L. Buetow and D. T. Huang, Structural insights into the catalysisand regulation of E3

, ubiquitin ligases, Nature Publishing Group, vol.17, pp.626-642, 2016.

T. Hunter, The age of crosstalk: phosphorylation, ubiquitination, and beyond, Mol Cell, vol.28, pp.730-738, 2007.

S. Torrino, The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active

. Rac1, Dev Cell, vol.21, pp.959-965, 2011.

A. Hall, . Rho, and . Gtpases, Biochem Soc Trans, vol.40, pp.1378-1382, 2012.

E. Manser, T. Leung, H. Salihuddin, Z. S. Zhao, and L. Lim, A brain serine/threonine protein kinase activated by Cdc42 and Rac1, Nature, vol.367, pp.40-46, 1994.

Z. Zhao and E. Manser, PAK family kinases: Physiological roles and regulation, Cell Logist, vol.2, pp.59-68, 2012.

C. K. Rane and A. Minden, , vol.5, p.28003, 2014.

M. L. Kelly and J. Chernoff, Mouse models of PAK function, Cell Logist, vol.2, pp.84-88, 2012.

M. Radu, G. Semenova, R. Kosoff, and J. Chernoff, PAK signalling during the development and progression of cancer, Nat Rev Cancer, vol.14, pp.13-25, 2014.

S. Castillo-lluva, C. Tan, M. Daugaard, P. H. Sorensen, and A. Malliri, The tumour suppressor HACE1 controls cell migration by regulating Rac1 degradation, Oncogene, vol.32, pp.1735-1742, 2012.

E. T. Goka and M. E. Lippman, Loss of the E3 ubiquitin ligase HACE1 results in enhanced Rac1 signaling contributing to breast cancer progression, Oncogene, 2015.

A. Doye, CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion, Cell, vol.111, pp.553-564, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02197524

G. Flatau, Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine, Nature, vol.387, pp.729-733, 1997.

G. Schmidt, Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1, Nature, vol.387, pp.725-729, 1997.

M. S. Anglesio, Differential expression of a novel ankyrin containing E3 ubiquitinprotein ligase, Hace1, in sporadic Wilms' tumor versus normal kidney, Human Molecular Genetics, vol.13, pp.2061-2074, 2004.

L. Zhang, The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers, Nat Med, vol.13, pp.1060-1069, 2007.

A. Bouzelfen, HACE1 is a putative tumor suppressor gene in B-cell lymphomagenesis and is down-regulated by both deletion and epigenetic alterations, Leuk. Res, vol.45, pp.90-100, 2016.

H. and K. , Aberrant methylation of the HACE1 gene is frequently detected in advanced colorectal cancer, Anticancer Res, vol.28, pp.1581-1584, 2008.

S. and M. , Methylation of HACE1 in gastric carcinoma, Anticancer Res, vol.29, pp.2231-2233, 2009.

M. Daugaard, Hace1 controls ROS generation of vertebrate Rac1-dependent NADPH oxidase complexes, Nature Communications, vol.4, p.2180, 2013.

B. Rotblat, HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response, Proceedings of the National Academy of Sciences, vol.111, pp.3032-3037, 2014.

L. Zhang, HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress, Nature Communications, vol.5, p.3430, 2014.

E. Andrio, Identi cation of cancer-associated missense mutations in hace1 that impair cell growth control and Rac1 ubiquitylation, Sci. Rep, pp.1-11, 2017.

P. V. Hornbeck, mutations, PTMs and recalibrations, 2014.

, Nucleic Acids Research, vol.43, pp.512-532, 2015.

P. P. Hsu, The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling, Science, vol.332, pp.1317-1322, 2011.

M. Franz-wachtel, Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells, Molecular & Cellular Proteomics, vol.11, pp.160-170, 2012.

H. Horn, KinomeXplorer: an integrated platform for kinome biology studies, Nat Meth, vol.11, pp.603-604, 2014.

A. Doye, A. Mettouchi, and E. Lemichez, Assessing ubiquitylation of Rho GTPases in mammalian cells, Methods Mol Biol, vol.827, pp.77-86, 2012.

E. Gallagher, M. Gao, Y. Liu, and M. Karin, Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change, Proc Natl Acad Sci, vol.103, pp.1717-1722, 2006.

A. Persaud, Tyrosine phosphorylation of NEDD4 activates its ubiquitin ligase activity, Science Signaling, vol.7, p.95, 2014.

H. King, N. S. Nicholas, and C. M. Wells, Role of p-21-activated kinases in cancer progression, Int Rev Cell Mol Biol, vol.309, pp.347-387, 2014.

A. Obermeier, PAK promotes morphological changes by acting upstream of Rac

, EMBO J, vol.17, pp.4328-4339, 1998.

, Extracted signal (precursor monoisotopic peak at +1 and +2) for the DS(p)TEITSILLK(+2) peptide in CNF1 and control conditions from a second biological replicate. b-c. Extracted signal (precursor monoisotopic peak at +1 and +2) for the (b) RDS(p)TEITSILLK(+2) and (c) NKRDS(p)TEITSILLK(+3) peptides in CNF1 and control conditions from two biological replicates. d-e. Protein lysates from MCF12A cells transfected with HA-HACE1(WT) and (d) treated with CNF1 for 24 hours or (e) co-transfected with myc-Rac1(Q61L) and analyzed by immunoblot (IB) using the, Research article Supplementary Information Supplementary Figure S1: CNF1 and Rac1 induce phosphorylation of Ser-385. a

, Chapter, Research article, vol.2015, pp.1-17

C. J. Bakal, D. Finan, and J. Larose, The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis, Proceedings of the National Academy of Sciences, vol.102, pp.9529-9534, 2005.

S. Balasenthil, A. A. Sahin, and C. J. Barnes, activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells, Journal of Biological Chemistry, vol.279, pp.1422-1428, 2004.

L. Barrio-real and M. G. Kazanietz, Rho GEFs and cancer: linking gene expression and metastatic dissemination, Science Signaling, vol.5, pp.43-43, 2012.

B. Baum and M. Georgiou, Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling, The Journal of Cell Biology, vol.192, pp.907-917, 2011.

S. Bekri, J. Adélaïde, and S. Merscher, Detailed map of a region commonly amplified at 11q13->q14 in human breast carcinoma, Cytogenet Cell Genet, vol.79, pp.125-131, 1997.

V. Bhalla, D. Daidié, and H. Li, Serum-and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3, Mol Endocrinol, vol.19, pp.3073-3084, 2005.

S. Bhogaraju and I. Dikic, Cell biology: Ubiquitination without E1 and E2 enzymes, Nature, vol.533, pp.43-44, 2016.

A. L. Bishop and A. Hall, Rho GTPases and their effector proteins, Biochem J 348 Pt, vol.2, pp.241-255, 2000.

B. Boettner and L. Van-aelst, The role of Rho GTPases in disease development, Gene, vol.286, pp.155-174, 2002.

B. Boisson, E. Laplantine, and C. Prando, Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency, Nature Immunology, vol.13, pp.1178-1186, 2012.

G. M. Bokoch, Biology of the p21-activated kinases, Annu Rev Biochem, vol.72, pp.743-781, 2003.

E. Boulter, R. Garcia-mata, and C. Guilluy, Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1, Nat Cell Biol, vol.12, pp.477-483, 2010.

A. Boureux, E. Vignal, S. Faure, and P. Fort, Evolution of the Rho family of ras-like GTPases in eukaryotes, Mol Biol Evol, vol.24, pp.203-216, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02267395

A. Bouzelfen, M. Alcantara, and H. Kora, HACE1 is a putative tumor suppressor gene in Bcell lymphomagenesis and is down-regulated by both deletion and epigenetic alterations, Leuk Res, vol.45, pp.90-100, 2016.

L. Boyer, L. Turchi, and B. Desnues, CNF1-induced ubiquitylation and proteasome destruction of activated RhoA is impaired in Smurf1-/-cells, Mol Biol Cell, vol.17, pp.2489-2497, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02025869

E. Branigan, A. Plechanovová, and E. G. Jaffray, Structural basis for the RING-catalyzed synthesis of K63-linked ubiquitin chains, Nat Struct Mol Biol, vol.22, pp.597-602, 2015.

J. J. Bravo-cordero, V. P. Sharma, and M. Roh-johnson, Spatial regulation of RhoC activity defines protrusion formation in migrating cells, Journal of Cell Science, vol.126, pp.3356-3369, 2013.

W. M. Brieher and A. S. Yap, Cadherin junctions and their cytoskeleton(s). Current Opinion in, Cell Biology, vol.25, pp.39-46, 2013.

L. A. Brown, S. E. Kalloger, and M. A. Miller, Amplification of 11q13 in ovarian carcinoma, Genes Chromosomes Cancer, vol.47, pp.481-489, 2008.

M. C. Bruce, V. Kanelis, and F. Fouladkou, Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain, Biochem J, vol.415, pp.155-163, 2008.

B. A. Bryan, D. 'amore, and P. A. , What tangled webs they weave: Rho-GTPase control of angiogenesis, Cell Mol Life Sci, vol.64, pp.2053-2065, 2007.

P. S. Brzovic, J. R. Keeffe, and H. Nishikawa, Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex, Proceedings of the National Academy of Sciences, vol.100, pp.5646-5651, 2003.

R. J. Buchsbaum, Rho activation at a glance, Journal of Cell Science, vol.120, pp.1149-1152, 2007.

C. D. Buckley, J. Tan, and K. L. Anderson, The minimal cadherin-catenin complex binds to actin filaments under force, Science, vol.346, pp.1254211-1254211, 2014.

L. Buetow, M. Gabrielsen, and N. G. Anthony, Activation of a primed RING E3-E2ubiquitin complex by non-covalent ubiquitin, Molecular Cell, vol.58, pp.297-310, 2015.

L. Buetow and D. T. Huang, Structural insights into the catalysis and regulation of E3 ubiquitin ligases, Nat Rev Mol Cell Biol, vol.17, pp.626-642, 2016.

K. Buiting, C. Williams, and B. Horsthemke, Angelman syndrome-insights into a rare neurogenetic disorder, Nat Rev Neurol, vol.12, pp.584-593, 2016.

X. R. Bustelo, V. Sauzeau, and I. M. Berenjeno, GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo, Bioessays, vol.29, pp.356-370, 2007.

M. S. Cammarano and A. Minden, Dbl and the Rho GTPases activate NF kappa B by I kappa B kinase (IKK)-dependent and IKK-independent pathways, Journal of Biological Chemistry, vol.276, pp.25876-25882, 2001.

S. Castillo-lluva, P. Sorensen, and C. Tan, The tumour suppressor HACE1 controls cell migration by regulating Rac1 degradation, Oncogene, vol.32, pp.1735-1742, 2012.

J. Cau and A. Hall, Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways, Journal of Cell Science, vol.118, pp.2579-2587, 2005.

A. Chan, T. Grossman, and V. Zuckerman, Abl phosphorylates E6AP and regulates its Bibliography E3 ubiquitin ligase activity, vol.52, pp.3119-3129, 2013.

P. M. Chan and E. Manser, PAKs in human disease, Prog Mol Biol Transl Sci, vol.106, pp.171-187, 2012.

S. Chandran, H. Li, and W. Dong, Neural precursor cell-expressed developmentally downregulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites, J Biol Chem, vol.286, pp.37830-37840, 2011.

L. Chang and D. Barford, Insights into the anaphase-promoting complex: a molecular machine that regulates mitosis, Curr Opin Struct Biol, vol.29, pp.1-9, 2014.

Y. Chang, J. W. Marlin, T. W. Chance, and R. Jakobi, RhoA mediates cyclooxygenase-2 signaling to disrupt the formation of adherens junctions and increase cell motility, Cancer Research, vol.66, pp.11700-11708, 2006.

C. Chen, S. Hong, and I. Indra, ) ?-Catenin-mediated cadherin clustering couples cadherin and actin dynamics, The Journal of Cell Biology, vol.210, 2015.

D. Chen, N. Kon, and M. Li, ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor, Cell, vol.121, pp.1071-1083, 2005.

Y. Chen, Z. Yang, and M. Meng, Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement, Molecular Cell, vol.35, pp.841-855, 2009.

Z. Chen and C. M. Pickart, A 25-kilodalton ubiquitin carrier protein (E2) catalyzes multiubiquitin chain synthesis via lysine 48 of ubiquitin, Journal of Biological Chemistry, vol.265, pp.21835-21842, 1990.

G. Cheng, B. A. Diebold, Y. Hughes, and J. D. Lambeth, Nox1-dependent reactive oxygen generation is regulated by Rac1, Journal of Biological Chemistry, vol.281, pp.17718-17726, 2006.

P. Cheng, H. Lu, and M. Shelly, Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development, Neuron, vol.69, pp.231-243, 2011.

Y. Chiang and J. T. , p21-Activated protein kinases and their emerging roles in glucose homeostasis, Am J Physiol Endocrinol Metab, vol.306, pp.707-729, 2014.

Y. Chou, A. Keszei, and J. R. Rohde, Conserved structural mechanisms for autoinhibition in IpaH ubiquitin ligases, J Biol Chem, vol.287, pp.268-275, 2012.

A. Ciechanover, H. Heller, R. Katz-etzion, and A. Hershko, Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system, Proceedings of the National Academy of Sciences, vol.78, pp.761-765, 1981.

A. Ciehanover, Y. Hod, and A. Hershko, A heat-stable polypeptide component of an ATPdependent proteolytic system from reticulocytes, Biochemical and Biophysical Research Communications, vol.81, pp.1100-1105, 1978.

S. Dong, J. Zhao, and J. Wei, F-box protein complex FBXL19 regulates TGF?1-induced Ecadherin down-regulation by mediating Rac3 ubiquitination and degradation, Mol Cancer, vol.13, p.76, 2014.

H. Dou, L. Buetow, and G. J. Sibbet, BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer, Nat Struct Mol Biol, vol.19, pp.876-883, 2012.

H. Dou, L. Buetow, and G. J. Sibbet, Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3, Nat Struct Mol Biol, vol.20, pp.982-986, 2013.

A. Doye, A. Mettouchi, and G. Bossis, CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion, Cell, vol.111, pp.553-564, 2002.

P. Dráber, V. Sulimenko, and E. Dráberová, Cytoskeleton in mast cell signaling. Front Immunol, vol.3, p.130, 2012.

R. Dvorsky and M. R. Ahmadian, Always look on the bright site of Rho: structural implications for a conserved intermolecular interface, EMBO reports, vol.5, pp.1130-1136, 2004.

D. C. Edwards, L. C. Sanders, G. M. Bokoch, and G. N. Gill, Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics, Nat Cell Biol, vol.1, pp.253-259, 1999.

E. Einarsdottir, M. R. Bevova, and A. Zhernakova, Multiple independent variants in 6q21-22 associated with susceptibility to celiac disease in the Dutch, Finnish and Hungarian populations, Eur J Hum Genet, vol.19, pp.682-686, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00614742

A. Escobedo, T. Gomes, and E. Aragón, Structural basis of the activation and degradation mechanisms of the E3 ubiquitin ligase Nedd4L, Structure, vol.22, pp.1446-1457, 2014.

S. Etienne-manneville and A. Hall, Rho GTPases in cell biology, Nature, vol.420, pp.629-635, 2002.

D. Finley, Recognition and processing of ubiquitin-protein conjugates by the proteasome, Annu Rev Biochem, vol.78, pp.477-513, 2009.

G. Flatau, E. Lemichez, and M. Gauthier, Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine, Nature, vol.387, pp.729-733, 1997.

J. L. Freeman, A. Abo, and J. D. Lambeth, Rac "insert region" is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65, Journal of Biological Chemistry, vol.271, pp.19794-19801, 1996.

M. E. French, B. R. Kretzmann, and L. Hicke, Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site, Journal of Biological Chemistry, vol.284, pp.12071-12079, 2009.

R. D. Fritz and O. Pertz, The dynamics of spatio-temporal Rho GTPase signaling: formation of signaling patterns, vol.5, p.749, 1000.

M. Fukata, S. Kuroda, and M. Nakagawa, Cdc42 and Rac1 regulate the interaction of IQGAP1 with beta-catenin, Journal of Biological Chemistry, vol.274, pp.26044-26050, 1999.

E. Gallagher, M. Gao, Y. Liu, and K. M. , Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change, Proceedings of the National Academy of Sciences, vol.103, pp.1717-1722, 2006.

K. A. Gallo and G. L. Johnson, Mixed-lineage kinase control of JNK and p38 MAPK pathways, Nat Rev Mol Cell Biol, vol.3, pp.663-672, 2002.

B. Gao, S. Lee, and D. Fang, The tyrosine kinase c-Abl protects c-Jun from ubiquitinationmediated degradation in T cells, Journal of Biological Chemistry, vol.281, pp.29711-29718, 2006.

L. Gao, S. Zhao, and W. Liu, Clinicopathologic Characterization of Aggressive Natural Killer Cell Leukemia Involving Different Tissue Sites, Am J Surg Pathol, vol.40, pp.836-846, 2016.

M. Gao, T. Labuda, and Y. Xia, Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch, Science, vol.306, pp.271-275, 2004.

S. Gao, C. Alarcón, and G. Sapkota, Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling, Molecular Cell, vol.36, pp.457-468, 2009.

Z. Gao, Y. Wu, and Z. Bai, Tumor-suppressive role of HACE1 in hepatocellular carcinoma and its clinical significance, Oncol Rep, vol.36, pp.3427-3435, 2016.

I. Garcia-higuera, T. Taniguchi, and S. Ganesan, Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway, Molecular Cell, vol.7, pp.249-262, 2001.

E. T. Goka and M. E. Lippman, Loss of the E3 ubiquitin ligase HACE1 results in enhanced Rac1 signaling contributing to breast cancer progression, Oncogene, 2015.

I. L. Goldknopf and H. Busch, Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24, Proceedings of the National Academy of Sciences, vol.74, pp.864-868, 1977.

G. Goldstein, M. Scheid, and U. Hammerling, Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells, Proceedings of the National Academy of Sciences, vol.72, pp.11-15, 1975.

G. A. Gomez, R. W. Mclachlan, and A. S. Yap, Productive tension: force-sensing and homeostasis of cell-cell junctions, Trends in Cell Biology, vol.21, pp.499-505, 2011.

D. M. Gonzalez and D. Medici, Signaling mechanisms of the epithelial-mesenchymal transition, Science Signaling, vol.7, 2014.

S. K. Goru, A. Pandey, and A. B. Gaikwad, E3 ubiquitin ligases as novel targets for inflammatory diseases, Pharmacol Res, vol.106, pp.1-9, 2016.

E. Govek, S. E. Newey, and L. Van-aelst, The role of the Rho GTPases in neuronal development, Genes & Development, vol.19, pp.1-49, 2005.

E. Groen and T. H. Gillingwater, UBA1: At the Crossroads of Ubiquitin Homeostasis and Neurodegeneration, Trends in Molecular Medicine, vol.21, pp.622-632, 2015.

C. Guilluy, R. Garcia-mata, and K. Burridge, Rho protein crosstalk: another social network?, Trends in Cell Biology, vol.21, pp.718-726, 2011.

B. M. Gumbiner, Cell Adhesion: The Molecular Basis of Tissue Architecture and Morphogenesis, Cell, vol.84, pp.345-357, 1996.

S. Gurzu, S. Turdean, and A. Kovecsi, Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: An update, World Journal of Clinical Cases : WJCC, vol.3, pp.393-404, 2015.

A. L. Haas, P. B. Reback, and V. Chau, Ubiquitin conjugation by the yeast RAD6 and CDC34 gene products. Comparison to their putative rabbit homologs, E2(20K) AND E2(32K), Journal of Biological Chemistry, vol.266, pp.5104-5112, 1991.

A. L. Haas, J. V. Warms, A. Hershko, and I. A. Rose, Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation, Journal of Biological Chemistry, vol.257, pp.2543-2548, 1982.

A. L. Haas, J. V. Warms, and I. A. Rose, Ubiquitin adenylate: structure and role in ubiquitin activation, Biochemistry, vol.22, pp.4388-4394, 1983.

T. Hakoshima, T. Shimizu, and R. Maesaki, Structural basis of the Rho GTPase signaling, J Biochem, vol.134, pp.327-331, 2003.

A. Hall, Rho family GTPases, Biochem Soc Trans, vol.40, pp.1378-1382, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02267489

S. Han, R. P. Kommaddi, and S. K. Shenoy, Distinct roles for ?-arrestin2 and arrestin-domaincontaining proteins in ?2 adrenergic receptor trafficking, EMBO reports, vol.14, pp.164-171, 2013.

S. D. Hansen, A. V. Kwiatkowski, and C. Ouyang, ?E-catenin actin-binding domain alters actin filament conformation and regulates binding of nucleation and disassembly factors, Mol Biol Cell, vol.24, pp.3710-3720, 2013.

S. J. Heasman and A. J. Ridley, Mammalian Rho GTPases: new insights into their functions from in vivo studies, Nat Rev Mol Cell Biol, vol.9, pp.690-701, 2008.

E. B. Heikamp, C. H. Patel, and S. Collins, The AGC kinase SGK1 regulates TH1 and TH2 differentiation downstream of the mTORC2 complex, Nature Immunology, vol.15, pp.457-464, 2014.

L. Herhaus and I. Dikic, Expanding the ubiquitin code through post-translational modification, EMBO reports, vol.16, pp.1071-1083, 2015.

A. Hershko, A. Ciechanover, and I. A. Rose, Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown, Journal of Biological Chemistry, vol.256, pp.1525-1528, 1981.

A. Hershko, H. Heller, S. Elias, and A. Ciechanover, Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown, Journal of Biological Chemistry, vol.258, pp.8206-8214, 1983.

K. Hibi, M. Sakata, and K. Sakuraba, Aberrant methylation of the HACE1 gene is frequently detected in advanced colorectal cancer, Anticancer Res, vol.28, pp.1581-1584, 2008.

L. Hicke and R. Dunn, Regulation of membrane protein transport by ubiquitin and ubiquitinbinding proteins, Annu Rev Cell Dev Biol, vol.19, pp.141-172, 2003.

S. Hill and G. Kleiger, Self-regulating ubiquitin ligases, The EMBO Journal, 2017.

G. A. Hobbs, B. Zhou, A. D. Cox, and S. L. Campbell, Rho GTPases, oxidation, and cell redox control, Small GTPases, vol.5, p.28579, 2014.

R. G. Hodge and A. J. Ridley, Regulating Rho GTPases and their regulators, Nat Rev Mol Cell Biol, vol.17, pp.496-510, 2016.

E. Hodis, I. R. Watson, and G. V. Kryukov, A landscape of driver mutations in melanoma, Cell, vol.150, pp.251-263, 2012.

R. M. Hofmann and C. M. Pickart, Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair, Cell, vol.96, pp.645-653, 1999.

G. Holeiter, A. Bischoff, and A. C. Braun, The RhoGAP protein Deleted in Liver Cancer 3 (DLC3) is essential for adherens junctions integrity, Oncogenesis, vol.1, 2012.

R. Hollstein, D. A. Parry, and L. Nalbach, HACE1 deficiency causes an autosomal recessive neurodevelopmental syndrome, J Med Genet, vol.52, pp.797-803, 2015.

J. Hong, J. Zhou, and J. Fu, Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness, Cancer Research, vol.71, pp.3980-3990, 2011.

C. Hooper, S. S. Puttamadappa, and Z. Loring, Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets, BMC Biol, vol.8, p.72, 2010.

P. L. Hordijk, J. P. Klooster-ten, and R. A. Van-der-kammen, Inhibition of invasion of epithelial cells by Tiam1-Rac signaling, Science, vol.278, pp.1464-1466, 1997.

P. V. Hornbeck, B. Zhang, and B. Murray, PhosphoSitePlus, 2014: mutations, PTMs and recalibrations, Nucleic Acids Research, vol.43, pp.512-532, 2015.

L. Huang, E. Kinnucan, and G. Wang, Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade, Science, vol.286, pp.1321-1326, 1999.

S. Huang, D. Tang, and Y. Wang, Monoubiquitination of Syntaxin 5 Regulates Golgi Membrane Dynamics during the Cell Cycle, Developmental Cell, vol.38, pp.73-85, 2016.

X. Huang and V. M. Dixit, Drugging the undruggables: exploring the ubiquitin system for drug development, Cell Res, vol.26, pp.484-498, 2016.

J. M. Huibregtse, M. Scheffner, S. Beaudenon, and P. M. Howley, A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase, Proceedings of the National Academy of Sciences, vol.92, pp.2563-2567, 1995.

L. T. Hunt and M. O. Dayhoff, Amino-terminal sequence identity of ubiquitin and the nonhistone Bibliography component of nuclear protein A24, Biochemical and Biophysical Research Communications, vol.74, pp.650-655, 1977.

K. Husnjak and I. Dikic, Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions, Annu Rev Biochem, vol.81, pp.291-322, 2012.

S. Hwang, S. Yu, and J. Ryu, Regulation of beta-catenin signaling and maintenance of chondrocyte differentiation by ubiquitin-independent proteasomal degradation of alphacatenin, Journal of Biological Chemistry, vol.280, pp.12758-12765, 2005.

S. G. Hymowitz and I. E. Wertz, A20: from ubiquitin editing to tumour suppression, Nat Rev Cancer, vol.10, pp.332-341, 2010.

S. Ibeawuchi, L. N. Agbor, F. W. Quelle, and C. D. Sigmund, Hypertension-causing Mutations in Cullin3 Protein Impair RhoA Protein Ubiquitination and Augment the Association with Substrate Adaptors, J Biol Chem, vol.290, pp.19208-19217, 2015.

T. Ichimura, H. Yamamura, and K. Sasamoto, proteins modulate the expression of epithelial Na+ channels by phosphorylation-dependent interaction with Nedd4-2 ubiquitin ligase, Journal of Biological Chemistry, vol.280, pp.13187-13194, 2005.

A. Iimura, F. Yamazaki, and T. Suzuki, The E3 ubiquitin ligase Hace1 is required for early embryonic development in Xenopus laevis, BMC Dev Biol, vol.16, p.31, 2016.

F. Ikeda, Y. L. Deribe, and S. S. Skånland, SHARPIN forms a linear ubiquitin ligase complex regulating NF-?B activity and apoptosis, Nature, vol.471, pp.637-641, 2011.

N. Ismail, D. L. Baines, and S. M. Wilson, The phosphorylation of endogenous Nedd4-2 In Na(+)-absorbing human airway epithelial cells, European Journal of Pharmacology, vol.732, pp.32-42, 2014.

L. Izzi and L. Attisano, Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation, Oncogene, vol.23, pp.2071-2078, 2004.

A. B. Jaffe and A. Hall, RHO GTPASES: Biochemistry and Biology, Annu Rev Cell Dev Biol, vol.21, pp.247-269, 2005.

S. Jagadeeshan, Y. R. Krishnamoorthy, and M. Singhal, Transcriptional regulation of fibronectin by p21-activated kinase-1 modulates pancreatic tumorigenesis, Oncogene, vol.34, pp.455-464, 2015.

S. Jentsch, J. P. Mcgrath, and A. Varshavsky, The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme, Nature, vol.329, pp.131-134, 1987.

J. Ji, X. Feng, and M. Shi, Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer, International Journal of Oncology, vol.46, pp.1343-1353, 2015.

P. Jordan, R. Brazåo, and M. G. Boavida, Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors, Oncogene, vol.18, pp.6835-6839, 1999.

R. Kalluri and R. A. Weinberg, The basics of epithelial-mesenchymal transition, J Clin Invest, vol.119, pp.1420-1428, 2009.

H. B. Kamadurai, Y. Qiu, and A. Deng, Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3, vol.2, p.828, 2013.

H. B. Kamadurai, J. Souphron, and D. C. Scott, Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex, Molecular Cell, vol.36, pp.1095-1102, 2009.

K. Kamijo, N. Ohara, and M. Abe, Dissecting the role of Rho-mediated signaling in contractile ring formation, Mol Biol Cell, vol.17, pp.43-55, 2006.

S. G. Kathman, I. Span, and A. T. Smith, A Small Molecule That Switches a Ubiquitin Ligase From a Processive to a Distributive Enzymatic Mechanism, J Am Chem Soc, vol.137, pp.12442-12445, 2015.

K. Katoh, Y. Kano, and M. Amano, Rho-Kinase-Mediated Contraction of Isolated Stress Fibers, The Journal of Cell Biology, vol.153, pp.569-584, 2001.

P. Kavsak, R. K. Rasmussen, and C. G. Causing, Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation, Molecular Cell, vol.6, pp.1365-1375, 2000.

M. Kawazu, T. Ueno, and K. Kontani, Transforming mutations of RAC guanosine triphosphatases in human cancers, Proc Natl Acad Sci, vol.110, pp.3029-3034, 2013.

Y. Kee and J. M. Huibregtse, Regulation of catalytic activities of HECT ubiquitin ligases, Biochemical and Biophysical Research Communications, vol.354, pp.329-333, 2007.

M. L. Kelly and J. Chernoff, Mouse models of PAK function, Cell Logist, vol.2, pp.84-88, 2012.

E. E. Kenny, I. Pe'er, and A. Karban, A genome-wide scan of Ashkenazi Jewish Crohn's disease suggests novel susceptibility loci, PLoS Genet, vol.8, p.1002559, 2012.

M. L. Khan and A. K. Stewart, Carfilzomib: a novel second-generation proteasome inhibitor, Future Oncol, vol.7, pp.607-612, 2011.

H. C. Kim and J. M. Huibregtse, Polyubiquitination by HECT E3s and the determinants of chain type specificity, Mol Cell Biol, vol.29, pp.3307-3318, 2009.

H. C. Kim, A. M. Steffen, and M. L. Oldham, Structure and function of a HECT domain ubiquitin-binding site, EMBO reports, vol.12, pp.334-341, 2011.

K. B. Kim and C. M. Crews, From epoxomicin to carfilzomib: chemistry, biology, and medical outcomes, Nat Prod Rep, vol.30, pp.600-604, 2013.

T. Kim, N. Monsefi, and J. Song, Network-based identification of feedback modules that control RhoA activity and cell migration, J Mol Cell Biol, vol.7, pp.242-252, 2015.

H. King, N. S. Nicholas, and C. M. Wells, Role of p-21-activated kinases in cancer progression, Int Rev Cell Mol Biol, vol.309, pp.347-387, 2014.

T. Kirisako, K. Kamei, and S. Murata, A ubiquitin ligase complex assembles linear polyubiquitin chains, The EMBO Journal, vol.25, pp.4877-4887, 2006.

T. Kitada, S. Asakawa, and N. Hattori, Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism, Nature, vol.392, pp.605-608, 1998.

Z. Knust, B. Blumenthal, K. Aktories, and G. Schmidt, Cleavage of Escherichia coli cytotoxic necrotizing factor 1 is required for full biologic activity, Infect Immun, vol.77, pp.1835-1841, 2009.

R. Kolluri, K. F. Tolias, and C. L. Carpenter, Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42, Proceedings of the National Academy of Sciences, vol.93, pp.5615-5618, 1996.

D. Komander, The emerging complexity of protein ubiquitination, Biochem Soc Trans, vol.37, pp.937-953, 2009.

D. Komander and M. Rape, The ubiquitin code, Annu Rev Biochem, vol.81, pp.203-229, 2012.

Y. A. Komarova, K. Kruse, D. Mehta, and A. B. Malik, Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability, Circulation Research, vol.120, pp.179-206, 2017.

M. Krauthammer, Y. Kong, and B. H. Ha, Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma, Nat Genet, vol.44, pp.1006-1014, 2012.

R. Kumar and D. Q. Li, PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology, Adv Cancer Res, vol.130, pp.137-209, 2016.

S. Kumar, A. L. Talis, and P. M. Howley, Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination, Journal of Biological Chemistry, vol.274, pp.18785-18792, 1999.

S. Kuroda, M. Fukata, and M. Nakagawa, Role of IQGAP1, a Target of the Small GTPases Cdc42 and Rac1, in Regulation of E-Cadherin-Mediated Cell-Cell Adhesion, Science, vol.281, pp.832-835, 1998.

C. Küçük, X. Hu, and J. Iqbal, HACE1 Is a Tumor Suppressor Gene Candidate in Natural Killer Cell Neoplasms, The American Journal of Pathology, vol.182, pp.49-55, 2013.

S. Kühnle, B. Mothes, K. Matentzoglu, and M. Scheffner, Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc, Proc Natl Acad Sci, vol.110, pp.8888-8893, 2013.

V. Lachance, J. Degrandmaison, and S. Marois, Ubiquitylation and activation of a Rab GTPase is promoted by a ??AR-HACE1 complex, Journal of Cell Science, vol.127, pp.111-123, 2014.

C. Lam, C. Tan, and Z. Teo, Loss of TAK1 increases cell traction force in a ROSdependent manner to drive epithelial-mesenchymal transition of cancer cells, Cell Death Dis, vol.4, p.848, 2013.

M. Lammers, S. Meyer, D. Kühlmann, and A. Wittinghofer, Specificity of interactions between Bibliography mDia isoforms and Rho proteins, Journal of Biological Chemistry, vol.283, pp.35236-35246, 2008.

S. Lamouille, J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition, Nat Rev Mol Cell Biol, vol.15, pp.178-196, 2014.

N. Laurin, J. P. Brown, J. Morissette, and V. Raymond, Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone, Am J Hum Genet, vol.70, pp.1582-1588, 2002.

Q. Le-duc, Q. Shi, and I. Blonk, Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner, The Journal of Cell Biology, vol.189, pp.1107-1115, 2010.

B. C. Lechtenberg, A. Rajput, and R. Sanishvili, Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation, Nature, vol.529, pp.546-550, 2016.

C. K. Lee, Y. Yang, C. Chen, and J. Liu, Syk-mediated tyrosine phosphorylation of mule promotes TNF-induced JNK activation and cell death, Oncogene, 2015.

G. Lee, H. J. Kim, and H. Kim, RhoA-JNK Regulates the E-Cadherin Junctions of Human Gingival Epithelial Cells, J Dent Res, vol.95, pp.284-291, 2016.

E. Lemichez and K. Aktories, Hijacking of Rho GTPases during bacterial infection, Experimental Cell Research, vol.319, pp.2329-2336, 2013.

E. Lemichez, G. Flatau, and M. Bruzzone, Molecular localization of the Escherichia coli cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains, Molecular Microbiology, vol.24, pp.1061-1070, 1997.

M. Lerm, M. Pop, and G. Fritz, Proteasomal degradation of cytotoxic necrotizing factor 1activated rac, Infect Immun, vol.70, pp.4053-4058, 2002.

G. Levkowitz, H. Waterman, and S. A. Ettenberg, Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1, Molecular Cell, vol.4, pp.1029-1040, 1999.

H. Li, Z. Wang, and W. Zhang, Fbxw7 regulates tumor apoptosis, growth arrest and the epithelial-to-mesenchymal transition in part through the RhoA signaling pathway in gastric cancer, Cancer Letters, vol.370, pp.39-55, 2016.

J. Li, A. Mahajan, and M. Tsai, Ankyrin Repeat: A Unique Motif Mediating Protein?Protein Interactions ?, Biochemistry, vol.45, pp.15168-15178, 2006.

W. Li, M. H. Bengtson, and A. Ulbrich, Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling, PLoS ONE, vol.3, 2008.

S. Lindsey and S. A. Langhans, Epidermal growth factor signaling in transformed cells, Int Rev Cell Mol Biol, vol.314, pp.1-41, 2015.

J. Liu, W. Lee, and Z. Jiang, Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events, Genome Res, vol.22, pp.2315-2327, 2012.

B. Liu, J. Shaik, S. Dai, and X. , Targeting the ubiquitin pathway for cancer treatment, Biochim Biophys Acta, vol.1855, pp.50-60, 2015.

Z. Liu, P. Chen, and H. Gao, Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression, Cancer Cell, vol.26, 2014.

E. Lozano, M. Frasa, and K. Smolarczyk, PAK is required for the disruption of Ecadherin adhesion by the small GTPase Rac, Journal of Cell Science, vol.121, pp.933-938, 2008.

K. Lu, X. Yin, and T. Weng, Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1, Nat Cell Biol, vol.10, pp.994-1002, 2008.

J. R. Lydeard, B. A. Schulman, and J. W. Harper, Building and remodelling Cullin-RING E3 ubiquitin ligases, EMBO reports, vol.14, pp.1050-1061, 2013.

E. A. Lynch, J. Stall, and G. Schmidt, Proteasome-mediated degradation of Rac1-GTP during epithelial cell scattering, Mol Biol Cell, vol.17, pp.2236-2242, 2006.

M. Machacek, L. Hodgson, and C. Welch, Coordination of Rho GTPase activities during cell protrusion, Nature, vol.461, pp.99-103, 2009.

S. K. Maciver, B. J. Pope, S. Whytock, and A. G. Weeds, The effect of two actin depolymerizing factors (ADF/cofilins) on actin filament turnover: pH sensitivity of F-actin binding by human ADF, but not of Acanthamoeba actophorin, Eur J Biochem, vol.256, pp.388-397, 1998.

N. A. Mack and M. Georgiou, The interdependence of the Rho GTPases and apicobasal cell polarity, Small GTPases, vol.5, p.973768, 2014.

T. Maculins, E. Fiskin, S. Bhogaraju, and I. Dikic, Bacteria-host relationship: ubiquitin ligases as weapons of invasion, Cell Res, vol.26, pp.499-510, 2016.

P. Madaule and R. Axel, A novel ras-related gene family, Cell, vol.41, pp.31-40, 1985.

P. Madaule, M. Eda, and N. Watanabe, Role of citron kinase as a target of the small GTPase Rho in cytokinesis, Nature, vol.394, pp.491-494, 1998.

D. Malhotra, E. Portales-casamar, and A. Singh, Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis, Nucleic Acids Research, vol.38, pp.5718-5734, 2010.

A. Malliri, S. Van-es, S. Huveneers, and J. G. Collard, The Rac exchange factor Tiam1 is required for the establishment and maintenance of cadherin-based adhesions, Journal of Biological Chemistry, vol.279, pp.30092-30098, 2004.

E. Manser, T. Leung, and H. Salihuddin, A brain serine/threonine protein kinase activated by Cdc42 and Rac1, Nature, vol.367, pp.40-46, 1994.

H. Mao, Y. Wang, and J. Cai, HACE1 Negatively Regulates Virus-Triggered Type I IFN Signaling by Impeding the Formation of the MAVS-TRAF3 Complex, Viruses, vol.8, p.146, 2016.

S. Mari, N. Ruetalo, and E. Maspero, Structural and functional framework for the autoinhibition of Nedd4-family ubiquitin ligases, Structure, vol.22, pp.1639-1649, 2014.

I. Marín, Animal HECT ubiquitin ligases: evolution and functional implications, BMC Evol Biol, vol.10, p.56, 2010.

K. Martin, A. Reimann, and R. D. Fritz, Spatio-temporal co-ordination of RhoA, Rac1 and Cdc42 activation during prototypical edge protrusion and retraction dynamics, Sci Rep, vol.6, p.21901, 2016.

E. Maspero, S. Mari, and E. Valentini, Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation, EMBO reports, vol.12, pp.342-349, 2011.

E. Maspero, E. Valentini, and S. Mari, Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming, Nat Struct Mol Biol, vol.20, pp.696-701, 2013.

R. Mayor and C. Carmona-fontaine, Keeping in touch with contact inhibition of locomotion, Trends in Cell Biology, vol.20, pp.319-328, 2010.

C. Mehner, E. Miller, and D. Khauv, Tumor cell-derived MMP3 orchestrates Rac1b and tissue alterations that promote pancreatic adenocarcinoma, Mol Cancer Res, vol.12, pp.1430-1439, 2014.

A. Menke and K. Giehl, Regulation of adherens junctions by Rho GTPases and p120-catenin, Archives of Biochemistry and Biophysics, vol.524, pp.48-55, 2012.

T. Mevissen and D. Komander, Mechanisms of Deubiquitinase Specificity and Regulation, Annu Rev Biochem, vol.86, 2017.

R. Mège and N. Ishiyama, Integration of Cadherin Adhesion and Cytoskeleton at Adherens Junctions. Cold Spring Harbor Perspectives in Biology, vol.9, p.28738, 2017.

G. Michel, B. Ferrua, and P. Munro, Immunoadjuvant Properties of the Rho Activating Factor CNF1 in Prophylactic and Curative Vaccination against Leishmania infantum, PLoS ONE, vol.11, 2016.

H. Miki, H. Yamaguchi, S. Suetsugu, and T. Takenawa, IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling, Nature, vol.408, pp.732-735, 2000.

T. H. Millard, S. J. Sharp, and L. M. Machesky, Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex, Biochem J, vol.380, pp.1-17, 2004.

A. L. Miller and W. M. Bement, Regulation of cytokinesis by Rho GTPase flux, Nat Cell Biol, vol.11, pp.71-77, 2009.

F. Miralles, G. Posern, A. Zaromytidou, and R. Treisman, Actin dynamics control SRF activity by regulation of its coactivator MAL, Cell, vol.113, pp.329-342, 2003.

B. P. Monia, D. J. Ecker, and S. Jonnalagadda, Gene synthesis, expression, and processing of human ubiquitin carboxyl extension proteins, Journal of Biological Chemistry, vol.264, pp.4093-4103, 1989.

S. Y. Bibliography-moon and Y. Zheng, Rho GTPase-activating proteins in cell regulation, Trends in Cell Biology, vol.13, pp.13-22, 2003.

R. A. Morton, C. M. Ewing, and A. Nagafuchi, Reduction of E-cadherin levels and deletion of the alpha-catenin gene in human prostate cancer cells, Cancer Research, vol.53, pp.3585-3590, 1993.

T. Mund, M. J. Lewis, S. Maslen, and H. R. Pelham, Peptide and small molecule inhibitors of HECT-type ubiquitin ligases, Proc Natl Acad Sci, vol.111, pp.16736-16741, 2014.

T. Mund and H. Pelham, Control of the activity of WW-HECT domain E3 ubiquitin ligases by NDFIP proteins, EMBO reports, vol.10, pp.501-507, 2009.

P. Munro, G. Flatau, and F. Anjuère, The Rho GTPase activators CNF1 and DNT bacterial toxins have mucosal adjuvant properties, Vaccine, vol.23, pp.2551-2556, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00000099

A. J. Muslin, J. W. Tanner, P. M. Allen, and A. S. Shaw, Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine, Cell, vol.84, pp.889-897, 1996.

K. Nagaki, H. Yamamura, and S. Shimada, Mediates phosphorylation-dependent inhibition of the interaction between the ubiquitin E3 ligase Nedd4-2 and epithelial Na+ channels, Biochemistry, vol.45, pp.6733-6740, 2006.

P. Nalbant, L. Hodgson, and V. Kraynov, Activation of endogenous Cdc42 visualized in living cells, Science, vol.305, pp.1615-1619, 2004.

S. P. Ngok, R. Geyer, and A. Kourtidis, TEM4 is a junctional Rho GEF required for cell-cell adhesion, monolayer integrity and barrier function, Journal of Cell Science, vol.126, pp.3271-3277, 2013.

D. Nowis, M. Maczewski, and U. Mackiewicz, Cardiotoxicity of the anticancer therapeutic agent bortezomib, The American Journal of Pathology, vol.176, pp.2658-2668, 2010.

T. K. Oberoi, T. Dogan, and J. C. Hocking, IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation, The EMBO Journal, vol.31, pp.14-28, 2012.

T. K. Oberoi-khanuja and K. Rajalingam, IAPs as E3 ligases of Rac1: shaping the move, Small GTPases, vol.3, pp.131-136, 2012.

A. Oberst, M. Malatesta, and R. I. Aqeilan, The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch, Proceedings of the National Academy of Sciences, vol.104, pp.11280-11285, 2007.

A. A. Ogunjimi, D. J. Briant, and N. Pece-barbara, Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain, Molecular Cell, vol.19, pp.297-308, 2005.

K. Ohashi, T. Hosoya, and K. Takahashi, A Drosophila Homolog of LIM-Kinase Phosphorylates Cofilin and Induces Actin Cytoskeletal Reorganization, Biochemical and Biophysical Research Communications, vol.276, pp.1178-1185, 2000.

M. F. Olson, Rho GTPases, their post-translational modifications, disease-associated Bibliography mutations and pharmacological inhibitors, Small GTPases, vol.96, pp.1-13, 2016.

J. L. Orgaz, C. Herraiz, and V. Sanz-moreno, Rho GTPases modulate malignant transformation of tumor cells, Small GTPases, vol.5, p.29019, 2014.

M. Orme, K. Bianchi, and P. Meier, Ubiquitin-mediated regulation of RhoGTPase signalling: IAPs and HACE1 enter the fray, The EMBO Journal, vol.31, pp.1-2, 2012.

B. Ozdamar, R. Bose, and M. Barrios-rodiles, Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity, Science, vol.307, pp.1603-1609, 2005.

E. Ozkan, H. Yu, and J. Deisenhofer, Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases, Proceedings of the National Academy of Sciences, vol.102, pp.18890-18895, 2005.

R. C. Page, J. N. Pruneda, and J. Amick, Structural insights into the conformation and oligomerization of E2~ubiquitin conjugates, Biochemistry, vol.51, pp.4175-4187, 2012.

V. R. Palicharla and S. Maddika, HACE1 mediated K27 ubiquitin linkage leads to YB-1 protein secretion, Cell Signal, vol.27, pp.2355-2362, 2015.

L. Pasqualucci, P. Neumeister, and T. Goossens, Hypermutation of multiple protooncogenes in B-cell diffuse large-cell lymphomas, Nature, vol.412, pp.341-346, 2001.

H. Peinado, D. Olmeda, and A. Cano, Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?, Nat Rev Cancer, vol.7, pp.415-428, 2007.

M. Peng, R. Litman, and J. Xie, The FANCJ/MutL? interaction is required for correction of the cross-link response in FA-J cells, The EMBO Journal, vol.26, pp.3238-3249, 2007.

R. Perona, S. Montaner, and L. Saniger, Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins, Genes & Development, vol.11, pp.463-475, 1997.
DOI : 10.1101/gad.11.4.463

URL : http://genesdev.cshlp.org/content/11/4/463.full.pdf

A. Persaud, P. Alberts, and S. Mari, Tyrosine phosphorylation of NEDD4 activates its ubiquitin ligase activity, Science Signaling, vol.7, pp.95-95, 2014.
DOI : 10.1126/scisignal.2005290

O. Pertz, Spatio-temporal Rho GTPase signaling-where are we now, Journal of Cell Science, vol.123, pp.1841-1850, 2010.
DOI : 10.1242/jcs.064345

URL : http://jcs.biologists.org/content/joces/123/11/1841.full.pdf

M. D. Petroski and R. J. Deshaies, Function and regulation of cullin-RING ubiquitin ligases, Nat Rev Mol Cell Biol, vol.6, pp.9-20, 2005.
DOI : 10.1038/nrm1547

URL : https://authors.library.caltech.edu/55905/2/nrm1547-S1.pdf

M. D. Petroski and R. J. Deshaies, Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34, Cell, vol.123, pp.1107-1120, 2005.

C. Pirraglia, J. Walters, and M. M. Myat, Pak1 control of E-cadherin endocytosis regulates salivary gland lumen size and shape, Development, vol.137, pp.4177-4189, 2010.
DOI : 10.1242/dev.048827

URL : http://dev.biologists.org/content/develop/137/24/4177.full.pdf

A. Plechanovová, E. G. Jaffray, and M. H. Tatham, Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis, Nature, vol.489, pp.115-120, 2012.

D. Bibliography-popovic, D. Vucic, and I. Dikic, Ubiquitination in disease pathogenesis and treatment, Nat Med, vol.20, pp.1242-1253, 2014.

S. Potempa and A. J. Ridley, Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly, Mol Biol Cell, vol.9, pp.2185-2200, 1998.
DOI : 10.1091/mbc.9.8.2185

URL : http://www.molbiolcell.org/content/9/8/2185.full.pdf

C. Preudhomme, C. Roumier, and M. P. Hildebrand, Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma, 2000.

J. N. Pruneda, P. J. Littlefield, and S. E. Soss, Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases, Molecular Cell, vol.47, pp.933-942, 2012.
DOI : 10.1016/j.molcel.2012.07.001

URL : https://doi.org/10.1016/j.molcel.2012.07.001

L. Qiang, B. Zhao, and M. Ming, Regulation of cell proliferation and migration by p62 through stabilization of Twist1, Proc Natl Acad Sci, vol.111, pp.9241-9246, 2014.

C. M. Quezada, S. W. Hicks, J. E. Galán, and C. E. Stebbins, A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases, Proc Natl Acad Sci, vol.106, pp.4864-4869, 2009.

D. C. Radisky, D. D. Levy, and L. E. Littlepage, Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability, Nature, vol.436, pp.123-127, 2005.
DOI : 10.1038/nature03688

URL : http://europepmc.org/articles/pmc2784913?pdf=render

A. Ratheesh, G. A. Gomez, and R. Priya, Centralspindlin and [alpha]-catenin regulate Rho signalling at the epithelial zonula adherens, Nat Cell Biol, vol.14, pp.818-828, 2012.
DOI : 10.1038/ncb2532

URL : http://europepmc.org/articles/pmc3939354?pdf=render

A. Ratheesh and A. S. Yap, A bigger picture: classical cadherins and the dynamic actin cytoskeleton, Nat Rev Mol Cell Biol, vol.13, pp.673-679, 2012.
DOI : 10.1038/nrm3431

A. J. Ridley and A. Hall, The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors, Cell, vol.70, pp.389-399, 1992.

A. J. Ridley, H. F. Paterson, and C. L. Johnston, The small GTP-binding protein rac regulates growth factor-induced membrane ruffling, Cell, vol.70, pp.401-410, 1992.
DOI : 10.1016/0962-8924(92)90174-l

B. E. Riley, J. C. Lougheed, and K. Callaway, Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases, Nat Comms, vol.4, 1982.
DOI : 10.1038/ncomms2982

URL : http://www.nature.com/articles/ncomms2982.pdf

C. Riling, H. Kamadurai, and S. Kumar, Itch WW Domains Inhibit Its E3 Ubiquitin Ligase Activity by Blocking E2-E3 Ligase Trans-thiolation, J Biol Chem, vol.290, pp.23875-23887, 2015.

A. M. Roccaro, A. Vacca, and D. Ribatti, Bortezomib in the treatment of cancer, Recent Pat Anticancer Drug Discov, vol.1, pp.397-403, 2006.

M. Rolli-derkinderen, V. Sauzeau, and L. Boyer, Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells, Circulation Research, vol.96, pp.1152-1160, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00000098

B. Rotblat, A. L. Southwell, and D. E. Ehrnhoefer, HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response, Proc Natl Acad Sci, vol.111, pp.3032-3037, 2014.

D. Rotin, S. Kumar, and D. Rotin, Physiological functions of the HECT family of ubiquitin ligases, Nat Rev Mol Cell Biol, vol.10, pp.398-409, 2009.

A. Saha and R. J. Deshaies, Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation, Molecular Cell, vol.32, pp.21-31, 2008.

E. Sahai and C. J. Marshall, ROCK and Dia have opposing effects on adherens junctions downstream of Rho, Nat Cell Biol, vol.4, pp.408-415, 2002.

M. Sakata, Y. Kitamura, and K. Sakuraba, Methylation of HACE1 in gastric carcinoma, Anticancer Res, vol.29, pp.2231-2233, 2009.

S. Samarin and A. Nusrat, Regulation of epithelial apical junctional complex by Rho family GTPases, Front Biosci (Landmark Ed), vol.14, pp.1129-1142, 2009.

B. Sander, W. Xu, and M. Eilers, A conformational switch regulates the ubiquitin ligase HUWE1, Elife, vol.6, p.36, 2017.

S. Santini, V. Stagni, and R. Giambruno, ATM kinase activity modulates ITCH E3ubiquitin ligase activity, Oncogene, vol.33, pp.1113-1123, 2014.

M. Sato, Y. Matsuda, and T. Wakai, activated kinase-2 is a critical mediator of transforming growth factor-?-induced hepatoma cell migration, Journal of Gastroenterology and Hepatology, vol.28, pp.1047-1055, 2013.

P. Savagner, Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity, Curr Top Dev Biol, vol.112, pp.273-300, 2015.

M. Scharl, N. Huber, and S. Lang, Hallmarks of epithelial to mesenchymal transition are detectable in Crohn's disease associated intestinal fibrosis, Clin Transl Med, vol.4, p.1, 2015.

A. Schäfer, M. Kuhn, and H. Schindelin, Structure of the ubiquitin-activating enzyme loaded with two ubiquitin molecules, Acta Crystallogr D Biol Crystallogr, vol.70, pp.1311-1320, 2014.

M. Scheffner and S. Kumar, Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects, Biochim Biophys Acta, vol.1843, pp.61-74, 2014.

M. Scheffner, U. Nuber, and J. M. Huibregtse, Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade, Nature, vol.373, pp.81-83, 1995.

M. Scheffner, B. A. Werness, and J. M. Huibregtse, The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53, Cell, vol.63, pp.1129-1136, 1990.

G. Schmidt, P. Sehr, and M. Wilm, Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1, Nature, vol.387, pp.725-729, 1997.

A. Schnelzer, D. Prechtel, and U. Knaus, Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene, vol.19, pp.3013-3020, 2000.

B. A. Schulman, Twists and turns in ubiquitin-like protein conjugation cascades, Protein Sci Bibliography, vol.20, pp.1941-1954, 2011.
DOI : 10.1002/pro.750

URL : http://europepmc.org/articles/pmc3302639?pdf=render

B. A. Schulman and J. W. Harper, Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways, Nat Rev Mol Cell Biol, vol.10, pp.319-331, 2009.

A. W. Segal and A. Hallt, Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity, 1994.

J. H. Seol, R. M. Feldman, and W. Zachariae, Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34, Genes & Development, vol.13, pp.1614-1626, 1999.

R. J. Shaw, J. G. Paez, and M. Curto, The Nf2 Tumor Suppressor, Merlin, Functions in RacDependent Signaling, Developmental Cell, vol.1, pp.63-72, 2001.

F. F. Shea, J. L. Rowell, and Y. Li, Mammalian ? arrestins link activated seven transmembrane receptors to Nedd4 family e3 ubiquitin ligases and interact with ? arrestins, PLoS ONE, vol.7, p.50557, 2012.
DOI : 10.1371/journal.pone.0050557

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0050557&type=printable

F. Shen, L. Hodgson, and A. Rabinovich, Functional proteometrics for cell migration, Cytometry A, vol.69, pp.563-572, 2006.
DOI : 10.1002/cyto.a.20283

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/cyto.a.20283

L. S. Sherman and D. H. Gutmann, Merlin: hanging tumor suppression on the Rac, Trends in Cell Biology, vol.11, pp.442-444, 2001.
DOI : 10.1016/s0962-8924(01)02128-6

A. M. Shewan, M. Maddugoda, and A. Kraemer, Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts, Mol Biol Cell, vol.16, pp.4531-4542, 2005.

Y. Shintani, M. J. Wheelock, and K. R. Johnson, Phosphoinositide-3 kinase-Rac1-c-Jun NH2terminal kinase signaling mediates collagen I-induced cell scattering and up-regulation of Ncadherin expression in mouse mammary epithelial cells, Mol Biol Cell, vol.17, pp.2963-2975, 2006.

Y. Shrestha, E. J. Schafer, and J. S. Boehm, PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling, Oncogene, vol.31, pp.3397-3408, 2012.
DOI : 10.1038/onc.2011.515

URL : https://www.nature.com/articles/onc2011515.pdf

D. S. Siegel, T. Martin, and M. Wang, A phase 2 study of single-agent carfilzomib (PX-171003-A1) in patients with relapsed and refractory multiple myeloma, Blood, vol.120, pp.2817-2825, 2012.

A. L. Silva, F. Carmo, and M. J. Bugalho, RAC1b overexpression in papillary thyroid carcinoma: a role to unravel, Eur J Endocrinol, vol.168, pp.795-804, 2013.
DOI : 10.1530/eje-12-0960

URL : https://eje.bioscientifica.com/downloadpdf/journals/eje/168/6/795.pdf

I. Slade, P. Stephens, and J. Douglas, Constitutional translocation breakpoint mapping by genome-wide paired-end sequencing identifies HACE1 as a putative Wilms tumour susceptibility gene, J Med Genet, vol.47, pp.342-347, 2010.
DOI : 10.1136/jmg.2009.072983

J. J. Smit, D. Monteferrario, and S. M. Noordermeer, The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension, The EMBO Journal, vol.31, pp.3833-3844, 2012.
DOI : 10.1038/emboj.2012.217

URL : http://emboj.embopress.org/content/31/19/3833.full.pdf

J. J. Smit and T. K. Sixma, RBR E3-ligases at work, EMBO reports, vol.15, pp.142-154, 2014.
DOI : 10.1002/embr.201338166

URL : http://embor.embopress.org/content/15/2/142.full.pdf

M. Bibliography-smutny, H. L. Cox, and J. M. Leerberg, Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens, Nat Cell Biol, vol.12, pp.696-702, 2010.

P. M. Snyder, Down-regulating destruction: phosphorylation regulates the E3 ubiquitin ligase Nedd4-2, Science Signaling, vol.2, pp.41-41, 2009.
DOI : 10.1126/scisignal.279pe41

S. E. Soss, R. E. Klevit, and W. J. Chazin, Activation of UbcH5c~Ub is the result of a shift in interdomain motions of the conjugate bound to U-box E3 ligase E4B, Biochemistry, vol.52, pp.2991-2999, 2013.

D. Spiering and L. Hodgson, Dynamics of the Rho-family small GTPases in actin regulation and motility, Cell Adh Migr, vol.5, pp.170-180, 2011.

V. Spindler and J. Waschke, Role of Rho GTPases in desmosomal adhesion and pemphigus pathogenesis, Annals of Anatomy-Anatomischer Anzeiger, vol.193, pp.177-180, 2011.

D. E. Spratt, H. Walden, and G. S. Shaw, RBR E3 ubiquitin ligases: new structures, new insights, new questions, Biochem J, vol.458, pp.421-437, 2014.

T. R. Stankiewicz and D. A. Linseman, Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration, Front Cell Neurosci, vol.8, p.9, 2014.

G. S. Stewart, S. Panier, and K. Townsend, The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage, Cell, vol.136, pp.420-434, 2009.

M. D. Stewart, T. Ritterhoff, R. E. Klevit, and P. S. Brzovic, E2 enzymes: more than just middle men, Cell Res, vol.26, pp.423-440, 2016.

Y. Stewénius, Y. Jin, and I. Ora, High-resolution molecular cytogenetic analysis of Wilms tumors highlights diagnostic difficulties among small round cell kidney tumors, Genes Chromosomes Cancer, vol.47, pp.845-852, 2008.

B. Stieglitz, A. C. Morris-davies, and M. G. Koliopoulos, LUBAC synthesizes linear ubiquitin chains via a thioester intermediate, EMBO reports, vol.13, pp.840-846, 2012.

N. Stransky, A. M. Egloff, and A. D. Tward, The mutational landscape of head and neck squamous cell carcinoma, Science, vol.333, pp.1157-1160, 2011.

L. M. Stuart, N. Paquette, and L. Boyer, Effector-triggered versus pattern-triggered immunity: how animals sense pathogens, Nature Reviews Immunology, vol.13, pp.199-206, 2013.

K. Sugihara, N. Nakatsuji, and K. Nakamura, Rac1 is required for the formation of three germ layers during gastrulation, Oncogene, vol.17, pp.3427-3433, 1998.

T. Sumi, K. Matsumoto, and T. Nakamura, Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase, Journal of Biological Chemistry, vol.276, pp.670-676, 2001.

Y. Sun, J. Zhang, and L. Ma, ) ?-catenin. A tumor suppressor beyond adherens junctions, Cell Cycle, vol.13, pp.2334-2339, 2014.

T. Suzuki, A. Ueda, and N. Kobayashi, Proteasome-dependent degradation of alpha-catenin Bibliography is regulated by interaction with ARMc8alpha, Biochem J, vol.411, pp.581-591, 2008.

K. N. Swatek and D. Komander, Ubiquitin modifications, Cell Res, 2016.

K. Swärd, K. Dreja, and M. Susnjar, Inhibition of Rho-associated kinase blocks agonistinduced Ca2+ sensitization of myosin phosphorylation and force in guinea-pig ileum, J Physiol (Lond), vol.522, pp.33-49, 2000.

M. Symons, J. M. Derry, and B. Karlak, Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization, Cell, vol.84, pp.723-734, 1996.

Y. Takai, T. Sasaki, and T. Matozaki, Small GTP-binding proteins, Physiol Rev, vol.81, pp.153-208, 2001.

D. Tang and Y. Wang, Cell cycle regulation of Golgi membrane dynamics, Trends in Cell Biology, vol.23, pp.296-304, 2013.

D. Tang, Y. Xiang, D. Renzis, and S. , The ubiquitin ligase HACE1 regulates Golgi membrane dynamics during the cell cycle, Nat Comms, vol.2, p.501, 2011.

J. Tao, P. Oladimeji, L. Rider, and M. Diakonova, PAK1-Nck regulates cyclin D1 promoter activity in response to prolactin, Mol Endocrinol, vol.25, pp.1565-1578, 2011.

J. P. Thiery, H. Acloque, R. Huang, and M. A. Nieto, Epithelial-mesenchymal transitions in development and disease, Cell, vol.139, pp.871-890, 2009.

L. Tong and V. Tergaonkar, Rho protein GTPases and their interactions with NF?B: crossroads of inflammation and matrix biology, Biosci Rep, vol.34, pp.283-295, 2014.

S. Torrino, O. Visvikis, and A. Doye, The E3 Ubiquitin-Ligase HACE1 Catalyzes the Ubiquitylation of Active Rac1, Developmental Cell, vol.21, pp.959-965, 2011.

L. Tortola, R. Nitsch, and M. Bertrand, The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate, Cell Reports, 2016.

L. Tortola, R. Nitsch, and J. M. Penninger, TNF-driven cell fate: till HACE do us part, Oncotarget, vol.7, pp.44871-44872, 2016.

G. Totsukawa, Y. Yamakita, and S. Yamashiro, Distinct Roles of Rock (Rho-Kinase) and Mlck in Spatial Regulation of Mlc Phosphorylation for Assembly of Stress Fibers and Focal Adhesions in 3t3 Fibroblasts, The Journal of Cell Biology, vol.150, pp.797-806, 2000.

T. Ueyama, M. Geiszt, and T. L. Leto, Involvement of Rac1 in activation of multicomponent Nox1-and Nox3-based NADPH oxidases, Mol Cell Biol, vol.26, pp.2160-2174, 2006.

J. D. Van-buul and I. Timmerman, Small Rho GTPase-mediated actin dynamics at endothelial adherens junctions, Small GTPases, vol.7, pp.21-31, 2016.

A. G. Van-der-veen and H. L. Ploegh, Ubiquitin-like proteins, Annu Rev Biochem, vol.81, pp.323-357, 2012.

V. Vasioukhin, C. Bauer, M. Yin, and E. Fuchs, Directed actin polymerization is the driving force for epithelial cell-cell adhesion, Cell, vol.100, pp.209-219, 2000.

F. M. Vega and A. J. Ridley, Rho GTPases in cancer cell biology, FEBS Letters, vol.582, pp.2093-2101, 2008.

M. A. Verdecia, C. Joazeiro, and N. J. Wells, Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase, Molecular Cell, vol.11, pp.249-259, 2003.

S. Verma, A. M. Shewan, and J. A. Scott, Arp2/3 activity is necessary for efficient formation of E-cadherin adhesive contacts, Journal of Biological Chemistry, vol.279, pp.34062-34070, 2004.

I. R. Vetter and A. Wittinghofer, The guanine nucleotide-binding switch in three dimensions, Science, vol.294, pp.1299-1304, 2001.

D. Vigil, J. Cherfils, K. L. Rossman, and C. J. Der, Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy?, Nat Rev Cancer, vol.10, pp.842-857, 2010.

S. Vijay-kumar, C. E. Bugg, and W. J. Cook, Structure of ubiquitin refined at 1.8 A resolution, Journal of Molecular Biology, vol.194, pp.531-544, 1987.

P. Villalonga and A. J. Ridley, Rho GTPases and cell cycle control. Growth Factors, vol.24, pp.159-164, 2006.

O. Visvikis, P. Lorès, and L. Boyer, Activated Rac1, but not the tumorigenic variant Rac1b, is ubiquitinated on Lys 147 through a JNK-regulated process, FEBS J, vol.275, pp.386-396, 2008.

O. Visvikis, M. P. Maddugoda, and E. Lemichez, Direct modifications of Rho proteins: deconstructing GTPase regulation, Biol Cell, vol.102, pp.377-389, 2010.

L. Wan, W. Zou, and D. Gao, Cdh1 regulates osteoblast function through an APC/Cindependent modulation of Smurf1, Molecular Cell, vol.44, pp.721-733, 2011.

H. Wang, Y. Zhang, and B. Ozdamar, Regulation of cell polarity and protrusion formation by targeting RhoA for degradation, Science, vol.302, pp.1775-1779, 2003.

J. Wang, Q. Peng, and Q. Lin, Calcium activates Nedd4 E3 ubiquitin ligases by releasing the C2 domain-mediated auto-inhibition, J Biol Chem, vol.285, pp.12279-12288, 2010.

J. Wang, J. W. Erickson, and R. Fuji, Targeting mitochondrial glutaminase activity inhibits oncogenic transformation, Cancer Cell, vol.18, pp.207-219, 2010.

J. Wei, R. K. Mialki, and S. Dong, A new mechanism of RhoA ubiquitination and degradation: roles of SCF(FBXL19) E3 ligase and Erk2, Biochim Biophys Acta, vol.1833, pp.2757-2764, 2013.

C. S. Weirich, J. P. Erzberger, and Y. Barral, The septin family of GTPases: architecture and dynamics, Nat Rev Mol Cell Biol, vol.9, pp.478-489, 2008.

D. M. Wenzel, A. Lissounov, P. S. Brzovic, and R. E. Klevit, UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids, Nature, vol.474, pp.105-108, 2011.

S. Wiesner, A. A. Ogunjimi, and H. Wang, Autoinhibition of the HECT-Type Ubiquitin Ligase Smurf2 through Its C2 Domain, Cell, vol.130, pp.651-662, 2007.

B. Wildenberg, G. A. Dohn, M. R. Carnahan, and R. H. , ) p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho, Cell, vol.127, pp.1027-1039, 2006.

N. Wilkie and S. Davies, Ubiquitination, E3 ligases and drug discovery, Drug Discovery, pp.1-6, 2012.

K. D. Wilkinson, M. K. Urban, and A. L. Haas, Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes, Journal of Biological Chemistry, vol.255, pp.7529-7532, 1980.

T. Woelk, B. Oldrini, and E. Maspero, Molecular mechanisms of coupled monoubiquitination, Nat Cell Biol, vol.8, pp.1246-1254, 2006.

S. A. Woodcock, C. Rooney, and M. Liontos, SRC-induced disassembly of adherens junctions requires localized phosphorylation and degradation of the rac activator tiam1, Molecular Cell, vol.33, pp.639-653, 2009.

D. E. Wright, C. Wang, and C. Kao, Histone ubiquitylation and chromatin dynamics, Front Biosci (Landmark Ed), vol.17, pp.1051-1078, 2012.

X. Wu, S. Li, and A. Chrostek-grashoff, Cdc42 is crucial for the establishment of epithelial polarity during early mammalian development, Dev Dyn, vol.236, pp.2767-2778, 2007.

J. Xie, R. Litman, and S. Wang, Targeting the FANCJ-BRCA1 interaction promotes a switch from recombination to pol?-dependent bypass, Oncogene, vol.29, pp.2499-2508, 2010.

R. Yagi, S. Waguri, and Y. Sumikawa, C-terminal Src kinase controls development and maintenance of mouse squamous epithelia, The EMBO Journal, vol.26, pp.1234-1244, 2007.

S. Yamada and W. J. Nelson, Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion, The Journal of Cell Biology, vol.178, pp.517-527, 2007.

D. Yamazaki, T. Oikawa, and T. Takenawa, Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion, Journal of Cell Science, vol.120, pp.86-100, 2007.

C. Yang, W. Zhou, and M. Jeon, Negative Regulation of the E3 Ubiquitin Ligase Itch via Fyn-Mediated Tyrosine Phosphorylation, Molecular Cell, vol.21, pp.135-141, 2006.

Z. Yang, S. Rayala, and D. Nguyen, Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail's subcellular localization and functions, Cancer Research, vol.65, pp.3179-3184, 2005.

M. Yao, W. Qiu, and R. Liu, Force-dependent conformational switch of ?-catenin controls vinculin binding, Nat Comms, vol.5, p.5525, 2014.

S. Yasuda, F. Oceguera-yanez, and T. Kato, Cdc42 and mDia3 regulate microtubule attachment to kinetochores, Nature, vol.428, pp.767-771, 2004.

R. Yau and M. Rape, The increasing complexity of the ubiquitin code, Nat Cell Biol, vol.18, pp.579-586, 2016.

Y. Bibliography-ye, M. Akutsu, and F. Reyes-turcu, Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21, EMBO reports, vol.12, pp.350-357, 2011.

J. J. Yi, J. Berrios, and J. M. Newbern, An Autism-Linked Mutation Disables Phosphorylation Control of UBE3A, Cell, vol.162, pp.795-807, 2015.

M. Yilmaz and G. Christofori, EMT, the cytoskeleton, and cancer cell invasion, Cancer Metastasis Rev, vol.28, pp.15-33, 2009.

S. Yonemura, M. Itoh, A. Nagafuchi, and S. Tsukita, Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells, Journal of Cell Science, vol.108, pp.127-142, 1995.

S. Yonemura, Y. Wada, and T. Watanabe, ) alpha-Catenin as a tension transducer that induces adherens junction development, Nat Cell Biol, vol.12, pp.533-542, 2010.

H. Yu, R. W. King, J. M. Peters, and M. W. Kirschner, Identification of a novel ubiquitin-conjugating enzyme involved in mitotic cyclin degradation, Curr Biol, vol.6, pp.455-466, 1996.

L. Yu, X. Liu, and K. Cui, SND1 Acts Downstream of TGF?1 and Upstream of Smurf1 to Promote Breast Cancer Metastasis, Cancer Research, vol.75, pp.1275-1286, 2015.

R. Zaidel-bar, G. Zhenhuan, and C. Luxenburg, The contractome-a systems view of actomyosin contractility in non-muscle cells, Journal of Cell Science, vol.128, pp.2209-2217, 2015.

M. Zerial and H. Mcbride, Rab proteins as membrane organizers, Nat Rev Mol Cell Biol, vol.2, pp.107-117, 2001.

L. Zhang, M. S. Anglesio, and M. O'sullivan, The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers, Nat Med, vol.13, pp.1060-1069, 2007.

L. Zhang, X. Chen, and P. Sharma, HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress, Nat Comms, vol.5, p.3430, 2014.

W. Zhang, K. Wu, and M. A. Sartori, System-Wide Modulation of HECT E3 Ligases with Selective Ubiquitin Variant Probes, Molecular Cell, 2016.

J. Zhao, R. K. Mialki, and J. Wei, SCF E3 ligase F-box protein complex SCF(FBXL19) regulates cell migration by mediating Rac1 ubiquitination and degradation, FASEB J, vol.27, pp.2611-2619, 2013.

J. Zhao, Z. Zhang, and Z. Vucetic, HACE1: A novel repressor of RAR transcriptional activity, J Cell Biochem, vol.107, pp.482-493, 2009.

Z. Zhao and E. Manser, PAK family kinases: Physiological roles and regulation, Cell Logist, vol.2, pp.59-68, 2012.

N. Zheng and N. Shabek, Ubiquitin Ligases: Structure, Function, and Regulation, Annu Rev Biochem, vol.86, 2017.

Y. Zheng, Dbl family guanine nucleotide exchange factors, Trends in Biochemical Sciences Bibliography, vol.26, pp.724-732, 2001.

L. Zhou, C. Yan, and R. G. Gieling, Tumor necrosis factor-alpha induced expression of matrix metalloproteinase-9 through p21-activated Kinase-1, BMC Immunology, vol.10, issue.1, p.15, 2009.

Y. Zhou, Q. Liao, and Y. Han, Rac1 overexpression is correlated with epithelial mesenchymal transition and predicts poor prognosis in non-small cell lung cancer, J Cancer, vol.7, pp.2100-2109, 2016.

G. Zhu, Y. Wang, and B. Huang, A Rac1/PAK1 cascade controls ?-catenin activation in colon cancer cells, Oncogene, vol.31, pp.1001-1012, 2012.

Q. Zhu, C. Ma, and Q. Wang, The role of TWIST1 in epithelial-mesenchymal transition and cancers, Tumour Biol, vol.37, pp.185-197, 2016.

, Contractile Actin Cables Induced by Bacillus anthracis Lethal Toxin Depend on the Histone Acetylation Machinery Monica Rolando, 2002.

M. I. Acosta, Orane Visvikis, vol.1, issue.2

G. Hannah and . Yevick, The data represent the mean values 6 SEM, n 5 100 cells per experiment from three independent experiments (ANOVA compared to the Untreated condition: ns: non-significant, ***P < 0.001). (C) Immunofluorescence analyses of the TSAtriggered actin stress fibers. Scale bar, 10 mm. Insets: the details of the single channels are shown in gray. F-actin was labeled with phalloidin-TRITC (actin), and the focal adhesions were labeled with an anti-paxillin antibody (paxillin), Formation of stress fibers in TSA-treated cells. (A) Representative examples of HUVECs treated for 24 h with LT (PA1LF, 3 1 1 mg ml 21 ) or the following different inhibitors, as well as the untreated controls: Anacardic acid (20 mM), Garcinol (25 mM)

L. Abrami, S. H. Leppla, and F. G. Van-der-goot, Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis, J Cell Biol, vol.172, pp.309-320, 2006.

F. A. Abramova, L. M. Grinberg, O. V. Yampolskaya, and D. H. Walker, Pathology of inhalational anthrax in 42 cases from the Sverdlovsk outbreak of 1979, Proc Natl Acad Sci, vol.90, pp.2291-2294, 1993.

K. Aktories, A. E. Lang, C. Schwan, and H. G. Mannherz, Actin as target for modification by bacterial protein toxins, FEBS J, vol.278, pp.4526-4543, 2011.

J. Andrew and T. K. Bannister, Regulation of chromatin by histone modifications, Cell Res, vol.21, pp.381-395, 2011.

J. E. Bolden, M. J. Peart, and R. W. Johnstone, Anticancer activities of histone deacetylase inhibitors, Nat Rev Drug Discov, vol.5, pp.769-784, 2006.

L. Boyer, A. Doye, M. Rolando, G. Flatau, P. Munro et al., Induction of transient macroapertures in endothelial cells through RhoA inhibition by Staphylococcus aureus factors, J Cell Biol, vol.173, pp.809-819, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00090114

Y. C. Chang, Y. H. Kao, D. N. Hu, L. Y. Tsai, and W. C. Wu, All-trans retinoic acid remodels extracellular matrix and suppresses lamininenhanced contractility of cultured human retinal pigment epithelial ce, Exp Eye Res, vol.88, pp.900-909, 2009.

P. Chardin, Function and regulation of Rnd proteins, Nat Rev Mol Cell Biol, vol.7, pp.54-62, 2006.

C. Histone, Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor, PLoS Pathog, vol.9, p.1003452, 2013.

W. L. Cheung, S. D. Briggs, and C. D. Allis, Acetylation and chromosomal functions, Curr Opin Cell Biol, vol.12, pp.326-333, 2000.

J. Colombelli, E. G. Reynaud, J. Rietdorf, R. Pepperkok, and E. Stelzer,

J. Colombelli, A. Besser, H. Kress, E. G. Reynaud, P. Girard et al., Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization, J Cell Sci, vol.122, pp.1665-1679, 2009.

X. Cui, M. Moayeri, Y. Li, X. Li, M. Haley et al., , 2004.

, Am J Physiol Regul Integr Comp Physiol, vol.286, pp.699-709

A. Doye, A. Mettouchi, G. Bossis, C. Cl-ement-r,-buisson-touati, G. Flatau et al., CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion, Cell, vol.111, pp.553-564, 2002.

A. Doye, L. Boyer, A. Mettouchi, and E. Lemichez, Ubiquitinmediated proteasomal degradation of Rho proteins by the CNF1 toxin, Meth Enzymol, vol.406, pp.447-456, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00000096

N. S. Duesbery, C. P. Webb, S. H. Leppla, V. M. Gordon, K. R. Klimpel et al., Proteolytic inactivation of MAP-kinasekinase by anthrax lethal factor, Science, vol.280, pp.734-737, 1998.

U. Gottesbuhren, R. Garg, P. Riou, B. Mccoll, D. Brayson et al., Rnd3 induces stress fibres in endothelial cells through RhoB, Biol Open, vol.2, pp.210-216, 2013.

A. Guichard, S. M. Mcgillivray, B. Cruz-moreno, N. M. Van-sorge, V. Nizet et al., Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst, Nature, vol.467, pp.854-858, 2010.

M. A. Hamon and P. Cossart, Histone modifications and chromatin remodeling during bacterial infections, Cell Host Microbe, vol.4, pp.100-109, 2008.
DOI : 10.1016/j.chom.2008.07.009

URL : https://doi.org/10.1016/j.chom.2008.07.009

S. J. Heasman and A. J. Ridley, Mammalian Rho GTPases: New insights into their functions from in vivo studies, Nat Rev Mol Cell Biol, vol.9, pp.690-701, 2008.

D. Kaluza, J. Kroll, S. Gesierich, T. P. Yao, R. A. Boon et al., Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin, EMBO J, vol.30, pp.4142-4156, 2011.

S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele et al., Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics, Biophys J, vol.90, pp.3762-3773, 2006.

Q. Le-duc, Q. Shi, I. Blonk, A. Sonnenberg, N. Wang et al., Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner, J Cell Biol, vol.189, pp.1107-1115, 2010.

E. Lemichez, M. Lecuit, X. Nassif, and S. Bourdoulous, Breaking the wall: Targeting of the endothelium by pathogenic bacteria, Nat Publ Group, vol.8, pp.93-104, 2010.

C. Liu, P. Ho, F. C. Wong, G. Sethi, L. Z. Wang et al., Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects, Cancer Lett, vol.362, pp.8-14, 2015.

J. Millan, R. J. Cain, N. Reglero-real, C. Bigarella, M. Fernandez-martin et al., Adherens junctions connect stress fibres between adjacent endothelial cells, BMC Biol, vol.8, p.11, 2010.

M. Moayeri and S. H. Leppla, Cellular and systemic effects of anthrax lethal toxin and edema toxin, Mol Aspects Med, vol.30, pp.439-455, 2009.
DOI : 10.1016/j.mam.2009.07.003

URL : http://europepmc.org/articles/pmc2784088?pdf=render

M. Moayeri, I. Sastalla, and S. H. Leppla, Anthrax and the inflammasome, Microbes Infect, vol.14, pp.392-400, 2012.
DOI : 10.1016/j.micinf.2011.12.005

URL : http://europepmc.org/articles/pmc3322314?pdf=render

B. Raymond, F. Batsch-e-e,-boutillon, Y. Z. Wu, D. Leduc, V. Balloy et al., Anthrax lethal toxin impairs IL-8 expression in epithelial cells through inhibition of histone H3 modification, PLoS Pathog, vol.5, p.1000359, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00472920

M. Rolando, P. Munro, C. Stefani, P. Auberger, G. Flatau et al., Injection of Staphylococcus aureus EDIN by the Bacillus anthracis protective antigen machinery induces vascular permeability, Infect Immun, vol.77, pp.3596-3601, 2009.

M. Rolando, C. Stefani, G. Flatau, P. Auberger, A. Mettouchi et al., Transcriptome dysregulation by anthrax lethal toxin plays a key role in induction of human endothelial cell cytotoxicity, Cell Microbiol, vol.12, pp.891-905, 2010.

R. J. Russell, S. L. Xia, R. B. Dickinson, and T. P. Lele, Sarcomere mechanics in capillary endothelial cells.-PubMed-NCBI, Biophys J, vol.97, pp.1578-1585, 2009.

M. Selbach and S. Backert, Cortactin: An Achilles' heel of the actin cytoskeleton targeted by pathogens, Trends Microbiol, vol.13, pp.181-189, 2005.

K. R. Strahs and M. W. Berns, Laser microirradiation of stress fibers and intermediate filaments in non-muscle cells from cultured rat heart, Exp Cell Res, vol.119, pp.31-45, 1979.

K. Tanner, A. Boudreau, M. J. Bissell, and S. Kumar, Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery.-PubMed-NCBI, Biophys J, vol.99, pp.2775-2783, 2010.

S. Tojkander, G. Gateva, and P. Lappalainen, Actin stress fibersassembly, dynamics and biological roles, J Cell Sci, vol.125, pp.1855-1864, 2012.

S. Torrino, O. Visvikis, A. Doye, L. Boyer, C. Stefani et al., The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1, Dev Cell, vol.21, pp.959-965, 2011.

Y. Trescos and J. N. Tournier, Cytoskeleton as an emerging target of anthrax toxins, Toxins (Basel), vol.4, pp.83-97, 2012.

D. Vestweber, M. Winderlich, G. Cagna, and A. F. Nottebaum, Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player, Trends Cell Biol, vol.19, pp.8-15, 2009.

J. M. Warfel, A. D. Steele, and F. D&apos;agnillo, Anthrax lethal toxin induces endothelial barrier dysfunction, Am J Pathol, vol.166, pp.1871-1881, 2005.

X. Zhang, Z. Yuan, Y. Zhang, S. Yong, A. Salas-burgos et al., HDAC6 modulates cell motility by altering the acetylation level of cortactin, Mol Cell, vol.27, pp.197-213, 2007.