almost linear, showing
that this probability has a real effect. Computing the same curve for other values of λ,
shows that when the load is low (for example λ = 0.3), then the curve is slightly concave
while when the load is very high (λ > 0.9), the curve is slightly convex but in all cases
the dependence is almost linear.

4.5.2. Two heterogeneous clusters

A direct extension of the previous model is to consider the case where the two clusters
are heterogeneous. We set λ0 < λ1, µ0 = µ1 and γij = γii/10. As the load of cluster 1 is
higher and since it is faster to steal inside the cluster, we consider that the processors
of cluster 1 only steal inside their cluster: p11=1. We want to study the effect of the
probability for the processors in cluster 0 to steal from cluster 1.

Figure 4.11 displays the average sojourn time as a function of p00 for different values
of λ1. In all cases, the load of cluster 0 is low: λ0 = .5 and the load of the other cluster
varies. In all cases, we can see that there exists an optimal p00 that is neither 0 nor 1
that minimizes the average sojourn time. In the top left figure, cluster 1 is just slightly
more loaded than the cluster 0 (λ1 = .8) and in that case the optimal p00 is close to .85.
As the load of the cluster 1 grows, the optimal probability gets closer to 0.

 1.6

 1.7

 1.8

 1.9

 0 0.25 0.5 0.75 1

A
vg

. s
oj

ou
rn

 ti
m

e

p00

(a) λ1 = .8

 1.9

 2

 2.1

 0 0.25 0.5 0.75 1

A
vg

. s
oj

ou
rn

 ti
m

e

p00

(b) λ1 = .9

 2.4

 2.6

 2.8

 3

 0 0.25 0.5 0.75 1

A
vg

. s
oj

ou
rn

 ti
m

e

p00

(c) λ1 = 1

 3

 4.5

 6

 0 0.25 0.5 0.75 1

A
vg

. s
oj

ou
rn

 ti
m

e

p00

(d) λ1 = 1.1

Figure 4.11.: Average sojourn time as a function of p00 for the two heterogeneous model.
The first cluster is lightly loaded (λ0 = 0.5). The load of the second cluster
is λ1 (varying from 0.8 to 1.1).

This shows that the optimal probability strongly depends on the load of the different
clusters which is an unknown variable in many cases. However, we also see that the

70

4.5. Heterogeneous Clusters

average sojourn time does not vary that much around the optimal p00 which shows that
a rough estimation of the load is enough to make a good choice for p00.

4.5.3. Hierarchical work stealing: master worker paradigm

Many work stealing algorithms rely on a master/worker paradigm. Here we show that
this approach is indeed valid, but tuning its parameters is not easy.

We consider a network of homogeneous clusters, with a rate of steal 10 times greater
inside a cluster than between two clusters. In each cluster, we set a fraction f0 of the
resources to be “masters” while the rest of the resources are “workers”. We consider that
the masters receive all the work which means that there is an arrival rate of λ/f0 for
every master (so that the total arrival rate of the system remains constant equal to λ).
A master will only steal work from other masters while a worker can steal both from a
master and from other workers.

Master-worker in one cluster

Let us first consider a network composed of only one cluster and let us study the effect
of the fraction of masters on the performance of the system. We compare three different
strategies: probabilistic stealing with various parameters, uniform stealing and steal from
masters. This situation can be described in our model by setting the number of clusters
to 2, cluster 0 representing the masters and cluster 1 representing the workers. We set
γij = γii, λ0 = λ/f0, λ1 = 0 and p00 = 1. For the probabilistic stealing strategy, we
study different probabilities for a worker to steal a master p10 = .2, .4, .6, .8. The uniform
stealing (resp. steal only from masters) corresponds to p10 = m0 (resp. p10 = 1). We
also compare the case where the jobs arrive one by one and the case of batch arrivals
with a batch size of 20.

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e

Proportion of masters

Uniform stealing
Stealing from masters

Probabilistic stealing: .2
Probabilistic stealing: .4
Probabilistic stealing: .6
Probabilistic stealing: .8

(a) Average sojourn time when the batch size is 1.

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e

Proportion of masters

Uniform stealing
Stealing from masters

Probabilistic stealing: .2
Probabilistic stealing: .4
Probabilistic stealing: .6
Probabilistic stealing: .8

(b) Average sojourn time when the batch size is 20.

Figure 4.12.: Comparison of the average sojourn time in the Master-Worker setting with
one cluster.

The average sojourn time for all strategies as a function of the fraction of masters is
shown in Figure 4.12. As expected, in all cases, the uniform stealing is the worst strategy
when the number of masters is low and when the proportion of masters grows, things get
better. When the proportion of masters is close to 1, all strategies coincide. When the
batches are of size 1, the optimal strategy is always to steal from the masters. When

71

Chapter 4. Asymptotic Behavior of Work Stealing in Large-Scale Systems

the batches are of size 20, the optimal strategy is to steal about 50% from the masters
(more precisely, the optimal is about 60% for low proportions of masters (< 0.3) and 40%
above).

The most interesting property shown in this figure is that in all cases, having all the
arrivals concentrated on a few resources improves the performance of the system if we
tune the probability of stealing correctly.

Master-worker in two clusters

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e

Proportion of masters

Stealing from masters
Probabilistic stealing .2
Probabilistic stealing .4
Probabilistic stealing .6

(a) Average sojourn time when the batch size is 1.

 3

 4

 5

 6

 7

 8

 9

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e

Proportion of masters

Stealing from masters
Probabilistic stealing .2
Probabilistic stealing .4
Probabilistic stealing .6

(b) Average sojourn time when the batch size is 20.

Figure 4.13.: Average sojourn time in the Master-Worker setting with two clusters for
λ = 0.7.

The behavior observed in the two cluster model is similar to the behavior with a single
cluster. We consider a network of two clusters with the same proportion f0 of masters
in each cluster. All the arrivals are concentrated on the masters. The masters are only
stealing from other masters and we study different strategies of stealing for the workers.
As in the one cluster case, the uniform policy is not efficient. Therefore, we only focus
on the policies stealing from master and probabilistic stealing with a probability of .2, .4
and .6.

The results are shown in Figure 4.13, comparing a case with arrivals by batches of
size 20 and a case without batch arrivals. Once again we see that in the case where the
batches are of size 1, the most efficient strategy is always to steal from the masters while
if the size of the batches is larger (20 in this example), the most efficient strategy is to
steal from workers with a non zero probability. Moreover in both cases, a good choice of
the probabilities makes the performance of the system better when the proportion of
masters is low.

When the proportion of masters is low, the good performance can be explained in part
by the fact that we neglect the congestion that might occur when a single resource has
to deal with too arrivals or steal requests. In practical applications, one would have to
take this into account.

72

4.6. Conclusion and Future Work

4.6. Conclusion and Future Work

In this chapter we presented a mean field approximation of the work stealing algorithm on
a large number of processors and show convergence for finite time as well as for steady state.
This allows one to run a rather exhaustive evaluation for several performance measures
such as average response times, average number of steals per job. The distribution of
response times can also be sampled using fast simulation, providing more meaningful
performance indexes (variance, percentiles, tail behavior). This also allows one to evaluate
work stealing under several scenarios: all processors are in one homogeneous cluster,
or partitioned into several clusters where the time to steal from one cluster to another
depends on the distance between the clusters. The scenario where work is allocated to a
few master processors and stolen by workers is also evaluated and numerical evidences
show that it performs really well with appropriate stealing parameters.

We are currently considering two extensions of this work. The first one is to model the
case with a finite number of jobs using a mean approach, and then tune the parameters to
minimize the total completion time. The second one is to conduct a thorough comparison
with push and pull policies currently used in computational grids.

73

Part II.

Optimal Mean Field

75

Outline of this part

We presented the notion of mean field models in Chapter 2. Mean field models are
generally used to study the dynamics of large stochastic systems. This is illustrated by
Chapter 4 in which we used mean field theory to simplify the performance evaluation of a
system using work stealing. The goal of this part is to fill the gap between Markov decision
processes, presented in Chapter 1, and mean field models. We study the relationships
between mean field models and optimal control.

In the first two Chapters 5 and 6, we investigate the limiting behavior of Markov
decision processes made of independent objects evolving in a common environment, when
the number of objects (N) goes to infinity. We show that in both cases, when the number
of objects becomes large, the original stochastic optimization problem converges to a
deterministic optimization problem in discrete or continuous time. The nature of the
limiting regime depends on the intensity of the model I(N) which is the probability for
an object to change state at each time. If I(N) = O(1), the limiting dynamics is in
discrete time and this case is studied in Chapter 5. If limN→∞ I(N) = 0, the limiting
regime is in continuous time. This is the focus of Chapter 6.

More precisely, we show that the optimal cost on a finite-horizon of the stochastic
system converges to the optimal cost of a deterministic dynamical system as the number
of objects grows (Theorems 5.5 and 6.4). For the discrete time limit, we further provide
bounds on the speed of convergence by proving second (Theorem 5.7) and third order
results (Theorem 5.9). In the continuous time, speed of convergence is insured by the
explicit probability bounds of Theorem 6.1. These methods are illustrated by different
examples in Sections 5.4 and 6.4, like brokering problem in grid computing, investment
strategies or epidemic control.

The focus of Chapter 7 is slightly different. We study the limiting behavior of a mean
field model when the dynamics of the system exhibits some discontinuity. We show
that without any condition on the smoothness of the limiting regime, the stochastic
system converges to a deterministic limit (Theorem 7.5). Contrary to the smooth case,
the limiting regime is characterized by the set of solutions of a differential inclusions,
which definition is recalled in Section 7.2.1). This extends the applicability of mean field
techniques to systems exhibiting threshold dynamics. In particular, when considering a
controlled system, the controlled policy often presents some discontinuity. These results
are illustrated by several examples in 7.5. They also provide an easy proof for classical
fluid limit regimes, as shown in Section 7.5.1.

Organization of this part

The two first chapters of this part focus on optimal control of mean field models – in
Chapter 5 when the limit is in discrete time and in Chapter 6 when the limit is in
continuous time. Chapter 7 shows the convergence of mean field systems whose dynamics
is discontinuous, which is in particular the case of controlled systems.

77

Each chapter of this part is self-contained. To improve the readability of the different
sections, the most technical proofs have been moved to the end of each chapter.

78

Chapter 5.

Optimization in Discrete Time

Abstract of this chapter – This chapter investigates the limit behavior
of Markov decision processes made of independent objects evolving in a common
environment, when the number of objects (N) goes to infinity.

In the finite horizon case, we show that when the number of objects becomes
large, the optimal cost of the system converges to the optimal cost of a discrete
time system that is deterministic. We further provide bounds on the speed of
convergence by that the gap between the deterministic system and its limit is in
1/
√
N . One can even go further and get convergence of order

√
logN/N to a

stochastic system made of the mean field limit and a Gaussian term. Several
extensions are also discussed. In particular, for infinite horizon cases with
discounted costs, we show that first order limits hold and that second order
results also hold as long as the discount factor is small enough.

Our framework is applied to a brokering problem in grid computing. Several
simulations with growing numbers of processors are reported. They compare
the performance of the optimal policy of the limit system used in the finite case
with classical policies by measuring its asymptotic gain.

Résumé du chapitre – Ce chapitre examine le comportement limite de
processus de décision Markovien constitués de particules indépendantes évoluant
dans un environnement commun, lorsque le nombre de particules tend vers
l’infini.

Dans le cas où on s’intéresse à un coût à horizon fini, nous montrons que
lorsque le nombre de particules devient grand, le coût optimal du système
converge vers le coût optimal du système déterministe. De plus, nous donnons
un aperçu de la vitesse de convergence en prouvant que l’écart entre le système
stochastique et sa limite déterministe est en 1/

√
N . Cette convergence peut

être raffinée en considérant l’écart avec une limite déterministe plus un bruit
gaussien. Dans ce cas on atteint une convergence en

√
log(N)/N .

Le modèle est appliqué à un problème de gestionnaire de ressources dans des
grilles de calcul. Nous comparons les performances de la politique optimale de
la limite appliquée au système initiale avec plusieurs politiques classiques. Nous
mesurons le gain asymptotique, ainsi que le seuil à partir duquel elle surpasse
les politiques classiques.

79

Chapter 5. Optimization in Discrete Time

5.1. Introduction

The general context of this chapter is the optimization of the behavior of controlled
Markovian systems, namely Markov Decision Processes composed by a large number of
objects evolving in a common environment.

Consider a discrete time system made of N objects, N being large, that evolve
randomly and independently (according to a transition probability kernel K). At each
step, the state of each object changes according to a probability kernel, depending on the
environment. The evolution of the environment only depends on the number of objects in
each state. Furthermore, at each step, a central controller makes a decision that changes
the transition probability kernel. The problem addressed in this chapter is to study the
limit behavior of such systems when N becomes large and the speed of convergence to
the limit.

The seminal work of Kurtz (see for example [102] and the related work in Chapter 2)
initiated a long stream of work on the use of mean field techniques in performance
evaluation. Several papers [20, 45] study the limit behavior of Markovian systems in the
case of vanishing intensity (the expected number of transitions per time slot is o(N)).
In these cases, the system converges to a system in continuous time, see Section 2.2.2
of Chapter 2. The control and the optimization of systems with an intensity that goes
to zero are investigated in [70]. In the present chapter, the intensity is bounded away
from zero so that time remains discrete at the limit. This requires a different approach
to construct the limit.

In Section 2.2.3 of Chapter 2, such discrete time systems are presented. In [106],
authors show that under certain conditions, as N grows large, a Markovian system made
of N objects converges to a deterministic system. Since a Markov decision process can be
seen as a family of Markovian kernels, the class of systems studied in [106] corresponds
to the case where this family is reduced to a unique kernel and no decision can be made.
Here, we show that under similar conditions as in [106], a Markov decision process also
converges to a deterministic one. More precisely, we show that the optimal costs (as
well as the corresponding states) converge almost surely to the optimal costs (resp. the
corresponding states) of a deterministic system (the “optimal mean field”). These first
order results are very similar to the results proved independently in [42]. Additionally,
the quality of the deterministic approximation and the speed of convergence can also
be estimated. For that, we provide second order results giving bounds on the speed of
convergence under the form of central limit theorems for the state of the system as well
as for the cost function.

Actually, the contributions of this chapter concern three types of systems. The first one
is the class of Markov decision processes where the sequence of actions is fixed. In some
sense, their study could boil down to considering classical Markovian systems. The second
one is the class of MDPs where the policy is fixed. These controlled systems constitute
the main object of this chapter. The last type of results concerns MDP under optimal
control. This is the part where optimization plays a role. The second type (controlled
systems) plays a central role indeed. The results on systems with fixed sequences of
actions are simple corollaries of theorems on controlled systems by considering constant
policies. The results on optimal control are obtained by taking the supremum over all
policies in controlled system.

On a practical point of view, all this allows one to compute the optimal policy in a
deterministic system which can often be done very efficiently, and then to use this policy

80

5.2. Notations and definitions

in the original random system as a good approximation of the optimal policy, which
cannot be computed efficiently because of the curse of dimensionality. This is illustrated
by an application of our framework to optimal brokering in computational grids. We
consider a set of multi-processor clusters – forming a computational grid, like EGEE1 –
and a set of users submitting tasks to be executed. A central broker assigns the tasks to
the clusters (where tasks are buffered and served in a FIFO order) and tries to minimize
the average processing time of all tasks. Computing the optimal policy (solving the
associated MDP) is known to be hard [121]. Numerical computations can only be carried
out up to a total of 10 processors and two users. However, our approach shows that when
the number of processors per cluster and the number of users submitting tasks grow, the
system converges to a mean field deterministic system. For this deterministic mean field
system, the optimal brokering policy can be explicitly computed. Simulations reported in
Section 5.4 show that, using this policy over a grid with a growing number of processors,
makes performance converge to the optimal sojourn time in a deterministic system,
as expected. Also, simulations show that this deterministic static policy outperforms
classical dynamic policies such as Join the Shortest Queue, as soon as the total number
of processors and users is over 50.

5.2. Notations and definitions

The model studied in this chapter is a generalization of the discrete time mean field model
of [106], also described in Section 2.2.3, to which has been a controller that can change
the dynamics of the system. More details on the model can be found in Section 2.2.3.

The system is composed of N objects. Each object evolves in a finite state space
S = {1, . . . , S}. Time is discrete and the state of the nth object at time t ∈ N is denoted
XN
n (t). We denote MN (t) the empirical measure of the collection of objects (XN

n). MN (t)
is a vector with S components and the ith component of MN (t) is the proportion of
objects in state i,

MN
i (t)

def
= N−1

N∑
n=1

1XN
n (t)=i.

The system of objects evolves depending on their common environment. We call
C(t) ∈ Rd the context of the environment. Its evolution depends on the empirical
measure MN (t), itself at the previous time slot and the action a ∈ A chosen by the
controller (see below):

CN (t+ 1) = g(CN (t),MN (t+ 1), at),

where g : Rd×PN (S)×A → Rd is a continuous function.
For an action a ∈ A and a context C ∈ Rd, we have a transition probability kernel

K(a,C) such that the probability that for any n, a object goes from state i to state the
j is Ki,j(a,C):

P
(
XN
n (t+ 1) = j|XN

n (t) = i, at = a,CN (t) = C
)

= Ki,j(a,C).

The evolutions of objects are supposed to be independent once C and a are given.
Moreover, we assume that Ki,j(a,C) is continuous in a and C.

1EGEE: Enabling Grids for E-sciencE, http://www.eu-egee.org

81

http://www.eu-egee.org

Chapter 5. Optimization in Discrete Time

5.2.1. Actions, policies and reward functions

We consider a Markov decision process corresponding to this system. At each time t, a
decision maker chooses an action a from the set of possible actions A. A is assumed
to be a compact set (finite or infinite). In practical examples, A is often finite or a
compact subset of Rk. The action determines how the system will evolve by modifying
the transition function g(a, .) and K(a, .).

To each possible state (M(t), C(t)) of the system at time t, we associate a reward
rt(M,C). The reward is assumed to be continuous in M and C. This function can be
either seen as a reward – in that case the controller wants to maximize the reward–,
or as a cost – in that case the goal of the controller is to minimize this cost. In this
chapter, we will mainly focus on finite-horizon reward. Extensions to infinite-horizon
reward (discounted and average reward) are discussed in Section 5.5.

The focus of Markov Decision Processes theory is the computation of optimal policies.
A policy π = (π1π2 . . .) specifies the decision rules to be used at each time slot. A decision
rule πt is a procedure that provides an action at time t. As seen in Section 1.3.1 of
Chapter 1, if the state space is finite and the action space is compact, then deterministic
Markovian policies (i.e. that only depends deterministically on the current state) are
dominant, i.e. are as good as general policies. In what follows, we will only focus on
them and a policy π will represent a sequence of functions (πt)t≥0 where each function
πt : P(S)×Rd → A is deterministic. For any policy π, the variables MN

π (t), CNπ (t)
will denote the state of the system at time t when the controller applies the policy π.
(MN

π (t), CNπ (t))t≥0 is a sequence of random variables on PN (S)× Rd.

5.2.2. List of assumptions

Here is the list of the assumptions under which all our results will hold, together with
some comments on their tightness and their degree of generality and applicability.

Throughout the document, for all (m, c) ∈P(S)×Rd, ‖(m, c)‖ denotes the L∞ norm
of the vector (m, c) ∈ RS+d: ‖(m, c)‖ = max(|m1| . . . |ms| , |c1| . . . |cd|).

(A1) Independence of the users, Markov system – If at time t if the environment
is C and the action is a, then the behavior of each object is independent of other
objects and its evolution is Markovian with a kernel K(a,C).

(A2) Compact action set – The set of action A is a compact metric space.

(A3) Continuity of K, g, r – the mappings (C, a) 7→ K(a,C), (C,M, a) 7→ g(C,M, a)
and (M,C) 7→ rt(M,C) are continuous, Lipschitz continuous on all compact set.

(A4) Almost sure initial state – Almost surely, the initial measure MN (0),CN (0)
converges to a deterministic value m(0), c(0). Moreover, there exists B <∞ such that
almost surely

∥∥CN (0)
∥∥ ≤ B where ‖C‖ = supi |Ci|.

To simplify the notations, we choose the functions K and g not to depend on time.
However as the proofs will be done for each time step, they also hold if the functions are
time-dependent (in the finite horizon case).

Also, K, g and r do not to depend on N , while this is the case in most practical cases.
Adding a uniform continuity assumption on these functions for all N will make all the
proofs work the same.

82

5.3. Finite time convergence and optimal policy

Here are some comments on the uniform bound B on the initial condition (A4). In
fact, as CN (0) converges almost surely, CN (0) is almost surely bounded. Here we had a
bound B which is uniform on all events in order to be sure that the variable CN (0) is
dominated by an integrable function. As g is continuous and the sets A and P(S) are
compact, this shows that for all t, there exists Bt <∞ such that∥∥CN (t)

∥∥ ≤ Bt. (5.1)

Finally, in the Markov decision process literature, the reward function often depends
on the action taken. To simplify the notations, we choose to take the reward independent
of the action but again the proofs are the same in that case.

5.3. Finite time convergence and optimal policy

In this section, we focus on optimizing the finite horizon reward. T is fixed throughout
all this section and the aim of the controller is to find a policy to maximize:

V N
π (MN , CN) = E

(
T∑
t=1

r
(
MN
π (t), CNπ (t)

))
.

The infinite horizon case will be treated in Section 5.5.2.

This section contains the main results of this chapter. There are four main results.
Theorem 5.1 states the convergence of the controlled system to a deterministic limit.
Next, we show that the optimal reward for the limit is asymptotically optimal as the size
of the system grows (Theorem 5.5) and we characterize the speed of convergence towards
this limit (Theorem 5.7) which is basically of order 1/

√
N . Finally (Theorem 5.9) shows

that a Gaussian approximation of the deterministic limit system leads to a better error
of order N−1

√
log(N).

Because of Equation 5.1, (MN (t), CN (t)) always stays in a compact space when
t ∈ {0 . . . T}. By assumption (A3), this implies that K, g and r are Lipschitz continuous
and we denote by LK , Lg and Lr their Lipschitz constants.

5.3.1. Controlled mean field

Let a = a0, a1 . . . be a sequence of actions. We define the deterministic variables ma(t)

and ca(t) starting in ma(0), ca(0)
def
= m(0), c(0) ∈P(S)× Rd by induction on t:

ma(t+ 1) = ma(t)K(at, ca(t))
ca(t+ 1) = g (ca(t),ma(t+ 1), at) .

(5.2)

Here, (ma(t), ca(t)) corresponds to a deterministic approximation of the stochastic
system (MN , CN) assuming that instead of having a probability Kij for an object to go
from state i to state j, there is a proportion Kij of objects in state i that moves to state
j.

Let π be a policy and consider a realization of the sequence (MN (t), CN (t)). At time t,

a controller that applies the policy π, will apply the action ANπ (t)
def
= πt(M

N
π (t), CNπ (t)).

The actions ANπ (t) form a random sequence depending on the sequence (MN
π (t), CNπ (t)).

To this random sequence, corresponds a deterministic approximation of MN , CN , namely

83

Chapter 5. Optimization in Discrete Time

mANπ
(t) defined by Equation (5.2). The quantity mANπ

(t) is a random variable depending

on the sequence ANπ (and is deterministic once ANπ is fixed).
The following theorem is the main result of convergence, showing that as N grows,

the gap between the stochastic system MN
π , C

N
π and its deterministic limit mANπ

, cANπ
vanishes (in probability) with a bound only depending on the initial condition.

Theorem 5.1 (Controlled mean field). Under assumptions (A1,A3), and if the con-
troller applies the policy π, then there exists a sequence of functions Et(ε, x) such that
limε→0,x→0 Et(ε, x) = 0 and for all t:

P
(

sup
s≤t

∥∥∥(MN
π (s), CNπ (s))−(mANπ

(s), cANπ (s))
∥∥∥ ≥ Et(ε, εN0)

)
≤ 2tS2 exp(−2Nε2),

where

εN0
def
=

∥∥(MN (0), CN (0))− (m(0), c(0))
∥∥ ;

E0 (ε, δ)
def
= δ;

Et+1 (ε, δ)
def
=

(
Sε+ (2 + LK) Et (ε, δ) + LKEt (ε, δ)2

)
max(1, Lg).

Proof. The proof is done by induction on t. We show that at each time step, we stay
close to the deterministic approximation with high probability. A detailed proof is given
in Appendix 5.8.1.

Assuming that the initial condition converges almost surely to m(0), c(0), we can
refined the convergence in law into an almost sure convergence:

Corollary 5.2. Under assumptions (A1,A3,A4),∥∥∥(MN
π (t), CNπ (t))− (mANπ

(t), cANπ (t))
∥∥∥ a.s.−−→ 0.

Proof. This proof is a direct corollary of Theorem 5.1 and the Borel-Cantelli Lemma.

5.3.2. Optimal mean field

Using the same notation and hypothesis as in the previous section, we define the reward
of the deterministic system starting at m(0), c(0) under the sequence of action a:

va(m(0), c(0))
def
=

T∑
t=1

rt(ma(t), ca(t)).

If for any t, the action taken at instant t is fixed equal to at, we say that the controller
applies the policy a. a can be viewed as a policy independent of the state MN , CN and
MN
a (t), CN (t) denotes the state of the system when applying the policy a. According to

Corollary 5.2, the stochastic system MN
a (t), CNa (t) converges almost surely to ma(t), ca(t).

Since the reward at time t is continuous, this means that the finite-horizon expected
reward converges as N grows large:

Lemma 5.3. (Convergence of the reward) Under assumptions (A1,A3,A4), if
the controller takes actions a = (a0, a1 . . .), the finite-horizon expected reward of the
stochastic system converges to the finite-horizon reward of the deterministic system when
initial conditions converge. If (MN (0), CN (0))→ (m(0), c(0)) a.s. then

lim
N→∞

V N
a

(
MN (0), CN (0)

)
= va(m(0), c(0)) a.s.

84

5.3. Finite time convergence and optimal policy

Proof. For all t, (MN
a (t), CNa (t)) converges in probability to (ma(t), ca(t)). Since the

reward at time t is continuous in (M,C), then rt(M
N
a (t), CNa (t)) converges in proba-

bility to rt(ma(t), ca(t)). Moreover, as (M,C) are bounded (see Equation (5.1)), the
E
(
rt(M

N
a (t), CNa (t))

)
goes to rt(ma(t), ca(t)) which concludes the proof.

The previous lemma can also be deduced from the following proposition.

Proposition 5.4 (Uniform convergence of reward). Under assumptions (A1,A2,
A3,A4), there exists a function E(N, ε) such that:

• limN→∞,ε→0 E(N, ε) = 0,

• for all policy π:∣∣∣V N
π

(
MN (0), CN (0)

)
− E

(
vANπ

(
mANπ

(0), cANπ (0)
))∣∣∣ ≤ E(N, εN0),

where εN0
def
=
∥∥(MN (0), CN (0))− (m(0), c(0))

∥∥ and the expectation is taken on all
possible values of ANπ .

Proof. ∣∣∣V N
π

(
MN (0), CN (0)

)
− E

(
vANπ

(
mANπ

(0), cANπ (0)
))∣∣∣ (5.3)

=

∣∣∣∣∣E
(

T∑
t=1

rt(M
N
π (t), CNπ (t))− rt(mANπ

(0), cANπ (0))

)∣∣∣∣∣
≤ LrE

(
max
t≤T

∥∥∥(MN
π (t), CNπ (t))− (mANπ

(0), cANπ (0))
∥∥∥)

where Lr is a Lipschitz constant of the function r.

According to Theorem 5.1,
∥∥∥(MN

π (t), CNπ (t))− (mANπ
(t), cANπ (t))

∥∥∥ ≥ Et(ε, εN0) with

probability at most T 2S2 exp(−2εN), where εN0
def
=
∥∥(MN (0), CN (0))− (m(0), c(0))

∥∥.
Computing the expectation on the events such that this is verified and the others, we get:

(5.3) ≤ Lr max
t≤T
Et(ε, εN0)

(
1− T 2S2 exp(−2εN)

)
+DT 2S2 exp(−2εN),

where D
def
= supx∈B ‖x‖ with B a bounded set such that P

(
(MN

π (t), CNπ (t)) ∈ B
)

= 1
(see the remark above Equation (5.1)).

Let us define E(N, εN0)
def
= infε>0 Lr maxt≤T Et(ε, εN0)

(
1− T 2S2 exp(−2εN)

)
+

DT 2S2 exp(−2εN). The function E(., .) satisfies the two requirements of the theorem.

Now, let us consider the problem of convergence of the reward under the optimal
strategy of the controller. First, it should be clear that the optimal strategy exists for the
limit system. Indeed, the limit system being deterministic, starting at state (m(0), c(0)),
one only needs to know the actions to take for all (m(t), c(t)) to compute the reward. The

optimal policy is deterministic and v∗(m(0), c(0))
def
= supa∈AT {va(m(0), c(0))}. Since the

action set is compact, this supremum is a maximum: there exists a sequence of actions
a∗ = a∗0a

∗
1 . . . – depending on m(0), c(0) – such that v∗(m(0), c(0)) = va∗(m(0), c(0)).

Such a sequence is not unique and in many cases there are multiple optimal action
sequences. In the following, a∗ design one of them and will be called the sequence of
optimal limit actions.

85

Chapter 5. Optimization in Discrete Time

Theorem 5.5. (Convergence of the optimal reward) Under assumptions (A1,
A2, A3, A4), if

∥∥(MN (0), CN (0))− (m(0), c(0))
∥∥ goes to 0 when N goes to infinity, the

optimal reward of the stochastic system converges to the optimal reward of the deterministic
limit system:

lim
N→∞

V N
∗
(
MN (0), CN (0)

)
= lim
N→∞

V N
a∗
(
MN (0), CN (0)

)
= v∗(m(0), c(0)), a.s.

In words, this theorem states two important results. Firstly, as N goes to infinity, the
reward of the stochastic system goes to the reward of its deterministic limit. Secondly, the
reward of the optimal policy under full information V N

∗
(
MN (0), CN (0)

)
is asymptotically

the same as the reward obtained when applying to the stochastic system a sequence of
optimal actions of the deterministic limit, both being equal to the optimal reward of the
limit deterministic system, v∗T (m(0), c(0)).

Proof. Let a∗ be a sequence of optimal actions for the deterministic limit starting at
m(0), c(0). Lemma 5.3 shows that limN→∞ V

N
a∗
(
MN (0), CN (0)

)
= va∗(m(0), c(0)) =

v∗(m(0), c(0)). This shows that

lim inf
N→∞

V N
∗
(
MN (0), CN (0)

)
≥ lim inf

N→∞
V N
a∗
(
MN (0), CN (0)

)
= v∗(m(0), c(0))

Conversely, let πN∗ be an optimal policy for the stochastic system and AN
πN∗

the

(random) sequence of action AN
πN∗

(t)
def
= πN∗ (MN (t), CN (t)). This policy is suboptimal for

the deterministic limit: v∗(m(0), c(0)) ≥ vAN
πN∗

(m(0), c(0)). Using Proposition 5.4,

V N
∗
(
MN (0), CN (0)

)
= V N

πN∗

(
MN (0), CN (0)

)
≤ vAN

πN∗
(m(0), c(0)) + E(N, εN0)

≤ v∗(m(0), c(0)) + E(N, εN0)

where E(., .) is defined as in Proposition 5.4 and εN0
def
=
∥∥(MN (0), CN (0))−(m(0), c(0))

∥∥.
Since, limN→∞ E(N, εN0) = 0, lim supN→∞ V

N
∗
(
MN (0), CN (0)

)
≤ v∗(m(0), c(0)).

This result has several practical consequences. Recall that the sequence of actions
a∗0 . . . a

∗
T−1 is a sequence of optimal actions in the limit case, i.e. such that va∗(m, c) =

v∗(m, c). This result proves that as N grows, the reward of the constant policy a∗0, . . . , a
∗
t−1

converges to the optimal reward. This implies that the difference between the reward
of the best complete information policies and the best incomplete information policies
vanishes. However, the state (MN (t), CN (t)) is not deterministic and on one trajectory
of the system, it could be quite far from its deterministic limit (m(t), c(t)). Let us also
define the policy µ∗t (m(t), c(t)) which is optimal for the deterministic system starting at
time t in state m(t), c(t). The least we can say is that this strategy is also asymptotically
optimal, that is for any initial state MN (0), CN (0):

lim
N→∞

V N
µ∗

(
MN (0), CN (0)

)
= lim
N→∞

V N
a∗

(
MN (0), CN (0)

)
= lim
N→∞

v∗(m(0), c(0)). (5.4)

In practical situations, using this policy in the original system will decrease the risk
of being far from the optimal state. On the other hand, using this policy has some
drawbacks. The first one is that the complexity of computing the optimal policy for all
states can be much larger than the complexity of computing a∗. Moreover, the system

86

5.3. Finite time convergence and optimal policy

becomes very sensitive to random perturbations and therefore harder to analyze: the
policy µ∗ is not necessarily continuous and MN

µ , C
N
µ may not have a limit. In Section 5.4,

a comparison between the performances of a∗ and µ∗ is provided over an example and
we see that the performance of µ∗ is much better, especially for small values of N .

5.3.3. Second order results

In this part we give bounds on the gap between the stochastic system and its deterministic
limit. This result provides estimates on the speed of convergence to the mean field limit.
These theorems have a flavor of central limit theorems in the sense that the convergence
speed towards the limit is of order 1/

√
N . This section contains two main results:

The first one is that when the control action sequence is fixed, the gap to the mean field
limit decreases as the inverse square root of the number of objects. The second result
states that the gap between the optimal reward for the finite system and the optimal
reward for the limit system also decreases as fast as 1/

√
N .

Proposition 5.6. Under assumptions (A1,A2,A3,A4), there exist constants βt, β
′
t and

a sequence of constants eNt only dependent on the parameters of the system such that:

√
NE

(∥∥(MN
π (t), CNπ (t))−(mπ(t), cπ(t))

∥∥ : εN0
)
≤ βt + β′t

√
NεN0 + eNt (5.5)

where :

• E
(
· : εN0

)
designates the expectation knowing εN0 .

• εN0
def
=
∥∥(MN (0), CN (0)

)
− (m(0), c(0))

∥∥;

• βt, β′t are defined by β0 = 0, β′0 = 1 and for all t ≥ 0:

βt+1 = max{1, Lg}
(

(S + LK + 1)βt +
S

2

)
;

β′t+1 = max{1, Lg} (S + LK + 1)β′t;

• There exists a constant C > 0 such that eN0 = 0 and

eNt+1 = max{1, Lg}

(
(S + LK + 1) eNt + C

√
log(N)

N

)
.

In particular, for all t: limN→∞ e
N
t = 0.

Proof. See appendix 5.8.2.

An almost direct consequence of the previous result is the next theorem.

Theorem 5.7. Under assumptions (A1,A2,A3,A4), there exist constants γ and γ′ such

that if εN0
def
=
∥∥MN (0), CN (0)−m(0), c(0)

∥∥
• For any policy π:

√
N
∣∣∣V N
π

(
MN (0), CN (0)

)
− E

(
vNAnπ (m(0), c(0))

)∣∣∣ ≤ γ + γ′εN0 .

87

Chapter 5. Optimization in Discrete Time

• √
N
∣∣V N
∗
(
MN (0), CN (0)

)
− vN∗ (m(0), c(0))

∣∣ ≤ γ + γ′εN0 .

This theorem is the main result of this section. The previous result (Theorem 5.5)
says that lim supN→∞ V

∗N
T (MN (0),CN (0)) = lim supN→∞ V

N
a∗0...a

∗
T−1

(MN (0),CN (0)) =

v∗(m(0), c(0)). This new theorem says that both the gap between the cost under the
any policy for the original and the limit system and the gap between the optimal costs
for both systems are two random variables that decrease to 0 with speed

√
N . When

the parameters of the system are not Lipschitz but differentiable, this results can be
improved by showing that the term in 1/

√
N has a Gaussian law (see Theorem 5.8).

Proof. For any policy π, the expected reward of the stochastic system and the expected
reward of the deterministic limit under actions ANπ are:

V N
π

(
MN (0), CN (0)

)
=

T∑
t=1

E
(
r
(
MN
π (t), CNπ (t)

))
E
(
vNAnπ (m(0), c(0))

)
=

T∑
t=1

E
(

r
(
mANπ

(t), cANπ (t)
))

.

The first part of the theorem comes directly corollary of Proposition 5.6 and the fact that
if X and Y are two stochastic variables,and f is a real function Lipschitz of constant L
then E (|f(X)− f(Y)| ≤ L ‖X − y‖).

The second part is proved as Theorem 5.5 by bounding both part of the inequality (for
readability, the following equation is written suppressing the dependence in MN (0), CN (0)
and m(0), c(0)).

V N
∗ = supV N

π = V N
πN∗
≤ E

(
vAN

πN∗

)
+ (γ + γ′εN0)/

√
N ≤ v∗ + (γ + γ′εN0)/

√
N,

where εN0
def
=
∥∥MN (0), CN (0)−m(0), c(0)

∥∥ and πN∗ is the optimal policy of the stochastic
system of size N . The first inequality comes from the first part of this theorem, the
second from the fact that v∗ is the optimal reward of the deterministic system.

The other inequality is similar:

v∗ = va∗ ≤ V N
a∗ + (γ + γ′εN0)/

√
N ≤ V N

∗ + (γ + γ′εN0)/
√
N,

where a∗ is the sequence of optimal actions of the deterministic system.

In the case where the parameter are differentiable and not just only Lipschitz, the
Proposition 5.6 can be refined into Theorem 5.8 which is a central limit theorem for the
states.

(A4-bis) Initial Gaussian variable – There exists a Gaussian vector G0 of mean 0
with covariance Γ0 such that the vector

√
N((MN (0), CN (0)) − (m(0), c(0))) (with

S+d components) converges almost surely to G0.

(A5) Continuous differentiability – For all t and all i, j ∈ S, all functions g, Kij and
rt are continuously differentiable.

88

5.3. Finite time convergence and optimal policy

This differentiability condition is slightly stronger than the Lipschitz condition and is
indeed false in many cases because of boundary conditions. The initial state condition
is slightly stronger that (A4) but remains very natural. For example, if CN (0) if fixed
to some c(0) and if the initial states XN

1 . . . XN
N of all objects are independent and

identically distributed (i.i.d.), then
√
N((MN (0), CN (0))−(m(0), c(0))) converges in law

to a Gaussian variable G of the same covariance as XN
1 – this is just the multidimensional

central limit theorem, see for example Theorem 9.6 of Chapter 2 of [59]. The fact that we
assumed that the convergence holds almost surely rather that in law is just a technical
matter: we can replace the variables MN (0), CN (0) by random variables with the same
law that converge almost surely.

Theorem 5.8. (Mean field central limit theorem) Under assumption (A1,A2,
A3,A4bis,A5), if the actions taken by the controller are a0 . . . aT−1, there exist Gaussian
vectors of mean 0, G1 . . . GT−1 such that for every t:

√
N((MN (0),CN (0))−(m(0), c(0)), . . . , (MN (t),CN (t))−(m(t), c(t)))

L−→ G0, . . . , Gt.
(5.6)

Moreover if Γt is the covariance matrix of Gt, then:

Γt+1 =

[
Pt Ft
Qt Ht

]T
Γt

[
Pt Ft
Qt Ht

]
+

[
Dt 0

0 0

]
, (5.7)

where for all 1 ≤ i, j ≤ S and 1 ≤ k, ` ≤ d: (Pt)ij = Kij(at, c(t)),

(Qt)kj =
∑S

i=1mi
∂Kij
∂ck

(at, c(t)), (Ft)ik=
∂gk
∂mi

(mt+1, c(t)),(Ht)k` = ∂gk
∂c`

(m(t), c(t)), (Dt)jj =∑n
i=1mi(Pt)ij(1− (Pt)ij) and (Dt)jk = −

∑n
i=1mi(Pt)ij(Pt)ik (j 6= k).

Proof. The proof is done by induction on t. We show that each time step:

• a new Gaussian error independent of the past is created by the Markovian evolution
of the objects.

• Since all of the evolution parameters are differentiable, the Gaussian error of time
t is scaled by a linear transformation.

The proof is detailed in Appendix 5.8.3.

5.3.4. Beyond square-root convergence

So far, we have proved that as N grows, the system gets closer to a deterministic one: if
at time t the system is in state MN (t), then at time t+ 1, the state of the system is close
to MN (t)K(t). Moreover, we have shown that the optimal policy for the deterministic
limit is asymptotically optimal for the stochastic system as well and we give bounds for
the speed of convergence. The mean field central limit theorem (Theorem 5.8) shows
that MN (t+ 1) ≈MN (t)K(t) + 1√

N
G(t). This should be an even better approximation

of the initial system. The purpose of this part is to show that this approximation is
indeed better than mean field, in the sense that it leads to an error on the reward of

order
√

logN
N instead of 1√

N
.

For any policy π and any initial condition MN (0), CN (0) of the original process, let us

define a coupled process M̃N
π (t), C̃Nπ (t) in RS × Rd as follows:

89

Chapter 5. Optimization in Discrete Time

• (M̃N
π (0), C̃Nπ (0))

def
= (MN (0), CN (0))

• for t ≥ 0:

M̃N
π (t+ 1)

def
= M̃N

π (t)K(AN (t), C̃Nπ (t)) +Gt(A
N (t), C̃Nπ (t))

C̃Nπ (t+ 1)
def
= g(C̃Nπ (t), M̃N

π (t+ 1), AN (t))

where AN (t)
def
= πt(M̃

N
π (t), C̃Nπ (t)) and Gt(a, C̃

N
π (t)) is a sequence of i.i.d. Gaussian

random variables independent of all M̃N
π (t′), C̃Nπ (t′) for t′ < t, corresponding to

the error added by the random evolution of the objects between time t and time
t + 1. The covariance of Gt(a,C) is a S × S matrix D(a,C) where if we denote

Pij
def
= Kij(a,C), then for all j 6= k:

Djj(a,C) =

n∑
i=1

miPij(1− Pij) and Djk(a,C) = −
n∑
i=1

miPijPik

Notice that M̃N is not a positive measure anymore, but a signed element of RS . The
Lipschitz functions rt and g are originally only defined for positive vectors but can be
extended to RS × Rd (theorem of Kirszbraun, [132]) with the same Lipschitz constants.

In the following, the process (M̃N
π (t), C̃Nπ (t)) is called the mean field Gaussian approx-

imation of (MN
π (t), CNπ (t)). As for the definition of V N

π

(
MN (0), CN (0)

)
, we define the

expected reward of the mean field Gaussian approximation by:

WN
π

(
MN (0), CN (0)

)
= E

(
T∑
t=1

rt

(
M̃N
π (t), C̃Nπ (t)

))
.

The optimal cost of the mean field Gaussian approximation starting from the point(
MN (0), CN (0)

)
is WN

∗

(
MN (0), CN (0)

)
= supπW

N
π

(
MN (0), CN (0)

)
. The following

result shows that the Gaussian approximation is indeed a very accurate approximation
of the original system.

Theorem 5.9. Under assumptions (A1,A2,A3,A4), there exists a constant H indepen-
dent of MN , CN such that

(i) for all sequence of actions a = a1 . . . aT :

∣∣V N
a (MN , CN)−WN

a (MN , CN)
∣∣ ≤ H√log(N)

N
.

(ii) ∣∣V N
∗ (MN , CN)−WN

∗ (MN , CN)
∣∣ ≤ H√log(N)

N
.

Proof. The proof is detailed in Appendix 5.8.4.

90

5.4. Application to a brokering problem

...

A on/off
sources

Y (t)

tasks

a1(t)Y (t)

ad(t)Y (t)

Broker

...

µ1

µ1

P1 procsC1

...

µd

µd

Pd procsCd

...

Figure 5.1.: The routing system

5.4. Application to a brokering problem

To illustrate the usefulness of our framework, let us consider the following model of a
brokering problem in computational grids. There are A application sources that send
tasks into a grid system and a central broker routes all theses tasks into d clusters (seen
as multi-queues) and tries to minimize the total waiting time of the tasks. A similar
queuing model of a grid broker was used in [120, 32, 33].

Here, time is discrete and the A sources follow a discrete on/off model: for each source

j ∈ {1 . . . A}, let (Yj(t))
def
= 1 if the source is on (i.e. it sends a task between t and t+ 1)

and 0 if it is off. The total number of tasks sent between t and t+ 1 is Y (t)
def
=
∑

j Yj(t).
Each queue i ∈ {1 . . . d} is composed of Pi processors, and all of them work at speed
µi when available. Each processor j ∈ {1 . . . Pi} of the queue i can be either available

(in that case we set Xij(t)
def
= 1) or broken (in that case Xij(t)

def
= 0). The total number

of processors available in the queue i between t and t+ 1 is Xi(t)
def
=
∑

j Xij(t) and we
define Bi(t) to be the total number of tasks waiting in the queue i at time t. At each time
slot t, the broker (or controller) allocates the Y (t) tasks to the d queues: it chooses an
action a(t) ∈P({1 . . . Yt}d) and routes each of the Y (t) tasks to queue i with probability
ai(t). The system is represented figure 5.1. The number of tasks in the queue i (buffer
size) evolves according to the following relation:

Bi(t+ 1) =
(
Bi(t)− µiXi(t) + ai(t)Y (t)

)+
. (5.8)

The cost that we want to minimize is the sum of the waiting times of the tasks. Between
t and t+ 1, there are

∑
iBi(t) tasks waiting in the queue, therefore the cost at time t

is rt(B)
def
=
∑

iBi(t). As we consider a finite horizon, we should decide a cost for the

remaining tasks in the queue. In our simulations, we choose rT (B)
def
=
∑

iBi(T).

This problem can be viewed as a multidimensional restless bandit problem where
computing the optimal policy for the broker is known to be a hard problem [149]. Here,
indexability may help to compute near optimal policies by solving one MDP for each
queue [149, 148]. However the complexity remains high when the number of processors
in all the queues and the number of sources are large.

5.4.1. Mean field limit

This system can be modeled using the framework of objects evolving in a common
environment.

91

Chapter 5. Optimization in Discrete Time

• There are N
def
= A+

∑d
i=1 Pi “objects”. Each object can either be a source (of type

s) or a server (belonging to one of the queues, q1 · · · qd), and can either be “on” or
“off”. Therefore, the possible states of one object is an element of S =

{
(x, e)|x ∈

{s, q1, · · · , qd}, e ∈ {on, off}
}

. The population mix M is the proportion of sources in
state on and the proportion of servers in state on, for each queue.

• The action of the controller are the routing choices of the broker: ad(t) is the probability
that a task is sent to queue d at time t.

• The environment of the system depends on the vector B(t) = (B1(t) . . . Bd(t)), giving
the number of tasks in queues q1, . . . qd at time t. The time evolution of the i-th
component is

Bi(t+ 1) = gi(B(t),MN (t+ 1), a(t))
def
=
(
Bi(t)− µiXi(t) + ai(t)Y (t)

)+
.

The shared environment is represented by the context CN (t)
def
= (B1(t)

N . . . Bd(t)
N).

• Here, the transition kernel can be time dependent but is independent of a and C.
The probability of a object to go from a state (x, e) ∈ S to (y, f) ∈ S is 0 if x 6= y (a
source cannot become a server and vice-versa). If x = y then K(x,on),(x,off)(a,C)(t) as
well as K(x,off),(x,on)(a,C)(t) are arbitrary probabilities.

Here is how a system of size N is defined. A preliminary number of sources A0 as well
as a preliminary number Pi of servers per queue is given, totaling in N0 objects. For
any N , a system with N objects is composed of bA0N/N0c (resp. bPiN/N0c) objects
that are sources (resp. servers in queue i). The remaining objects (to reach a total of N)
are allocated randomly with a probability proportional to the fractional part of A/N0

and PiN/N0 so that the mean number of objects that are sources is A/N0 and the mean
number of objects that are servers in queue i is PiN/N0. Then, each of these objects
changes state over time according to the probabilities Ku,v(a,C)(t). At time t = 0, a
object is in state “on” with probability one half.

One can easily check that this system satisfies Assumptions (A1) to (A4) and therefore
one can apply the convergence Theorem 5.5 that shows that if using the policies a∗ or
µ∗, when N goes to infinity the system converges to a deterministic system with optimal
cost. An explicit computation of the policies a∗ and µ∗ is possible here and is postponed
to Section 5.4.2. Also note that Assumption (A4-bis) on the convergence of the initial
condition to a Gaussian variable is true since the random part of the initial state is
bounded by N0

N and
√
N N0

N goes to 0 as N grows.

5.4.2. Optimal policy for the deterministic limit

As the evolution of the sources and of the processors does not depend on the environment,
for all i, t, the quantities µiXi(t) and Y (t) converge almost surely to deterministic values
that we call xi(t) and y(t). If yi(t) is the number of tasks distributed to the ith queue at
time t, ci(t+ 1) = (ci(t) + yi(t)− xi(t))+. The deterministic optimization problem is to
compute

min
y1(1)...yd(T)

{
T∑
t=1

d∑
i=1

ci(t) with

{
ci(t+ 1) = (ci(t) + yi(t)− xi(t))+∑

i yi(t) = y(t)

}
. (5.9)

92

5.4. Application to a brokering problem

Let us call wi(t) the work done by the queue i at time t: wi(t) = ci(t)−ci(t−1)+yi(t−1).
The sum of the size of the queues at time t does not depend on with queue did the job
but only on the quantity of work done:

d∑
i=1

ci(t) =
d∑
i=1

ci(0)−
∑
u≤t,i

wi(t).

Therefore to minimize the total cost, we have to maximize the total work done by the
queues. Using this fact, the optimal strategy can be computed by iteration of a greedy
algorithm. See [69] for more details.

The principle of the algorithm is the following.

1. The processors in all queues, which are “on” at time t with a speed µ are seen as
slots of size µ.

2. At each time t, y(t) units of tasks have to be allocated. This is done in a greedy
fashion by filling up the empty slots starting from time t. Once all slots at time
t are full, slots at time t+ 1 are considered and are filled up with the remaining
volume of tasks, and so forth up to time T .

3. The remaining tasks that do not fit in the slots before T are allocated in an arbitrary
fashion.

5.4.3. Numerical examples

We consider a simple instance of the resource allocation problem with 5 queues. Initially,
they have respectively 1, 2, 2, 3 and 3 processors running at speed .5, .1, .2, .3 and .4
respectively. There are 3 initial sources and the time horizon T equals 40. The transition
matrices are time dependent and are chosen randomly before the execution of the
algorithm – that is they are known for the computation of the optimal policy and are
the same for all experiments. We ran some simulations to compute the expected cost of
different policies for various sizes of the system. We compare different policies:

1. Deterministic policy a∗ – to obtain this curve, the optimal actions a∗0 . . . a
∗
T−1 that

the controller must take for the deterministic system have been computed. At time
t, action a∗t is used regardless of the currently state, and the cost up to time T is
displayed.

2. Limit policy µ∗ – here, the optimal policy µ∗ for the deterministic case was first
computed. When the stochastic system is in state (MN (t),CN (t)) at time t, we
apply the action µ∗t (M

N (t),CN (t)) and the corresponding cost up to time T is
reported.

3. Join the Shortest Queue (JSQ) and Weighted Join the Shortest Queue (W-JSQ) –
for JSQ, each task is routed (deterministically) in the shortest queue. In W-JSQ, a
task is routed in the queue whose weighted queue size Bi/(µiXi) is the smallest.

The results are reported in Figures 5.2 and 5.3.
A series of several simulations for with different values of N was run. The reported

values in the figures are the mean values of the waiting time over 10000 simulations for
small values of N and around 200 simulations for big values of N . Over the whole range

93

Chapter 5. Optimization in Discrete Time

C
os

t
(a

ve
ra

ge
w

a
it

in
g

ti
m

e)

 0

 100

 200

 300

 400

 500

 10 100 1000 10000

Deterministic cost
a* policy
µ* policy

JSQ
weighted JSQ

Size of the system: N

Figure 5.2.: Expected cost of the policies a∗, µ∗, JSQ and W-JSQ for different values of
N .

for N , the 95% confidence interval is less than 0.1% for the expected cost – Figure 5.2 –
and less than 5% for the central limit theorem – Figure 5.3.

Figure 5.2 shows the average waiting time of the stochastic system when we apply the
different policies. The horizontal line represents the optimal cost of the deterministic
system v∗(m0, c0) which is probably less than V N

∗ (M(0),C(0)). This figure illustrates
Theorem 5.5: if we apply a∗ or µ∗, the cost converges to v∗(m(0), c(0)).

In Figure 5.2, one can see that for low values of N , all the curves are not smooth.
This behavior comes from the fact that when N is not very large with respect to N0,
there are at least b NN0

Ac (resp. b NN0
Pic) objects that are sources (resp. processors in

queue i) and the remaining objects are distributed randomly. The random choice of the
remaining states are chosen so that E

(
AN
)

= N
N0
A, but the difference AN −NN0A may

be large. Therefore, for some N the load of the system is much higher than the average
load, leading to larger costs. As N grows, the proportion of remaining objects decreases
and the phenomena becomes negligible.

A second feature that shows in Figure 5.2, is the fact that on all curves, the expected
waiting times are decreasing when N grows. This behavior is certainly related to Ross
conjecture [126] that says that for a given load, the average queue length decreases when
the arrival and service processes are more deterministic.

Finally, the most important information on this figure is the fact that the optimal
deterministic policy and the optimal deterministic actions perform better than JSQ and
weighted JSQ as soon as the total number of elements in the system is over 200 and 50
respectively. The performance of the deterministic policy a∗ is quite far from W-JSQ and

94

5.5. Extensions and Counter-Examples

√
N

(V
N X
−
v ∗

)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 100 1000 10000

a* policy
µ* policy

Size of the system: N

Figure 5.3.: Speed of convergence of the policies X = a∗ or µ∗ for different values of N .

JSQ for small values of N , and it rapidly becomes better than JSQ (N ≥ 30) and W-JSQ
(N ≥ 200). Meanwhile the behavior of µ∗ is uniformly good even for small values of N .

Figure 5.3 illustrates Theorem 5.7 which says that the speed of convergence towards
the limit is of order

√
N . On the y-axis,

√
N times the average cost of the system minus

the optimal deterministic cost is plotted. One can see that the gap between the expected
cost of the policy µ∗ (resp. a∗) and the deterministic cost v∗(m(0), c(0)) is about 250/

√
N

(resp. 400/
√
N) when N is large. This shows that the speed of convergence of 1/

√
N is a

tight bound. This should be an upper bound on the constant δ defined in Equation (5.7).

Besides comparing a∗ and µ∗ to other heuristics, it would be interesting to compare it
to the optimal policy of the stochastic system, whose cost is V N

∗ (M(0),C(0)). One way
to compute this optimum would be by using Bellman fixed point equation. However to
do so, one needs to solve it for all possible values of M and C. In this example, C can
be as large as the length of the five queues and each object’s state can vary in {on,off}.
Therefore even with N = 10 and if we only compute the cost for queues of size less
than 10, this leads to 2N105 ≈ 108 states which is hard to handle even with powerful
computers.

5.5. Extensions and Counter-Examples

This part is devoted to several extensions of the previous results as well as to some
counter-examples showing the limitations of the mean field model.

95

Chapter 5. Optimization in Discrete Time

5.5.1. Object-Dependent Actions

Up to now, we have assumed that the controller takes the same action for all objects.
Here, we show that our framework can also be used in the case where the controller can
take a different action for each object, depending on its state but also on the object itself.

For that, we consider the following new system. The state of the system is the states
of the N objects XN (t) = (XN

1 (t) . . . XN
N (t)) and the state of the context. At each time

step, the controller chooses an N -uple of actions a1 . . . aN ∈ A and uses the action ai for
the ith object. We assume that A is finite. The reward and the evolution of the context
is defined as before and we call V N

od∗(XN (0),CN (0)) the optimal reward of this system
over a finite horizon [0;T] where od stands for “Object-Dependent”-actions.

As before, MN (0)
def
= N−1

∑N
n=1 δXN

n (0) is the empirical measure of XN (0). We consider

our original problem in which we replace the action set A by P(A)S . An action is a
S-uple (p1 . . . pS). If the controller takes the action p, then an object in state i will
choose an action a according to the distribution p and evolves independently according
to K(a,C).

Compared to the problem in which the action sent is object-dependent, the action of
the controller in the latter case is more constrained since it can not choose which object
or even the exact number of objects receiving a particular action. However, as we see
in Proposition 5.10, this difference collapses as N grows. Other results, such as second
order results, also hold.

Proposition 5.10. If g,K,A,MN (0),CN (0) satisfy assumptions (A1,A2,A3,A4), then
the object-dependent reward V N

od∗ converges to the deterministic limit:

lim
N→∞

V N
od∗(XN (0),CN (0)) = lim

N→∞
V N
∗ (MN (0),CN (0)) = v∗(m(0), c(0))

where the deterministic limit has an action set P(A).

Sketch of proof. To each N -uple a = a1 . . . aN ∈ AN and each vector XN ∈ SN , we
associate a S-uple of probability measures on the set A defined by

(pa,XN)i
def
=

1∑N
n=1 1XN

n =i

N∑
n=1

1XN
n =iδan .

For b ∈ A, (pa,XN)i(b) represents the average number of objects in state i that received
the action b.

One can show that starting from XN (t),CN (t) and applying action a or pa,XN (t) both

lead to the same almost sure limit for (MN (t + 1),CN (t + 1)). Then one can show
by induction on the time-horizon T that the reward under a fixed sequence of action
V N
od∗(XN (0),CN (0)) is asymptotically equal to V N

∗ (MN (0),CN (0)).
Then remarking that (P(A))S also satisfies hypothesis (A2) and (A3) – it is compact

and the mappings g, K and r are uniformly continuous if pa ∈P(A) – we can apply the
rest of the results and show that the reward converges to the deterministic counterpart.

5.5.2. Infinite horizon discounted reward

In this section, we prove first and second order results for infinite-horizon discounted
Markov decision processes. As in the finite case, we will show that when N grows large,

96

5.5. Extensions and Counter-Examples

the maximal expected discounted reward converges to the one of the deterministic system
and the optimal policy is also asymptotically optimal. To do this, we need the following
new assumptions:

(A6) Homogeneity in time – The reward rt and the probability kernel Kt do not
depend on time: there exists r,K such that, for all M,C, a rt(M,C) = r(M,C) and
Kt(a,C) = K(a,C).

(A7) Bounded reward – supM,C r(M,C) ≤ K <∞.

The homogeneity in time is clearly necessary as we are interested in infinite-time
behavior. Assuming that the cost is bounded might seem strong but it is in fact very
classical and holds in many situation, for example when C is bounded. The rewards are
discounted according to a discount factor 0 ≤ δ < 1: if the policy is π, the expected total
discounted reward of π is (δ is omitted in the notation):

V N
π (MN (0),CN (0))

def
= Eπ(

∞∑
t=1

δt−1r(MN (t),CN (t))).

Notice that Assumption (A7) implies that this sum remains finite. The optimal total
discounted reward V N

∗ is the supremum on all policies. For T ∈ N, the optimal discounted
finite-time reward until T is

V N
T∗(M(0),C(0))

def
= sup

π
Eπ(

T∑
t=1

δt−1r(M(t),C(t))).

As r is bounded by K <∞, the gap between V N
T∗ and V N

∗ can be bounded independently
of N,M,C: ∣∣V N

T∗(M,C)− V N
∗ (M,C)

∣∣ ≤ K ∞∑
t=T+1

δt = K
δT+1

1− δ
. (5.10)

In particular, this shows that V N
T∗ converges uniformly in (M,C) and N to V N

∗ as T goes
to infinity:

lim
T→∞

sup
N,M,C

∣∣V N
T∗(M,C)− V∗N (M,C)

∣∣ = 0.

Equation (5.10) is the key of the following analysis. Using this fact, we can prove the
convergence when N grows large for fixed T and then let T go to infinity. Therefore with
very few changes in the proofs of Section 5.3.2, we have the following result:

Theorem 5.11. (Optimal discounted case) Under assumptions (A1,A2,A3,A4,A6,
A7), as N grows large, the optimal discounted reward of the stochastic system converges
to the optimal discounted reward of the deterministic system:

lim
N→∞

V∗
N (MN ,CN) =a.s v∗(m, c),

where v∗(m, c) satisfies the Bellman equation for the deterministic system:

v∗(m, c) = r(m, c) + δ sup
a∈A

{
v∗(Φa(m, c))

}
.

97

Chapter 5. Optimization in Discrete Time

The first order of convergence for the discounted cost is a direct consequence of the
finite time behavior convergence. However, when considering second order results, similar
difficulties as in the infinite horizon case arise and the convergence rate depends on the
behavior of the system when T goes to infinity.

Proposition 5.12. Under assumptions (A1,A2,A3,A4,A6,A7) and if the functions
c 7→ K(a, c), (m, c) 7→ g(c,m, a) and (m, c) 7→ r(m, c) are Lipschitz with constants

LK ,Lg and Lr satisfying max(1, Lg)(S + LK + 1)δ < 1, the constants H
def
= Lr

∑
t δ
tβt

and H ′
def
= Lr

∑
t δ
tβ′t yield

lim
N→∞

√
N
∥∥V N
∗ (MN (0),CN (0))− v∗(m(0), c(0))

∥∥ ≤ H +H ′
√
NεN0

where εN0
def
=
∥∥(MN (0),CN (0)

)
− (m(0), c(0))

∥∥ and βt and β′t are defined in Proposition
5.6.

Proof. (sketch) This result is a direct consequence of Proposition 5.6 and can be proved
similarly to Theorem 5.7. In particular, it uses the fact that in Equation (5.5) of
Proposition 5.6,

√
NE

(∥∥∥(MN
π (t), CNπ (t)

)
−
(
mANπ

(t), cANπ (t)
)∥∥∥) ≤ βt + β′t

√
NεN0 + eNt , (5.11)

the growth of the constants βt and β′t and eNt is bounded by a factor max(1, Lg)(S +
LK + 1).

Example 1. This example is a system without control. We show that even in this
simple case,

∑
t=0 δ

t
√
N
(
r(MN (t))− r(m(t))

)
does not converge if δ does not satisfy the

assumptions of Proposition 5.12. The system is defined as follows:

• The state space is S = {0, 1} and the context is C(t)
def
= MN

0 (t) (C is the mean
number of particles in state 0). Therefore the interesting process is C(t).

• For any object, the probability of going to state 0 is f(C) (independent of the state)
where f is a piecewise linear function with f(0) = f(α) = 0 and f(1−α) = f(1) = 1
for a number α < 1

2 . The transition function is depicted on the left of Figure 5.4(a).

• The starting point is MN
0 (0) = C(0) = 1

2 .

• The reward function is r(M,C) =
∣∣C− 1

2

∣∣.
The deterministic limit of MN starting in 1

2 is constant equal to 1
2 . Therefore, the gap

between the discounted reward of the stochastic system and the discounted reward of the
limit normalized by

√
N is

∑∞
t=0 δ

t
√
N
∣∣CN (t)− 1

2

∣∣.
The process CN (t) − 1

2 is quite complicated. However for any finite horizon [0;T],
if N is large enough, CN (t) − 1

2 is close 0 with high probability. During this time,√
N(CN (t)− 1

2) is close to the process (Y N (t))t∈N where Y N (t) is defined by Y N (0) = 0

and XN
t+1 = LXN

t +Gt where L is the Lipschitz constant of f , L
def
= 1

1−2α , and Gt are
i.i.d Gaussian variables of mean 0 and variance 1/4. As sum of i.i.d Gaussian variables,

XN
t is a Gaussian variable of variance

∑t−1
i=0 L

2i = L2t 1−L−2t

L2−1
. Therefore, if δ ≥ 1/L,

E
(∑t−1

i=0 δ
t
∣∣XN

t

∣∣) goes to +∞ as t goes to infinity. By choosing T large enough, this

shows that
∑∞

t=0 δ
t
√
N
∣∣CN (t)− 1

2

∣∣ is not bounded as N grows.

98

5.5. Extensions and Counter-Examples

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f(.)

(a) Example 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f1(.)
f2(.)

(b) Example 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f1(.)
f2(.)

(c) Example 3

Figure 5.4.: The transitions functions of Examples 1, 2 and 3 (from left to right). On
each figure is draw the probability for an object to go in state 1 as a function
MN

0 for the different actions.

5.5.3. Average Reward

The discounted problem is very similar to the finite case because the total reward mostly
depends on the rewards during a finite amount of time. Here, we consider another
infinite-horizon criterion, namely the average reward. The optimal average reward is (if
it exists1)

V N
av∗ = lim

T→∞

1

T
VT∗(M(0),C(0)).

This raises the problem of the exchange of the limits N →∞ and T →∞. Consider a
case without control with two states S={0; 1} and C(t) is the mean number of objects in
state 1 (C(t) = (M(t))1) and with a function f :[0; 1]→[0; 1] such that the transition kernel
K is Ki1(C) = f(C) for i ∈ S. If MN

0 (0)
a.s.−−→ m0 then for any fixed t, MN (t) converges

to f(f(. . . f(m(0)) . . .)). However, in general we may have limt→∞ limN→∞MN (t) 6=
limN→∞ limt→∞MN (t). For example if f(x) = x, the deterministic system is constant
while the stochastic system converges almost surely to a random variable (as a bounded
Martingale) that only takes values in {0; 1}. In some situations, such as Example 2, the
optimal policy of the deterministic limit differs from the optimal policy for the stochastic
system.

Example 2. We consider a similar example as Example 1: there are two states and
CN = MN

0 (the proportion of objects in state 0). We consider two possible actions, say 1
and 2, corresponding to a probability to go from any state to 0 equal to f1(C) and f2(C)
respectively, defined by (see Figure 5.4(b)).

• f1(C) = 0.

• f2 is piecewise linear with f2(0) = 0.2, f2(0.1) = 0, f2(0.8) = 1, f2(1) = 1.

The reward function is r(C) = |C − 0.1|.
For the deterministic system, applying action 1 always makes the system converge to 0

while applying action 2 makes the system converge to .2 if we start in [0; 0.5) and 1 in
(0.5; 1]. Therefore, if we start in [0; .5), the average reward of the deterministic system is
maximized under action 1 (it gives 0.1).

For the stochastic system, applying action 1 makes the system converge to 0. However,
applying action 2 makes the system converge to 1: there is a small but positive probability

1If it does not exist, one may replace this limit by lim sup or lim inf.

99

Chapter 5. Optimization in Discrete Time

that MN goes to something greater than 0.8 at each step which makes the system go to 1.
Therefore, if we start in [0; .5), it is better to apply the action 2, which is different from
the optimal policy of the limit.

In the case without control, Proposition 5.13 gives the condition under which the
ergodic behavior of the system with N finite converges to the asymptotic behavior
of its deterministic limit. This result is similar to the classical results of stochastic
approximation theory concerning differential equations limit (see [47] for example).
However, no general results for the controlled problem is presented here since the
condition to apply theses results are too restrictive to be applied in practical situations
(see Example 3) for an example where many assumptions are verified but where we
cannot exchange the limits.

Let us assume that the context C is bounded (from above and from below). This
implies that the couple (M,C) lives in a compact set B ⊂ RS+d. Let fa : B → B denote
the deterministic function corresponding to one step of the evolution of the deterministic
limit under action a. The definition of fa is given by Equation (5.2):

fa(m, c) = (m′, c′) with

{
m′ = m ·K(a, c)
c′ = g(c,m′, a).

We say that a set H is an attractor of the function fa if

lim
t→∞

sup
x∈B

d(f ta(x), H) = 0,

where d(x,H) denotes the distance between a point x and a set H and f ta(x) denotes t
iterations of fa applied to x: f ta(x) = fa(fa(. . . fa(x))).

The following proposition shows that as t goes to infinity and N goes to infinity,
(MN (t), CN (t)) concentrates around the attractors of fa.

Proposition 5.13. Under assumptions (A1,A2,A3), if the controller always chooses
action a then for any attractor H of fa and for all ε > 0:

lim
N→∞

lim sup
t→∞

P
(
d
((
MN
a (t), CN (t)

)
, H
)
≥ ε
)

= 0

Proof. Let ε > 0. Since H is an attractor, there exists T such that

sup
x∈H

d(fTa (x), H) ≤ ε/2.

For all t ∈ N, using the triangular inequality, we have

d(XN (t+ T), H) ≤
∥∥XN (t+ T)− fTa (XN (t))

∥∥+ d(fTa (XN (t)), H).

By Theorem 5.1, the first part of this inequality is less than ET (δ, 0) with probability
greater than exp(−2Nδ2). Moreover, ET (δ, 0) converges to 0 as δ goes to 0. Therefore,
there exists δ such that ET (δ, 0) < ε/2. This implies that for such δ and all t ≥ 0,

P
(
d(XN (t+ T), H) ≥ ε

)
≤ 2TS2 exp(−2Nδ2),

which goes to 0 as N goes to infinity.

100

5.6. Computational issues

We say that a point x is an attractor of fa if {x} is an attractor of fa. As a direct
corollary of Proposition 5.13, we have:

Corollary 5.14. If the function fa has a unique attractor (m∞, c∞), then

lim sup
t→∞

∥∥(MN (t),CN (t)
)
− (m∞, c∞)

∥∥→ 0 in probability.

In the controlled case, there is no simple positive result under assumptions that are
easy to check in practice. In particular, assuming that all fa have the same attraction
point, does not ensure that the average reward converges to its deterministic counterpart
as Example 3 shows.

Example 3. As in the example 1, we consider a system with 2 states where CN = MN
0 is

the proportion of objects in state 0. The only difference here is that there are two possible
actions 1 and 2, corresponding to a probability of transition from any state to 0 of f1(C)
and f2(C). Both f1 and f2 are piecewise linear functions taking the values:

• f1(x) = 0.8 for x ≤ 0.2, 0.5 for x > 0.4;

• f2(x) = 0.5 for x ≤ 0.6, 0.2 for x > 0.6.

Figure 5.4(c) shows the transition functions. The reward is set to |CN − 1/2|.
Both f1 and f2 have the same attractor, equal to {1/2}. Moreover, one can prove

that under any policy, limN→∞ limt→∞MN
π (t) will converge to 0.5, leading to an average

reward of 0 regardless of the initial condition. However, if the deterministic limit starts
from the point CN (0) = .2, then by choosing the sequence of actions 1, 2, 1, 2 . . . the
system will oscillate between 0.2 and 0.8, leading to an average reward of 0.3.

This is caused by the fact that even if f1 and f2 have the same unique attractor, f1 ◦ f2

has 3 accumulation points: 0.2, 0.5 and 0.8.

5.6. Computational issues

Throughout the chapter, we have shown that if the controller uses the optimal policy µ∗

of the deterministic limit of the finite real system, the expected cost will be close to the
optimal one (Theorem 5.5). Moreover, Theorem 5.7 gives a bound on the error that we
make. However to apply these results in practice, a question remains: how difficult is it
to compute the optimal limit policy?

The first answer comes straight from the example. In many cases, even if the stochastic
system is extremely hard to solve, the deterministic limit is often much simpler. The best
case of course is, as in the example of Section 5.4, when one can compute the optimal
policy. If one can not compute it, there might also exist approximation policies with
bounded error (see [87] for a review on the subject). Imagine that a 2-approximation
algorithm exists for the deterministic system, then, Theorem 5.5 proves that for all ε, this
algorithm will be a (2+ε)-approximation for the stochastic system if N is large enough.
Finally, heuristics for the deterministic system can also be applied to the stochastic
version of the system.

If none of this works properly, one can also compute the optimal deterministic policy
by “brute-force” computations using the equation

vt...T∗(m, c) = rt(m, c) + sup
a
vt+1...T∗(Φa(m, c)),

101

Chapter 5. Optimization in Discrete Time

where vt...T∗ denotes the optimal reward of the deterministic limit over finite horizon
{t . . . T}. In that case, an approximation of the optimal policy is obtained by discretizing
the state space and by solving the equation backward (from t = T to t = 0), to obtain
the optimal policy for all states. The brute force approach can also be applied directly
on the stochastic equation using:

V N
t...T∗(M,C) = rt(M,C) + sup

a∈A
E
(
V N
t+1...T∗

(
ΦN
a (M,C)

))
.

However, solving the deterministic system has three key advantages. The first one is that
the size of the discretized deterministic system may have nothing to do with the size of
the original state space for N objects: it depends mostly on the smoothness of functions
g and φ rather than on N . The second one is the suppression of the expectation which
might reduce the computational time by a polynomial factor1 by replacing the |PN (S) |
possible values of MN

t+1 by 1. The last one is that the suppression of this expectation
allows one to carry the computation going forward rather than backward. This latter
point is particularly useful when the action set and the time horizon are small.

5.7. Conclusion and future work

In this chapter, we have shown how the mean field framework can be used in an
optimization context: the results known for Markov chains can be transposed almost
unchanged to Markov decision processes. We further show that the convergence to the
mean field limit in both cases (Markovian and Markovian with controlled variables)
satisfies a central limit theorem, providing insight on the speed of convergence. In the
next chapter, we consider the case of stochastic systems where the event rate depends on
N . in that case, the deterministic regime is given by differential equations.

5.8. Appendix: proofs

5.8.1. Proof of Theorem 5.1 (controlled mean field)

Let UNi,n(t) be a collection of i.i.d. random variables uniformly distributed on [0; 1]. Let

π = {πt : P(S)×Rd 7→ a} be a policy. The evolution of the process (MN (t), CN (t)) can
be defined as follows:

MN
j (t+ 1) =

1

N

S∑
i=1

NMN
i (t)∑

n=1

1Hij(ANπ (t),CN (t))≤UNi,n(t)≤Hij+1(ANπ (t),CN (t))

CN (t+ 1) = g(CN (t),MN (t+ 1), ANπ (t))

where Hij(a,C)
def
=
∑j−1

`=1 Ki`(a,C) and ANπ (t)
def
= πt(M

N (t), CN (t)).

Let BN
inj

def
= 1Hij(ANπ (t),CN (t))≤UNi,n(t)≤Hij+1(ANπ (t),CN (t)). (BN

inj)i,n,N are i.i.d. Bernoulli

random variable with mean E
(
BN
inj |ANπ (t) = a,CN (t) = c

)
= Kij(a, c). Therefore, by

1The size of PN (S) is the binomial coefficient (N+1+S, S) ∼N→∞ NS

S!

102

5.8. Appendix: proofs

Hoeffding’s inequality (Inequality 2.3 of [88]), we have:

P

∣∣∣∣∣∣
NMN

i (t)∑
n=1

BN
inj(t)−NMN

i (t)Kij(A
N
π (t), CN (t))

∣∣∣∣∣∣ ≥ Nε
≤2 exp(−2

N

MN
i (t)

ε2)

≤ 2 exp(−2Nε2) (5.12)

Therefore, the quantity
∣∣∣∑NMN

i (t)
n=1 BN

inj(t)−NMN
i (t)Kij(A

N
π (t), CN (t))

∣∣∣ is less than Nε

for all i, j with probability greater than 1 − 2S2 exp(−2Nε2). If this holds for all i, j
and if

∥∥(MN (t), CN (t))− (m(t), c(t))
∥∥ ≤ εt, then for all 1 ≤ j ≤ S, the gap at time t+ 1

between the jth component of MN (MN
j (t+ 1)) and m (mj(t+ 1)) is:

∣∣∣MN
j (t+1)−mj(t+1)

∣∣∣ =

∣∣∣∣∣∣
S∑
i=1

1

N

NMN
i (t)∑

n=1

BN
inj(t)−mi(t)Kij(A

N
π (t), c(t))

∣∣∣∣∣∣
≤

S∑
i=1

1

N

∣∣∣∣∣∣
NMN

i (t)∑
n=1

BN
inj(t)−NMN

i (t)Kij(A
N
π (t), CN (t))

∣∣∣∣∣∣
+

S∑
i=1

∣∣(MN
i (t)−mi(t)

)∣∣Kij(A
N
π (t), CN (t))

+
S∑
i=1

mi(t)
∣∣Kij(A

N
π (t), CN (t))−Kij(A

N
π (t), c(t))

∣∣
+
∣∣ S∑
i=1

(
MN
i (t)−mi(t)

)(
Kij(A

N
π (t), CN (t))−Kij(A

N
π (t), c(t))

)∣∣
≤ Sε+ Sεt + LKεt + SLKε

2
t . (5.13)

where we use (5.12) for the first part of the inequality, the fact that Kij ≤ 1 for the

second and the fact that
∑S

i=1mi(t) = 1 and that K is Lipschitz with constant LK for
the third one.

Moreover, using the fact that g is Lipschitz with constant Lg (‖g(c,m, a)− g(c′,m′, a)‖ ≤
Lg ‖(c,m)− (c′,m′)‖), we have∥∥CN (t+ 1)− c(t+ 1)

∥∥ =
∥∥g(CN (t),MN (t), a)− g(c(t),m(t), a)

∥∥
≤ Lg max(εt, Sε+ Sεt + LKεt + SLKε

2
t)

≤ Lg(Sε+ Sεt + LKεt + SLKε
2
t).

This implies that∥∥(MN (t+1), CN (t+1))− (c(t+1),m(t+1))
∥∥ ≤ (Sε+ Sεt + LKεt + SLKε

2
t) max(Lg, 1)

≤ Et+1

(
ε,
∥∥MN (0), CN (0)−m(0), c(0)

∥∥) ,
where

Et+1 (ε, δ) =
(
Sε+ (2 + LK) Et (ε, δ) + LKEt (ε, δ)2

)
max(1, Lg).

By a direct induction on t, this holds with probability greater than 2(t+1)S2 exp(−2Nε2).

103

Chapter 5. Optimization in Discrete Time

5.8.2. Proof of Theorem 5.6 (second order result)

We are interested in comparing the behavior of (MN
π (t), CNπ (t)) and (mANπ

(t), cANπ (t))

where ANπ is the sequence of actions taken by the controller under policy π (ANπ is
a random variable depending on the values of (MN

π (t), CNπ (t))) and (mAN (t), cANπ (t))
corresponds to the value of the deterministic limit when the controller apply the sequence
of action ANπ . In order to improve the readability, we suppress the indexes π and
ANπ . Variables MN

π (t), CNπ (t),mANπ
(t), cANπ (t) will be denoted MN (t), CN (t),m(t), c(t),

respectively.

We will show Equation (5.5) by induction on t. Let us first recall that Equation (5.5)
is: √

NE
(∥∥(MN (t), CN (t)

)
− (m(t), c(t))

∥∥) ≤ βt + β′t
√
NεN0 + 1 + eNt ,

where εN0
def
= E

(∥∥(MN (0), CN (0)
)
− (m(0), c(0))

∥∥).
For t = 0, it is satisfied by taking βt = 0, β′t = 1 and εN (0) = 0.

Assume now that Equation (5.5) is true for some t ≥ 0. Let PN (t)
def
= K(AN (t), CN (t))

and p(t)
def
= K(AN (t), c(t)). PN (t) corresponds to the transition matrix at time t of the ob-

jects in the system of sizeN , p(t) is its deterministic counterpart.
∥∥MN (t+ 1)−m(t+ 1)

∥∥
can be decomposed in:∥∥MN (t+1)−m(t+1)

∥∥ ≤
∥∥MN (t+1)−MN (t)PN (t)

∥∥
+
∥∥(MN (t)−m(t)

)
PN (t)

∥∥
+
∥∥m(t)

(
PN (t)− p(t)

)∥∥
The central limit theorem shows that

√
N(MN (t+ 1)−MN (t)PN (t)) converges in law

to a Gaussian vector of mean 0 and covariance D where D is defined in Equation (5.15).
Moreover, by Lemma 5.18, there exists a constant α2 > 0 such that

√
NE

(∥∥MN (t+1)−MN (t)PN (t)
∥∥) ≤ S∑

i

√
NE

(∣∣MN (t+1)i − (MN (t)PN (t))i
∣∣)

+α2

√
log(N)

N

=

S∑
i=1

√
mipij(1− pij) + α2

√
log(N)

N

≤ S

2
+ α2

√
log(N)

N
. (5.14)

The other terms can be bounded using similar ideas as for proving Equation (5.13) in
the proof of Theorem 5.1. Since pij ≤ 1 and

∑S
i=1mi(t) = 1, we have for all 1 ≤ j ≤ S:

∣∣(MN (t)−m(t)
)
PN (t)

∣∣
j
≤

S∑
i=1

∣∣MN (t)−m(t)
∣∣
i
PNij (t) ≤ S

∥∥MN (t)−m(t)
∥∥ ; (5.15)

∣∣m(t)
(
PN (t)− p(t)

)∣∣
j
≤

S∑
j=1

mj(t)
∣∣PNij (t)− pij(t)

∣∣ ≤ LK ∥∥CN (t)− c(t)
∥∥ . (5.16)

104

5.8. Appendix: proofs

Combining Equations (5.14), (5.15) and (5.16), we get

√
NE

(∥∥MN (t+ 1)−m(t+ 1)
∥∥) ≤ S

2
+ (S + LK)

∥∥(MN (t), CN (t))− (m(t), c(t))
∥∥

+ α2

√
log(N)

N
.

Since CN (t + 1) = g(CN (t),MN (t), a) where (c,m) 7→ g(c,m, a) is a deterministic
Lipschitz function with constant Lg, we have:∥∥CN (t+ 1)− c(t+ 1)

∥∥ ≤ Lg max
(∥∥MN (t+ 1)−m(t+ 1)

∥∥ ,∥∥CN (t)− c(t)
∥∥)

≤ Lg
(∥∥MN (t+ 1)−m(t+ 1)

∥∥+
∥∥CN (t)− c(t)

∥∥)
≤ Lg

(
S

2
+ (S + LK + 1)

∥∥(MN (t), CN (t)
)
− (m(t), c(t))

∥∥
+α2

√
log(N)

N

)
.

Using the induction hypothesis, this implies that

√
NE

(∥∥(MN (t+ 1), CN (t+ 1)
)
− (m(t+ 1), c(t+ 1))

∥∥)
≤ max{1, Lg}

(
S

2
+ (S + LK + 1)

(
βt + β′tε

N
0 + eNt

)
+ α2

√
log(N)

N

)
.

5.8.3. Proof of Theorem 5.8 (mean field central limit theorem)

We first start by a technical lemma.

Lemma 5.15. Let MN be a sequence of random measures on {1, . . . , S} and PN a
sequence of random stochastic matrices on {1, . . . , S} such that (MN , PN)

a.s.−−→ (m, p).
Let (Uik)1≤i≤S,k≥1 be a collection of i.i.d. random variables following the uniform
distribution on [0; 1] and independent of PN and MN and let us define Y N such that for
all 1 ≤ j ≤ S,

Y N
j

def
=

1

N

S∑
i=1

NMN
i∑

k=1

1∑
l<j P

N
il <Uik≤

∑
l≤j P

N
il
.

Then there exists a Gaussian vector G independent of MN and PN and a random variable
ZN with the same law as Y N such that

√
N(ZN −MNPN)

a.s.−−→ G.

Moreover the covariance of the vector G is the matrix D:{
Djj =

∑
imipij(1− pij)

Djk = −
∑

imipijpik (j 6= k).
(5.17)

Proof. As (MN , PN) and (Uik)1≤i≤S,k≥1 are independent, they can be viewed as functions

on independent probability space Ω and Ω′. For all (ω, ω′) ∈ Ω×Ω′, we define XN
ω (ω′)

def
=√

N(Y N (ω, ω′)−MN (ω)PN (ω)).

105

Chapter 5. Optimization in Discrete Time

By assumption, for almost all ω ∈ Ω, (MN (ω), PN (ω)) converges to (m, p). A direct
computation shows that, when N grows, the characteristic function of XN

ω converges
to exp(−1

2ξ
TDξ). Therefore for almost all ω, XN

ω converges in law to G, a Gaussian
random variable on Ω′.

Therefore for almost all ω, there exists a random variable X
N
ω with the same law as

XN
ω that converges ω′-almost surely to G(ω′) (see [59] for details on that representation).

Let ZN (ω, ω′)
def
= MN (ω)PN (ω) + 1

NX
N
ω (ω′). By construction of X

N
ω , for almost all ω,

ZN (ω, .) has the same distribution as Y N (ω) and
√
N(ZN − Y NPN)

ω,ω′−a.s−−−−−→ G. Thus

there exists a function Z
N

(ω, .) that has the same distribution as Y N (ω) for all ω and
that converges (ω, ω′)-almost surely to G.

We are now ready for the proof of Theorem 5.8.

Proof. Let us assume that the Equation (5.6) holds for some t ≥ 0.
As
√
N((MN ,CN)(t)−(m, c)(t)) converges in law to Gt, there exists another probability

space and random variables M
N

and C
N

with the same distribution as MN and CN such

that
√
N((M

N
,C

N
)(t)− (m, c)(t)) converges almost surely to Gt [59]. In the rest of the

proof, by abuse of notation, we will write M and C instead of M and C and then we
assume that

√
N((MN (t),CN (t))− (m, c)(t))

a.s.−−→ Gt.
Gt being a Gaussian vector, there exists a vector of S+d independent Gaussian variables

U = (u1, . . . , uS+d)
T and a matrix ∆ of size (S+d)×(S+d) such that Gt = ∆U .

Let us call PNt
def
= K(at,C

N (t)). According to lemma 5.15 there exists a Gaussian
variable Ht independent of Gt and of covariance D such that we can replace MN (t+ 1)

(without changing MN (t) and CN (t)) by a random variable M
N

(t+ 1) with the same law
such that: √

N(M(t+ 1)N −M(t)NPNt)
a.s.−−→ Ht. (5.18)

In the following, by abuse of notation we will also write M instead of M. Therefore we
have

√
N(MN (t+ 1)−m(t)Pt) =

√
N
(

M(t+ 1)−MN (t)PNt +m(t)(PNt − Pt)+

(MN (t)−m(t))Pt + (MN (t)−m(t))(PNt − Pt)
)

a.s.−−→ Ht +m(t) lim
N→∞

√
N(PNt − Pt) + lim

N→∞

√
N(MN (t)−m(t))Pt.

By assumption, lim
√
N(MN (t) −m(t))i = (∆U)i. Moreover, the first order Taylor

expansion with respect to all component of C gives a.s.

lim
N→∞

m(t)
√
N(PNt − Pt)j =

S∑
i=1

mi(t)
d∑

k=1

∂Kij

∂ctk
(at, c(t))(XU)S+k

=
d∑

k=1

Qkj(∆U)S+k.

Thus, the jth component of
√
N(MN (t+ 1)−m(t)Pt) goes to

Ht +

d∑
k=1

Qkj(∆U)S+k +

S∑
i=1

(∆U)iPij (5.19)

106

5.8. Appendix: proofs

Using similar ideas, we can prove that
√
N(CN

k (t+ 1)− ck(t+ 1)) converges almost

surely to
∑S

i=0
∂gk
∂mi

(∆U)i+
∑d

`=0
∂gk
∂ct`

(∆U)S+`. Thus
√
N((MN (t+1),CN (t+1))−(m(t+

1), c(t+ 1))) converges almost surely to a Gaussian vector.

Let us write the covariance matrix at time t and time t+ 1 as two bloc matrices:

Γt =

[
∆ O

OT C

]
and Γt+1 =

[
∆′ O′

O′T C′

]
.

For 1 ≤ j, j′ ≤ S, ∆′j,j′ is the expectation of (5.19) taken in j times (5.19) taken in j′.
Using the facts that
E ((∆U)S+k(∆U)S+k′) = Ckk′ , E ((∆U)S+k(∆U)i) = Oik and E ((∆U)i(∆U)i′) = ∆ii′ ,
this leads to:

∆′j,j′ = E
(
HjH

′
j

)
+
∑
k,k′

QkjQk′j′Ckk′ +
∑
k,i′

QkjOi′kPi′j′

+
∑
i,k′

Qk′j′Oik′Pij +
∑
i,i′

Pij∆ii′Pi′j

= Djj′+(QTCQ)jj′+(QTOTP)jj′+(P TOQ)jj′+(P T∆P)jj′ .

By similar computation, we can write similar equations for O′ and C′ that lead to
Equation (5.7).

5.8.4. Proof of Theorem 5.9 (third order results)

In order to prove Theorem 5.9, we start with a result on the sharpness of the approximation
of the sum of Bernoulli random variable by a Gaussian distribution (Lemma 5.16).

Let Bi be independent Bernoulli random variables (i.e P (Bi = 1) = 1−P (Bi = 0) = p)
and let Y N = 1

N

∑N
i=1Bi. We know that in a sense, Y N is close to ZN = p+ 1√

N
G with

G a normal random variable of variance σ2 = E
(
(X0 − p)2

)
. We want to compute an

asymptotic development of the quantity:

dN =
∣∣E (f (Y N

))
− E

(
f
(
ZN
))∣∣

where f is a Lipschitz function of Lipschitz constant L. The quantity dN is called the
Wasserstein distance between Y N and ZN .

Let FN,p : R → [0 : 1] and Fp be respectively the CDF (Cumulative Distribu-
tion Function) of

√
N(Y N − p) and of the standard normal distribution: FN,p(x) =

P (
√
N(Y N − p) ≤ x) and Fp(x) = P (G ≤ x) where G is a normal variable of mean 0

and variance σ2 = p(1 − p) = E
(
(X0 − p)2

)
. Let U be a random variable uniformly

distributed in [0; 1]. dN can be rewritten as:

dN =

∣∣∣∣E(f(x+
σ√
N
F−1
N,p(U))− f(x+

σ√
N
F−1
p (U))

)∣∣∣∣ ≤ Lσ√
N

E
(
|F−1
N,p(U)− F−1

p (U)|
)

where F−1
N,p(U)

def
= min{y : FN,p(y) ≥ U}.

Therefore, the problem becomes to get an estimation of E
(
|F−1
N,p(U)− F−1

p (U)|
)

.

107

Chapter 5. Optimization in Discrete Time

Lemma 5.16. There exists a constant α1 independent of N,L, p such that if U is
a random variable uniformly distributed on [0; 1] and FN,p and F be the cumulative
distribution functions defined previously, then for N big enough,

E
(
|F−1
N,p(U)− F−1

p (U)|
)
≤ α1

√
log(N)

N
, (5.20)

where α1 < 356.

Proof. For more simplicity, in this proof, we omit the index p when writing FN,p and Fp.

E
(
|F−1
N (U)− F−1(U)|

)
=

∫ 1

0
|F−1
N (u)− F−1(u)|du (5.21)

The Berry-Essen theorem (see for example part 2.4.d of [59]) shows that supy∈R |FN (σy)−
F (σy)| ≤ 3ρ

σ3
√
N

where ρ = E
(
|X0 − p|3

)
. As F and FN are increasing, for all u ∈

(3ρ

σ2
√
N

; 1− 3ρ

σ2
√
N

), we have:

F−1(u− 3ρ

σ2
√
N

) ≤ F−1
N (u) ≤ F−1(u+

3ρ

σ2
√
N

).

Using these remarks, the symmetry of the function F and the fact that F−1(u+ ε)−
F−1(u) ≥ F−1(u)− F−1(u− ε) for u > 1/2, (5.21) is less than

2

(∫ kN

1
2

(
F−1(u+

3ρ

σ2
√
N

)− F−1(u)

)
du+

∫ 1

kN

|F−1
N (u)− F−1(u)|du

)
(5.22)

for all constant kN ∈ (1
2 ; 1− 3ρ

σ2
√
N

).

The function F−1 is continuously differentiable, therefore the mean value theorem says

that there exists v(u) ∈
(
u;u+ 3ρ

σ2
√
N

)
such that

F−1(u+
3ρ

σ2
√
N

)− F−1(u) =
3ρ

σ2
√
N

(F−1)′(v(u)) ≤ 3ρ

σ2
√
N

(F−1)′(u+
3ρ

σ2
√
N

).

Thus, the first part of inequality (5.22) is bounded by∫ kN

1
2

(
F−1(u+

3ρ

σ2
√
N

)− F−1(u)

)
du ≤ 3ρ

σ2
√
N

∫ kN

1
2

(F−1)′(u+
3ρ

σ2
√
N

)du

=
3ρ

σ2
√
N

(
F−1(kN +

3ρ

σ2
√
N

)− F−1(
1

2
)

)
≤ 3ρ

σ2
√
N
F−1(kN +

3ρ

σ2
√
N

). (5.23)

Using an integration by substitution with x = F−1(u) (and F ′(x)dx = du) and an
integration by part, we get:∫ 1

kN

F−1(u)du =

∫ ∞
F−1(kN)

xF ′(x)dx

=
[
x
(
F−1(x)− 1

)]∞
F−1(kN)

−
∫ ∞
F−1(kN)

(F (x)− 1) dx

= (1− kN)F−1(kN) +

∫ ∞
F−1(kN)

(1− F (x)) dx (5.24)

108

5.8. Appendix: proofs

For x ≥ 1, the tail of the distribution of a Gaussian variable satisfies:

1

2x
√

2π
exp(−x

2

2
) ≤ x

(1 + x2)
√

2π
exp(−x

2

2
) ≤ 1−F (x) ≤ 1

x
√

2π
exp(−x

2

2
) ≤ exp(−x

2

2
).

Moreover, for all u ≥ x ≥ 1 we have u2/2 − u ≥ x2/2 − x and
∫∞
x exp(−u2/2)du ≤∫∞

x exp(−x2/2 + x− u)du = exp(−x2/2). This leads to∫ ∞
F−1(kN)

1− F (x)dx ≤ exp(−F
−1(kN)

2
) ≤ 2

√
2πF−1(kN)(1− kN) (5.25)

for kN such that F−1
N (kN) ≥ 1.

Similarly,
∫∞
F−1(kN) 1−FN (x)dx can be bounded by the same method using Hoeffding’s

inequality FN (x) ≤ exp(−2x2) and we get:∫ 1

kN

F−1
N (u)du ≤ (1− kN)F−1

N (kN) + exp(−2F−1
N (kN)) (5.26)

with

exp
(
−2F−1

N (kN)
)
≤ exp

(
−2F−1(kN −

3ρ

σ2
√
N

)

)
≤ 2

√
2πF−1(kN −

3ρ

σ2
√
N

)(1− kN +
3ρ

σ2
√
N

)

Combining (5.22), (5.23), (5.24), (5.25) and (5.26), (5.21) is less than:

(5.21) ≤ (5.22)

≤ 2 [(5.23) + (5.24) + (5.26)]

≤ 2
3ρ

σ2
√
N
F−1

(
kN +

3ρ

σ2
√
N

)
+ 2(1− kN)(F−1

N (kN) + (1 + 2
√

2π)F−1(kN))

+4
√

2πF−1(kN −
3ρ

σ2
√
N

)(1− kN +
3ρ

σ2
√
N

) (5.27)

Let kN
def
= 1− 2 3ρ

σ2
√
N

. Since ρ is the third moment of a Bernoulli variable of mean p and

σ2 its variance, we have ρ/σ2 = p2 + (1− p)2 ∈ [.5; 1]. Moreover, the functions F−1 and
F−1
N are increasing. Using these facts, Equation (5.27) becomes

(5.21) ≤ F−1

(
1− 3ρ

σ2
√
N

)(
2

3ρ

σ2
√
N

)(
2 + 4 + 8

√
2π + 12

√
2π
)

+4
3ρ

σ2
√
N
F−1
N (1−2

3ρ

σ2
√
N

),

≤ 350√
N
F−1(1− 3

2
√
N

) +
12√
N
F−1
N (1− 3√

N
), (5.28)

where we used the fact that 2
√

2π < 6 and 6
√

2π < 16.
Hoeffding’s inequality 1− FN (x) ≤ exp(−2x2) shows that F−1

N (y) ≤
√
− log(1− y)/2.

Applying this formula to 1− 3/
√
N leads to:

F−1
N (1− 3√

N
) ≤

√
− log(

3√
N

)/2 =

√
log(N)

4
+

log(1/3)

2
≤
√

log(N)

2
.

109

Chapter 5. Optimization in Discrete Time

Similar inequality for the tail of the normal distribution leads to F−1(y) ≤
√
−2 log(1− y)

and F−1(1− 3/(2
√
N)) ≤

√
log(N).

This shows that:

(5.21) ≤ 356

√
log(N)√
N

.

This bound could be improved, in particular by a more precise analysis of (5.28), but
fulfills for our needs.

In the case where we sum only a fraction δN of the N Bernoulli variables, the result
still holds.

Lemma 5.17. Let 0 ≤ δN ≤ 1 be a random variable and b ∈ [0; 1] such that E |δN − b| ≤
α′
√

log(N)/N and U a random variable uniformly distributed on [0; 1] independent of
δN . Then:

E
(∣∣∣√δNF−1

NδN ,p
(U)−

√
bF−1

p (U)
∣∣∣) ≤ α2

√
log(N)

N

where α2 = α1 + max(α′,
√
α′ + 2)

Proof. Again, to ease the notations, we omit to write p in FN,p and Fp.

E
(∣∣∣√δNF−1

NδN
(U)−

√
bF−1(U)

∣∣∣) ≤ E
(∣∣∣√δNF−1

NδN
(U)−

√
δNF

−1(U)
∣∣∣)

+E
(∣∣∣(√δN −√b)F−1(U)

∣∣∣)
≤ α1

√
δN

√
log(NδN)

NδN
+ E

(∣∣∣√δN −√b∣∣∣)E (G)

The first part of the inequality comes from the Lemma 5.16 and is less than α1
log(N)
N since

δN ≤ 1. The last part comes from the fact that U and δN are independent. Moreover,
the variance of G is the variance of a Bernoulli variable, so E (|G|) ≤ 1/4.

To bound E
(∣∣∣√δN −√b∣∣∣), we distinguish two cases. If

√
b ≥ 1/

√
N , we have:

E
(∣∣∣√δN −√b∣∣∣) ≤ E


∣∣∣δN −√b∣∣∣
√
δN +

√
b

 ≤ E


∣∣∣δN −√b∣∣∣
√
b


≤
√
NE

(∣∣∣δN −√b∣∣∣) ≤ C ′√ log(N)

N
.

If
√
b ≤ 1/

√
N , we have:

E
(∣∣∣√δN −√b∣∣∣) ≤ E

(√
δN

)
+
√
b ≤ E

(√
|δN − b|

)
+ 2
√
b ≤

√
C ′

√
log(N)

N
+

2√
N
.

This shows the inequality.

The following lemma uses the previous results in the case of multidimensional Bernoulli
variables. A multidimensional Bernoulli variable B of parameter (p1 . . . pS) is a unit
vector ej on RS (its j-th component equals 1 and all others equal 0). The probability
that B = ej is pj .

110

5.8. Appendix: proofs

Lemma 5.18. Let m∈PN (S) and let (Bi
k)1≤i≤S,k≥1 be independent multidimensional

Bernoulli random vectors on {0; 1}S such that P
(
Bi
k = ej

)
= pij. Let f be a Lipschitz

function on RS with constant L. Let us define Y N def
= 1

N

∑S
i=1

∑miN
k=1 B

i
k. Then there

exists a constant α3 such that:∣∣∣∣E (f(Y N)
)
− E

(
f(mP +

1√
N
G)

)∣∣∣∣ ≤ α3L

√
log(N)

N
,

where mP is the vector (mP)j =
∑S

i=1mipij and G is a random Gaussian vector of
mean 0 and covariance matrix D defined by Equation (5.15) (Djj =

∑
imipij(1 − pij)

and Djk = −
∑

imipijpik for j 6= k).

Proof. Let (bijk)i,j≤S,k≥1 be a collection of independent Bernoulli random variables of
parameters pij/(1−

∑
`<j pi`) (the parameter of bi1k is pi1). The Bernoulli vector Bi

k is

equal in law to B̄i
k (denoted Bi

k
L
= B̄i

k) where

B̄i
k = bi1k e1 + (1− bi1k)

(
bi2k e2 + (1− bi2k)

(
bi3k e3 + (1− bi3k)(. . .)

))
.

Indeed, B̄i
k is a vector with only one component equal to 1 and

P
(
B̄i
k = ej

)
= (1− pi1)(1− pi2

1− pi1
)(1− pi3

1− pi1 − pi2
) . . .

pij
1−

∑
`<j pi`

= pij .

Let TNij
def
= N−1

∑miN
k=1 1{Bik=ej} be the proportion of objects going from state i to state

j. By definition of bijk , TNij can be written

TNij
L
=

1

N

miN∑
k=1

(1− bi1k)(1− bi2k) . . . (1− bi,j−1
k)bijk

L
=

1

N

∑
1≤k≤miN s.t. (bi1k =0)∧...∧(bi,j−1

k =0)

bijk

L
=

1

N

miN−
∑
`<j Ti`∑

k=1

bi`k

L
=

pij
1−

∑
`<j pi`

mi −
∑
`<j

TNi`

+

√
mi −

∑
`<j T

N
i`

N
F−1

miN−N
∑
`<j T

N
i` ,

pij
1−

∑
`<j pi`

(Uij).

where the function F is defined by FA,q(x)
def
= P

(
1√
A

(∑A
i=1 ci −Aq

)
≤ x

)
where q ∈

[0; 1], A ∈ N and ci are scalar i.i.d. Bernoulli variables – i.e. P (ci = 1) = 1−P (ci = 0) =
p. By construction, (

∑S
i=1 T

N
ij)1≤j≤S has the same law as Y N .

The variable H is constructed similarly. Denoting Fp(x)
def
= P (G ≥ x) where G is a

normal variable of mean 0 and variance p(1− p), we define the variables HN
ij by:

Hi1
def
= F−1

pi1 (Ui1)

Hij
def
= − pij

1−
∑

`<j pi`

∑
`<j

Hi` +

√∑
`<j

pi`F
−1

pij
1−

∑
`<j pi`

(Uij)

111

Chapter 5. Optimization in Discrete Time

It is direct to prove that H has the same law as G by showing that H is a Gaussian
vector and by computing the covariance matrix of H.

Using this representation of Y N and G by TN and H, we have:∣∣∣∣E (f(Y N)
)
− E

(
mP +

1√
N
G

)∣∣∣∣ ≤ E
(∥∥∥∥f(TN)− f(mP +

1√
N
H)

∥∥∥∥)
≤ LE

(∥∥∥∥TN −mP − 1√
N
H

∥∥∥∥)
≤ L

S∑
i=1

S∑
j=1

E
(∣∣TNij −mipij −Hij

∣∣)
The next step of the proof is to bound E

∣∣∣TNij −mipij −Hij

∣∣∣ which is less than:

E

∣∣∣∣∣∣
√
mi −

∑
`<j T

N
i`

N
F−1

miN−N
∑
`<j T

N
i` ,

pij
1−

∑
`<j pi`

(Uij)−
√∑

`<j

pi`F
−1

pij
1−

∑
`<j pi`

(Uij)

∣∣∣∣∣∣
+

pij
1−

∑
`<j pi`

E

∣∣∣∣∣∣
∑
`<j

(mipi` − TNi` +Hi`)

∣∣∣∣∣∣
where we used the fact that

pij
1−

∑
`<j pi`

mi −mipij =
pij

1−
∑
`<j pi`

∑
`<jmipi`.

By induction on j and using Lemma 5.17, this quantity is less than α(j)
√
N
N where the

constant α(j) def
= α(j−1) + α1 + max(α(j−1),

√
α(j−1) + 2). The constant α3 is equal to

S2α(S).

We are now ready for the proof of Theorem 5.9.

Proof of Theorem 5.9. Let a be a sequence of actions. We define by a backward induction
on t the function WN

t...T (.) that will be the expected reward of the mean field Gaussian
approximation between t and T :

WN
T...T,a

(
MN (t), CN (t)

)
= 0

WN
t...T,a

(
MN (t), CN (t)

)
= r

(
MN (t), CN (t)

)
+ E

(
WN
t...T,a

(
M̃N
a (t+ 1), C̃Na (t+ 1)

))
(5.29)

where (M̃N
a (t+ 1), C̃Na (t+ 1)) is the mean field Gaussian approximation starting at time

t in from (MN (t), CN (t)) and after one time step during which the controller took action
at. Similarly, we define V N

t...T,a

(
MN (t), CN (t)

)
the expected reward between t and T for

the original system. We want to prove by induction that there exist constants γt such
that for any t:

∣∣V N
t...T (MN , CN)−WN

t...T (MN , CN)
∣∣ ≤ γt√log(N)

N
. (5.30)

The constant γt may depend on the parameters of the system (such as the Lipschitz
constants of the functions g,K, r) but not on the value of (MN , CN).

Equation (5.30) is clearly true for t = T by taking γT = 0. Let us now assume that
(5.30) holds for some t + 1 ≤ T . By a backward induction on t, one can show that

112

5.8. Appendix: proofs

WN
t...T,a(., .) is Lipschitz for some constant LWt .

∣∣V N
t...T (MN , CN)−WN

t...T (MN , CN)
∣∣ can

be written:∣∣∣E(V N
t+1...T,a

(
MN
a (t+ 1), CNa (t+ 1)

))
− E

(
WN
t+1...T,a

(
M̃N
a (t+ 1), C̃Na (t+ 1)

))∣∣∣
≤
∣∣∣E(WN

t+1...T,a

(
MN
a (t+ 1), CNa (t+ 1)

)
−WN

t+1...T,a

(
M̃N
a (t+ 1), C̃Na (t+ 1)

))∣∣∣
+
∣∣∣E(WN

t+1...T,a

(
MN
a (t+ 1), CNa (t+ 1)

)
− V N

t+1...T,a

(
MN
a (t+ 1), CNa (t+ 1)

))∣∣∣
≤ α3LWtLg

√
log(N)

N + γt

√
log(N)

N .
(5.31)

The fist part of the second inequality comes from Lemma 5.18 applied to the function
m 7→WN

t+1...T,a

(
m, g(a,CN (t),m)

)
that is Lipschitz of constant LWtLg. The second part

comes from the hypothesis of induction. This concludes the proof in the case of a fixed
sequence of actions.

The proof for V N
∗ −WN

∗ is very similar. The first step of the proof is to write a similar
equation as (5.29) for WN

∗ and V N
∗ which can be computed by a backward induction:

WN
T...T,∗

(
MN (t), CN (t)

)
= 0

WN
t...T,∗

(
MN (t), CN (t)

)
= r

(
MN (t), CN (t)

)
+ supa E

(
WN
t...T,a

(
M̃N
a (t+ 1), C̃Na (t+ 1)

))
.

We then get equations similar to (5.31) but with a supa before both expectation. The sup
can be removed using the fact that for any functions f and g: |supa f(a)− supa g(a)| ≤
supa |f(a)− g(a)|.

113

Chapter 6.

From Discrete to Continuous Optimization

Abstract of this chapter – In this chapter, we study the convergence
of Markov Decision Processes made of a large number of objects to optimization
problems on ordinary differential equations (ODE).

We show that the optimal reward of such a Markov Decision Process,
satisfying a Bellman equation, converges to the solution of a continuous Hamilton-
Jacobi-Bellman (HJB) equation based on the mean field approximation of the
Markov Decision Process. We give bounds on the difference of the rewards, and
a constructive algorithm for deriving an approximating solution to the Markov
Decision Process from a solution of the HJB equations.

We illustrate the method on three examples pertaining respectively to
investment strategies, population dynamics control and scheduling in queues.
They are used to illustrate and justify the construction of the controlled ODE
and to show the gain obtained by solving a continuous HJB equation rather
than a large discrete Bellman equation.

Résumé du chapitre – Ce chapitre étudie la convergence de processus
de décision markoviens composés d’un grand nombre d’objets vers des problèmes
d’optimisation sur des équations différentielles. Nous montrons que le gain
optimal du processus de décision converge vers la solution d’une équation
continue de type “Hamilton-Jacobi-Bellman”. La preuve utilise à la fois des
outils classiques des modèles champs moyens et différents nouveaux couplages
entre les modèles discrets et continus qui permettent de donner des bornes
explicites. La méthode est ensuite illustrée par trois exemples concernant des
stratégies d’investissement, du contrôle de dynamiques de population et un
problème d’allocation de ressources.

115

Chapter 6. From Discrete to Continuous Optimization

6.1. Introduction

The purpose of this chapter is to study Markov decision process composed of a large
number N of interacting objects.

In Chapter 5, we considered a case where the probability than an object changes its
state between two time steps (called the intensity and denoted I(N)) does not scale
with N , i.e. I(N) = ON→∞(1). In that case, the optimization problem of the system of
size N converges to a deterministic optimization problem in discrete time. Solving the
deterministic system allows one to compute policies that are asymptotically optimal as
the number of objects grows.

In this chapter, we focus on the case where the intensity vanishes as N grows, i.e.
limN→∞ I(N) = 0, which is substantially different from the case studied in the previous
chapter. In Chapter 2, we have seen that if limN→∞ I(N) = 0, then under mild conditions
the system without control converges to a continuous time dynamical system and can be
described by ordinary differential equations (ODE). In this chapter, we show that when
N goes to infinity, the optimization problem converges to an optimization problem on an
ordinary differential equation.

More precisely, we show that when the Markov decision process is such that its empirical
density measure is Markovian, then its optimal reward converges to the optimal reward
of its mean field approximation, given by the solution of an HJB equation. Furthermore,
the optimal policy of the limit continuous system is also asymptotically optimal for the
original discrete system. Our method relies on bounding techniques used in stochastic
approximation and learning [24, 17]. We also introduce an original coupling method,
where, to each sample path of the Markov decision process, we associate a random
trajectory, obtained as a solution of the ODE, i.e. the mean field limit, controlled by
random actions.

This convergence result has an algorithmic counterpart. Basically, when confronted
with a large Markov Decision problem, one can first solve the HJB equation for the
associated mean field limit and then build a decision policy for the initial system that is
asymptotically optimal.

Few papers in the literature are concerned with the problem of mixing the limiting
behavior of a large number of objects with optimization. In [52], the value function of the
Markov decision process is approximated by a linearly parametrized class of functions,
and a fluid approximation of the MDP is used. It is shown that a solution of the HJB
equation is a value function for a modification of the original MDP problem. In [145, 57],
the curse of dimensionality of dynamic programming is circumvented by approximating
the value function by linear regression.

Our results have two main implications. The first one is to justify the construction
of controlled ODEs as good approximations of large discrete controlled systems. This
construction is often done without rigorous proofs. In Section 6.4.3 we illustrate this
point on an example in the field of computer system infection by malware.

The second implication concerns the effective computation of an optimal control policy.
In the discrete case, this is usually done by using dynamic programming for the finite
horizon case or by computing a fixed point of the Bellman equation in the discounted case.
Both approaches suffer from the curse of dimensionality that makes them impractical
when the state space is too large. In our context, the size of the state space is exponential
in N , making the problem even more acute. In practice, modern supercomputers only
allow one to tackle optimal control problems where N is no larger than a few tens.

116

6.2. Notations and Definitions

The mean field approach offers an alternative to brute force computations. By letting
N go to infinity, the discrete problem is replaced by a limit Hamilton-Jacobi-Bellman
equation that is deterministic and where the dimensionality of the original system has
been hidden in the density measure. Solving the HJB equation numerically is sometimes
rather easy, as in the two first examples of Section 6.4.3. It provides a deterministic
optimal policy whose reward with a finite (but large) number of objects is remarkably
close to the optimal reward.

In this chapter we focus on the finite horizon case, though the technique applies mutatis
mutandis to infinite horizon with discount.

The rest of the chapter is structured as follows. Section 6.2 contains definitions, some
notation, and hypotheses. Section 6.3 gives the theoretical results and the resulting
algorithms. Section 6.4 illustrates the application of our method on a few examples.
Section 6.5 contains proofs.

6.2. Notations and Definitions

6.2.1. System with N Objects

We consider a system composed by N objects similar to the one of Section 2.2.2. Each
object has a state in the finite set S = {1 . . . S}. Time is discrete and the state of
the object n at step k ∈ N is denoted XN

n (k). The state of the system at time k is

XN (k)
def
=
(
XN

1 (k) . . . XN
N (k)

)
. For all i ∈ S, we denote by MN (k) the empirical measure

of the objects
(
XN

1 (k) . . . XN
N (k)

)
at time k:

MN (k)
def
=

1

N

N∑
n=1

δXN
n (k),

where δx denotes the Dirac measure in x. MN (k) is a probability measure on S and
MN
i (k) denotes the proportions of objects in state i at time k (also called the density):

MN (k)[i] =
∑N

n=1 1XN
n (k)=i.

The system
(
XN (k)

)
k∈N is a Markov process once the sequence of actions taken by the

controller is fixed. This means that there exists a kernel ΓN (i1 . . . iN , j1 . . . jN , a) such
that if the controller takes the action AN (k) at time t and the system is in state XN (k),
then:

P
(
XN (k + 1) = j1 . . . jN |XN (k) = i1 . . . iN , A

N (k) = a
)

= ΓN (i1 . . . iN , j1 . . . jN , a) .

The main assumption on the kernel ΓN is that it is invariant by any permutation of
the objects. This implies in particular that the objects are only distinguishable through
their state. Moreover, this means that the process MN (k) is also Markovian once the
sequence of actions is given. In the following, we will focus on the process of density of
the system,

(
MN (k)

)
k∈N, whose kernel is denoted by ΓN .

6.2.2. Action, Reward and Policy

At every time k, a centralized controller chooses an action AN (k) ∈ A where A is called
the action set. (A, d) is a compact metric space for some distance d. As pointed out in
the previous chapter, Section 5.2.1, and in Chapter 1, Section 1.3.1, we only focus on

117

Chapter 6. From Discrete to Continuous Optimization

deterministic Markovian policies, since they are dominant. For each k, πk is a function
from P(S) to A. MN

π (k) denotes the density of the system at time k when the controller
applies policy π.

If the system has density MN (k) at time k and if the controller chooses the action
AN (k), she gets an instantaneous reward rN (MN (k), AN (k)). The expected average
reward over a finite-time horizon [0;HN] starting from m0 when applying the policy π is
defined by

V N
π (m)

def
= E

 bHN c∑
k=0

rN
(
MN
π (k), π(MN

π (k))
)∣∣∣∣∣∣MN

π (0) = m

 . (6.1)

The goal of the controller is to find a optimal policy that maximizes the expected reward.
We denote by V N

∗ (m) the optimal reward when starting from m:

V N
∗ (m) = sup

π
V N
π (m).

6.2.3. Scaling Assumptions

If at some time k, the system has density MN (k) = m and the controller chooses action
AN (k) = a, the system goes into state MN (k + 1) with probabilities given by the kernel
ΓN (MN (k), AN (k)). The expectation of the difference between MN (k + 1) and MN (k)
is called the drift and is denoted by FN (m, a):

FN (m, a)
def
= E

(
MN (k + 1)−MN (k)|MN (k) = m,AN (k) = a

)
.

In order to study the limit with N , we assume that FN goes to 0 at speed I(N) when N
goes to infinity and that FN/I(N) converges to a Lipschitz continuous function f . In a
sense, I(N) represents the order of magnitude of the number of objects that change their
state within one unit of time.

The changes of MN (k) during a time step is of order I(N). This suggests a rescaling
of time by I(N) to obtain an asymptotic result. We define the continuous time process(
M̂N (t)

)
t∈R+

as the affine interpolation of MN (k), rescaled by the intensity function,

i.e. M̂N is affine on the intervals [kI(N), (k + 1)I(N)], k ∈ N and

M̂N (kI(N)) = MN (k).

Similarly, M̂N
π denotes the affine interpolation of the density under policy π. Thus, I(N)

can also be interpreted as the duration of the time slot for the system with N objects.

We assume that the time horizon and the reward per time slot scale accordingly, i.e.
we impose

HN =

⌊
T

I(N)

⌋
rN (m, a) = I(N)r(m, a)

for every m ∈P(S) and a ∈ A.

118

6.2. Notations and Definitions

6.2.4. Limiting System (Mean Field Limit)

We will see in Section 6.3 that as N grows, the stochastic system M̂N
π converges to a

deterministic limit mπ, the mean field limit. For more clarity, all the stochastic variables
(i.e., when N is finite) are in uppercase while their limiting deterministic values are in
lowercase.

An action function α : [0;T] → A is a piecewise Lipschitz continuous function that
associates to each time t an action α(t). Note that action functions and policies are
different in the sense that actions functions do not take into account the state to define
the next action. For an action function α and an initial condition m0, we consider the
following ordinary differential equation for m(t), t ∈ R+:

m(t)−m(0) =

∫ t

0
f(m(s), α(s))ds. (6.2)

Under the foregoing assumptions on f and α, this ODE satisfies the Cauchy-Lipschitz
condition and therefore has a unique solution once the initial condition m(0) = m0 is
fixed. We call φt, t ∈ R+, the corresponding semi-flow, i.e.

m(t) = φt(m0, α)

is the unique solution of Equation (6.2) with m(0) = m0.

As for the system with N objects, we define vα(m0) as the reward of the limiting
system over a finite horizon [0;T] when applying the action function α and starting from
m(0) = m0:

vα(m0)
def
=

∫ T

0
r (φs(m0, α), α(s)) ds. (6.3)

This equation looks similar to the stochastic case (6.1) although there are two main
differences. The first one is that the system is deterministic. The second is that it is
defined for action functions and not for policies. We also define the optimal reward of
the deterministic limit v∗(m0):

v∗(m0) = sup
α
vα(m0),

where the supremum is taken over all possible action functions from [0;T]→ A.

6.2.5. Summary of Assumptions

In Section 6.3 we establish theorems for the convergence of the discrete stochastic
optimization problem to a continuous deterministic one. These theorems are based on
several technical assumptions, which are given next. Since S is finite, the set P(S)
is the simplex in RS and for m,m′ ∈ P(S) we define ‖m‖ as the `2-norm of m and
〈m,m′〉 =

∑S
i=1mim

′
i as the usual inner product.

(A0) (State space and action set) The state space S is finite. The action set A
endowed with a metric d is compact.

119

Chapter 6. From Discrete to Continuous Optimization

(A1) (Transition Kernel) Objects can be observed only through their state, i.e., the
transition kernel ΓN , defined by Eq.(6.2.1), is invariant by permutations of 1 . . . N .

There exist some non random functions I1(N) and I2(N) such that limN→∞ I1(N) =
limN→∞ I2(N) = 0 and such that for all m and any policy π, the number of objects that
perform a transition between time slot k and k + 1 per time slot ∆N

π (k) satisfies

E
(

∆N
π (k)

∣∣MN
π (k) = m

)
≤ NI1(N),

E
(

∆N
π (k)2

∣∣MN
π (k) = m

)
≤ N2I(N)I2(N),

where I(N) is the intensity function of the model, defined in the following assumption
A2.

(A2) (Convergence of the Drift) There exist some non random functions I(N) and
I0(N) and a function f(m, a) such that limN→∞ I(N) = limN→∞ I0(N) = 0 and∥∥∥∥ 1

I(N)
FN (m, a)− f(m, a)

∥∥∥∥ ≤ I0(N).

The function f is defined on P(S)×A and there exists L2 such that |f(m, a)| ≤ L2.

(A3) (Lipschitz Continuity) There exist constants L1, K and Kr such that for all
m,m′ ∈P(S), a, a′ ∈ A:∥∥FN (m, a)− FN (m′, a)

∥∥ ≤ L1

∥∥m−m′∥∥ I(N),∥∥f(m, a)− f(m′, a′)
∥∥ ≤ K(

∥∥m−m′∥∥+ d(a, a′)),∣∣r(m, a)− r(m′, a)
∣∣ ≤ Kr

∥∥m−m′∥∥ .
Because of (A1), the simplex P(S) is bounded. Together with the compactness of A

and the continuity of r (A3), this implies that the reward is bounded and we denote

‖r‖∞
def
= sup

m∈P(S),a∈A
|r(m, a)| <∞.

To make things more concrete, here is a simple but useful case where all assumptions
are true.

• There are constants c1 and c2 such that the expectation of the number of objects
that perform a transition in one time slot is ≤ c1 and its standard deviation is ≤ c2,

• and FN (m, a) can be written under the form 1
Nϕ (m, a, 1/N) where ϕ is a continuous

function on ∆S ×A× [0, ε) for some neighborhood ∆S of P(S) and some ε > 0,
continuously differentiable with respect to m.

In this case one can choose I(N) = 1/N , I0(N) = c0/N (where c0 is an upper bound to
the norm of the differential ∂ϕ

∂m), I1(N) = c1/N and I2(N) = (c2
1 + c2

2)/N .

6.3. Mean Field Convergence

In this section we establish the main result, Theorem 6.4, which states the convergence of
the optimization problem for the system with N objects to the optimization problem of
the mean field limit. To this end we introduce two auxiliary systems. The former is the
process φt(m0, A

N
π) defined below, which is a random continuous time system, coupled

to the original system with N objects. The latter is MN
α , also defined below, which is a

discrete time system with N objects under a deterministic action function.

120

6.3. Mean Field Convergence

6.3.1. First Auxiliary System

Consider the system with N objects under policy π. The process MN
π is defined on some

probability space Ω. To each ω ∈ Ω corresponds a trajectory MN
π (ω). For each ω ∈ Ω,

we define an action function ANπ (ω). This random function is piecewise constant on each

interval [kI(N), (k + 1)I(N)) (k ∈ N) and is such that ANπ (ω)(kI(N))
def
= πk(M

N (k)) is
the action taken by the controller of the system with N objects at time slot k, under
policy π.

Recall that for any m0 ∈P(S) and any action function α, φt(m0, α) is the solution of
the ODE (6.2). For every ω, φt(m0, A

N
π (ω)) is the solution of the limiting system with

action function ANπ (ω), i.e.

φt(m0, A
N
π (ω))−m0 =

∫ t

0
f(φs(m0, A

N
π (ω)), ANπ (ω)(s))ds.

When ω is fixed, φt(m0, A
N
π (ω)) is a continuous time deterministic process corre-

sponding to one trajectory MN
π (ω). When considering all possible realizations of MN

π ,
φt(m0, A

N
π) is a random, continuous time function “coupled” to MN

π . Its randomness
comes only from the action term ANπ , in the ODE. In the following, we omit to write the
dependence in ω. ANπ and MN

π will always designate the processes corresponding to the
same ω.

The following result is the main technical result; it shows the convergence of the
controlled system in probability, with explicit bounds. Notice that it does not require
any regularity assumption on the policy π (recall that M̂N

π is the linear interpolation of
the discrete time system with N objects).

Theorem 6.1. Under Assumption (A0,A1,A2,A3), for any ε > 0, N ≥ 1 and any policy
π:

P

(
sup

0≤t≤T

∥∥∥M̂N
π (t)− φt(m0, A

N
π)
∥∥∥ > [∥∥MN (0)−m0

∥∥+ I0(N)T + ε
]
eL1T

)
≤ J(N,T)

ε2

(6.4)
with

J(N,T) = 8T
{
L2

1

[
I2(N)I(N)2+I1(N)2 (T+I(N))

]
+S2

[
2I2(N)+I(N) (I0(N)+L2)2

]}
.

(6.5)

Note that I0(N) and J(N,T) for a fixed T go to 0 as N →∞. The proof is given in
Appendix 6.5.1.

Let π is a policy and ANπ the sequence of actions corresponding to a trajectory MN
π as

we just defined. Eq.(6.3) defines the reward for the deterministic limit when applying a
sequence of actions. This defines a random variable vANπ (m0) which corresponds to the

reward of System∞ when applying ANπ . The random part comes from ANπ . E
(
vANπ (m0)

)
designates the expectation of this reward over all possible ANπ . A first consequence of

Theorem 6.1 is the convergence of V N
π

(
MN (0)

)
to E

(
vANπ (m0)

)
with an error that can

be uniformly bounded.

121

Chapter 6. From Discrete to Continuous Optimization

Theorem 6.2 (Uniform convergence of the reward). Let ANπ be the random action
function associated with MN

π , as defined earlier. Under Assumptions (A0,A1,A2,A3),∣∣∣V N
π

(
MN (0)

)
− E

(
vANπ (m0)

)∣∣∣ ≤ B (N, ∥∥MN (0)−m0

∥∥)
with

B(N, δ)
def
= I(N) ‖r‖∞ +Kr (δ + I0(N)T)

eL1T − 1

L1

+
3

2
1
3

[
Kr

L1

(
eL1T − 1 +

I(N)

2

)] 2
3

‖r‖
1
3∞ J(N,T)

1
3 . (6.6)

The proof is given in appendix 6.5.2.
Note that limN→∞,δ→0B(N, δ) = 0; in particular, if limN→∞M

N
π (0) = m0 almost

surely [resp. in probability] then
∣∣∣V N
π

(
MN (0)

)
− E

(
vANπ (m0)

)∣∣∣→ 0 almost surely [resp.

in probability].

6.3.2. Second Auxiliary System

We now introduce the second auxiliary system. Let α be an action function that specifies
the action to be taken at time t. Although α has been defined for the limiting system,
it can also be used in the system with N objects. In that case, the action function α
can be seen as a policy that does not depend on the state of the system. At step k, the
controller applies action α(kI(N)). By abuse of notation, we denote by MN

α , the state
of the system when applying the action function α (it will be clear from the notation
whether the subscript is an action function or a policy). Similarly we define

V N
α (m0)

def
= E

HN∑
k=0

r
(
MN
α (k), α(kI(N))

)∣∣∣∣∣∣MN
α (0) = m0

 .

A second consequence of Theorem 6.1 is the convergence of MN
α and of the reward:

Theorem 6.3. Assume (A0,A1,A2,A3); α is a piecewise Lipschitz continuous action
function on [0;T], of constant Kα, and with at most p discontinuity points. Let M̂N

α (t)
be the linear interpolation of the discrete time process MN

α . Then for all ε > 0:

P

(
sup

0≤t≤T

∥∥∥M̂N
α (t)− φt(m0, α)

∥∥∥ > [∥∥MN (0)−m0

∥∥+ I ′0(N,α)T + ε
]
eL1T

)
≤ J(N,T)

ε2

(6.7)
with

I ′0(N,α) = I0(N) + I(N)Ke(K−L1)T

(
Kα

2
+ 2 (1 + min(1/I(N), p)) ‖α‖∞

)
.

Further, ∣∣V N
α

(
MN (0)

)
− vα(m0)

∣∣ ≤ B′ (N, ∥∥MN (0)−m0

∥∥) (6.8)

with B′(N, δ) as in Eq.(6.6) but with I0(N) replaced by I ′0(N,α).

The proof is given in appendix 6.5.3.
Note that limN→∞,δ→0B

′(N, δ) = 0; in particular, if limN→∞M
N
π (0) = m0 almost

surely [resp. in probability] then limN→∞ V
N
α

(
MN (0)

)
= vα(m0) almost surely [resp. in

probability].

122

6.3. Mean Field Convergence

6.3.3. Convergence of Optimization Problems

Theorem 6.4 (Optimal System Convergence). Let Under Assumptions (A0,A1,A2,A3)
hold. If limN→∞M

N (0) = m0 almost surely [resp. in probability] then:

lim
N→∞

V N
∗
(
MN (0)

)
= v∗ (m0)

almost surely [resp. in probability].

Proof of Theorem 6.4. This theorem is a direct consequence of Theorem 6.3 and The-
orem 6.2. We do the proof for almost sure convergence, the proof for convergence in
probability is similar. To prove the theorem we prove

lim sup
N→∞

V N
∗ (MN (0)) ≤ v∗(m0) ≤ lim inf

N→∞
V N
∗ (MN (0)). (6.9)

• Let ε > 0 and α(.) be an action function such that vα(m0) ≥ v∗(m0)− ε (such an
action is ε−optimal). Theorem 6.3 shows that limN→∞ V

N
α (MN (0)) = vα(m0) ≥

v∗(m0)−ε a.s. This shows that lim infN→∞ V
N
∗ (MN (0)) ≥ limN→∞ V

N
α (MN (0)) ≥

v∗(m0)− ε; this holds for every ε > 0 thus lim infN→∞ V
N
∗ (MN (0)) ≥ v∗(m0) a.s.,

which establishes the second inequality in Eq.(6.9), on a set of probability 1.

• Let B(N, δ) be as in Theorem 6.2, ε > 0 and πN be a policy such that V N
∗ (MN (0)) ≤

V N
πN

(MN (0)) + ε. By Theorem 6.2, V N
πN

(MN (0)) ≤ E
(
vAN

πN
(m0)

)
+B(N, δN) ≤

v∗(m0) + B(N, δN) where δN
def
=
∥∥MN (0)−m0

∥∥. Thus V N
∗ (MN (0)) ≤ v∗(m0) +

B(N, δN) + ε. If further δN → 0 a.s. it follows that lim supN→∞ V
N
∗ (MN (0)) ≤

v∗(m0) + ε a.s. for every ε > 0, thus lim supN→∞ V
N
∗ (MN (0)) ≤ v∗(m0) a.s.

In particular, this theorem, along with Theorem 6.3 shows that an optimal policy for
the limiting system is asymptotically optimal for the system with N objects as N goes
to infinity. Since the reward function r(m, a) is bounded and the time-horizon [0;T] is
finite, the set of reward when starting from the point m, {vα(m) : α action function},
is bounded. This set is not necessarily compact since the set of action function is not
closed (a limit of Lipschitz continuous functions is not necessarily Lipschitz continuous).
However, as it is bounded, for all ε > 0, there exists an action function αε such that
v∗(m) = supα vα(m) ≤ vαε + ε. Theorem 6.4 shows that αε is optimal up to a term 2ε
for N big enough.

In particular, this shows that as N grows, policies that do not take into account the
state of the system (i.e., action functions) are asymptotically as good as adaptive policies.
In practice however, adaptive policies might perform better, especially for small values of
N . However, it is in general impossible to prove convergence for the adaptive policy.

In fact, in many cases, policies π used for the control of stochastic systems are not
continuous in t or m and often exhibit thresholds. In particular, when π is not continuous
in m, MN

π does not necessarily converge and obtaining asymptotics can be difficult. In
some particular case, like for the best response dynamics studied in [79], limit theorems
can be obtain but at the cost of a greater complexity. In the next Chapter 7, we show
how to tackle this discontinuity by introducing the notion of differential inclusions.

123

Chapter 6. From Discrete to Continuous Optimization

6.4. Applications

6.4.1. Hamilton-Jacobi-Bellman equation and dynamic programming

Let us consider the finite time optimization problem for the stochastic system and its
limit on a constructive point of view. Since the state space is finite, one can compute
the optimal reward by using a dynamic programming algorithm. If UN (m, t) denotes
the optimal reward for the stochastic system starting from m at time t/I(N), then

UN (m, t) = supπ E
(∑T/I(N)

k=t/I(N) r
N (MN

π (k)) : MN (t) = m
)

. The optimal reward can be

computed by a discrete dynamic programming algorithm (see Algorithm 1.2 in Chapter 1)
by setting UN (m,T) = rN (m) and

UN (m, t) = sup
a∈A

E
(
rN (m, a) + UN (MN (t+ I(N)), t+ I(N))

∣∣ M̄N (t) = m,AN (t) = a
)
.

(6.10)
Then, the optimal cost over horizon [0;T/I(N)] is V N

∗ (m) = U(m, 0).

Similarly, let us denote by u(m, t) the optimal cost over horizon [t;T] for the limiting
system. If v(m, t) satisfies the Hamilton-Jacobi-Bellman equation:

v̇(m, t) + max
a
{∇v(m, t).f(m, a) + r(m, a)} = 0, (6.11)

and if there exists an optimal control π(m, t) attaining the max above and such that
ṁ(t) = f(m(t), π(m, t)) has a unique solution, then v is the optimal cost for the lim-
iting system: v(m, t) = u(m, t) and the trajectory corresponding to π(m, t) is optimal
(Proposition 3.2.1 of [35]).

This might provide a way to compute the optimal reward as well as the optimal policy
by solving the partial differential equation above. Unfortunately, the Hamilton-Jacobi-
Bellman equation is often hard to solve, even numerically, as soon as the dimension of m
grows. There exist many way to solve the deterministic optimization problem, depending
on the structure of the problem. One of these, is the Pontryagin’s maximum principle,
used in [94] to solve the example presented below.

6.4.2. Numerical methods

If the continuous time optimization problem can be solved numerically, Theorem 6.4
above can be used to design an effective construction of an asymptotically optimal policy
for the system with N objects over the horizon [0, HN] by using a numerical method
described by the Procedure 6.1.

m := MN (0)
Compute the limit of the drift f
Solve the deterministic optimization problem (6.11) on the interval [0, H]. This provides
an optimal control function α(t)
while k < HN :
π(MN (k), k) := α(t/I(N)).

Return π

Procedure 6.1: Static policy π for the system with N objects, over the finite horizon
[0;HN].

124

6.4. Applications

Theorem 6.4 says that under policy π, the total reward V N
π is asymptotically optimal:

lim
N→∞

V N
π (MN (0)) = lim inf

N→∞
V N
∗ (MN (0)).

The policy π constructed by Procedure 6.1 is static in the sense that it does not depend
on the state MN (k) but only on the initial state MN (0), and the deterministic estimation
of MN (k) provided by the differential equation. One can construct a more adaptive
policy by updating the starting point of the differential equation at each step. This new
procedure, constructing an adaptive policy π′ from 0 to the final horizon HN is given in
Procedure 6.2.

for k ≤ HN

αk(M, ·) := solution of (6.11) over [kI(N), H] starting in M
π′(M,k) := αk(φkI(N)(M,αk))

return π′

Procedure 6.2: Adaptive policy π′ for the system with N objects, over the finite horizon
[0;HN].

In practice, the total reward of the adaptive policy π′ is larger than the reward of the
static policy π because it uses on-line corrections at each step, before taking a new action.
However Theorem 6.4 does not provide a proof of its asymptotic optimality.

6.4.3. Examples

In this section, we develop three examples. The first one can be seen as a simple illustration
of optimal mean field. The Limiting ODE is quite simple and can be optimized in closed
analytical form.

The second example considers a classical virus problem. While virus propagations
concern discrete objects (individuals or devices), most work in the litterature study a
continuous approximation of the problem under the form of an ODE. The justification of
passing from a discrete to a continuous model is barely mentioned in most papers (they
mainly focus on the study of the ODE). Here we present a discrete dynamical system
based on a simple stochastic mobility model for the individuals whose behavior converges
to a classcial continuous model.

Finally, the last example comes from routing optimization in a queueing network model
of volunteer computing platforms. The goal of this last example is to show that a discrete
optimal control problem suffering from the curse of dimensionality can be replaced by a
continuous optimization problem where an HJB equation must be solved over a much
smaller state space.

Utility Provider Pricing

This is a simplified discrete Merton’s problem. This example shows a case where the
optimization problem in the infinite system can be solved in closed form. This can be
seen as an ideal case for the mean field approach: while the original system is difficult to
solve even numerically when N is large, taking the limit when N goes to infinity makes
it simple to solve, in an analytical form.

We consider a system made of a utility and N users; users can be either in state S
(subscribed) or U (unsubscribed). The utility fixes their price α ∈ [0, 1]. At every time

125

Chapter 6. From Discrete to Continuous Optimization

step, one randomly chosen customer revises her status: if she is in state U [resp. S], with
probability s(α) [resp. a(α)] she moves to the other state; s(α) is the probability of a
new subscription, while a(α) is the probability of attrition. We assume s() decreases
with α and a() increases. If the price is large the instant gain is large but the utility loses
customers, which eventually reduces the gain.

Within our framework, this problem can be seen as a Markovian system made of
N objects (users) and one controller (the provider). The intensity of the model is
I(N) = 1/N . Moreover, if the immediate profit is divided by N (this does not alter the
optimal pricing policy) and if x(t) is the fraction of objects in state S at time t and
α(t) ∈ [0; 1] is the action taken by the provider at time t, the mean field limit of the
system is:

∂x

∂t
= −x(t)a(α(t)) + (1− x(t))s(α(t)) = s(α(t))− x(s(α(t)) + a(α(t))) (6.12)

and the rescaled profit over a time horizon T is
∫ T

0 x(t)α(t)dt. The Equation (6.12) can
be constructed directly from the description of the model. The first term −x(t)a(α(t))
corresponds to the mean number of users that leave the provider while (1− x(t))s(α(t))
corresponds to the mean number of user that join the provider.

Call u∗(t, x) the optimal benefit over the interval [t, T] if there is a proportion x of
subscribers at time t. The Hamilton-Jaccobi-Bellman equation is

∂

∂t
u∗(t, x) +H

(
x,

∂

∂x
u∗(t, x)

)
= 0

with H(x, p) = max
α∈[0,1]

[p(s(α)− x(s(α) + a(α)) + αx]
(6.13)

H can be computed under reasonable assumptions on the rates of subscription and
attrition s() and a(), which can then be used to show that the optimal policy is threshold
based. To continue the rest of this illustration, we consider the radically simplified case
where α can take only the values 0 and 1, in which case the ODE becomes

∂x

∂t
= −x(t)α(t) + (1− x(t))(1− α(t)) = 1− x(t)− α(t), (6.14)

and H(x, p) = max (x(1− p), (1− x)p). The solution of the HJB equation can be given in
closed form. The optimal policy is to chose action α = 1 if x > 1/2 or x > 1−exp(−(T−t)),
and 0 otherwise. Figure 6.1 shows the evolution of the proportion of subscribers x(t)
when the optimal policy is used. The coloured area corresponds to all the points (t, x)
where the optimal policy is α = 1 (fix a high price) while the white area is where the
optimal policy is to choose α = 0 (low price).

To show that this policy is indeed optimal, one has to compute the corresponding
value of the benefit u(t, x) and show that it satisfies the HJB equation. This can be done
using a case analysis, by computing explicitly the value of u(t, x) in the zones Z1, Z2, Z3

and Z4 displayed in Figure 6.1, and check that u(t, x) satisfies (6.13) in each case.

Infection strategy of a virus worm

This second example has two purposes. The first one is to provide a rigourous justification
of the use of a continuous optimization approach for this classical problem in population
dynamics. The second one is to show that the continuous limit provides insights on

126

6.4. Applications

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

T0

Z3

Z1

Z2

Z4

Figure 6.1.: Evolution of the proportion of subscribers (y-axis) under the optimal pricing
policy.

the structure of the optimal behavior for the discrete system. Here, the optimal action
function can be shown to be of bang-bang type for the limit problem using tools from
continuous optimization such as the Pontryagin maximum principle. Theorem 6.4 shows
that a bang-bang policy should also be asymptotically optimal in the discrete case.

This example is taken from [94] and considers the propagation of infection by a virus
worm. Actually, similar epidemic models have been validated through experiments as
well as simulations as a realistic representation of the spread of a virus in mobile wireless
networks (see [54, 139]). A susceptible node is a mobile wireless device, not contaminated
by the worm, but prone to infection. A node is infective if it is contaminated by the
worm. An infective node spreads the worm to a susceptible whenever they meet, with
probability β. The worm can also choose to kill an infective host, i.e., render it completely
dysfunctional - such nodes are denoted dead. A functional node that is immune to
the worm is referred to as recovered. The network operator can use security patches
to immunize susceptibles (they become recovered) and can also heal infectives to the
recovered state. Let the total number of nodes in the network be N . Let the proportion
of susceptible, infective, recovered and dead nodes at time t be denoted by S(t), I(t),
R(t) and D(t), respectively. Under a uniform mobility model, the probability that a
susceptible node becomes infected is βI/N . The immunization of susceptibles (resp.
infectives) happens at a fixed rate q (resp. b). This means that a susceptible (resp.
infective) node gets immune with probability q/N (resp. b/N) at every time step.

At this point, the authors of [94] invoke the classical results of Kurtz [101] to show
that the dynamics of this population process converges to the solution of the following
differential equations.

∂S
∂t = −βIS − qS
∂I
∂t = βIS − bI − vI
∂D
∂t = vI
∂R
∂t = bI + qS.

(6.15)

However, this does not show that the corresponding optimization problem converges.
This system actually satisfies assumptions (A1, A2, A3), which allows us not only to

obtain the mean field limit, but also to say more about the optimization problem. The

127

Chapter 6. From Discrete to Continuous Optimization

objective of the worm is to find v(·) such that the damage function D(T)+
∫ T

0 f(I(t))dt is
maximized under the constraint 0 ≤ v ≤ vmax (where f is convex). In [94], this problem
is shown to have a solution and the Pontryagin maximum principle is used to show that
the optimal solution v∗(·) is of bang-bang type:

∃t1 ∈ [0 . . . T) s. t. v∗(t) = 0 for 0 < t < t1 and v∗(t) = vmax for t1 < t < T.

Theorem 6.4 makes the formal link between the optimization of the model on an
individual level and the previous resolution of the optimization problem on the differential
equations, done in [94]. It allows us to formally claim that the policy v∗ of the worm is
indeed asymptotically optimal when the number of objects goes to infinity.

Brokering problem

Finally, let us consider a model of a volunteer computing system like BOINC http:

//boinc.berkeley.edu/. Volunteer computing means that people make their personal
computer available for a computing system. When they do not use their computer, it is
available for the computing system. However, as soon as they start using their computer,
it becomes unavailable for the computing system. These systems become more and more
popular and provide large computing power at a very low cost [98].

broker

UN users

AN1

B1 Cluster 1 :

QN1 proc.

Figure 6.2.: The brokering problem in a desktop grid system, such as Boinc

The Markovian model with N objects is defined as follows. The N objects represent
the users that can submit jobs to the system and the resources that can run the jobs.
The resources are grouped into a small number of clusters and all resources in the same
cluster share the same characteristics in terms of speed and availability. Users send jobs
to a central broker whose role is to balance the load among the clusters.

The model is a discrete time model of a queuing system. Actually, a more natural
continuous time Markov model could also be handled similarly, by using uniformization.

128

http://boinc.berkeley.edu/
http://boinc.berkeley.edu/

6.4. Applications

There are UN users. Each user has a state x ∈ {on, off}. At each time step, an active
user s ends one job with probability pNs and becomes inactive with probability pi/N . An
inactive user sends no jobs to the system and gets on with probability po/N .

There are C clusters in the system. Each cluster c contains QNc computing resources.
Each resource has a buffer of bounded size Jc. A resource can either be valid or broken. If
it is valid and if it has one or more job in its queue, it completes one job with probability
µc/N at this time slot. A resource gets broken with probability pb/N . In that case, it
discards all the jobs of its buffer. A broken resource becomes valid with probability
pv/N .

At each time step, the broker takes an action a ∈P({1 . . . C}) and sends the jobs it
received to the clusters according to the distribution a. A job sent to cluster c joins the
queue of one resource, k according to a local rule (for example chosen uniformly among
the QNc resources composing the cluster). If the queue of resource k is full, the job is
lost. The goal of the broker is to minimize the number of losses plus the total size of the
queues over a finite horizon (and hence the response time of accepted jobs).

This model is represented in Figure 6.2.

The system has an intensity I(N)
def
= 1/N . The number C of clusters is fixed and does

not depend on N , as well as the sizes Jc of the buffers. However, both the number of
users UN , and the number of resources in the clusters QNc , are linear in N . Finally, by
construction, all the state changes occur with probabilities that scale with 1/N .

The limiting system is described by the variable mo(t), that represents the fraction
of users who are on, and the variables qc,j(t) and bc(t) that respectively represent the
fraction of resources in cluster c having j jobs in their buffer and the fraction of resources
in cluster c that are broken. For an action function α(·), we denote by αc(·) the fraction
of jobs sent to cluster c. Finally, let us denote by m the fraction of users (both active
or inactive) and qc the fraction of processors in cluster c. These fractions are constant
(independent of time) and satisfy m + q1 + · · · + qC = 1. The drift function can be
computed directly from the description of the system and we get the following equations:

∂mo(t)

∂t
= −pimo(t) + po(m−mo(t)) (6.16)

∂qc,0(t)

∂t
= pabc(t)−

αc(t)psmo(t)

qc
qc,0(t) + µcqc,1 − pbqc,0(t) (6.17)

∂qc,j(t)

∂t
=

αc(t)psmo(t)

qc
(qc,j−1(t)− qc,i(t)) + µc(qc,j+1 − qc,j)− pbqc,j(t) (6.18)

∂qc,Jc(t)

∂t
=

αc(t)psma(t)

qc
qc,Jc−1(t)− µcqc,Jc − pbqc,Jc(t) (6.19)

∂bc(t)

∂t
= −pvbc(t) + pb

Jc∑
j=0

qc,j(t), (6.20)

where (6.17) and (6.19) hold for each cluster c and (6.18) holds for each cluster c and for
all j ≤ Jc. Each term of these equations is given by the probability for an event to appear
multiplied by the drift induced by this event and rescaled by I(N). For example, the
term −pimo(t) of Equation 6.16 corresponds a user going from state “on” to state “off”.
If the proportion of user in state “on” is mo(0), This appears with probability pimo(t).

129

Chapter 6. From Discrete to Continuous Optimization

The cost associated to the action function α is:

∫ T

0

C∑
c=1

Jc∑
j=1

jqc,j(t) + γ

 C∑
c=1

αc(t)psmo(t)

qc
(qc,Jc(t) + bc(t)) +

C∑
c=1

pb

Jc∑
j=1

jqc,j(t)

 dt.

(6.21)
The first part of (6.21) represents the cost induced by the number of jobs in the system.
The second part of (6.21) represents the cost induced by the losses. The parameter γ
gives more or less weight on the cost induced by the losses.

The HJB problem becomes minimizing (6.21) while the variables ua, qk,i, bk satisfy
Equations (6.16) to (6.20). This system is made of (J + 2)C ODEs. Solving the HJB
equation numerically in this case can be challenging but remains more tractable than
solving the original Bellman equation over JN states. The curse of dimensionality is so
acute for the discrete system that it cannot be solved numerically with more than 10
processors [34].

6.5. Appendix: proofs

6.5.1. Theorem 6.1

The proof is inspired by classical proof for stochastic approximation algorithm and is
similar to the proof of Theorem 2.1, recalled in Chapter 1. The main idea of the proof is
to write

∥∥MN
π (k)− φkI(N)(m0, A

N
π)
∥∥ ≤

∥∥∥∥∥∥MN
π (k)−MN (0)−

k−1∑
j=0

fN (j)

∥∥∥∥∥∥
+

∥∥∥∥∥∥MN (0) +
k−1∑
j=0

fN (j)− φkI(N)(m0, A
N
π)

∥∥∥∥∥∥
where fN (k)

def
= FN

(
MN
π (k), πk(M

N
π (k))

]
is the drift at time k if the empirical measure

is MN
π (k). The first part is bounded with high probability using a Martingale argument

(Lemma 6.6) and the second part is bounded using an integral formula.

Let is define M̄N
π (t)

def
= MN

π

(⌊
t

I(N)

⌋)
, i.e. M̄N

π (kI(N)) = MN
π (k) for k ∈ N and M̄N

π

is piecewise constant and right-continuous. Let ∆N
π (k) be the number of objects that

change state between time slots k and k + 1. Thus,∥∥MN
π (k + 1)−MN

π (k)
∥∥ ≤ N−1

√
2∆N

π (k) (6.22)

and thus ∥∥∥M̂N
π (t)− M̄N

π (t)
∥∥∥ ≤ N−1

√
2∆N

π (k) (6.23)

as well, with k =
⌊

t
I(N)

⌋
. Define

ZNπ (k) = MN
π (k)−MN (0)−

k−1∑
j=0

FN
(
MN
π (j), πj(M

N
π (j))

)
(6.24)

130

6.5. Appendix: proofs

and let ẐNπ (t) be the continuous, piecewise linear interpolation such that ẐNπ (kI(N)) =

ZNπ (k) for k ∈ N. Recall that ANπ (t)
def
= πbt/I(N)c(M

N (bt/I(N)c)) – ANπ (t) is the action
taken by the controller at time t/I(N). It follows from these definitions that:

M̂N
π (t) = MN

π (0) +

∫ t

0

1

I(N)
FN

(
M̄N
π (s), ANπ (s)

)
ds+ ẐNπ (t)

= MN
π (0) +

∫ t

0

1

I(N)
FN

(
M̂N
π (s), ANπ (s)

)
ds+ ẐNπ (t)

+

∫ t

0

1

I(N)

[
FN

(
M̄N
π (s), ANπ (s)

)
− FN

(
M̂N
π (s), ANπ (s)

)]
ds.

Using the definition of the semi-flow φt(m0, A
N
π) = m0 +

∫ t
0 f(φs(m0, A

N
π), ANπ (s))ds,

the quantity M̂N
π (t)−φt(m0, A

N
π) is equal to:

MN
π (0)−m0 + ẐNπ (t)

+

∫ t

0

1

I(N)

[
FN

(
M̂N
π (s), ANπ (s)

)
− FN

(
φs(m0, A

N
π), ANπ (s)

)]
ds

+

∫ t

0

[
1

I(N)
FN

(
φs(m0, A

N
π), ANπ (s)

)
− f

(
φs(m0, A

N
π), ANπ (s)

)]
ds

+

∫ t

0

1

I(N)

[
FN

(
M̄N
π (s), ANπ (s)

)
− FN

(
M̂N
π (s), ANπ (s)

)]
ds.

Applying Assumption (A2) to the third line, (A3) to the second and fourth lines, and
Equation (6.23) to the fourth line leads to:∥∥∥M̂N

π (t)− φt(m0, A
N
π)
∥∥∥ ≤

∥∥MN
π (0)−m0

∥∥+
∥∥∥ẐNπ (t)

∥∥∥
+L1

∫ t

0

∥∥∥M̂N
π (s)− φs(m0, A

N
π)
∥∥∥ ds

+I0(N)t+

√
2L1I(N)

N

⌊
t

I(N)

⌋∑
k=0

∆N
π (k).

For all N , π, T , b1 > 0 and b2 > 0, define

Ω1 =

ω ∈ Ω : sup
0≤k≤ T

I(N)

k∑
j=0

∆N
π (j) > b1

 ,

Ω2 =

ω ∈ Ω : sup
0≤k≤ T

I(N)

∥∥ZNπ (k)
∥∥ > b2

 .

(6.25)

Assumption (A1) implies conditions on the first and second order moment of ∆N
π (k).

Therefore by Lemma 6.5, this shows that for any b1 > 0:

P (Ω1) ≤ TN2

b21

[
I2(N) +

I1(N)2

I(N)2
(T + I(N))

]
. (6.26)

Moreover, we show in Lemma 6.6 that:

P (Ω2) ≤ 2S2 T

b22

[
2I2(N) + I(N) [(I0(N) + L2)]2

]
. (6.27)

131

Chapter 6. From Discrete to Continuous Optimization

Now fix some ε > 0 and let b1 = Nε
2
√

2L1I(N)
, b2 = ε/2. For ω ∈ Ω \ (Ω1 ∪ Ω2) and for

0 ≤ t ≤ T : ∥∥∥M̂N
π (t)− φt(m0, A

N
π)
∥∥∥ ≤

∥∥MN
π (0)−m0

∥∥+ ε+ I0(N)T

+L1

∫ t

0

∥∥∥M̂N
π (s)− φs(m0, A

N
π)
∥∥∥ ds.

By Grönwall’s lemma:∥∥∥M̂N
π (t)− φt(m0, A

N
π)
∥∥∥ ≤ [∥∥MN

π (0)−m0

∥∥+ ε+ I0(N)T
]
eL1t. (6.28)

and this is true for all ω ∈ Ω \ (Ω1 ∪ Ω2). We apply the union bound P (Ω1 ∪ Ω2) ≤
P (Ω1) + P (Ω2) which, with Eq.(6.26) and Eq.(6.27), concludes the proof.

The proof of Theorem 6.1 uses the following lemmas.

Lemma 6.5. Let (Wk)k∈N be a sequence of square integrable, nonnegative random
variables, adapted to a filtration (Fk)k∈N, such that W0 = 0 a.s. and for all k ∈ N:

E (Wk+1| Fk) ≤ α,

E
(
W 2
k+1

∣∣Fk) ≤ β.

Then for all n ∈ N and b > 0:

P

(
sup

0≤k≤n
(W0 + ...+Wk) > b

)
≤ nβ + n(n+ 1)α2

b2
. (6.29)

Proof. Let mn = βn+ n(n+ 1)α2 and Yn =
∑n

k=0Wk. It follows that E (Yn) ≤ αn and

E
(
Y 2
n+1

∣∣Fn) ≤ β + 2nα2 + Y 2
n

so that Zn = Y 2
n −mn is a supermartingale w.r. Fn. Let Tn be the first time k ≤ n at

which Yk > b if it exists, otherwise Tn = n, so that YTn > b if and only if sup0≤k≤n (Yk) > b.
By the optional stopping theorem [127, Thm 6.4.1]:

E (ZTn) ≤ E (Z0) = 0

thus E
(
Y 2
Tn

)
≤ E (mTn) ≤ mn. By Markov’s inequality, P (YTn > b) ≤ mn/b

2.

Lemma 6.6. Define ZNπ as in Eq.(6.24). For all N ≥ 2, b > 0, T > 0 and all policy π:

P

 sup
0≤k≤

⌊
T

I(N)

⌋ ∥∥ZNπ (k)
∥∥ > b

 ≤ 2S2 T

b2

[
2I2(N) + I(N) [(I0(N) + L2)]2

]
.

Proof. The proof is inspired by the methods in [17]. For fixed N and h ∈ RS , let

Lk = 〈h, ZNπ (k)〉.

132

6.5. Appendix: proofs

By the definition of ZN , Lk is a martingale w.r. to the filtration (Fk)k∈N generated by
MN
π . Thus

E
(

(Lk+1 − Lk)2
∣∣∣Fk) = E

(
〈h,MN

π (k + 1)−MN
π (k)〉2

∣∣Fk)
+〈h, FN

(
MN
π (k), πk(M

N
π (k))

)
〉2.

By Assumption (A2):∣∣〈h, FN (MN
π (k), π(MN

π (k))
)
〉
∣∣ ≤ (I0(N) + L2) I(N) ‖h‖ .

Thus, using Eq.(6.22) and Assumption (A5):

E
(

(Lk+1 − Lk)2
∣∣∣Fk) ≤ ‖h‖2

[
N−22E

(
∆N
π (k)2

∣∣Fk)+ [(I0(N) + L2) I(N)]2
]

≤ ‖h‖2
[
2I(N)I2(N) + [(I0(N) + L2) I(N)]2

]
.

We now apply Kolmogorov’s inequality for martingales and obtain

P

(
sup

0≤k≤n
Lk > b

)
≤ n

b2
‖h‖2

[
2I(N)I2(N) + [(I0(N) + L2) I(N)]2

]
.

Let Ξh be the set of ω ∈ Ω such that sup0≤k≤n〈h, ZNπ (k)〉 ≤ b and let Ξ be defined by

Ξ
def
=
⋂
h=±~ei,i=1...S Ξh where ~ei is the ith vector of the canonical basis of RS . It follows

that, for all ω ∈ Ξ and 0 ≤ k ≤ n and i = 1 . . . S:
∣∣〈ZNπ (k), ~ei〉

∣∣ ≤ b. This means that for

all ω ∈ Ξ:
∥∥ZNπ (k)

∥∥ ≤ √Sb. By the union bound applied to the complement of Ξ, we
have

1− P (Ξ) ≤ 2S
n

b2

[
I(N)I2(N) + [(I0(N) + L2) I(N)]2

]
.

Thus we have shown that, for all b > 0:

P

(
sup

0≤k≤n

∥∥ZNπ (k)
∥∥ > √Sb) ≤ 2S

nI(N)

b2

[
I2(N) + I(N) [(I0(N) + L2)]2

]
which, by changing b into b/

√
S, shows the result.

6.5.2. Proof of Theorem 6.2

We use the same notation as in the proof of Theorem 6.1. By definition of V N , v and
the time horizons:

V N
π (MN (0))−E

(
vANπ (m0)

)
= E

(∫ HN I(N)

0
r(M̄N

π (s), ANπ (s))−r(mANπ
(s), ANπ (s))ds

)

−E

(∫ T

HN I(N)
r(mANπ

(s), ANπ (s))ds

)
.

The latter term is bounded by I(N) ‖r‖∞. Let ε > 0 and Ω0 = Ω1 ∪Ω2 where Ω1,Ω2 are

as in the proof of Theorem 6.1. Thus P (Ω0) ≤ J(N,T)
ε2

and, using the Lipschitz continuity

133

Chapter 6. From Discrete to Continuous Optimization

of r in m (with constant Kr):∣∣∣V N
π (MN (0))− E

(
vANπ (m0)

)∣∣∣ ≤ I(N) ‖r‖∞ +
2 ‖r‖∞ J(N,T)

ε2
+

KrE
(

1ω 6∈Ω0

∫ T

0

∥∥∥M̄N
π (s)−mANπ

(s)
∥∥∥ ds) .

For ω 6∈ Ω0 and s ∈ [0, T]:
∫ T

0

∥∥∥M̄N
π (s)− M̂N

π (s)
∥∥∥ ds ≤ εI(N)

2L1
and, by Eq.(6.28),∫ T

0

∥∥∥M̂N
π (s)−mANπ

(s)
∥∥∥ ds ≤ (∥∥MN (0)−m0

∥∥+ I0(N)T + ε
)
eL1T−1
L1

thus∣∣∣V N
π (MN (0))− E

(
vANπ (m0)

)∣∣∣ ≤ Bε(N, ∥∥MN (0)−m0

∥∥) (6.30)

where

Bε(N, δ)
def
= I(N) ‖r‖∞ +Kr (δ + I0(N)T + ε)

eL1T − 1

L1
+
KrI(N)

2L1
ε+

2 ‖r‖∞ J(N,T)

ε2

This holds for every ε > 0, thus∣∣∣V N
π (MN (0))− E

(
vANπ (m0)

)∣∣∣ ≤ B(N,
∥∥MN (0)−m0

∥∥) (6.31)

where B(N, δ)
def
= infε>0Bε(N, δ). By direct calculus, one finds that infε>0

(
aε+ b/ε2

)
=

3/2
2
3a

2
3 b

1
3 for a > 0, b > 0, which gives the required formula for B(N, δ).

6.5.3. Proof of Theorem 6.3

Let ᾱN be the right-continuous function constant on the intervals [kI(N); (k + 1)I(N))
such that ᾱN (s) = α(s). ᾱN can be viewed as a policy independent of m. Therefore, by
Theorem 6.1, on the set Ω \ (Ω1 ∪ Ω2), for every t ∈ [0;T]:∥∥∥M̂α(t)− φt(m0, α)

∥∥∥ ≤
[∥∥MN (0)−m0

∥∥+ I0(N)T + ε
]
eL1T + u(t)

with u(t)
def
=
∣∣φt(m0, ᾱ

N)− φt(m0, α)
∣∣. We have

u(t) ≤
∫ t

0

∣∣f(φs(m0, α), α(s))− f(φs(m0, ᾱ
N), ᾱN (s))

∣∣ ds
≤

∫ t

0
K
(∥∥φs(m0, α)− φs(m0, ᾱ

N)
∥∥+ d(α(s), ᾱN (s)

)
ds

≤ K

∫ t

0
u(s)ds+Kd1

where d1
def
=
∫ T

0

∥∥α(t)− ᾱN (t)
∥∥ dt. Therefore, using Grönwall’s inequality, we have

u(t) ≤ Kd1e
KT .

By Lemma 6.7, this shows Eq.(6.7). The rest of the proof is as for Theorem 6.2.

134

6.5. Appendix: proofs

Lemma 6.7. If α is a piecewise Lipschitz continuous action function on [0;T], of
constant Kα, and with at most p discontinuity points, then∫ T

0
d(α(t), ᾱN (t))dt ≤ TI(N)

(
Kα

2
+ 2 (1 + min(1/I(N), p)) ‖α‖∞

)
.

Proof of lemma 6.7. Let first assume that T = kI(N). The left-hand side

d1 =
∫ T

0 d(α(t), ᾱN (t))dt can be decomposed on all intervals [iI(N), (i+ 1)I(N)):

d1 =

bT/I(N)c∑
i=0

∫ (i+1)I(N)

iI(N)

∥∥α(s)− ᾱN (s)
∥∥ ds

≤
bT/I(N)c∑

i=0

∫ (i+1)I(N)

iI(N)
‖α(s)− α(iI(N))‖ ds.

If α has no discontinuity point on [iI(N), (i+ 1)I(N)), then∫ (i+1)I(N)

iI(N)
d(α(s), α(iI(N)))ds ≤

∫ I(N)

0
Kαsds ≤ Kα2I(N)2.

If α has one or more discontinuity points on [iI(N), (i+ 1)I(N)), then∫ (i+1)I(N)

iI(N)
d(α(s)α(iI(N)))ds ≤

∫ (i+1)I(N)

iI(N)
2 ‖α‖∞ ds ≤ 2 ‖α‖∞ I(N).

There are at most min(1/I(N), p) intervals [iI(N), (i+ 1)I(N)] that have discontinuity
points which shows that

d1 ≤ TI(N)(
Kα

2
+ min(1/I(N), p)2 ‖α‖∞).

If T 6= kI(N), then T = kI(N)+ t with 0 < t < I(N). Therefore, there is an additional

term of
∫ kI(N)+t
kI(N) d(α(s), ᾱN (s))ds ≤ 2 ‖α‖∞ I(N).

135

Chapter 7.

Non-smooth Mean-Field Models

Abstract of this chapter – In this chapter, we study deterministic
limits of Markov processes made of several interacting objects. While most
classical results assume that the limiting dynamics has Lipschitz properties,
we show that these conditions are not necessary to prove convergence to a
deterministic system.

We show that under mild assumptions, the stochastic system converges
to the set of solutions of a differential inclusion and we provide simple way
to compute the limiting inclusion. When this differential inclusion satisfies a
one-sided Lipschitz condition, there exists a unique solution of this differential
inclusion and we show convergence in probability with explicit bounds.

This extends the applicability of mean field techniques to systems exhibit-
ing threshold dynamics such as queuing systems with boundary conditions or
controlled dynamics. This is illustrated by applying our results to several types
of systems: fluid limits of priority queues, best response dynamics in games,
push-pull queues with a large number of sources and a large number of servers
and self-adapting computing systems.

Résumé du chapitre – Dans ce chapitre nous étudions le comportement
limite de processus de Markov composés de multiples objets en interaction. Alors
que la plupart des résultats classiques supposent que la dynamique limite a des
propriétés de régularité de type Lipschitz, nous montrons que ces conditions ne
sont pas nécessaires pour prouver la convergence vers un système déterministe.
Nous montrons que sous des hypothèses assez faibles, le system stochastique
converge vers la solution d’une inclusion différentielle et nous donnons un moyen
simple d’obtenir cette inclusion différentielle limite. Quand elle satisfait une
condition de semi-Lipschitz, il existe une solution unique à cette inclusion
différentielle et nous montrons la convergence en probabilité en donnant des
bornes explicites.

Cela permet d’étendre l’applicabilité des techniques de champs moyen à des
systèmes avec des dynamiques à seuil, comme c’est le cas pour des systèmes
de files d’attentes. Ceci est illustré par l’application de nos résultats à des
files “push-pull” avec un grand nombre de sources de paquets et un grand
nonbre de serveurs, qui constituent des modèles naturels de systèmes de calculs
à volontaires.

137

Chapter 7. Non-smooth Mean-Field Models

7.1. Introduction

Let us consider a discrete stochastic dynamical system composed by a large number of
objects. Under classical smoothness assumptions, there exist general results that show
that the limiting system (when the number of objects goes to infinity) can be described
by a system of deterministic ordinary differential equations

ẏ(t) = f(y(t)). (7.1)

Such models are known as mean field limits and described in Chapter 2.

In most cases, the limiting drift function f in (7.1) is assumed to be Lipschitz. This
strong condition hampers the applicability of these results in many practical cases, in
particular, for systems exhibiting thresholds dynamics or with boundary conditions. This
chapter studies the limiting behavior of such a system when the dynamics is non-smooth.
Let us consider a simple queuing system with one buffer and many processors that can
serve one packet per unit of time, on average. If y denotes the number of packets in the
queue, then the average decrease of y is one packet per unit of time (under a proper
rescaling of time) if the queue is non-empty (i.e. y > 0) and zero if the queue is empty.
This leads to a deterministic limit behavior:

ẏ(t) = −1 if y(t) > 0 and ẏ(t) = 0 if y(t) = 0. (7.2)

This dynamics is not continuous and therefore non Lipschitz which makes the classical
approach inapplicable in that case.

Actually, most work using mean field limits for networks do not involve queues or
when they do, the number of queues scale with the number of objects (as in the previous
chapter), or convergence is obtained using ad hoc proofs (see for example [13]).

In the case of a non-continuous right-hand side, the differential equation (7.1) is not
well-defined since there exist no function y that is differentiable and that satisfies (7.2).
The proper way to define solutions of (7.2) is to use differential inclusions (DI) instead.
Equation (7.1) is replaced by the following equation

ẏ(t) ∈ F (y(t)), (7.3)

where F is a set-valued mapping: if y 6= 0 then F (y) = {−1} and F (0) = {u : −1 ≤ u ≤ 0}.
Of course a differential inclusion problem may (or may not) have multiple solutions.

In the following, we will provide generic convergence results of mean field type that
show that under few conditions on the system, its behavior converges to the solutions of
a differential inclusion (7.3) (Theorem 7.5). This result is generic and does not require
any Lipschitz property on the set function F . In particular, it shows that when (7.3) has
a unique solution, the behavior of the system converges to it. Moreover, we also show
that when F satisfies a one-sided Lipschitz condition (7.9), we can bound the gap with
the limiting dynamics with explicit bounds (Theorem 7.7).

The rest of the chapter is organized as follows. In Section 7.2, we briefly describe the
general framework of our work and we give several examples. We will briefly recall some
definitions and properties of differential inclusions in Section 7.2.1. Section 7.3 states
the main theoretical results, Section 7.4 extends the results to time continuous Markov
chains and Section 7.5 describes several application examples.

138

7.2. Description of the Model and Notations

7.2. Description of the Model and Notations

We consider of system composed by N objects evolving in a finite state space S =
{1 . . . S}. Time is discrete and the state of object n at time step k is denoted XN

n (k) and

XN (k)
def
= (XN

1 (k), . . . , XN
N (k)). The objects all evolve in a common environment, called

the context. The context at time step k is denoted by CN (k) ∈ Rd. The state of the
global system at time k is (XN (k), CN (k)). We denote by MN (k) the empirical measure
associated with the N objects:

MN (k)
def
=

1

N

N∑
n=1

δXN
n (k).

Since an object has S possible states, MN (k) can be represented by a vector with S
components, its ith component being the proportion of objects in state i:

MN
i (k)

def
=

1

N

N∑
n=1

1XN
n (k)=i.

The system (MN (k), CN (k))k is assumed to be a Markov chain. In particular, this is
true if the objects all have a Markovian dynamics, if the evolution of the context is
deterministic and if the law of the whole system is invariant by any permutation of the
N objects. The state space of this Markov chain is included in RS+d. To simplify the

notations, we call Y N (k)
def
= (MN (k), CN (k)).

If at time k, the system is in state Y N (k) = y, then the expected difference between
Y N (k + 1) and Y N (k) is called the drift and is denoted fN (y):

fN (y)
def
= E

(
Y N (k + 1)− Y N (k)|Y N (k) = y

)
. (7.4)

This only defines fN on the state space of Y N , which is a subset of Rd+S . Outside the
state space of Y N , fN (y) is not defined at this point.

We assume that as N grows, the drift vanishes with speed I(N). This means that
there exists a function I(N), called the intensity of the model, a set-valued function F
and a continuation of the function fN on all Rd+S such that

• The intensity vanishes: lim
N→∞

I(N) = 0.

• fN converges uniformly to F in the following sense: there exists J(N) with
limN→∞ J(N) = 0 and a function f such that f(y) ∈ F (y) for all y ∈ Rd+S ,
satisfying

sup
y∈Rd+S

∥∥∥∥fN (y)

I(N)
− f(y)

∥∥∥∥ ≤ J(N). (7.5)

where ‖.‖ denotes the L2 norm.

Actually, the following results (Theorems 7.5 and 7.7) remain valid under a weaker
convergence condition of fN to F . Instead of assuming that fN has a limit f , one could
simply assume that

sup
y∈Rd+S

inf
u∈F (y)

∥∥∥∥fN (y)

I(N)
− u
∥∥∥∥ ≤ J(N). (7.6)

139

Chapter 7. Non-smooth Mean-Field Models

All the foregoing proofs would hold by replacing f by any h achieving the infimum in the
above equation (7.6). However, in most practical cases (and in all the examples of this
chapter), the rescaled drift fN/I(N) converges indeed to a (non-continuous) function f ,
so that we focus on that case in the following.

Finally, we assume that the second order of the drift is bounded. This means that
there exists b > 0 such that:

E

(∥∥∥∥Y N (k + 1)− Y N (k)− fN (Y N (k))

I(N)

∥∥∥∥2
)
≤ b. (7.7)

All these assumptions are more or less necessary to use a mean field approach. The
notable important feature of our model is that we do not assume any regularity property
on the function f .

7.2.1. Differential inclusions

In Section 7.3, we will see that under mild conditions, the system described by the variables
(MN (.), CN (.)) converges to the solutions of a deterministic differential inclusion. In
this section, we recall the main concepts on differential inclusions. For a more complete
description, the reader is referred to [1]. In all that follows, 〈x, y〉 denotes the classical
inner-product on Rd+S and ‖x‖ =

√
〈x, x〉 (L2 norm) and ‖A‖ = supx∈A ‖x‖.

Definition 7.1. Consider a differential inclusion problem:

ẏ(t) ∈ F (y(t)), y(0) = y0, (7.8)

where F is a set-valued function mapping each point y ∈ Rd+S to a set F (y) ⊂ Rd+S.
Let I ⊂ R be an interval with 0 ∈ I. A function y : I → Rd+S is a solution of the DI
(7.8) with initial condition y(0) = y0 if there exists a integrable function ϕ : I → Rd+S

such that:

(i) for all t ∈ I: y(t) = y0 +
∫ t

0 ϕ(s)ds;

(ii) for almost every (a.e.) t ∈ I: ϕ(t) ∈ F (y(t)).

In particular, (i) is equivalent to say that y is absolutely continuous. (i) and (ii) imply
that y is differentiable at almost every t ∈ I with ẏ(t) ∈ F (y(t)).

Definition 7.2 (Upper Semi-Continuous (USC)). The function F is said to be upper
semi-continuous (USC) if for any y ∈ Rd+S, F (y) is a non-empty closed, convex and
bounded set and if for any open set O containing F (y), there exists a neighborhood V of
y such that F (V) ⊂ O.

Definition 7.3 (One-Sided Lipschitz (OSL)). A set-valued function F is one-sided
Lipschitz (OSL) with constant L if for all y, ȳ ∈ Rd+S and for all u ∈ F (y) ū ∈ F (ȳ):

〈y − ȳ, u− ū〉 ≤ L ‖y − ȳ‖2 . (7.9)

These two definitions give sufficient conditions for the existence (resp. uniqueness) of
solutions for the differential inclusion (7.8). We recall the following results.

Proposition 7.4 (Theorems 2.2.1 and 2.2.2 of [100]).

140

7.3. Convergence results

• If F is USC and if there exists c such that ‖F (x)‖ ≤ c(1 + ‖x‖) then for all initial
condition y0, (7.8) has at least one solution on [0;∞) with y(0) = y0.

• If F is OSL, then for all T > 0, there exists at most one solution of (7.8) on [0;T].

Of course (USC) and (OSL) combined insure that the DI has a unique solution.

7.2.2. A set valued function for the drift

In our framework, if fN (.) is the drift of the system defined in Equation (7.4), we define
an adapted set-valued function F by:

F (y) =
⋂
ε>0

lim
K→∞

⋃
N≥K

conv

{
fN (z)

I(N)
: ‖z − y‖ ≤ ε

}
, (7.10)

where conv(A) is the closure of the convex hull of a set A. It should be clear that
Equation (7.10) defines a set-valued function F such that for all y:

lim
N→∞

inf
u∈F (y)

∥∥fN (y)/I(N)− u
∥∥ = 0.

Therefore, Equation (7.6) is satisfied as soon as this convergence holds uniformly in y.
Furthermore, the function F defined in (7.10) is USC.

If we assume instead that the drift fN converges uniformly to some function f , meaning
that

∥∥fN (y)/I(N)− f(y)
∥∥ ≤ J(N), the set valued function F associated to the drift can

be defined as:

F (y) =
⋂
ε>0

conv {f(z) : ‖z − y‖ ≤ ε} . (7.11)

In that case, if the function f is continuous in a point y, then F is a singleton: F (y) =
{f(y)} while if f is discontinuous in y, F (y) is the convex closure of the limit set of f at
point y.

7.3. Convergence results

This section contains the two main theoretical contributions of this chapter. The first
one is Theorem 7.5 that shows that if F is USC then the stochastic system converges
to the set of solutions of the differential inclusion. In particular, this implies that if
the differential inclusion has only one solution, the stochastic system converges to this
solution (Corollary 7.6).

This theorem does not give any bound on the speed of convergence. In fact, without
further conditions, the convergence may be arbitrarily slow. However, when the differential
inclusion is both USC and OSL, the the solution of the differential equation is unique
and the speed of convergence can be lower-bounded (Theorem 7.7).

The rest of this section is organized as follows. We first state the two convergence
results and then discuss their applicability. The proofs of the two theorems are postponed
in the appendix. The proof of the first theorem is similar to classical proofs for the
existence of solutions of differential inclusions while the second one is more similar to
classical proofs of the convergence of stochastic approximation algorithms, like the proof
of Theorem 2.1 in Chapter 2 or the proof of Theorem 6.1 in the previous chapter.

141

Chapter 7. Non-smooth Mean-Field Models

Let us now recall that at time step k, the system is in state Y N (k)
def
= (MN (k), CN (k))

and let us denote Ȳ N (t) the piecewise affine interpolation of Y N (k) when we scale time
by a factor I(N). Let us first define the continuous function Ỹ N (t) as the component-wise
linear interpolation of {Y N (k)}k∈N: for all i,

Ỹ N
i (t)

def
= (1− α)Y N

i (btc) + αY N
i (dte),

with α = t− btc.
Then, by scaling time, Ȳ N (t)

def
= Ỹ N (t/I(N)).

Let us denote by ST (y0) the set of the solutions of the DI (7.8) starting from y(0) = y0,
we can show that Ȳ (.) converges (in probability) to ST (y0). More precisely, the following
theorem holds.

Theorem 7.5. Let F be the limit of the drift defined by Equation (7.5). Assume that
the drift satisfies (7.7) and that

• F is USC and there exists c > 0 s.t. ‖F (y)‖ ≤ c(1 + ‖y‖),

• Y N (0)
P−→ y0 (convergence in probability).

Then for all T > 0:

inf
y∈ST (y0)

sup
0≤t≤T

∥∥Ȳ N (t)− y(t)
∥∥ P−→ 0.

Proof. The proof is given in Section 7.6.1.

This theorem shows that if N is large enough, the trajectory of the stochastic system
Ȳ N on T/I(N) steps is close to a solution of the differential inclusion (7.8) over [0, T].
In general a differential inclusion may have multiple solutions. Here, Ȳ N may converge
to any solution of the DI, depending on its random innovations, making this result rather
inefficient for performance evaluation. This result is of greater interest if the DI starting
from y0 has a unique solution: ST (y0) = {y}. In that case, as a direct corollary of the
preceding result, Ȳ N converges in probability to y on all intervals [0;T].

Corollary 7.6. Under the conditions of Theorem 7.5, if the DI (7.8) has a unique
solution y, then for all T :

sup
0≤t≤T

∥∥Ȳ N (t)− y(t)
∥∥ P−→ 0.

In some cases, like the example of push-pull queues described in Section 7.5, the
limiting differential inclusion clearly has a unique solution which makes the preceding
corollary directly applicable. The main drawback of the previous theorem is that it does
not give any insight on the speed of convergence on the stochastic system towards its
limit.

This limitation can be overcome when the function F satisfies the one-sided Lipschitz
condition (7.9). Firstly, this ensures the uniqueness of the solution. Secondly, one can
get precise bounds on the gap between the stochastic system and its limit in that case.

142

7.4. Extension to Non-smooth Density Dependent Population Processes

Theorem 7.7. Under the conditions of Theorem 7.5 and if F is OSL with constant L,
then the DI (7.8) has a unique solution y and there exist constants AT , BT , CT depending
only on T, L and c such that for all ε,

P

(
sup

0≤t≤T

∥∥Y N (t)− y(t)
∥∥ ≥ ∥∥Y N (0)− y(0)

∥∥ eLT +
√
I(N)AT +

√
J(N)BT + ε

)

≤ I(N)

ε2
CT .

The constants AT , BT and CT are given by

AT
def
= e2LT

√
I(N)

6
c2(1 +KT) +

KT

2L
(c(1 +KT) + J(N));

BT
def
=

√
KT e

2LT

√
L

;

CT
def
=

e2LT

2L

(
4c2(1 +KT)2 + b

)
with KT = max{‖y(0)‖ + c,

∥∥yN0 ∥∥ + (c + J(N))T),
∥∥Y N

0

∥∥ + (c + J(N))T +
√
bT}ecT /c

and c is defined in Theorem 7.5 and b in Equation (7.7).

Proof. The proof is given in Section 7.6.2.

Note that if F (.) is bounded by some KF the terms c(1 +KT) can be replaced by KF .
This is in particular true if Y N is constrained to stay in a compact space of Rd+S or if
the drift is bounded for all y ∈ Rd+S .

These constants are of a similar order than bounds that can be obtained in the case
where f is Lipschitz, such as the one of Theorem 6.1 of the previous chapter. However,
the convergence speed with respect to N is in O(

√
I(N)) (compared with O(I(N)) is

the Lipschitz case).

7.4. Extension to Non-smooth Density Dependent Population
Processes

In this section, we show that our results can be adapted to the case of continuous time
Markov chains and in particular for the famed model of density dependent population
processes, described in Chapter 2, Section 2.2.1. The two theorems 7.5 and 7.7 can be
transposed in this case.

Let (DN)N be a density dependent population processes: DN is a continuous Markov
chain on 1

NZd (d ≥ 1) and there exists a set L ⊂ Zd (with 0 6∈ L), such that for each
` ∈ L and x ∈ N−1Zd, the rate of transition from x to x + `/N is Nβ`(x) ≥ 0, where
β`(.) does not depend on N . Let us assume that

∑
`∈L supx∈Zd ‖β`(x)‖ = τ <∞ and let

us define f(x) =
∑

`∈L β`(x)` (in the following, we assume that this sum is well-defined).

If f is Lipschitz, then DN (.) converges to the solution of the equation ḋ(t) = f(d(t))
(see Theorem 2.1 in Chapter 2). Using uniformization of the Markov chain and the
results from Section 7.3 we now show that this convergence still holds for general drifts,
replacing f by its set-valued counterpart F , defined in (7.11).

143

Chapter 7. Non-smooth Mean-Field Models

Theorem 7.8. If supx∈Zd
∑

`∈L β`(x) = τ < ∞, if
∑

`∈L ‖`‖
2 β2

l (y) < b < ∞ and if F
is USC and satisfies ‖F (x)‖ ≤ c(1 + ‖x‖), then for all T > 0:

inf
d∈ST (y0)

sup
0≤t≤T

∥∥DN (t)− d(t)
∥∥ P−→ 0,

where ST (y0) is the solution set of the DI (7.8) starting in y0.

Moreover, if F is OSL of constant L, then

P

(
sup

0≤t≤T

∥∥DN (t)− d(t)
∥∥ ≥ ∥∥DN (0)− d(0)

∥∥ eLT +
1√
N
AT + (1+c(1+Ky

T))ε

)
≤ CT + τ

Nε2

where AT , CT and KT are defined as in Theorem 7.7 with I(N) = N−1, and d(·) is the
unique solution of the differential inclusion (7.8).

Proof. Since τ <∞, the rate of transition of DN (.) is bounded by Nτ . Using uniformiza-
tion of continuous time Markov chain (see Theorem 1.2), there exists a Poisson process
ΛN of rate Nτ and a discrete time Markov chain Y N (.) such that DN (t) = Y N (ΛN (t))
and Y N and ΛN are independent. Moreover, for all x and ` ∈ L,

P
(
Y N (k + 1) = x+

`

N
|Y N (k) = x

)
=

1

τ
β`(x),

P
(
Y N (k + 1) = x|Y N (k) = x

)
= 1− 1

τ

∑
`∈L

β`(x).

For all y ∈ Rd, the drift of Y N (.) is E
(
Y N (k + 1)− Y N (k)|Y N (k) = y

)
= (Nτ)−1f(y).

Moreover, E
(∥∥Y N (k + 1)− Y N (k)− f(y)

∥∥2 |Y N (k) = y
)
≤ (Nτ)−2

∑
`∈L ‖`‖

2 βl(y) <

b. Therefore, Y N (k) satisfies the conditions of Theorem 7.5. Moreover, F also satisfies
the conditions of Theorem 7.5 which shows that infy∈ST (y0) supt≤T

∥∥Y N (tN)− y(t)
∥∥ = 0.

When F satisfies the OSL condition of Theorem 7.7, we further get the result with
explicit bounds.

As ΛN is a Poisson process of rate Nτ ,
∣∣ΛN (t)− tNτ

∣∣2 is a sub-martingale and by

Doob’s inequality, P
(
supt≤T

∣∣ΛN (t)− tNτ
∣∣ ≥ Nτε) ≤ E

(∣∣ΛN (T)− TNτ
∣∣2) /(Nτε)2 =

(TNτ)/(Nτε)2 = T/(Nτε2). If y is a solution of the DI (7.8) on [0;T], for all t, s ∈ [0, T],
‖y(t)− y(s)‖ ≤ c(1 +Ky

T) |t− s| where Ky
T is defined in Lemma 7.11. This shows that if

y is a solution of the differential inclusion, with probability greater than T/(Nτε2), we
have: ∥∥DN (t)− y(t)

∥∥ =
∥∥Y N (ΛN (t))− y(t)

∥∥
≤

∥∥∥∥Y N (ΛN (t))− y
(

ΛN (t)

Nτ

)∥∥∥∥+

∥∥∥∥y(ΛN (t)

Nτ

)
− y(t)

∥∥∥∥
≤

∥∥∥∥Y N (ΛN (t))− y
(

ΛN (t)

Nτ

)∥∥∥∥+ c(1 +Ky
T)ε.

which concludes both parts of the theorem.

144

7.5. Examples

7.5. Examples

7.5.1. Fluid limit of a system of parallel queues

Fluid limits are very popular for studying the dynamics of flows in a queuing network
[56]. In this section, we show that our framework can be applied directly to prove
the convergence of a queuing network to its corresponding fluid limit. Moreover, the
differential inclusion approach allows us to compute the limiting dynamics as a direct
application of Theorem 7.8.

We consider a simple model of a system composed by one server. There are two
classes of customers: customers with high priority (HP) and customers with low priority
(LP). High priority customers and low priority customer enter the system with rate λ
(independently). If there are one or more HP customers in the queue, the server serves
HP customers at rate 3λ. Only when there is no HP customer in the HP queue, can the
server serve LP customers (with rate 3λ). Let C1(t) and C2(t) are the numbers of high
priority and low priority customers at time t. This model is depicted in Figure 7.1(a)
where each queue corresponds to a class of customers. The fluid limit of this system
corresponds to the limiting behavior of the system when the initial state is scaled by a
factor going to infinity.

λ

λ 3λ

(a) The queuing system
with two class of customers

size of queue 1: CN1 (t)

si
ze

of
q
u

eu
e

2:
C
N 2

(t
)

(b) Drift of the system

Figure 7.1.: System and the corresponding drift

This model fits in our density dependent population process framework by considering
a system with 0 object and only a shared resource CN = (CN1 , C

N
2). At time 0, let us

define an arbitrary initial state with, say, 4N high priority customers and N low priority

customers. Thus CN (0)
def
= (4, 1). It should be clear that the expected variation of

CN (t) is fN (c1, c2) = 1
N (−2λ, λ) if CN1 (t) > 0 and fN (c1, c2) = 1

N (λ,−2λ) if CN (t) = 0.
Therefore, the intensity of the system is I(N) = 1

N and the limit of the drift is f(c1, c2) =
NfN (c1, c2) and is depicted in Figure 7.1(b).

As shown on Figure 7.1(b), the drift is constant for all CN1 > 0 but is discontinuous
for CN1 = 0. Because of this discontinuity, there is no absolutely continuous function c
such that ċ(t) = f(c) almost everywhere: the axis c1 = 0 both attracts the trajectories
from c1 > 0 and repulses the trajectories starting from c1 = 0.

However, the intuition tells us that when CN1 (t) = 0, CN1 (t) should remain close to 0
and that the server should serve in average λ HP customers and 2λ LP customers. To

145

Chapter 7. Non-smooth Mean-Field Models

show that this intuition is correct, let us compute the set-valued function F corresponding
to f (defined as in Equation (7.10)). For c1 > 0, F (c) is single-valued and F (c) = {f(c)}.
For c1 = 0, F (c) is the convex hull of the vectors {(p,−2p), (−2p, p)} and corresponds to
the dashed line of Figure 7.2(a).

queue 1 is empty

(a) The set-valued drift for
C1 = 0 is the set of vectors
displayed by the dashed
line.

size of queue 1: CN1 (t)

si
ze

of
q
u

eu
e

2:
C
N 2

(t
)

(b) Unique solution of the differential inclusion.

Figure 7.2.: Convex hull of the drift at C1 = 0 and unique solution of the fluid limit.

It should be clear that the model satisfies all the hypothesis of Theorem 7.5 and that
the differential inclusion has a unique solution, depicted in Figure 7.2(b). Although this
result can be shown directly, our framework provide an easy way to construct the fluid
limit and prove the convergence of the original process.

7.5.2. Best Response in Rock-Paper-Scissors

The second example is taken from game theory and shows that the best response dynamics
typically leads to a non-smooth limit system. In this case the limiting system will be USC
and will have a unique solution but it will not satisfy a one-sided Lipschitz condition.

We consider a set of N individuals playing the game of rock-paper-scissors. The state
of one individual can either be rock, paper or scissors. At each time step, 2 players are
chosen at random. The first player cannot change its choice while the second can decide
to play one of the three choices. The goal of the second player is to beat player one (the
rule of the game is rock beats scissors, scissors beat paper and paper beats rock).

The best response of player two is the following. If there is a majority of rock (resp.
paper or scissors), the second player should play paper (resp. scissor or rock). The
corresponding limiting dynamics is drawn on Figure 7.3. The drift is not Lipschitz on
the frontiers and the limit dynamics is non-smooth. The differential inclusion is USC
but not OSL. However, for all initial conditions, the solution of the differential inclusion
is unique and has at most one cusp point before converging in finite time to its unique
attractor (1/3, 1/3, 1/3), at constant speed.

7.5.3. Volunteer Computing

Here, we consider a model of a volunteer computing system, such as BOINC http:

//boinc.berkeley.edu/. The system is made of a single buffer and N desktop machines,

146

http://boinc.berkeley.edu/
http://boinc.berkeley.edu/

7.5. Examples

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

limiting dynamics
stochastic system

Figure 7.3.: (Vector field for the best response dynamics. The first (second) coordinate
M1 (M2) is the proportion of Rocks (Paper).The proportion of Scissors is
M3 = 1 −M1 −M2. Two trajectories starting in M(0) = (.8, .1, .1) are
shown. One corresponding to a stochastic system with N = 10 players and
one for the deterministic limit.

offered by their owners (volunteers), that serve the jobs of this buffer. However, as soon
the owner of a processor wants to use it, she preempts it and the processor becomes
unavailable for the computing system. As for the incoming jobs, they are assumed to
arrive in the buffer according to a Poisson process at rate λ. These kinds of systems are
often called push/pull models: The distributed applications push jobs to a central server
that stores them in a buffer and whenever a processor becomes available, it pulls a job
from the buffer and executes it.

Such systems fit our density dependent population process framework. The context
C(t) represents the size of the buffer while the N objects represent both the applications
sending jobs and the hosts executing them. The state of a host is its availability and its
idleness (whether it is executing a job or not). The non-smooth part of the dynamics
comes from the buffer size. When C(t) > 0, if a host asks for a job, it gets it with
probability one while when C(t) = 0, a host asking for a job will get nothing. In that
case, one can show that this dynamics satisfies the conditions of Theorem 7.8 that can
be used to study the limiting behavior of the system when the number of hosts and
applications grows.

In the simplest case, the intensity of the system is I(N) = 1/N and an application
sends a job to the system at rate λ while jobs are completed at rate µ by each server.
To represent the communication delays, every host gets jobs at rate γ. It becomes
unavailable with rate pu, and available with rate pa if C(t) > 0 and 0 otherwise. If b, a, u
denote respectively the proportion of busy, available and unavailable hosts, the limiting
system is described by a DI:

ḃ(t) = −µb(t) + γa(t)1C(t)>0

ȧ(t) = µ(t)b(t) + pau(t)− γa(t)1C(t)>0

u̇(t) = −pau(t) + pua(t)

Ċ(t) = −γa(t)1C(t)>0 + λ1C(t)<Cmax
.

The formal DI is obtained by replacing γa(t)1C(t)>0 by the singleton {γa(t)} if C(t) > 0
and the interval [0; γa(t)] when C(t) = 0.

147

Chapter 7. Non-smooth Mean-Field Models

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

P
ro

p
o
rt

io
n
 o

f
p
ro

c
e
s
s
o
r

/
B

u
ff
e
r

s
iz

e

Time

Buffer Size
Off and idle

On and busy

Figure 7.4.: Limit dynamics of a volunteer computing system. A non-differentiable point
occurs when the buffer becomes empty.

At time t = 0, we consider that the size of the buffer is C(0) = 0.2 and that all
processors are available and are serving a job. The behavior of the system is represented
in Figure 7.4. One can see that there is a point of non-differentiability in the behavior of
the system when the size of the buffer reaches 0.

7.5.4. Volunteer Computing: Day and Night Scenario

We now consider a similar model as the previous one except that the processors follow a
day and night behavior. We consider that some of the processors are turned off at night.
Therefore, the availability is larger during the day (between 7am and 5pm) than at night.

The limiting dynamics can be represented by a differential inclusion that depends (not
continuously) on time:

∂y(t)

∂t
∈ F (y(t), t). (7.12)

In the previous theorems, we assumed that the function F was time-invariant. There
are three ways to tackle this problem. The first one is to adapt the proofs to the time
dependent case. An other idea that can used here is the fact that for all finite interval of
time, there is only a finite number of discontinuity points (7am, 5pm,. . .), and to apply
the convergence results on a first sub-interval [0; 7am]. Using the fact that Y N (7)→ y(7),
the convergence holds on [7am, 5pm], and so forth. Yet another solution is to write

Z(t)
def
= (Y (t), t). Then the differential inclusion (7.12) can be written:

∂z(t)

∂t
∈ (F (z(t)), 1) . (7.13)

The fact that F is not continuous in t (and therefore in z(t)) is not a problem in our
differential inclusion setting. It should be clear that in that case there is still a unique
solution to the differential inclusion (7.13).

On Figure 7.5 we can observe two kinds of non-differentiable points. The first ones are
the points representing the change from day time to night time. The other ones occur
when the buffer becomes empty. The small oscillations of the buffer size around 0 and
of the proportion of busy processors are just numerical integration artefacts (typical of

148

7.5. Examples

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

P
ro

p
o
rt

io
n
 o

f
p
ro

c
e
s
s
o
r

/
B

u
ff
e
r

s
iz

e

Time

Buffer Size
Off and idle

On and busy

Figure 7.5.: Limit dynamics for volunteer computing under day and night availability.

numerical integration of differential inclusions). In both cases the exact solutions do not
exhibit these jumps.

7.5.5. Join the Shortest Queue in Volunteer Computing

This example is similar to the one of Section 7.5.3 but with two identical time-homogeneous
volunteer systems. Each time a job arrives, it is routed to the system with the smallest
number of jobs. Here, the routing of jobs introduces a new cause of non-smoothness:
there is a threshold in the dynamics of the system when both backlogs are equal.

Figure 7.6 shows the behavior of the limit differential inclusion. Once again, the limit
behavior is unique once the initial condition is given.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12

P
ro

p
o
rt

io
n
 o

f
p
ro

c
e
s
s
o
r

/
B

u
ff
e
r

s
iz

e

Time

Buffer of queue 1
Buffer of queue 2

Total jobs in Queue 1
Total Jobs in Queue 2
Active procs Queue 1
Active procs Queue 2

Figure 7.6.: Join the shortest queue for volunteer computing

As expected, new non-differential points appear when both buffers are equal.

7.5.6. OSL dynamics: energy-aware distributed computing system

The previous examples have dynamics for which the drift function did not satisfy an OSL
condition. However, OSL conditions are commonly assumed in the non-smooth system
litterature [48, 107]. In this section, we recall sufficient condition for a dynamical system

149

Chapter 7. Non-smooth Mean-Field Models

to be OSL and provide some examples of dynamics that are OSL. Recall that a set-valued
function F is OSL with constant L ≥ 0 if for all y, ȳ ∈ Rd and u ∈ F (y), ū ∈ F (ȳ):
〈y − ȳ, u− ū〉 ≤ L ‖y − ȳ‖2.

Let us first examine the example of Section 7.5.3. Let y = (b, a, u, C) and ȳ = (b̄, a, u, 0),

then 〈y − ȳ, f(y)− f((̄y))〉 = −µ
∣∣b− b̄∣∣2 + γa(b− b̄)− γa. When b− b̄ is small enough

and positive, this expression is of order a(b − b̄) which is greater than L ‖y − ȳ‖2 =

L(
∣∣b− b̄∣∣2 + C2). In fact, there are two types of non-smoothness in these equations.

The first one is that the dynamics of C depends not continuously on C but in a OSL
way (see below). The second type of discontinuity is that the dynamics of b depends
non-smoothly on C. This latter discontinuity always leads to a term of order (b− b̄) which

is greater than L
∥∥b− b̄∥∥2

whenever b− b̄ is small enough. This is a general problem for
the applicability of OSL: whenever the derivative of one coordinate depends non-smoothly
on a other coordinate, the dynamics is never OSL. This is actually the case in all the
examples of Sections 7.5.1 to 7.5.5.

Sufficient conditions to prove OSL

The next lemma links conditions on the drift function f to its set-valued counterpart.

Lemma 7.9. Let f : Rd → Rd be a single valued function and F be the convex set-valued
function associated to f , defined by

F (y) =
⋂
ε>0

conv {f(z) : ‖z − y‖ ≤ ε} .

where conv denotes the convex hull of a set. Then:

(i) F is OSL with constant L iff f is OSL with constant L.

(ii) If f is Lipschitz of constant L, then F is OSL of constant L.

Sketch of proof. (i) – The proof of (i) is straightforward from the definition of OSL. The
main idea is to use the fact that since Rd is a d dimensional space and by the definition of
F , any u ∈ F (y) can be written as the limit of a convex combination of d points u1 . . . ud
such that ui = f(yi) and ‖y − yi‖ ≤ ε. Using a similar combination for ū ∈ F (ȳ) and
playing with the coefficient of the convex combination leads to (i).

(ii) – The proof of (ii) comes from the Cauchy-Schwartz inequality. If f is Lipschitz
with constant L, then for all y, ȳ ∈ Rd: 〈y − ȳ, f(y)− f(ȳ)〉 ≤ ‖y − ȳ‖ ‖f(y)− f(ȳ)‖ ≤
L ‖y − ȳ‖2. This shows that f is OSL. By (i), this implies that F is OSL.

In order to show that a particular dynamic is OSL, we can also use the fact that the
sum of two OSL functions is OSL. However, unlike in the case of Lipschitz functions, the
product or the composition of two OSL functions is not necessarily OSL.

Lemma 7.10. If F1 and F2 are two OSL with constant L1 and L2, then F1 +F2 is OSL
with constant L1 + L2, where F1 + F2 is defined by:

(F1 + F2)(y) = {u1 + u2 : u1 ∈ F1(y), u2 ∈ F2(y)}.

The basic example of a OSL function is the fluid limit of a single M/M/1 queue. Let us
assume that jobs arrive in the system at rate Nλ > 0 and are served by a server with rate

150

7.5. Examples

Nµ > 0. Let Y N (t) be the number of packet at time t in the queue rescaled by 1
N and let

assume that Y N (0) = x. The drift of the system is f(y) = λ− µ if y > 0 and f(0) = λ
(that can be extended to f(y) = λ for y < 0). The set-valued drift corresponding to f is
F (y) = {λ − µ} if y > 0, F (y) = {λ} if y < 0 and F (0) = [λ − µ;λ]. This function F
satisfies a OSL condition with constant 0. Indeed, let y, y′ ∈ R. If y and y′ are both
positive or both negative, f(y)− f(y′) = 0. If y > 0 and y′ ≤ 0,

〈y − y′, f(y)− f(y′)〉 = 〈y − y′,−µ〉 ≤ 0 ≤ 0
∥∥y − y′∥∥2

. (7.14)

Therefore, the dynamics of a M/M/1 queue is OSL with constant 0 and one can apply
Theorem 7.7 with KT = λ, I(N) = 1/N , J(N) = 0 and any L > 0. Note that Theorem 7.7

requires L > 0 because of a term in e2LT /
√
L that comes from I(N)

∑T/I(N)
i=1 (1 +

4LI(N))i ≤ exp 4LT/(4L). When L = 0, this term can be replaced by T . The dependence
in T of the constants AT , BT and CT is e2LT when L > 0 and T when L = 0.

Let us now consider a more sophisticated computing model made of a single buffer andN
computing resources. Jobs arrive at rate Nλ in the buffer (where λ may vary) and CN (t) is
the number of jobs in the buffer rescaled by N . The buffer size is upper bounded by Cmax .
In order to optimize energy consumption, the computing resource can compute at rate
µ1 or µ2 > µ1. If there is a proportion MN

1 (t) = m1 resources at speed µ1 and MN
2 (t) =

m2 = 1−m1 resources at speed µ2, the drift of CN (t) is fc(c,m1,m2) = λ−m1µ1−m2µ2 if
0 < c < Cmax , g(0,m1,m2) = λ and fc(Cmax ,m1,m2) = −m1µ1−m2µ2. A computation
similar to (7.14) shows that fc is OSL.

The computing resources can not communicate and each resource updates it speed
independently of the others as a function of the load CN (t) of the system. To do
so, each resource measures the size of the queue CN (t) at rate γ. If the size of the
buffer is c and the speed of the resource is µi, the speed is set to fast (i.e. µ2) with
probability pi(c) (and is set to slow with probability 1 − pi(c)). Therefore, the drift
of MN

1 (t) is f1(c,m1,m2) = γ(−m1p1(c) + m2(1 − p2(c))) and the drift of MN
2 (t) is

f2(c,m1,m2) = −f1(c,m1,m2). If b 7→ pi(c) is Lipschitz, the functions f1 and f2 are
both Lipschitz. This shows that the drift of the whole system (which is the sum of fc, f1

and f2) is a OSL function.

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350 400

P
ro

p
o
rt

io
n
 o

f
re

s
s
o
u
rc

e
s
 /
 B

u
ff
e
r

s
iz

e

Time

buffer size (rescaled)
fraction of fast processors

(a) γ = .1

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350 400

P
ro

p
o
rt

io
n
 o

f
re

s
s
o
u
rc

e
s
 /
 B

u
ff
e
r

s
iz

e

Time

buffer size (rescaled)
fraction of fast processors

(b) γ = 1

Figure 7.7.: Differential inclusion dynamics of the energy-aware distributed systems for
γ = .1 and γ = 1 and Cmax = 2. The y axis represents proportion of
resources that are fast (i.e. m2(t)) or the buffer size, depending on the curve.

In practical situation, measuring c and changing power of a computing resource is

151

Chapter 7. Non-smooth Mean-Field Models

costly in terms of time and energy. Thus, the choice of γ is a compromise between the
reactivity of the system and the time and energy spent to adapt the power to the load.
Figure 7.7 shows two examples of the evolution of the differential inclusion dynamics for
two values of γ: γ = .1 and γ = 1. The parameters of the system are µ1 = .5, µ2 = 2 and
Cmax = 2. On each figure, pi(c) = c/Cmax . When t ∈ [0; 100] or t ∈ [200; 300], we set
λ = .6 while for t ∈ [100; 200] or t ∈ [300; 400], λ = 1.5. Figure 7.7(a) shows that when γ
is small, a brutal change of the arrival rate leads to a long period of oscillation of the
system. When going from λ = .6 to 1.5, some jobs are lost at the beginning. Then, the
system overreacts before stabilizing. When γ = 1 as in Figure 7.7(b), these oscillations
have disappeared, except for a small burst at the beginning.

7.6. Proofs of Theorem 7.5 and Theorem 7.7

The idea of the proofs is to write the evolution of the system as a stochastic approximation
algorithm. The state of the system at time k + 1 can be written as

Y N (k+1) = Y N (k) + I(N)f(Y N (k)) +
(
fN (Y N (k))− I(N)f(Y N (k))

)
+
(
Y N (k+1)−Y N (k)−fN (Y N (k))

)
, (7.15)

where f is defined in (7.5). This equation can be seen as an Euler discretization of the
DI (7.8) plus two error terms:

• EN (k)
def
= fN (Y N (k))/I(N) − f(Y N (k)) which by Equation (7.5) is such that∥∥EN (k)
∥∥ ≤ J(N);

• UN (k + 1)
def
=
(
Y N (k + 1)− Y N (k)− fN (Y N (k))

)
/I(N) which by Equation (7.4)

is such that E
(
UNk+1

∣∣FNk) = 0 where FNk denotes the filtration associated with the

process (Y N (k))k. Moreover, by Equation (7.7), E
(∥∥UNk+1

∥∥2
∣∣∣FNk) ≤ b.

Using this notation, and the definition of F (y) by Equation (7.10), Equation 7.15 can be
rewritten

Y N (k + 1) ∈ Y N (k) + I(N)
(
F (Y N (k)) + EN (k) + UN (k + 1)

)
. (7.16)

Equation (7.16) is called a stochastic approximation with constant step size associated to
the DI (7.8). The term constant step size comes from the fact that I(N) does not vary
with time. Both proofs of Theorem 7.5 and Theorem 7.7 are based on the convergence of
such stochastic approximation (7.16) as N goes to infinity.

7.6.1. Proof of Theorem 7.5

This proof is inspired by classical proofs on differential inclusions, for example the proof
of Theorem 2.2.1 of [100]. It is somewhat similar to the proof of Theorem 4.2 of [19]
although there are two main differences. First, we focus on constant step size and are
interested in the convergence over a finite time-horizon. Second, we do not need any
assumption on the boundedness of the stochastic process since this is a consequence of
the hypothesis in the finite time-horizon.

The idea of the proof is to show that for all sub-sequence of Ȳ N , there exists a sub-
sequence Ȳ σ(N) (of this sub-sequence) such that d(Ȳ σ(N),DT (y0))

a.s.−−→ 0. In all that

152

7.6. Proofs of Theorem 7.5 and Theorem 7.7

follows, let Ȳ σ(N) be a sub-sequence of Ȳ N . In order to simplify the notations and because
we will take several sub-sequences of sub-sequences, we omit the σ in the notation and
we denote all sub-sequences Ȳ N . In the first part of the proof, we consider the problem
from a probabilistic point of view in order to make sure that the random part of the
process goes almost surely to 0. Then we consider the problem from a trajectorial point
of view using analytic arguments.

Developing the recurrence (7.16), the value of Y N (k + 1) is equal to:

Y N (k+1) = Y N (0)+

k∑
i=0

I(N)f(Y N (i))+I(N)

k∑
i=0

EN (i)+I(N)

k∑
i=0

UN (i+1). (7.17)

We define two functions ZN (t), and V N (t) to be piecewise affine functions such that for
all k, ZN (kI(N)) =

∑k−1
i=0 I(N)f(Y N (i)) and V N (kI(N)) =

∑k−1
i=0 I(N)UN (i+ 1). By

Kolmogorov’s inequality for martingales and since E
(∥∥UN (k + 1)

∥∥2 |FNk
)
≤ b

P

(
sup

0≤t≤KI(N)

∥∥V N (t)
∥∥ ≥ ε) = P

(
sup

0≤k≤K

∥∥∥∥∥I(N)
k−1∑
i=0

UN (i+ 1)

∥∥∥∥∥ ≥ ε
)
≤ KI(N)2

ε2
b.

Therefore, for all T :

P

(
sup

0≤t≤T

∥∥V N (t)
∥∥ ≥ ε) ≤ P

 sup
0≤t≤

⌈
T

I(N)

⌉
I(N)

∥∥V N (t)
∥∥ ≥ ε

 ≤
⌈

T
I(N)

⌉
I(N)2

ε2
b. (7.18)

This shows that sup0≤t≤T
∥∥V N (t)

∥∥ converges in probability to 0. Therefore, there exists
a sub-sequence of V N such that supt≤T

∥∥V N (t)
∥∥ converges almost surely to 0.

We now reason from a trajectorial point of view. Let us now consider a trajectory
ω ∈ Ω of the system such that supt≤T

∥∥V N (t)
∥∥ converges to 0. In particular, this implies

that
∥∥V N (t)

∥∥ is bounded for all N and t: supN,0≤t≤T
∥∥V N (t)

∥∥ ≤ d < ∞. Using (7.17)

and since ‖F (y)‖ ≤ c(1 + ‖x‖), for all k ≤ T/I(N),
∥∥Y N (k + 1)

∥∥ can be bounded by:∥∥Y N (k + 1)
∥∥ ≤

∥∥Y N (0)
∥∥+

∑
i=0

I(N)c(1 +
∥∥Y N (i)

∥∥) + sup
N,t

∥∥V N (t)
∥∥

≤
∥∥Y N (0)

∥∥+ ckI(N) + d+
k∑
i=0

I(N)
∥∥Y N (i)

∥∥
≤

(∥∥Y N (0)
∥∥+ cT + d

)
exp (cT) /c, (7.19)

where we used the discrete Grönwall’s lemma and the fact that kI(N) ≤ T .
Once we know that supN,0≤t≤T

∥∥Y N (t)
∥∥ is bounded, the rest of the proof can be adapted

from classical results on the convergence of the Euler approximation for differential
inclusions, see [100] for example. There exists e > 0 such that supN,0≤t≤T

∥∥Y N (t)
∥∥ ≤ e.

Thus
∥∥f(Y N (k))

∥∥ < c(1 + e) <∞. This shows that the functions ZN are Lipschitz with
constant c(1+e). Thus the sequence of functions (ZN)N are equicontinuous and bounded.
Therefore by the Arzéla-Ascoli theorem, for all sub-sequence of (ZN)N , there exists a sub-
sequence that converges to some z : [0;T]→ Rd. In the following, we will show that z is
a solution of (7.3) which shows that d(ZN ,ST (y0))→ 0. As

∥∥ZN − Y N
∥∥ =

∥∥V N
∥∥→ 0,

this implies that d(Y N ,ST (y0))→ 0. To prove this, we will construct a function ϕ such
that:

153

Chapter 7. Non-smooth Mean-Field Models

(i) for all t: z(t) = z(0) +
∫ t

0 ϕ(s)ds;

(ii) for almost every t: ϕ(t) ∈ F (z(t)).

Let ϕN (t) be a step function, constant on the intervals [kI(N), (k + 1)I(N)) and such
that for t = kI(N), ϕN (t) = f(Y N (k)). Therefore, the sequence ϕN is bounded in
L2([0;T],Rd). Thus, there exists a sub-sequence of ϕN converging weakly in L2 to a
function ϕ. Since L2 is a reflexive space, if a sequence of functions ϕN converges to ϕ,
this means that for all function v in L2, there exists a sub-sequence of ϕN such that

〈v, ϕN 〉 → 〈v, ϕ〉. Let ξ ∈ Rd and t ∈ [0;T]. Let the function v be defined by v(s)
def
= ξ

for s < t and v(s)
def
= 0 for t ≥ s. Since ϕN converges weakly to ϕ and ZN (t)→ z(t), we

have:

〈ZN (t), ξ〉 → 〈z(t), ξ〉

〈ZN (t), ξ〉 = 〈ZN (0), ξ〉+ 〈
∫ t

0
ϕN (s)ds, ξ〉

= 〈ZN (0), ξ〉+ 〈ϕN , v〉
→ 〈z(0), ξ〉+ 〈ϕ, v〉

= 〈z(0) +

∫ t

0
ϕ(s)ds, ξ〉.

As this is true for all ξ ∈ Rd, this shows that z is absolutely continuous: z(t) =
∫ t

0 ϕ(s)ds.
It remains to show that for a.e. t, φ(t) ∈ F (z(t)). Let tN denotes the greater multiple

of I(N) less than t (tN
def
= bt/I(N)c I(N)). Using that f(Y N (k)) ≤ c(1 + e) and that

zN converges uniformly to y, for all δ > 0, there exists N0 such that N ≥ N0 implies∥∥z(t)− Y N (tN)
∥∥ ≤ δ. Defining F δ(y)

def
= ∪z:‖z−y‖≤δF (z), this shows that φN (t) ∈

F δ(z(t)). Since F is convex and z bounded, {α ∈ L2 : α(t) ∈ F δ(z(t))} is convex and
closed. This shows that this set is weakly closed (see [128], Theorem 3.12). Therefore,
for all t, φ(t) ∈ F δ(t). As this is true for all δ and F is USC, this shows that for a.e. t,
φ(t) ∈ ∩δ>0F

δ(t) = F (z(t)). Thus, z is a solution of the DI.

154

7.6. Proofs of Theorem 7.5 and Theorem 7.7

7.6.2. Proof of Theorem 7.7

This proof is based on two Lemmas. Lemma 7.12 shows the rate of convergence of an
Euler scheme without error to the solution of a differential inclusion. Lemma 7.13) shows
that the gap between the deterministic Euler scheme and the stochastic approximation
can be bounded in probability with explicit bounds. The combination of the two directly
implies Theorem 7.7.

We define by yNk the Euler scheme associated with the differential inclusion (7.3) with
step I(N) starting in Y N (0). That is:

yN0 = Y N (0)
yNk+1 = yNk + I(N)

(
f(yNk) + EN (k)

) (7.20)

for some f(yNk) ∈ F (yNk). Again, yN (t) denotes the piecewise interpolation of yNk where
the time is scaled by a factor I(N). More precisely, yN (t) is a piecewise affine function
such that for k ∈ N: yN (kI(N)) = yNk . Finally, we denote by y(t) a solution of the DI
(7.3) (which is unique if the DI is OSL by Proposition 7.4).

We first start by a technical lemma that bounds the growth of the functions.

Lemma 7.11. If F is USC and OSL with constant L and if there exists c such that
for all x, ‖F (x)‖ ≤ c(1 + ‖x‖), then: if yNk is the piecewise interpolation of the Euler
scheme (7.20) with

∥∥EN (k)
∥∥ ≤ J(N) and y(.) the unique solution of the DI starting

in y0, then there exist constants Ky
T ,K

yN

T and KY N

T such that sup0≤t≤T ‖y(t)‖ ≤ Ky
T ,

sup0≤t≤T
∥∥yN (t)

∥∥ ≤ KyN

T a.s. and sup0≤t≤T

√
E
(∥∥f(Ȳ N (t))

∥∥2
)
≤ KY N

T where

Ky
T

def
= (‖y(0)‖+ c)

ecT

c

KyN

T
def
= (

∥∥yN0 ∥∥+ (c+ J(N))T)
ecT

c

KY N

T
def
= (

∥∥Y N
0

∥∥+ (c+ J(N))T +
√
bT)

ecT

c
.

Proof. By the definition of yNk of Equation (7.20) and since ‖F (y)‖ ≤ c(1 +‖y‖), we have

∥∥yNk+1

∥∥ =

∥∥∥∥∥yN0 + I(N)
k∑
i=0

(
f(yNi) + EN (i)

)∥∥∥∥∥
≤

∥∥yN0 ∥∥+ I(N)
k∑
i=0

(
c(1 +

∥∥yNi ∥∥) + J(N)
)

=
∥∥yN0 ∥∥+ (k + 1)I(N)(c+ J(N)) + I(N)c

k∑
i=0

∥∥yNi ∥∥ .
Therefore, for all k ≤ T/I(N), by the discrete Grönwall’s lemma,

∥∥yNk ∥∥ ≤ KyN

T with

KyN

T
def
= (

∥∥yN0 ∥∥+ (c+ J(N))T)ecT /c. Similarly, ‖y(t)‖ ≤ ‖y(0)‖+
∫ t

0 c(1 + ‖y(s)‖)ds ≤
(‖y(0)‖+ ct)ecT /c.

155

Chapter 7. Non-smooth Mean-Field Models

Similarly to the computation for yNk , and focusing on Y N (k) leads to:∥∥Y N (k + 1)
∥∥ ≤

∥∥Y N (0)
∥∥+ (k + 1)I(N)(c+ J(N))

+I(N)

∥∥∥∥∥
k∑
i=0

UN (i+ 1)

∥∥∥∥∥+ I(N)c
k∑
i=0

∥∥yN (i)
∥∥

which shows that
∥∥Y N (k)

∥∥ ≤ (
∥∥Y N

0

∥∥ + (c + J(N))T + I(N)
∥∥∥∑k

i=0 U
N (i+ 1)

∥∥∥)ecT /c.

Since E
(
UN (k + 1)

∣∣FNk) = 0,

E

I(N)

∥∥∥∥∥
k∑
i=0

UN (i+ 1)

∥∥∥∥∥
2
 ≤ I(N)

k∑
i=0

E
(∥∥UN (i+ 1)

∥∥2
∣∣∣FNk) ≤ bkI(N).

Using the Jensen inequality on x 7→ (1 +
√
x)2, this implies that for all k ≤ T/I(N)

E
(∥∥Y N (k)

∥∥2
)
≤ (
∥∥Y N

0

∥∥+ (c+ J(N))T +
√
bT)2 e

2cT

c2
.

Lemma 7.12. If F is USC and OSL with constant L and if there exists c such that
for all y, ‖F (y)‖ ≤ c(1 + ‖y‖), then: if yN (.) is the piecewise interpolation of the Euler
scheme (7.20) with

∥∥EN (k)
∥∥ ≤ J(N) and y(.) the unique solution of the DI starting in

y0, then

sup
0≤t≤T

∥∥yN (t)− y(t)
∥∥ ≤ eLT ∥∥yN0 − y0

∥∥+
√
I(N)AT +

√
J(N)BT

where

AT
def
= e2LT

√
I(N)

6
c2(1 +K) +

K

2L
(c(1 +K) + J(N));

BT
def
=

√
Ke2LT

√
L

,

and KT
def
= max{Ky

T ,K
yN

T } with Ky
T and KyN

T defined as in Lemma 7.11.

If yN0 is bounded, then for T fixed, AT is bounded for all N . This shows that the
convergence of yN (t) to y(t) is of order O(

√
I(N)). In fact, the rate of convergence of

the Euler’s method can be improved if the solution of the differential inclusion satisfies
some properties. For example, if the solution has a finite number of point at which it is
not differentiable the rate of convergence is O(I(N)), see for example [107], Theorem 4.1.

Proof. Let us fix N and let us call ti = iI(N). Let r(t)
def
=
∥∥yN (t)− y(t)

∥∥2
. Since

yN (.) is piecewise affine and y(.) is absolutely continuous, r is absolutely continuous and
differentiable for almost every t. Therefore, for a.e. t such that ti ≤ t < ti+1, we have

ṙ(t) = 2〈yN (t)− y(t), f(yN (ti)) + EN (i)− f(y(t))〉
= 2〈yN (ti)− y(t), f(yN (ti))− f(y(t))〉+ 2〈yN (t)− yN (ti), f(yN (ti))− f(y(t))〉

+2〈yN (t)− y(t), EN (i)〉
= 2〈yN (ti)− y(t), f(yN (ti))− f(y(t))〉 (7.21)

+2〈(t−ti)
(
f(yN (t)) + EN (ti)

)
, f(yN (ti))− f(y(t))〉 (7.22)

+2〈yN (t)−y(t), EN (i)〉. (7.23)

156

7.6. Proofs of Theorem 7.5 and Theorem 7.7

Equation (7.21) can be bounded by the OSL condition and is less than 2L
∥∥yN (ti)− y(t)

∥∥2

which is equal to 2L
∥∥yN (ti)− y(ti) + y(ti)− y(t)

∥∥2 ≤ 4L(r(ti) + ‖y(ti)− y(t)‖2). More-

over, since y is a solution of the DI (7.8), ‖y(t)− y(ti)‖ =
∥∥∥∫ tti f(y(s))ds

∥∥∥2
≤ ((t− ti)c(1+

K))2. By Cauchy–Schwarz inequality, the two terms of Equation (7.23) are bounded by
2(t− ti)(c(1 +K) + J(N))2K + 4KJ(N).

Since r(t) is absolutely continuous, r(ti+1) = r(ti) +
∫ ti+1

ti
ṙ(t)dt. Thus

r(ti+1) ≤ r(ti) (1 + 4LI(N)) +
4L

3
I(N)3c2(1 +K)2

+I(N)2(c(1 +K) + J(N))2K + 4KJ(N)I(N).

Using that (1 + 4LI(N))i ≤ e4Lti and that
∑i

j=1(1 + 4LI(N))j = ((1 + 4LI(N))i+1 −
1)/(4LI(N)) ≤ e4Lti/(4LI(N)), we get by a direct induction that:

r(ti) ≤ e4Ltir(0)+
e4Lti

4L

(
4LI(N)2

3
c2(1 +K)2 + 2KI(N)(c(1 +K) + J(N)) + 4KJ(N)

)
.

(7.24)
This quantity is maximized for ti = T . Therefore, we have

sup
0≤t≤T

r(t) ≤ e4LT r(0)+I(N)e4LT

(
I(N)

6
c2(1+K) +

K

2L
(c(1+K)+J(N))

)
+J(N)

Ke4LT

L
.

This gives the results using
√
a+ b+ c ≤

√
a+
√
b+
√
c.

The following lemma states the convergence in probability of Y N (k) to the Euler
scheme yN (k) with explicit probabilistic bounds. Together with Lemma 7.12, it shows
that Y N converges to the solution of the solution of (7.8) with explicit bounds (i.e.
Theorem 7.7).

Lemma 7.13. If F is USC and OSL with constant L and if there exists c such that for
all y, ‖F (y)‖ ≤ c(1 + ‖y‖), then if yN (.) is the affine interpolation of the Euler scheme
(7.20) and Y N (.) the affine interpolation of the stochastic approximation (7.16) with

•
∥∥EN (k)

∥∥ ≤ J(N)

• E
(
UNk+1

∣∣FNk) = 0 and E
(∥∥UNk+1

∥∥2
∣∣∣FNk) ≤ b

then for all T and all ε > 0,

P

(
sup

0≤t≤T

∣∣Ȳ N (t)− yN (t)
∣∣ ≥ ε) ≤ I(N)

ε2
e2LT

2L

(
2c2
(

(1 +KyN

T)2 + (1 +KY N

T)2
)

+ b
)
.

where KyN

T and KY N

T are defined as in Lemma 7.11.

In particular, this shows that limN→∞ P
(
sup0≤t≤T

∣∣Ȳ N (t)− yN (t)
∣∣ ≥ ε) goes to 0

with rate I(N).

157

Chapter 7. Non-smooth Mean-Field Models

Proof. Using the equality ‖x+ y + z‖2 = ‖x‖2 + 2(〈x, y〉+ 〈x, z〉+ 〈y, z〉) + ‖y‖2 + ‖z‖2

and the definitions of Y N (k + 1) and yNk+1 (Eq. (7.16) and (7.20)),
∥∥Y N (k+1)−yNk+1

∥∥2

can be rewritten∥∥Y N (k+1)−yNk+1

∥∥2
=

∥∥Y N (k)− yNk + I(N)
(
f(Y N (k))− f(yNk) + UN (k+1)

)∥∥2

=
∥∥Y N (k)− yNk

∥∥2

+2I(N)〈Y N (k)− yNk , f(Y N (k))− f(yNk)〉 (7.25)

+2I(N)〈Y N (k)− yNk + f(Y N (k))− f(yNk), UN (k+1)〉

+I(N)2
∥∥f(Y N (k))− f(yNk)

∥∥2
+ I(N)2

∥∥UN (k+1)
∥∥2

≤ (1 + 2LI(N))
∥∥Y N (k)− yNk

∥∥2
(7.26)

+I(N)2
(∥∥f(Y N (k))− f(yNk)

∥∥2
+
∥∥UN (k+1)

∥∥2
)

(7.27)

+2I(N)〈Y N (k)−yNk + f(Y N (k))−f(yNk), UN (k+1)〉. (7.28)

where we use the OSL to go from (7.25) to (7.26).
Let us define a real valued sequence WN (k) by WN (0) = 0 and for all k ≥ 0:

WN (k + 1) = (1 + 2LI(N))WN (k) + I(N)2
(∥∥f(Y N (k))− f(yNk)

∥∥2
+
∥∥UN (k+1)

∥∥2
)

+2I(N)〈Y N (k)− yNk + f(Y N (k))− f(yNk), UN (k+1)〉.

Because of Equation (7.26)-(7.27)-(7.28), for all k ≥ 0, 0 ≤
∥∥Y N (k+1)−yNk+1

∥∥2 ≤
WN (k + 1) (almost surely). Moreover, since E

(
UN (k + 1)

∣∣FNk) = 0, the expectation of
(7.28) knowing FNk is also 0. This shows that:

E
(
WN (k+1)

∣∣FNk) = (1 + 2LI(N))WN (k) + I(N)2
(∥∥f(Y N (k))− f(yNk)

∥∥2

+E
(∥∥UN (k+1)

∥∥2
∣∣∣FNk)) (7.29)

≥ WN (k).

This shows that WN (k) is a positive sub-martingale. Therefore, by Doob’s inequality, for
ε > 0, P

(
sup0≤i≤kW

N (i) ≥ ε2
)
≤ E

(
WN (k)

)
/ε2. Moreover, using Equation (7.29), the

definition WN (0) = 0, Lemma 7.11 and the hypothesis (7.7) on E
(
‖U(k + 1)‖2

∣∣∣FNk),

E
(
WN (k + 1)

)
can be bounded by:

E
(
WN (k + 1)

)
=E

(
E
(
WN (k + 1)

∣∣FNk))
≤(1+2LI(N))E

(
WN (k)

)
+ I(N)2

(
E
(∥∥f(Y N (k))−f(yN (k))

∥∥2
)

+ b
)

≤(1 + 2LI(N))k+1WN (0)

+ I(N)2
k∑
i=0

(1 + 2LI(N))i
(

2c2
(

(1 +KyN

T)2 + (1 +KY N

T)2
)

+ b
)

=I(N)
(1 + 2LI(N))k+1 − 1

2L

(
2c2
(

(1 +KyN

T)2 + (1 +KY N

T)2
)

+ b
)
.

where KyN

T and KY N

T are defined in Lemma 7.11. Note that we use Jensen’s inequality

on x 7→ (1 +
√
x)2 to show that E

(∥∥f(Y N (k))
∥∥2
)
≤ c2(1 +KY N

T)2.

158

7.6. Proofs of Theorem 7.5 and Theorem 7.7

Taking the value for k = T/I(N), using the preceding remarks and the fact that for
a > 0, (1 + a)i ≤ eai, we have

P

(
sup

0≤t≤T

∥∥Ȳ N (t)−yN (t)
∥∥ ≥ ε) ≤ P

(
sup

0≤i≤T/I(N)
WN (i) ≥ ε2

)

≤ I(N)

ε2
e2LT

2L

(
2c2
(

(1 +KyN

T)2 + (1 +KY N

T)2
)

+ b
)
.

159

Part III.

Other Contributions

161

Chapter 8.

Infinite Labeled Trees: from Rational to
Sturmian Trees

Abstract of this chapter – This chapter studies infinite unordered
d-ary trees with nodes labeled by {0, 1}. We introduce the notions of rational
and Sturmian trees along with the definitions of (strongly) balanced trees and
mechanical trees, and study the relations among them.

In particular, we show that (strongly) balanced trees exist and coincide
with mechanical trees in the irrational case, providing an effective construction.
Such trees also have a minimal factor complexity, hence are Sturmian. We also
give several examples illustrating the inclusion relations between these classes of
trees.

Résumé du chapitre – Dans ce chapitre, nous étudions certaines classes
d’arbres non orientés étiquetés par {0, 1}. Nous introduisons les notions d’arbres
rationnels et sturmiens ainsi que les définitions d’arbres (fortement) équilibrés
et étudions les relations entre ces différentes classes.

En particulier, nous montrons l’existence d’arbres (fortement) balancés
et que ceux ci correspondent aux arbres équilibrés dans le cas irrationnel.
De plus ces arbres sont de complexité minimale et donc sturmiens. Nous
présentons de nombreux exemples illustrant les relations entre les différentes
notions présentées.

163

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

8.1. Introduction

Let us consider the following question: how to distribute ones and zeros over an infinite
sequence w = (wn)n∈N such that the ones (and the zeros) are spread as evenly as possible.
In a more formal way, the sequence w is balanced if the number of ones in a factor
wi, . . . , wi+`−1 of length `, does not vary by more than 1, for all i and all `. Such
sequences exist and are called Sturmian words when they are not periodic.

Sturmian words are quite fascinating binary sequences: they have many different
characterizations formulated in terms coming from as many mathematical frameworks,
in which they always prove very useful. For example, Sturmian words have a geometric
description as digitalized straight lines and as such have been used in computer visualiza-
tion (see [97] for a review). They can also be defined with an arithmetic characterization
using a repetitive rotation on a torus or continued fraction decompositions. From a
combinatorial point of view, yet another characterization of Sturmian words is based
on the balance between ones and zeros in all factors, as mentioned before. They are
also used in symbolic dynamic system theory because they are aperiodic words with
minimal factor complexity or because they have palindromic properties. Most of these
equivalences have been known since the seminal work in [116]. More recently, Sturmian
sequences have also been used for optimization purposes: they are extreme points of
multimodular functions [85, 5, 76] and this has applications is scheduling theory [75].

Since then, there have been several constructions of generalized Sturmian words in the
literature.

The first one concerns words over more than two letters. Billiard sequences in hy-
percubes extent the torus definition of Sturmian sequences while episturmian sequences
[29] extend the palindromic characterization of Sturmian words, however, the other
characterizations of Sturmian words are lost in both cases. Another extension is to
two dimensions. A complete characterization of two-dimensional non-periodic sequences
with minimal complexity is given in [50], here again the alternative characterizations are
lost. Yet another extension of Sturmian words concerns discrete planes. Indeed, several
characterizations of Sturmian lines can be extended to discrete planes. There exists
interesting relations between multidimensional continued fraction decomposition of the
normal direction of an hyperplane and the patterns of its discretization. These relations
mimic what happens for Sturmian sequences, [63]. Finally, another generalization is to
ordered trees [30], where Sturmian trees are defined as infinite binary automata such
that the number of factors (subtrees) of size n is n+ 1. The other characterizations of
Sturmian words are lost once more.

The aim of this chapter is to do the same for unordered trees where things work
better in the sense that several extensions coincide. We introduced in [67] a new type
of infinite trees: unordered labeled trees, for which the left and right children of each
node are not distinguishable and gave a brief presentation of their main properties. Here,
we make an exhaustive study of such trees. We show that the balance property (even
distribution of the labels over the vertices of the tree) coincides with a characterization
of trees using integer parts of affine functions (called mechanicity). Furthermore these
strongly balanced trees have a minimal factor complexity. Therefore, they can be seen as
a natural extension of Sturmian sequence in more than one aspect. This brings some
hope to use them as extreme points for adapted optimization problems.

Our purpose in the chapter is two-fold. The first part of the chapter is dedicated to the
study of general unordered infinite trees with binary labels. In section 8.2, we provide

164

8.2. Infinite Trees

definitions of the main concepts as well as the basic properties of unordered trees with
a special focus on the notion of density (the average number of ones) and rationality.
Section 8.3 is dedicated to the study of the rational trees.

The second part of the chapter investigates balanced unordered trees and their prop-
erties. In particular, we show that strongly balanced trees (defined in section 8.4) are
mechanical (so that they have a density and all labels can be constructed in almost
constant time). Furthermore their factor complexity is minimal among all non-periodic
trees. We also investigate the general shape of strongly balanced rational trees (section
8.5). We show that there essentially exists a unique strongly balanced tree with a given
rational density. Also, once a strongly balanced tree is given, its density is easy to com-
pute and we provide an efficient algorithm with polynomial complexity to test whether
a rational tree is strongly balanced. Finally, Section 8.6 presents several examples and
counter examples that illustrate the different notions presented in the chapter.

8.2. Infinite Trees

8.2.1. Ordered Infinite Trees or Tree-automata

Ordered infinite trees (also called tree-automata here) have been studied in [55, 30].
Ordered infinite trees are automata with an infinite number of states. An automata is a
tree-automaton if it has one initial state and each state has a uniform in-degree equal to
one (except for the initial state, whose in-degree is 0) and a uniform out-degree d with
labels a1, · · · , ad on the arcs. Every node v is labeled by `(v) = 1 (resp. 0) if it is final
(resp. non-final).

The language accepted by the tree-automaton T is a subset of A∗ (where the alphabet
A = {a1, . . . ad}) and is denoted by L(T). Thus, a word w in the free monoid A∗
corresponds to a node in T , and a word w in L(T) corresponds to a node in T with
label 1. Conversely, a unique tree-automaton can be associated to any subset L of A∗,
by labeling by one the nodes corresponding to the words in L.

Classically for automata, a family of equivalence relations can be defined over the
nodes of tree T : v ∼0 u if `(v) = `(u), v ∼n+1 u if v ∼n u and for all i, the ith child of u,
uai and the ith child of v, vai satisfy uai ∼n vai. By definition of ∼n, u ∼n v if and only
if the subtree rooted in u of height n is the same as the subtree rooted in v of height n.

L(T) is recognized by its minimal deterministic automaton (possibly infinite), say
A(T). Actually, A(T) can be obtained from the tree T by merging all the states in the
tree in the same equivalence classe of ∼n for all n.

An example is given in Figure 8.1 where the infinite tree-automaton and the minimal
automaton recognizing all the prefixes of the Fibonacci1 word over the alphabet {a, b} is
given together with the corresponding minimal automaton (which has an infinite number
of states).

The number of distinct subtrees of height n in T is called the complexity P (n), of T .
P (n) is the number of equivalence classes of ∼n. If P (k) ≤ k for at least one k, then
it can be shown [30] that the complexity P (n) is bounded by k. This implies that the
minimal automaton A(T) has less than k states. The tree is therefore rational, since it
recognizes a rational language.

1the Fibonacci word is the limit of the sequence fn+2 = fnfn+1 with f0 = a and f1 = b, see [109] for
more details.

165

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

a b

a

a b

b

0 1 2 3 4 5 6

∞

...a b a a b a b

a,b

b a b b a b a

Figure 8.1.: The tree-automaton recognizing the Fibonacci word f and the corresponding
minimal automaton. The states of this later are 0, 1 . . . ,∞. The final nodes
are filled in black. There is a transition between nodes i and i+ 1 labeled by
the ith letter of f and one between nodes i and ∞ labeled by the opposite
of this ith letter.

If a tree-automaton T is such that P (n) = n + 1 for all n, then it has a minimal
complexity among all non-rational trees. Such trees have been shown to exist and are
called Sturmian in [30] by analogy with the factor complexity definition of Sturmian
words (Figure 8.1 gives an example). In [30] several classes of Sturmian tree-automata
are presented. However such trees are not balanced and no constructive definition (as
the mechanical construction for words) is known.

8.2.2. Unordered Trees and Minimal Graph

In this chapter, we rather consider a different type of trees, namely infinite directed
graphs with labels 0 or 1 on nodes and with uniform in-degree 1 and out-degree d ≥ 2.
Up to our knowledge, these types of trees have not yet been considered in the literature.
The similarities as well as the discrepancies with ordered trees will be discussed all along
the chapter.

In such trees, one node is special (with in-degree 0) and is called the root. Also, the
children of a node are not ordered. Thus, the main difference with the previous type
of trees is the fact that arcs are not labeled. Therefore such trees cannot be bijectively
associated with languages.

We define the minimal multigraph (i.e. with multiple arcs) G(T), associated with the
tree T , mimicking the construction of the minimal automaton for ordered trees. To do
that, we first introduce a family of equivalence relations ≡n over the nodes of T :

• v ≡0 u if u and v have the same label: `(u) = `(v)

• v ≡n+1 u if v ≡n u and if there exists a bijection F between the children of v and
the children of u such that for all child w of v, w ≡n F (w).

Therefore, v ≡n u if and only if the subtree with root v of height n is isomorphic to the
subtree with root u of height n. By merging the nodes of T when they belong to the same
equivalence classe ≡n for all n, one gets the minimal multigraph G(T) of the factors of
T : all nodes merged in the same vertex of G(T) are roots of the same subtrees, of every

166

8.2. Infinite Trees

height. In G(T), the node corresponding to the root of T is distinguished. (graphically,
this is done by adding an arrow pointing to the node).

An example of an unordered tree T is given in Figure 8.2. Actually, most figures in this
chapter will represent binary trees (with out-degree d = 2), although all the discussion is
carried throughout for arbitrary degrees. The nodes of the associated multigraph G(T)
are numbered arbitrarily and nodes with label 1 are displayed with a bold circle. The
node corresponding to the root of the tree is pointed by an arrow.

0

∞

Figure 8.2.: A tree T and the associated minimal multigraph G(T). The label of the
black (white) nodes is 1 (0). The arcs are implicitly directed from top to
bottom.

There exists a way to associate an ordered tree-automaton T to a tree T by choosing
an order on the children of each node. This can be done by seeing G(T) as an automaton
by labeling arcs in G(T) with letters a1, . . . ad in an arbitrary fashion. Conversely, a
tree-automaton T can be converted into a graph T by removing the labels on the arcs.
This graph is called the unordered version of T . Figure 8.2 is the unordered version of
the tree recognizing the Fibonacci word displayed in Figure 8.1. Note that while the
minimal automaton is infinite, the minimal graph G(T) is finite, with only two nodes;
one corresponds to the subtree where all labels are 0 and the other one to the subtree
with a branch with label 1 everywhere and all the other nodes with label 0 (Figure 8.2).

8.2.3. Irreducibility and periodicity

By analogy with Markov chains, we say that a tree T is irreducible if G(T) is strongly
connected.

A non-irreducible tree, G(T) is made of strongly connected components , inter-connected
by an acyclic graph. Also, an irreducible tree T is periodic with period p if the greatest
common divisor of the lengths of all cycles in G(T) is p. A tree with period 1 is also
called aperiodic.

8.2.4. Factors, complexity and Sturmian trees

In this chapter, we will study properties of factors of infinite trees. For this purpose, we
introduce two definitions:

167

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

• A factor of height n (and base 0, by default) is a subgraph of T which is a complete
subtree of height n. The number of nodes in a factor of height n is denoted by

S(n)
def
= dn−1

d−1 .

• A factor of height n and base k (with root v), is a subgraph of T which is the
subtree of height k + n rooted in v minus the subtree of height k, rooted in v (see
Figure 8.3 for an illustration). Such a subgraph is also called a factor of shape
(n, k) in the following. The number of nodes of a factor of height n and base k is

S(n, k)
def
= dn+k−dk

d−1 .

Figure 8.3.: Example of factors of a tree. On the left a factor of height 3 (and base 0) is
surrounded in black. On the right is a factor of height 2 and base 2.

Similarly to what has been done for words or ordered trees, the factor complexity
PT (n) of a tree T is the number of distinct factors of height n and base 0.

The complexity of a tree PT (n) can be bounded by the total number of ways to label
trees of height n and degree d, say An. It should be clear that A1 = 2 (a node can be
labeled 0 or 1) and that An+1 = 2M(An, d) where M(x, y) is the number of multisets
with y elements taken from a set with x elements. Therefore using binomial coefficients,

An+1 = 2

(
An + d− 1

An − 1

)
.

This is a polynomial recurrence equation of degree d. A change of variable, un =
logAn + 1

d−1 log 2
d! yields a new recurrence equation un+1 = (d+ εn)un where εn = o(1).

This implies that An = φd
n+o(dn) for some φ with 1 < φ < 2.

As for lower bounds on the complexity of a tree, it will be shown in Section 8.3 that
trees such that PT (n) ≤ n for at least one n are rational, i.e. have a bounded number of
factors of any size (this implies that its minimal multigraph is finite). Therefore, trees T
such that G(T) is infinite and with a minimal complexity should satisfy PT (n) = n+ 1.
These trees will be called Sturmian trees by analogy with words. This definition is close
to the one of [30] for ordered trees. It is not difficult to exhibit such trees. For example,
for any Sturmian word w, a d-ary tree such that all nodes on level i have label wi is
Sturmian.

Another more interesting example is the Dyck tree, represented on Figure 8.4. This tree
is the unordered version of the tree-automata recognizing the Dyck language (language
generated by the context-free grammar S → aSbS|ε), introduced in [30] and it is not hard
to see that this tree is Sturmian. For that, consider the graph G(T) associated with the
Dyck tree T , also displayed in Figure 8.4. There are two factors of height 1 in T : those
with a root labeled 1 (all associated with node 0 in G(T)) and those with a root labeled 0
(associated with nodes ∞, 1, 2, · · · in G(T)). This corresponds to the equivalence classes

168

8.2. Infinite Trees

for ≡1. All factors of height n with a root associated to nodes ∞, n, n+ 1, n+ 2, . . . have
labels equal to 0: no path of length n in G(T) reaches the only node with label 1, namely
node 0. The factors of height n starting with a root i of G(T) with 0 ≤ i < n are distinct:
their first node with label 1 is at level i+ 1. In other words, the equivalence classes for
≡n are {∞, n, n+ 1, . . .}, {0}, {1}, . . . , {n− 1}. The number of distinct factors of height
n is n+ 1.

1 2 3 40∞ ...

Figure 8.4.: The Dyck tree and its minimal graph.

8.2.5. Density

The density of a tree T is meant to capture the proportion of ones in the tree. For any
node v and any height n ≥ 0, the proportion of nodes with label 1 in the factor of height
n with root v is denoted by dv(n). Let r be the root of the tree T . If the following limits
exist, they define four notions of density:

• The rooted density of the tree is the limit of the density of the subtrees of the root
r:

lim
n→∞

dr(n).

• The rooted average density of the tree is the Cesaro limit of these densities:

lim
n→∞

1

n

n∑
i=1

dr(i).

• The density of the tree is α if it has an identical rooted density for all nodes:

∀v : lim
n→∞

dv(n) = α.

• The average density of the tree is α if it has an identical rooted average density for
all nodes:

∀v : lim
n→∞

1

n

n∑
i=1

dv(i) = α.

From the definitions, the following implications are direct: if a tree admits a density,
then it admits an average density. In turn, a tree with an average density also has a
rooted average density. Also, a tree with a density has a rooted density. See Figure 8.5
for some examples. These examples will be further developed in the following section on
rational trees.

169

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

Figure 8.5.: The first tree has a density of 1/2, the second one an average density equal
to 1/2 but no density. The last one has a rooted density 1/2 but no average
density.

8.2.6. Ordered trees vs unordered trees

One of the main features of ordered labeled trees is the fact that there exists a bijection
between ordered trees with finite degree and languages over finite alphabets, so that
ordered trees benefit from the power of language theory formalism [55]. However, as
shown in [30], the generalization of binary words to ordered trees with binary labels is
surprisingly difficult. One of these difficulties comes from the combinatorial explosion
due to the distinction of left and right children replacing a unique successor for words.

This is the basis for the introduction of unordered trees, where the unique successor is
replaced more naturally by a pair (or more) of successors and indeed more properties
of words can be generalized. Let us anticipate with the results shown in the following
sections. First, the notion of density of a tree is very natural for unordered trees
(definitions in Section 8.2.5) and leads to an algorithmic construction of balanced trees
using a mechanical process based on the density and the phase of the root (Proposition
8.8). This can be viewed as a natural extension to trees of the mechanical construction
of balanced words.

Also, the two main results of the chapter, namely the fact that the strongly balanced
trees are the mechanical trees and have minimal complexity (Theorems 8.9 and 8.15) as
well as the fact that rational strongly balanced trees are unique once the density is given
(Theorem 8.16) are specific to unordered trees and generalize nicely the corresponding
results for words.

8.3. Rational Trees

Definition 8.1. A tree T is rational if the associated minimal multigraph G(T) is finite.

An example of a rational tree T is displayed in Figure 8.6 together with its multigraph
G(T). Note that this tree is not irreducible. It has one final strongly connected
component of period 2 (corresponding to the alternating subtrees starting with ones and
zeros, displayed as a left child) and a strongly connected component with period one
(corresponding to the subtree with all its labels equal to one (displayed as a right child).

It is also possible to characterize rational trees using their complexity P(n), as shown
in the following theorem.

Theorem 8.2. The following statements are equivalent

170

8.3. Rational Trees

1

43

2

Figure 8.6.: A rational tree made of two distinct subtrees and its associated multigraph

1. the tree T is rational;

2. there exists n such that P(n) ≤ n;

3. there exists n such that P(n) = P(n+ 1);

4. There exists B such that for all n, P(n) ≤ B.

Proof. The proof of this result is similar to the proof for words.
1 implies 2 : If G(T) is finite, then the number of factors of height n in T is smaller than
the size of G(T), therefore, there exists n such that P(n) ≤ n.
2 implies 3 : Since P(1) = 2 and P(n) ≤ n and since P is non-decreasing with n, there
exists 1 < k < n such that P(k) = P(k + 1).
3 implies 4 : If P(n) = P(n+ 1) = p then let us call by An1 , . . . A

n
p all the distinct factors

of height n in T . Since P (n+ 1) = p, each Ani is prolonged in a unique way into a tree of
height n+ 1, called An+1

i . Now, each subtree An+1
i is composed of a root and d factors

of height n, in the set {An1 , . . . Anp}. In turn, they are all prolonged into trees of height n
in a unique way. Therefore, P(n+ 2) = p. By a direct induction, P(k) = p for all k ≥ n.
4 implies 1 : If the number of factors of height n is smaller than B for all n, then this
means that the number of equivalence classes for ≡n is smaller than B for all n, this
means that G(T) has less than B nodes.

8.3.1. Density of rational trees

Let T be a rational tree and let G(T) be its minimal multigraph. The nodes of G(T) are
numbered v1 · · · , vK , with v1 corresponding to the root of T .

G(T) can be seen as the transition kernel of a Markov chain by considering each arc of
G(T) as a transition with probability 1/d. If G(T) is irreducible then the Markov chain
admits a unique stationary measure π on its nodes. The density of T and the stationary
measure π are related by the following theorem.

Theorem 8.3. Let T be an irreducible rational tree with a minimal multigraph G(T) with
K nodes. Let ` = (`1, . . . `K) be the labels of the nodes of G(T) and let π = (π1, . . . , πK)
be the stationary measure of the Markov chain over the nodes of G(T).
If T is aperiodic, then T admits a density α = π`t (where `t stands for the transpose of
`).
If T is periodic with period p then T admits an average density α = π`t.

171

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

Proof. Let V be the Markov chain corresponding to G(T). Since G(T) is irreducible, V
admits a unique stationary measure , say π = (π1, . . . , πK). Let us call P the kernel of
this Markov chain: Pi,j = a/d if there are a arcs in G(T) from vi to vj .

Now, let us consider all the paths of length n in T , starting from an arbitrary node
vi. By construction of G(T), the number of paths that end up in the node vi of G(T)
is given by the vector dneiP

n, where ei is the vector with all its coordinates equal to 0
except the ith coordinate, equal to 1.

The number of ones in a subtree of height n starting in vi is hn(vi) = ei
∑n−1

k=0 d
kP k`t.

Let us first consider the case where P is aperiodic. We denote by Π the matrix with
all its lines equal to the stationary measure, π and by Dk the matrix P k −Π. When P is
aperiodic, then limk→∞ ||Dk||1 = 0. Therefore, for all k > n, ||Dk||1 < εn → 0.

Then the density of ones d2n(vi) = d−1
d2n−1

h2n(vi) can be estimated by splitting the
factors of height 2n into a factor of height n at the root and dn factors of height n. One
gets

d2n(vi) =
d− 1

d2n − 1
ei

n∑
k=1

dkP k`t +
d− 1

d2n − 1
ei

2n−1∑
k=n+1

dkP k`t,

=
d− 1

d2n − 1
ei(

n∑
k=1

dkP k +

2n−1∑
k=n+1

dkDk +

2n∑
k=n+1

dkΠ)`t.

When n goes to infinity, the first term goes to 0 because ei
∑n

k=1 d
kP k`t ≤ dn+1. As

for the second term d−1
d2n−1

ei
∑2n−1

k=n+1 d
kDk`

t ≤ 1
d2n−1

d2nεn. This goes to 0 when n goes
to infinity.

As for the last term, d−1
d2n−1

ei
∑2n−1

k=n+1 d
kΠ`t = 1

d2n−1
(d2n − dn+2)(eiΠ)`t goes to π`t

when n goes to infinity.
The same holds by computing the density of factors of shape 2n+ 1 by splitting them

into the first n+ 1 levels and the last n levels. This shows that the rooted density of all
the trees in T is the same, equal to π`t.

Let us now consider the case when the tree is periodic with period p. In that case, the
kernel of p steps of the Markov chain can be put under the form

P p =


P1 0 · · · 0

0 P2
. . . 0

...
. . .

. . .
...

0 0 . . . Pm

 .
The submatrices P1 . . . Pm are the kernels of aperiodic chains defined on a partition

S1 . . . Sm of the nodes of G(T). Let us denote by α1 . . . αm the densities of the factors
of height np, starting in S1 . . . Sm, respectively (they exist because this has just been
proved for aperiodic trees).

Starting from a node v the average density of a tree of size n = pqn + rn, rn < p is

1

n

n∑
k=0

dk(v) =
1

pqn + rn
(

qn∑
a=0

p∑
b=0

dap+b+r(v) +
1

pqn + rn

rn∑
k=0

dk(v)).

The first term goes to (α1+. . .+αm)/m while the second term goes to zero, when n goes
to infinity, independently of the root. Finally, (α1+. . .+αm)/m = (π′1`

t
1+· · ·+π′m`tm)/m =

172

8.3. Rational Trees

π`t where π′1, · · · , π′m are the stationary probability for the kernels P1, . . . , Pm and
`1, . . . `m are the vectors of the labels in S1 . . . Sm.

An example illustrating the computation of the density of an aperiodic irreducible
rational tree is given in Figure 8.7. The stationary measure of the Markov chain is
π = (2/9, 3/9, 4/9). Therefore, the density is α = 2/9`1 + 3/9`2 + 4/9`3 = 4/9.

1

2 3

Figure 8.7.: An irreducible aperiodic rational tree and its minimal graph. The stationary
probabilities over the associated Markov chain are π = (2/9, 3/9, 4/9). The
density of the tree is α = 4/9.

As for the reducible case, it should be easy to see that a rational tree may have different
(average) densities for some of its subtrees (this is the case for the rightmost tree in
Figure 8.5). Therefore, a reducible tree does not have a density nor an average density
in general.

Let us call S1 · · ·Sm the final strongly connected components of G(T). Let α1 . . . αm be
the average densities of the components S1 · · ·Sm respectively. Finally, let r = (r1 . . . rm)
be the probability of reaching the components S1 · · ·Sm starting from the root v1, in the
Markov chain associated with G(T). Then, the following theorem holds.

Theorem 8.4. A rational tree has a rooted average density α = (α1, . . . αm)rt.

Proof. If P is reducible, P can be decomposed into

P =


Q K1 · · · Km

0 P1 · · · 0
... · · · . . .

...

0 0 · · · Pm

 and Pn =


Qn K ′1 · · · K ′m
0 Pn1 · · · 0
... · · · . . .

...

0 0 · · · Pnm

 ,
where P1 . . . Pm are the transition matrices of the final strongly connected components.

Considering all the paths in G(T) of length n, starting in the root, the number of paths
ending in component S` is N`(n) = dn

∑
i∈S` P

n
1i. Let us decompose all the paths ending

in S` into two subpaths: one (of length k) before entering S` and one (of length n− k)
inside S`, we get from the decomposition of Pn, N`(n) = dn

∑n
k=0(1, 0 . . . 0)QkK`u`,

where u` is a vector whose coordinates are 1 in S` and 0 everywhere else.
The number of 1 in the rooted subtree of T of height 2n is the number of ones in all

the paths of length n plus the number of ones in the subtrees of height n. When n is
large, the number of ones in the paths can be neglected with respect to the number of
ones in the end trees.

Finally, the number of ones in a tree of height 2n is the number of ones in each possible
end-tree of height n times the number of such trees, namely N`(n). When n goes to

173

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

infinity, the density of ones goes to
∑

`=1..m α`(1, 0, . . . , 0)(I −Q)−1K`u` = (α1 · · ·αm)rt,
with r` = (1, 0, . . . , 0)(I −Q)−1K`u`.

An example of a reducible rational tree is given in Figure 8.6. The previous result can
be used to compute its rooted average density. The graph G(T) has two final components,
one aperiodic component with density 1 and another one with period 2 with average
density 1/2. Starting from the root, both components are reached with probability 1/2.
Therefore, such a tree has an average rooted density α = 1/2.(1/2) + 1/2 = 3/4.

Also, it is not difficult to show that if all final components have a density (rather than
an average density), then the tree has a rooted density, given by the formula given by
Theorem 8.4.

Finally, it is fairly straightforward to prove that since the transition matrix P of
the Markov chain associated with G(T) has all its elements of the form a/d, then the
stationary probabilities π as well as the average rooted density α of a rational tree are
rational numbers of the form c/b with 0 ≤ c ≤ b ≤ dK+1. This fact will be used in
the algorithmic section 8.5 to make sure that the complexities of the algorithms do not
depend on the size of the numbers.

8.4. Balanced and Mechanical Trees

In this section, we introduce the notions of strongly balanced trees and mechanical trees
and explore the relations between them. In particular we will prove that in the irrational
case they represent the same set of trees, giving us a constructive representation of this
class of trees. These results are very similar to the ones on words, which are summarized
below.

8.4.1. Sturmian, Balanced and Mechanical Words

One definition of a Sturmian word uses the complexity of a word. The complexity of an
infinite word w is a function Pw : N→ N where Pw(n) is the number of distinct factors
of length n of the word w. A word is periodic if there exists n such that Pw(n) ≤ n.
Sturmian words are aperiodic words with minimal complexity, i.e such that for any n:

Pw(n) = n+ 1. (8.1)

If x is a factor of w, its height h(x) is the number of letters equal to 1 in x. A balanced
word is a word where the letters 1 are distributed as evenly as possible:

∀x, y factors of w, |x| = |y| ⇒ |h(x)− h(y)| ≤ 1. (8.2)

A mechanical word can be constructed using integer parts of affine functions. Let
α ∈ [0; 1] and φ ∈ [0; 1). The lower (resp. upper) mechanical word of slope α and phase
φ, w = w1w2 . . . (resp. w′ = w′1w

′
2 . . .) is defined by:

∀i ≥ 1
wi = b(i+ 1)α+ φc − biα+ φc,
w′i = d(i+ 1)α+ φe − diα+ φe. (8.3)

These three definitions represent almost the same set of words. In the case of aperiodic
words, they are equivalent: a word is Sturmian if and only if it is balanced and aperiodic
if and only if it is mechanical of irrational slope. For periodic words, there are similar
relations:

174

8.4. Balanced and Mechanical Trees

• A rational mechanical word is balanced.

• A periodic balanced word is ultimately mechanical.

A word is called ultimately mechanical if it can be written as xw where x is a finite word
and w is a mechanical word. An example of a balanced word which is not mechanical
(and just ultimately mechanical) is the infinite word only made of zeros except for one
letter 1. For a more complete description of Sturmian words, we refer to [109].

8.4.2. Balanced and strongly balanced trees

Using the two definitions of factors of a tree, we define two notions of balance for trees:
the first one and probably the most natural one, is what we call balanced trees and the
other one is called strongly balanced trees.

Definition 8.5 (Balanced and strongly balanced trees). A tree is balanced if for all
n ≥ 0, the number of nodes with label 1 in any two factors of height n, differs by at most
1.

A tree is strongly balanced if for all n, k ≥ 0, the number of nodes with label 1 in any
two factors of height n and base k, differs by at most 1.

As the name suggests, strong balance implies balance (by taking k = 0). Actually, this
notion is strictly stronger (Section 8.6 displays an example of a balanced tree that is not
strongly balanced). Although the balance property is weaker and seems more natural for
a generalization from words, the following mostly focuses on strongly balanced trees that
have almost the same properties as their counterparts on words.

Density of a balanced tree

Before beginning the full investigation of balanced trees, we start with a rather straight-
forward property: a balanced tree has a density.

Let us recall the definition of the density (section 8.2.5): for all node v and all height
n, we call hv(n) the number of 1 in the factor of root v of height n and dv(n) the density

of this factor, dv(n)
def
= 1

S(n)hv(n). Using this notation, we can write the following result.

Proposition 8.6 (Density of balanced tree). A balanced tree has a density α.

Moreover for all node v and for all height n:

|hv(n)− bS(n)αc| ≤ 1. (8.4)

Proof. Let mn be the minimal number of 1 in all factors of height n. Since the tree is
balanced, for all nodes v and n ≥ 1:

mn ≤ hv(n) ≤ mn + 1. (8.5)

Now let us consider a factor of height n + k and root v. It can be decomposed into a
factor of height k of root v and dk factors of height n at the leaves of the previous factor.
The number of ones in these factors can be bounded by expressions depending on mn

and mk:

mk + dkmn ≤ mn+k ≤ mk + 1 + dk(mn + 1). (8.6)

175

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

The density of a factor of height n is mn
S(n) ≤ dv(n) = hv(n)

S(n) ≤
mn+1
S(n) . Using these facts,

we can bound dv(n+ k)− dv(n):

mn+k

S(n+ k)
− mn + 1

S(n)
≤ dv(n+ k)− dv(n) ≤ mn+k + 1

S(n+ k)
− mn

S(n)
.

Using (8.6), the left inequality can be lower bounded by

(d− 1)
(dkmn +mk

dn+k − 1
− mn + 1

dn − 1

)
= (d− 1)

(mn +mk/d
k

dn − 1/dk
− mn + 1

dn − 1

)
≥ (d− 1)

(mn

dn − 1
− mn + 1

dn − 1

)
≥ − 1

S(n)
.

The same method can be used to prove that dv(n+ k)− dv(n) ≤ 1
S(n) , which shows

that for n big enough, |dv(n+ k)− dv(n)| is smaller than ε, regardless of k. Thus dv(n)
is a Cauchy sequence and has a limit α = limn→∞

mn
S(n) . Because of Equation (8.5), this

limit does not depend on v and the tree has a density.
Let us now prove that |dv(n)− bS(n)αc| ≤ 1: dividing the Inequality (8.6) by S(n, k)

and taking the limit when k goes to ∞ leads to:

(d− 1)mn + α

dn
≤ α ≤ (d− 1)mn + 1 + α

dn
.

This shows that: S(n)α− 1 ≤ mn ≤ S(n)α, which implies Equation (8.4).

Similar ideas can be used to show that Equation (8.4) can be improved in the case of
strongly balanced trees. In a strongly balanced tree, for all base and height k, n ≥ 0, the
number of ones h(n, k) in a factor of height n and base k satisfies:∣∣h(n, k)− bS(n, k)αc

∣∣ ≤ 1. (8.7)

This is false in general for balanced trees.

8.4.3. Mechanical Trees

Building balanced tree is not that easy. According to formula (8.4), each factor of height
n must have bαS(n)c or bαS(n)c+ 1 or dαS(n)e − 1 nodes labeled one. This leads to
the following construction, inspired by the construction of mechanical words.

Definition 8.7 (Mechanical tree). A tree is mechanical with density α ∈ [0; 1] if for all
nodes v, there exists a phase φv ∈ [0; 1) that satisfies one of the two following properties:

∀n : hv(n) =

⌊
S(n)α+ φv

⌋
, (8.8)

or ∀n : hv(n) =

⌈
S(n)α− φv

⌉
. (8.9)

In the first case, φv is an inferior phase of v. In the second case, φv is a superior
phase of v.

176

8.4. Balanced and Mechanical Trees

This definition suggests that the phases of all nodes could be arbitrary. In fact, we will
see that there exists a unique mechanical tree once the phase of the root is given. The
second question raised by this definition is the existence and uniqueness of the phase: we
call φv “a” phase of a node φv and not “the” phase of φv since there may exist several
phases leading to the same tree. This is further discussed at the end of this section.

We begin by a characterization of mechanical trees.

Proposition 8.8 (Characterization of mechanical trees). Given α ∈ [0; 1] and φ ∈ [0; 1),
there exists a unique mechanical tree of density α such that φ is an inferior (resp. superior)
phase of the root.

Moreover, if φ is an inferior (resp. superior) phase of a node then φ0 ≤ · · · ≤ φd−1

are inferior (resp. superior) phases of its d children, with

φi =
φ+ α+ i− bα+ φc

d

(
resp. φi =

φ− α+ i− dα− φe
d

)
. (8.10)

Proof. The proof will be done in two steps. Firstly, we will see that if we define the
phases as in (8.10) then the tree is mechanical. Secondly, we will see that this is the only
way to do so.

Existence. Let α ∈ [0; 1] and φ ∈ [0; 1). We want to build a mechanical tree whose
root has an inferior phase φ (the case of a superior phase if similar and is not detailed
here). Let A be an infinite tree. To each node v, we associate a number φv defined by:

• φroot = φ.

• If the phase of a node v is φv, its d children satisfy Equation (8.10).

Then we build a labeled tree by putting to each node v the label bα+ φvc. Let us prove
by induction on n that the following relation holds.

For all v : hv(n) =

⌊
S(n)α+ φv

⌋
. (8.11)

By definition of the labels, (8.11) holds when n = 1. Let n ≥ 0 and let us assume that
(8.11) holds for n. Let v be a node with phase φv and let φ0 . . . φd−1 be the phases of its
children. We assume that α+ φv < 1 , which means that the label of the node is 0 (a
similar calculation can be done in the other case (α+ φv > 1)).

Using the well-known formula
∑d−1

i=0 bx+ i
dc = bdxc, we can compute hv(n+ 1):

hv(n+ 1) =
d−1∑
i=0

bS(n)α+ φic

=
d−1∑
i=0

bd
n − 1

d− 1
α+

α+ φ+ i

d
c

= bd(
dn − 1

d− 1
α+

α+ φ

d
)c

= bS(n+ 1)α+ φc.

Therefore, (8.11) holds for all n which means that the tree is mechanical.

177

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

Uniqueness. Now, let A be a mechanical tree of density α. Let v be a node and
φ0, . . . , φd−1 be the phases of its children. Let i and j be two children and let hi(n) be
the number of ones in the ith subtree (of phase φi). We want to prove that either

(
for all

n: hi(n) ≤ hj(n)
)

or
(
for all n: hi(n) ≥ hj(n)

)
. If the two nodes are both inferior (resp.

superior), this is clearly true: hi(n) ≤ hj(n) if and only if φi ≤ φj (resp. φi ≥ φj). If i is
inferior and j is superior, it is not difficult to show that φi < 1−φj implies hi(n) ≤ hj(n)
and φi ≥ 1− φj implies hi(n) ≥ hj(n).

Therefore we can assume (up to an exchange of the order of the children) that for all
n:

h0(n) ≤ h1(n) ≤ · · · ≤ hd−1(n).

Moreover as hd−1(n)−h0(n) ≤ 1, there exists k such that h0(n) = h1(n) = · · · = hk(n) <
hk+1(n) = · · · = hd−1(n). As

∑d−1
i=0 hi(n) does not depend on φ0, . . . , φd−1, then for each

n there is only one k that works and therefore there is only one possibility for hi(n) for
all n and all i. By induction of the depth of the children, this implies that for every node
v′ in the subtree of root v, hv′(n) is fixed and therefore the tree with root v is unique.

As we have seen in the beginning of the proof, the phases φi defined in (8.10) provide
correct values for hi(·). Therefore such a phase φi is a possible phase for the ith child.

This theorem shows that when the phase is fixed the tree is unique. The converse is
false and one can find several phases that lead to the same tree (for example, when α = 0
all phases define the tree with label 0 everywhere) but we will show next that the set of
densities α for which the phases are not necessarily unique has Lebesgue measure zero.

If for all n, S(n)α + φ 6∈ N, then bS(n)α + φc = dS(n)α + φ − 1e. In that case, if
φ is an inferior phase of a node then 1− φ is a superior phase of the node. Therefore
-except for particular cases- there exists at least two phases of a node: one inferior and
one superior. Let us now look at the possible uniqueness of the inferior phase.

Let us denote frac(x) ∈ [0; 1) the fractional part of a real number x and let us consider
the sequence {frac(S(n)α+ φ)}n∈N. If this sequence can be arbitrarily close to 0, this
means that for all ψ < φ, there exists k such that bS(k)α + ψc < bS(k)α + φc and ψ
can not be a phase of the tree. Also, if this sequence can be arbitrarily close to 1, then
one can show similarly that for all ψ > φ, ψ is not a phase of the node. Conversely, if
there exists δ > 0 such that frac(S(n)α+ φ) > δ (resp. < 1− δ) for all n and if we set
φ′ = φ− ε (resp. φ′ = φ+ ε), with ε < δ, then bS(n)α+ φc = bS(n)α+ φ′c for all n.

Thus, a phase φ is unique if and only if 0 and 1 are accumulation points of the sequence
{frac(S(n)α+ φ)}n.

Let us call x
def
= 1

d−1α and y
def
= φ − x and x1, . . . , xk, . . . (resp. y1, y2, . . .) be the

sequence of the digits of x (resp. y) in base d (also called the d-decomposition). We want
to study the sequence frac(S(n)α+ φ) = frac(xdn − y).

xdn − y =

n∑
k=1

xkd
n−k

︸ ︷︷ ︸
∈N

+

∞∑
k=1

(xk+n − yk)d−k.

Therefore, frac(xdn − y) is arbitrarily close to 0 implies that for arbitrarily big k, there
exists n such that

xn . . . xn+k−2 = y1 . . . yk−1, xn+k−1 > yk, or frac(xdn − y) = 0. (8.12)

178

8.4. Balanced and Mechanical Trees

Also, frac(xdn − y) is arbitrarily close to 1 implies that for arbitrarily big k, there exists
n such that

xn, . . . , xn+k−2 = y1, . . . , yn−1, xn+k−1 < yn,

or the d-development of y is finite (i.e. with only zeros after some point ` : y =
y1, . . . , y`, 1, 0, 0 . . .) and that for arbitrarily big k, there exists n such that

xn, . . . , xn+k−2 = y1, . . . , y`, 0, 1, . . . , 1. (8.13)

Using this characterization, three cases can be distinguished.

• If α
d−1 is a number such that all finite sequences over 0, . . . , d − 1 appear in its

d-decomposition, then every phase is unique. In particular, all normal numbers1 in
base d verify this property and it is known that almost every number in [0, 1] is
normal (see [46] or [59]).

• If α ∈ Q, then the sequence frac(S(k)α+ φ)
)

is periodic and there are no phase φ
such that φ is unique.

• If α is neither rational nor has the property that all d-sequences appear in α, then
some φ can be unique and some others may not. For example, for d = 2, if α is (in
base 2) the number

α = 0.101100111000111100001111100000 . . . ,

then if frac(α− φ) = 0, φ is unique (because α satisfies both Equations (8.12) and
(8.13)). However φ1 and φ2 such that frac(α− φ1) = 0.10100 and frac(α− φ2) =
0.1010 are equivalent (generate the same tree).

Other examples of the same type are the rewind trees, drawn on figure 8.16. The
sequence of digits in base 2 of the density of such a tree is a Sturmian word. Half of
the nodes of the tree are associated with node 0 in the minimal graph and therefore
could have the same phase whereas the phases computed using Equation (8.10) are
not all the same. Therefore, phases are not unique here.

Phases of a tree

Let us call Φv the set of numbers that can be phases of a node v and Φ the set of the
possible phases of a tree. Φ is the union of all possible phases of its nodes: Φ = ∪vΦv.
The set Φ may be countable or uncountable. Countable for example when α/(d− 1) is
normal since there are at most as many phases as nodes. Uncountable for example for
the tree with all label 0, for which for each node, all phases in [0; 1) work.

In all cases, the set of possible phases is dense is [0; 1). Indeed, at least all phases
defined by the relation (8.10) are in Φ. If φ is the phase of the root, then all nodes at
level k have a phase which is the fractional part of:

φ+α+ik
d

+α+ik−1

d + · · ·+ α+ i1

d
= α(

1

dk
. . .

1

d
) +

φ

dk
+
ik
dk

+ · · ·+ i1
d1
, (8.14)

with 0 ≤ ij < d for all j. Conversely all of these numbers are the phases of some node at
level k.

1A number is normal in base d if all sequences of length k appear uniformly in its d-decomposition

179

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

As k goes to infinity and using a proper choice of i1, . . . , ik the fractional part of this
number can be as close as possible to any number in [0; 1]. Thus the set of phases of the
tree is dense in [0; 1].

If the density is p(d−1)
dn+k−dk (with n+ k minimal) one can show that the set of all possible

phases for a given node is [d
m−1
d−1 α; min(d

m+1−1
d−1 α, 1)) for some m ∈ 0, . . . , n+ k − 1. As

Φ is dense in [0; 1), it contains all these intervals. Therefore, Φ = [0; 1) and the tree has
exactly n+ k different factors of height greater than n+ k. Hence its minimal graph has
exactly n+ k nodes.

8.4.4. Equivalence between strongly balanced and mechanical trees

As seen in section 8.4.1, there are strong relations between balanced and mechanical
words. This part shows the same results between strongly balanced and mechanical trees.
This result is formally stated in the following theorem.

A tree is ultimately mechanical if all nodes are mechanical (i.e. satisfies Equation (8.8)
or (8.9)), except finitely many.

Theorem 8.9. The following statements are true.

(i) A mechanical tree is strongly balanced.

(ii) An irrational strongly balanced tree is mechanical.

(iii) A rational strongly balanced tree is ultimately mechanical.

This theorem is the analog of the theorem linking balanced and mechanical words. The
word 0k10∞ is balanced but not mechanical, only ultimately mechanical. Its counterpart
for trees would be a tree with all labels equal to 0 except for one node which has label 1.
The label 1 can be put as deep as desired, which shows that we can not bound the size
of the “non-mechanical” beginning of the tree. A more complicated example is drawn in
Figure 8.8.

Let us begin by the proof of the first part of the theorem:

Lemma 8.10. A mechanical tree is strongly balanced.

Proof. Let n, k ∈ N. For all nodes v, hv(n, k) is the number of 1 in the factor of height
n and base k rooted in v. We want to prove that for all pairs of nodes v and v′:
|hv(n, k)− hv′(n, k)| ≤ 1.

By proposition 8.8, we can assume that all phases of the tree are inferior (the case
where all phases are superior is similar). We call φ (resp. φ′) a phase of the node v (resp.
v′).

hv(n, k)−hv′(n, k) = bd
n+k − 1

d− 1
α+φc−bd

k − 1

d− 1
α+φc−bd

n+k − 1

d− 1
α+φ′c+bd

k − 1

d− 1
α+φ′c.

Using the well-known inequality x−x′−1 < bxc−bx′c < x−x′+ 1, one can show that

−2 < hv(n, k)− hv′(n, k) < 2.

As hv(n, k) and hv′(n, k) are integers, we have −1 ≤ hv(n, k)− hv′(n,)k ≤ 1 which ends
the proof of the lemma.

180

8.4. Balanced and Mechanical Trees

We will see in the next section 8.4.5 that a strongly balanced tree is rational if and
only if its density can be written as p

S(n,k) (p, k, n ∈ N), therefore we will do the proof
of theorem 8.9 distinguishing strongly balanced tree with density of this form from the
others.

Lemma 8.11. If A is a strongly balanced tree of density α which can not be written as
p

S(n,k) (p, k, n ∈ N) then A is mechanical.

Proof. Let τ be a real number and v a node. At least one of the two following properties
is true:

∀n ≥ 1 : hv(n) ≤ bS(n)α+ τc, (8.15)

∀n ≥ 1 : hv(n) ≥ bS(n)α+ τc. (8.16)

To prove this, assume that it is not true. Then there exists k, n such that hv(n) < bS(n)α+
τc and hv(k) > bS(k)α+τc. In that case the number of 1 in the factor of height n and base

n−k (or k, k−n if k > n) is hv(n)−hv(k) ≤ bS(n)α+φc−bS(k)α+φc−2 < dn−dk
d−1 α−1

which violates Formula (8.7).
Let us now define the number φ as the minimum τ that satisfies (8.15):

φ = inf
τ

{
For all n : hv(n) ≤ bS(n)α+ τc

}
.

For all τ > φ, the equation (8.15) is true, while for all τ ′ < φ, the equation (8.16) is
true. This means that for all ε > 0 and all n:

S(n)α+φ− ε−1 ≤ bS(n)α+φ− εc ≤ hv(n) ≤ bS(n)α+φ+ εc ≤ S(n)α+φ+ ε. (8.17)

Taking the limit when ε tends to 0 shows that:

S(n)α+ φ− 1 ≤ hv(n) ≤ S(n)α+ φ. (8.18)

Therefore, unless S(n)α+ φ ∈ N, hv(n) = bS(n)α+ φc = dS(n)α+ φ− 1e.
If there exists n ∈ N such that S(n)α + φ ∈ N, then, as α /∈ { p

S(n,k) , p, k, q ∈ N},
there are no other k ∈ N (k 6= n) such that S(k)α + φ ∈ N. If for this particular
n hv(n) = S(n)α + φ = bS(n)α + φc, the node is inferior of phase φ. Otherwise,
hv(n) = S(n)α+ φ− 1 = dS(n)α+ φ− 1e and the node is superior of phase 1− φ.

Lemma 8.12. Let A be a strongly balanced tree such that there exist n and k such that
all factors of shape (n, k) have the same number of nodes with label 1. Then the tree is
mechanical.

Proof. Let us take n and k satisfying the property, such that n+ k is minimal and let p
be the common number of ones in the factors of shape (n, k). Obviously, the tree as a

density α = p(d−1)
dk(dn−1)

.

Let v be the root of the tree. The same proof as in the irrational case can be used to
establish that there exists φ such that

S(n)α+ φ− 1 ≤ hv(n) ≤ S(n)α+ φ,

and that the root is inferior of phase φ if there is no j such that hv(j) = dj−1
d−1 α+ φ− 1 –

resp. superior of phase 1− φ if there is no i such that hv(i) = di−1
d−1 α+ φ. Therefore the

181

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

tree is mechanical unless there exist i and j satisfying these equalities. Let us show that
if there exist such i and j, there is a contradiction.

Let i = mini′{hv(i′) = di
′−1
d−1 α + φ} and j = minj′{hv(j′) = dj

′−1
d−1 α + φ − 1}. Either

i < j or i > j, let us assume that j < i, the other case is similar. The number of ones in
the factor of height i− j and base j is p′ = di−dj

d−1 α+ 1. In that case we have i ≥ k + n,
otherwise this would violate the minimal property of n + k. If j − i > n the factor of
height i − j and base j is composed of a factor of height i − n and base j and di−n−k

factors of height n and base k – that have exactly p nodes labeled one as assumed in the
previous paragraph – and then the number of 1 in this subtree is:

hv(i)− hv(j)− di−n−kp+ φ+ 1 = α
di−n − dj

d− 1
+ φ+ 1,

which violates the minimality of i.

Then if all factors of shape (k, n) have exactly p nodes labeled 1, the tree is mechanical.

Lemma 8.13. If A is a strongly balanced tree with a density α = p
S(n,k) then it has at

most n factors of shape (n, k) with p+ 1 ones or p− 1 ones.

Proof. Using Equation (8.7), each factor of shape (n, k) has p−1, p or p+1 nodes labeled
by 1. As the tree is strongly balanced, either there is no factor with p − 1 ones or no
factor with p+ 1 ones. Let us assume that there is no factor with p− 1 ones (the other
case is similar). We claim that there are at most n factors of shape (n, k) with p + 1
nodes labeled by 1.

Indeed, let f be a factor of shape (n′, k′) with n′ = `n, i ∈ N, k′ ≥ k. This tree is
composed of j blocks of shape (n, k) (where j depends on ` and k′) and using Equation
(8.7) again, the number of nodes with label 1 is either jp− 1, jp or jp+ 1. Therefore at
most one of the (n, k) blocks has p+ 1 nodes labeled by 1.

If there were more than n+ 1 blocks of shape (n, k) with p+ 1 ones in the whole tree,
starting respectively at line l1, . . . and ln+1, there would be two blocks with li = lj mod n
and the block of height lj − li + n, li would have jp + 2 ones, which is not possible.
Therefore there are at most n blocks of shape n, k with p+ 1 nodes labeled by 1 in the
whole tree.

An example of a rational tree strongly balanced but not mechanical is presented in
Figure 8.8.

Lemma 8.14. A strongly balanced tree with density α = p
S(n,k) , p, n, k ∈ N, is ultimately

mechanical. Furthermore, if the tree is irreducible, it is mechanical.

Proof. Using Lemma 8.13, there are at most n factors of height n and base k with p+ 1
nodes labeled 1, in the rest of the tree all factors of shape (n, k) have exactly p ones.
Then the tree is ultimately mechanical by Lemma 8.12.

If the tree is irreducible, a factor appears either 0 or an infinite number of times. As
there are at most n factors of shape (k, n) with p+ 1 nodes labeled 1, there are no such
factors and the tree is mechanical by Lemma 8.12.

Note that this lemma concludes the proof of Theorem 8.9.

182

8.4. Balanced and Mechanical Trees

A4 A3

A4 A3

A3 0

1

2

3

4

Figure 8.8.: Example of a rational tree that is strongly balanced but not mechanical. On
the left is the tree itself. In the middle the mechanical suffixes of the tree
are displayed and its minimal graph (reducible) is displayed on the right.
There is one strongly connected component – the one corresponding to the
nodes 3-4 – and two corresponding suffixes: A3, starting with a 0, and A4,
starting with a 1.
One can verify on the picture that the beginning of this tree is strongly
balanced and as it continues with density exactly 1/3, the whole tree is
strongly balanced. However this tree is ultimately mechanical but not
mechanical since in a mechanical tree of density 1/3, all factors of height 2
should have b1 + φc = 1 node labeled by one.

8.4.5. Link with Sturmian trees

In the case of words, Sturmian words are exactly the balanced (or mechanical) aperiodic
words. The case of trees does not work as well since the Dyck Tree (Figure 8.4) and
more generally all examples of Sturmian trees given in [30] are not balanced. However,
the reverse implication holds as seen in the following theorem:

Theorem 8.15. The following propositions are true.

• A strongly balanced tree of density different from p
S(n,k) (for any p, n, k ∈ N) is

Sturmian.

• A strongly balanced tree of density p
S(n,k) (p, n, k ∈ N) is rational.

This result has a simple implication: a strongly balanced tree is rational if and only if
there exist p, n, k ∈ N such that its density is p

S(n,k) .

Proof. Let us consider the case of inferior mechanical trees (the superior case being
similar).

Let A be a mechanical tree of density α, let v be a node and let n ≥ 0. According to
Proposition 8.8, the factor of root v of height n only depends on the phase φv of its root.
In fact, one can show in the proof of Proposition 8.8 that this factor only depends on the

values bdi−1
d−1 α+ φvc (1 ≤ i ≤ n). If we write fi(φ)

def
= bdi−1

d−1 α+ φc (i ≥ 0, φ ∈ [0 : 1]), the
number of factors of height n only depends on the values f1(φ) . . . fn(φ).

As seen in (8.14), the set of phases is dense in [0; 1], therefore they are exactly as many
trees as tuples f1(φ), . . . , fn(φ) when φ ∈ [0; 1) by right-continuity of fi.

Each fi is an increasing functions taking integer values and hi(1)− hi(0) = 1. Thus
there are at most n+ 1 different tuples and then at most n+ 1 factors of height n and a
mechanical tree is either rational or Sturmian.

183

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

Moreover if α 6∈
{

p
dkS(n)

/p, n, k ∈ N
}

, we can not have i 6= j and di−1
d−1 α+φ, d

j−1
d−1 α+φ ∈

N and then there are exactly n+ 1 factors of height n.
If α = p

S(n,k) , then the number of factors of height n is at most n. Therefore the tree

is rational using Theorem 8.2 (see Section 8.4.3).
If the the tree is not mechanical, then Theorem 8.9 says that the tree has a density

α = p
S(n,k) and is ultimately mechanical: there exists a depth D ≥ 1 after which the tree

is mechanical. Therefore, there are at most S(D) + n factors of any height (n in the
mechanical children because of the value of α plus S(D) in the prefix subtree). In that
case the tree is rational by Theorem 8.2.

8.5. Algorithmic issues

8.5.1. Testing if a rational tree is strongly balanced

Given a finite description of a rational tree, let us consider the problem of checking
whether this tree is strongly balanced. An algorithm that works in time 0(N3) where N
is the number of vertices of the minimal graph of the tree is presented.

The first focus is on the description of the special structure of the minimal graph of
a rational strongly balanced tree. Then an algorithm for irreducible rational trees is
described as well as a sketch of the algorithm for the general case.

Graphs of rational strongly balanced trees

The aim of this section is to study the general form of the minimal graphs of rational
strongly balanced trees. In fact, we will see that they have a very particular form. The
main results of this section are summarized in Theorem 8.16 and illustrated by Figures
8.9 and 8.10.

Theorem 8.16. The following statements are true:

(i) Two rational mechanical trees of the same density α have the same minimal graph
Gα, up to the choice of the initial node of this graph. Moreover Gα is irreducible.

(ii) The minimal graph of a strongly balanced tree of density α has a unique strongly
connected component that is final, Gα.

Proof. (i) Let us first consider a rational mechanical tree of density α. We know that

there exist p, k, n ≥ 0 such that α = p(d−1)
dk(dn−1)

. Using section 8.4.3, the minimal graph has

exactly n+ k nodes, and for any node, the set of all possible phases of all its descendants
is [0; 1). Therefore, the graph is strongly connected and unique. The only difference
between two rational mechanical trees of the same density is to which node the root of
the tree is associated. Figure 8.9 displays several examples. The (unique) minimal graph
of the mechanical trees of density 1/3, 1/7, 4/15 and 2/15 are displayed.

(ii) If the tree is strongly balanced but not mechanical, it is ultimately mechanical (see
proposition 8.14) which means that after a finite depth k, all suffixes are mechanical trees
with the same density. All of these trees have the same graph, therefore the minimal
graph has a unique final strongly connected component which is reached in at most k
steps. Therefore, the minimal graph of a strongly balanced tree can be decomposed into
a finite acyclic graph and one final strongly connected component, like in Figure 8.10.

184

8.5. Algorithmic issues

0 1 0 1 2

0 2 31 0 31 2

Figure 8.9.: All mechanical trees of the same density α have the same minimal graph
Gα. These graphs represent Gα for α = 1/3, 1/7, 4/15 and 6/15 = 2/5. For
all graphs with n nodes, there are exactly n different mechanical trees of
this particular density, depending on which node is associated to the root.
Note that the first three graphs have a very similar structure (Figure 8.16
displays more mechanical trees with this structure).

1

2

3

4 5

Strongly
Connected
Component

Figure 8.10.: General form of the graph of a reducible strongly balanced tree: an acyclic
graph ending in a unique strongly connected component.

Irreducible trees

Testing if two graphs with a given fixed out-degree are isomorphic can be done in
polynomial time [110]. Therefore using the result shown in the previous section 8.5.1, an
algorithm to test if a graph represents a mechanical tree can be obtained by computing
the density α of the graph and testing if the graph is isomorphic to the graph of all
mechanical trees with density α. However this is not very efficient and here we propose
an algorithm that tests the balance property directly.

Consider an irreducible rational tree A and let n0 be the number of vertices of its
minimal graph. Theorem 8.15 says that it is strongly balanced if and only if it is
mechanical. In that case its density is p

S(n0,k0) for some p, k0 ∈ N and all subtrees of

shape (k0, n0) have exactly p nodes with label 1. Such factors will be called basic blocks
in the following.

Recall that the tree is strongly balanced if all factors of shape (n, k) have bαS(n, k)c or
bαS(n, k) + 1c nodes of label one. We want to show that testing it for all n, k < n0 + k0

is sufficient.

Let v be a node and n, k ≥ 0 and let hv(F) be the number of labels 1 in the factor F
of shape (n, k) with root v.

Starting from F , we construct a new factor F ′ by adding a new factor on top of F of
shape n0, k−n0. This new factor can be partitioned into dk−n0−k0 basic blocks. The total
factor F ′ is of shape (n+n0, k−n0) and its number of ones is hv(F

′) = hv(F)+dk−n0−k0p
(see Figure 8.11).

The augmentation of the factor can be repeated until its shape n′, k′ is such that

185

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

k′ ≤ k0 + n0. Its number of ones is hv(F
′) = hv(F) +H where H does not depend on v.

. . .

k

n

k0

n0 p p 7→

k − n0

n+ n0

h(n, k)
h(n, k) + Tk

Figure 8.11.: The first transformation: if k > n0 + k0, we add a level of factors of shape
n0, k0 that all contain exactly p ones. The shape of the factor becomes
(n + n0, k − n0). We repeat the transformation until the shape is (n′, k′)
with k′ < n0 + k0. In the figure, Tk stands for pdk−n0−k0p.

The second phase consists in building a new factor F ′′ by removing a factor from
F ′ of shape n0, k

′ + n′ − n0. The removed part can be partitioned into dn
′−n0−k0 basic

blocks. Therefore the number of ones in F ′′ is hv(F
′′) = hv(F

′) − dn′−n0−k0p. This
transformation is illustrated in Figure 8.12.

h(n′, k′)

k0

n0

k′

n′

. . .p p

7→

k′

n′ − n0h(n′, k′)−Tn′

Figure 8.12.: The second transformation: if n′ > n0 + k0, we can remove a level of
factors of shape (n0, k0). The shape of the factor becomes (n′− n0, k

′). We
repeat the transformation until the shape is (n′, k′) with n′ < n0 + k0 (here,
Tn′ = pdn

′−n0−k0).

By repeating this transformation as long as n′′ > n0 + k0, we get a final factor F ′′

whose shape is (n′′, k′′) with n′′ < n0 + k0, k′′ < n0 + k0 and whose number of ones is
hv(F

′′) = hv(F) +H −K, where H and K do not depend on v but only on n and k.

Since hv(F) = hv(F
′′) −H + K, it is enough to compute the number of ones in all

factors with shape (n′′, k′′) where n′′ < n0 + k0, k′′ < n0 + k0, to be able to obtain the
number of ones in all factors on any shape.

Also, it is enough to test if all factors with shape (n′′, k′′) where n′′ < n0 + k0,
k′′ < n0 + k0 satisfy the strong balance property for all factors on any shape to have the
same property.

186

8.5. Algorithmic issues

There are at most n factors of a given height and base. For b < m, let us call hi,h,m the
number of 1 in the ith factor of height b and base b+m. Let us call v(i) = (v1(i), . . . , vd(i))
the set of the d children of the tree rooted in i. hi,b,m can be computed using the formula:

hi,b,m =


hi,1,0 = `(i)
hi,b,0 = `(i) +

∑
j∈v(i) hj,b−1,0

hi,b,m =
∑

j∈v(i) hj,b−1,m−1

(8.19)

These considerations yield the Algorithm 8.1. The main steps of the algorithm are:

1. Compute the density α of the tree (cf Theorem 8.4).

2. If α can not be written as p d−1
dN−dk , the tree is not strongly balanced.

3. Check the strongly balanced property on the factors of shape (n, k) < (N,N).

Require: Minimal graph G of a irreducible rational tree
Ensure: The tree corresponding to G is strongly balanced

N:= number of vertices of G
Compute the density α of the Markov Chain
if for all k:d

N−dk
d−1 α 6∈ N then

return “not strongly balanced”
end if
for 1 ≤ i, n, k ≤ N do

Compute hi,n,k according to (8.19)

if hi,n,k 6= bd
n−dk
d−1 αc and hi,n,k 6= bd

n−dk
d−1 αc+ 1 then

return “not strongly balanced”
end if

end for
return “strongly balanced”

Algorithm 8.1: Testing if a irreducible rational tree is strongly balanced

Solving the Markov chain to get α takes at most O(N3) operations. Writing the density
under the form p

dN−dk is linear in N and computing all hi,b,m takes O(N3) operations

using the formula (8.19). Therefore the algorithm runs in time O(N3).

General case

The general case is more complicated since there can be some factors of shape (n0, k0)
with p+ 1 (or p− 1) nodes labeled by 1. However the structure of the minimal graph of
strongly balanced trees made in Section 8.5.1 can be useful.

• Indeed, the minimal graph must have only one strongly connected component and
it must corresponds to a strongly balanced tree.

• If the density of the strongly connected component is p
2n0Ck0

, all factors of shape
n0, k0 in the strongly component have exactly p nodes labeled by 1.

Therefore, using the same techniques of reduction of the size as in Figure 8.11, one
can show that we just have to test the balanced property for factors of shape at most
(N,N) where N is the number of vertices in the graph.

187

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

8.5.2. Counting

In this part, we address the problem of counting all possible factors of a mechanical tree.
We will focus on trees of degree 2 and will compare this to the total number of possible
factors of binary trees.

There are 2n finite words on a binary alphabet of length n. Not all these words can be
factors of a Sturmian words, for example 0011 can not since it is not balanced. In fact,
the number of factors of length n of Sturmian words (see for example [31]) is:

1 +

n∑
i=1

(n− i+ 1)φ(i), (8.20)

where φ is the Euler function (φ(i) is the number of integers less than i and coprime
with i). Asymptotically, the number of factors is equivalent to n3/π2.

The number an of unordered complete binary trees of height n satisfies the equation:

an+1 = an(an + 1) (8.21)

According to [133], there is no simple solution of this equation but using the method
described in [2], one can show that an is the nearest integer close to θ2n − 1/2, where θ ≈
1.597910218 . . . is the exponential of the rapidly convergent series ln(3/2) +

∑
n≥0 ln(1 +

(2an + 1)−2).

In section 8.4.5, we have seen that the number of factors of height n of a mechanical
tree is the number of tuples (f1(φ, α), . . . , fn(φ, α)) where fi(φ, α) = b(2n− 1)α+φc. Let
us call un this number.

To count the number of these tuples, consider the lines α 7→ (2n − 1)α mod 1, with
0 ≤ α ≤ 1(see Figure 8.13). The number of tuples is the number of different zones in
this figure.

Figure 8.13.: On the left picture (resp. on the right one) the number of distinct factors of
height 3 (resp. 4) are represented. The lines drawn are α 7→ (2n−1)α mod 1
for 1 ≤ n ≤ 3 (resp. n ≤ 4). Each zone corresponds to a distinct factor of
height 3 (resp. 4) of all mechanical trees. On the left picture, we can count
that there are 20 factors of height 3. The difference between the left and
the right picture is the addition of the lines α 7→ (24 − 1)α mod 1. This
leads to 60 factors of height 4.

188

8.6. Glossary

An exact computation of un is cumbersome but good bounds can be computed easily.
un+1−un corresponds to the number of zones added by adding the lines α 7→ (2n+1−1)α−i.
Each of these 2n+1 − 1 lines:

• add at least a new zone if it only crosses other lines at points φ = 0 or φ = 1. This
is a very low estimate since it is only true for i = 0 or i = 2n− 2, in the other cases
it crosses at least the line α 7→ φ.

• add at most 1 +n zones if it crosses the n lines corresponding to α 7→ (2j − 1)α− ij ,
1 ≤ j ≤ n and if all these points are pairwise distinct.

Therefore we have an estimation for all n ≥ 2:

2 + 2(2n+1 − 3) ≤ un+1 − un ≤ (n+ 1)(2n+1 − 1). (8.22)

This leads to the bounds for n ≥ 3:

2n+2 ≤ un ≤ n2n+1. (8.23)

Improving these bounds seems difficult. To do so, one would have to count whether
a “new” intersection has already been counted or if it is on the boundary φ = 0. By
simulation, it seems that the number of trees is closer to n2n+1 than to 2n+1.

8.6. Glossary

The aim of this part is to show the big picture and to provide several examples of trees
that are either balanced, strongly balanced, reducible, irreducible, rational or Sturmian.
In particular, we will give counter-examples that show that the inclusions between these
classes are strict. The Figure 8.14 summarizes these results.

1. Reducible Sturmian tree that is not balanced – contrarily to the case of words where
Sturmian words are balanced, there exist Sturmian trees that are not balanced.
The Dyck tree (Figure 8.4), is one of them.

2. Irreducible Sturmian trees that are not balanced – An example of a Sturmian tree
that is irreducible (but not balanced) is the reflected random walk tree represented
in Figure 8.15. It is Sturmian since the equivalence classes of the relation ≡n are
{0}, . . . , {n− 1}, {n, n+ 1, . . .}.

3. Irreducible rational trees – see Figure 8.7.

4. Reducible rational trees – see Figure 8.6.

5. Irreducible strongly balanced rational tree – see discussions in section 8.5.1 and
Figure 8.9.

6. Rational reducible strongly balanced trees that are not mechanical – strongly balanced
trees are not necessarily mechanical: if they are reducible, they are only ultimately
mechanical, see Figure 8.8 for an example.

189

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

Balanced Trees

Mechanical Trees

Ultimately
Mech.

Strongly balanced

R
a
ti

o
n

a
l

T
re

es

Irreducible

Reducible
S

tu
rm

ian
T

rees
6

5

10

9

1

2

3

4

8

7

Figure 8.14.: Relations of inclusion linking the different classes of trees. Each number
refers to an example detailed in section 8.6. For example, zone 6 is the
set of trees that are rational, reducible, ultimately mechanical, strongly
balanced, balanced and neither mechanical nor Sturmian.

1 2 3 40 ...

Figure 8.15.: The reflected random walk tree: each node of type n is followed by one of
type n− 1 and one of type n+ 1 (except for 0 that is followed by 0 and 1).

7. Reducible mechanical trees – let α be a normal number and consider the mechanical
tree of density α and phase 0 at the root. As α is normal, there is a unique phase
corresponding to each node of order k which is the fractional part of:

α(
1

dk
+ · · ·+ 1

d
) +

ik
dk

+ · · ·+ i1
d
, (8.24)

for a unique sequence i1, . . . , ik (see the end of section 8.4.3 for details about normal
numbers and phases). If two phases corresponding to i1, . . . , ik and i′1, . . . , i

′
k′ are

equal, then we have

frac
(
α(

1

dk
+ · · ·+ 1

dk′+1
) +

k∑
j=1

ij
dj
−

k′∑
j=1

i′j
dj

)
= 0.

As α is normal, it is irrational. Therefore k = k′ and frac(
∑

j≤k
ij
dj
−
∑

j≤k′
i′j
dj

) = 0.
By uniqueness of the decomposition of a number in base d, this implies that the

190

8.6. Glossary

two sequences are equal. This shows that two different nodes in the tree have a
different phase. Thus the minimal graph of this tree is exactly the tree itself which
is in a sense the most reducible tree.

8. Irreducible mechanical trees – let w be a mechanical word and consider a graph
with vertices {0, 1, . . . , }, where a node i ≥ 0 has label one if and only if wi = 1.
The node i has two outgoing arcs: one ending in i+ 1, one ending in 0. We call
this graph a restart tree since for a node n, we have the choice between restarting
back in 0 or continuing in n+ 1, an example is displayed in Figure 8.16.

0 1 3 4 52 6 ...

Figure 8.16.: Example of the restart tree corresponding to the word aabaaab . . .

wi

wi+1

wi+2

wi+3

wi+4

h0(4)
h0(3) h0(2) h0(1)

Figure 8.17.: Number of ones in a factor of the restart tree of height 5

As seen in Figure 8.17, the number of ones in a factor of height n that corresponds
to the node i is

hi(n) = wi + · · ·+ wi+n−1 + h0(n− 1) + · · ·+ h0(1), (8.25)

and the number of ones in a factor of height n and base k is

hi(n, k) = hi(n)− hi(k) = wk + · · ·+ wi+n−1 + h0(n− 1) + · · ·+ h0(k). (8.26)

Therefore the tree is strongly balanced if and only if the word w is balanced. Since
the tree is irreducible, in that case the tree is also mechanical. Moreover one can show
that for any word w the tree has a density which is limn→∞

h0(n)
2n−1 = w0

2 +w1
4 +w2

8 +· · · .

Thus for any aperiodic balanced word, this provides an example of an irreducible
irrational strongly balanced tree.

9. Rational balanced tree that is not strongly balanced – An example of a rational
tree that is balanced but not strongly balanced is presented in Figure 8.18. One
can show that all of its factors of height 3 have exactly 4 nodes with label one.
Using this fact, one can show that the number of ones in a factor of height 3n+ i
(0 ≤ i ≤ 3) rooted in a node j is:

191

Chapter 8. Infinite Labeled Trees: from Rational to Sturmian Trees

Height Node 1 Node 2 Node 3 Node 4

3n 48n−1
7 48n−1

7 48n−1
7 48n−1

7

3n+ 1 1+2.48n−1
7 0 + 2.48n−1

7 0 + 2.48n−1
7 1+2.48n−1

7

3n+ 2 1+4.48n−1
7 1 + 4.48n−1

7 2 + 4.48n−1
7 2+4.48n−1

7

This shows that the tree is balanced. It is not strongly balanced since there are
factors of shape (1, 1) with 2 nodes labeled by one and others with 0 nodes labeled
by one as seen in the bottom right part of figure 8.18. Also its minimal graph is
not isomorphic to the unique minimal graph of a mechanical tree of density 4/7
that has only 3 nodes (see the discussion about graphs of strongly balanced tree in
Section 8.5.1).

1 2

3 4

Figure 8.18.: A Rational Balanced Tree that is not strongly balanced

10. Irrational balanced tree that is not strongly balanced – Building an irrational tree
not strongly balanced requires more work. We consider a tree which has a root r
labeled by 0 and two children that are mechanical trees of density α and respective
phases φ and φ + a. We will see that under some conditions on α, φ and a, this
will be an irrational tree that is balanced but not strongly balanced nor rational,
nor Sturmian.

α, φ α, φ+ a

The two children of the root are balanced trees which means that the tree is
balanced if and only if for all n:

b(2n+1 − 1)αc ≤ hr(n+ 1) ≤ b(2n+1 − 1)αc+ 1. (8.27)

Let us call k = b(2n − 1)α+ φc and x = frac((2n − 1)α+ φ).

hr(n+ 1) = b(2n − 1)α+ φc+ b(2n − 1)α+ φ+ ac
= k + bk + x+ ac.

As (2n+1 − 1)α = 2k + 2x+ α− 2φ, the equation 8.27 holds if for all x ∈ [0; 1), we
have:

0 ≤ k + bk + x+ ac − b2k + 2x+ α− 2φc ≤ 1.

which holds if for all x ∈ [0; 1):

0 ≤ bx+ ac − b2x+ α− 2φc ≤ 1.

192

8.6. Glossary

This equation is satisfied if and only if

(x+ a < 1 and − 1 ≤ 2x− 2φ+ α < 1) or (x+ a ≥ 1 and 0 ≤ 2x− 2φ+ α < 2).

Looking at the extremal cases for x+ a < 1 and x+ a ≥ 1 which are x = 0, 1− a, 1,
one gets 4 relations:

2(1− a)− 2φ+ α < 1

−1 ≤ −2φ+ α

2− 2φ+ α < 2

0 ≤ 2(1− a)− 2φ+ α.

Therefore the tree is balanced if and only if

α

2
< φ ≤ α+ 1

2
< φ+ a < 1. (8.28)

Moreover if α+ φ ≥ 1 and 3α+ φ < 2, the tree is not strongly balanced since its
beginning is

There are lots of triples α, φ, a satisfying conditions (8.28). For example a tree with
α = 1

3 + ε, φ = 0.6 and a = 0.2 where ε ∈ R \Q with ε small enough (for example
ε < 0.01 works since α

2 ≈ 0.21 < 0.6 < α+1
2 ≈ 0.71 ≤ 0.8 < 1 and α + φ > 1,

3α+ φ ≈ 1.9 < 2).

193

Chapter 9.

Distributed Delay-Power Control Algorithms
for Bandwidth sharing in Wireless Networks

Abstract of this chapter – In this chapter, we formulate a Delay-
Power Control (DPC) scheme for wireless networking, which efficiently balances
delay against transmitter power on each wireless link. The DPC scheme is
scalable, as each link autonomously updates its power based on the interference
observed at its receiver; no cross-link communication is required. It is shown
that DPC converges to a unique equilibrium power and several key properties are
established, concerning the nature of channel bandwidth sharing achieved by the
links. The DPC scheme is contrasted to the well-known Foschini-Miljanic (FM)
formulation for transmitter power control in wireless networks and some key
advantages are established. Based on the DPC and FM schemes, two protocols
are developed, which leverage adaptive tuning of DPC parameters. One of them
is inspired by TCP and exhibits analogous behavior. The chapter primarily
focuses on the theoretical underpinnings of DPC and their practical implications
for efficient protocol design.

Résumé du chapitre – Dans ce chapitre, nous présentons un algorithme
de contrôle de puissance pour les réseaux sans fils. Ce mécanisme est un
algorithme distribué dans lequel chaque émetteur essaie de trouver un équilibre
entre la puissance consommée et le délais subis par les communications. Nous
montrons que l’algorithme converge vers un point d’équilibre indépendant du
point de départ étudions les propriétés de l’équilibre vers lequel il converge.

En se basant sur DPC et sur l’algorithm de Foschini-Miljanic, nous
développons deux protocoles dont le but est d’adapter les paramètres de
l’algorithme. Ce chapitre se concentre principalement sur les aspects théoriques
de DPC et ses implications pratiques dans la construction d’un protocole de
communication.

195

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

9.1. Introduction

Transmitter power control (and related rate control) is important in wireless networking
for maintaining communication quality in the presence of interference, increasing network
capacity, reducing power consumption, etc. It has received considerable attention in the
past.

The prevalent formulation of the transmitter power control problem for streaming
traffic is due to Foschini & Miljanic [64, 65]. It asserts that each communication link i in
the shared wireless channel sets a target SINR γ̂i (signal to interference plus noise ratio).
It then aims to achieve γ̂i in each time slot, by autonomously updating its transmitter
power P ti , using the control algorithm

P t+1
i =

γ̂i
γti
P ti , (9.1)

in consecutive time slots, where γti is the link SINR observed in time slot t. If the target
SINRs γ̂i are feasible for all links, then the algorithm will provably converge to the set of
SINR targets γ̂i. If not, all powers will diverge to infinity. The asynchronous version of
the Foschini-Miljanic (FM) control (9.1) converges or diverges similarly [113].

The γ̂i is measured at the receiver of link i and communicated to its transmitter (say,
over a separate control channel). Hence, there is intra-link communication from the
receiver to the transmitter. However, there is no cross-link communication and each
link acts autonomously, a highly desirable property for scalability. In this sense, the FM
algorithm (9.1) is distributed, except that there is need for a global guarantee that the
links are feasible at their SINR targets γ̂i. Without it all links will go unstable (powers
explode). Therefore, this is an essential global requirement, compromising somewhat the
distributed nature of the algorithm.

Note that by targeting SINR γ̂i in the FM formulation, link i essentially targets a preset
effective transmission rate, hence, link communication delay. Therefore, this formulation
is not geared towards managing the delay/power tradeoff, a fundamental one in wireless
communication.

Another formulation [151] of the power control problem aims to maximize the minimum
SINR of any link sharing the wireless channel, instead of managing the power/delay
tradeoff. Game theoretic approaches to the problem are taken in [131, 112] and utility
maximization ones in [135, 86], requiring various degrees of link coordination and not
controlling the delay vs. power tradeoff explicitly. The latter, however, is controlled
in a ‘queueing dynamics sense’ in the approach of [129, 91], where the power control
instantaneously responds to the current packet backlog in the transmitter buffer and the
interference observed at the link receiver. An optimal control is approximated, utilizing
a model reduction where each link is considered operating in a random interference
environment, generated by the others sharing the channel. This approach, however, uses
instantaneous backlog information, which the FM one does not (neither the DPC one, as
seen later).

The above approaches are very different from the one taken in this chapter. Specifically,
the key idea here is that each wireless link manages selfishly its power vs. delay tradeoff,
responding to the interference generated by other links sharing the channel, as follows.
At each point in time, the link balances

1. the per-packet expected transmission energy spent overall until the packet (infor-
mation block) under transmission is successfully received,

196

9.2. Transmission Model

2. against the per-packet expected transmission delay until the packet is successfully
received.

Additionally, if packets arrive continuously to the link transmitter buffer, the second
concern can be extended to include the queueing delay of buffered packets. This idea is
developed below and leads to a distributed Delay-Power Control (DPC), which is shown
to reach a collective unique equilibrium when used by each link (even asynchronously).
In contrast, the FM approach (9.1) does not exhibit ‘awareness’ of this balance. Both
the FM and DPC approaches use the same minimal information (interference on link
receiver) to control power.

The organization of the chapter is as follows. In Section 9.2 we introduce the wireless
transmission model. In Section 9.3 we develop the rationale behind the DPC formulation
and establish certain key DPC properties. In Section 9.4, we mathematically analyze DPC
and prove that under general conditions it converges to a well-defined unique equilibrium1

in a fully distributed and asynchronous way. Various useful mathematical properties of
the DPC equilibrium are established, including that all feasible SINRs are attainable by
DPC. The DPC behavior is demonstrated with selected numerical experiments. In Section
9.5, DPC is leveraged for designing protocols that automatically tune its parameters
aiming to achieve efficient bandwidth sharing and avoid over-saturation (where high
power is wasted for small SINR gains). We introduce two protocols, a Saturation-Averse
DPC (which backs off from saturation when that settles in) and a Rate-Aggressive DPC
(which aims for highest SINRs and link rates, up to the point of avoiding saturation).
The latter is somewhat inspired by TCP and, not surprisingly, exhibits some analogous
behavior. We report several interesting observations made in numerical experiments
using the protocols. Finally, in Section 9.6 we discuss certain current and future lines of
research.

Overall, the focus of this chapter is to introduce DPC and develop its theoretical
underpinnings and core provable properties. Based on the latter we develop DPC-based
protocols and investigate them via numerical experiments. It is not, however, within
the scope (and limited space) of this chapter to study the mathematical properties of
these protocols, which form highly non-linear complex systems; this is a topic of future
research.

9.2. Transmission Model

Consider L communication links, indexed by i ∈ L = {1, 2, ..., L}, sharing the same
wireless medium and interfering with each other. Time is slotted, indexed by t =
{1, 2, 3, ...}.

The power transmitted by the transmitter of link i in time slot t is P ti and is constant
throughout the slot. The power received at the link’s receiver from its transmitter is
GiiP

t
i , where Gii is the constant power gain (attenuation) between the transmitter and

the receiver of link i.

1We opt to take a direct system-theoretic point of view in this chapter, based on map iterations
converging to a unique fixed point. However, as becomes evident later, the problem and results can
equivalently be viewed within a game-theoretic framework, where iterations of best-responses of individual
players eventually converge to a unique Nash equilibrium. The correspondence is immediate and we do
not discuss it any further.

197

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

The thermal noise at the receiver of link i is constant Ni in all time slots. The power
gain (attenuation) from the transmitter of link j to the receiver of link i is Gij and is
also constant in time. Hence, GijP

t
j is the interference induced on the receiver of link

i by the transmitter of link j ∈ L − i in time slot t. The total interference plus noise
experienced by link i in time slot t is Ni +

∑
j 6=iGijP

t
j and the signal to interference plus

noise ratio (SINR) of link i at time t is

γti =
P ti
bti

(9.2)

where

bti =
Ni

Gii
+
∑
j 6=i

Gij
Gii

P tj (9.3)

is total noise plus interference of link i, rescaled by the intra-link power gain Gii. In the
following, we liberally refer to bti as interference (when no confusion arises).

In each time slot, the transmitter of each link transmits a packet to its receiver. If the
packet is successfully received, it is removed from the transmitter buffer and the next one
(if any) is transmitted in the next time slot. If the packet is not successfully received (due to
corruption by interference/noise), it is repeatedly retransmitted until successfully received.
It is assumed that transmission success/failure events are statistically independent with
probabilities that depend on each link’s SINR. Specifically, Si(γi) = Si(Pi/bi) is the
probability that the packet transmitted in a time slot on link i will be successfully
received, when the link’s SINR is γi.

The success probability Si(γi) may be different for each link, depending on the modu-
lation scheme used, the radio propagation environment, etc. We do not place any specific
restrictions on Si(γi) at this point (see Def. 9.3 later), except that it is naturally assumed
to be an increasing function1 of the SINR γi of link i ∈ L. Note2 that Si(γi) is the
effective packet transmission rate of link i under SINR γi.

At the end of each time slot, the receiver of each link needs to communicate to its
transmitter 1) the interference it observed during the ending time slot, and 2) acknowledge
whether the transmitted packet was received correctly or not. For simplicity, we assume
that this reverse-communication occurs on a reliable network control channel, separate
from the channel shared by the links. This control channel is a low-rate one, since the
information transmitted per slot is minimal (interference value and acknowledgements).
In any case, at minimum the receiver needs to acknowledge success/failure in packet
reception (interference values could be piggy-backed on the Acks/Nacks). Note that this
unavoidably introduces intra-link communication, but no cross-link communication is
needed. Therefore, the concept of being autonomous or distributed here is at the level of
individual links, as opposed to that of distinct transmitters/receivers.

9.3. Delay-Power Control (DPC)

We first develop the delay-power control rationale with reference to the head-of-line
packet in the transmitter queue of each link. We then complete in section 9.3.1 this
rationale, by incorporating packet arrivals and queueing delay.

1 For example, typical SINR functions include Si(γi) = γi/(ξ + γi) for some positive constant ξ, and
Si(γi) = 1− e−δγi for some positive constant δ, depending on system-specific particulars.

2 We later extend Si to include non-probability functions like Si(γi) = ln(1 + γi), akin to information
theoretic effective bit rates (see below).

198

9.3. Delay-Power Control (DPC)

Each link i controls its transmitter power autonomously, as follows. It first observes
the interference bi = bti, which is communicated to the transmitter at the end of slot t.
Then, link i reasons that

1. if all other links would not change their powers and

2. link i would transmit at constant power Pi in the future,

it will have to transmit the head-of-line packet for an average of 1/Si(
Pi
bi

) time slots at
power Pi, before it is successfully received. Recall that packet transmission success/failure
events are statistically independent. Therefore, the link will incur

1. an average transmission delay cost: 1/Si(
Pi
bi

)

2. an1 average power cost: Pi/Si(
Pi
bi

)

until this packet is successfully received. Hence, the link chooses its power in the next
slot t+ 1 to minimize the (weighted) sum of the per-packet2 power and delay costs, as

P t+1
i = Φi(b

t
i) = arg min

p

{
αi

Si(
p
bti

)
+

p

Si(
p
bti

)

}
. (9.4)

The minimization is taken over p ∈ [0,∞). The weight factor αi reflects how link i weighs
delay vs. power. A delay sensitive (power conscious) link will chose a larger (smaller) αi
value.

Each link performs the power update (9.4) autonomously, without any cross-link
communication, so the power control scheme is distributed (per link). Of course, after
each power update the bti changes and the scheme has to be applied again.

Under DPC (9.4) each link optimizes selfishly (over the link set) and myopically (over
time) its delay-power tradeoff per transmitted packet, assuming that all other links will
not change their powers. As the latter do, the link repeats the process. Another way to
view DPC (9.4) is as directly responding to interference bti via P t+1

i = Φi(b
t
i).

Remark 9.1. For example, when Si(x) = x/(x + 1) we get Φi(bi) =
√
αibi via direct

calculations in (9.4), and the SINR of link i is
√
αi/bi. In general, Φi(bi) may not be

obtainable in closed form and would have to be computed off-line and coded into a look-up
table at node i.

1 Note that this is actually energy cost, but we liberally use the terms ‘power’ and ‘energy’ inter-
changeably in this chapter for simplicity, as time is slotted and the distinction is easily seen.

2 A ‘networking’ (packetized) point of view is taken here. Each link can transmit a packet per
slot, which is successfully received with probability Si(

Pi
bi

), which is assumed to have certain natural

properties (discussed in Def. 9.3). The precise formula of Si(
p
bi

) does not matter and may actually not
be computable in closed form. In principle, we may have to estimate it empirically via experiments for
given link topology and technology. The key assumption, though, is that packet transmissions in various
slots and links are statistically independent, which is standard in this line of research.

We can also ‘twist’ the above view into a ‘digital communication’ one. Indeed, the following results for
DPC (9.4) under the ‘networking’ point of view (where Si(·) is a probability) do hold true when we set
Si(

Pi
bi

) = ln(1 + Pi
bi

), which can be greater than 1 and is not a probability. How can then one (roughly)

interpret the cost combination minimized in the DPC (9.4) algorithm?
Let us take a ‘digital communication’ point of view, seeing ln(1 + Pi

bi
) as the effective bit rate. Then

1/ ln(1 + Pi
bi

) an be (roughly) viewed as the (on average) delay between two successful bit transmissions,

hence, the per bit delay. And Pi/ ln(1 + Pi
bi

) can be (roughly) viewed as the power during the average

per-bit delay 1/ ln(1 + Pi
bi

), hence, it is the average power per bit.

199

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

9.3.1. Incorporating Packet Arrivals and Queueing Delay

We now extend the control rationale to include packet arrivals and queueing delay, beyond
the per packet transmission delay 1/Si(γi) already taken into account.

Suppose that in each time slot a packet arrives at the transmitter queue of link i with
probability λi. Packet arrival events are statistically independent of each other and all
packet transmission success/failure events. If the interference were not to change on
link i, then its transmitter queue could be modeled as a standard discrete-time queue
(birth-death chain) with arrival rate λi and service rate Si(γi). The average queueing
delay (buffering plus transmission time) incurred by a packet in the queue would simply
be 1/(Si(γi) − λi). Therefore, each user could be trying to selfishly and myopically
optimize the weighted sum of the average per-packet queueing delay plus transmission
power (energy), leading to the power control

P t+1
i = Φi(b

t
i) = arg min

p

{
αi

Si(
p
bti

)− λi
+

p

Si(
p
bti

)

}
, (9.5)

where the minimization is over p ∈ [0,∞) and αi > 0 is again the weight of the packet
expected queuing delay vs. power.

In order for the algorithm to be correctly defined, we need to have (by assumption)
that λi < limγ→∞ S(γ). Otherwise, the queue would not be stable even if no one else is
transmitting. Then the issue arises (treated below) whether the arrival rates {λi, i ∈ L}
are feasible (i.e. no transmitter queue explodes) when the system operates under DPC
(9.5).

Note that DPC (9.4), which is oblivious to packet arrivals, is mathematically a special
case of DPC (9.5) for λi = 0, i ∈ L.

The DPC algorithm (9.5) or (9.4) can be relaxed to an asynchronous version, where
each link power-updates at arbitrary time slots, observing the interference in the latest
one.

Remark 9.2. (Coexistence of Heterogeneous Links) Since DPC manages the delay
vs. power tradeoff by choosing via αi how much to weigh delay vs. power, it is very
flexible in the following sense. In diverse wireless networking scenarios, power-conscious
nodes transmitting elastic traffic (sensors, agents, etc.) could set their αi low (leading
to higher delay and lower power); but power-oblivious nodes transmitting delay-sensitive
traffic (voice, media streaming, etc.) could set αi high (squeezing the delay down at the
expense of higher power). Since DPC allows each link to individually αi (and is also
distributed), it would be particularly appropriate even for highly heterogeneous mixtures
of delay-tolerant and delay-sensitive links coexisting in a wireless channel.

9.3.2. The Feasible Power Cone J (λ)

DPC (9.5) is based on ‘minimization’ and so it never picks powers where either the delay
or power costs are infinite.

For the delay cost αi
Si(

Pi
bi

)−λi
to be finite, the DPC must select a power Pi such that

Pi
bi
> γ∗i (λi) (9.6)

200

9.4. Delay-Power Control (DPC) Analysis

for each i ∈ L, where γ∗i is such that

Si(γ
∗
i) = λi. (9.7)

Recall that bi(P) =
∑

j 6=i
Gij
Gii
Pj + Ni

Gii
. Therefore, the set

J (λ) = {P <∞ :
Pi

bi(P)
> γ∗i (λi), for all i ∈ L} (9.8)

or (equivalently)

J (λ) = {P <∞ : GiiPi − γ∗i (λi)
∑
j 6=i

GijPj > γ∗i (λi)Ni,

for all i ∈ L} (9.9)

is the set of feasible power vectors: any P ∈ J (λ) leads to finite costs on all links.
Therefore, J (λ) is the power domain over which collective system optimization takes
place. Note that J (λ) is a ‘pure convex linear cone’ (when nonempty), and is topologically
open (does not include the boundaries).

The problem is that J (λ) may not exist (may be empty). Indeed, as the arrival
rates λi increase, γ∗i (λi) also increases, from (9.7) and Si(γ) increasing in γ; therefore,
J (λ) shrinks. Eventually, γ∗i (λi) tends to infinity, as λi increases, and the cone J (λ)
‘evaporates.’ Hence, there is only a bounded set of traffic loads λi, i ∈ L for which the
cone J (λ) exits. We define it as

Λ = {λ ∈ RL0 : J (λ) 6= ∅}. (9.10)

This is the achievable throughput region of the system (from a queueing perspective) or
the set of feasible arrival rates λ.

9.3.3. The Power Set G(λ)

Define now the set G(λ) of all power vectors P for which αi
Si(

Pi
bi(P)

)−λi
+ Pi

Si(
Pi

bi(P)
)

is higher

than (or equal to) the minimum possible, that is, Pi ≥ Φi(bi) for each link i ∈ L.
Therefore,

G(λ) = {P <∞ : Pi ≥ Φi(bi(P)), for all i ∈ L}. (9.11)

This is a topologically closed set (minima are attainable). Note that G(λ) ⊆ J (λ) for
each λ ∈ Λ. Indeed, P ∈ G(λ) implies that all Φi(bi(P)) < ∞ for all i ∈ L, hence, the
costs are finite and so P ∈ J (λ). We study the shape of G(λ) in Section 9.4.3, where we
show that J (λ) 6= ∅ implies G(λ) 6= ∅.

9.4. Delay-Power Control (DPC) Analysis

We first consider the conditions under which DPC (9.5) and its special case (9.4) converge?
We later examine the effects of varying the weights αi.

201

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

9.4.1. Class S of functions Si(γ) for DPC Convergence

We next define a broad and natural class S of functions Si(γ) for which we can establish
DPC convergence. Recall that Si(γ) ≥ 0 is the effective transmission rate of link i when
its SINR is γ ≥ 0.

Definition 9.3. The function class S is comprised of the functions S : R+ → R+

satisfying the following properties:

1. Si(0) = 0; that is, no power results in no rate.

2. Si(γ) is strictly increasing (S′i(γ) > 0) and strictly concave (S′′i (γ) < 0); that is,
higher SINR results in higher rate, but exhibits diminishing gains as γ increases.

3. limγ→∞
Si(γ)
γ = 0, that is, Si(γ) may increase1 at most sublinearly at large γ.

4. Si(γ) is twice differentiable.

5. For all γ: S′i(γ)Si(γ)− γS′i(γ)2 + γSi(γ)S′i(γ) < 0.

The above properties are quite natural for wireless systems. Only Property 5 may not
seem so at first glance, but Lemma 9.6 shows it is equivalent to Φi(bi) in (9.5) increasing
in bi. That is, the link needs more power under higher interference to achieve its desired
delay/power balance. This is consistent with intuition.

Remark 9.4. Via standard calculations, one can easily show that typical Si(γ) functions,
like γ/(ξi + γ) for fixed ξi ≥ 0 and 1− e−δiγ for fixed δi ≥ 0 belong2 to S.

9.4.2. Key Properties of DPC

We first show that Φi(bi) in (9.5), and in special case (9.4) with λ = 0, is well-defined
and identify some of its properties, assuming that Si ∈ S.

Proposition 9.5. If Si ∈ S, there exists a unique minimizing value Φi(bi) ∈ (0,∞) of

min
p

{
αi

Si(
p
bi

)− λi
+

p

Si(
p
bi

)

}
(9.12)

over p ∈ [0,∞), for each fixed delay/power weight αi > 0. Hence, there is a unique
optimal power for each link i (given fixed αi > 0, bi > 0, λi ≥ 0) and Φi(bi) is well-defined.

Proof. The proof can be found in Appendix 9.7.1.

Lemma 9.6. Suppose Si ∈ S (satisfying Properties 1-5 of Def. 9.3). Then, Φi(bi) is
strictly increasing in bi (given fixed αi ≥ 0, λi ≥ 0). In particular, Property 5:

Si(γ)S′i(γ)− γS′i(γ)2 + γSi(γ)S′i(γ) < 0, (9.13)

for γ = P
b > 0, is key to this result.

Proof. The proof can be found in Appendix 9.7.2.

202

9.4. Delay-Power Control (DPC) Analysis

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

feasibility cone
Phi_1(.)
Phi_2(.)

Figure 9.1.: Illustration of power cone J (λ) and power set G(λ) for a system of two links
and a feasible arrival rate λ = (λ1, λ2) ∈ Λ with λ > 0, operating under
DPC (9.5). The horizontal axis tracks the power P1 of link 1 and the vertical
one the power P2 of link 2. The region above the eventually lower curved
line is where P2 ≥ Φ2(b2) = Φ2(N2

G22
+ G21

G22
P1).

9.4.3. Existence and Shape of Power Set G(λ)

It is interesting to see how Φi(bi) grows for large bi >> 1.

Proposition 9.7. If Si ∈ S, then

Φi(bi)− γ∗i bi ≈ Ci
√
αi
√
bi, when bi >> 1, (9.14)

for some constant Ci > 0 and γ∗i such that S(γ∗i) = λi.

Proof. The proof can be found in Appendix 9.7.3.

This is depicted in Fig. 9.1 for the simple case of two links. The region to the right of the
eventually upper curved line is where P1 ≥ Φ1(b1) = Φ1(N1

G11
+ G12

G11
P2). Each curved line

is where equality is attained correspondingly. The interference bi(P) = Ni
Gii

+
∑

j 6=i
Gij
Gii
Pj

is itself a function of power P . The set G(λ) is the region above the eventually lower
curved line and to the right of the eventually upper curved line. The intersection of the
two curved lines is a fixed point P ∗ = (P ∗1 , P

∗
2) = (Φ1(b1(P ∗)),Φ2(b2(P ∗))) = Φ(b(P ∗)).

The shaded region is the cone J (λ) where Pi
bi(P) ≥ γ

∗
i (λi), so that no link queue explodes

(recall Si(γ
∗
i) = λi). As per Proposition 9.7 the ‘gap’ Φi(bi(P))−γibi(P) ∼

√
bi(P) when

bi(p) >> 1 (that is, for large P).

Remark 9.8. (J (λ) 6= ∅ implies G(λ) 6= ∅) Note that when the power cone J (λ) is
nonempty (because λ ∈ Λ), Proposition 9.7 guarantees that the ‘gap/distance’ between

1Of course, if Si(γ) is a probability it simply saturates to 1 for large γ. But, for example, ln(1 + γ)
also satisfies this condition.

2The function ln(1 + γ) also belongs to S.

203

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

the linear faces of the cone J (λ) and the corresponding (nonlinear) boundaries of the set
G(λ) grows as

√
bi for large interference bi >> 1 (i ∈ L). Hence, the set G(λ) must also

be nonempty. An example is seen in Fig. 9.1.

Remark 9.9. (DPC vs. FM) Proposition 9.7 exposes a key difference between DPC and
the FM algorithm (9.1). For λ = 0, DPC (9.4) will choose power

P t+1
i ∼

√
bti, (9.15)

for large interference bti >> 1. On the contrary, FM (9.1) will choose P t+1
i = γ̂i

γti
P ti =

γ̂ib
t
i ∼ bti, that is, linear in bti.

9.4.4. DPC Convergence

We now address the key issue of collective converge of link powers under DPC (9.5) (and
special case (9.4) with λ = 0) to a unique global equilibrium, despite the fact that each
link optimizes its delay/power tradeoff selfishly (over the link set) and myopically (over
time). We prove that the system,

P t+1
i = Φi(b

t
i), i ∈ L (9.16)

converges to a unique power equilibrium. Let us define the vector function

Φ(b) = (Φ1(b1), ...,Φi(bi), ...,ΦL(bL)) ∈ RL+ (9.17)

which yields the powers Φi(bi) chosen by the links i ∈ L to apply in the next time slot,
given the interference vector b = (b1, ..., bi, ..., bL) ∈ RL+ in the current time slot. The
latter is induced by the vector P = (P1, ..., Pi, ..., PL) of powers Pi used by the links i ∈ L
in the current time slot via the vector function

b(P) = (b1(P), ..., bi(P), ..., bL(P)) ∈ RL+ (9.18)

where

bi(P) =
Ni

Gii
+
∑
j 6=i

Gij
Gii

Pj . (9.19)

Recall that bi(P) is actually the noise plus interference rescaled by the intra-link power
gain, but we refer to it concisely as ‘interference’ for simplicity.

The composition of the functions Φ(·) and b(·) yields the power map

F (P) = Φ(b(P)) ∈ RL+ (9.20)

which is the power vector produced by DPC in the next time slot, when the power
vector is P in the current one. Thus, the (synchronous) DPC algorithm can be succinctly
expressed as

P t+1 = F (P t) (9.21)

for power vector P t = (P t1, ..., P
t
i , ..., P

t
L). To study the DPC convergence we focus on

studying properties of the map F (·).

204

9.4. Delay-Power Control (DPC) Analysis

Remark 9.10. (Intrinsic Parameters) Note that the receiver noise vector

N = (N1, ..., Ni, ..., NL) ∈ RL+ . (9.22)

is an intrinsic parameter of the map b(·) in (9.18), as is also the power gain matrix
{Gij , i, j ∈ L}. Similarly, the delay/power weight vector

α = (α1, ..., αi, ..., αL) ∈ RL+ (9.23)

is an intrinsic parameter of the map Φ(·) in (9.17), as is the set of functions {Si(·), i ∈ L}.
In general, we suppress intrinsic parameters in the notation below, unless explicitly
involved in the argument under consideration.

We proceed to establish some key properties of the map F (·) that are essential to the
convergence of the DPC algorithm.

Proposition 9.11 (Subhomogeneity). The power map F (·) defined in (9.20) is

1. strictly increasing, i.e. P < P ′ ⇒ F (P) < F (P ′), and

2. subhomogeneous, i.e. F (δP) < δF (P),

for all power vectors P, P ′ ∈ RL+ and scalar δ > 1. Inequalities between vectors are
considered componentwise.

Proof. The proof is given in Appendix 9.7.4.

For more on this class of functions, see e.g. [84].

We are now ready to consider the convergence of the synchronous and asynchronous
versions of DPC.

Theorem 9.12 (DPC Convergence). Suppose the link system operates under the
synchronous or asynchronous Delay-Power Control (DPC) algorithm (9.5), or the special
case (9.4) with λ = 0, with Si ∈ S. Let α > 0 be the delay/power weight vector (9.23)
and N > 0 the receiver noise vector (9.22). The system starts from arbitrary initial
powers.

Then, for each feasible arrival rate vector λ ∈ Λ of (9.10), the power of each link i ∈ L
converges to a unique equilibrium

lim
t→∞

P ti = Pα,Ni (9.24)

and the link eventually attains a unique equilibrium SINR

lim
t→∞

γti = γα,Ni (9.25)

correspondingly.

Proof. The proof is given in Appendix 9.7.5.

Remark 9.13. In particular, Theorem 9.12 shows that the DPC (9.4), where we do not
take arrival rates into account (λ = 0), always converges.

205

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

Figure 9.2.: DPC convergence to the unique equilibrium power P∞ for an exemplary system of

two links. P 1, P 2, P 3, ... are the power steps of the synchronous DPC version and
P ′1, P ′2, P ′3, ... of the asynchronous one (superscripts denote time slots here). The
axes correspond to individual powers of the two links. The curved lines are the loci
where minimization in (9.5) occurs for each link correspondingly. See Fig. 9.1 for
additional explanations.

Remark 9.14. Viewing as a generic power control the iteration P t+1
i = Φi(b

t
i), i ∈ L

with bti = Ni
Gii

+
∑

j 6=i
Gij
Gii
P tj , one may ask under what conditions on Φi the iteration

converges to a unique global equilibrium. From the proofs of Proposition 9.11 and
Theorem 9.12 (and the example of Fig. 9.2), we can see that direct structural conditions
on Φi(bi) leading to the desired convergence are the following. 1) Strict increasingness of
Φi(bi), i ∈ L, reflecting the intuition the transmitter should respond with higher power to

higher interference, as the channel is a ‘congestable’ medium. 2) And Φi(bi)
bi

is strictly
decreasing in bi; that is, Φi(bi) increases sublinearly in bi, i ∈ L. We do not elaborate
further on this matter here.

We have now established that (for any fixed feasible λ) the DPC algorithm converges
to a unique equilibrium power

Pα,N = (Pα,N1 , ..., Pα,Ni , ..., Pα,NL) (9.26)

(for example, see Fig. 9.2) and unique equilibrium SINR

γα,N = (γα,N1 , ..., γα,Ni , ..., γα,NL). (9.27)

The power vector Pα,N induces the interference vector

bα,N = (bα,N1 , ..., bα,Ni , ..., bα,NL) = b(Pα,N) (9.28)

Note that each link i chooses its power updates based on its own delay/power weight αi
and receiver noise Ni. However, in equilibrium, its power Pα,Ni is a function of the full
vectors α and N . The other intrinsic parameters {Gij , i, j ∈ L} and {Si(·), i ∈ L} and
{λi, i ∈ L} are suppressed here for notational simplicity.

206

9.4. Delay-Power Control (DPC) Analysis

9.4.5. The Equilibrium Power Pα,N

We proceed to establish some key properties of the equilibrium power vector, which
provide important insights into the DPC dynamics and performance.

First, we can easily see that the powers Pα,Ni are Pareto optimal for the SINRs γα,Ni

(in the sense that these SINRs could not be achieved with lower powers). Indeed, note
that had γα,Ni been used as SINR targets in the FM algorithm (9.1), the latter would

have converged to powers Pα,Ni . But FM (9.1) is known to converge to Pareto optimal
powers.

DPC Can Reach All Feasible γ

A critical issue is whether DPC can attain every feasible SINR vector γ; that is, any γ
that can be induced by a positive (componentwise) power vector P , given the link system
power gain matrix G = {Gij , i, j ∈ L} and receiver noise vector N . The space of feasible
SINR vectors is

Γ =

{
γ : γi =

GiiPi
Ni +

∑
j 6=iGijPj

, Pi > 0, i ∈ L

}
. (9.29)

The region Γ is non-convex in general, as seen in Fig. 9.3 for example. We can rewrite
the conditions in (9.29) as

Pi −
∑
j 6=i

γiGij
Gii

Pj =
γiNi

Gii
(9.30)

or in vector form
(I−H)P = U, P > 0, (9.31)

where I is the L × L identity matrix, P = (Pi, i ∈ L) and U = (γiNi/Gii, i ∈ L) are
viewed as column vectors and P > 0 is interpreted componentwise, and

H =

{
Hij =

γiGij
Gii

, i 6= j; Hii = 0; i, j ∈ L
}

(9.32)

is a matrix with zero diagonal terms and positive off-diagonal ones. From the Frobenius
theory of non-negative matrices, it is well understood that (9.31) has a finite, positive,
unique solution P = (I−H)−1U iff the maximum modulus eigenvalue ρH (single and
real) is less than 1. Note that H depends on γ (but not on N), so a vector γ is feasible
iff ρH < 1, in which case P = (I−H)−1U induces this γ.

It is also well understood that if the SINR targets γ̂i, i ∈ L of the Foschini-Miljanic
(FM) framework constitute a feasible SINR vector γ̂, then the FM algorithm (9.1) will
converge to a power vector P̂ that induces exactly this γ̂. Hence, the FM algorithm can
‘scope out’ the whole Γ.

The natural question then arises whether DPC can also ’scope out’ Γ and attain any
feasible γ. The answer to this important concern is positive. We develop it below, after
we present a key result that we leverage for addressing the issue.

Proposition 9.15. At equilibrium, (suppressing N for notational simplicity) the power
vector Pα and SINR vector γα satisfy the set of equations:

αi =
(

1− λi
Si(γαi)

)2(
bαi
Si(γ

α
i)

S′i(γ
α
i)
− Pαi

)
, (9.33)

207

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8

g
a

m
m

a
_

2

gamma_1

gamma
limit of the feasible zone

0

50

100

150

200

250

0 20 40 60 80 100 120 140

a
_

2

a_1

a

Figure 9.3.: The one-to-one mapping of α = (α1, α2) to γα = (γα1 , γ
α
2) at DPC (9.4) equilibrium

for an exemplary system of two links. As α traces the trajectory shown in the
bottom graph, γα traces the corresponding trajectory shown on the top graph,
where also (part of) the boundary of the space of feasible γ is shown (upper-right
curve).

or equivalently

Pαi σi(γ
α
i) = αi (9.34)

with

σi(x) =
(

1− λ

Si(x)

)2(1

x

Si(x)

S′i(x)
− 1
)

(9.35)

for each i ∈ L. Moreover, each function σi(x), x ≥ γ∗i is strictly increasing in x, starting
from σi(γ

∗
i) = 0.

Proof. The proof is given in Appendix 9.7.6.

Note that from (9.34), if two distinct links i and j had the same rate functions
Si(·) = Sj(·) and reached equal SINRs γαi = γαi at equilibrium, then αi/P

α
i = αj/P

α
j .

Suppose now that we want DPC (9.5), or special case (9.4) with λ = 0, to reach in
equilibrium a feasible SINR vector γ = (γi, i ∈ L) with γ > γ∗. Since γ is feasible, we
know from the discussion above that there exist a unique positive (componentwise) power
vector P = (Pi, i ∈ L) that induces this γ. We can thus plug the Pi and γi into (9.34) to
produce a positive αi for each link i ∈ L. Running DPC with the so obtained delay/power
weights would yield the equilibrium SINR vector γ. Therefore, by manipulating α we
can reach any feasible γ. The mapping α 7→ γ is one-to-one. This is demonstrated in Fig.
9.3.

Pα,N Variation and Scaling

Another issue is how the equilibrium power Pα,N and SINR γα,N of DPC (9.5) vary with
respect to α,N and scale at the limit of those becoming very large or small.

Proposition 9.16 (Variation). At equilibrium, the power vector Pα,N and SINR vector
γα,N vary with α,N, as follows. For each link i ∈ L

1. Pα,Ni is increasing in each αj , j ∈ L.

2. Pα,Ni is increasing in each Nj , j ∈ L.

208

9.4. Delay-Power Control (DPC) Analysis

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

SIRs
Limit of the feasible SIR

Figure 9.4.: Scaling of the DPC (9.4) equilibrium SINR γxα under delay/power weight xα in
the feasible space Γ (whose part of its boundary is the upper-right curve) for an
exemplary system of two links (same as in Fig. 9.3). The four left-to-right curves
are the traces of γxα as x varies from 0 to ∞ for four fixed α = (α1, α2) with α1

α2

equal to .25, .5, 1, 2 correspondingly (higher to lower).

3. γα,Ni is decreasing in each Nj , j ∈ L.

4. γα,Ni is increasing in αi and decreasing in αj , j ∈ L − i.

Proof. The proof is given in Appendix 9.7.7.

Proposition 9.17 (Scaling). At equilibrium, the power vector Pα,N and SINR vector
γα,N scale in their parameters, as follows. Given any fixed α,N ∈ RL+, we have for each
link i ∈ L,

lim
x→∞

γxα,Ni = lim
y→0

γα,yNi = γα,∗i <∞, (9.36)

for scalars x, y ∈ R. Also,

lim
y→0

Pα,yNi = Pα,∗i > 0. (9.37)

Proof. The proof is given in Appendix 9.7.8.

Perhaps it may seem surprising that as the receiver noise vector yN scales down to 0,
DPC still operates with positive equilibrium link powers Pα,∗i > 0. This simply means
that the DPC equilibrium is not Pareto optimal when N = 0 (see Appendix 9.7.8 for
DPC in this degenerate case).

9.4.6. DPC Dynamics - Joining and Leaving

An interesting issue is how DPC evolves and adapts to new links powering up and joining
the channel or powering down and dropping out of it. We have explored this issue via
numerical experiments in link systems (up to 6 links, randomly positioned). We have
tracked the time evolution of γti and P ti under DPC (9.4) without arrival rates (with fixed

209

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

 0.01

 0.1

 1

 10

 0.01 0.1 1 10 100 1000 10000 100000 1e+06 1e+07

link 1
link 2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.01 0.1 1 10 100 1000 10000 100000 1e+06 1e+07

link 1
link 2

Figure 9.5.: Scaling of the DPC (9.4) equilibrium SINRs γxαi (left) and powers P xαi (right), as

scalar x varies from 10−4 to 107, for an exemplary system of two links (same as in
Fig. 9.3, α is fixed, N is fixed and suppressed in the notation). Both axes are in
log scale. Note the linear increase of P xαi and the saturation of γxαi with large x,
consistent with Proposition 9.17.

delay/power weight vectors α and the rest of intrinsic parameters) when links enter/exit
the channel by powering up/down correspondingly. This is shown in Fig. 9.6 for a simple
system of three links, which demonstrates adequately the system behavior and associated
intuition (see fig. caption). Of course, it is assumed that the rate at which users join and
leave is small in the time slot scale.

In Figure 9.6, it may look surprising that users with smaller SINRs have larger powers.
Here is a simple explanation. Assume that αi = a for all i and all functions Si are the
same. We deduce from Proposition 9.15 that Piσ(γi) = a for all i, with σ being 0 at
the origin, increasing and continuous. This implies that, in this ‘egalitarian’ scenario, a
node cannot have a small Pi and a small γi at the same time. In other words, at this
equilibrium there is intrinsic propensity of users with higher delay (smaller SINR) to use
higher power, trying to lower delay.

9.5. DPC-Based Protocol Design

The previous sections establish the theoretical underpinnings and key provable facts of
the DPC algorithm. Leveraging these foundations, we now proceed to consider some
design issues and introduce some DPC-based protocols for efficient channel sharing by
the links. All protocols below are based on DPC (9.4), where λ = 0, as arrival rates
are not taken into account and packets are assumed to always exist in the transmitter
buffers.

The following discussion is based on insight gleaned from the theoretical analysis of
DPC and tested via extensive numerical experiments (the most demonstrative of which
we report below). We primarily take an empirical approach in this section and use
numerical experiments for exploration and demonstration of the ideas.

9.5.1. Choosing αi and Reassessing

In principle, each link i ∈ L chooses its delay/power weight αi selfishly, expressing the
required balance between delay and power that it strives to attain. This αi could reflect
inherent individual preference, belief, intrinsic utility, or simply liking (whether well

210

9.5. DPC-Based Protocol Design

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30 35 40 45 50

link 1
link 2
link 3

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40 45 50

link 1
link 2
link 3

Figure 9.6.: Evolution of SINRs γti (left) and powers P ti (right) over time under DPC (9.4) for
an exemplary system of three links. Links 2 and 3 coexist in equilibrium in the
channel at time 0; link 1 powers up and joins the channel at time 10, causing the
system to reach a new equilibrium, and powers down and leaves the channel at time
30, allowing the system to go back to its original equilibrium. The delay/power
weight vector α is fixed. Note how fast the system adapts to entry/exit of links,
reaching new equilibria for sharing the channel bandwidth.

chosen or not) in the interest of full link autonomy.

However, when the link attains its equilibrium operational point and observes its
equilibrium delay vs. power balance, it may reassess its preferences, ‘change its mind’
and adapt, in an effort to reach a better equilibrium point. For example, it may change
its αi, or set some SINR target and invoke the FM algorithm (9.1) to attain it, or both.

We explore below two ways for each link to adjust its preferences and parameters and
formulate them as DPC protocols, based on some of the DPC properties proven above.

9.5.2. The Over-Saturation Issue

Recall (from Propositions 9.16 and 9.17) that the equilibrium SINRs γxαi increase and
eventually saturate to finite γα,∗i <∞, as the scalar x increases to infinity (for any fixed
delay/power weight vector α). At the same time, the equilibrium powers P xα increase
(and explode linearly eventually) and the γxα increases and approaches the boundary of
the feasible SINR region Γ . We suppress N in the notation here, since it is fixed.

This behavior is demonstrated in Figs. 9.5 and 9.4. In particular, in Fig. 9.5 rapid
saturation of the γxα is observed beyond a certain region around some value xo, where a
‘saturation knee’ emerges and the curves become almost flat soon after it.

In general, if the links selections of αi result in a ‘large’ vector α, the system could be
in ‘deep saturation’ or over-saturation, that is, well beyond the saturation knee and deep
in the flat region of γαi (say, in Fig 9.5) and close to the frontier of the feasible SINR
region Γ (say, in Fig. 9.4). The consequence of saturation (and especially over-saturation)
is that each link is using high power with minuscule incremental return in SINR.

In view of the above, had each link i contracted its αi somewhat to α′i, the system
would have rapidly de-saturated, the γα

′
i would be before (and close to) the saturation

knee (see, for example, 9.5), and the γα
′

would have pulled away from frontier of Γ.
At this ’near-saturation’ regime additional power would result in substantial additional
performance (SINR) on each link and would be justifiable.

We now propose two methods (formulated as protocols) for reaching near-saturation

211

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

but avoiding over-saturation.

9.5.3. Saturation-Averse DPC Protocol

We call the first protocol Saturation-Averse (SA) DPC (justified below). It simply
augments DPC (9.4) with a subsequent phase of contracting a link system in over-
saturation back to near- or sub-saturation, where power is well-spent for performance
(SINR). Suppose each link i ∈ L initially chooses αi. SA-DPC then implements two
operational phases, the first of J steps, and the second of K steps, as follows.

1. Phase 1: During the first J steps the standard DPC algorithm is applied, which
leads to equilibrium power Pαi and SINR γαi for each link. The number of steps
J is taken to be long enough, so that DPC equilibrium is largely attained (DPC
converges fast).

2. Phase 2: At the end of Phase 1, each link scales its (largely) attained equilibrium
SINR γαi down by a constant factor 0 < µ < 1 close to 1 (say, µ = 0.95), akin to
multiplicative decrease, and sets

γ̂αi = µγαi (9.38)

as its new SINR targets. It then applies the standard FM algorithm (9.1) for K steps.
The number of steps K is taken to be long enough, so that the FM equilibrium is
largely attained (FM converges fast). The FM algorithm is guaranteed to converge
to γ̂αi (at minimum power), since the γ̂αi are automatically feasible, since derived
from DPC and scaled down by µ.

SA-DPC is ‘saturation averse’ in the sense that, if γα of Phase 1 is too close to the
frontier of the feasibility region Γ and the system is in over-saturation (so that nearly
such γαi could be reached with much smaller powers), then the contraction of the γ̂i
targets and the FM dynamics will drive the system a bit inside the feasibility region and
desaturate it.

Of course, in case γα is already far enough from the feasibility frontier, Phase 1 will
be almost without effect (provided µ is close enough to 1).

Fig. 9.7 illustrates the dynamics of SA-DPC under link joining/leaving, where the
system periodically performs the two SA-DPC phases in order to cope with link entry/exit.

9.5.4. Rate-Aggressive DPC Protocol

We call the second protocol Rate-Aggressive (RA) DPC, because it strives to attain the
highest possible SINRs γi (hence, rates Si(γi) also) without oversaturating and waisting
power in the process. It achieves that by adapting the αi and through those ‘navigating’
in the space of feasible SINRs Γ (recall that α→γ is an one-to-one mapping), driving
the system to a point close enough to the frontier of Γ to achieve high and fair SINRs
but also far enough from it to avoid over-saturation and waste of power. Specifically,
RA-DPC is designed to be:

(i) generous - it operates near saturation delivering high feasible SINRs (rates) close
to the feasibility frontier of Γ;

(ii) efficient - does not oversaturate and waste power;

212

9.5. DPC-Based Protocol Design

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600 700 800 900

S
IR

iteration

link 1
link 2
link 3
link 4
link 5
link 6

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900

p
o

w
e

r

iteration

link 1
link 2
link 3
link 4
link 5
link 6

Figure 9.7.: Evolution trajectories of SINR (top) and power (bottom) under Saturation-Averse
DPC for an exemplary system of 6 links, where link 4 joins the channel at time 110,
leaves at time 225, and rejoins at time 375, while link 5 joins at time 500 and leaves
at time 750. Note the fast readjustment of SINRs to accommodate links entering
the channel, and recapture the ‘void’ when they leave.

(iii) fair - no link is starved;

(iv) distributed - no cross-link communication is needed.

Note that these properties are ‘reminiscent of TCP’ for wireline bandwidth sharing among
communication sessions on a congestible link. We comment on this ‘analogy’ later below.

The RA-DPC (synchronous version) operates by applying repeatedly the following two
phases in sequence.

1. Phase 1 - Additive Increase of α: At the beginning of Phase 1, each link i ∈ L
increases its previous delay/power weight αi to

α′i = α+ ∆α, (9.39)

where the increment ∆α > 0 is a parameter of the RA-DPC protocol. Then the
raw DPC (9.4) with α′i is applied for J time slots, leading to equilibrium power
Pα
′

i and SINR γα
′

i . The number of steps J is chosen to be large enough so that
DPC equilibrium is largely attained. This additive increase phase is designed with
the desirable property (i) above in mind.

2. Phase 2 - Multiplicative Decrease of γ: Immediately after Phase 1, during Phase 2,
each link i ∈ L performs the following operations:

a) First, the link scales down its SINR γα
′

i (attained in Phase 1) to

γ̂i = µγα
′

i (9.40)

by multiplying it by µ ∈ (0, 1) (multiplicative decrease). The µ is typically
chosen to be close to 1 (say, 0.95).

b) Then, the link runs for K time slots the FM algorithm (9.1), reaching equilib-
rium power P̂i. The number of steps K is chosen to be large enough so that
FM equilibrium is largely attained.

213

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6

a_1=1
a_1=20
a_1=50

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6

A=0.1
A=1
A=5

A=10
A=50

A=100

Figure 9.8.: Convergence of SINRs γi under synchronous RA-DPC for an exemplary system of
two links. The multiplicative decrease parameter µ is 0.95. Top Graph: Evolution
trajectories under RA-DPC for α=(1,1), (1,20), (1,50) - bottom to top curves
correspondingly. The ∆α is fixed. Note the convergence to the same equilibrium
point. Bottom Graph: The RA-DPC equilibrium SINR points for ∆α=0.1, 1, 5, 10,
50, 100 - left to right points correspondingly. Note that higher (more aggressive)
∆α pushes the equilibrium closer to the feasibility frontier.

c) Finally, at the end of Phase 2, the link computes

α̂i = P̂i

[
1

γ̂i

Si (γ̂i)

S′ (γ̂i)
− 1

]
. (9.41)

Note that from Proposition 9.15, had each link chosen α̂i and applied DPC
(9.4), it would have converged exactly to SINR γ̂i in equilibrium. Based on
that, the link resets its αi to α̂i, that is,

αi = α̂i (9.42)

and goes back to running Phase 1.

Note that the multiplicative decrease of SINRs by µ is designed with the desirable
property (ii) above in mind. The µ is a protocol parameter that can be adjusted.

This completes the description of (synchronous) RA-DPC. It can be viewed as being
‘rate-aggressive’ because the additive increase Phase 1, during which it tries to progres-
sively drive the SINR γi higher (hence, rate Si(γi) too) by increasing αi and leveraging
Proposition 9.16-4. On the other hand, the multiplicative decrease Phase 2 is ‘saturation
averse’ and prevents the system from going into over-saturation.

Synchronous RA-DPC

We have gathered substantial experimental evidence (numerical) that the synchronous
version of RA-DPC converges to a SINR equilibrium point in the feasibility region Γ,
where each link has non-zero SINR and, hence, is not ‘starved’ - in line with desirable
property (iii) above. In all cases analyzed (various values of ∆α, µ), we have consistently
observed behavior similar to that depicted by Fig. 9.8 for a two link case. The equilibrium
point depends on ∆α; the bigger ∆α, the closer the equilibrium SINRs to the feasibility
frontier (see Fig. 9.8/bottom).

214

9.5. DPC-Based Protocol Design

An interesting observation is that the synchronous RA-DPC appears to always converge
to the same equilibrium point, irrespectively of the initial α (see Fig. 9.8/top). This
point depends on the gain matrix {Gij , i, j ∈ L}, the receiver thermal noise vector N ,
and the protocol parameters ∆αi and µ. In contrast, the raw DPC (9.4) equilibrium
point depends on {Gij , i, j ∈ L}, N and the delay/power weights α.

It is beyond the scope of this chapter to verify this observation by a complete mathe-
matical proof; it is a matter of future research. However, here is a sketch of arguments
that RA-DPC converges to a non-degenerate fixed point and is thus fair. (1) We first
show that when αi is multiplied by x, then γi will be multiplied by at most x. Thus
an additive increase of α followed by a multiplicative decrease of γ cannot diverge to
infinity. (2) The first argument can be repeated for all links, showing that the protocol
must maintain the SINRs in a bounded region (no coordinate of this vector can tend to
infinity). (3) The final step consists of deducing from the second argument that there
ought to be a fixed point using again a contraction property (as we have done in the case
of raw DPC).

We do not pursue further this matter here, but instead turn to the case of relaxing
synchronization.

Asynchronous RA-DPC

We have experimentally investigated the asynchronous version of RA-DPC with respect
to convergence and report below some interesting observations. First, recall that the raw
DPC used in Phase 1 (of J time slots) and raw FM used in Phase 2 (of K slots) are both
provably convergent under asynchronous updates within each phase (see Theorem 9.12
for DPC and [113] for FM). The issue then is whether lack of asynchrony of the phase
boundaries across the links maintains convergence to equilibrium. This would go beyond
RA-DPC having the desirable property (iv) of being distributed, to even being robust to
lack of cross-link phase synchronization.

We have run numerical experiments of the asynchronous RA-DPC, where each link
performs Phases 1 (J steps) and 2 (K steps) consecutively and repeatedly, but phases
are ‘shifted’ across various links. Our general observation is that there is some good
robustness to this lack of synchronization.

This is illustrated in Fig. 9.9 for a two link system with J = K = 20, where there
is a phase shift/difference M across the two links, which varies from M = 20 (full
synchronization) to M = 0 (full desynchronization; one link starts Phase 1, when the
other starts Phase 2). The main observation is that for each phase-shift M (varying from
0 to 20) the asynchronous RA-DPC converges to a limit cycle. Although these limit
cycles may be distinct for different M , they all appear in the vicinity of the synchronous
RA-DPC equilibrium.

The numerical experiments allow us to conclude that even asynchronous RA-DPC
exhibits good compliance with the desirable properties (i)-(iv) previously mentioned.

Of course, there is further work to be done to fully explain our findings and understand
the nature of the fixed point observed in the simulation of synchronous RA-DPC.

Considering RA-DPC Variants

We have also explored numerically some RA-DPC variants on which we report below.

215

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

synchro
N=10
N=0

Figure 9.9.: Evolution of SINRs under asynchronous RA-DPC for an exemplary system of two
links. The phase shift/difference between the two links is M=0(fully asynchronous;
when one link starts Phase 1 the other starts Phase 2), 1 , 20 (synchronous). Note
the convergence to limit cycles that are in the vicinity of the synchronous RA-DPC
equilibrium.

First, we have considered the issue of whether in Phase 1 of RA-DPC additive increase
of αi could be substituted with a multiplicative increase (more aggressive). Based on
numerical experiments, we report that multiplicative increase of αi in Phase 1 does not
work well. All link systems we experimented with were found to be unfair (even under
full synchronization) in that at near-saturation, one user acquires all the bandwidth and
starves the others.

Another issue we have considered is that of ‘saturation’ or ‘stress’ signals when
congestion builds up. Recall that TCP on wireline session responds to saturation signals,
like packet loss, to back off in a multiplicative manner and reduce congestion. In the DPC
case a natural ‘saturation indicator’ could be the efficiency of a move (variation of α).
Consider, for example, an increase of each αi to α′i moving the link system from equilibrium
γα, Pα to γα

′
, Pα

′
. The efficiency of the move for link i is Ei = (γα

′
i − γαi)/(Pα

′ − Pα).
One expects that when the system is in saturation the efficiency Ei will be small, as even
a large increase in power will result in a small increase in SINR performance. On the
contrary, if the system is far enough from saturation the efficiency Ei will be large, as
even a moderate increase in power will result in substantial increase in SINR. Therefore,
each link could autonomously interpret low Ei as indicating saturation.

We need to explore the above idea more exhaustively, but initial results have not
been encouraging. Even synchronous version of protocols implementing this idea that
we have experimented with are very difficult to tune. It is not clear how to set a good
rule for determining that the system is in saturation by observing the Ei; in the case of
asynchronous implementations we have even observed substantial instabilities and lack
of convergence to equilibrium.

Therefore, the version of DPC-based protocol that we recommend at this point is
RA-DPC, which we have observed performing well under diverse operational scenarios.
Other alternatives are under current investigation, but the results are too preliminary to

216

9.6. Conclusions and Further Research

report on.

Note that RA-DPC is somewhat inspired by TCP dynamics. The analogy with TCP is
twofold. First, RA-DPC aims at sharing bandwith for elastic traffic according to generic
principles (i)-(iv) that are similar to those underpining the design of TCP. Secondly,
its ‘additive increase - multiplicative decrease’ scheme is reminiscent of TCP Reno. Of
course, there are also clear differences: TCP implements a reactive decrease whereas this
is not the case for RA-DPC as proposed here. A deeper difference stems from the fact
that the interaction between flows on wireless links is quite different from that in wireline
networks.

9.6. Conclusions and Further Research

We have formulated an approach for incorporating delay considerations into transmitter
power control, responding to interference in a wireless network. Contrary to the FM
approach (9.1), the Delay-Power Control (9.5), (9.4) one balances the delay against power.
It is distributed and converges to a unique global equilibrium, whose properties have
been explored.

Based on the DPC properties, we have designed two protocols for efficient bandwidth
sharing, and explored their behavior experimentally. Their theoretical investigation is
the subject of current and future research on DPC.

Note that the minimization in (9.5) or (9.4) is over [0,∞). In practice, it would be over
[0, Pmaxi), where Pmaxi is the finite power ceiling of link i. Actually, if the unique fixed
point (equilibrium power vector) is in the power ‘box’ [0, Pmax1)× [0, Pmax2)×· · · [0, PmaxL)
there is no problem; DPC will still converge to it. But if the fixed point is not in the power
‘box’ the powers may ‘stick’ against and ‘oscillate’ on the ‘box’ boundaries. Whether
the fixed point is in the ‘box’ or not is related to how congested the system is; the more
congested, the further away from 0 the fixed point is and the further in danger of getting
out of the ‘box’ (if not already out). Therefore, one needs to exercise admission control
in order to prevent the unique equilibrium power to exit the power ‘box.’ This is another
line of research we are currently pursuing.

9.7. Appendix

Here we provide the proofs of several facts stated above.

9.7.1. Proof of Proposition 9.5

For simplicity, we suppress the link index i below, since we operate on a single link in
this proof. Also we often write S instead of S(p/b). It suffices to show that the derivative
of the cost with respect to p, that is,

∂

∂p

(α

S(p/b)− λ
+

p

S(p/b)

)
= − αS′

(S − λ)2
+
bS − pS′

S2
(9.43)

becomes 0 at a unique point in [0,∞).

Let us define g(p) = −αS′ S2

(S−λ)2 + bS − pS′ (eq. (9.43) times S2). We prove below

that g(p) is negative for p ≈ 0, positive for p large enough, and increasing for all p; those

217

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

properties imply that there exists a unique p such that g(p) = 0 and hence a unique
minimum of (9.12).

Indeed, note first that for p ≈ 0, we have g(0) ≈ −αS′ S2

(S−λ)2 < 0. Second, observe that

for large p >> 1, we get g(p) ≈ bS(p/b) − pS′(p/b). Therefore, if we assume (arguing
by contradiction) that g(p) ≤ 0 for all large p, then S(p/b) ≤ p

bS
′(p/b), which implies

that S′(γ)
S(γ) ≥

1
γ , for large γ. Integrating both sides, we get logS(γ) ≥ C + log γ implying

log S(γ)
γ ≥ C for some constant C ∈ R or equivalently S(x)

x ≥ δ for some constant δ > 0.
The latter directly violates the sublinearity of S ∈ S. Therefore, limp→∞ g(p) > 0.

Finally, note that for all p ≥ 0 we have

g′(p) = −αS′′ S2

(S − λ)2
+ αS′

2λSS′

(S − λ)3
− p

b
S′′ > 0, (9.44)

using the increasingness and strict concavity of S. Therefore, g(p) is strictly increasing
for p ≥ 0. This completes the proof.

9.7.2. Proof of Lemma 9.6

For simplicity, we suppress the link index i, since we operate on a single link in this
proof. We simply write Φ(b) as the unique power that minimizes the function (9.12).
The minimum is attained when the derivative (9.43) of the latter function is set to zero,
hence, Φ(b) satisfies:

αS′(Φ(b)
b)

(S(Φ(b)
b)− λ)2

=
bS(Φ(b)

b)− PS′(Φ(b)
b)

S2(Φ(b)
b)

(9.45)

We show that Φ(b) is increasing by establishing that Φ′(b) ≥ 0 for all b ≥ 0.

Let us write γ = Φ(b)
b , S = S(γ), S′ = S′(γ), S′′ = S′′(γ), Φ = Φ(b), Φ′ = Φ′(b) and

rewrite (9.45) as

α =
(

1− λ

S

)2(
b
S

S′
− φ

)
(9.46)

Using the fact that

∂S(Φ(b)
b)

∂b
= (

Φ′(b)

b
− Φ(b)

b2
)S′(

Φ(b)

b
)

=
1

b
(Φ′ − γ)S′,

and differentiating (9.46) w.r.t. b leads to

0 = (1− λ

S
)
(

2
λ

b
(Φ′ − γ)

S′

S2
(b
S

S′
− Φ)+

(1− λ

S
)(
S

S′
+
b

b
(Φ′ − γ)(1− S′′

S′2
) + Φ′)

)
.

This can be written as:

Φ′(b) =
(
− λS2γS′′ − λS2S′ − λSγS′2

+ 2λγ2S′3 + S3γS′′ + S3S′ − γS2S′2
)

/
(

2γλS′3 + S3S′′ − S2λS′′ − 2SλS′2
)
. (9.47)

218

9.7. Appendix

If λ = 0, we get:

Φ′ =
S′S − γS′2 + γSS′′

SS′′
(9.48)

For all γ > 0, we have S(γ) > 0 and S′′(γ) < 0 (by the strict concavity). Therefore, from
(9.48), we see that Φ′(b) ≥ 0 for all λ implies:

S′(γ)S(γ)− γS′(γ)2 + γS(γ)S′′(γ) < 0 . (9.49)

Conversely, let us assume (9.49) and λ ≥ 0. The denominator of Equation ((9.47)) can
be rewritten as:

S2S′′(S − λ) + 2λS′2(γS′ − S). (9.50)

By the concavity assumption: S′′ < 0 and γS′ − S < 0. Moreover, S(φ(b)
b) > λ by

definition of DPC (9.5). Therefore the denominator of (9.47) is less than 0.
The numerator of (9.47) can be rewritten as:

S(S − λ)(γS′′S + S′S − γS′2) + 2S′2λγ(γS′ − S) . (9.51)

By assumption (9.49) and the concavity of the function S, (9.51) is negative. This shows
that (9.47) is positive and completes the proof.

9.7.3. Proof of Proposition 9.7

We use the notations of Appendix 9.7.2 for S and Φ.
Let us consider first the case of λ > 0. Give an interference b, the power response Φ(b)

of the link satisfies the property:

α = b
(

1− λ

S

)2(S
S′
− Φ(b)

b

)
(9.52)

Using the concavity of S, S
S′ −

Φ(b)
b is maximum in γ∗ and therefore is minimized by

λ
S′(γ∗) − γ

∗. When b goes to infinity and as the total product is equal to α, this implies

that 1− λ
S goes to 0. Thus Φ(b)

b is close to γ∗. Writing ε = Φ(b)
b − γ

∗ and using a Taylor
expansion w.r.t. ε, we have

(1− λ

S
)2 = (1− 1

1 + S′(γ∗)
λ ε+O(ε2)

)2

=
S′(γ∗)2

λ2
ε2 +O(ε4).

Using this, we get the following equation for ε:

α ∼ bS
′(γ∗)2

λ2
ε2
(λ

S′(γ∗)
− γ∗

)
. (9.53)

As Φ(b) = γ∗b+ εb, this leads to:

Φ(b)− bγ∗ ∼
√
αb

λ√
S′(γ∗)λ− γ∗S′(γ∗)2

. (9.54)

This concludes the proof in the case λ > 0.

219

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

For λ = 0, a similar idea is used. When γ is small, S(γ) = S′(0)γ + S′′(0)γ2 +O(γ3)
and S′(γ) = S′(0) + 2S′′(0)γ +O(γ2). Solving the minimization Equation (9.45) when
Φ(b)/b is small and λ = 0 leads to a second order polynomial:

S′(0)γ + S′′(0)γ2 =
α+ P

b

(
S′(0) + 2S′′(0)γ

)
+O(γ3) (9.55)

which leads to the equation:

− S′′(0)γ2 ∼ α

b
S′(0), (9.56)

that has the solution

Φ(b) ≈b→∞
√
αb
√
S′(0)/S′′(0) . (9.57)

Therefore, when b tends to infinity, the SINR is small and the power Φ(b) behaves like√
b. This completes the proof.

9.7.4. Proof of Proposition 9.11

For all links i, the function Φi is increasing. Moreover, the mapping b : P 7→ b(P) is
increasing. Hence, the mapping F = Φ ◦ b : P t 7→ P t+1 is increasing.

The subhomogeneity requires a little more work. For a particular link, let us define
the function h(p, b):

h(p, b) = −α1

b

S2

(S − λ)2
+ S − p

b
S′. (9.58)

As we have seen in the proof of proposition 9.5. h(p, b) is negative if p < Φ(b), equal to
0 if p = Φ(b) and positive otherwise. Now let p = Φ(b) and δ > 1. A direct compution
shows that:

h(δp, δb) = −α(
1

δb
− 1

b
)S′(

p

b
)

S2(pb)

(S(pb)− λ)2
> 0, (9.59)

which means that δp > Φ(δb).

Let now consider the power vector. When scaling P by δ, the thermal noise is not
scaled, thus b(δP) < δb(P). By monotonicity of the function Φ:

F (δx) = Φ(b(δx)) < δF (x). (9.60)

This completes the proof.

9.7.5. Proof of Theorem 9.12

The DPC algorithm can be viewed as a sequence of iterations of the function F of
equation (9.20). This mapping belongs to the class of standard interference functions
defined in [150], that is:

• For all i: Fi(p) ≥ 0

• F is increasing (componentwise).

• F is subhomogeneous, that is, for any δ > 1: F (δP) > δF (P).

220

9.7. Appendix

Therefore, using Theorems 1, 2 and 4 of Yates [150], if there exists a fixed point of
F (·), it is unique and both asynchronous and synchronous version of DPC converges to
this fixed point.

The existence of the fixed point requires more work and is rather more subtle than
convergence above. Since λ ∈ Λ, we have J (λ) 6= ∅. Then, Remark 9.8 implies that
G(λ) 6= ∅. Take a large initial power vector P 0 in G(λ), so that P 0

i > Φi(bi(P
0) for

each i ∈ L. This is doable because of Proposition 9.7; see also Figs. 9.2 and 9.1.
In the first iteration P 1 = F (P 0) the powers contract so that P 1

i = Φi(bi(P
0) < P 0

i

for each i ∈ L. Therefore, P 0 > P 1. Now apply the increasing function F (·) to get
F (P 0) = P 1 > F (P 1) = P 2. Repeatedly applying this process we get P 0 > P 1 > P 2 >
P 3 > ... > P t > P t+1 > This decreasing (and nonnegative) sequence of power vectors
then converges to a fixed point P of F (·). Moreover, bi(P

t) ≥ bi(0) = Ni
Gii
, i ∈ L, hence,

P t+1 = Φ(b(P t)) ≥ Φ(b(0)) for every t. Therefore, the fixed point P ≥ Φ(b(0)) > 0. This
completes the proof.

9.7.6. Proofs of Proposition 9.15

These equations are just a rewriting of Equation (9.45). The monotonicity of σ(x) =(
1− λ

S(x)

)2(
1
x
S(x)
S′(x) − 1

)
comes from the fact that the first term of the product is clearly

increasing in x while the derivative of the second term is:

xS′2(x)− xS(x)S′′(x)− S(x)S′(x)

x2S′2(x)
(9.61)

which is positive, due to S ∈ S and Lemma 9.6. This completes the proof.

9.7.7. Proof of Proposition 9.16

The proofs of all the monotonicity properties of Proposition 9.16 are very similar so we
will just prove the first one.

We denote by Fα the mapping that represents one iteration of the algorithm with the
parameter α.

Using Equation (9.58), one can see easily that for all i, j, the mapping αj 7→ (Fαj (P t, αj))i
(the power of link i after one iteration of the algorithm) is strictly increasing if i = j and
constant if i 6= j.

Moreover, as bi is strictly increasing in every Pj for all j 6= i, after two iterations, if
αj < α′j , then (Fαi)2 < (Fα

′
i)2, which shows that αi 7→ Pα,N is increasing. Equation

(9.58) cannot be satisfied by two different αs, showing that it is strictly increasing. This
completes the proof.

9.7.8. Proof of Proposition 9.17

The equation (9.45) shows that if P xα,N and γxα,N are the power and SINR at the
equilibrium when parameters are (xα,N), then 1

xP
xα,N and γxα,N are the power and

SINR at the equilibrium when parameters are (α, 1
xN). γxα,N = γα,

1
x
N > γα,N since

γ is decreasing in N . Therefore x 7→ γxα,N is increasing (and bounded since γ has to
remain in the feasibility region), so they converge to some γα,∗ which corresponds in to
the equilibrium with no thermal noise:

lim
x→∞

γxα,Ni = lim
x→∞

γ
α,N/x
i = γα,∗i − (9.62)

221

Chapter 9. Distributed Delay-Power Control Algorithms in Wireless Networks

Let us call P ∗ (resp. γ∗ and b∗) the limiting power (resp. SINR and noise) when N
tends to 0. As everything is continuous in N , they satisfy the equation

b∗i
S(γ∗i)

S′(γ∗i)
= αi

S(γ∗i)2

(S(γ∗i)− λ)2
+ P ∗i (9.63)

For all i, αi > 0 and P ∗i ≥ 0. Hence for all i: bi 6= 0. That means that at least one P ∗j is
not zero which implies that none of the P ∗i is 0 since γ∗i 6= 0.

Moreover, the DPC algorithm works in this very special case where all Ni are 0 and
leads to the point γ∗i . Of course in this particular case the algorithm is not Pareto
optimal: one can reach the same γ∗’s with arbitrarily small powers by dividing all powers
by the same constant. This completes the proof.

222

Conclusion and Bibliography

223

Conclusion

Throughout this document, we present different methods to control and optimize large
scale systems. The main problem covered in this document is, given a stochastic model
of the system, to analyze this model if the state space is too large.

A first approach, presented in Chapter 3, is to aggregate the state in a single variable,
called the potential. The evolution of this potential depends on itself but also on another
process (the number of steal requests in Chapter 3). To model the latter, we introduced
an adversary that controlled this sequence of steal requests and tried to maximize the
number of steal requests before running out of potential. This methodology is generic and
is illustrated in Chapter 3 to study the total completion time of a large number of tasks
scheduled by work stealing. Different scenarios are studied and simulations show that the
theoretical bounds computed by our approach is sharp. We are currently investigating
several extensions of these results that can also be generalized to the case of more general
dependence graphs.

Although this adversary-potential approach is generic, when one considers a new
problem, building an interesting function that will lead to interesting results is not easy.
This is one of the reason to study mean field models, surveyed in Chapter 2. Classical
mean field models focus on the description and the evaluation of a system. Starting from
a description of the stochastic model as a system of interacting objects, it is rather easy
to obtain deterministic equations that allow one to study various performance metrics.
The methodology of this study is generic and is summarized in Figure 1.

Large Stochastic
System

Mean field limit

Distribution of performance metrics

Average performance metrics

N →∞
automatic

ODE, dynamical system

Fast simulation

Figure 1.: The generic mean field method used to study the performance of a system,
like in Chapter 4.

In particular, we applied this method in Chapter 4 to study the performance of work
stealing in computational grids. We first build a stochastic model of the system where
the N computing resources of the grid are represented by a system of N interacting
objects. The computation of the deterministic limit is straightforward and can be done
automatically using this representation, as in Section 4.3. Once the deterministic limit is
built, it can be used to study the steady state, leading to average performance metrics or
simulate the behavior of one object via fast simulation, which leads to the distribution of
these performance metrics.

Mean field models have been widely used in the networking community to study the

225

Conclusion

behavior of a system. A large part of the work of this thesis has been to extend these
results to the case of controlled dynamics. This is the focus of Part II where we study two
kinds of problems. The first one is to compare the optimal control of a large stochastic
system with the optimal control of its deterministic limit. The other problem is to study
the limiting behavior of a system once a policy is fixed.

The problem of optimal control is to find a control policy that maximizes the expectation
of an objective function. The approach used in Chapters 5 and 6 is summarized in Figure 2.
Again, the first step of the analysis is to represent the system by a model of N interacting
objects. Then, computing its mean field limit is automatic. This leads to a deterministic
optimization problem. The main results of Chapters 5 and 6 of Part II are to show
that solving this deterministic optimization problem leads to an asymptotically optimal
solution for the original stochastic optimization problem. The problem of the limiting
behavior of a controlled system is addressed in Chapter 7. We show that even when
the dynamics of the policy present some discontinuity, the stochastic controlled system
converges to its deterministic counterpart, described by a differential inclusion. Then, we
can use the methodology of Figure 1 to perform a analysis of the system’s behavior.

Large Stochastic
Controlled System

Mean field limit

Optimal mean field
Optimal Stochastic

System

N →∞

Deterministic optimization

Results of
Part II

Figure 2.: The optimal mean field methodology of Part II. The blue arrows indicate an
easy task, the red arrow indicates that this is not easy to solve.

The results of Part II are generic and have a wide range of applications, from brokering
problems to controlled population dynamics. However, the main weaknesses of this
method are the algorithmic issues coming from the deterministic optimization problem.
This is due to the fact that even if the deterministic problem is often simpler than
the original problem, it might still be hard to solve. In particular, there is no generic
Hamilton-Jacobi-Bellman solver for an optimal control problem in d-dimensional space
with d ≥ 3. The principal interest of the optimal mean field is either to be solved for
simple systems, like the one of Section 5.4 or to give intuitions on what should be the
optimal policy like in Section 6.4.3. However, “brute-force” numerical methods seem to
be hard to use.

The reason for these algorithmic issues is that we seek for an optimal control policy
among all possible policies and that the set of such policies is huge. A natural extension of
these results would be to restrict the choice of policy to a subset of all policies, and consider
the optimization problem within this restricted choice. Using the mean field approach of
Chapter 7, one can evaluate the cost of each policy on the mean field limit. Then if the
set of policies considered is reasonably small, it should be straightforward to compute
the best policy π∗ for the deterministic limit. However, we have no results indicating
that this policy should be optimal for the stochastic system, even asymptotically.

Another problem to look at would be to consider non-additive costs. For example,
let us consider the problem of tasks arriving in the system and let X(t) be the number
of tasks at time t. By Little’s formula, the average completion time is proportional to

226

∑T
t=1X(t). Minimizing the average completion time is easily representable by a Markov

decision processes. At each time step is associated a cost, X(t), and the problem is to
minimize the sum of these costs. However, if we consider a parallel application, tasks
may arrive by bags of 100 or more and the real problem is not to minimize the average
completion time of each task but to minimize the total completion time of the whole bag
of tasks. This question is partially answered in Chapter 3 where we considered the total
completion time of a single bag of tasks using work stealing. An interesting problem
to look at would be to consider dynamics of such a system with an arrival process of
bags of tasks. The problem is how to use the different resources in order to minimize the
(average) total completion time of each bag of tasks.

A last but important question that should follow this work is to consider multiple objec-
tive criteria. In this work, we only focus on the problem of minimizing (or maximizing) a
single real-valued utility function, like the average response time of tasks. Single-objective
functions come naturally for someone who wants to exploit and dimension her computing
resources or to minimize the delay suffered by users. However, today’s problems become
more and more multi-objective. One of the major issue in the near future will be energy.
Someone trying to minimizing delay and energy is confronted to a dilemma: decreasing
energy consumption implies increasing delays. This leads to consider cost functions of
the form (D,E) (delay and energy) and raises several problems. In particular, unlike
single objective functions, two solutions are not necessarily comparable. It is hard to
decide if high delay and low energy consumption is better than the opposite.

A first step in this direction is done in Chapter 9, where we chose to replace the cost
(D,E) by a function E + αD where α is a multiplicative factor that represents how each
user values energy against delay. This leads every user to seek for a trade-off between the
two. However, because of the difference of nature between the two costs (D,E), choosing
this parameter α is very hard since we are adding two quantities that have not the same
unit and are not comparable. From a theoretical point of view, a better answer is to
compute the set of Pareto optimal solutions, that is solutions (D,E) such that there is
no solutions (D′, E′) with D′ < D and E′ < E. However, deciding which one is the best
Pareto point is not easy.

For the moment, there is no commonly admitted solution on what should be the criteria
to minimize. This is certainly something missing that should be developed in the future.

227

Bibliography

The number(s) at the end of each bibliographical reference indicates in which page(s) it
appears.

[1] V. Acary and B. Brogliato. Numerical methods for nonsmooth dynamical systems:
applications in mechanics and electronics. Springer Verlag, 2008. 140

[2] A.V. Aho and N.J.A. Sloane. Some doubly exponential sequences. Fibonacci
Quarterly, 11(4):429–437, 1973. 188

[3] D. Aldous and J. Fill. Reversible Markov chains and random walks on graphs.
Book in preparation, 2001. 16

[4] E. Altman, B. Gaujal, and A. Hordijk. Multimodularity, convexity, and optimization
properties. Mathematics of Operations Research, 25(2):324–347, 2000. xxxii, xxxv

[5] E. Altman, B. Gaujal, and A. Hordijk. Discrete-Event Control of Stochastic
Networks: Multimodularity and Regularity. Number 1829 in LNM. Springer-Verlag,
2003. 164

[6] J. Anselmi and B. Gaujal. Performance evaluation of a work stealing algorithm for
streaming applications. In 13th Int. Conf. On Principles Of DIstributed Systems
(OPODIS), Nı̂mes, 2009. 52

[7] J. Anselmi and B. Gaujal. The price of anarchy in parallel queues revisited. In
Proceedings of the ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, pages 353–354. ACM, 2010. xxxv

[8] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multipro-
grammed multiprocessors. Theory of Computing Systems, 34(2):115–144, 2001. 34,
35, 42, 43, 48, 49

[9] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM
Journal on Computing, 29(1):180–200, 1999. 49

[10] F. Baccelli, N. Bambos, and N. Gast. Distributed delay-power control algorithms
for bandwith sharing in wireless networks. Submitted, under 2nd round of revision,
2009. x, xxxii, xxxvi

[11] F. Baccelli and P. Bremaud. Elements of queueing theory. Springer-Verlag, 2003.
7, 16, 62

[12] F. Baccelli, A. Chaintreau, D. De Vleeschauwer, and D. McDonald. A mean-
field analysis of short lived interacting TCP flows. In Proceedings of the joint
international conference on Measurement and modeling of computer systems, pages
343–354. ACM, 2004. 19

229

Bibliography

[13] F. Baccelli, D. McDonald, and J. Reynier. A mean field model for multiple tcp
connections through a buffer implementing red. Performance Evaluation, 49, 2002.
19, 138

[14] G.P. Basharin, A.N. Langville, and V.A. Naumov. The life and work of AA Markov.
Linear Algebra and its Applications, 386:3–26, 2004. 16

[15] R.E. Bellman. Dynamic Programming. Princeton University Press, 1957. 16

[16] M. Benäım. Recursive algorithms, urn processes and chaining number of chain
recurrent sets. Ergodic Theory and Dynamical Systems, 18(01):53–87, 1998. 23

[17] M. Benäım. Dynamics of stochastic approximation algorithms. Séminaire de
Probabilités XXXIII. Lecture Notes in Math, 1709:1–68, 1999. 25, 116, 132

[18] M. Benäım and M.W. Hirsch. Stochastic approximation algorithms with constant
step size whose average is cooperative. Annals of Applied Probability, 9(1):216–241,
1999. 25

[19] M. Benäım, J. Hofbauer, and S. Sorin. Stochastic approximation and differential
inclusions. SIAM J. Control and Optimization, 44(1):328–348, 2005. 152

[20] M. Benäım and J.-Y. Le Boudec. A class of mean field interaction models for
computer and communication systems. Performance Evaluation, 65(11-12):823–838,
2008. 25, 26, 27, 80

[21] M. Benäım and J. Weibull. Deterministic approximation of stochastic evolution in
games: a generalization. Technical report, mimeo, 2003. 25

[22] M. A. Bender and M. O. Rabin. Online scheduling of parallel programs on
heterogeneous systems with applications to cilk. Theory of Computing Systems,
35:2002, 2002. 48

[23] A. Benoit, L. Brenner, P. Fernandes, B. Plateau, and W.J. Stewart. The PEPS
software tool. Computer Performance, pages 98–115, 2003. xxxi

[24] A. Benveniste, P. Priouret, and M. Métivier. Adaptive algorithms and stochastic
approximations. Springer-Verlag New York, Inc. New York, NY, USA, page 365,
1990. 116

[25] P. Berenbrink, T. Friedetzky, and L. A. Goldberg. The natural work-stealing
algorithm is stable. SIAM Journal of Computing, 32(5):1260–1279, 2003. 48

[26] P. Berenbrink, T. Friedetzky, L. A. Goldberg, P. W. Goldberg, Z. Hu, and R. Martin.
Distributed selfish load balancing. SIAM Journal on Computing, 37(4), 2007. 48,
49

[27] P. Berenbrink, T. Friedetzky, Z. Hu, and R. Martin. On weighted balls-into-bins
games. Theoretical Computer Science, 409(3):511 – 520, 2008. 49

[28] J. Bernard, J-L. Roch, and D. Traore. Processor-oblivious parallel stream compu-
tations. In 16th Euromicro Int. Conf. on Parallel, Distributed and network-based
Processing, Toulouse, 2008. 34

230

Bibliography

[29] J. Berstel. Sturmian and episturmian words (a survey of some recent result results).
In G. Rahonis S. Bozapalidis, editor, Conference on Algebraic Informatics, Lecture
Notes Comput. Sci. 4728, pages 23–47, 2007. 164

[30] J. Berstel, L. Boasson, O. Carton, and I. Fagnot. Sturmian trees. Theory of
Computing Systems, pages 1–36, 2009. 164, 165, 166, 168, 170, 183

[31] J. Berstel and M. Pocchiola. Random generation of finite sturmian words. In
LIENS - 93 -8, DMI, ENS, LITP - Institute Blaise Pascal, 1993. 188

[32] V. Berten and B. Gaujal. Brokering strategies in computational grids using
stochastic prediction models. Parallel Computing, 2007. Special Issue on Large
Scale Grids. 91

[33] V. Berten and B. Gaujal. Grid brokering for batch allocation using indexes. In
Euro-FGI NET-COOP, Avignon, France, june 2007. LNCS. 91

[34] V. Berten and B. Gaujal. Grid brokering for batch allocation using indexes. Network
Control and Optimization, 4465:215–225, 2007. 130

[35] D.P. Bertsekas. Dynamic Programming and Optimal Control, vol. 1. Athena
Scientific, 1995. 16, 124

[36] D.P. Bertsekas. Dynamic programming and optimal control, vol. II. Athena
Scientific, 2007. 16

[37] G. Bianchi et al. Performance analysis of the IEEE 802. 11 distributed coordination
function. IEEE Journal on selected areas in communications, 18(3):535–547, 2000.
xxxi, 19

[38] P. Billingsley. Convergence of probability measures. Wiley New York, 1968. 28

[39] D. Blackwell. Discounted dynamic programming. The Annals of Mathematical
Statistics, pages 226–235, 1965. 16

[40] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM, 46(5):720–748, 1999. 48, 49

[41] A. Bobbio, M. Gribaudo, and M. Telek. Analysis of large scale interacting systems
by mean field method. In 5th International Conference on Quantitative Evaluation
of Systems(QEST), pages 215–224, St Malo, 2008. 27

[42] C. Bordenave and V. Anantharam. Optimal control of interacting particle systems.
Technical Report 00397327, CNRS Open-Archive HAL, 2007. 80

[43] C. Bordenave, D. Mcdonald, and A. Proutière. Random multi-access algorithms:
A mean field analysis. In Proceedings of Allerton conference. Citeseer, 2005. 19, 20,
31

[44] C. Bordenave, D. McDonald, and A. Proutiere. Performance of random medium
access control, an asymptotic approach. In Proceedings of the 2008 ACM SIGMET-
RICS international conference on Measurement and modeling of computer systems,
pages 1–12. ACM, 2008. xxxi, 31

231

Bibliography

[45] C. Bordenave, D. McDonald, and A. Proutière. A particle system in interaction
with a rapidly varying environment: Mean field limits and applications. Networks
and Heterogeneous Media (NHM), 5(1):31–62, 2010. 27, 31, 80

[46] E. Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rend.
Circ. Mat. Palermo, 27:247–271, 1909. 179

[47] V. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge
University Press, 2008. 100

[48] F. Bouchut and F. James. One-dimensional transport equations with discontinuous
coefficients. Nonlinear Analysis, 32(7):891, 1998. 149

[49] F. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jégou, S. Lanteri, N. Melab,
R. Namyst, P. Primet, O. Richard, et al. Grid’5000: a large scale, reconfigurable,
controlable and monitorable Grid platform. IEEE/ACM International Workshop
on Grid Computing, 2005. 53, 69

[50] J. Cassaigne. Double sequences with complexity mn+1. J. Autom. Lang. Comb.,
4(3):153–170, 1999. 164

[51] Q. Chen, H. Chang, R. Govindan, S. Jamin, S.J. Shenker, and W. Willinger. The
origin of power-laws in internet topologies revisited. In IEEE INFOCOM, volume 2,
pages 608–617. Citeseer, 2002. xxvii

[52] W. Chen, D. Huang, A. Kulkarni, J. Unnikrishnan, Q. Zhu, P. Mehta, S. Meyn,
and A. Wierman. Approximate Dynamic Programming using Fluid and Diffusion
Approximations with Applications to Power Management. In Submitted to the 48th
IEEE Conference on Decision and Control, 2009. 116

[53] J. Cho, J.Y. Le Boudec, and Y. Jiang. On the Validity of the Decoupling Assumption
for Analyzing the 802.11 MAC Protocol. Technical report, EPFL, 2010. xxxi

[54] R. Cole. Initial studies on worm propagation in manets for future army combat
systems. Technical report, Pentagon Reports, 2004. 127

[55] B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer
Science, 25(2):95–169, March 1983. Fundamental study. 165, 170

[56] J.G. Dai. On positive Harris recurrence of multiclass queueing networks: A unified
approach via fluid limit models. The Annals of Applied Probability, 5(1):49–77,
1995. 145

[57] DP De Farias and B. Van Roy. The linear programming approach to approximate
dynamic programming. Operations Research, 51(6):850–865, 2003. 116

[58] L.E. Dubins and L.J. Savage. How to gamble if you must: Inequalities for stochastic
processes. McGraw-Hill, 1965. 16

[59] R. Durrett. Probability: theory and examples. Wadsworth & Brooks/Cole, 1991.
89, 106, 108, 179

[60] A.K. Erlang. The theory of probabilities and telephone conversations. Nyt Tidsskrift
for Matematik B, 20:33, 1909. ix, xxvii

232

Bibliography

[61] A.K. Erlang. Solution of some problems in the theory of probabilities of significance
in automatic telephone exchanges. The Post Office Electrical Engineers’ Journal,
10:189–197, 1918. ix, xxvii

[62] S.N. Ethier and T.G. Kurtz. Markov processes: characterization and convergence.
Wiley New York, 1986. 18, 21, 22, 23, 28, 29, 30, 31, 54

[63] T. Fernique. Pavages, Fractions continues et géométrie discrète. PhD thesis,
University of Montpellier, 2007. 164

[64] G.J. Foschini and Z. Miljanic. A simple distributed autonomous power con-
trol algorithm and its convergence. IEEE Transactions on Vehicular Technology,
42(4):641–646, 1993. xxiv, 196

[65] GJ Foschini and Z. Miljanic. Distributed autonomous wireless channel assign-
ment algorithm withpower control. IEEE Transactions on Vehicular Technology,
44(3):420–429, 1995. 196

[66] M. Frigo, C. Leiserson, and K. Randall. The implementation of the cilk-5 multi-
threaded language. In ACM SIGPLAN’98 Conf. on Programming Language Design
and Implementation, volume 33, pages 212–223, Montreal, 1998. xi, 34

[67] N. Gast and B. Gaujal. Balanced labeled trees: density, complexity and mechanicity.
In Words, 6th international conference on words, Marseille, France, 2007. x, xxxii,
xxxvi, 164

[68] N. Gast and B. Gaujal. Infinite labeled trees: From rational to Sturmian trees.
Theoretical Computer Science, 2009. x, xxxii, xxxvi

[69] N. Gast and B. Gaujal. A mean field approach for optimization in particle systems
and applications. Fourth International Conference on Performance Evaluation
Methodologies and Tools, ValueTools, 2009. x, xxxii, xxxvi, 93

[70] N. Gast and B. Gaujal. A Mean Field Model of Work Stealing in Large-Scale
Systems. SIGMETRICS’10, 2010. x, xxxii, xxxv, 18, 80

[71] N. Gast and B. Gaujal. A mean field approach for optimization in discrete time.
Accepted for publication in Discrete Event Dynamic Systems, 2010. x, xxxii, xxxvi

[72] N. Gast and B. Gaujal. Mean field limit of non-smooth systems: a differential
inclusion limit. Submitted for publication, 2010. x, xxxii, xxxvi

[73] N. Gast and B. Gaujal. Mean field limit of non-smooth systems and differential
inclusions. MAMA Workshop, 2010. x, xxxii, xxxvi

[74] N. Gast, B. Gaujal, and J.Y. Le Boudec. Mean field for Markov Decision Processes:
from Discrete to Continuous Optimization. Submitted for publication, 2010. x,
xxxii, xxxvi

[75] B. Gaujal, A. Hordijk, and D. Van der Laan. On the optimal open-loop control
policy for deterministic and exponential polling systems. Probability in Engineering
and Informational Sciences, 21:157–187, 2007. 164

233

Bibliography

[76] B. Gaujal and E. Hyon. Optimal routing policy in two deterministic queues.
Calculateurs Parallèles, 2001. 164

[77] B. Gaujal, E. Hyon, and A. Jean-Marie. Optimal Routing in two parallel Queues
with exponential service times. Discrete Event Dynamic Systems, 16(1):71–107,
2006. xxi, xxxii, xxxv

[78] T. Gautier, X. Besseron, and L. Pigeon. KAAPI: A thread scheduling runtime
system for data flow computations on cluster of multi-processors. In Proceedings of
PASCO’07, pages 15–23, 2007. xi, 34, 43

[79] Z. Gorodeisky. Deterministic approximation of best-response dynamics for the
Matching Pennies game. Games and Economic Behavior, 66(1):191–201, 2009. 123

[80] C. Graham. Chaoticity on path space for a queueing network with selection of the
shortest queue among several. Journal of Applied Probability, 37(1):198–211, 2000.
18, 28, 31

[81] C. Graham. Chaoticity for multiclass systems and exchangeability within classes.
J. Appl. Prob, 45:1196–1203, 2008. 21

[82] C. Graham and P. Robert. Interacting multi-class transmissions in large stochastic
networks. Annals of Applied Probability, 2009. 21

[83] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17:416–429, 1969. 34

[84] J. Gunawardena. Idempotency. Cambridge Univ Pr, 1998. 205

[85] B. Hajek. Extremal splittings of point processes. Mathematics of Operation
Research, 10(4):543–556, 1985. 164

[86] P. Hande, S. Rangan, M. Chiang, and X. Wu. Distributed uplink power control for
optimal SIR assignment in cellular data networks. IEEE/ACM Transactions on
Networking, 16(6):1420–1433, 2008. 196

[87] D.S. Hochbaum. Approximation algorithms for NP-hard problems. PWS Publishing
Co. Boston, MA, USA, 1996. 101

[88] W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963. 103

[89] R. Hoffmann, M. Korch, and T. Rauber. Performance evaluation of task pools
based on hardware synchronization. In Proc. of Supercomputing, 2004. 34

[90] O. Kallenberg. Foundations of modern probability. Springer Verlag, 2002. 58

[91] S. Kandukuri and N. Bambos. Multimodal dynamic multiple access (MDMA) in
wireless packet networks. In IEEE INFOCOM, volume 1, pages 199–208. Citeseer,
2001. 196

[92] F.P. Kelly. Reversibility and stochastic networks. Wiley New York, 1979. 16

234

Bibliography

[93] W.S. Kendall. Perfect simulation for the area-interaction point process. Probability
towards, 218:234, 2000. xxx

[94] M.H.R. Khouzani, Saswati Sarkar, and Eitan Altman. Maximum damage malware
attack in mobile wireless networks. In IEEE Infocom, San Diego, 2010. 124, 127,
128

[95] L. Kleinrock. Queueing Systems, Volume 1: Theory. John Wiley & Sons, 1975. 7,
16

[96] L. Kleinrock. Queueing Systems: Volume 2: Computer Applications. John Wiley
& Sons New York, 1976. 7, 16

[97] R. Klette and A. Rosenfeld. Digital straightness- a review. Discrete Appl. Math.,
139:197–230, 2004. 164

[98] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. Anderson. Cost-benefit anal-
ysis of cloud computing versus desktop grids. In 18th International Heterogeneity
in Computing Workshop, Rome, 2009. 128

[99] A. Kukanov and M. Voss. The foundations for scalable multi-core software in intel
threading building blocks. Intel Technology Journal, 11(4):309–322, 2007. xi, 34

[100] M. Kunze. Non-smooth dynamical systems. Lecture notes in mathematics, 2000.
140, 152, 153

[101] T. Kurtz. Solutions of ordinary differential equations as limits of pure jump markov
processes. Journal of Applied Probability, pages 49–58, 1970. 127

[102] T. Kurtz. Strong approximation theorems for density dependent Markov chains.
Stochastic Processes and their Applications. Elsevier, 1978. 80

[103] T.G. Kurtz. Approximation of population processes. Society for Industrial Mathe-
matics, 1981. 21, 54

[104] H.J. Kushner and G. Yin. Stochastic approximation and recursive algorithms and
applications. Springer Verlag, 2003. 25

[105] J.M. Lasry and P.L. Lions. Mean field games. Japanese Journal of Mathematics,
2(1):229–260, 2007. 21

[106] J.Y. Le Boudec, D. McDonald, and J. Mundinger. A generic mean field convergence
result for systems of interacting objects. In Quantitative Evaluation of Systems,
2007. QEST 2007. Fourth International Conference on the, pages 3–18, 2007. 18,
19, 26, 27, 80, 81

[107] F. Lempio. Euler’s method revisited. Proceedings of the Steklov Institute of
Mathematics, 211(4):429–449, 1995. 149, 156

[108] D.A. Levin, Y. Peres, and E.L. Wilmer. Markov chains and mixing times. Amer
Mathematical Society, 2009. 16

[109] M. Lothaire. Algebraic combinatorics on words. Cambridge University Press New
York, 2002. 165, 175

235

Bibliography

[110] E. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. Journal of Computer and System Sciences, 25:42–65, 1982. 185

[111] A.A. Markov. Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug
ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete,
2(15):135–156, 1906. 16

[112] F. Meshkati, HV Poor, SC Schwartz, and NB Mandayam. An energy-efficient
approach to power control and receiver design in wireless data networks. IEEE
transactions on communications, 53(11):1885–1894, 2005. 196

[113] D. Mitra. An asynchronous distributed algorithm for power control in cellular radio
systems. Wireless and Mobile Communications, pages 177–186, 1994. 196, 215

[114] M. Mitzenmacher. Analyses of load stealing models based in differential equations.
In 10th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages
212–221, 1998. 18, 48, 52, 66

[115] M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems, pages 1094–1104, 2001. 18

[116] M. Morse and G.A. Hedlund. Symbolic dynamics ii. sturmian trajectories. Amer.
J. Math., 62:1–42, 1940. 164

[117] A. Müller and D. Stoyan. Comparison methods for stochastic models and risks.
Series in Probability and Statistics. Wiley, 2002. 68

[118] R. Nelson. Probability, stochastic processes, and queueing theory: the mathematics
of computer performance modelling. Springer, 1995. xxx

[119] M. Norman. A central limit theorem for Markov processes that move by small
steps. The Annals of Probability, 2(6):1065–1074, 1974. 24

[120] J. Palmer and I. Mitrani. Optimal and heuristic policies for dynamic server
allocation. Journal of Parallel and Distributed Computing, 65(10):1204–1211, 2005.
Special issue: Design and Performance of Networks for Super-, Cluster-, and
Grid-Computing (Part I). 91

[121] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of optimal
queueing network control. Math. Oper. Res., 24:293–305, 1999. 81

[122] J.G. Propp and D.B. Wilson. Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random structures and Algorithms, 9(1-2):223–
252, 1996. xxx

[123] M.L. Puterman. Markov Decision Processes : Discrete Stochastic Dynamic Pro-
gramming. Wiley-Interscience, 2005. 10, 11, 12, 14, 15, 16, 38

[124] J.-N. Quintin and F. Wagner. Hierarchical work stealing. Technical Report 7077,
INRIA, 2009. 53, 69

[125] H. Robbins and S. Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951. 25

236

Bibliography

[126] T. Rolski. Comparison theorems for queues with dependent interarrival times.
In Lecture Notes in Control and Information Sciences, volume 60, pages 42–71.
Springer-Verlag, 1983. 94

[127] S.M. Ross. Stochastic Processes, 2nd ed. John Wiley and Sons, Inc. USA, 1996.
132

[128] W. Rudin. Functional Analysis. McGraw-Hill Science, 1991. 154

[129] J.M. Rulnick and N. Bambos. Mobile power management for wireless communication
networks. Wireless Networks, 3(1):3–14, 1997. 196

[130] S. Sano, N. Miyoshi, and R. Kataoka. m-balanced words: A generalization of
balanced words. Theoretical Computer Science, 314(1-2):97–120, 2004. xxxv

[131] C.U. Saraydar, N.B. Mandayam, and D.J. Goodman. Efficient power control
via pricing in wireless data networks. IEEE transactions on Communications,
50(2):291–303, 2002. 196

[132] J. T. Schwartz. Nonlinear functional analysis. Gordon and Breach Science Publish-
ers, New York, 1969. 90

[133] N.J.A. Sloane et al. The On-Line Encyclopedia of Integer Sequences, 2009. 188

[134] M. Squillante and R. Nelson. Analysis of task migration in shared-memory multi-
processor scheduling. SIGMETRICS Perf. Eval. Rev., 19(1):143–155, 1991. xxxi,
52

[135] S. Stanczak, M. Wiczanowski, and H. Boche. Resource Allocation in Wireless
Networks-Theory and Algorithms. Lecture Notes in Computer Science, 4000, 2006.
196

[136] W.J. Stewart. Introduction to the numerical solution of Markov chains. Princeton
University Press NJ, 1994. 5

[137] YM Suhov and ND Vvedenskaya. Dobrushin’s mean-field approximation for a
queue with dynamic routing. Markov Processes and Related Fields, 3(4):493–526,
1997. 18

[138] AS Sznitman. Topics in propagation of chaos. Ecole d’été de probabilités de
Saint-Flour XIX-1989. Lecture Notes in Math, 1464:165–251, 1989. 28, 29, 30

[139] S. Tanachaiwiwat and A. Helmy. Vaccine: War of the worms in wired and wireless
networks. In IEEE INFOCOM, 2006. 127

[140] M. Tchiboukdjian, N. Gast, D. Trystram, J.-L. Roch, and J. Bernard. A tighter
analysis of work stealing. ISAAC 2010, 2010. x, xxxii, xxxv

[141] M. Tchiboukdjian, D. Trystram, J.-L. Roch, and J. Bernard. List Scheduling: The
Price of Distribution. Research Report 7208, INRIA, 2010. 36

[142] H. Tembine, J.-Y. Le Boudec, R. El-Azouzi, and E. Altman. Mean Field Asymptotic
of Markov Decision Evolutionary Games and Teams. GameNets, 2009. 21, 58

237

Bibliography

[143] P. Tinnakornsrisuphap and A.M. Makowski. Limit behavior of ECN/RED gateways
under a large number of TCP flows. In IEEE INFOCOM, volume 2, pages 873–883.
Citeseer, 2003. 19, 27

[144] D. Traoré, J.-L. Roch, N. Maillard, T. Gautier, and J. Bernard. Deque-free work-
optimal parallel stl algorithms. In Proceedings of Euro-Par’08, pages 887–897, 2008.
35

[145] J.N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control, 42(5):674–690,
1997. 116

[146] R. Van Nieuwpoort, T. Kielmann, and H. Bal. Efficient load balancing for wide-area
divide-and-conquer applications. ACM SIGPLAN, 36(7):34–43, 2001. 53, 69

[147] J.M. Vincent. Perfect simulation of monotone systems for rare event probability
estimation. In Proceedings of the 37th conference on Winter simulation, page 537.
Winter Simulation Conference, 2005. xxx, 5

[148] R. R. Weber and G. Weiss. On an index policy for restless bandits. Journal of
Applied Probability, 27:637–648, 1990. 91

[149] P. Whittle. A celebration of applied probability, volume 25A, chapter Restless
Bandits: activity allocation in a changing world, pages 287–298. J. Appl. Probab.
Spec., 1988. 15, 91

[150] R.D. Yates. A framework for uplink power control in cellular radio systems. IEEE
Journal on Selected Areas in Communications, 13(7):1341–1347, 1995. 220, 221

[151] J. Zander. Distributed cochannel interference control in cellular radiosystems.
IEEE Transactions on Vehicular Technology, 41(3):305–311, 1992. 196

238

Abstracts

Abstract
The goal of this thesis is to provide methods for the control and the optimization

of large-scale systems, starting from stochastic models that approximate its behavior.
However, such models suffer from the curse of dimensionality: the number of states
needed to represent a system explodes when the size of the system grows.

In a first part, we present two different methods to reduce the complexity of the model
by aggregating the states of the different objects. These two methods are illustrated by
analyzing the performance of a distributed load balancing strategy, namely work-stealing.
We first show how the use of a potential function leads to a tight analysis of the total
completion time of a bag of tasks. Then we show how a mean field approximation can
be used to study the steady-state of a grid scheduled by work-stealing.

Then, we focus on the optimal control of large stochastic systems. We extend classical
mean field methods to study the controlled behavior of large systems. We show that under
mild assumptions, solving an optimal control problem for a system with a large number
of objects can be reduced to the solving of a problem for a deterministic system as the
number of objects grows large. In practice, this allows one to evaluate the performance of
a policy and provide a way to asymptotically solve problems that used to be intractable.

The last part of the document studies two different problems. We first consider the
question of how to distribute a infinite number of tasks on an infinite tree, as evenly as
possible. Secondly we study a distributed power control algorithm in wireless network
whose goal is to efficiently balance the trade-off between the delay and the power spent
per transmitted packet.

Résumé
Dans cette thèse, nous étudions des méthodes permettant le contrôle et l’optimisation

de systèmes à grande échelle à travers l’étude de modèles stochastiques. Les modèles
classiques souffrent tous du même problème: le nombre d’états pour décrire le système
explose lorsque la taille du système étudié grandit.

Dans une première partie, nous présentons deux méthodes différentes pour réduire la
complexité du modèle en agrégeant les états des différents objets: l’introduction d’une
fonction potentielle manipulée par un adversaire et les modèles champ moyen. Nous
montrons comment ces méthodes peuvent être appliquées pour étudier le vol de travail.

Puis, nous nous intéressons au contrôle optimal de grands systèmes stochastiques.
Nous étendons les résultats classiques champ moyen à des problèmes d’optimisation
et de contrôle. Nous montrons que sous des hypothèses faibles, résoudre le problème
d’optimisation initial est asymptotiquement équivalent à la résolution d’un problème
d’optimisation déterministe. Cela permet en pratique d’évaluer les performances d’une
politique de façon beaucoup plus rapide et de résoudre des problèmes jusqu’ici impossibles.

Dans la dernière partie, nous étudions deux problèmes différents. Dans un premier
temps, nous considerons le problème de distribuer une infinité de tâches sur un arbre
infini de manière la plus régulière possible. Puis nous étudions un mécanisme de contrôle
de puissance dans des réseaux sans fils ayant pour but de trouver un compromis entre
puissance consommée et délais.

	Résumé de la Thèse en Français
	Chapitres 3 et 4: Analyse du vol de travail
	Partie II: Modèles champ moyen optimaux
	Partie III: autres contributions
	Conclusion

	Introduction
	Organization of the Document
	Contributions
	List of Notations

	Foundations and First Examples
	Markov Chains and Markov Decision Processes
	Markov Processes
	Markov Decision Processes: Basic Concepts
	Optimal policies
	Algorithmic Issues: the Curse of Dimensionality
	Bibliographical notes

	A Survey on Mean Field Convergence
	Mean field models
	Some Results on Point-wise Convergence
	Path-space convergence
	Concluding Remark

	Transient Behavior of Work Stealing: Makespan analysis
	Introduction
	Work Stealing Model
	Principle of the Analysis and Main Theorem
	Unit Independent Tasks
	Tasks with Precedences
	Cooperation Among Thieves
	Experimental Study
	Appendix
	Bibliographical Notes

	Asymptotic Behavior of Work Stealing in Large-Scale Systems
	Introduction
	Work Stealing in Grids
	Mean Field Approximation
	One Cluster Model
	Heterogeneous Clusters
	Conclusion and Future Work

	Optimal Mean Field
	Optimization in Discrete Time
	Introduction
	Notations and definitions
	Finite time convergence and optimal policy
	Application to a brokering problem
	Extensions and Counter-Examples
	Computational issues
	Conclusion and future work
	Appendix: proofs

	From Discrete to Continuous Optimization
	Introduction
	Notations and Definitions
	Mean Field Convergence
	Applications
	Appendix: proofs

	Non-smooth Mean-Field Models
	Introduction
	Description of the Model and Notations
	Convergence results
	Extension to Non-smooth Density Dependent Population Processes
	Examples
	Proofs of Theorem 7.5 and Theorem 7.7

	Other Contributions
	Infinite Labeled Trees: from Rational to Sturmian Trees
	Introduction
	Infinite Trees
	Rational Trees
	Balanced and Mechanical Trees
	Algorithmic issues
	Glossary

	Distributed Delay-Power Control Algorithms in Wireless Networks
	Introduction
	Transmission Model
	Delay-Power Control (DPC)
	Delay-Power Control (DPC) Analysis
	DPC-Based Protocol Design
	Conclusions and Further Research
	Appendix

	Conclusion and Bibliography
	Conclusion
	Bibliography
	Abstracts

