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RRésumé 

Cette thèse présente une étude détaillée de la composition des fluides de haute température 

du champ hydrothermal de Lucky Strike (37°N, dorsale médio atlantique) s’appuyant sur 

3 campagnes d’échantillonnage réalisées dans le cadre de l’observatoire fond de mer 

EMSO–Açores. Ce champ hydrothermal s’est développé autour d’un lac de lave fossile 

bordé au Nord-Ouest, Nord Est et Sud Est par des cônes volcaniques plus anciens. En 2013, 

la découverte du site hydrothermal de Capelinhos à l’Est, et présentant des compositions 

de fluides inédites à Lucky Strike (concentration faible en Cl et forte en Fe et Mn), nous 

permet de proposer un nouveau modèle de circulation hydrothermale basé sur l’application 

de géothermobaromètres (Si ; Si–Cl ; Fe–Mn) chimiques sur 13 évents hydrothermaux. 

Nous avons défini 5 groupes de sites selon leur chlorinité et leur position par rapport au lac 

de lave. Les fluides de Capelinhos, dominés par la phase vapeur, sont rapidement extraits 

de la zone de séparation de phase (estimée à 2600 m sous le plancher océanique). Les 

fluides à proximité du lac de lave, avec des chlorinités variables, suggèrent un rééquilibrage 

à des pressions et températures plus faibles qu’à Capelinhos, cohérent avec des processus 

de refroidissement conductif et/ou d’entrainement de saumures prenant place lors de la 

remontée des fluides jusqu’à la base de la couche 2A. La fluctuation de la chlorinité 

témoigne de la variabilité du temps de résidence du fluide dans la zone de remontée, et ses 

relations avec les caractéristiques physiques de la croûte océanique.  

Nous avons évalué la variabilité temporelle de la composition des fluides collectés au cours 

des campagnes effectuées entre 2009 et 2015. Deux échelles de temps sont mises en 

évidence. (1) l’échelle de l’échantillonnage, i.e. de l’heure, répond à des phénomènes de 

subsurface, et révèle qu’un fluide hydrothermal refroidi conductivement (T<150°C) est 

stocké dans la roche poreuse entourant le site de décharge. (2) l’échelle de temps pluri-

annuelle montre une fluctuation des conditions de P et T apparentes de la zone de séparation 

de phase et du degré d’altération du substratum dans la zone de réaction. Les variations 

intersites du rapport Ca/Na (indicateur du degré d’albitisation) sont dues à la séparation de 

phase, à l’exception des sites du Sud–Est du lac de lave qui indiquent un degré d’altération 

plus élevé.  

La concentration en Li et sa composition isotopique indiquent que le basalte du substratum 

est relativement frais avec des rapports W/R proches de 1 pour tous les groupes, avec des 

δ7Li du fluide identiques au substratum. Pour le Sr nous calculons des rapports W/R plus 
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élevés, autour de 7-8, qui sont dus au Sr de l’eau de mer initiale qui est partiellement stocké 

et à la formation de minéraux secondaires (l’albite et l’anhydrite) lors des interactions eau–

roche dans le faciès schiste vert. La faible teneur en métaux des fluides situés autour du lac 

de lave est probablement due à un piégeage en subsurface, équivalent à ~65% du Fe 

mobilisé dans la zone de réaction (basé sur les teneurs des fluides de Capelinhos). 

La variabilité de chlorinité des fluides de Lucky Strike offre l’opportunité d’étudier le 

comportement des terres rares à l’échelle d’un site hydrothermal. Ainsi, nous montrons 

l’effet de la séparation de phase sur les terres rares légères et lourdes ainsi que le lien entre 

l’Eu et le cycle géochimique du Sr. Les terres rares dissoutes dans le panache hydrothermal 

montrent une perte au cours du mélange ainsi que des phénomènes de redissolution visible 

via la signature isotopique en Nd. Cette modification des compositions isotopiques en Nd 

de l’eau de mer profonde est similaire au « boundary exchange » observé aux interfaces 

océan–plateforme continentale. Au vue de la répartition des champs hydrothermaux sur les 

dorsales océaniques, ce phénomène pourrait avoir un impact sur le bilan océanique du Nd 

et donner lieu à un phénomène de « ridge exchange ». 

Mots–clés : Fumeur noir ; séparation de phase ; isotope ; circulation hydrothermale ; 

variabilité spatio–temporelle. 
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AAbstract 

This thesis present a detailed study of the composition of high temperature fluid from the 

Lucky Strike hydrothermal field (37°N, Mid Ocean Ridge) collected during three sampling 

campaigns within the framework of the deep sea observatory EMSO-Azores. The 

hydrothermal field has developped around a fossil lava lake framed by three ancient 

volcanic cones. In 2013, the discovery of a new active site to the East of the system, and 

presenting an unprecedented fluid composition at Lucky Strike (low Cl concentration and 

high Fe and Mn concentration), lead to a new model of hydrothermal circulation based on 

chemical geothermobarometer (Si; Si–Cl) and geothermometer (Fe–Mn) applied to 13 

venting sites. We defined 5 groups of sites based on their chlorinity and location around 

the lava lake. It appears that vapor-dominated Capelinhos fluids were extracted relatively 

fast from the phase separation zone (estimated at ~2600mbsf). Nevertheless, fluids in the 

vicinity of the lava lake, both vapor and brine dominated, display P and T conditions of 

equilibration lower than for Capelinhos fluids. This highlights on-going equilibration 

process through conductive cooling and/or brine entrainment in the upflow zone up to the 

layer 2A of the oceanic crust. Chlorinity variations highlight the varying residence time in 

the upflow of the fluids between vents which depends on physical characteristics of the 

crust. 

We studied the temporal variability of fluid composition collected between 2009 and 2015. 

Two time scales have been evidenced. The first is the sampling scale, i.e. ~1h, and 

corresponds to subsurface processes indicating that a hydrothermal fluid, conductively 

cooled (T<150°C), was stored in the porous substratum close to the discharge. The second 

is at the scale of the year. It shows fluctuations of P and T conditions in the phase separation 

and different degree of alteration of the substratum in the reaction zone. Intersites variations 

of Ca/Na ratios (proxies for albitisation) are related to phase separation expected the South 

Eastern sites that display a more altered substratum. To avoid this issue, we use Li and Sr 

isotopes which are not affected phase separation.  

Li concentration and isotopic composition indicates that basalt substratum is relatively 

fresh with W/R ratio close to 1 calculated for all groups with δ7Li of fluid equivalent to 

substratum. Sr concentration and isotopic composition suggest higher W/R ratio (~7–8) 

because of seawater Sr partially removed in the recharge. Moreover, other parameters are 

at play such as secondary mineral formation (albite, anhydrite) during water rock 
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interaction in the greenschist facies. Because the basalt is relatively fresh, the low metal 

content in the fluid around the lava lake is due to storage, in the subsurface, of 

approximately ~60–70% of Fe that is mobilized in the reaction zone compared to Fe–Mn 

rich Capelinhos fluids. 

Furthermore, the Cl variability from the fluids at Lucky Strike brings a unique opportunity 

to study the REE distribution from the reaction zone to the discharge into the deep ocean. 

We show that the LREE are preferentially concentrated into the brine phase. Furthermore, 

the Eu is linked to the Sr geochemical cycle. Dissolved REE from buoyant plume fluids 

highlight a scavenging effect. The Nd isotopic compositions indicate redissolution process. 

This Nd isotopes modification of the deep seawater is similar to the process of “boundary 

exchange” that occurs at the ocean/continents interface. Considering the global distribution 

of submarine hydrothermalism, the Nd modification at the ridge could have an impact on 

the global Nd cycle in the oceans and act as a “ridge exchange”. 

Keywords: Black Smoker; phase separation; isotope; hydrothermal circulation; time-serie. 
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INTRODUCTION 

 

Les fumeurs noirs représentent, dans le milieu marin, les manifestations naturelles du 

mélange entre un fluide hydrothermal chaud (généralement supérieur à 300°C), réducteur 

et riche en métaux, ayant réagi avec la croute océanique et l’eau de mer profonde, oxydante 

et froide (entre 2 et 4°C). Lors de ce mélange, des réactions chimiques d’oxydo-réduction 

provoquent la précipitation de particules poly–métalliques et d’oxyhydroxides qui forment 

ces volutes de « fumées » noires qui leur ont valu leur nom et leur célébrité (Corliss et al., 

1979). La consolidation de ces particules au niveau de la zone de sortie des fluides chauds 

conduit à la formation de cheminées hydrothermales dont la hauteur peut atteindre plus de 

10m (Haymon, 1983). 

L’observation directe de ces curiosités naturelles par une équipe de chercheurs américains 

et français a eu lieu pour la première fois à la fin des années 1970 dans le bassin des 

Galápagos dans l’Océan Pacifique (Corliss et al., 1979). Cette découverte n’était pas le fruit 

du hasard, mais visait bien à mettre en évidence par observation directe la circulation de 

fluide dans la lithosphère océanique au niveau des dorsales. L’existence de 

l’hydrothermalisme marin était soupçonnée au vu des données géophysiques et 

géochimiques. Par exemple, les flux de chaleur mesurés dans les sédiments déposés sur la 

croûte océanique étaient systématiquement plus faibles que ceux prédits par les modèles de 

refroidissement conductif de la lithosphère (Bostrom and Peterson, 1966; Lister, 1972; 

Stein and Stein, 1994). Certains auteurs avaient alors invoqué un refroidissement convectif 

liée à la circulation hydrothermale au niveau des dorsales pour expliquer ce refroidissement 

plus rapide (Lister, 1974, 1972). D’autres études, géochimiques cette fois-ci, avaient 

montré la présence d’enrichissement en fer et en manganèse dans les sédiments marins à 

proximité des dorsales océaniques. Ces auteurs avaient alors invoqué des émanations de 
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fluide riche en métaux et d’origine profonde (Bostrom and Peterson, 1966; Muray and 

Renard, 1891).  

Depuis cette première observation, la recherche et la détection de ces objets géologiques se 

sont affinées et ont conduit à la découverte de nouveaux systèmes hydrothermaux sur les 

dorsales à fort taux d’accrétion telle qu’à l’East Pacifique Rise (EPR), à faible–ultra-faible 

taux d’accrétion telles que la dorsale medio atlantique et les dorsales sud-est et sud-ouest 

indienne (German et al., 2016). Très vite, d’autres systèmes hydrothermaux sous-marins 

ont été découverts dans les bassins d’arrière arc d’une zone de subduction (Craddock and 

Bach, 2010). Ces systèmes de haute température sont omniprésents sur les quelques 60000 

km de dorsale et 23000 km de zone de subduction.  

Dans les années 1990, l’importance d’un hydrothermalisme de basse température a émergé 

avec la découverte, suite à des anomalies de flux de chaleur, des sources de Baby Bare dans 

le bassin de Cascadia (Wheat and Mottl, 2000). Baby Bare est un mont volcanique sous-

marin qui sert de résurgence à des sources à ~60°C qui sont marquées par l’altération du 

basalte à cette température ainsi que par les sédiments avoisinant. Un autre système 

hydrothermal de basse température (<120°C) a été découvert en 2000 par hasard sur le flanc 

d’un ancien « oceanic core complex » en dehors de l’axe de la dorsale medio atlantique 

(Kelley et al., 2001). Ce système plus connu sous le nom de Lost City, s’exprime par une 

composition chimique très différente des systèmes de hautes température (Früh-Green et 

al., 2003; Von Damm, 2001). Ces systèmes sont des analogues directs de 

l’hydrothermalisme actuel bien connu dans les ophiolites. Les fluides issus de ces systèmes 

sont particuliers avec des pH supérieurs à 9 (jusqu’à 12) et forment, sur le site de leur 

décharge, des cheminées carbonatées en milieu immergé et des travertins dans les 

ophiolites (Barnes et al., 1978; Chavagnac et al., 2013a, 2013b; Früh-Green et al., 2003). 

Ainsi, l’ubiquité des systèmes hydrothermaux a été observée et démontrée dans chaque 

océan. Les fluides hydrothermaux se trouvent ainsi à l’interface entre la lithosphère, siège 

des processus tectoniques et magmatiques d’accrétion océanique et l’hydrosphère. Ils 

participent à la fois à l’échange de chaleur entre ces deux réservoirs mais aussi à l’échange 

de matière. Ainsi, Resing et al. (2015) ont montré que le panache hydrothermal pouvait être 

suivi jusqu’à 4300 km de la dorsale EPR, soulignant ainsi l’impact des activités 

hydrothermales sur les cycles biogéochimiques globaux en tant que source de matière. De 

plus, plusieurs études ont montré le lien entre l’activité magmatique et la composition des 

fluides hydrothermaux sur les dorsales rapides. Ce lien et le type de réponse en termes de 



3 

 

variabilité des compositions des fluides hydrothermaux restent à déterminer en contexte de 

dorsale à faible taux d’accrétion, où les processus tectoniques jouent un rôle plus important 

du fait que les épisodes magmatiques sont moins fréquents. Il apparait donc nécessaire pour 

comprendre à la fois le bilan chimique de la lithosphère et de l’océan et les processus 

profonds d’accrétion océanique d’étudier les fluides hydrothermaux qui se trouvent à 

l’interface entre ces deux réservoirs.  

D’une manière générale, un système hydrothermal sous-marin est constitué de trois 

compartiments : 1) une zone de recharge, qui est la zone où l’eau de mer froide et oxydante 

pénètre le long de fractures/fissures dans la lithosphère océanique ; 2) une zone dite de 

réaction, où l’eau de mer, déjà modifiée à basse et moyenne température au sein de la croûte 

océanique, va acquérir sa composition chimique finale via les interactions eau–roche à des 

conditions de pression et température élevées ; 3) la zone de décharge, qui voit le fluide 

hydrothermal ascendant de la zone de réaction se décharger dans l’eau de mer profonde. 

La remontée de ces fluides hydrothermaux profonds vers le plancher océanique, est due à 

une différence de densité et de flottabilité entre les fluides ascendants chauds et les fluides 

et/ou eau de mer environnant-e-s (Bischoff, 1991; Fontaine and Wilcock, 2007; Lowell et 

al., 1995). Cette différence de densité est souvent associée à un phénomène appelé la 

séparation de phase (Bischoff, 1991; Bischoff and Rosenbauer, 1984), qui est liée à la 

salinité du fluide, et aux conditions de pression et de température atteintes dans la zone de 

réaction (Bischoff and Rosenbauer, 1988; Driesner, 2007; Driesner and Heinrich, 2007; 

Foustoukos and Seyfried, 2007). La séparation de phase est marquée par la formation d’une 

phase vapeur peu salée ainsi que d’une phase saumure plus salée. Les proportions des 

phases vapeur et saumure sont dépendantes des conditions pression et température atteintes 

au cours des interactions eau–roche. Ces processus engendrent une grande diversité de 

compositions chimiques des fumeurs noirs qui dépendent à la fois des conditions de 

pression, température et des interactions eau-roche. Le couple pression et temperature 

provoque la remontée des fluides depuis la zone de réaction vers la surface du plancher 

océanique. Les interactions eau-roche de la zone de réaction engendrent leurs diversité 

chimiques (German and Seyfried, 2014). 

Les fluides hydrothermaux émanant à la surface sont d’excellents indicateurs de processus 

profonds axuquels il est difficile d’avoir accès à moins de forer la lithosphère océanique, 

comme cela s’est fait au cours du Leg ODP 158 au niveau du champ hydrothermal TAG 

(MAR, 26°N) , et de les comparer aux analogues continentaux comme les ophiolites dont 
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l’histoire tectonique complexe limite les possibilités de comparaison directe. En raison des 

hautes températures, le forage ne peut pas atteindre les régions profondes d’où le fluide.  

Des indicateurs chimiques existent et sont utilisés pour évaluer les conditions de 

température et de pression, telle que la solubilité du quartz via les concentrations en Si dans 

le fluide ainsi que les conditions de température enregistrées par le fluide hydrothermal via 

le rapport Fe/Mn, qui est lui-même contrôlé par la formation de minéraux du faciès schiste 

vert.  

Le site hydrothermal de Lucky Strike situé à 400 km au Sud Est de l’archipel des Açores 

(Faial) sur la dorsale medio atlantique (37°N) a été découvert en 1992 lors d’une campagne 

scientifique nommée FAZAR (French and American Zaps and Rocks) qui visait à étudier, 

par une approche multidisciplinaire, plusieurs segments de la ride (Langmuir et al., 1997, 

1992). Lors de la première drague de cette expédition, des cheminées hydrothermales 

associées à des verres basaltiques frais ont été collectées, attestant d’une activité volcanique 

et hydrothermale au centre du segment récente. L’année suivante a été organisée une 

campagne de plongée en submersible pour observer et échantillonner les fluides provenant 

de ce champ hydrothermal. Celui-ci s’est révélé être un des plus développés au monde, 

couvrant une superficie ~1 km2 (Langmuir et al., 1997; Von Damm et al., 1998). Depuis 

1992, de nombreuses études menées en biologie, géochimie et géophysique ont contribué 

à caractériser le champ hydrothermal de Lucky Strike (Fouquet et al. 1995; Lee Van Dover 

et al. 1996; Singh et al. 2006 ; Dziak et al., 2004 ; Escartin et al., 2008 ; Barreyre et al., 

2012). Malgré ces études, la dynamique de circulation hydrothermale et ses conséquences 

sur le développement des processus profonds restent élusives.  

C’est une des raisons qui ont motivé le projet d’observatoire fond de mer en cet endroit. 

Cet observatoire issu d’un projet européen formant le nœud EMSO Açores a développé une 

technologie permettant une transmission quasi-continue de données biologiques, chimiques 

et géophysiques via communication satellitaire et acoustique (Colaço et al., 2011). Ce 

programme contribue à une caractérisation très fine du fonctionnement et de la dynamique 

du système hydrothermal à Lucky Strike. Dans le cadre de cet observatoire, les fluides 

hydrothermaux ont été collectés chaque année depuis 2009 assurant un suivi temporel de 

la composition chimique couplée à une couverture spatiale de la diversité des fluides qui 

reste inégalée sur une dorsale lente (Chavagnac et al., 2015). Ma thèse est une contribution 

à l’étude de cet observatoire en alimentant cette base de données par 3 années 

d’échantillonnage des sites permettant de mieux caractériser les processus profonds et de 
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les relier aux observations d’autres domaines comme la géophysique et la microbiologie. 

Le manuscrit se compose de six chapîtres. 

Dans un premier chapître, je présente l’état de l’art de la structure de la croûte océanique et 

des produits de son altération par l’eau de mer en lien avec la formation et la diversité des 

systèmes hydrothermaux. 

Dans le deuxième chapître, je présente en détail les connaissances acquises au niveau du 

champ hydrothermal de Lucky Strike depuis sa découverte et en particulier les composantes 

de l’observatoire fond de mer qui ont apporté une gamme de connaissances diversifiées et 

à haute résolution. 

Le troisième chapitre présente en détail le matériel et les méthodes utilisés au cours de cette 

thèse pour échantillonner et analyser les fluides hydrothermaux. Cette partie est primordiale 

pour attester de la qualité des données présentées dans ce travail. La stratégie et le protocole 

d’échantillonnage y sont présentés en détail ainsi que les protocoles de préparation des 

fluides en vue des analyses chimiques, aussi bien en terme de concentration (Cl, SO4, Br, 

Ca, Na, K, Si, Mg, Fe, Mn, Sr, Rb, Cs, Li, REE) qu’en terme de composition isotopique 

(87Sr/86Sr, 7Li/6Li, et 143Nd/144Nd). 

Les trois chapitres suivants présenteront tous les résultats acquis lors de cette thèse sous un 

format de publications scientifiques qui font/feront l’objet de soumission/publication dans 

des revues scientifiques. 

Le chapitre 4 a été soumis pour publication à la revue Geochimica et Cosmochimica Acta 

en Juillet 2016. Cet article concerne la variation spatiale des compositions chimiques des 

fluides et pose les bases d’un modèle de circulation hydrothermale à l‘échelle de l’ensemble 

du champ hydrothermal. Pour ce faire, une classification a été faite en fonction de la salinité 

et de la position géographique des évents. Cela répond à la réinterprétation des données de 

la littérature via des outils géochimiques d’estimation de pression et de température. Cette 

réinterprétation est grandement enrichie par la découverte d’un nouveau site hydrothermal 

nommé Capelinhos, lors de ma première campagne océanographique. Celui-ci fait partie 

du champ hydrothermal de Lucky Strike mais son éloignement par rapport au lac de lave 

fossilisé et de sa composition chimique en fait un site particulier au sein de cette diversité 

d’évents hydrothermaux. Les fluides de Capelinhos sont les plus appauvris en Cl par 

rapport aux autres sites et les indicateurs Fe/Mn de température de la zone de réaction 

indiquent des températures bien supérieures à ce qui a été publié auparavant (Pester et al., 
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2012). Ces résultats ne suggèrent pas une origine plus profonde pour ce fluide mais plutôt 

une extraction plus rapide de ceux-ci depuis la zone de séparation de phase ainsi qu’une 

ségrégation de la phase saumure plus efficace. 

Le chapitre 5 se base sur les interprétations du chapitre 4 pour suivre l’évolution temporelle 

de la composition des fluides du champ hydrothermal depuis 1993 jusqu’en 2015 (avec un 

hiatus de 11 ans entre 1997 et 2008). Il se penche, dans un premier temps, sur des éléments 

diagnostiques des pressions et températures permettant de repérer des perturbations 

magmatiques et/ou tectoniques au cours du suivi temporel, ainsi qu’à des indicateurs 

d’altération du plancher océanique et du stockage de métaux dans la zone de décharge. 

Ainsi, nos résultats mettent en lumière un cycle d’altération à la suite du remplissage de la 

chambre magmatique en 2008, et d’évènements sismiques en 2009, 2011 et 2012. La 

deuxième partie de ce chapitre dresse un éventail des compositions isotopiques en Sr et en 

Li, en lien avec les processus de subsurface. Il montre un substratum relativement peu altéré 

mais dont le cycle géochimique du Sr est perturbé pour 2 groupes de sites par l’influence 

de minéraux incorporant le Sr comme l’albite ou l’anhydrite. 

Le chapitre 6 se concentre sur des éléments particuliers que sont les terres rares. Les terres 

rares dans les fluides hydrothermaux ont été étudiées seulement ponctuellement à quelques 

systèmes hydrothermaux à l’échelle mondiale mais assez peu à l’échelle d’un champ 

hydrothermal présentant une forte variabilité de chlorinité. Le champ hydrothermal de 

Lucky Strike rend possible une telle étude de ces éléments dans un contexte géologique 

solidement établi (Chapitre 2, 4 et 5). L’autre volet de ce chapitre concerne le devenir 

immédiat de ces éléments en présentant pour la première fois des concentrations de terres 

rares dissoutes dans le panache hydrothermal et qui peuvent avoir une influence sur le bilan 

chimique et isotopique de l’eau de mer à grande échelle. 

Enfin, pour conclure ce travail de thèse, je résume les avancées en termes de connaissance 

du système hydrothermal de Lucky Strike. 
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INTRODUCTION (ENGLISH) 

Black-smokers represent the natural manifestations of the mixing between hot, reduced and 

metal-rich hydrothermal fluid (>300°C), which has reacted with the oceanic crust, and deep 

cold (2–4°C), oxidized and metal-depleted seawater. During this mixing, redox reactions 

induce precipitation of poly-metallic and oxy-hydroxides particles that compose the typical 

“black smoke” (Corliss et al., 1979). When consolidating, these particles can form 

hydrothermal chimneys that can reach over 10m above the seafloor (Haymon, 1983). 

These geological objects were observed by American and French scientists for the first time 

at the end of the 1970s in the Galapagos basin of the Pacific Ocean (Corliss et al., 1979). 

This expedition was looking for these objects that were suspected to exist through 

geophysical and geochemical indicators. Heat fluxes measured in sediments above the 

oceanic crust show systematically lower values than the ones predicted provided by 

conductive cooling models of the oceanic lithosphere (Bostrom and Peterson, 1966; Lister, 

1972; Stein and Stein, 1994). To explain these discrepancies between the calculated and 

measured heat fluxes, some authors have invoked the possibility of hydrothermal 

circulation at the ridge crest (Lister, 1974, 1972). Other geochemical studies revealed Fe 

and Mn enrichment in sediments collected near the Pacific Ocean ridge crests. It was then 

suggested that metal rich fluid of deep origin was flowing through these sediments 

(Bostrom and Peterson, 1966; Muray and Renard, 1891). 

Since this first observation, the exploration techniques to detect these geological objects 

have significantly improved and lead to the discovery of numerous high temperature 

hydrothermal systems on fast spreading ridges (East Pacific Rise), slow to ultra-slow 

spreading ridge like the Mid Atlantic ridge and the South West Indian Ridge (German et 

al., 2016). Other submarine hydrothermal systems have been discovered in back arc basin 

of subduction zone (Craddock and Bach, 2010). These high temperature hydrothermal 

systems are ubiquitous along the ~60000 km of ocean ridge and ~23000 km of subduction 

zone. 

Since the 1990s, the impact of low temperature venting (<120°C) has been also questioned 

with the discovery of hydrothermal springs at the Baby Bare seamount in the Cascadia 

basin, which were found by heat flux anomalies near the seamount (Wheat and Mottl, 

2000). Baby Bare is a volcanic seamount where hydrothermal water springs out at 60°C. 
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The chemical compositions of these fluids are marked by basalt alteration and sediment 

interactions at this temperature (~60°C). Another low temperature hydrothermal system has 

been discovered surprisingly, in 2000, during the exploration of a fossil Ocean Core 

Complex outside the ridge axis in the North Atlantic (Kelley et al., 2001). This system is 

called Lost City, and has a different chemical composition of fluids compared to high 

temperature systems with pH values higher than 9 (up to 12) and high alkali concentrations 

(Früh-Green et al., 2003; Von Damm, 2001). It represents a direct analog of the actual 

hyperalkaline springs that can be found on ophiolites; note withstanding that percolating 

water is of meteoric origin rather than seawater at Lost City. This type of fluids leads to the 

formation of carbonated chimneys at submarine discharge and travertines on the ophiolites 

(Barnes et al., 1978; Chavagnac et al., 2013a, 2013b; Früh-Green et al., 2003). 

Hydrothermal systems are ubiquitous and the discharging fluids are located at the interface 

between the lithosphere (which hosts tectonic and magmatic process) and the hydrosphere 

(which regulates the thermohaline circulation). These fluids participate in the heat and 

matter exchange between these two reservoirs. Recently, Resing et al., (2015) showed that 

traces of hydrothermal plumes indicated by high Fe concentration in the water column, are 

found as far as 4300 km off the EPR axis. This highlights the impact of hydrothermal 

activities on the biogeochemical cycles on a wide/global scale. Moreover, several studies 

have linked magmatic activity at the ridge axis to changes of fluid compositions on fast 

spreading ridges. The chemical response recorded by hydrothermal fluids are still to be 

identified on the slow spreading ridge context where tectonic processes are more important 

than magmatic ones. It thus appears necessary to study the hydrothermal fluids at the 

interface between the lithosphere and the ocean in slow spreading ridge in order to better 

constrain the chemical exchange between them and as a response of crust accretion process. 

A submarine hydrothermal system can be summarized into three areas: 1) the recharge 

zone, where cold and oxidizing seawater percolates into the ocean crust through 

cracks/fractures; 2) a reaction zone, where seawater already modified at low temperature, 

will acquire its final composition at high temperature and pressure conditions during water–

rock interactions; 3) the discharge zone, where the ascending hydrothermal fluid discharges 

into and mix with deep seawater. 

The upflow of these fluids is triggered by density difference with proximal fluids and their 

relative buoyancy (Bischoff, 1991; Fontaine and Wilcock, 2007; Lowell et al., 1995). This 

difference originates from the phase separation process, linked to the salinity, the 
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temperature and the pressure of the fluid in the reaction zone (Bischoff, 1991; Bischoff and 

Rosenbauer, 1984; Bischoff and Rosenbauer, 1988; Driesner, 2007; Driesner and Heinrich, 

2007; Foustoukos and Seyfried, 2007). The phase separation process is characterized by 

the formation of a vapor phase with low salinity and a brine phase with high salinity. The 

proportions of vapor and brine are dependent on the P and T conditions of phase separation. 

This process leads to a wide diversity of fluid compositions of black smokers depicting the 

various P and T conditions governing the reaction zone of the systems, and the extent of 

water-rock reactions (German and Seyfried, 2014). 

Hydrothermal fluids emanating at the seafloor are excellent indicators of deep processes 

which are difficult to attain otherwise, as it would require drilling a too high temperature, 

e.g. Leg ODP 158 at the TAG hydrothermal field (26°N MAR), or a direct comparison to 

ophiolites, whose complex tectonic histories severely limit inter comparisons. Chemical 

indicators do exist and are used to assess the P and T conditions of water-rock interactions, 

such as a geothermobarometer based on Quartz solubility estimated through Si 

concentrations in the fluid, and a geothermometer based on Fe/Mn ratios in fluids, the latter 

being controlled by the equilibria with greenschist facies minerals. 

The Lucky Strike hydrothermal field (LSHF) is located 400 km south-east of the Azores 

islands on the Mid Atlantic Ridge (37°N). It was discovered in 1992 during the FAZAR 

cruise (French and American Zaps and Rocks) that aimed at studying ridge segments via a 

multidisciplinary approach (Langmuir et al., 1997, 1992). During the first dredge, 

hydrothermal chimneys were collected together with pieces of fresh basaltic glass, which 

indicated that recent volcanic activity and hydrothermal activity were present at the 

segment center. The following year, a sampling cruise was organized to study this 

hydrothermal field. It revealed that the LSHF was the largest hydrothermal field known 

worldwide (~1 km2; Langmuir et al., 1997; Von Damm et al., 1998). Since 1992, the field 

has been characterized for biology, geochemistry and geophysical surveys which made the 

Lucky Strike hydrothermal field one of the best known on the MAR (Fouquet et al. 1995; 

Lee Van Dover et al. 1996; Singh et al. 2006; Escartin et al., 2008 ; Barreyre et al., 2012). 

However the dynamic of hydrothermal circulation and its response to deep crustal 

processes are still to be characterized. 

These observations have motivated the scientific community to monitor continuously 

seafloor processes by installing a deep-sea observatory at Lucky Strike. This observatory, 

as part of the EMSO project, benefited from the development of the technology for near 
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real time transmission of biological, chemical and geophysical data through acoustic and 

satellite communications (Colaço et al., 2011). This program contributes to the fine 

characterisation of the hydrothermal dynamic at Lucky Strike. In the frame of this 

observatory, hydrothermal fluids have been collected since 2009, providing a wide spatial 

and temporal survey, which is unique on a slow spreading ridge (Chavagnac et al., 2015). 

This thesis is aimed to characterize deep processes as recorded by chemical composition of 

focused fluids and acquired within this observatory, and to link these variations to other 

geophysical and/or biological monitoring. This thesis is composed of 6 chapters. 

In a first chapter, I review the state of the art on the oceanic crust and its alteration products 

by interaction with seawater. I also summarize the hydrothermal circulation in terms of 

fluid types (i.e. hot vs. cold) and the anatomy of a hydrothermal cell. 

In a second chapter, I present in detail the knowledge of the Lucky Strike hydrothermal 

field since its discovery till the set-up of the deep-sea observatory that allowed high 

resolution characterisation of the hydrothermal system from different domains. Indeed the 

multidisciplinary approach used aat this deep sea observatory leads to an excellent 

characterization of the geophysical, geological , biolological and geochemical features of 

this hydrothermal field. 

The third chapter presents in details the material, the instruments and the methods used 

during this thesis to sample and analyzes hydrothermal fluids. This chapter is a prerequisite 

to attest on the quality of presented datasets regarding elemental concentrations (Cl, SO4, 

Br, Ca, Na, K, Si, Mg, Fe, Mn, Sr, Rb, Cs, Li, and REE) and isotopic composition (87Sr/86Sr, 
7Li/6Li, and 143Nd/144Nd). 

The three following parts present the results from this thesis in the form of scientific 

publication that are either submitted or in preparation for submission in international 

scientific journals. 

Chapter 4 was submitted to Geochimica et Cosmochimica Acta in July 2016. This article 

focuses on the spatial variation of fluid composition to propose a new model of 

hydrothermal circulation at the scale of the whole Lucky Strike hydrothermal field. Venting 

sites were classified according to their chlorine concentrations and their location compared 

to a central fossil lava lake. Geochemical indicators are used to infer pressure and 

temperature conditions taking place during water-rock interactions. The discovery in 2013 

of a new active site named Capelinhos, located far from the fossil lava lake, allows the 
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reinterpretaztion of the hydrothermal pathways underneath the Lucky Strike hydrothermal 

field. Capelinhos fluids are the most depleted in Cl compared to the other sites and have 

higher Fe and Mn, which indicates a higher temperature in the reaction zone. These results 

are not indicative of a deeper origin of the fluid but rather a rapid upflow toward the seafloor 

with a limited re-equilibration and efficient brine segregation. 

Chapter 5 is based on the model proposed in chapter 4, and focuses on the chemical 

variabilities of focused fluids since its discovery in 1992 till 2015, with our dataset obtained 

through the deep-sea observatory between 2009 and 2015. First, we assess the temporal 

variability of the phase separation P and T conditions through Si-Cl indicators. These 

results highlight an alteration cycle following a magmatic replenishment of the axial 

magma chamber in 2008 and 2010, as well as seismic activity in 2009, 2011 and 2012. The 

second part presents the isotopic compositions of Sr and Li analyzed for the fluid samples. 

The Li isotopes indicate a relatively fresh substratum whereas the Sr geochemical cycle 

indicates a more complicated behavior for 23 sites probably due to subsurface processes. 

The chapter 6 investigates the REE and Nd isotopic signatures of focused and buoyant 

hydrothermal fluids at the Lucky Strike hydrothermal field. Previous REE studies have 

been performed either at the scale of one single hydrothermal field or by comparison to 

other hydrothermal fields on the global scale. The Lucky Strike hydrothermal field is a 

unique opportunity to investigate the distribution of REE over a wide range of chlorinity 

and at the scale of a hydrothermal field. The other part of the chapter focuses on the buoyant 

plume forming at the mixing zone between pure hydrothermal fluid and seawater. This is 

the first study, to provide the dissolved REE concentrations in this zone. The results show 

that these fluids have an impact on the REE elemental and Nd isotopic composition of the 

deep seawater. 

To conclude, I will summarize the main progress this thesis brought to our knowledge of 

the Lucky Strike hydrothermal field system.  
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11 Mid Ocean ridges 

The mid-ocean ridges (MOR) are submarine mountains that expand over ~60000 km long 

and 5 to 30 km width (Macdonald, 2001). The chain is the most active volcanic system on 

earth and, together with subduction zones and transform faults, define the boundaries of 

tectonic plates (Fig I - 1). They mark the location where oceanic crust is formed by the 

ascension of mantle rock by advection. However, the MOR have shown to be crosscut by 

numerous transform faults tens to hundreds of km in length 

1.1 Morphology  

The morphology of Mid Ocean Ridges depends on the spreading rate and of the rate of melt 

production, which are generally related, although there may be exceptions to the rule. This 

spreading rate varies from 18 cm/year along some segments of the East Pacific Rise (EPR) 

to 0.7 cm/year at the South West Indian Ridge. On the basis of the spreading rates, a 

classification of 3 types of ridge has been drawn (Fig I - 2, Macdonald, 2001). 

The ridges with a full spreading rate between 1 and 5 cm/year are called “slow spreading 

ridges”. They are characterized by a deep axial valley, the “rift”, coinciding with the 

spreading axis. The rift is 30 km wide and 1 to 2 km deep, bordered by elevated lithosphere 

(MAR 37°N, Fig I - 2). 

From 5 to 9 cm/year spreading rate are called “intermediate spreading ridges”. They are 

characterized by a pronounced rift with a slightly elevated platform. 

Ridges with a spreading rates between 9 and 18 cm/year are “fast spreading ridges”. They 

are characterized by an axial dome or axial high structure elevated by several hundred 

meters and by a discrete rift valley. 
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Figure I - 2 Cartoon of the ridge morphology dependent on the spreading rate. This show the fast, 
intermediary and slow spreading ridge type (modified from MacDonald 2001). 

1.2 Structure of the oceanic crust 

Most of our knowledge on the oceanic crust comes from seismic refraction data. Direct 

sampling is done by dredging but offers very limited knowledge on structure of the seafloor 

as for the exact positioning, representativeness of the samples recovered and structural 

relations between samples from a same dredge. Another part of the seafloor knowledge 

comes from ophiolite studies but superimposed complex tectonic history might bias their 

structure and composition. 

Therefore, for a long time, the global data available to study the oceanic crust structure 

were seismic velocity profiles. The crust was shown to be ~7 km thick and rather constant 

in thickness over the oceans . Studies of the propagation rates of the P waves provided 

evidence for a model composed by different layers, named layer 1, 2 and 3, which are 

supposed to reflect a change in the nature of the rocks: sediments, basalts and gabbros 

respectively. Sub layers were also identified, especially within the layers 2 and 3. 
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Figure I - 3 Classical representation of the oceanic structure associated to P wave’s velocity. Modified from 
Pomerol et al., 2006. 

The layer 2 is composed of 2 sublayers: 2A and 2B. The layer 2A has a maximum thickness 

of 1 km and has density lower than the underlying sublayer 2B (0.5 to 1 km thick). This 

low density is probably due to higher porosity rather than to a change in the nature of the 

rocks: pillow basalts and basaltic flows for the layer 2A and basaltic dikes (the sheeted dike 

complex) for layer 2B. Off the ridge, aging tends to minimize the differences between 

layers 2A and 2B due to precipitation of hydrothermal minerals reducing the porosity. 

However, the conversion of primary minerals into secondary minerals concurs to lower the 

density, illustrating the difficulty to infer lithology from seismic data alone. Layer 3 

represents the gabbroic section of the crust (Fig I -3). This section is the deepest part of the 

crust. The separation between gabbros and mantle rocks is inferred to be observed on 

seismic profiles by a sharp increase in seismic wave speed. This boundary was named after 

its first observer, and is called Moho. This defines the limit between the crust and the upper 

mantle. 

The precise lithology of the oceanic crust has been known thanks to scientific drilling 

programs. The first one was the MoHole project in the late 50’s and early 60’s that 

developped the instrumentation to drill the seafloor, especially dynamic positioning of the 

vessels that allows a perfectly stationary position. Although the MoHole project did not 

reach its primary objective (to drill a well down to the Moho), it motivated scientists to 

launch an international program with less ambitious but more realistic targets. These 
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drilling expeditions last since 1968 with different administrative forms (Deep Sea Drilling 

Project 1968-1983; Ocean Drilling Program 1985-2003; Integrated Ocean Drilling 

Program 2003-2013 and International Ocean Discovery Program 2013-2023).  

Along with the drilling and detailed actual ocean crust lithologies, the general structural 

model, which is based on seismic layers, has been enriched by field truth as shown by 

Figure I - 4.  

 

Figure I - 4 Modified from Carlson (2011). Seismic and lithologic profile from 2 IODP core, 504B on the Nazca 
plate and 1256D on the Cocos plate. Tr: Transition zone; G: Gabbros section. 

This figure confronts the seismic profile and observed lithologies (determined on drill 

cores) of two drill-holes of the oceanic crust, the hole 504B from the Nazca plate and 1256D 

from Cocos plate. The lithology of the oceanic crust is not as homogeneous as indicated by 

the model (Fig I -3), at least in terms of thickness of the lithologies. Especially, these 

profiles show a normal correlation between seismic layer and lithologies for the 1256D 

hole while the layer2/3 boundary at 504B hole is found in the sheeted dikes section (Fig I 
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-4). At 504B, the 2300m thick core doesn’t show gabbros but has seismic profile indicating 

the layer 3 is present. This highlights the fact that the oceanic crust is more heterogeneous 

than previously thought based on seismic profiles alone. Seismicity reflect physical 

properties rather than lithologies such as porosity/cracks vs. rock type.  

 

22 Hydrothermal Circulation 

2.1 Discovery 

The first description of metalliferous deposits appeared in 1891 from sediments sampled 

by the HMS Challenger expedition at the Eastern flank of the East Pacific Rise (39°N; 

Muray and Renard, 1891). These deposits were described as brown to red sediments. These 

observations will only be re-investigated in the middle of the 19th century. Iron and 

Manganese enrichments were again found in sediments near the crest of the East Pacific 

Rise (Bostrom and Peterson, 1966) and elsewhere near the mid-ocean ridges (Arrhenius 

and Bonatti, 1965; Dymond et al., 1973; Skornyakova, 1965; Von der Borsch and Rex, 

1970, among others).  

In parallel in 1947, a Swedish Deep Sea Expedition was organized to perform the first Heat 

Flux measurement on the Ocean Floor. After this pioneering expedition, a whole body of 

measurements accumulated. The emergence of the plate tectonics concept offered a 

conceptual frame to interpret this wealth of data. Surprisingly, it revealed an inconsistency 

between measured heat fluxes and the ones predicted by models of conductive cooling of 

the plate in a spreading context. Especially, measurements conducted at ridge crests 

revealed a wide range of values, globally lower than expected by modelling (Fig I -5; Davis 

and Elderfield, 2004; Elderfield and Schultz, 1996; McKenzie, 1967; Stein and Stein, 

1994). These observations led scientists to propose other mechanisms than conductive 

cooling to explain the heat fluxes of the oceanic crust and find the “missing heat”. 
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Figure I - 5 Measured Heat Flux as a function of Age of the oceanic crust. From Elderfield and Schultz (1996). 
Dashed line is the predicted heat flux based on geophysical model based on (McKenzie, 1967). Solid line is 
average measurements of heat flux by thermistor. The discrepancy between observed and predicted heat 
fluxes is very low after 65 Ma and maximal for Age < 1Ma, at ridge axis. 

Bostrom and Peterson (1966) linked the occurrence of Fe and Mn with high heat flux at 

and near the crests. They proposed that a deep seated hydrothermal fluid originating from 

magmatic processes was responsible for this enrichment. This interpretation was supported 

by Lister (1972) who proposed hydrothermal circulation as a vector of heat in the crust, and 

developped models of circulation for variable physical setting, e.g. permeability of the 

substratum. As opposed to the magmatic solution, he proposed that circulation of cold 

seawater penetrating into the crust was taking place at the ridge valleys while the hot and 

focused discharge was taking place at seamounts due to physical constraints. 

Soon after, the first hydrothermal site at mid-ocean ridge (MOR) was discovered in 1977 

at the Galapagos Spreading center with fluids as high as 17°C discharging in a 2°C seawater 

(Corliss et al., 1979) and a specific chemo–synthetic fauna. Over decades, many 

hydrothermal vents were discovered over the 60000 km of mid ocean ridges but also in 

back-arc basin, and especially at higher temperature (up to 400°C) with hydrothermal field 

composed by the well-known black smokers (Fig I -6; Bowers et al., 1985; Edmonds, 2008; 

James et al., 1995; Koschinsky et al., 2008; Schmidt et al., 2007; K. L. Von Damm et al., 

1985; among others). The discovery of the hydrothermal vents along the MORs havs been 

one of the major discoveries during the last 40 years in terms of geophysical, biological 

and geochemical processes.  
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Figure I - 6 Photograph of « Active Pot » black smoker in the Irinovskoe hydrothermal field (13°N) taken 
during the ODEMAR cruise in 2013 by ROV dive Ifremer/CNRS. 

Later another form of hydrothermalism has been discovered. This is the low temperature 

systems as for example the Baby Bare hydrothermal systems (Davis et al., 1999; Wheat et 

al., 2002), and the Lost City hydrothermal field (Delacour et al., 2008; Früh-Green et al., 

2003; Seyfried et al., 2015). These are harder to detect because they don’t lead to the 

formation of a wide plume or temperature anomaly. Furthermore, obducted oceanic crust 

can be found on the continent, they are named ophiolite. The ophiolite often shows 

hydrothermal springs of low temperature (Barnes et al., 1978; Neal and Stanger, 1983; 

Launay and Fontes 1985; Abrajano et al., 1988; Monnin et al., 2014;Chavagnac et al., 

2013b) and are an analog of the Lost City hydrothermal field. Nevertheless, these systems 

lead to a new hydrothermal model for the oceanic crust which shows that water circulation 

and hydrothermalism occur everywhere in the ocean crust (Fig I -7). 
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Figure I - 7 Cartoon of hydrothermal circulation illustrating the geographical extent of fluid (High or low 
temperature) within the crust. 

2.2 High temperature hydrothermal systems 

The hydrothermal circulation is due to the penetration and percolation of deep seawater 

into the ocean crust as schematized in Fig I - 8 for homogeneous magmatic crust. The 

penetrating seawater chemistry is changed during this process as water-rock interaction 

takes place. The whole hydrothermal circulation path is composed of 3 main compartments: 

(1) the recharge zone; (2) the reaction zone; (3) the upflow zone.  
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Figure I - 8 Cartoon of the general hydrothermal circulation cell (modified from Alt, 1995). This shows the 
general composition of the oceanic crust. 

Recharge zone 

The recharge zone begins with penetration of a cold (2–4°C) oxidizing deep seawater into 

the oceanic crust. Seawater will interact with the basaltic substrate and will progressively 

be transformed into a higher temperature fluid and eventually into a black smoker type 

hydrothermal fluid (Kawahata et al., 2001; Magenheim et al., 1995; Teagle et al., 1998, 

2003). The infiltration is made possible thanks to important fracture networks and high 

porosity into the shallowest layers of extrusive volcanic crust. A distinction can be made 

between the “open” and the “confined” circulation. The superficial fractured part of the 

seafloor constitutes the “open” circulation and is associated to low-temperature water-rock 
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interaction (<40°C; Alt, 1995; Alt and Teagle, 2003) and the “confined” circulation only 

concerns the lower porosity substrate (a few percent of total seawater infiltrated) at higher 

temperature. This model of percolation is illustrated in Fig I -9.  

 

Figure I - 9 Cartoon of the recharge zone of a hydrothermal system (modified from Alt, 1995) 

The figure I - 9 shows an oxidizing cold seawater interacting with the basaltic substrate and 

forming secondary mineral of iron oxy-hydroxides (Goethite and Hematite; Fig I -5, 6) 

which replace the Fe rich olivine and confers a reddish coloration to the rock. In the altered 

rock, these Fe oxy-hydroxides are found associated with smectite and other clay-like 

minerals (celadonite and nontronite; Fig I -9, 10). This affects the chemistry of seawater by 

up-taking Mg, K, Li, Rb and Cs (Wheat et al., 2010). 

As the fluid penetrates deeper in the crust, it meets more reducing conditions at higher 

temperature which trigger the precipitation of sulfur (pyrite and chalcopyrite). Oxygen 

isotope studies of these mineral assemblages show temperatures as high as 170°C, which 

is the limit of seawater infiltration within the extrusive volcanic layer (Alt 1995; Fig I -9). 

The transition between the extrusive volcanic layer and the sheeted dike layer is 

accompanied by steep temperature and permeability gradient. The bottom temperature of 

the extrusive layer ranges from 100 to 150°C while the top sheeted dike layer is marked by 

temperature ranging between 250-350°C in the greenschist facies (Alt, 1995; Teagle et al., 

1998). Above 200°C the Mg fixation will result from chlorite precipitation (Saccocia and 
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Seyfried Jr, 1994). The formation of hydrated minerals will lead to acidification of the fluid, 

enhancing the chemical alteration of the substrate. Many reactions occur in the sheeted dike 

complex such as replacement of igneous plagioclase by hydrothermal albite, olivine is 

replaced by serpentine (by chlorite if Al is available) and clinopyroxene by actinote (Bach 

et al., 2006; Berndt et al., 1988). Pores and veins are filled with sulfides (pyrite, pyrrhotite 

and chalcopyrite, Delaney et al., 1987; Hannington et al., 1998).  

Furthermore, anhydrite precipitates when the seawater teperature exceeds 150°C (Bischoff 

and Seyfried, 1978), a reaction which leads to extensive Ca, Sr and SO4 fixation. The 

remaining SO4 is reduced to sulphide form. The extent of Sr fixation and its implications 

in the resulting isotopes are not well constrained (Berndt and Seyfried Jr, 1993; Palmer, 

1992). Anhydrite recovered from drilling programs shows precipitation temperatures as 

high as 250°C (oxygen isotopes). 

Alkali metals as K, Li, Rb and Cs are incorporated into secondary minerals at relatively 

low temperature (up to 150°C) and are leached from the host rock at higher temperature 

(above 150°C). At 150°C, Li is still incorporated in secondary minerals and is leached at 

higher temperature (375°C; Seyfried Jr et al., 1984). 

The reaction zone 

The reaction zone is the area where the fluid reaches its “maturity”, i.e. becomes a black 

smoker-type fluid. Its lowest temperature limit is 350°C or above. Theoretical models 

predict that this temperature is reached at 1.5 to 2 km depth. The fluid chemistry will be 

conditioned by mineral equilibria phases such as plagioclase and epidote (Berndt et al., 

1989; Seyfried Jr et al., 1991). 
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Figure I - 10 Diagram showing the mineral assemblage found as a function of depth in the basaltic 
substratum of the 504B Hole from IODP leg. This is thought to represent a good example of a recharge zone 
in a basaltic substratum in general (Alt, 1995). 

The rocks from the base of the sheeted dike complex do not show Mg enrichment (Alt et 

al., 1989). This can be attained either by low W/R ratio leading to restricted exchange with 

seawater, or by interaction with an Mg-depleted fluid caused by secondary mineral 

precipitation in the shallower stages of alteration.  

Upflow zone 

The upflow zone is defined as the area where the matured hydrothermal fluids are 

transported upward, due to their lower buoyancy, to reach shallower conditions and 

eventually the discharge at the seafloor. The fluid is supposed to preserve most of its 

chemical signature inherited from the reaction zone thanks to rapid and focused fluid flow, 

the main cause of contamination being mixing with seawater in the subsurface (Edmond et 

al., 1979; Ravizza et al., 2001). The maximum buoyancy is acquired at conditions generally 

close to the critical point of seawater as the density of the fluids drops (Bischoff, 1991; 

Fontaine et al., 2008; Norton, 1984). The residence time in the upflow zone is unknown but 
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supposing that the fluid velocity within the seafloor is equivalent to the one of the outflow 

within black smokers (0.7-5m.s-1), the residence time for a 2 kmbsf reaction zone would be 

in the order of one hour (Alt, 1995; Delaney et al., 1987; Lowell et al., 1995). However this 

assumption is excessive and really should compose the lower limit of residence time 

evaluation. Moreover, others evaluated the residence time to be less than 3 years, based on 

Ra isotopes (Kadko and Butterfield, 1998). 

The Stockwork formation 

The stockwork is the shallowest part of the upflow zone and therefore the last place where 

water-rock interaction occurs before fluid discharge. Studies of stockworks from black 

smokers were conducted by submarine observations and through the study of ophiolitic 

analogs. Stockwork knowledge has greatly benefited from an IODP program that aimed at 

drilling into the hydrothermal field of TAG (Trans-Atlantic Geotraverse) to study the 

stockwork underneath. This successful operation drilled as deep as 125mbsf into the 

subsurface underneath the black smoker field. Their results revealed the hydrothermal 

stratigraphy and mineralogy (Fig I -11). This stockwork showed a typical Volcanogenic 

Massive Sulfide (VMS ) deposits structure comparable to deposits from Oman or Cyprus 

ophiolites (Hannington et al., 1998). The stockwork is mostly composed of clastic breccias 

(sulfide debris from collapsed hydrothermal chimneys, pyrite clasts) in variable matrix 

(silica and anhydrite). The clasts are composed of former deposited minerals that have been 

reworked to form this consolidated breccia. The reworking is probably due to episodic 

seawater entrainment and relative discharge intensity variations. Intense discharge of high 

temperature black smoker fluid will entrain seawater into the mound. If the entrained 

seawater is sufficiently hot (above ~150°C, Bischoff and Seyfried, 1978), anhydrite will 

precipitate and form an anhydrite cemented breccia (with pyritic clasts). This anhydrite 

matrix will act as an impermeable cap and concur in focusing the high temperature fluid 

(Campbell et al., 1984). Along with anhydrite, pyrite and chalcopyrite are found to 

precipitate as well (Petersen et al., 2000). During lower intensity episodes of high 

temperature fluid discharge, the anhydrite cap is not sustained and interaction with cold 

oxidizing seawater will dissolve the anhydrite framework (by retrograde destruction of 

anhydrite) which will lead to the collapse of the hydrothermal mound (Petersen et al., 

2000). In the deepest part of the stockwork, at 125mbsf, the mineralogy corresponds to the 

greenschist facies with chloritized basalt breccias forming the quartz and chlorite 

stockwork (Fig I -11; Petersen et al., 2000).  
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Figure I - 11 Cartoon of the TAG hydrothermal field and hydrothermal circulation and mineralogy in the 
subsurface inferred from 4 drilled hole (modified from Hannington et al., 1998 and Tivey, 2007). 

The discharge 

At the discharge, the hot acidic and reducing fluid mixes with the cold slightly basic and 

oxidizing seawater. This process provokes the precipitation of particles that constitute the 

black smoke. These particles are composed of pyrrothite, Fe-rich sphalerite, pyrite, 

chalcopyrite, amorphous silica, Fe-oxyhydroxides, anhydrite and an undefined Fe-S ±Si 

and Fe-Si ±S phases, and trace quantities of barite, isocunbanite, wurtzite, covellite and 

marcasite (Mottl and McConachy, 1990). When discharging, these particles are further 

dispersed within the plume and sediments. These particles were long thought to consume 

massively the metals concentrated in the hydrothermal fluid. Mottl et al., 1990 

demonstrated that withtin the first 22m of the plume, only ~35% (±25%) of Fe injected to 

the ocean are found in the dissolved form. But recent studies have shown that the 

hydrothermal fluids may have a broader effect on ocean chemical budget than previously 

thought (German et al., 2016; Resing et al., 2015). Especially, a plume of dissolved iron 

from the EPR was followed up to 4300 km to the west of the ridge in the Pacific Ocean 

(Resing et al., 2015). 

Furthermore, the precipitation of minerals occurs at the first contact between seawater and 

hydrothermal fluid. This contributes to the formation of hydrothermal chimneys that can 

be tens of meters tall. Figure I - 12 presents the growth of hydrothermal chimney from the 
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juvenile stage to a more mature stage, and the associated mineral composition from the 

inner wall to the outer walls. 

When hydrothermal fluids meet seawater, a thin ring of anhydrite will from, precluding 

extensive early mixing (stage 1, Fig I -12). The Cu-Fe sulphides will then grow into the 

inner wall of the chimney and initiate a more complex sulphide mineralogy (Haymon, 

1983). This is illustrated in the stage 2 in figure I - 12. The chimney growth occurs at three 

locations, outwards and upwards by anhydrite precipitation, and inward by Cu-Fe sulphide 

precipitation. 

 

 

Figure I - 12 Modified from Haymon, (1983). Schematic growth of hydrothermal chimney in 2 stages (1: 
juvenile stage; 2: mature stage). 

2.2.1 Control on fluid chemistry of black smokers 

Physical parameter 

The chemistry of the fluids is determined by many variables among which temperature is 

a major one. Two temperatures are of importance in a hydrothermal system: (1) the 

temperature measured at the vent at the seafloor during the dives and (2) the temperature 

inferred for the reaction zone which is deduced based on the fluid chemistry. In the absence 

of such chemical data the minimum temperature in the reaction zone is given by the highest 

temperature measured in the vent, as processes during the upflow such as conductive 
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cooling and mixing with seawater (or hydrothermal seawater) will systematically lead to 

lower temperature at the seafloor relative to reaction zone temperature. The exit 

temperature can reach 407°C which is the highest temperature ever measured at the 

discharge (Haase et al., 2007). Temperature is an important parameter that can fluctuate 

with time in response to tectonic/magmatic activity (Von Damm 1995, Tivey 1990, EPR) 

but also in response to tidal pressure change and to variability of the permeable system 

(Barreyre et al., 2014). Some temperature variations such as abrupt drops (from 3 to 160°C 

from initial temperature) or increases (10°C increase) at short time scale (from few hours 

to few days) are observed but remain unexplained (Barreyre et al., 2014). 

The second important physical parameter is the pressure which governs the thermodynamic 

equilibria and determines the occurrence of the phase separation. The same distinction as 

temperature is made for pressure with the dichotomy of seafloor pressure, which is the 

pressure evaluated at the discharge, and the reaction zone pressure. The seafloor pressure 

can be approached using a simple water column depth relation. Pୱ୤ ൌ ρ ൈ g ൈ h 

Psf is Pressure at the seafloor in Pascal; ρ is the volumic mass (~1000g/cm3); g (9.8m.s-2) is 

the gravitational acceleration and h is the length of the water column considered in meters. 

To evaluate the depth below the seafloor based on pressure, we account for the different 

volumic masses of the water masses (water column seawater vs. below seafloor hydrostatic 

pressure). We therefore use a global volumetric mass representative of the hydrothermal 

cell: ρcold=800g/cm3 (Fontaine et al., 2007). 

The reaction zone pressure is determined from chemical indicators for fluid-rock reaction 

or phase separation. Because the hydrothermal cell is limited by the brittle/ductile boundary 

at the “cracking front zone”, seismic data can provide information on the maximum depth 

of water circulation. The maximum epicenter depth of seismic activity can also be 

interpreted as imaging the cracking front produced by cold seawater. This maximum depth 

can be determined by chemistry when the estimated pressure is converted to depth. This is 

supported by recent publications comparing depth of the hydrothermal system estimated 

by seismic data and depth estimated by geochemical geothermobarometer (Fontaine et al., 

2009).  
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Phase separation 

The hydrothermal upflow is triggered by changes in density when approaching conditions 

of phase separation (Bischoff, 1991; Norton, 1984). 

Phase separation is a process during which the NaCl-rich solution will form a “vapor” phase 

depleted in NaCl and a “brine” phase enriched in NaCl. The conditions required to have 

phase separation are P and T above the two-phase boundary (experimentally determined; 

Fig I -13). These conditions depend on the initial NaCl concentration. Once phases are 

separated, the extent of NaCl enrichment is dependent on P and T, independently from the 

initial NaCl concentration. Phase separation of NaCl solutions has motivated many 

experimental studies since the black smoker discovery (Bischoff, 1991; Bischoff and Pitzer, 

1985; Bischoff and Rosenbauer, 1988, 1984, 1985). Therefore, the two-phase boundary and 

critical point for seawater equivalent solution are well known nowadays (Fig I -13). When 

seawater penetrates the oceanic crust and heats gradually, the solution will eventually cross 

the two-phase boundary. If the solution crosses the curve at conditions below the critical 

point (sub-critical conditions), a low salinity vapor is produced and segregated from a high 

salinity solution. This is called “boiling”. The gases contained in the initial solution will 

tend to concentrate within the vapor phase while salts and metals will be present also but 

at lower concentration. 

If the solution crosses the two-phase curve at conditions above the critical point (super-

critical conditions), a salt-enriched liquid phase will “condense”. During this process, small 

droplets of high salinity will form, and the conjugate vapor phase will remain mostly 

identical. Phase separation is therefore an efficient process occurring within the oceanic 

crust to modify the NaCl concentrations of circulating fluids. If a two-phase fluid is brought 

to single phase conditions and no segregation of either phases has occurred , vapor and 

brine phases will mix to the initial composition. Therefore, for phase separation to 

efficiently change the chemistry of the fluid, a physical segregation of both phases needs 

to be operant. Many studies have focused on the physical process explaining the 

segregation of both phases (Fontaine et al., 2007; Fox, 1990; Goldfarb and Delaney, 1988; 

Fig I -14).  

Chemically, the Na and Cl concentrations will be modified principally through this process. 

The P and T conditions beyond the two-phase curve will dictate the relative abundance of 

the two phases. The final composition of the fluid at the discharge will reflect more or less 
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the P–T conditions of the phase separation depending on the efficiency of the phase 

segregation (Fig I -14). As presented in Figure I - 14, the brine and vapor phases will have 

different flow dynamic, due to the wetting effect of the liquid phase, or brine. The latter 

will condensate on the inner wall and fill the backwater porosity leading to its storage 

(Fontaine et al., 2007). The vapor phase will preferentially flow through bigger channels.  

 

  

Figure I - 13 Pressure vs. Temperature diagram showing the two-phase boundary curve for seawater 
equivalent (from Charlou et al., 2000). Sites from the MAR are represented at discharge conditions. 
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Figure I - 14 From Fontaine and Wilcock, (2006), cartoon showing the brine and vapor segregation at depth. 

For the other elements, partition coefficients have been determined by several experimental 

studies near critical point conditions. The elements will partition into one phase or another 

independently of the initial concentration of the fluid (Berndt and Seyfried Jr, 1997; Pester 

et al., 2015; Pokrovski et al., 2005, Fig I -15). All the element will be enriched in the brine 

phase but the extent of that enrichment will be controlled by element affinity to the brine 



37 

 

or vapor phase. The partition coefficients can be derived in several manners. Figure I - 15 

shows the partition of several elements (Cu, Fe, Zn, M, Ca and Sr) as element normalized 

to Cl ratios as a function of Cl concentration on log–log diagram. These ratios display a 

linear correlation with Cl depicting partitioning during phase separation. At low Cl 

concentration, halite precipitates, and the concentrations of all the elements increase 

drastically due to a “volatility” effect. This is related to change in Na/Cl ratios during halite 

precipitation. Figure I - 15b and c show the partitioning of Ca and Zn respectively for 

different initial concentrations. Partitioning is defined as the slope Sv between the initial 

Cl concentration and the point of halite precipitation. These diagrams show that the 

partitioning doesn’t depend on initial concentration as Sv is constant at a value f ~0.66 for 

Ca and ~0.36 for Zn. 

 

Figure I - 15 From Pester et al., (2015), (a) shows the partitioning of elements M measured for different 
experimenst in the vapor phase. (b) and (c) show the partitioning for Ca and Zn with different starting fluid 
concentrations. 

Water Rock interaction 

Much of the chemical difference between initial fluid (seawater) and black smoker fluid 

can be attributed to water/rock interaction. In a first approximation, MORB is considered 

to be chemically homogeneous, although some local differences can appear, as at Lucky 

Strike where basalts are composed of enriched MORB due to the Azores hot spot proximity. 

The W/R ratio evaluates the amount of water in contact with a certain amount of rock, 
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which is required to explain the chemical composition of the fluid (Berndt et al., 1988; 

Edmond et al., 1979; Magenheim et al., 1995). Usually this is determined using “soluble” 

elements, which are quantitatively leached from the basalt. B and Li are generally good 

candidates as they are leached from the rock and not quantitavely removed from the 

solution through secondary mineral precipitation (Berndt et al., 1988; K. L. Von Damm et 

al., 1985). If an element is taken up into such mineral (e.g. hydrothermal plagioclase, 

chlorite, epidote, clay-like minerals), the W/R needs to be considered as a proxy of ongoing 

alteration because it is then not representative of the leaching of the host rock. Isotopic 

composition of solutions have also been used to infer the W/R ratio (Albarède et al., 1981; 

Chan et al., 1993; Foustoukos et al., 2004; Magenheim et al., 1995; Mottl et al., 2011; 

Shanks, 2001) and provide extra information because processes such as mass fractionation 

could modify the isotopic composition of a solution without noticeable or significant 

change in elemental concentration. This is the case for Lithium isotopic composition, that 

is influenced by clay minerals precipitation (Chan et al., 1993). 

The residence time of the fluid within the hydrothermal circulation cell is still unknown. It 

is estimated to be of the order of the hour within the upflow zones (Alt, 1995). These are 

based on flow rates of 0.7-5 m/s measured at the hydrothermal fluids discharge for a 2 km-

deep reaction zone and consistent with flow rates estimated by breccia analysis (Delaney 

et al., 1987). A residence time of less than three years was estimated based on radionuclides 

(228Ra/226Ra ratio) but is not representative of the upflow zone only, but rather of the onset 

of water-rock reaction temperature of 200°C (Kadko and Butterfield, 1998). The residence 

time is important because it determines the completion of chemical equilibria, steady state 

reaction. As reaction rates are temperature dependent, both temperature and residence time 

are key parameters in the control of the final fluid composition.  

A lot of information about fluid chemistry is provided by experimental studies that have 

been conducted even before the actual discovery of seafloor hot spring (Bischoff and 

Dickson, 1975; Bischoff and Seyfried, 1978; Hajash, 1975; Mottl et al., 1979; Mottl and 

Holland, 1978). These experiments aimed at understanding what changes occur when 

seawater is heated with basalt, and also when seawater is heated alone (Bischoff and 

Seyfried, 1978). 

Heating of seawater alone allowed the discovery of the formation of a new mineral capable 

of efficiently remove Mg from the solution, the Mg-hydroxysulfate-hydrate (MHSH; 

Bischoff and Seyfried, 1978). Precipitation of this mineral with anhydrite by heating 



39 

 

seawater alone already leads to considerable changes in the solution chemistry. 

Furthermore, the formation of MgSi hydroxide leads to a quantitative depletion of Mg from 

seawater and to a decrease of pH due to the relatively high proton concentration.  

Anions 

The sulfate is removed through two processes, precipitation of anhydrite and reduction into 

sulfide. Therefore there’s supposedly no sulfate left in a pure hydrothermal fluid. S is 

reduced as H2S and found in variable concentration in the fluids. The final sulfide 

concentration has two sources, which are the reduced sulfate as mentioned above but also 

basaltic sulphide leached from the rocks (Shanks, 2001).  

The chloride concentrations of the fluid can be found both increased and decreased 

compared to seawater, and are mostly if not completely conservative during water–rock 

reactions (except for halite precipitation). Therefore the factor controlling the Cl 

concentrations in fluids is the phase separation and segregation. Therefore, Cl 

concentrations are to a first order an indication of the occurrence of phase separation at 

depth and to a second order a way to estimate the P–T conditions of this phase separation. 

Bromide follows the same trend as chloride, as the large ionic radius is incompatible with 

most mineral lattices (Berndt and Seyfried Jr, 1997; Oosting and Von Damm, 1996; Von 

Damm et al., 1995). Therefore Br/Cl should not change during the processes involved in 

seafloor hydrothermal systems. Br will not be incorporated in the halite lattice. This allows 

checking on the halite precipitation/dissolution processes occurring at depth. The Br/Cl 

value of seawater are constant throughout the oceans, and so is the Br/Cl ratios of black 

smoker fluids. If Br/Cl of black smokers is lower or higher than for seawater, then halite is 

dissolving or precipitating at depth. 

Fluoride is present in seawater but its content decreases in the final hydrothermal fluid. It 

is more reactive than chloride and can be incorporated in the hydrated minerals.  

Cations 

The alkali metals 

Alkali metals in basalts are not particularly enriched compared to other rocks but these 

elements are preferentially leached by the fluids. Therefore, the hydrothermal fluids are 

enriched in Li, Rb, Cs and K. At low temperatures (up to 100°C), these elements are 

incorporated into the secondary minerals forming in the first step of seafloor alteration. Na 

is the most abundant cation in the hydrothermal fluids because it is closely related to 
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chloride concentration of the fluid and because they are both highly enriched in seawater. 

Na doesn’t behave conservatively and is taken up by the albitisation process. Therefore, the 

Na concentration in hydrothermal fluids is always lower than in seawater, especially when 

using the Cl normalized values.  

The alkaline earth 

Mg, Ca, Sr, Ba have different behaviors between each other. Mg is present in seawater as 

a major cation and decreases to zero in the final hydrothermal fluids due to secondary 

minerals precipitating along the hydrothermal cell (Bischoff and Dickson, 1975; Saccocia 

and Seyfried Jr, 1994). Usually the presence of Mg in the fluid is considered as a result 

from contamination by ambient seawater. Nevertheless, some studies have shown that 

hydrothermal fluid might mix in the upflow with altered/hydrothermal seawater, 

intermediate between seawater and mature hydrothermal fluid (black-smoker like; Ravizza 

et al., 2001). 

Calcium concentration values are found commonly enriched compared to seawater. Their 

variation are closely linked to the Na variations as while the latter is incorporated in the 

hydrothermal albite, Ca is leached from the magmatic anorthite as shown in the following 

equation (Berndt et al., 1989; Berndt and Seyfried Jr, 1993b). 

CaAl2Si2O8 + 2 Na+ +4 SiO2 (qtz) =2 NaAlSi3O8 + Ca2+ 

Based on this reaction, the Ca/Na ratio of the hydrothermal fluid can provide qualitative 

information concerning the albitisation at depth. 

Sr has variable behavior as both enrichment and depletion compared to seawater are 

observed. The observed Sr concentrations are not strictly related to Cl concentrations 

(Palmer, 1992). Most of the Initial Sr from seawater has been removed by anhydrite 

precipitation in the recharge zone at T>150°C, the extent of the remaining Sr is not well 

constrained yet. Ba concentrations are difficult to measure as BaSO4 might precipitate 

during discharge. Generally Ba is enriched in hydrothermal fluids compared to seawater. 

Transition metals 

These elements are strongly controlled by the redox state and temperature of the fluids. 

Several experiments showed their relation to temperature (Janecky and Seyfried Jr, 1987; 

Mottl et al., 1979; Mottl and Holland, 1978; Pester et al., 2011; Seyfried Jr and Mottl, 

1982). The Fe/Mn ratios have proved to be a valuable proxy for the temperature of 
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equilibrium and allowed the development of a geothermometer consistent with greenschist 

mineral facies (Pester et al., 2011). 

Iron is enriched in hydrothermal fluids compared to seawater, with concentrations as high 

as 20mM (Douville et al., 2002). It is closely linked to Mn which is the second most 

abundant trace metals. Zn is also important and can attain a few mM. Cu is less concentrated 

and its solubility decreases drastically below 300°C. Concentrations of tens of micromoles 

are reported in hydrothermal fluids (Von Damm 1995).  

Silica 

Si concentration in hydrothermal fluids is usually 100 times that of seawater. It is a major 

element and has become important to determine P and T conditions of the reaction zone 

assuming control by quartz precipitation (Foustoukos and Seyfried, 2007; Von Damm et 

al., 1991). The quartz solubility has been empirically determine in several study (Fournier, 

1983; Fournier et al., 1982; Foustoukos and Seyfried, 2007; Von Damm et al., 1991). The 

quartz solubility expression is shown as follow (Von Damm et al., 1991): lnሺܱ݉ܵ݅ଶ. ଶܱሻܪ݊ ൌ ܽ ൅ ܾ ൈ ln ሺߩሻ ൅ ቀܿ ൅ ௗ்ቁ ൅ ݁ ൈ ܲ/ܶ (1) 

Where P is in bars and T is in K, mSiO2 is in molality, and n is the hydration number of the 

dissolved silica, and the other coefficient are empirically determined (a=-2.32888; 

b=1.79547; c=-2263.62; d=0.00407350; e=0.0398808). Because density is dependent on 

NaCl concentrations, this expression is also dependent on Cl concentrations. 

Gazes 

Hydrothermal fluids contain different dissolved gazes (Charlou et al., 2002; Douville et al., 

2002). They define several groups, such as the noble gases (3He degassed from the mantle), 

the carbon based gases that are principally CO2 and CH4 (Charlou et al., 2002; Pester et al., 

2012), the hydrogen (Klein et al., 2009) and hydrogen sulfide originating from host rocks 

and reduced sulfate from seawater (Ono et al., 2007; Shanks, 2001) in addition to N2.  

In ultramafic environments, the CH4 can be abundant due to intense serpentinization 

occuring in subsurface. The highly reducing conditions favor the production of H2 and CH4. 

H2 is produced by olivine hydration reaction and CH4 is produced abiotically by the Fischer 

Tropsch reaction, like the Sabatier reaction (Boulart et al., 2013; Charlou et al., 2002). 
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2.3 Low temperature hydrothermal systems 

Ultramafic hosted low temperature hydrothermal systems: example of Lost City and a the 

continental analog at hyper-alkaline springs of Oman 

In December 2000, the Lost City Hydrothermal vent field was discovered on the Atlantis 

massif (30°N, Früh-Green et al., 2003; Kelley et al., 2002). The field is composed of several 

10’s of meters tall white chimneys composed of carbonate. The Atlantis massif is a former 

Ocean Core Complex where ultramafic material is found at the seafloor. On-going 

serpentinization of the peridotites produce these fluids at 40°C to 75°C. These fluids are 

very different from the other ultramafic hosted sites found on the MAR because the 

hydrothermal circulation is not driven by magmatic heat but rather by fracturation and 

exothermic reactions (Kelley et al., 2002). For example, the ultramafic-hosted Rainbow 

vent field has low pH and high H2S, H2 and CH4 which show that the fluid interacts with 

peridotite, gabbros and basaltic substratum at high temperature. In comparison, the Lost 

City hydrothermal fluids have high pH, low H2S and are enriched with H2 and CH4. They 

also have Ca concentrations enriched compared to those of seawater, but the K 

concentrations are equivalent to those of seawater. When hydrothermal fluid mixes with 

seawater, precipitation of Mg–hydroxide (brucite) and Ca–carbonate (calcite/aragonite) 

occurs and forms the chimneys. Recent studies of the fluids’ chemistry have suggested that 

the relatively high level of Si and trace elements such as Rb and Cs measured (Seyfried et 

al., 2015) was related to a plagioclase component in the hydrothermal circulation cell which 

is coherent with previous observations of “plagioclase peridotite” at the Atlantis massif 

(Tamura et al., 2008). 

This type of hydrothermal system is not exclusively observed in submarine environments. 

Ophiolites are pieces of ocean crust found on continents through tectonic movements 

termed obduction. One of the most famous and best preserved ophiolites is found in the 

Sultanate of Oman. Low temperature hydrothermalism also occurs in these environments 

through meteoric water percolation into the oceanic substratum and down into the 

ultramafic parts. In the Oman ophiolite, the hydrothermalism is manifested by 

hyperalkaline spring resurgence at lithological discontinuities (Barnes et al., 1978; 

Chavagnac et al., 2013b; Neal and Stanger, 1983). These fluids display clear similarities 

with the one from Lost City, the major difference being the salinity. They have high pH, 

up to 12, and are enriched in Ca and depleted in Mg and dissolved Inorganic Carbon (DIC). 
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At the hyperalkaline spring discharges, the contact between the Ca–OH type fluid depleted 

in DIC and atmospheric CO2 triggers the precipitation of carbonates. Another mechanism 

is found when hyperalkaline spring waters mix with run-off water (Mg and DIC enriched). 

The precipitates formed are the same as in Lost city (Aragonite/ calcite, Brucite and minor 

hydrotalcite; Chavagnac et al., 2013a). The carbonate precipitation leads to the formation 

carbonate concretion called travertines, which display a large geographical extent. They 

constitutes a potential analog for the carbonated chimneys of Lost City hydrothermal fields.  

 

 

Figure I - 16 Carbon and oxygen stable isotope of carbonate concretion from different settings. From Leleu 
et al. (2016) in Annexe 1, it shows the diversity of carbonate precipitation through stable isotope signatures. 

The study of these travertines are of major importance in domains such as biology of 

extreme environment (pH=12); paleo–chronology as it records environmental conditions at 

the time of the deposition and CO2 storage as it forms by consuming directly (hyperalkaline 
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spring alone) or indirectly (when precipitation occurs by mixing with the surface waters) 

the atmospheric CO2 (Clark and Fontes, 1990; Mervine et al. 2014). These travertines have 

been the object of a published study in which we conducted a multidisciplinary 

investigation involving petrographic observations combined with geochemical 

measurements (Mg and Sr for the trace element, and stable isotopes of C and O as well as 

Sr isotopes) and modelling of porosity and precipitation of calcite (Leleu et al., 2016). This 

publication is included as Annexe 1. 

 

RReferences 

Abrajano, T. A., Sturchio, N. C., Bohlke, J.K., Lyon, G. L., Poreda, R. J., Stevens 
C. M., 1998. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or 
shallow origin?: Chemical Geology, v. 71, p. 211–222. 

Albarède, F., Michard, A., Minster, J.-F., Michard, G., 1981. 87Sr/86Sr ratios in 
hydrothermal waters and deposits from the East Pacific Rise at 21°N. Earth Planet. Sci. 
Lett. 55, 229–236. 

Alt, J.C., 1995. Subseafloor Processes in Mid-Ocean Ridge Hydrothermal Systems. 
Seafloor Hydrothermal Syst. Phys. Chem. Biol. Geol. Interact. 85–114. 

Alt, J.C., Anderson, T.F., Bonnell, L., Muehlenbachs, K., 1989. 3. Mineralogy, 
chemistry, and stable isotopic compositions of hydrothermally altered sheeted dikes: ODP 
Hole 504B, Leg 1111Proc. Ocean Drill. Program Sci. Results 11. 

Alt, J.C., Teagle, D.A.H., 2003. Hydrothermal alteration of upper oceanic crust 
formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 
801. Chem. Geol. 201, 191–211. doi:10.1016/S0009-2541(03)00201-8 

Arrhenius, G., Bonatti, E., 1965. Neptunium and volcanism in the ocean, in: 
Progress in Oceanography. Sears M., London. 

Bach, W., Paulick, H., Garrido, C.J., Ildefonse, B., Meurer, W.P., Humphris, S.E., 
2006. Unraveling the sequence of serpentinization reactions: petrography, mineral 
chemistry, and petrophysics of serpentinites from MAR 15 degree N (ODP Leg 209, Site 
1274). Geophys. Res. Lett. 33. doi:10.1029/2006GL025681 

Barnes, I., O’neil, J.R., Trescases, J.-J., 1978. Present day serpentinization in New 
Caledonia, Oman and Yugoslavia. Geochim. Cosmochim. Acta 42, 144–145. 

Barreyre, T., Escartín, J., Sohn, R.A., Cannat, M., Ballu, V., Crawford, W.C., 2014. 
Temporal variability and tidal modulation of hydrothermal exit-fluid temperatures at the 
Lucky Strike deep-sea vent field, Mid-Atlantic Ridge: MAR vent-field temperature 
monitoring. J. Geophys. Res. Solid Earth 119, 2543–2566. doi:10.1002/2013JB010478 

Berndt, M.E., Seyfried Jr, W.E., 1997. Calibration of BrCl fractionation during 
subcritical phase separation of seawater: Possible halite at 9 to 10° N East Pacific Rise. 
Geochim. Cosmochim. Acta 61, 2849–2854. 



45 

 

Berndt, M.E., Seyfried Jr, W.E., 1993. Calcium and sodium exchange during 
hydrothermal alteration of calcic plagioclase at 400° C and 400 bars. Geochim. 
Cosmochim. Acta 57, 4445–4451. 

Berndt, M.E., Seyfried Jr, W.E., Beck, J., 1988. Hydrothermal alteration processes 
at mid-ocean ridges_experimental and theoretical constraints from Ca and Sr exchange-
reactions and Sr isotopic-ratios. J. Geophys. Res. - Solid Earth 93, 4573–4583. 
doi:10.1029/JB093iB05p04573 

Berndt, M.E., Seyfried Jr, W.E., Janecky, D.R., 1989. Plagioclase and epidote 
buffering of cation ratios in mid-ocean ridge hydrothermal fluids: Experimental results in 
and near the supercritical region. Geochim. Cosmochim. Acta 53, 2283–2300. 

Bischoff, J., 1991. Densities of liquids and vapors in boiling NaCl-H2O solutions: 
A PVTX summary from 300° to 500°C. Am. J. Sciecne 291, 309–338. 

Bischoff, J.L., Dickson, F.W., 1975. Seawater-basalt interaction at 200°C and 500 
bars: implications for origin of sea-floor heavy-metal deposits and regulation of seawater 
chemistry. Earth Planet. Sci. Lett. 25, 385–397. 

Bischoff, J.L., Pitzer, K.S., 1985. Phase relations and adiabats in boiling seafloor 
geothermal systems. Earth Planet. Sci. Lett. 75, 327–338. 

Bischoff, J.L., Rosenbauer, R.J., 1988. Liquid-vapor relations in the critical region 
of the system NaCl-H2O from 380 to 415 C: A refined determination of the critical point and 
two-phase boundary of seawater. Geochim. Cosmochim. Acta 52, 2121–2126. 

Bischoff, J.L., Rosenbauer, R.J., 1984. The critical point and two-phase boundary 
of seawater, 200-500°C. Earth Planet. Sci. Lett. 68, 172–180. 

Bischoff, J., Rosenbauer, R.J., 1985. An empirical equation of state for 
hydrothermal seawater (3.2 percent NaCl). Am. J. Sciecne 285, 725–763. 

Bischoff, J., Seyfried, W.E., 1978. Hydrothermal chemistry of seawater from 25° to 
350°C. Am. J. Sciecne 278, 838–860. 

Bostrom, K., Peterson, A., 1966. Precipitates from hydrothermal exhalations on the 
East Pacific Rise. Econ. Geol. 61, 1258–1265. 

Boulart, C., Chavagnac, V., Monnin, C., Delacour, A., Ceuleneer, G., Hoareau, G., 
2013. Differences in gas venting from ultramafic-hosted warm springs: the example of 
Oman and voltri ophiolites. Ofioliti 38, 143–156. doi:10.4454/ofioliti.v38i2.423 

Bowers, T.S., Von Damm, K.L., Edmond, J.M., 1985. Chemical evolution of mid-
ocean ridge hot springs. Geochim. Cosmochim. Acta 49, 2239–2252. 

Campbell, I.H., McDougall, T.J., Turner, J.P., 1984. A note on fluid dynamic 
processes which can influence the deposition of massive sulfides. Econ. Geol. 79, 1905–
1913. 

Carlson, R.L., 2011. The effect of hydrothermal alteration on the seismic structure 
of the upper oceanic crust: Evidence from Holes 504B and 1256D: alteration and seismic 
structure. Geochem. Geophys. Geosystems 12. doi:10.1029/2011GC003624 

Chan, L.-H., Edmond, J.M., Thompson, G., 1993. A Lithium Isotope Study of Hot 
Springs and Metabasalts From Mid-Ocean Ridge Hydrothermal Systems. J. Geophys. Res. 
98, 9653–9659. 



46 

 

Charlou, J.L., Donval, J.P., Fouquet, Y., Jean-Baptiste, P., Holm, N., 2002. 
Geochemistry of high H2 and CH4vent fluids issuing from ultramafic rocks at the Rainbow 
hydrothermal field (36° 14′ N, MAR). Chem. Geol. 191, 345–359. 

Charlou, J.L., Donval, J.P., Douville, E., Jean-Baptiste, P., Radford-Knoery, 
Fouquet, Y., Dapoigny, A., Stievenard, M., 2000. Compared geochemical signatures and 
the evolution of Menez Gwen (37°50’N) and Lucky Strike (37°17’N) hydrothermal fluids, 
south of the Azores Triple Junction on the Mid-Atlantic Ridge. Chem. Geol. 171, 49–75. 

Chavagnac, V., Ceuleneer, G., Monnin, C., Lansac, B., Hoareau, G., Boulart, C., 
2013a. Mineralogical assemblages forming at hyperalkaline warm springs hosted on 
ultramafic rocks: A case study of Oman and Ligurian ophiolites: Mineral Precipitate at 
Alkaline Springs. Geochem. Geophys. Geosystems 14, 2474–2495. 
doi:10.1002/ggge.20146 

Chavagnac, V., Monnin, C., Ceuleneer, G., Boulart, C., Hoareau, G., 2013b. 
Characterization of hyperalkaline fluids produced by low-temperature serpentinization of 
mantle peridotites in the Oman and Ligurian ophiolites: Hyperalkaline Waters in Oman and 
Liguria. Geochem. Geophys. Geosystems 14, 2496–2522. doi:10.1002/ggge.20147 

Clark, I.D., Fontes, J.-C., 1990. Paleoclimatic Reconstruction in Northern Oman 
Based on Carbonates from Hyperalkaline Groundwaters. Quat. Res. 320–336. doi:0033-
5894/90 

Corliss, J.B., Dymond, J., Gondon, L.I., Edmond, J.M., Von Herzen, R.P., Ballard, 
R.D., Green, K., Williams, D., Brainbridge, A., Crane, K., van Andel, T.H., 1979. 
Submarine Thermal Springs on the Galapagos Rift. Science 203, 1073–1083. 

Davis, E.E., Chapman, D.S., Wang, K., Villinger, H., Fisher, A.T., Robinson, S.W., 
Grigel, J., Pribnow, D., Stein, J., Becker, K., 1999. Regional heat flow variations across the 
sedimented Juan de Fuca Ridge eastern flank: Constrain on lithospheric cooling and lateral 
hydrothermal heat transport. J. Geophys. Res. 104, 17,675–17,688. 

Davis, E., Elderfield, H., 2004. Hydrogeology of the Oceanic Lithosphere, 
Cambridge University press. ed. 

Delacour, A., Früh-Green, G.L., Bernasconi, S.M., Schaeffer, P., Kelley, D.S., 
2008. Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30°N, 
MAR). Geochim. Cosmochim. Acta 72, 3681–3702. doi:10.1016/j.gca.2008.04.039 

Delaney, J.R., Mogk, D.W., Mottl, M.J., 1987. Quartz-cemented Breccias From the 
Mid-Atlantic Ridge: Samples of a High-Salinity Hydrothermal Upflow Zone. J. Geophys. 
Res. 92, 9175–9192. 

Douville, E., Charlou, J.L., Oelkers, E.H., Bienvenu, P., Jove Colon, C.F., Donval, 
J.P., Fouquet, Y., Prieur, D., Appriou, P., 2002. The rainbow vent fluids (36 14′ N, MAR): 
the influence of ultramafic rocks and phase separation on trace metal content in Mid-
Atlantic Ridge hydrothermal fluids. Chem. Geol. 184, 37–48. 

Dymond, J., Corliss, J.B., Heath, G.R., Field, C.W., Dasch, E.J., Veeh, H.H., 1973. 
Origin of metalliferous sediments from the Pacific Ocean. Geol. Soc. Am. Bull. 84, 3355–
3372. 

Edmond, J.M., Measures, C., McDuff, R.E., Chan, L.H., Collier, R., Grant, B., 
Gordon, L.I., Corliss, J.B., 1979. Ridge crest hydrothermal activity and the balances of the 
major and minor elements in the ocean: The Galapagos data. Earth Planet. Sci. Lett. 46, 1–
18. 



47 

 

Edmonds, H.N., 2008. Chemical Signatures From Hydrothermal Venting on Slow 
Spreading Ridges, in: Rona, P.A., Devey, C.W., Dyment, J., Murton, B.J. (Eds.), Diversity 
of Hydrothermal Systems on Slow Spreading Ocean Ridges, AGU Monograph. 

Elderfield, H., Schultz, A., 1996. Mid-ocean ridge hydrothermal fluxes and the 
chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224. 

Fontaine, F.J., Cannat, M., Escartin, J., 2008. Hydrothermal circulation at slow-
spreading mid-ocean ridges: The role of along-axis variations in axial lithospheric 
thickness. Geology 36, 759. doi:10.1130/G24885A.1 

Fontaine, F.J., Wilcock, W.S.D., 2006. Dynamics and storage of brine in mid-ocean 
ridge hydrothermal systems. J. Geophys. Res. 111. doi:10.1029/2005JB003866 

Fontaine, F.J., Wilcock, W.S.D., Butterfield, D.A., 2007. Physical controls on the 
salinity of mid-ocean ridge hydrothermal vent fluids. Earth Planet. Sci. Lett. 257, 132–145. 
doi:10.1016/j.epsl.2007.02.027 

Fontaine, F.J., Wilcock, W.S.D., Foustoukos, D.E., Butterfield, D.A., 2009. A Si-
Cl geothermobarometer for the reaction zone of high-temperature, basaltic-hosted mid-
ocean ridge hydrothermal systems: Si/Cl-inferred P–T in MOR hydrothermal systems. 
Geochem. Geophys. Geosystems 10. doi:10.1029/2009GC002407 

Fournier, R.O., 1983. A method of calculating Quartz solubilities in aqueous 
sodium chloride solutions. Geochim. Cosmochim. ACTA 47, 579–586. 

Fournier, R.O., Rosenbauer, R.J., Bischoff, J., 1982. The solubility of quartz in 
aqueous sodium chloride solution at 350C and 180 to 500 bars. Geochim. Cosmochim. 
Acta 46, 1975–1978. 

Foustoukos, D.I., James, R.H., Berndt, M.E., Seyfried, W.E., 2004. Lithium 
isotopic systematics of hydrothermal vent fluids at the Main Endeavour Field, Northern 
Juan de Fuca Ridge. Chem. Geol. 212, 17–26. doi:10.1016/j.chemgeo.2004.08.003 

Foustoukos, D.I., Seyfried, W.E., 2007. Quartz solubility in the two-phase and 
critical region of the NaCl–KCl–H2O system: Implications for submarine hydrothermal 
vent systems at 9°50′N East Pacific Rise. Geochim. Cosmochim. Acta 71, 186–201. 
doi:10.1016/j.gca.2006.08.038 

Fox, C., 1990. Consequences of Phase-Separation on the Distribution of 
Hydrothermal Fluids as Ashes Vent Field, Axial Volcano, Juan-De-Fuca Ridge. J. 
Geophys. Res.-Solid Earth Planets 95, 12923–12926. doi:10.1029/JB095iB08p12923 

Früh-Green, G., Kelley, D.S., Bernasconi, S.M., Karson, J.A., Ludwig, K.A., 
Butterfield, D.A., Boschi, C., Proskurowski, G., 2003. 30,000 Years of Hydrothermal 
Activity at the Lost City Vent Field. Science 301, 495–498. 

German, C.R., Petersen, S., Hannington, M.D., 2016. Hydrothermal exploration of 
mid-ocean ridges: Where might the largest sulfide deposits be forming? Chem. Geol. 420, 
114–126. doi:10.1016/j.chemgeo.2015.11.006 

Goldfarb, M.S., Delaney, J.R., 1988. Response of Two-Phase Fluids to Fracture 
Configurations Within Submarine Hydrothermal Systems. J. Geophys. Res. - Solid Earth 
93, 4585–4894. doi:0148-0227/88/007B-7010$05.00 

Haase, K.M., Petersen, S., Koschinsky, A., Seifert, R., Devey, C.W., Keir, R., 
Lackschewitz, K.S., Melchert, B., Perner, M., Schmale, O., Süling, J., Dubilier, N., 
Zielinski, F., Fretzdorff, S., Garbe-Schönberg, D., Westernströer, U., German, C.R., Shank, 



48 

 

T.M., Yoerger, D., Giere, O., Kuever, J., Marbler, H., Mawick, J., Mertens, C., Stöber, U., 
Walter, M., Ostertag-Henning, C., Paulick, H., Peters, M., Strauss, H., Sander, S., Stecher, 
J., Warmuth, M., Weber, S., 2007. Young volcanism and related hydrothermal activity at 
5°S on the slow-spreading southern Mid-Atlantic Ridge: young volcanism and 
hydrothermal activity. Geochem. Geophys. Geosystems 8. doi:10.1029/2006GC001509 

Hajash, A., 1975. Hydrothermal processes along mid-ocean ridges: an experimental 
investigation. Contrib. Mineral. Petrol. 53, 205–226. 

Hannington, M.D., Galley, A.G., Herzig, P.M., Petersen, S., 1998. 28. Comparison 
of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits, in: 
Proc Ocean Drill Program Sci Results. pp. 389–415. 

Hannington, M.D., de Ronde, C.D., Petersen, S., 2005. Sea-floor tectonics and 
submarine hydrothermal systems. 

Haymon, R., 1983. Growth history of hydrothermal black smoker chimneys. Nature 
301. 

James, R.H., Elderfield, H., Palmer, M.R., 1995. The chemistry of hydrothermal 
fluids from the Broken Spur site, 29°N Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 
59, 651–659. 

Janecky, D.R., Seyfried Jr, W.E., 1987. Transition metal mobility in oceanic ridge 
crest hydrothermal systems at 350° C–425° C, in: Chemical Transport in Metasomatic 
Processes. Springer, pp. 657–668. 

Kadko, D., Butterfield, D.A., 1998. The relationship of hydrothermal fluid 
composition and crustal residence time to maturity of vent fields on the Juan de Fuca Ridge. 
Geochim. Cosmochim. Acta 62, 1521–1533. 

Kawahata, H., Nohara, M., Ishizuka, H., Hasebe, S., Chiba, H., 2001. Sr isotope 
geochemistry and hydrothermal alteration of the Oman ophiolite. J. Geophys. Res. - Solid 
Earth 106, 11083–11099. doi:10.1029/2000JB900456 

Kelley, D.S., Baross, J.A., Delaney, J.R., 2002. Volcanoes, Fluids, and Life at Mid-
Ocean Ridge Spreading Centers. Annu. Rev. Earth Planet. Sci. 30, 385–491. 
doi:10.1146/annurev.earth.30.091201.141331 

Klein, F., Bach, W., Jöns, N., McCollom, T., Moskowitz, B., Berquó, T., 2009. Iron 
partitioning and hydrogen generation during serpentinization of abyssal peridotites from 
15°N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 73, 6868 – 6893.  

Koschinsky, A., Garbe-Schönberg, D., Sander, S., Schmidt, K., Gennerich, H.-H., 
Strauss, H., 2008. Hydrothermal venting at pressure-temperature conditions above the 
critical point of seawater, 5 S on the Mid-Atlantic Ridge. Geology 36, 615–618. 

Launay, J., Fontes, J. C., 1985. Les sources thermales de Prony (Nouvelle 
Calédonie) et leurs précipités chimiques, exemple de formation de brucite primaire. 
Géologie de France v.1, p83–100. 

Leleu, T., Chavagnac, V., Delacour, A., Noiriel, C., Ceuleneer, G., Rommevaux, 
C., Ventalon, S., 2016. Travertines associated with hyperalkaline springs: evaluation as a 
proxy for paleoenvironmental conditions and sequestration of atmospheric CO2. J. 
Sediment. Res. 

Lister, C.R.B., 1972. On the thermal balance of a mid-ocean ridge. Geophys. J. Int. 
26, 515–535. 



49 

 

Lowell, R., Rona, P., Vonherzen, R., 1995. Sea-Floor Hydrothermal Systems. J. 
Geophys. Res.-Solid Earth 100, 327–352. doi:10.1029/94JB02222 

Macdonald, K.C., 2001. Mid-ocean Ridge Tectonics, Volcanism And 
Geomorphology, in: Encyclopedia of Ocean Sciences. Elsevier, pp. 1798–1813. 

Magenheim, A.J., Spivack, A.J., Alt, J.C., Bayhurst, G., Chan, L.H., Zuleger, E., 
Gieskes, J.M., 1995. 13. Borehole fluid chemistry in Hole 504B, Leg 137: formation water 
or in situ reaction?, in: Proceedings of the Ocean Drilling Program, Scientific Results. pp. 
141–52. 

McKenzie, D.P., 1967. Some remarks on heat flow and gravity anomalies. J. 
Geophys. Res. 72, 6261–6273. 

Mervine, E.M., Humphris, S.E., Sims, K.W.W., Kelemen, P.B., Jenkins, W.J., 
2014. Carbonation rates of peridotite in the Samail Ophiolite, Sultanate of Oman, 
constrained through 14C dating and stable isotopes. Geochim. Cosmochim. Acta 126, 371 
– 397.  

Monnin, C., Chavagnac, V., Boulart, C., Ménez, B., Gérard, M., Gérard, E., Pisapia, 
C., Quémenuer, M., Erauso, G., Poestec, A., Quentas-Dombrowski, L., Payri, C., Pelletier, 
B. 2014. Fluid chemistry of the low temperature hyperalkaline hydrothermal system of 
Prony Bay (New Caledonia). Biogeosciences, v.11, p. 5687–5706. 

Mottl, M.J., Holland, H.D., 1978. Chemical exchange during hydrothermal 
alteration of basalt by seawater—I. Experimental results for major and minor components 
of seawater. Geochim. Cosmochim. Acta 42, 1103–1115. 

Mottl, M.J., Holland, H.D., Corr, R.F., 1979. Chemical exchange during 
hydrothermal alteration of basalt by seawater—II. Experimental results for Fe, Mn, and 
sulfur species. Geochim. Cosmochim. Acta 43, 869–884. 

Mottl, M.J., McConachy, T.F., 1990. Chemical processes in buoyant hydrothermal 
plumes on the East Pacific Rise near 21°N. Geochim. Cosmochim. Acta 54, 1911–1927. 

Mottl, M.J., Seewald, J.S., Wheat, C.G., Tivey, M.K., Michael, P.J., Proskurowski, 
G., McCollom, T.M., Reeves, E., Sharkey, J., You, C.-F., Chan, L.-H., Pichler, T., 2011. 
Chemistry of hot springs along the Eastern Lau Spreading Center. Geochim. Cosmochim. 
Acta 75, 1013–1038. doi:10.1016/j.gca.2010.12.008 

Muray, J., Renard, A.F., 1891. Deep Sea Deposits, Report "Challenger3 Expedition 
(1873-1876). 

Neal, C., Stanger, G., 1983. Hydrogen generation from mantle source rocks in 
Oman. Earth Planet. Sci. Lett. 66, 315 – 320.  

1984. Theory of hydrothermal systems. Annu. Rev. Earth Planet. Sci. 12, 155–177. 

Ono, S., Shanks, W.C., Rouxel, O.J., Rumble, D., 2007. S-33 constraints on the 
seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim. 
Cosmochim. Acta 71, 1170–1182. doi:10.1016/j.gca.2006.11.017 

Oosting, S.E., Von Damm, K.L., 1996. Bromide/chloride fractionation in seafloor 
hydrothermal fluxes from 9-10°N East Pacific Rise. Earth Planet. Sci. Lett. 144, 133–145. 

Palmer, M.R., 1992. Controls over the chloride concentration of submarine 
hydrothermal vent fluids: evidence from Sr/Ca and 87Sr/86Sr ratios. Earth Planet. Sci. Lett. 
109, 37–46. 



50 

 

Pester, N.J., Ding, K., Seyfried, W.E., 2015. Vapor–liquid partitioning of alkaline 
earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study 
from 360 to 465°C, near-critical to halite saturated conditions. Geochim. Cosmochim. Acta 
168, 111–132. doi:10.1016/j.gca.2015.07.028 

Pester, N.J., Reeves, E.P., Rough, M.E., Ding, K., Seewald, J.S., Seyfried, W.E., 
2012. Subseafloor phase equilibria in high-temperature hydrothermal fluids of the Lucky 
Strike Seamount (Mid-Atlantic Ridge, 37°17′N). Geochim. Cosmochim. Acta 90, 303–322. 
doi:10.1016/j.gca.2012.05.018 

Pester, N.J., Rough, M., Ding, K., Seyfried, W.E., 2011. A new Fe/Mn 
geothermometer for hydrothermal systems: Implications for high-salinity fluids at 13°N on 
the East Pacific Rise. Geochim. Cosmochim. Acta 75, 7881–7892. 
doi:10.1016/j.gca.2011.08.043 

Petersen, S., Herzig, P.M., Hannington, M.D., 2000. Third dimension of a presently 
forming VMS deposit: TAG hydrothermal mound, Mid-Atlantic Ridge, 26 N. Miner. 
Deposita 35, 233–259. 

Pokrovski, G.S., Roux, J., Harrichoury, J.-C., 2005. Fluid density control on vapor-
liquid partitioning of metals in hydrothermal systems. Geology 33, 657–660. 

Pomerol, C., Lagabrielle, Y., Renard, M., 2006. Structure et dynamique des fonds 
océaniques, in: Eléments de Géologie. Dunod, Paris, p. 762. 

Ravizza, G., Blusztajn, J., Von Damm, K.L., Bray, A.M., Bach, W., Hart, S.R., 
2001. Sr isotope variations in vent fluids from 9° 46′-9° 54′ N East Pacific Rise: evidence 
of a non-zero-Mg fluid component. Geochim. Cosmochim. Acta 65, 729–739. 

Resing, J.A., Sedwick, P.N., German, C.R., Jenkins, W.J., Moffett, J.W., Sohst, 
B.M., Tagliabue, A., 2015. Basin-scale transport of hydrothermal dissolved metals across 
the South Pacific Ocean. Nature 523, 200–203. doi:10.1038/nature14577 

Saccocia, P.J., Seyfried Jr, W.E., 1994. The solubility of chlorite solid solutions in 
3.2 wt% NaCl fluids from 300–400 C, 500 bars. Geochim. Cosmochim. Acta 58, 567–585. 

Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., de Carvalho, L.M., Seifert, R., 
2007. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev 
hydrothermal field, 15°N on the Mid-Atlantic Ridge: Temporal and spatial investigation. 
Chem. Geol. 242, 1–21. doi:10.1016/j.chemgeo.2007.01.023 

Seyfried Jr, W.E., Ding, K., Berndt, M.E., 1991. Phase equilibria constraints on the 
chemistry of hot fluids at mid-ocean ridges. Geochim. Cosmochim. Acta 55, 3559–3580. 

Seyfried Jr, W.E., Janecky, D.R., Mottl, M.J., 1984. Alteration of the oceanic crust: 
Implications for geochemical cycles of lithium and boron. Geochim. Cosmochim. Acta 48, 
557–569. 

Seyfried Jr, W.E., Mottl, M.J., 1982. Hydrothermal alteration of basalt by seawater 
under seawater-dominated condition. Geochim. Cosmochim. Acta 46, 985–1002. 

Seyfried, W.E., Pester, N.J., Tutolo, B.M., Ding, K., 2015. The Lost City 
hydrothermal system: Constraints imposed by vent fluid chemistry and reaction path 
models on subseafloor heat and mass transfer processes. Geochim. Cosmochim. Acta 163, 
59–79. doi:10.1016/j.gca.2015.04.040 



51 

 

Shanks, W.C., 2001. Stable isotopes in seafloor hydrothermal systems: vent fluids, 
hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev. Mineral. 
Geochem. 43, 469–525. 

Skornyakova, I.S., 1965. Dispersed iron and manganese in Pacific Ocean sediments. 
Int. Geol. Rev. 7, 2161–2174. 

Stein, C.A., Stein, S., 1994. Constraints on hydrothermal heat flux through the 
oceanic lithosphere from global heat flow. J. Geophys. Res. 99, 3081–3095. 

Tamura, A., Arai, S., Ishimaru, S., Andal, E.S., 2008. Petrology and geochemistry 
of peridotites from IODP Site U1309 at Atlantis Massif, MAR 30°N: micro- and macro-
scale melt penetrations into peridotites. Contrib. Mineral. Petrol. 155, 491–509. 
doi:10.1007/s00410-007-0254-0 

Teagle, D.A., Alt, J.C., Chiba, H., Humphris, S.E., Halliday, A.N., 1998. Strontium 
and oxygen isotopic constraints on fluid mixing, alteration and mineralization in the TAG 
hydrothermal deposit. Chem. Geol. 149, 1–24. 

Teagle, D.A.H., Bickle, M.J., Alt, J.C., 2003. Recharge flux to ocean-ridge black 
smoker systems: a geochemical estimate from ODP Hole 504B. Earth Planet. Sci. Lett. 
210, 81–89. doi:10.1016/S0012-821X(03)00126-2 

Tivey, M.K., 2007. Generation of seafloor hydrothermal vent fluids and associated 
mineral deposits.  

Tivey, M.K. and R.E. McDuff, 1990. Mineral precipitation in the walls of black 
smoker chimneys: a quantitative model of transport and chemical reaction. Journal of 
Geophysical Research, 95, 12617-12637 

Von Damm, K.L., Bischoff, J., Rosenbauer, R.J., 1991. Quartz solubility in 
hydrothermal seawater: an experimental study and equation describing quartz solubility for 
up to 0.5M NaCl solutions. Am. J. Sci. 291, 997–1007. 

Von Damm, K.L., Edmond, J.M., Grant, B., Measures, C.I., Walden, B., Weiss, 
R.F., 1985. Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. 
Geochim. Cosmochim. Acta 49, 2197–2220. 

Von Damm, K.L., Oosting, S.E., Kozlowski, R., Buttermore, L.G., Colodner, D., 
Edmonds, H.N., Edmond, J.M., Grebmeier, J.M., 1995. Evolution of East Pacific Rise 
hydrothermal vent fluids following a volcanic eruption. Nature 375, 47–51. 

Von Damm, K., Edmond, J. t, Measures, C.I., Grant, B., 1985. Chemistry of 
submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim. 
Cosmochim. Acta 49, 2221–2237. 

Von der Borsch, C.C., Rex, R.W., 1970. Amorphous iron oxide precipitates in 
sediments cored during Leg 5. Deep Sea Drill. Proj. 5, 541–544. 

Wheat, C.G., Jannasch, H.W., Fisher, A.T., Becker, K., Sharkey, J., Hulme, S., 
2010. Subseafloor seawater-basalt-microbe reactions: Continuous sampling of borehole 
fluids in a ridge flank environment: subseafloor borehole fluids. Geochem. Geophys. 
Geosystems 11. doi:10.1029/2010GC003057 

Wheat, C.G., Mottl, M.J., Rudnicki, M., 2002. Trace element and REE composition 
of a low-temperature ridge-flank hydrothermal spring. Geochim. Cosmochim. Acta 66, 
3693–3705. 



52 

 

 



53 

 

CHAPITRE 2 

THE LUCKY STRIKE HYDROTHERMAL FIELD 
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11 Discovery and geological context 

The Lucky Strike hydrothermal field was discovered “accidentally” during the FAZAR 

cruise (French American Zaps and Rocks) in 1992, 400 km South West of the Azores 

islands (37°18’N, 32°16’W; Langmuir et al., 1992). The cruise was devoted to a 

multidisciplinary survey of the ridge segment of the Mid Atlantic Ridge affected by the 

Azores hot spot. The cruise span from the Hayes Fracture zone at 32°N to the Kurchatov 

fracture zone at 40°30’N (Fig II -1). The scientific targets included: 1) an investigation of 

the petrological composition of the basalts, the presence of hydrothermal activity, 

bathymetry and characterization of the geophysical parameter of this part of the ridge; 2) a 

preparation of the FARA project (French American Ridge Atlantic), which intended to 

study active hydrothermal activity and petrological characteristic of recent volcanism along 

the MAR.  

During a dredge on the first leg of the cruise, large fragments of sulfide chimney covered 

with mussels, shrimps and other organisms were brought back on board. The rock 

fragments contained typical minerals that compose hydrothermal chimneys (pyrite, 

chalcopyrite and sphalerite). The dredge also contained fresh basaltic rocks. 

2 Geological setting 

The Lucky Strike segment displays a central volcano in the rift valley (Fig II -2). It forms 

a broad platform extending on the ~11 km wide valley in the segment center. The platform 

depth is usually between 2000 and 1800 mbsl. The volcano rises 250 to 300m above the 

valley floor and extends over 50 km2 (Humphris et al., 2002; Langmuir et al., 1997; Von 

Damm et al., 1998). Two prominent rises can be found as shallow as 1550mbsl. The 

hydrothermal site is located on a 5 km wide edifice at the center of the platform. Upon this 

edifice, bathymetric map reveals 3 volcanic cones rising 150m above a central depression. 

The Eastern cone consists of a N-S trending pillow ridge creating a rugged terrain which 

scale is out of the multibeam resolution but is readily observable on photo-mosaics and 

micro-bathymetry (Humphris et al., 2002). The lavas are highly vesicular and older than 

the lava recovered during the FAZAR dredge. The Southern cone displays younger glassy 

lava, relatively fresh and aphyric. Nautile dives in 1994 during the FARA cruise revealed 

that the central depression forms a fossil lava lake (Fouquet et al., 1995). This fossil lava 

lake extends 320 m from West to East and 350m from North to South for a total surface 

of~1 km2. The contour corresponds exactly to the 1734 mbsl isobaths (Ondréas et al., 2009). 
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The relationships between volcanic constructions and faults imply multiple episodes of 

volcanic and tectonic activity (Humphris et al., 2002). The faults observed on the volcanic 

cones clearly imply that they were affected by extensive tectonics postdating their 

formation. The faults are not observed on the fossil lava lake which suggests that the lava 

lake is younger that the last faulting events. Further evidences show that the freshest lava 

are shaped as lobate lava and are observed on the lava lake. These lobate lava do not occur 

on the volcanic cones (Ondréas et al., 2009).  

  

Figure II - 1 Map of the Northern Mid Atlantic ridge showing the major segments from Langmuir et al. (1997) 
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Figure II - 2 Bathymetric map of the Lucky Strike segment from Ondréas et al. (2009). The lines show the 
location of the main axial valley bounding faults. The black square indicate the central volcano. 
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33 Basalt chemistry at Lucky Strike 

The basalt samples show an enrichment in incompatible elements (K, Rb, Cs, Ba, La and 

Pb) compared to N-MORB. The seamount is built upon a hybrid basaltic substratum 

including 2 distinct endmembers of E and T MORB (Langmuir et al., 1997; Gale et al, 

2011; Hamelin et al., 2013; Wanssen et al., 2015).  

- Old and vesicular lavas on the top of the summit cones are particularly enriched in 

incompatible elements with Ba content up to 300ppm and Sr=300ppm. This enrichment is 

likely related to contamination by melts from the nearby Azores hot spot and are found at 

the segment centers (Gale et al., 2011) 

- The central depression, composed of fresh and glassy lavas, shows a more moderate 

enrichment in such elements compared to N-MORB (60ppm and 110ppm of Ba and Sr 

respectively). These moderately enriched lavas are found all along the segment. 

4 Subseafloor  

Seismic reflexion data reveal the presence of a magmatic lens (AMC) and large faults 

(Singh et al., 2006). The top of the AMC has been imaged as a 3-4 km and 7 km long axial 

melt lens at 3.5 km below the seafloor (Fig II -3; Combier et al., 2015; Singh et al., 2006). 

The East Bounding Fault (EBF) could go down to what is supposed to be the AMC. 

An array of 6 hydrophones was installed along the MAR 15 to 35°N and recorded an 

earthquake swarm in 2001 interpreted as a possible dike injection (Dziak, 2004). Active 

tectonics have an important role in this “magmatic” period and faults parallel to the ridge-

axis are prevalent. The volcano is currently being rifted and the hydrothermal field has been 

active for 100s to 1000s of years (Seher et al., 2010). 

In 2009, another swarm was observed by five ocean bottom sismometers (OBS) positioned 

at the summit of the Lucky Strike volcano. During this swarm, most of the seismic events 

formed 2 clusters located north and south of the hydrothermal field at depth between 1800 

and 2500 mbsf. Both of them are aligned with the axial spreading direction and cracks 

orientation. Shallower events are aligned along axis and are interpreted as “cold” seawater 

penetration and development of the cracking front (Crawford et al., 2013). 
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Figure II - 3 From Singh et al. (2006). Bloc diagram showing the Lucky Strike Hydrothermal Field bathymetry 
with the structure of the oceanic crust beneath. 

55 Hydrothermal deposits 

Humphris et al. (2002) report on the surface distribution of volcanic, hydrothermal deposits 

and sediments on the summit volcano depression (Fig II -4). The North East and North 

West sides of the fossil lava lake are dominated by sulfide rubbles, which are composed of 

massive sulfide talus, disaggregated sulfide structures and inactive/active chimneys. 

At the south eastern area, hydrothermal deposits seems to be underlined by hydrothermally 

cemented breccias called slab (Humphris et al., 2002; Langmuir et al., 1997). This slab 

consists of an assemblage of basaltic glass, plagioclase crystals rimmed by amorphous 

silica as well as .sulfides and barite grains. 

Humphris et al. (2002) report on hydrothermal activity as an episodic event as indicated by 

different ages of sulfide deposits and inactive chimneys. Also there is a small number of 

active sites compared to the spatial extent of the deposits suggesting that hydrothermal 

activity used to be more intense and dispersed in the past. The fossil lava lake does not 

show any evidence of hydrothermal activity on its surface probably due to its low 

permeability. 

The relation between hydrothermal activity and volcanic-tectonic processes on LS 

seamount are inter-related. At present, the LSHF would represent a volcanically controlled 
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phase of hydrothermal activity as the last magatic event (i.e. the fossil lava lake) is not 

fractured by rifting yet. 

 

Figure II - 4 Modified from Humphris et al. (2002). Left: bathymetric map of the LSHF showing the 3 tectonised 
volcanic cones and the central depression where is situated the fossil lava lake. Right: Geological seafloor 
map showing the nature of the rocks at the surface surrounding the fossil lava lake. 

66 Hydrothermal fluid venting at Lucky Strike 

The hydrothermal fluids from the LSHF have been studied since their discovery at several 

time intervals. The first samples have been collected in 1993 during an Alvin program, 

scheduled after the evidence of active hydrothermal venting from the FAZAR discovery. 

Fluid sampling campaigns were organized over several years (1993, 1994, 1996, 1997, and 

2008) and by different institutions (Charlou et al., 2000; Pester et al., 2012; Von Damm et 

al., 1998). This first study revealed a wide hydrothermal field of over ~1 km2 of surface. 

All the sites discovered are located around the lava lake on specific areas (Fig II – 5), two 

groups of sites are situated at the northern talus, west (Jason, Helen and Bairo Alto) and 

east (Y3, Sintra and Statue of liberty). On the south-eastern side of the lava lake, numerous 

sites are situated on the fractured hydrothermal slab (Tour Eiffel, Montsegur, Petit 

Chimiste, etc). The south-western sites are situated on a fractured end of the lava lake. 

Among them, Crystal has been named for its crystal clear water.  
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Figure II - 5: Microbathymetry map of the ucky Strike Hydrothermal field. The dashed area represent the 
central fossil lava lake. The grey dots are the sites from where chemical data are available in the literature 
or in this study.. 

The fluid chemistry study revealed temperature of venting as high as 333°C for 2608 vent 

(also called Y3; Von Damm et al., 1998). The fluids were all depleted in Cl compared to 

seawater excepted for Sintra, Statue of Liberty and Jason (sampled in 1996) that have Cl 

concentration almost equal to that of seawater. Charlou et al. (2000) suggested that 

differences in Cl concentrations could be explained by hydrothermal seawater entrainment 

in the subsurface. These assumptions were based on a geographical control of Cl 

concentration and two different Sr isotope signatures. Nevertheless, Pester et al. (2012) 

showed that the seawater entrainment was unlikely, based on trace element distribution 

from site to site. They proposed that the fluid source originates from a unique, deep phase 

separation zone and that chemical differences are mostly due to slightly different phase 

separation conditions, subsequently modified by conductive cooling. The latter is 

consistent with the first hypothesis from Von Damm et al. (1998) who suggested a deep 

seated reaction zone (P>300 bars based on silica concentrations and quartz solubility) 

feeding the whole hydrothermal field (Fig II -5). 
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Figure II - 6 From Pester et al. (2012). P and T diagram that summarize the geophysical and geochemical 
constraint on the deep hydrothermal processes. Blue lines represent the 2 phase boundaries, the Si–Cl box 
represent the P and T conditions inferred for the phase separation zone (Fontaine et al., 2009). Si isopleth 
are calculated for quartz solubility using the model of Foustoukos and Seyfried (2007). Fe/Mn ratios 
represent the range of temperature inferred from the Fe–Mn geothermometer developped by Pester et al. 
(2011).  

Later, the Si concentrations were used together with the Cl concentrations of the most 

depleted fluids of the LSHF to assess the P–T conditions taking place during phase 

separation (Fontaine et al., 2009; Fig II -5). These estimations, together with others 

obtained from different worldwide hydrothermal fields, were compared to the depth of the 

axial magma chamber, determined by geophysical methods, and gave results of 2500–2800 

mbsf, that are consistant to a first order with a magma chamber at 3 kmbsf (Singh et al., 

2006). 

Lower-temperature fluids (8°C – 130°C) venting from cracks on the seafloor, termed 

diffuse venting, were also investigated to better characterize the heat and chemical 

exchange as they represent the most part of heat extraction from the crust (Barreyre et al., 

2012; Mittelstaedt et al., 2012). These types of fluid are commonly regarded as high-

temperature hydrothermal fluid mixed with seawater in the close subsurface of the seafloor. 

However, Cooper et al. (2000) studied the chemical composition of fluid samples collected 

at cracks from the hydrothermal slab. Based on temperature and both Mg and Li 



63 

 

concentrations measurements, these authors show that the chemical features of these fluids 

cannot be explained by mixing with a high-temperature fluid but are coherent with seawater 

that is conductively heated by the underlying high temperature fluid (Fig II -6). 

 

Figure II - 7 From Cooper et al. (2000), conceptual model for the diffuse flow system at Lucky Strike. 

 

77 Hydrothermal fauna at the LSHF 

The hydrothermal fluids discharging at the LSHF are key elements in the development of 

deep-sea hydrothermal ecosystems. The presence in the fluids of element in a reduced form 

are used in the metabolic chains of microorganisms and therefore influence the 

chimiolithotroph organisms and their associated macrofauna (Henri, 2015). At the LSHF, 

the dominant species is Bathymodiolus azoricus, a mussel species found at every active site 

(Cuvelier et al., 2011, 2009; Lee Van Dover et al., 1996; Sarrazin et al., 2015). These 

mussels are associated with shrimps (Mirocaris fortunate and chorocaris chacei) and crabs 

(Segonzacia mesatlantica) communities with few polychaetes, gastropods, amphipods 

pycnogonides and copepods (Cuvelier et al., 2009; Lee Van Dover et al., 1996; Matabos et 

al., 2015; Sarrazin et al., 2015). The fauna assemblages are identified as a protected 

biogeographic province (Lee Van Dover et al., 1996). 

Microbial mats are also present at LSHF (Sarradin et al., 1999; Desbruyeres et al., 2001) 

and cover mussel communities, diffuse vents, and chimneys. They are mostly composed of 

white filamentous bacteria that use the seawater oxygen to oxidize the hydrothermal 

sulfides (Bernard and Fenchel, 1995; Fenchel and Bernard, 1995; Gilhooly et al., 2007; 
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Nelson and Castenholz, 1981). These bacterial mats are dominated by Proteobacteria and 

bacteroidetes (Henri, 2015). 

 

88 The EMSO Azores node: a multidisciplinary deep sea observatory 

The EMSO Azores node (also mentioned as MoMARsat for monitoring the Mid Atlantic 

Ridge) is a non-cabled multidisciplinary observatory deployed in 2010 (Colaço et al., 2011) 

whose aims is to study the dynamic of hydrothermal systems on a long term (several years) 

at the Lucky Strike hydrothermal field. The scientific objectives are (1) to constrain 

hydrothermal heat and chemical fluxes to the ocean in relation with seismicity, volcanic 

activity and ground (seafloor) deformation at the ridge; (2) to evaluate the impact of 

environmental changes (deep seafloor, climatic and anthropogenic) on the deep seafloor 

ecosystems and hydrothermal communities; (3)to study the dynamics of water masses in a 

context of steep axial valley topography and the hydrothermal particles transport. 

To investigate these scientific targets, a 3 components infrastructure has been installed in 

September 2010 (Fig II -7). The surface buoy named Borel, links the underwater 

instruments to shore through acoustic and satellite transmissions. Borel is equipped with 

GPS devices and sensors (e.g. air/wind speed sensors; Colaço et al., 2011). 
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Figure II - 8 Cartoon of the Emso Azores node infrastructure (www.fixO3.eu). At the seafloor, the two stations 
sends data to the buoy BOREL. The Buoy then sends the data to the Ifremer center on shore. 

The underwater part of the infrastructure is composed of two seafloor monitoring nodes 

(SEAMON) positioned at the West and the East of the hydrothermal field. SeaMon West 

is moored on the lava lake and is dedicated to the geophysical sensors. It is linked to OBS 

(Ocean Bottom Seismometer) and pressure gauges which allows the real-time transmission 

of seismic activity (Ballu et al., 2009; Crawford et al., 2013). The SeaMon East is dedicated 

to study of the ecosystems through an array of sensors constraining the chemical, biological 

and microbiological environment of the Tour Eiffel edifice (South East of the fossil lava 

lake). The station is wired to several devices including colonizer samples CISICs and an 

ecological module called TEMPO (Sarrazin et al., 2007). The latter is composed of 

Chemini Fe oxygen optode and a video camera system called SMOOVE. Chemini Fe and 

the oxygen optode are measuring the dissolved iron and O2 in real time on a mussel bed 

which is filmed by SMOOVE at the base of the Tour Eiffel edifice during 2 minutes every 

6 hours. 

This infrastructure is recovered every year during a 15–20 days maintenance cruise. In 

between recovery and redeployment of the instruments, ROV dives are conducted for 

sampling and exploration purposes. Decoupled from the infrastructure, autonomous 

temperature sensors are left in hot vent orifices, diffuse venting zone and cracks to monitor 
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the temperature variation between vents (Barreyre et al., 2014), and recovered on the next 

maintenance cruise. 

99 First results from the observatory 

The installation of the observatory, 6 years ago, have improved the knowledge on 

hydrothermal field in general. 

Especially, analysis of photomosaic and temperature sensors have allowed fine 

characterization of the discharge regime. The photomosaic images done on the same areas 

for several years have brought evidence of the decline of diffuse venting at the LSHF 

(Barreyre et al., 2012). Although temperature sensors have shown to be overall constant 

within a 3 years survey, but episodic (day scale) drops (10 to 160°C lower than initial 

temperature) have been observed. Comparison could be made with microseismic events but 

were not correlated (Barreyre et al., 2014). These episode of temperature drop and/or 

increase are the results of the subsurface. Small variations in temperature were related to a 

tidal change of hydrostatic pressure. The high permeability of the extrusive layer (seismic 

layer 2A) induce a tidal effect on the fluid discharge. Using the time response to tidal 

pressure of the temperature of the discharging fluid (diffused and focused); Barreyre and 

Sohn, (2016) were able to estimate the thickness of the extrusive volcanic layer 2A or at 

least the first limit to a major permeability gradient. They concluded that the layer 2A is 

300m thick to the West of the lava lake while to the East, the layer 2A is twice as thick 

(600m; Fig II -8). 

Escartin et al., (2015) have reviewed the visual information available on the Lucky Strike 

central volcano. This study produced a map that summarizes the state of the knowledge 

now available at this hydrothermal field (Fig II -9). This figure is a microbathymetric map 

on which are reported the known active hydrothermal sites and associated deposits. Apart 

from the main LSHF, three sites have been identified. At the south the main LSHF at the 

center of the axial graben is the Ewan site that presents active hydrothermal activity at 

temperature up to 20°C (Escartin et al., 2015). Based on microbathymetry data, the Grunnus 

site is located at ~2 km east of the fossil lava lake but is inferred to be inactive now as 

neither in situ observation nor hydrothermal plumes have been detected above it (Escartin 

et al., 2015). The Capelinhos vent sites is located ~1.5 km east of the main LSHF and has 

been discovered in 2013. This site presents almost no diffuse venting but focused venting 

at temperature as high as 328°C from numerous ten meter tall chimneys.  
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Figure II - 9 Subsurface depth of a permeability change inferred from phase lag response to tidal change in 
the T sensor from Barreyre and Sohn (2016). AML: Axial Magmatic Lens. 

Also the limits of the seismically imaged AMC is reported together with the area of 

microseismicity activity during the 2009 seismic swarm (Combier et al., 2015; Crawford 

et al., 2013; Singh et al., 2006). The main hydrothermal activity, which occurs at the 

volcano, is sustained by the heat provided by a shallow AMC, leading to a long-lived 

hydrothermal activity in this area. 
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Figure II - 10 From Escartin et al. (2015), microbathymetry map of the central volcano of the Lucky Strike 
segment. Red contours represent hydrothermal deposits identified in the microbathymetry, and numbered 
following the classification from Barreyre et al. (2012). Black dots represent active vents. Brown dashed lines 
represent the limits of the AMC (Combier et al., 2015; Singh et al., 2006).Blue areas represent the location 
of seismic clusters in the crusts (Crawford et al., 2013). 

A lot of work has been produced at the LSHF since the observatory installation. Many 

results from geophysical studies have set the perfect conditions for an accurate 

characterization of the fluid chemistry. Therefore, the present work has focused on high 

temperature fluids for a large number of sites, each representative and defining groups 

based on their chemical and geographical characteristics. The chapters 4, 5 and 6 will focus 

on the fluid chemistry on the ground of the solid geophysical data acquired and 1) define a 

hydrothermal circulation model that includes the newly discovered vent site; 2) investigate 

the time series data acquired since the installation of the observatory infrastructure; and 3) 

use the opportunity of a well-known hydrothermal field which displays a wide variety of 
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fluid chemistry to explore the behavior of rare earth elements within the subsurface and at 

the early stage of hydrothermal fluid mixing with deep seawater at the discharge. 
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CHAPITRE 3 

MATERIALS AND METHODS 
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11 Hydrothermal fluid sampling and processing 

The fluids analyzed during this thesis were collected during 3 research cruises on board the 

R.V. “Pourquoi Pas?” in 2013, 2014 and 2015 (with corresponding PI: Jérome Blandin, 

2013 and Pierre Marie Sarradin, 2014 and 2015). The R.V. “Pourquoi Pas?” has the 

capacity of hosting and deploying the ROV Victor6000 (Remotely Operated Vehicle). On 

board, 35 scientists of different scientific expertise work together day and night to optimize 

the ship time, on 24h/24h working hours. 

The French Vessel “Pourquoi pas?“ (Fig III -1) is funded by both FOF (French 

Oceanographic Fleet; 55%) and French Ministry of Defense (45%), therefore these 

institutions share ship time (180 days and 150 days per year respectively). The ship is 107m 

long and 20m wide and is operated by Genavir. It is equipped on board with 1200m2 

scientific laboratories. It also has with 2 multibeam system capable of high quality 

bathymetric mapping, among other instruments. 

 

Figure III - 1 Photographs of the R/V Pourquoi pas? on the Horta port (Faial island, Azores, A and B), C: 
photograph of the “Pourquoi pas?” and the buoy Borel (Ifremer/CNRS) on top of the Lucky Strike 
hydrothermal field, on the North Atlantic Ocean (37°N). 

The ROV Victor 6000 (Fig III -2) is a cabled submersible vehicle capable of diving as deep 

as 6000m below sea-level. During a research cruise, a team of 8 mechanics and electronic 

engineers are on board to maintain and pilot the ROV scientific dives. The ROV 

maintenance can be performed day or night but generally daylight is preferred and dives 

are based on 12h short dives and 36h long dives. The ROV is equipped with HD cameras, 
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such as on both arms and at the front (principal), and several measuring devices such as 

high temperature probes, liquid sampler connected to a T probe, and a biological sampling 

devices. The ROV is capable of handling samples and tools at depth with two articulated 

arms, Sherpa and Maestro. The ROV may be equipped with a sampling module and a 

mapping module. These modules concern the lower part of the ROV Victor6000, and can 

be switched from dive to dive depending on the research objectives. The sampling module 

is equipped with a large retractable basket (Fig III - 2a). This basket can contain the 

collected samples (e.g. rocks, biobox, fluid sampler, etc…) and autonomous temperature 

probe to be used and placed at depth during the dive. The module is equipped with a high 

temperature probe for real time measurement. Another temperature probe is associated to 

a fluid sampling device called PEPITO (Sarradin et al., 2009). The mapping module has 

been used to map the LSHF by generating a mosaic from images in addition to high 

resolution bathymetry (Barreyre et al., 2012; Escartín et al., 2008, 2015). The pilots have a 

dedicated container installed on board as a control room of the ROV Victor6000. From 

there, and during each dive, two scientists who are in charge of fulfilling the operations 

objective, are assisted by two ROV team members who will manipulate the ROV. Both 

scientists and ROV team members have dedicated screens (Fig. III - 3) which enables them 

to pilot, guide, and manipulate independently at selected areas on the bottom seafloor (Fig 

III - 3). 
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Figure III - 2 Photographs of the ROV on board the ship during maintenance (on the left), while sampling 
rocks with maestro (top right), and under water photograph of the oceanographic robot (bottom right). 

 

 

Figure III - 3 Photographs of the ROV container. On the left, the two scientist in charge of the dive program. 
On the right, ROV pilots, one is in charge of the Maestro arms and the other control the whole ROV mobility. 

The sampler used for HT fluids is a titanium gas-tight syringe capable of resisting a 

temperature above 400°C and corrosion (Fig III - 4). Titanium material is used because of 

its chemical inertia and its pressure and temperature resistance. These samplers were 

borrowed from Ifremer biogeochemical department (P.M. Sarradin, Laboratoire des 
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Environnements Profonds). Handles were made at the GET mechanical workshop by 

Pascal Gisquet and Alain Castillo to allow ROV manipulation. On board, conditioning of 

high temperature fluid sampler consists in using a primary vacuum pump to ensure an 

internal pressure lower than 10-1 mbars. At depth, each fluid sampler is mechanically 

triggered by the ROV arm (Maestro) which will push on the syringe’s spring. Because of 

the differential pressure between the deep sea (at Lucky Strike, ~170 bars) and the internal 

pressure of the sampler (10-1 mbars), the fluid is sucked in the device in 2-3s. 

 

Figure III - 4 Photograph of a Titanium syringe with its handler during the cleaning process (top) and a 
cartoon showing the different part composing the sampler. 

The collection of pure high temperature hydrothermal fluid is a difficult task to achieve 

because of the extreme environmental conditions at the seafloor.  

This thesis has greatly benefited from earlier fluid sampling campaigns conducted by 

Valerie Chavagnac, Alain Castillo and Cédric Boulart. Since 2009, with the Bathyluck 

campaign and the deep-sea observatory program (EMSO Azores, which started in 2010) 

they developed an efficient sampling strategy. The aim is to secure, whatever the conditions 

are, a number of sampled sites which are representative of the chemical fluid diversity 

observed within the field. Therefore, specific sites are targeted each year and labelled as 
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Priority 1, (P1). The other sites are sampled when ROV operations and dive schedules allow 

it. The P1 sites are sampled each year to ensure a spatial and temporal coverage of the fluids 

diversity of Lucky Strike hydrothermal field. Before sampling, the ROV temperature probe 

is used to measure in situ the maximum temperature of the fluids but also to take marks at 

the position of the probe that give the highest temperature (purest fluid; Fig III - 5). 

Sampling is then a matter of replacing the titanium snorkel of the fluid sampler at the exact 

position of the temperature probe. If well positioned and if the fluid is hot enough, a white 

coloration of the snorkel indicates that the syringe is heated. At this moment, sampling can 

be done without taking risk of having much surrounding seawater entrained. This operation 

is, always, repeated 4 times per venting site in order to achieve a perfect determination of 

pure hydrothermal endmember (Fig III - 5). ROV dives generally last up to 36h with a full 

and diversified schedule. For practical reason (i.e. to avoid triggering of the fluid sampler 

in the ROV basket), collection of fluid samples is done preferentially at the beginning of 

each dive. Each fluid sampler is numbered (from 1 to 9), to record where each sampler was 

used and also to trace any mechanical malfunction from time to time. 
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Figure III - 5 High temperature venting site Capelinhos. A and B show the temperature measurement using 
the HT temperature probe of the ROV Victor6000, B is a close up of the vent orifice where the temperature 
probe is inserted for real-time temperature measurement. It shows the position to take for fluid sampling. C 
and D pictures illustrates high temperature fluid sampling using gas-tight Ti syringe. A direct comparison 
between pictures B and D shows that snorkel of gas-tight Ti syringe is positioned at the same location as the 
temperature probe of ROV Victor6000, ensuring sample collection at the hottest hydrothermal fluid 
discharge. 
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Figure III - 6 ROV basket facing the Capelinhos vent site during the 2015 cruise. The ROV basket contains 8 
Ti samplers, 2 Biobox (Sterile boxes for biologic sampling purposes), and 2 HT autonomous probe, positioned 
in vent after fluid sampling at the same location. The photofragh is taken from the cemra placed on the ROV 
arm Sherpa. 

As far as possible, the sampling strategy is always the same. In the frame of the deep sea 

observatory, sampling of biological material, geophysical measurement and hydrothermal 

fluid sampling are all accounted for to optimize the duration of the operations, the 

coherence of the acquired data/samples and the efficiency of dive schedule. Therefore, at 

each site, the sampling begins with biological material (e.g. hydrothermal chimney) in a 

Biobox (sterilized box only opened right before the sample is collected). The autonomous 

HT probe, which was installed in the previous year, is recovered. Then, the temperature is 

measured by the HT probe of the ROV. The real time observation of fluid temperature helps 

positioning the fluid sampler to obtain the purest fluids (Fig III -5). Four fluids volumes are 

sampled one after the other at the same orifice (Fig. III - 5). A new autonomous HT probe 

is installed at the same orifice, and left on site for an additional year. 

When the ROV Victor 6000 is recovered on board of the research vessel, fluid samplers 

are immediately rinsed with clean tap water to wash away any seasalts, dried with an air 
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compressor and then transported to the wet laboratory (Fig III -7 and 8). First of all, the 

gases are extracted and stored into a stainless steel canister (Fig III -7). Fluids are then 

extracted, filtered (0.45μm Millipore HPAP) and dispatched into different aliquots (for 

major and trace cations/anions for Sr and Li isotopes analysis), each of them for specific 

analysis (Table 1). 

Table III - 1 Presentation of bottle type and volume dispatched in different aliquots. 

 

 

By using different aliquots, we limit the risks of pollution of the whole sample. A 30mL 

LDPE bottle is kept for on-board analyses for pH, Eh, salinity, H2S, and conductivity 

measurements. We also measure Fe concentration in fluids using a photometric instrument 

that provides a first indication of the Fe concentration in the fluid. 

After fluid extraction, each part of the samplers is acid washed, rinsed with ultrapure MQ 

H2O and dried. The parts are reassembled and the Ti gas-tight syringe is put to a pressure 

<0.1mbars by a primary vacuum pump. 
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Table III - 2 Summary of fluids samples collected during the three MoMAR cruises 

 
In total, for three scientists, it takes up to 1h30 to process entirely one sample from recovery 

at the ROV basket to the end of sampler conditioning. It means that each site sampled 

requires ~7h working hours from sampling at depth till on-board chemical analyses. 12 

different hydrothermal sites have been sampled in 2013 (Table 2), which represent 91h. 

From 2013 to 2015, the number of collected samples increased significantly from 37 to 57, 

which is mostly due to upgrading the gas extraction system and adapting the handler by the 

GET mechanical workshop for improved ROV operations. 

 

 

Figure III - 7 Photographs taken during the process of sample extraction in MoMARsat 2013. A: Mounting of 
a stainless steel canister to extract the gases; B: Extracting the fluid with a plastic syringe to be filtered 
through a 0.45μm Millipore filter and dispatched in several aliquots (C) Labelled aliquots of fluids and gazes 
dispatched on the working table. 
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22 On board analyses 

pH measurements are conducted with an electrode calibrated at the beginning of the cruise 

with pH 4 and 7 buffer solutions. Most fluids have low pH25°C comprised between 2.5 and 

5. Eh, conductivity and salinity are calibrated using an adapted, commercialized and 

certified standard solution. Salinity is also measured by a refractometry at 20°C. Dissolved 

H2S has been measured since the 2014 campaign using an electrochemical probe (MS08 

from AquaMS) which allows continuous H2S measurement. The dissolved H2S react with 

a redox catalyzer. Oxidation of H2S on the electrode produce an electric current that is 

proportional to the H2S concentration. The current is then converted to a concentration. The 

electrode is coupled to a pH electrode, the coupled H2S concentration and pH are used to 

determine the concentration of total dissolved sulfide. The precision is 2% and the 

calibration has been performed by the manufacturer.  

3 On shore analyses 

3.1 Anions 

The major anions present in the hydrothermal fluid are chloride Cl-, sulfate SO4
2-, and 

bromine Br-. They are measured using a technique called High Precision Ion 

Chromatography (HP-IC ). This is a method based on differential retention time of these 

anions while flowing through a column containing anionic exchange resin. The results are 

displayed as peak areas identified by specific retention time for each element of interest. A 

calibration to convert peak area and concentration has been performed using a IAPSO 

standard solution (OSIL Ltd., UK) which contains Cl, SO4 and Br. The concentrations of 

IAPSO are calculated from relations between salinity and major element in seawater 

(Millero et al., 2008). The maximum charge accepted by HP-IC is 500ppm, which implies 

that all fluid samples are diluted to different proportions. 

Prior to each analyses session, four IAPSO standards were prepared by dilution factors of 

400, 200, 150 and 100, while all fluid samples are diluted at 180 times. IAPSO seawater 

standard corresponds to Cl, SO4 and Br concentrations of 19370 ppm, 2712 ppm and 67 

ppm, respectively. Br is closely related to Cl concentration and less abundant by 3 orders 

of magnitude. 

Peak area determination and derived concentration of samples were conducted using the 

Chromoleon software. 
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A IAPSO standard of known Cl, SO4 and Br concentration, is analyzed as a sample every 

8 samples to monitor the instrumental drift during the course of the analysis as shown for 

Br in Fig III - 8. The deviation is always below 5%, corresponding to a maximum Br 

concentration correction of ~7 μmol/l.  

 

Figure III - 8 Drift correction of samples framed by standards and blanks. Drift is extrapolated from a standard 
to the following standard in the sequence. Correction is applied to measured value of a sample according to 
the extrapolation of the standard measurement deviation. Solid line is the “true” concentration of the 
standard and dashed lines and 95% confidence interval. 

3.2 Major cations 

Major cations were measured using Inductively Coupled Plasma- Atomic Emission 

Spectrometer (ICP-AES). This method allows simultaneous analyses of a broad range of 

elements. The ICP-AES is analogue to Flame Atomic Absorption Spectrometer ( FAAS) 

and Flame Atomic Emission Spectrometer (FAES) but has a “flame” temperature of 6000 

to 10000 K. The sample is ionized into an argon plasma as an aerosol after passing through 

a nebulizer. When the sample dissociates in the plasma, atomic and ionic spectral lines are 

excited and detected by photomultipliers. The signals are compared to calibration lines and 

converted from intensities to concentrations (Rollinson, 1994). 
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For Mg, Na, Ca and K analyses, a IAPSO standard solution is used as a calibration standard. 

Because they are abundant in seawater and because NaCl-rich solution tends to clog the 

introduction system by precipitating halite, samples and standard are diluted at different 

factors depending on the element. The methodology has been described in a publication 

(Besson et al., 2014).  

Measurements of Na, K, and Ca required a dilution factor of 30, while Mg, which is close 

to zero in the purest samples, only needed a dilution factor of 10. 

Si is enriched in black smoker fluid but not in seawater, so Si standard were prepared with 

a mono-elemental solution provided by Horiba and diluted to cover the expected 

concentration of the samples. To avoid NaCl effect of the matrix, samples were diluted 10 

times. Drift correction was conducted as illustrated in Fig III - 8. 

Fe and Mn are virtually absent in seawater but enriched in black smoker fluids. The 

concentrations of these elements in our samples were analyzed on pure samples, except for 

sample from the Capelinhos site (see Fluid chemistry section) which is highly concentrated 

compared to the other fluids. In 2013, the standard was prepared using a multi-elemental 

solution provided by Horiba (Mix21). In 2014 and 2015, the standards were prepared with 

a multi-elemental solution in a 35g/kg NaCl matrix to match the expected concentration of 

the samples. Some samples from 2013 have been measured again to confirm the validity of 

the measurement and indicated similar concentrations. The heavy charged solution of the 

pure sample has shown to affect significantly the sensitivity of the analysis over 20 samples. 

Rinsing the entire system has been done systematically after each 20 samples with HNO3 

5% for at least 4h before a new analysis sequences can be run.  

3.3 Trace elements 

Trace element concentrations were determined using an Inductively Coupled Plasma Mass 

Spetrometer (ICP-MS ) quadrupole instrument. The introduction and ionization system is 

the same as for ICP-AES. Ions are extracted from the plasma into a pumped-vacuum system 

and focused through an ion lens into a mass spectrometer (Rollinson, 1994). The 

quadrupole consist of 4 metal rods parallel to the ion beam and pair-connected. Voltages 

applied to the rods, cause the ions to oscillate. Oscillation magnitude is controlled by mass 

and charge of the ion. The ion can then be ejected from the stable ion beam depending on 

the oscillation magnitude applied. So depending on voltage, the rods filter the selected ions 

(Linge and Jarvis, 2009).  
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Sr, Rb and Cs (among others: Cu, Zn, and Al, etc…) were measured on a quadrupole ICP-

MS Agilent at GET laboratory for 2013 samples and at Hydroscience Montpellier for 

samples from 2014 and 2015 surveys. 

For 2013 samples, fluids have been diluted 180 times to allow passage analysis without 

clogging the sample introduction system. Before analysis, each individual samples was 

weighted and doped with an In/Re solution to serve as an internal standard. This allows 

drift correction with a close look on instrumental sensitivity. Fluids analyzed at 

Hydroscience Montpellier allowed less dilution, each samples was diluted to attain 500ppm 

of charge corresponding to dilution between 80 and 60 times.  

3.4 Rare Earth Elements (REE) 

REE concentrations were determined by Sector Field-Inductively Coupled Plasma- Mass 

Spetrometer (SF-ICP-MS ) element XR coupled with Aridus2 Desolvator introduction 

system. In this type of ICP-MS, a magnetic field is applied perpendicular to the ion beam. 

This drives the ions to a circular motion whose radius depends on the magnetic field and 

the ion velocity. Ion travelling a particular arc will pass through narrow slit and reach the 

detector. Mass resolution is controlled by the width of the slit (Linge et al., 2009). At the 

beginning of an analysis sequence, a spiked SLRS-5 solution (international standard for 

river water, certified for all the REE) has been ran and gave the certified value for REE 

concentrations. REE measurements are highly sensitive to oxide interference caused by 

species that bond with oxygen. Then a Ce mono-elemental solution has been ran to evaluate 

the oxide formation percentage. CeO (mass 140+16) interferes with the Gd mass of 156. 

So the Gd analyzed for this sample is only due to oxide formation with Ce, then the 

calculated percentage of oxide will be corrected as well as the blank to the signals. The use 

of the Aridus 2 desolvation system lowers drastically the oxide formation (~0.05% on 

CeO). 

Isotopic Dilution (ID) 

Isotopic dilution is a method consisting in measuring an isotopic ratio to constrain an 

unknown concentration. To do so, an artificial solution, called “spike” with unnatural 

isotope abundances of the concerned element, will be added to the sample (natural 

abundances). The result is a mixed isotopic abundance between the spike and the sample. 

The measured isotopic ratio will depend on the weights and concentrations of both sample 

and spike. This is described by the ID equation:  
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ሾܴܧܧሿ௦௣௟ ൌ ሾܴܧܧሿ௦௣௞ ൈ ௐೞ೛ೖௐೞ೛೗ ൈ ெ೙ೌ೟ெೞ೛ೖ ൈ ஺ೞ೛ೖమ஺೙ೌ೟మ ൈ ሺோ௦ିோ௠ሻሺோ௠ିோ ሻ (1) 

X: spike=spk; sample=spl. 

ሾܴܧܧሿ௑ : REE concentration in spike/sample. 

௑ܹ : Weight of spike/sample. 

 .௑ : Molar weight spike/naturalܯ

௑௡ܣ  : #1 or #2 isotope abundance spike/natural. 

ܴ௑ : #1/#2 isotope ratio for the spike/natural/mix (Rm; what we measure). 

The error M on the ID equation is defined as follow: 

ܯ ൌ ሺோ௘ିோ௦ሻൈோ௠ሺோ௠ିோ௘ሻൈሺோ௦ିோ ሻ (2) 

From this relation, an ideal Rm can be calculated for the minimum M. Rmideal is derived 

from the following equation: 

ܴ݉ ௜ௗ௘௔௟ ൌ ݏܴ√ ∗ ܴ݉ (3) 

In order to characterize the fourteen REE, we chose 150Nd and 172Yb spikes as 

representative of the light REE and the heavy REE respectively. Furthermore, a third spike 

of 153Eu is used to ensure its concentration measurement because Eu behaves differently 

than the other REE in reduced solution such as hydrothermal black smoker fluids. The 

trispike solution has been tuned to hydrothermal fluid based on data from Douville et al., 

(1999), and prepared to reach as close as possible the Rm ideal of each element when samples 

are spiked. 

Sensitivity of the measurement during the analysis sequence may influence an external 

standard calibration, but such variations will affect both isotope in the same way. As a 

consequence, variations in sensitivity will not affect the measured ratio (Rm) of the spiked 
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elements. Furthermore, once spiked, (partial) sample loss will not change the Rm value and 

the concentration can be measured correctly. 

Separation protocol 

REE are present in seawater at low concentrations (few ppt). Hydrothermal fluids are 

enriched in REE compared to seawater by 10 to 100 times. To measure such low 

concentrations in a NaCl rich fluid, REE need to be separated/preconcentrated from the 

matrix. The chemical protocol used in this study is adapted from a seawater protocol used 

at the LEGOS laboratory which uses co-precipitation of REE with Fe oxyhydroxide. The 

LEGOS protocol consists in the addition of iron solution to an already spiked seawater and 

then co-precipitation of REE with Fe oxyhydroxide.  

The trispike was added to the samples in an amount dependent on the estimated REE 

concentrations. Because black smokers already contain iron in a reduced form, no iron was 

added to the purest hydrothermal samples but some of it was added to hydrothermal plume 

samples (Saleban Ali, 2016). Furthermore, as black smokers’ fluid are reducing, a droplet 

of clean H2O2 was added to the solution to oxidize and put the iron on the ferric form. Then 

the pH is risen up to 8 to induce the REE co-precipitation with iron oxy-hydroxide. After 

co-precipitation in 50ml Falcon centrifugation tube, 24h are needed to allow sedimentation 

of iron particles, after which supernatant is removed and the aliquots are refilled with 

ultrapure water (H2O MQ) and centrifuged. This operation is repeated 3 times to ensure 

that a maximum NaCl is removed from the matrix. When rinsed, the iron precipitates are 

dissolved in HCl 6N to be transferred in Teflon Beaker Savillex, then evaporated and 

dissolved in the appropriate acid for resin exchange separation. The figure III - 9 shows the 

resin exchange protocols for 1) iron separation and 2) residual Ba separation. This last part 

is especially important for hydrothermal fluids as these solutions are enriched in Ba 

compared to seawater. Ba needs to be removed because it may interfere with Nd masses 

when forming oxides or hydroxides during HR-ICP-MS analyses. As Nd is in the tri-spike, 

it is crucial to separate well Ba. We use a trispike solution (150Nd, 153Eu, and 172Yb) to spike 

the samples. The elements are determined by external calibration by a multi-elemental 

solution containing all the REE and prepared at 10, 50 and 100 ppt. The measured external 

concentration is compared to the ID calculated concentration to determine the recovery % 

(recovery in % = 100*[c] ext. /[c]di). The recovery is used to extrapolate to the non-spiked 

REE concentration assuming linearity of recovery between Light-REE Nd, to Heavy-REE 

Yb. This method has proved to be efficient by comparing a double spike (Nd, Yb), to a 
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multispike method (Rousseau et al., 2013). The trispike characteristics used are indicated 

in Table III – 3: 

Table III - 3 Trispike characteristics used in REE measurement protocol. 

 

Samples have been dissolved in a same batch of HNO3 0.3N doped with In/Re solution to 

~0.1ppb. They all have the same In and Re concentration, which allows a very close look 

on sensitivity monitoring. 
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Figure III - 9 Description of REE separation through resin exchange protocol 
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3.5 Sr isotopes 

Sr isotopes have been measured using a Thermal Ionized Mass Spectrometer (TIMS) Mat 

Finnigan261. Samples are purified chemically and deposited on a high melting point metal 

filament. When heated, elements are ionized and guided to a curved tube through a 

powerful electromagnet which splits the atoms according to their mass. The obtained mass 

spectrum allows calculation of isotopic ratios (Rollinson, 1994).  

For our samples, Sr is separated by passage through ion exchange resin, Sr-spec provided 

by Eichrom. 1.6ml of resin were rinsed and introduced into Teflon column. Samples have 

been weighted and evaporated in Savillex beaker in order to obtain 300 to 500 ng of 

strontium. The residu was dissolved into 0.5ml of HNO3 2N. Sr is eluted from the matrix 

with H2O MQ. The Sr fraction is evaporated on a tungsten filament (previously degassed) 

using a H3PO4 solution (150μl). Before each run of analysis, an international standard is 

measured to check on the accuracy of the measurements. The standard used is NBS-987 

and was measured at 87Sr/86Sr value of 0.710250 (2σE=0.000011; n=14). The accepted 

value for NBS-987 is 87Sr/86Sr=0.710248 (2σE=0.000011; Thirlwall, 1991). 

3.6 Li concentration analysis  

As Li concentration measurement was not a classic type of analyzes at the GET laboratory 

before this thesis, a special treatment was necessary to assess the reliability and accuracy 

of the measurements. We conducted several sequences of analysis to check on the effect of 

salinity on Li measurement. The results of this investigation are presented in an article that 

was submitted to Geostandard and Geoanalytical Research. 
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Abstract 

We report on a analytical procedure to determine Li concentration in seawater and seawater 

derived hydrothermal fluid using inductively coupled plasma-atomic emission 

spectrometry (ICP-AES) with no sample preparation prior to analysis and validation by 

measurement on their matrix-match standard IAPSO reference material. Several matrixes 

have been used to test their effect on measurement accuracy. No significant biases were 

observed. The best results for IAPSO measurement of Li concentration were obtained when 

direct analysis were conducted with no other preparation. A value of 0.171 ±0.002 (1s) μg 

g-1 (24.6±0.3 μmol l-1) is obtained for IAPSO which is really close to published values of 

0.187 μg g-1 (27 μmol l-1; Gieskes et al. 1991). The method has been successfully applied 

on hydrothermal fluid samples as testified by a good Li vs Mg correlation (R2> 0.99). 

Introduction 

Lithium element and its stable isotopes are becoming a key element to characterize silicate 

erosion budget and palaeoclimatic reconstruction (Vigier and Godderis, 2014). Li content 

in hydrothermal fluid has been used to assess water/rock ratio and residence time of 
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seawater in hydrothermal systems (Foustoukos et al. 2004; Von Damm et al. 1985).The 

fractionation of Li stable isotopes entrained by basalt/gabbro dissolution and secondary 

mineral formation provides precious indicators of subsurface conditions in oceanic 

hydrothermal systems (Chan and Edmond, 1988; Foustoukos et al., 2004). In previous 

studies, different measurement procedures have been used to determine Li concentration in 

highly–charged solution, either with ICP-MS coupled with online isotope dilution 

technique (Foustoukos et al. 2004), FAAS (Riley and Tongudai, 1964; Angino and Billings, 

1966; Burrell, 1967; Fabricand et al. 1967; Chester, 2009), FAES (Gieskes et al. 1991), and 

ICP-AES (Pester et al. 2011). Most of these studies provide neither the Li concentration 

measured in their matrix-match standard nor which standard they have used to validate their 

measurement. In the present study, we propose a detailed analytical and instrumental 

protocol using ICP-AES and IAPSO seawater as a reference material to determine precisely 

and accurately the Li concentration of seawater and seawater derived hydrothermal fluid. 

Instrumentation 

Analytical development was carried out at the Geosciences Environment Toulouse (GET, 

UMR5563 CNRS/UPS/IRD/CNES) on a ULTIMA 2 inductively coupled plasma-atomic 

emission spectrometer from Horiba Jobin Yvon Technology. Besson et al. (2014) presented 

a measurement protocol to determine major element concentration of seawater. Our 

instrumental and analytical procedure has therefore been based on this study. To enable 

analyses of heavily charged solutions, a specific nebulizer (PTFE Mira Nebulizer, supplied 

by Horiba Jobin Yvon Technology) was used to introduce the solution into the ICP-AES. 

The nebulizer was inserted into a glass cyclonic chamber and operated at a maximum 

sample flow rate of 1ml min-1 and with a maximum total dissolved solute of 300 g l-1. Li is 

a minor element in seawater and hydrothermal fluids, it is thus necessary to use pure 

samples to determine its concentration, while measurement of major species (Na, K, Ca) 

needed a 30-times dilution to be determined (Besson et al. 2014). 

In order to counteract clogging, after each batch of analyses (approximately twenty 

samples), the sample introduction system (torch/nebulizer/cyclonic glass chamber) was 

rinsed online with HNO3 5 wt% for 45 min with a high flow rate of 5 ml min-1 and 

dismantled after 4 runs of analyses of 20 samples each for further cleaning. All parts were 

immersed in a bath of HNO3 5 wt% for 24hr at room temperature under a fume hood, then 

rinsed with Milli-Q water and dried in an oven at 50°C for several hours. The limits of 

quantification (LOQ) were determined by analyzing ten blank solutions of Milli-Q water 
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and were calculated as ten times the standard deviation. The value of LOQ presented in 

table1 is an average value of all LOQ values determined after each run (n=7).  

Li concentrations in seawater and IAPSO standard seawater 

Literature on Li concentration in seawater provides various data reported in figure III - 10. 

The Li concentrations are comprised between 0.170 and 0.194 μg kg-1. Li in seawater is 

considered to be a conservative element closely related to salinity (Fabricand et al. 1966; 

Burrell, 1967; Wright and Colling, 1995). Several studies have investigated the Li-

chlorinity ratio for various oceans. Riley and Tongudai (1964) compared 30 samples from 

different locations and found a covariance between Li and salinity regardless of the ocean 

with Li (μg g-1)/Cl (‰) (x103) ratio of 9.39±0.17 μg g-1 ‰ (x103). Fabricand et al. (1966, 

1967) studied the variation of Li with depth in three locations in the Atlantic ocean 

(10°59’N, 49°36’W,n=21, 18°59’N, 22°30.54W, n=16 and 10°56’N,49°30’W, n=22, 

respectively) and found average correlation of Li/Cl(‰) values of 8.71 ±0.14 , 9.03 ±0.16 

and 9.17±0.10 μg g-1 ‰ (x103) respectively. Burrell (1967) found a correlation of 9.0 ±0.2 

μg g-1 ‰ (x103) in South Atlantic Ocean. This range of Li-chlorinity ratio applied to IAPSO 

salinity of 34.991 g l-1 (Batch P150, 22/08/2008) leads to a range of 0.169 ± 0.003 μg g-1 

to 0.183 ± 0.003 μg g-1 based on the relation S(‰)=1.80655*Cl (‰; Millero et al. 2008).  
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Figure III - 10 Reported seawater Li concentration in literature. Question mark corresponds to methods not 
mentioned within reference. The grey area corresponds to lower and upper limits of calculated IAPSO Li 
concentration value based on S(‰)=34.991 g l-1 and Li-chlorinity ratio from Fabricand et al. (1966) and Riley 
and Tongudai, (1964), respectively. 

Data acquisition and processing 

ICP-AES instrument was calibrated with a mono-elemental Li 2 wt% HNO3 solution of 

1000 μg g-1 concentration supplied by Horiba Jobin Yvon (catalogue number: JYICP-LI, 

Lot No. LI1050711). The solution was diluted at different level in 5 wt% HNO3 so as to 

obtain a calibration range between 0.2 μg g-1 and 5 μg g-1. The calibration curve obtained 

had squared fit regression coefficient better than 0.999 for each run. A first set of solution 

of Li doped at 1 μg g-1 in Milli-Q ultrapure water was performed to check on the best set 

of parameters for the ICP-AES analyses at the beginning of the project. A memory effect 

has been observed in blank analyses after calibration, as evidenced by a residual 0.01 μg g-

1 in a blank solution. This issue was corrected by increasing rinsing time from 30 to 240 

seconds. A second set of the same solution has been run to check on drift through analyses. 

The drift has been evaluated by ten consecutive measurements of the 1 μg g-1 solution 
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which give an average concentration of 1.029 ± 0.004 μg g-1 (1s). Matrix effects have been 

tested using different certified solutions and concentrations are reported in Table 3. Mix21 

standard is a multi-elemental solution of 100 μg g-1 provided by Horiba Jobin Yvon 

(catalogue number: JYICP-MIX21, Lot No. M260110) and the Spex standard is a 

SPEXertificate® multi-elemental solution with 35 g l-1 NaCl solution in 5 wt% HNO3 

(catalogue number: XSPEXF-2782, Lot No. 24-123CR). The different solutions do not 

contain any Li and are used to observe the effect of other elements and/or salt on Li 

determination. They were prepared by dilution and addition of mono-elemental Li solution 

to attain the range of interest for Li concentration and matrix. For low Li concentration (0.7 

and 1.5 μg g-1) there is no obvious salinity effect. For higher concentration, a small decrease 

of measured Li compared to theoretical Li is observed at increasing salinity content. 

Nevertheless, measurements at salinity of 35 g l-1 NaCl are in agreement with theoretical 

concentration. Linear regression performed on the different matrix gives intercept lower 

than 0.01 μg g-1 (similar to our limit of quantification) indicating that the method is reliable 

and the salinity effect is not significant. Only one intercept for the highest salinity had a 

value of 0.12 μg g-1, due to a bias in the 3 μg g-1 Li solution. Based on the behavior of the 

other measurements at this salinity, a reasonable explanation is an error during 

manipulation and preparation of this solution. Limits of quantification and detection have 

been calculated for each run (n = 7) based on the standard deviation of 10 successive 

analytical blanks for each run. The mean limits of quantification and detection are 0.002 

μg g-1 and 0.0006 μg g-1, respectively. 

IAPSO as a reference material for measurements 

Lithium concentration measurements of the IAPSO seawater reference material are shown 

in Figure III - 11. Both direct measurement and standard addition technique have been 

applied. The standard addition techniques give a range of Li concentration between 0.162 

± 0.010 and 0.190 ± 0.010 μg g-1 (23.3 ± 1.4 and 27.9 ± 1.4 μmol l-1) consistent with Li 

concentrations reported in the literature. The variation of Li concentration is nevertheless 

too large for reliable quantification (Figure III- 11). The discrepancy between our two 

standard addition tests can be explained by uncertainty subsequent to doping the IAPSO. 

The preferred method is the direct measurement of Li in IAPSO seawater reference material 

with no sample preparation which gives an average concentration of 0.171 ± 0.002 μg g-1 

(24.6 ± 0.3 μmol l-1; n=4). Direct measurements are within range error to what is accepted 

to be Li content in IAPSO and generally in seawater (Angino and Billings, 1966; Burrell, 
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1967; Gieskes et al. 1991; Riley and Tongudai, 1964; Summerhayes and Thorpe, 1996) as 

presented in Figure III - 11.  

 

Figure III - 11 IAPSO seawater Li concentration determination. Full triangles are standard addition technique 
applied with calibration from 0.2 to 4 μg g-1. Triangles are standard addition technique applied with 
calibration from 0.2 to 5 μg g-1. Full square is the direct measurement of IAPSO. Grey areas corresponds to 
published values of Lucky Strike hydrothermal fluids and North Atlantic interstitial waters (Charlou et al. 
2000; Gieskes et al. 1985). 

A measurement method to precisely analyze Li concentration of a charged matrix such as 

seawater derived hydrothermal fluids has been developed with no need of sample 

preparation. Measurements on both synthetic seawater-like solution and IAPSO reference 

material show reliable data. Li concentration of IAPSO seawater reference material has 

been measured four times with a mean value of 0.171 ± 0.002 μg g-1. Application to 

hydrothermal fluids shows really good correlation with measured Mg concentration 

(R2>0.99) leading to Li end-member hydrothermal composition to be precisely and 

accurately determined. 
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3.7 Li isotopes determination 

Instrument: 

Li isotope measurements are conducted using TIMS or MC-ICP-MS. To use these 

instruments, it is necessary to first separate the Li element from the matrix. 

Li isotopes separation 

Li elution and separation from NaCl-rich matrix was carried out by ion exchange column. 

The protocol was developed by Jonathan Prunier based on the chemical protocol presented 

in James and Palmer (2000) and adapted to NaCl solution. The protocol uses a 2 column 

separation approach at the GET laboratory, Teflon column made on size and proposed by 

Millipore. The first passage separates Li from the other elements. However, because Li and 

Na have close elution peaks, we use a second column to remove any residual Na, because 

Na can affect Li isotopes measurement (Fig III -12B; Jeffcoate et al., 2004).  

Li isotope composition 

Li isotope measurements are performed by TIMS or MC-ICP-MS. The analysis of Li 

isotope ratio are biased by mass fractionation. To avoid biased measurement ratios a 

standard is run before and after the sample analysis. The Li isotope ratio obtained for the 

standard is biased on the same manner as for the sample. Therefore, by comparing the 

measurement on the sample with the neighboring standards, at the same conditions and 

concentrations, we can overcome the mass fractionation issue. This method is called 

“standard bracketing”. The standards used in Li isotopes are usually L-SVEC (provided by 

NIST) or IRMM-16. Both are in the form of lithium carbonate (Li2CO3) powders and have 

the same 7Li/6Li ratio which make them directly comparable (Abundances: 6Li=7.5889 %; 
7Li=92.4111 %; 7Li/6Li=12.17714; (Taylor and Wellum, 2003).  
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Figure III - 12 From Tomascak (2004), Ratio of 7/6Li as a function of percentage of elution. It shows that the 
first fraction of Li eluted is significantly heavier until ~10% Li eluted then stable. At ~90% of elution, 6Li 
increase and the 7/6Li ratio is lower. B: From Jeffcoate et al. (2004), the figure show δ7Li as a function of Na/Li 
ratio in solution. Addition of Na in solution tends to lower the measured value of δ7Li. 
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Figure III - 13 Description of the Li separation protocol through resin exchange column. All the acids used are 
prepared by dilution of bi-distilled acid. 
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As samples are compared to standard, Li isotope uses the delta notation terminology. This 

notation simplify interpretations by using more comprehensible number as the differences 

between the samples and standards are found after the 3rd decimal. The delta notation is 

derived following the equation: 

ߜ ଻݅ܮ ൌ ቎ቆ ಽ೔ళಽ೔ల ቇ௦௣௟
ቆ ಽ೔ళಽ೔ల ቇ௦௧ௗ െ 1቏ ∗ 1000 ሺ4ሻ 

The Li isotope measurement presented in Fig III - 12B, varies depending on the Na/Li ratio 

of the analyte. A 1:1 ratio leads to a δ7Li value of ~ -0.8‰ and as low as -2.4‰ for a ratio 

of 20:1. Furthermore, it is important to achieve a complete recovery of Li. As shown in Fig 

III -12A, Li fractionate during elution through columns (Fig III - 13), the first 10% of the 

Li eluted show a 7Li/6Li ratio between 12 and 14, enriched in Li7, while the last 10%show 

Li7/Li6 ratio between 9 and 10. This means that if a fraction of the Li is lost, it might greatly 

affect the measured ratio. The whole separation protocol is illustrated in Fig III -13. 

Li isotopes have been analyzed by MC-ICP-MS Neptune at the GET laboratory in 2014 

and at Ifremer Laboratory in Brest for 2015 and 2016. Prior to Li isotope measurements, it 

is necessary to determine the Li concentration of the studied sample so as to adjust the Li 

concentration of the standard to that of the samples. We determined that the concentration 

of the analyzed solution as well as the standard was optimal at ~350ppb of Li in HNO3 

0.27-0.32N.  

Different analysis sequences have been performed to determine this concentration and 

evaluate the charge effect on the Li measurement. To do so, a mono-elemental solution 

have been used to act both as a sample and a standard. Three concentrations have been 

prepared for the bracketing standard, 75, 175 and 350ppb. “Samples” were prepared at 

concentrations between 50 and 350ppb. The goal is to evaluate the effect on the measured 

delta notation of the sample Li concentration, for each of the three prepared standards. The 

results are shown in Fig III -14. First, the isotopic composition varies from -10 to 7 ‰. The 

standard and samples have the same isotopic composition so the δ7Li should be zero. The 

zero values for the samples are obtained when the concentration is equivalent to that of the 

standard. This highlights the charge effect which tends to bias the measured ratio in 
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response to the concentration difference between the sample and the standard. For the 75 

ppb standard sequence, a small change in Li concentration of the analyte (compared to to 

that of the standard at 75 ppb) leads to an important variation in δ7Li. For the sequence with 

a 350 ppb standard, the changes are tighter and no significant variations in δ7Li is observed 

when the Li concentration is higher than ~280ppb (80% of the Li concentration of the 

standard). This observation leads to the conclusion that samples and standards should be 

prepared so as to have a concentration of 350ppb. 

 

Figure III - 14 δ7Li as function of Li concentration at 3 different bracketing standard concentrations. The 
figure shows the effect of the difference between sample and standard concentration on the δ7Li 
measurement. 

Two IAPSO samples have been processed through chemical elution protocol to assess the 

accuracy of our method. Due to low Li concentration in seawater (171 ppb) and high NaCl 

content (~35000 ppm), seven separations of 100ng of Li from IAPSO have been performed 

and reunified at the end of the elution in order to have a 2ml of solution with [Li]=350 ppb.  
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When measuring the IAPSO bracketed by IRMM-16 standard solution, we obtained a δ7Li 

of 30.3 ‰ (±0.3) and 30.5 ‰ (±0.3), consistent with expected values for seawater 

(δ7Li=31‰ ±0.5). 

 

3.8 Nd isotopes 

Nd isotope determination were conducted by Hassan SALEBAN ALI during his Master 

thesis in the GET laboratory.  

The isotopic composition of Nd was obtained by Nd separation through the same chemical 

protocol as described for REE concentrations with one additional step. The un-spiked 

samples were processed through the previous steps of co-precipitation, and double column 

exchange with an additional column to isolate Nd from the other REE. Nd is eluted from a 

Ln-spec resin with HCl 0.25M. Nd isotopic composition measurements were conducted at 

the IUEM laboratory in Brest on a Thermo-Ionized Mass Spectrometer (Thermo Finnigan 

Triton). The 143Nd/144Nd ratio was defined as the average of 100 measurements of ion 

intensities following the static collection mode. The 143Nd/144Nd ratios were normalized to 
146Nd/144Nd = 0,7219. Measured 143Nd/144Nd values for La Jolla standard of 1-5 ng Nd 

(recommended values of 0,511860) was 0,511850 ± 12 (1σE, n = 13). The Nd isotopic 

composition uses a εNd notation to reflect the 143Nd/144Nd ratio compared to Chondrite 

Uniform Reservoir (CHUR) as follow: 

εNd ൌ ൞ቆ ಿ೏భరయಿ೏భరర ቇೞೌ೘೛೗೐ቆ ಿ೏భరయಿ೏భరర ቇ಴ಹೆೃ
െ 1ൢ ൈ 10ସ  
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AAbstract 

The Lucky Strike Hydrothermal Field, located at the center of a magmatically-robust 

segment of the Mid-Atlantic Ridge, is a key target to understand geophysical, geological 

and biological processes in Mid Ocean Ridge axial domains (<1My). As such, the field 

hosts since 2010, a deep sea observatory (EMSO-Azores) dedicated to the survey of the 

interrelations between volcanic, seismic and hydrothermal processes together with seafloor 

ecosystem evolution. During the MoMAR 13 maintenance cruise of this observatory, a new 

active site, named Capelinhos, venting high temperature black smoker fluid (324°C) was 

discovered approximately 1.5 km east of the long known historical active sites. We report 

on its first chemical analysis and its implication for the global hydrothermal circulation cell 

at this field. With an end-member at 262 mM, Capelinhos fluids are the most chloride 

depleted fluids of all LSHF. Both major cations (Ca, Na, and K) and trace elements (Li, Cs, 

Rb, and Sr) concentrations display a linear correlation when compared to Cl concentration 

which implies a unique deep source fluid. Fe, Mn, Cl and Si allow characterization of both 

phase separation and reaction zone in terms of the pressure and temperature conditions of 

water-rock interactions. The Si-Cl geothermobarometry, at Capelinhos indicates phase 

separation conditions at 435–440°C, and 370-390 bars (2500–2800 mbsf) consistent with 

former estimations for LSHF vapor-dominated fluids. However, Capelinhos fluids show Fe 

and Mn concentrations (~2800μM and ~640μM) 3–4 times higher than all other LSHF 

fluids. These chemical features imply a higher temperature of equilibrium with greenschist 

facies minerals in the reaction zone estimated at ~400°C at Capelinhos and between 350 

and 375°C for the other LSHF sites based on the Fe/Mn geothermometer (Pester et al., 

2011). Interpreting P–T discrepancies between the Fe–Mn, Si and Cl geothermobarometry 

in terms of residence time beneath individual vent sites, we infer that up flowing fluids 

beneath Capelinhos stop reacting shortly after phase separation compared to other LSHF 

sites. We propose that the measured Cl–Si–Fe–Mn variability at LSHF sites is related to 

permeability variations in the hydrothermal upflow zone. The dense and complex fracture 

network due to the Lucky Strike axial graben which hosts the historical LSHF sites likely 

enhances conductive heat exchange between the up flowing hydrothermal fluids and 

seawater modifying fluid chemistry to lower P–T conditions beneath these sites. This 

participates to the stockwork formation underneath these vent sites. Conversely, emerging 

1.5 km away from this axial fractured zone, Capelinhos fluids are more representative of 

the deeper part of the hydrothermal upflow.  
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RRésumé 

Le champs hydrothermal de Lucky Strike, situé sur la dorsale médio-atlantique est très 

intéressant pour comprendre les différents processus ayant lieu dans les zones axiales des 

rides océaniques (<1Ma), à savoir les processus géophysique, géologique et biologique. 

Ainsi, depuis 2010 ce champs hydrothermal accueil un observatoire fond de mer (EMSO-

Açores) qui est dédié à l’étude des relations existant entre les processus magmatic, sismique 

et hydrothermaux avec l’évolution de l’écosystème du plancher océanique. Durant la 

campagne de maintenance MoMAR 13, un nouveau site de décharge de fluide à haute 

température a été découvert. Ce site, nommé Capelinhos, émet des fluides de type fumeur 

noir à 324°C et est situé à 1,5 km à l’Est des sites connus depuis 1993. Les fluides de 

Capelinhos sont les plus appauvris en Cl, parmis les sites observés, avec un end-member à 

Cl=262mM. Les concentrations des cations majeurs (Na, Ca, K) et mineurs (Li, Cs, Rb, Sr) 

montrent une relation linéaire avec les concentrations en Cl qui impliquent une même 

source profonde et homogène qui alimente le champs hydrothermal. Les éléments tels que 

le Fe, Mn, Cl et Si permettent de caractériser les conditions de pression et de températre de 

la zone de séparation de phase et de la zone de réaction. Le géothemobaromètre Si–Cl, 

appliqué au fluide de Capelinhos, suggèrent une zone de séparation de phase à une 

température de 335-440°C et une pression de 370–390 bars, équivalent à 2500–2800 m 

sous le plancher océanique. Ceci est cohérent avec les estimations précédentes basées sur 

les fluides à dominante vapeur des sites historiques. De plus, les fluides de Capelinhos 

montrent des concentrations en Fe et Mn (~2800μM et ~640μM) trois à quatre fois 

supérieur à celles mesurées pour les autres sites. Ceci indiquent des conditions dans la zone 

de réaction des minéraux du faciès schiste vert à une température de 400°C , estimé à partir 

du géothermomètre Fe/Mn (Pester et al., 2011), alors que les autres sites suggèrent plutôt 

une tempérautre de 350 à 375°C. Les différences de conditions de pression et de 

température estimées pour la zone de separation de phase et la zone de réaction peuvent 

être interprétées en terme de temps de résidence dans la zone de remontée. Ainsi, les fluides 

de Capelinhos semble avoir peu évolué depuis la zone de séparation de phase par 

comparaison avec les autres sites. Ainsi les differences mesurés en Cl, Si, Fe, Mn sont liés 

à la permeabilité du substratum. Le réseau complexe de fracture à l’axe facilite les échanges 

de chaleurs et vont conduire les fluides vers des températures d’équilibre différentes de 

celles de la separation de phase. Les fluides de Capelinhos représentent le mieux les fluides 

profonds de la zone de remontée.  
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11. Introduction 

Hydrothermal fluid circulation at mid-ocean ridges (MOR) is one of the major processes 

controlling the out-going heat fluxes of the oceanic lithosphere (Chen and Morgan, 1990; 

Stein and Stein, 1994), the geochemical composition of the crust (Kelley and Delaney, 

1987; Kelley and Robinson, 1990; Alt and Teagle, 2003; Barker et al., 2008; Brant et al., 

2012), the chemical composition of the ocean (Elderfield and Schultz, 1996; Resing et al., 

2015) and the development of peculiar chemo-synthetic ecosystems (Martin et al., 2008 

and references therein). Increasing attention has been drawn to the study of black smokers 

since their discovery along the East Pacific Rise off the Galapagos Islands in 1977. They 

have shown an unexpected diversity in geological setting, hydrothermal ecosystems and 

fluid chemistry (Campbell et al., 1988; Von Damm, 1988, 2000; Douville et al., 2002; 

Ludwig et al., 2006; Schmidt et al., 2007, 2011). From the recharge zone to the discharge 

area, seawater is transformed into high temperature hydrothermal fluid, acquiring its 

chemical composition in the reaction zone, which is likely located on top of the axial 

magmatic chamber (AMC) where the temperature are the highest. High temperature fluids 

can be further modified by interactions with the rocks along with the upflow pathway to 

the seafloor and also by the precipitation of secondary minerals, depending on the fluid 

velocity (Saccocia and Seyfried, 1994; Lowell, 2003; Coogan, 2008; Steele-MacInnis et 

al., 2012). These interactions occur over a wide range of pressure and temperature 

conditions (from the deepest part of the hydrothermal cell to the discharge, ∆P and ∆T can 

be a few hundred bars and °C, respectively). Variations can be observed depending on the 

nature of the host rocks (i.e. extrusive basaltic and/or mantellic substrate). The chemical 

composition of focused vent hydrothermal fluids can, therefore, be used as a tracer of deep 

crustal processes, constraining the pressure and temperature conditions at which water-rock 

interactions took place in the crust (Seyfried et al., 1998; Seyfried, 2003; Von Damm et al., 

2003; Mottl et al., 2011; Reeves et al., 2011). 

The Lucky Strike Hydrothermal Field (LSHF) was discovered at 37ºN along the slow-

spreading Mid-Altantic Ridge (MAR) in 1992 during the FAZAR cruise (Langmuir et al., 

1997). The discovery motivated several subsequent research cruises with the objective of 

better characterizing the geological, geochemical, geophysical and biological context of the 

vents (Fouquet et al., 1995; Langmuir et al., 1997; Von Damm et al., 1998; Charlou et al., 

2000; Ondréas et al., 2009; Barreyre et al., 2012; Pester et al., 2012; Escartin et al., 2015). 

The first comprehensive study on the Lucky Strike vent chemistry (Von Damm et al., 1998) 
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indicated that the discharge of focused fluids (sampled in 1993 and 1996) originated from 

deep rooted fluids that underwent near-surface processes in the upflow (Von Damm et al., 

1998). Charlou et al. (2000) analyzed fluids from ten active sites of the LSHF. All samples 

were depleted in chloride relative to seawater (3.2% NaCl) and were spatially correlated 

with Cl variability from ~420mM at the South Eastern sites, to ~520mM at the North 

Western sites. These authors proposed that a relatively shallow reaction zone provided 

vapor-like fluids (i.e., Cl<Clsw) to the upflow zone at subcritical conditions (lower 

temperature and pressure than 407°C and 298bars, equivalent to ~1300 mbsf; Bischoff, 

1991). Chemical data presented by Charlou et al. (2000) also suggested that sampled vapor-

dominated fluids underwent substantial subsurface mixing with seawater prior to venting.  

Pester et al. (2012) used trace element and chloride co-variation in fluids at five active 

vents, sampled eleven years later, to infer P–T equilibrium conditions during upflow 

(chloride ranged then from 414mM to 588mM). The analyzed fluids display both chloride 

depletion and enrichment relative to seawater, which lead to the proposal that a unique, 

deep source (or reaction zone) feeds the hydrothermal field (Pester et al. 2012). Converse 

to Charlou et al. (2000), Pester et al. (2012) proposed that the fluids underwent phase 

separation at 430–450°C and pressure at about 400 bars, and that subtle changes in pressure 

and/or temperature can explain the diversity observed in chlorinity. These authors argue 

that the hot fluid equilibrates with the greenschist facies of basaltic host rocks at 

temperatures lower than those of the phase separation (i.e. 350–380 °C), i.e. the result of 

conductive cooling prior to discharge.  

Comparing these different perspectives of the plumbing circulation system below the LSHF 

highlights the difficulties that arise when interpreting the chemical composition of vent 

fluids. This is compounded by the lack of spatial (e.g. LSHF) and temporal (e.g. yearly-

basis) continuity between the studies. 

The EMSO-AZORES program started in 2010, following the installation of the long-term, 

deep sea observatory (FP6-ESONET; Person et al., 2009; Colaço et al., 2011). This 

instrumental infrastructure is dedicated to continuous monitoring of hydrothermal system 

dynamics. Yearly maintenance cruises allowed the collection of hydrothermal fluids 

complementary to the continuous data of the observatory (www.emso-fr.org/fr/EMSO-

Azores). A new, high-temperature venting site, named Capelinhos (T=324°C, Table 1) was 

discovered during the MoMARsat 13 (2013) maintenance cruise (Escartin et al., 2015; Fig 

IV - 1). Capelinhos lies approximately 1.5 km east of the main LSHF, while all other 
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active/inactive venting sites are located around a fossil lava lake (Humphris et al., 2002; 

Ondréas et al., 2009; Barreyre et al., 2012; Fig IV - 1). The discovery of this new site argues 

for subseafloor fluid circulation at the LSHF over a much larger spatial scale than 

previously thought. 

In this study, we report on the first chemical data acquired for the Capelinhos vent site and 

we compare its chemical characteristics with data from 12 other active LSHF vents sampled 

during the same cruise. Using this dataset, we show that Capelinhos is a key site to assess 

the role of subsurface mixing, phase separation, andconductive cooling processes on the 

chemistry of the LSHF fluids.  

22. Geological setting 

The ~65 km long Lucky Strike segment is located south of the Azores islands along the 

MAR between 37°03'N and 37°37'N (Detrick et al., 1995). The spreading rate is ~22 mm/yr 

(Cannat et al., 1999; Miranda et al., 2005). The LSHF is situated on top of a central volcano 

that includes a fossil lava lake (300m of diameter) framed by three ancient volcanic cones 

and truncated by N010°–N030° faults and fissures (Fouquet et al., 1995; Fig IV - 1). The 

fossil lava lake is significantly less fissured than its surroundings, indicating a relatively 

recent formation (Humphris et al., 2002; Ondréas et al., 2009). Seismic data have 

constrained the occurrence of a magmatic lens (or AMC), at a depth of about 3500 m below 

the summit of the volcano (Singh et al., 2006). Microseismic events recorded between 2007 

to 2009 are located above the AMC at depths between 1800 and 2500m below seafloor 

(bsf), and interpreted as the product of fracturing induced by penetration of colder down-

flowing fluids into the hot rocks (Crawford et al., 2013). If this interpretation is correct, 

these microseismic events document the existence of two predominantly along-axis 

hydrothermal cells, with a central upflow zone centered beneath the LSHF. 

The LSHF vents display various structures from small hydrothermal mounds to tens of 

meters high sulfide towers sitting on large mounds, as well as thin towers, several meters 

high (Fig IV - 2). Close to the focused fluid chimneys, diffuse venting occurs through 

cracks at temperatures below 100°C and flanges with pool temperatures higher than 200°C 

(Cooper et al., 2000; Barreyre et al., 2014). The long-term history of hydrothermal activity 

at Lucky Strike is evidenced by metalliferous deposits and the presence of dead mussel 

shells in inactive sites (Langmuir et al., 1997; Humphris et al., 2002). The last volcanic 

event, that formed the fossil lava lake, has buried most of the “old” hydrothermal field 
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leaving only relicts of past hydrothermal activity (Humphris et al., 2002; Ondréas et al., 

2009). The spatial distribution of old inactive hydrothermal deposits compared to those 

associated with active hydrothermal ones indicates that the northeastern part of the 

hydrothermal field is largely extinct (near the Sintra site; Fig IV – 1; Ondréas et al., 2009; 

Barreyre et al., 2012). There are other indications that suggest a relatively recent decline of 

the hydrothermal activity, based on images mosaic, observations and temperature 

measurements of diffuse and focused fluids (Ondréas et al., 2009; Barreyre et al., 2012). 

Approximately 20 to 30 active vents are currently known and investigated at Lucky Strike, 

distributed around the fossil lava lake (Barreyre et al., 2012; Fig IV - 1). 

 

 

Figure IV - 1 Bathymetric map of the Lucky Strike central volcano. Active hydrothermal vents are 
represented. Sapins=Sap. Crystal=Cr.; South Crystal= Sth Cr.; White Castle=WC; Isabel=Is.; Tour Eiffel=TE; 
Aisics= ASC; Montsegur= Mr, Capelinhos=Cap. Modified from Humphris et al., 2002. 
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The northwestern area hosts several active sites with high temperature vents (Bairo Alto, 

Nuno, Helene and Jason) on a curvilinear scarp formed by mass wasting and partly 

comprised of massive sulfides (Ondréas et al., 2009; Escartin et al., 2015). This area has 

been chosen as an exclusion zone to preserve the original hydrothermal habitat, in respect 

with the Lucky Strike Marine Protected area (Mullineaux, 1998). As a consequence, this 

area is off limits for sampling. 

The northeastern hydrothermal area is situated on a bench comprising surficial 

hydrothermal deposits. Despite its geographical extension, the hydrothermal activity in this 

area is declining as illustrated by lower temperature venting sites (at 196ºC for Sintra, 

Statue of Liberty now extinct; Table VI - 1). Proximal to this area, the 18m high Y3 active 

site (probably collapsed on its own weight between 2012 and 2013) is isolated in the north 

east part of the fossil lava lake.  

The southeastern area, between the northeastern and southern volcanic cones, is a highly 

tectonised terrain. The vents are set upon hydrothermally cemented volcanoclastic breccias 

called “slab” (Cooper et al., 2000; Humphris et al., 2002). This slab is thought to have 

sealed the permeability of the seafloor in this area which lead to fluid discharge through 

faults (Isabel, Montsegur, Tour Eiffel, Aisics; Humphris et al., 2002; Ondréas et al., 2009).  

The southwestern area at the end of the fossil lava lake is truncated by a 20m scarp, caused 

by the movement along a normal fault that post-dates the last eruptions (Ondréas et al., 

2009). The absence of large hydrothermal deposits in this area implies that hydrothermal 

fluid venting is nascent, despite observation of inactive oxidized chimneys partially buried 

by lavas. The active venting occurs along the fault scarp (South Crystal, Crystal, Sapins 

and White Castle) or on the lava lake itself (Cyprès).  

The Capelinhos site is situated approximately 1.5 km eastward of the LSHF on the western 

flank of the axial volcano (Escartin et al., 2015). It is set on pillow lava and comprises 

several chimneys forming a “candelabra-like structure” on top of a 10 meter high sulfide 

mound (Fig IV - 2). Extinct chimneys are characterized by orange colored oxidizing 

material while active chimneys are dark grey and covered by a white filamentous bacterial 

mat. Diffuse venting at Capelinhos is limited to the close vicinity of the black smokers that 

expel fluids at temperatures up to 324°C (Escartin et al., 2015; Table IV - 1). 
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Figure IV - 2 Overview of vent sites diversity. Snapshots of ROV photographs (Ifremer-CNRS, MoMARsat 13), 
A, B: Capelinhos; C: aisics; D: Montsegur; E: Cyprès; F: White Castle; G: Crystal; H: Sintra. A and B shows 
candelabra like structure of capelinhos vent site that discharge several focused high T fluid. C and D shows 
hydrothermal mound at two sites in the South Eastern area. Aisics mound is not as developped as Montsegur 
but both lack of tall endurated chimneys. E, F and G are situated in the North Western area. High T vents 
display an elongated wall-like structure closely related to underlying faults. H is situated in the declining 
North Eastern area and have tall endurated chimneys which are probably inherited from past intense 
activity. 
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33. Sampling and analytical method 

3.1 Sampling 

The fluid samples studied in this paper were collected during the MoMARsat’13 EMSO-

AZORES maintenance cruise on the French Research vessel “Pourquoi Pas?” in September 

2013. The 13 sampling sites (12 sites in the main LSHF, and Capelinhos) were chosen to 

document the fluid diversity identified at Lucky Strike by previous studies (Von Damm et 

al., 1998; Charlou et al., 2000; Pester et al., 2012; Chavagnac et al., 2015). Each vent site 

was sampled four times in succession (total duration of sampling <1 hour) to allow a better 

characterization of the end-member fluid. In-situ temperatures were measured in the vents 

prior to sampling using the ROV Victor 6000 high temperature probe. High-temperature 

fluids were collected with 200ml titanium gas-tight samplers handled and triggered by the 

hydraulic arm of the ROV. The time delay between each fluid sampling at a given vent did 

not exceed 20 minutes. The samples were processed immediately on board after the ROV 

recovery. First, gases were extracted from sampler and transferred into vacuumed stainless 

steel canisters, by direct connection, or ultra-clean water sealed glass bottles for further 

analysis. The fluid samples were then extracted, filtered through 0.45μm Millipore filters 

as pore size of filterable elements (Raiswell and Canfield, 2012) and split into different 

aliquots for onshore analysis and stored at 4°C in a cold room. pH, Eh, salinity and 

conductivity were measured on-board immediately after processing.  
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Table IV - 1 Summary of fluid sampling. The table present location, depth and details on fluid sampling for 
each site (minimum pH, minimum Mg measured and corresponding seawater entrainment, and maximum 
temperature measured). 

 
 

3.2 Analytical methods 

All the chemical analyses were conducted at the Geosciences Environment Toulouse (GET) 

laboratory. Ca, Na, K, Mg, Si, Fe, Mn and Li concentrations were determined with an 

inductively coupled plasma atomic emission spectrometer (ICP-AES) Horiba Ultima2 

instrument. Errors on analyses are indicated in Table IV - 2. The instrument is calibrated 

using mono elemental solutions, multi elemental solutions, and IAPSO standard solution 

(Besson et al., 2014). The latter is a seawater standard solution provided by OSIL and 

certified for its salinity. Salinity controls major element concentrations in seawater (Millero 

et al., 2008). Li concentration measurements of IAPSO give an average concentration of 

24.6 ± 0.3 μM (rsd=1%; n=4). The analytical drift is quantified by the standard bracketing 

after every 8 samples. Analytical precision is better than 2%. Sr, Rb and Cs concentrations 

were measured using an inductively coupled plasma mass spectrometer ICP-MS 

Agilent7000. The standard used was a NASS 6 solution (international seawater standard 

certified for some trace metals) and give values of 79.1μM, 1.17μM, 1.19 nM for Sr, Rb 

and Cs respectively (n=3). Drift corrections are made using an in-house multi-elementary 

standard doped with In and Re before analysis. Anions were determined by anionic 

chromatography (Cl, SO4, Br) calibrated with a IAPSO standard seawater solution. 
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Table IV - 2 Analytical method and precision. The table presents the instruments used to measure the major 
and trace elements in the sampled hydrothermal fluids, and the associated error (residual standard 
deviation). 

 
Sr isotopic composition was measured at the GET laboratory using a MAT FINIGAN 261 

thermal ionization mass spectrometer. Analyses were performed on the samples which 

contain the lowest Mg concentrations. Sr was isolated from the matrix using Sr-Spec resin 

(Eichrom, USA). The 87Sr/86Sr ratio was defined as the average of 100 measurements of 

ion intensities following the static collection mode. The 87Sr/86Sr ratios were normalized to 
86Sr/88Sr = 0.1194. Measured values for NBS 987 standard (recommended values of 

0.710250) was 87Sr/86Sr = 0.710250 ± 0.000011 (2σE, n = 14). 
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Table IV - 3 End-member composition of fluids from the Lucky Strike Hydrothermal Field. The concentration 
of end-member fluids for each sites calculated based on least-square regression of elt vs. Mg, at Mg=0. 
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44. Results  

The temperature of the focused fluid discharge at the 13 sampled vents ranges from 196°C 

to 340°C (Table IV - 1). It is difficult to sample the venting hydrothermal fluid without 

entraining small amounts of the surrounding seawater into the sampler. Consequently, the 

composition of the end-member hydrothermal fluids is calculated by linear extrapolation 

to zero-Mg of the least-square regression method (Von Damm, 1988). Only hydrothermal 

end-members will be considered in the discussion section. Although the Mg extrapolation 

is sometimes debatable (Gamo et al., 1996; Ravizza et al., 2001), most end-member 

calculated values of sulfate in our samples are close to zero which supports the Mg 

extrapolation approach. Seawater entrainment, estimated from Mg content of the purest 

fluids, is usually lower than 3% (Table IV - 1). Only the purest fluid, based on the pH values 

have been analyzed for their chemical composition. The calculated end-member chemical 

compositions are reported in Table IV - 3. The compositions of all analyzed samples are 

given in the Supplementary Materials (Fig IV - S1). 

Chloride, Sulfate, Bromide 

Hydrothermal fluids of the LSHF exhibit chloride concentrations between 420 mM (SE 

sites: Montsegur, Aisics, and Tour Eiffel sites; Fig IV - 1) and 580 mM (NE sites: Y3 and 

Sintra; and South Crystal, Crystal and Sapins for the SW group). White Castle, Isabel and 

Cyprès display Cl concentration closer to seawater at values ranging between 480 mM and 

520mM. Capelinhos presents the lowest chloride concentration ever measured at LSHF at 

262 mM.  

Sulfate is removed from heated seawater through anhydrite precipitation and/or sulfate 

reduction (producing H2S). As a consequence, the sulfate concentrations recalculated at 

Mg=0 in the end-member hydrothermal fluids should be close to 0 mM. However some 

vents display non-zero calculated concentrations for SO4 (Crystal and Tour Eiffel) while 

other display slightly negative calculated concentration (e.g. Capelinhos, Aisics, Cyprès), 

in line with previous studies (Von Damm et al., 1998, Table IV - 3). Br concentrations 

display variations similar to Cl concentrations, whereby maximum Br concentrations are 

found in Y3 fluids at 885μM close to the seawater value of 838 μM while minimum values 

are found for Capelinhos fluids at 379μM. 
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Iron and Manganese 

Capelinhos end-member vent fluids show very high Fe and Mn concentrations: 2800 μM 

for Fe and 640 μM for Mn. At the other sites, Fe and Mn concentrations in end-member 

fluids vary between 200μM (Sintra) and 700μM (South Crystal) for iron (Fig IV - 3a) and 

between 150 (Sintra) and 330 μM (South Crystal) for manganese (Fig IV - 3b).  

Silica 

Silica concentrations of the hydrothermal end-members vary from 12.8 mM at Sintra (NE 

group of sites) to 18.7 mM at Cyprès. The Si concentration at Capelinhos is 14.1 mM. High 

chlorinity fluids tend to have high Silica concentrations, but Si and Cl do not correlate 

beyond this: the silica concentration at Capelinhos is of the same order as for the TE group 

of sites, despite distinct chlorinities (Fig IV - 3c). 

Sodium, Calcium and Potassium 

Na, Ca and K constitute the major cations and are closely linked to Cl concentration due to 

charge balance. Maximum Na concentrations (445mM) are found in Crystal and South 

Crystal fluids (SW group of sites), while the minimum Na concentration (205 mM) is 

obtained for Capelinhos.  

Maximum Ca concentration are found in Sintra, Y3, Crystal and South Crystal fluids with 

values around 53 mM while at Capelinhos the Ca concentration does not exceed 18mM.  

Maximum K concentrations (~28 mM) are found in South Crystal and Crystal (SW group 

of sites) and the minimum concentration (12.1 mM) is measured at Capelinhos. 
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Figure IV - 3 Fe, Mn and Si vs. Cl. Diagram a) Fe versus Cl; b) Mn and versus Cl and c) Si versus Cl. These 
diagram shows non-correlation of these element compared to Cl. 

Rubidium, Strontium, Cesium and Lithium 

Rb, Cs and Li are highly enriched in the LSHF fluids compared to seawater (from 10 to 20 

times seawater concentration). Concentrations in Rb, Li, Cs and Sr are correlated to the 

fluid’s chlorinity (Fig IV - 3). Minimum and maximum Rb concentrations are 19μM and 

50μM for Capelinhos and Crystal, respectively. Minimum and maximum Li concentrations 

are 197μM and 368μM, also for Capelinhos and Crystal, respectively. Sr follows the same 
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pattern with a maximum concentration of 180μM for Crystal and a minimum concentration 

of 36μM at Capelinhos.  

Sr isotopes  

Strontium isotopes (87Sr/86Sr) show variations due to mixing of end-member fluids with 

seawater during sampling. Plotting Sr isotope ratios against the Mg/Sr ratios distinguishes 

seawater entrainment from Sr variations in the end-member fluid (Albarède et al., 1981; 

Ravizza et al., 2001; Fig IV - S1). The less radiogenic end-member fluid compositions 

(0.7038 to 0.7040; Table IV - 3) were calculated for Capelinhos, Y3 (of the NE group of 

sites), Crystal and South Crystal (for the SE group of sites). The SE sites (Aisics, Tour 

Eiffel, and Montsegur) have a more radiogenic signature (0.7042-0.7043; Table IV - 3). 

Cyprès (0.7042) and White Castle (0.7045), of the central group, display variable 

signatures.  

55. Origin of the end-member hydrothermal fluids diversity  

Due to a serious lack of constrains on the extent of recharge zones, and circulation pathways 

of a deep hydrothermal cell, it is hard to testify to the “source” or “sources” of a 

hydrothermal field as, in the end, the two primary sources are the oceanic crust and 

seawater. The hydrothermal fluid represents the product of the interaction between the two 

of them. As a matter of simplification, however we propose to define the source fluid of 

the hydrothermal system as the fluid that can be found in the deepest region of the 

hydrothermal cell(s), where it reaches the low density and viscosity values that facilitate its 

upflow to the discharge zone. It is well known that phase separation allows for maximum 

buoyancy of “hot” source fluid relative to surrounding colder fluid (Fontaine and Wilcock, 

2006; Coumou et al., 2008). Therefore, discussing the unicity or multiplicity of the source 

fluid comes down to evaluating whether or not the fluids sampled at the vents could 

originate from a chemically identical hydrothermal fluid in the phase separation region.  

Cl is the major anion present in hydrothermal fluids, and is also the main control on cation 

abundances due to charge balance. We define 5 groups of sites with increasing Cl 

concentrations: Capelinhos (Cl: 262mM), the SE group of sites (Tour Eiffel, Montsegur, 

Aisics; Claverage: ~420mM), the Central group of sites (Isabel, White Castle, Cyprès; Cl 

average: ~495mM) and the SW group of sites (Crystal, South Crystal, Sapins; Claverage: 
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~580mM). The NE group of sites (Y3 and Sintra; Claverage: 580mM) also has high chlorinity 

but is in a different area and so define its own group. 

In previous studies, Charlou et al. (2000) propose that Cl variability could be due to 

seawater mixing at subsurface conditions prior to fluid venting. To confirm or infirm the 

occurrence of seawater mixing, we use the Sr isotope compositions of the purest fluids as 

a tracer of sources and mixing. Indeed, pure hydrothermal fluid acquire the Sr isotopic 

signature of the rocks with which it interacts, i.e basalt at LSHF (Albarède et al., 1981). 

Moreover, basalt and seawater have different and distinctive strontium isotope 

composition, and therefore mixing of pure hydrothermal fluid with surrounding seawater 

will be testified by a Sr isotopic signature that departs from that of the basaltic one. 

Although the extent of Sr uptake from the fluid through anhydrite precipitation in the 

recharge zone is not known, complete equilibrium between basaltic Sr and fluid Sr is rarely 

observed (Albarède et al., 1981; Michard et al., 1984; Ravizza et al., 2001). Therefore, the 

more radiogenic Sr isotope signature in the fluids is explained by initial Sr of seawater 

origin, which remains and mixes with basaltic Sr to form the end-member fluid and/or by 

subsurface mixing with surrounding hydrothermal seawater (Berndt et al., 1988; Palmer, 

1992; Ravizza et al., 2001). The 87Sr/86Sr ratios of fluid end-members at the LSHF do vary 

between 0.7038 and 0.7045 but they do not follow the east-west chlorinity gradient, nor do 

they show a geographical trend. Capelinhos, two of the SW sites (South Crystal and 

Crystal), and one of the NE sites (Y3) have similar 87Sr/86Sr ratio at 0.7038-0.7040. The SE 

sites (Tour Eiffel, Aisics, Montsegur) have slightly more radiogenic Sr isotopic ratio 

(0.7042-0.7043; Table 3) and the most radiogenic fluids come from one of the central sites 

(White Castle with 0.7045). For comparison, basalts from the Lucky Strike area have been 

analyzed for 87Sr/86Sr and gave values at 0.70298 (0.00007, n=13, including T- and E-

MORB, Hamelin et al., 2013). The observed range in Sr isotope signature of the fluids, 

therefore, cannot be explained by local differences in the substratum. The tight but 

significant differences in Sr isotopic signature between the highest chlorinity and lowest 

chlorinity fluids means that Capelinhos fluid, compared to LSHF, has less interaction with 

radiogenic Sr-rich material such as extensively altered rocks and/or with hydrothermal 

seawater. In contrast, the SE sites with vapor dominated chlorinity values have more 

radiogenic Sr isotope ratio. This contradicts the mixing model invoked by Charlou et al. 

(2000), which explained Cl variation by subsurface mixing. These results rule out a 
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hydrothermal seawater component that would bring more radiogenic material but they 

suggest more complicated processes to account for Cl variability at LSHF. 

Apart from seawater mixing, Cl concentration variations in end-member fluids can result 

from two processes: phase separation or formation of a mineral phase significantly enriched 

in chloride, e.g. halite (Edmond et al., 1979; Seyfried et al., 1986; Von Damm, 1988; 

Bischoff and Rosenbauer, 1989; Berndt and Seyfried, 1990). Formation of halite at depth 

can be assessed through the Br/Cl ratios because Br doesn’t substitute in the halite lattice. 

Precipitation of halite would increase the Br/Cl ratio of hydrothermal fluids compared to 

the seawater value of 1.54 x 103 (mM/mM) whereas halite dissolution would produce the 

opposite effect, i.e. decreasing the Br/Cl ratio (Oosting and Von Damm, 1998; Foustoukos 

and Seyfried, 2007). The most chloride-depleted end-member fluid of the LSHF, i.e. 

Capelinhos, exhibits a Br/Cl ratio of 1.53 x 103, at the lower end of the Br/Cl range of the 

LSHF (between 1.53 x 103 for Sapins and 1.561 x 103 for Cyprès; Table 3) but all are 

equivalent to the seawater ratio. This is also illustrated in Figure 4 with no variation of log 

(Br/Cl) with log (Cl). Consequently, the variability of Cl concentrations cannot be 

explained by halite formation but must be due to a phase separation process occurring at 

depth. 

Previous studies have explained Cl concentrations of the LSHF end-member fluids as a 

response to subsurface mixing between a shallow phase-separated hydrothermal fluid and 

evolved seawater (Charlou et al., 2000), or to phase separation at high P and T conditions 

to induce primary vapors having up to or even higher chlorinity than seawater prior to phase 

separation (Pester et al., 2012).  
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Figure IV - 4 log (Elt/Cl) vs log (Cl) diagram. Diagram of elt/Cl versus Cl showing the linear relationship 
between trace element and chlorinity, a proxy for the effect of phase separation. 

 

In our study, we address this issue by investigating the distribution of trace element 

concentrations (Br, Li, Sr, Rb and Cs) over the extended chlorinity range provided by the 

Capelinhos site, as these elements are controlled by vapor/brine partition coefficients 

during phase separation. Vapor/brine element partitioning has been the subject of several 

experimental studies which showed that the considered elements of interest may be 

enriched in the brine phase at different affinities (Pester et al., 2015; Foustoukos and 

Seyfried, 2007; Foustoukos et al., 2004; Berndt and Seyfried, 1997; among others). For 

example, Br has a partition coefficient close to 1 between vapor and brine, leading to 

conservative Br/Cl ratios during phase separation (Pester et al., 2015; Oosting and Von 

Damm, 1996). This is clearly illustrated in Fig IV - 4 which shows a linear slope close to 0 

in the log(Br/Cl) versus log(Cl) diagram. In contrast, Li and Cs distributions exhibit a 

positive linear trend while Rb and Sr show the opposite way, indicating a preferential 

partitioning to the vapor and brine phases, respectively. This is in line with previous studies 

(Berndt and Seyfried, 1990; Pokrovski et al., 2005; Foustoukos and Seyfried, 2007a; Pester 

et al., 2015). This is also coherent with the LSHF study of Pester et al. (2012), apart for Rb 
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which shows less brine affinity due to the extended Cl range brought by Capelinhos fluid. 

Note, however, that without Capelinhos fluid, Rb presents a steeper linear slope at +0.38, 

identical that one at +0.35 reported in Pester et al. (2012). Element vapor/brine partitioning 

can be summarized as follow Sr<Rb<<Br<<Cs<Li with increasing affinities for the vapor 

phase. Therefore, the linear correlation of each of these elements over the Cl range (from 

262mM to 580mM; Fig IV - 3) supports a phase separation process controlling overall trace 

element abundances as proposed by Pester et al. (2012). 

Nevertheless, very local variations can be observed, as both Crystal and South Crystal 

fluids display high Sr/Cl, high Rb/Cl, and low Li/Cl compared to Sapins, which belongs to 

the SW group and is located a few meter apart (Fig IV - 1). These differences are unlikely 

to be explained by phase separation processes in the reaction zone but rather by local, 

shallow differences in the hydrothermal pathways. Crystal appears to be a relatively young 

vent site, earning its name from the former discharge of “crystal” clear water (Von Damm 

et al., 1998; Pester et al., 2012). Anhydrite dissolution in the upflowzone could potentially 

explain the observed excess Ca, SO4 and Sr of fluids at this site, compared to the fluids at 

nearby South Crystal (Fig IV - S1). Higher Li, Rb and Cs concentrations, regarded as highly 

mobile elements in basalts, could be due to alteration of fresh basalt at depth. Although 

some differences are explained between these two sites (e.g. anhydrite implication), the 

trace element differences between them remains problematic. 

To sum-up, the distribution of trace element as a function of the extended Cl content of 

hydrothermal fluid brought by the Capelinhos fluids, is controlled by phase separation 

process, and therefore suggests that a unique fluid source feeds the hydrothermal circulation 

cell(s) at the LSHF 

66. Pressure and temperature of the reaction zone 

While Li, Rb, Sr and Cs variations are indicators of phase separation occurring at depth, 

other elements such as Fe, Mn and Si are sensitive to processes other than phase separation 

(Fig IV - 3). The mentioned elements provide information about hydrothermal circulation 

from the phase separation zone to the seafloor (e.g. upflow zone) and therefore the extent 

of the reaction zone. Phase separation represents the starting point of up flowing fluid, and 

represents the deepest part of the reaction zone that can be chemically recorded. In contrast, 

the up-flow zone records all the interactions between the fluid and the rock starting from 

the separation phase zone till the seafloor, whereby the last chemical equilibration point of 
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fluids with the greenschist facies mineral assemblages marks the roof of the reaction zone, 

i.e. the shallowest part at which fluid-rock interactions will cease. 

We will now use chemical tracers to infer P and T conditions tracing the fluid pathway 

from the deepest part, i.e. phase separation zone/base of the reaction zone, to the shallowest 

part, i.e. roof of the reaction zone in the up-flow zone. This is based on two independent 

hypotheses: 1) phase separation and quartz equilibrium are concomitant and the fluid up-

flows fast enough to avoid modification (Fontaine et al., 2009); here P and T conditions are 

constrained by Cl concentration (conservative element) and Si concentrations (PTX 

sensitive element), and 2) since quartz equilibrium and greenschist minerals facies 

equilibrium occurs concomitantly at the roof of the reaction zone, T will be constrained by 

Fe and Mn concentrations ratios (Pester et al., 2011) while P will be deduced from 

estimated T and quartz solubility relations (Von Damm et al., 1991; Foustoukos and 

Seyfried, 2007b). 

6.1 P–T conditions of phase separation  

Since the late 1960’s, geochemical tools have been developed to assess the P and T 

conditions of the reaction zone of hydrothermal systems, in particular at submarine 

hydrothermal systems, using quartz solubility (Fournier and Rowe, 1966; Fournier, 1983; 

Von Damm et al., 1991; Foustoukos and Seyfried, 2007b). Von Damm et al. (1991) derived 

a semi-empirical relation for geothermobarometry of silica that takes into account the effect 

of salinity on quartz solubility based on seawater/quartz reaction experiment and data from 

literature. These authors derived the following equation:  lnሺܱ݉ܵ݅ଶ. ଶܱሻܪ݊ ൌ ܽ ൅ ܾ ൈ ln ሺߩሻ ൅ ቀܿ ൅ ௗ்ቁ ൅ ݁ ൈ ܲ/ܶ  (1) 

With P in bars and T in K, mSiO2 in molality, and n is the hydration number of the dissolved 

silica (a=-2.32888; b=1.79547; c=-2263.62; d=0.00407350; e=0.0398808) (Von Damm et 

al., 1991). Later, Foustoukos and Seyfried (2007b) investigated quartz equilibria close to 

the two phase boundary conditions and adapted equation (1) (applied to pure water) with a 

Setchenow term which accounts for deviation from ideality. Quartz solubility has a 

retrograde behavior meaning that for a constant pressure, it will increase with temperature 

until a maximum value is attained, above which quartz solubility decreases (Fournier et al., 

1982; Von Damm et al., 1991; Foustoukos and Seyfried 2007b; Fig IV - 5b). Therefore, 
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interpretation of Si concentrations in fluids as related to quartz solubility is not 

straightforward and requires careful considerations.  

Si and Cl end-member fluid concentrations have been used as a geothermobarometer to 

determine the depth at which phase separation occurs for several hydrothermal systems 

worldwide (Fontaine et al., 2009). This is based on the assumption that Cl and Si content 

of hydrothermal fluids vary according to P and T conditions, independently from one 

another and that the silica concentration corresponds to equilibrium with quartz in the 

domain of phase separation (Fournier, 1983; Bischoff and Rosenbauer, 1985; Bischoff, 

1991; Von Damm et al., 1991; Driesner, 2007; Driesner and Heinrich, 2007; Foustoukos 

and Seyfried, 2007b; Fontaine et al., 2009). This geothermobarometer is adapted to vapor-

like fluids because they are more likely to exit the phase separation zone and therefore more 

likely to record the P–T conditions of phase separation. The intercept between Cl and Si 

theoretical isopleths provides unique set of P and T conditions at which equilibrium of both 

elements is achieved. This geothermobarometer is highly sensitive to subsurface processes 

such as altered seawater entrainment, which would modify both Si and Cl concentrations 

of the discharging fluid, but also to conductive cooling which would impact only Si 

concentrations. As an example, if mixing of low Cl and high Si hydrothermal fluid with 

seawater or silica precipitation occurs prior to fluid discharge, the Cl and Si concentrations 

of end-member hydrothermal fluid will produce biased estimates of P and T conditions for 

the phase separation zone. These limitations are partly addressed here by choosing the most 

vapor-like fluid of the LSHF. When applying this Si-Cl geothermobarometer to the 

Capelinhos fluids, we obtain a temperature of 438°C and a pressure of 375 bars for the 

phase separation zone, that corresponds to a depth of 2600 mbsf (using a cold hydrostatic 

pressure gradient of ρ=800kg/m3 for pressure to depth beyond seafloor conversion, 

Fontaine et al., 2009). Fontaine et al. (2009) determined similar P and T conditions at 390 

bars and 440°C for the LSHF phase separation zone using the Tour Eiffel chemical data for 

fluids collected in 1993 (Charlou et al., 2000).  

To sum-up, the Si-Cl geothermobarometer applied on the most-vapor dominated 

hydrothermal fluid of the LSHF infers that phase separation zone occurs at a depth of 

2600mbsf at 438ºC, less than a kilometer above the AMC. These P-T conditions for phase 

separation are in line with previous estimate of Fontaine et al. (2009). 
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6.2 P–T conditions in the upflow zone 

We infer from the previous section that phase separation takes place at about 2600mbsf, 

depth at which hydrothermal fluids upflow towards the seafloor. However, recent 

geophysical data acquired through the EMSO-Azores observatory infrastructure indicate 

that micro-seismic clusters between 1800 and 2500 mbsf as a consequence of thermal 

cracking of the rocks at and near the base of the Lucky Strike hydrothermal circulation 

cell(s) (Crawford et al., 2013). Such event may imply modifications of the P-T conditions 

along the upflow zone, even though such events are not essential to produce variable P-T 

conditions if we consider that Quartz re-equilibration may occur in the upflow zone rather 

than solely in the separation phase zone. In such case, the Si-Cl geothermobarometer will 

produce underestimation of P-T conditions at the separation zone. 

We will now consider the eventuality that Si concentrations of hydrothermal fluids reflect 

Quartz re-equilibration along the upflow zone, i.e. the roof of the reaction zone. In this case, 

quartz equilibrium and fluid-greenschist minerals facies equilibrium occurs concomitantly. 

The working hypothesis is that most fluid-rock interactions occur in greenschist facies T 

conditions as evidenced by the Fe and Mn concentrations of hot vent fluids which are 

consistent with greenschist facies alteration minerals such as chlorite, magnetite and 

sodium-bearing plagioclase (Pester et al., 2011). Moreover, Quartz veins in the ocean crust 

are often associated to greenschist facies minerals such as pyrite, chlorite, amphibole and 

epidosite (Delaney et al., 1987; Honnorez 2003; Heft et al., 2008; Alt et al., 2010). The 

reaction zone is often described as the epidosite zone, on top of AMC, but quartz and sulfide 

veins are also associated with amphibole and chlorite at shallower depth in the greenschist 

conditions (Delaney et al., 1987; Heft et al., 2008; Alt et al., 2010). The P-T conditions of 

the roof of the reaction zone will be deduced from quartz solubility relations (Von Damm 

et al., 1991; Foustoukos and Seyfried, 2007b) at T constrained by the Fe and Mn 

concentrations of hydrothermal fluids (Pester et al., 2011). 
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Figure IV - 5 Geochemical information for P and T. a) Quartz geothermobarometer based on Foustoukos and 
Seyfried (2007b). Points represent Si measured in fluids with calculated temperature from Fe and Mn 
geothermometer. Grey dashed lines represent the “classical” approach to evaluate P and T (see text for 
details). b) Fe and Mn concentration on a logarithm scale (Modified from Pester et al., 2011). Grey line 
represent basalt alteration line and black dashed lines are isotherms calculated from the 
Fe/Mngeothermometer. 
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The Fe–Mn geothermometer developed by Pester et al. (2011) is based on the experimental 

results of basalt alteration by seawater over a wide range of P and T conditions, i.e. from 

500 to 1000 bars and 200 to 500°C (Mottl et al., 1979). They show that transition metal 

concentrations such as Fe and Mn of hydrothermal fluids are strongly controlled by 

temperature while pressure has a minimal effect (Pester et al., 2011 and references therein). 

They derived the following equation: ܶ ൌ 331.24 ൅ 112.41 ൈ  ሻ (2)݊ܯ/݁ܨሺ݃݋݈

With T in °C and Fe and Mn are concentrations in μM. This geothermometer is best suited 

for 350-450ºC temperatures whereby below and above these limits, uncertainties are too 

high to provide further information than the Si geobarometer (Pester et al., 2011). 

Capelinhos end-member fluid, as the most-vapor dominated one, exhibits the highest Fe 

and Mn concentrations of all the LSHF fluids, equivalent to Fe concentration found at 

Broken Spur (29°N) or MARK (23°N) on the MAR (Campbell et al., 1988; James et al., 

1995). These high concentrations suggest a minimum temperature of greenschist facies 

equilibrium at 400°C, which when combined to a Si content at 14,1 mM, reveals P-T 

conditions at 300 bars and 400ºC, respectively, for the Capelinhos fluids, i.e. close to the 

critical point of seawater (Fig IV - 5a). Applying the same approach to our 2013 survey of 

LSHF fluid chemistry, the most brine-dominated hydrothermal fluids, i.e. the SW group 

and Y3 of the NE group, are also coherent with 300 bars for the roof of the reaction zone 

but at temperature lower than 375ºC. By comparison, the classical approach is based on the 

assumption that hydrothermal fluids exhibiting the highest Si concentrations will best 

estimate the minimum P condition over a range of temperatures at which quartz solubility 

is maximal (Von Damm, 2000; Von Damm et al., 1998; Foustoukos and Seyfried, 2007b; 

Fig IV - 5a). Previously, the reaction zone conditions were first determined for the site 

Y3/2608, that had the highest Si concentration at that time of sampling, revealing 

equilibration at P=300 bars and T=360-380°C (Si=17.5 mM; Von Damm et al., 1998). 

These P and T conditions at 300 bars and <400ºC are significantly lower than 375 bars and 

438ºC conditions estimated from the Si-Cl thermobarometer of Fontaine et al. (2009). The 

P-T discrepancy between Von Damm et al. (1998) and Fontaine et al. (2009) results is 

partly due to the choice of quartz solubility relation. Fontaine et al. (2009) used quartz 

solubility relation from Foustoukos and Seyfried (2007b) which predict, for relatively low 

temperature range, higher pressure and temperature necessary to reach the same Si 



138 

 

concentrations obtained in the model of Von Damm et al. (1991). In contrast, at higher 

temperature range, the relation is reversed whereby the lowest pressure are predicted for 

Von Damm’s model. Temperature is a key parameter impacting significantly the P-T 

estimates of the reaction zone based on Quartz solubility relations. The temperature 

difference between this minimum temperature of greenschist facies reaction as seen from 

Fe and Mn concentrations and that of phase separation deduced from the Si-Cl co-variations 

can be produced by other process acting along the upflow zone, such as conductive cooling. 

Fe is more sensitive to environmental changes (e.g. pH and redox conditions) than Mn does. 

Any temperature changes will be readily reflected by changes in Fe, while Mn changes 

more slowly (Pester et al., 2011; Seyfried, 1995). Rapid conductive cooling in the 

subsurface and/or Fe loss at discharge would therefore be indicated by an apparent 

enrichment in Mn (Fig IV - 5b). The LSHF fluids sampled in 2013 does not show the 

deviation in Mn but they do exhibit both depletion in Fe and Mn compared to Capelinhos 

fluid which exhibits the highest Fe and Mn concentrations of all LSHF fluids. These high 

concentrations suggests a minimum temperature of greenschist facies equilibrium at 400°C 

(Fig IV - 5a) while other sites of LSHF, calculations indicate temperatures comprised 

between 350 and 375°C (Table 3), coherent with the range of temperature suggested by 

quartz solubility (Von Damm et al., 1998; Pester et al., 2012). 

To sum-up, the P-T conditions of the separation phase zone till the last conditions of fluid-

greenschist facie mineral assemblage equilibrium, i.e the base and roof of the reaction zone, 

respectively, greatly depend on the models considered for the quartz solubility relation, the 

geothermometer as the most representative of the greenschist facie mineral assemblage and 

the environmental changes that may occur. This is evidenced by P-T conditions that vary 

between 300 - 375 bars and 350 - 438ºC deduced for this area. 

6.3 P–T fluid pathway at LSHF 

A parameter that is barely taken into account between chemical experimental studies and 

natural hydrothermal fluids, is time-scale. For example, Quartz solubility experiments show 

equilibration on a timescale of several days (Von Damm et al., 1991; Foustoukos and 

Seyfried 2007b) while fluid discharge from the base of the upflow to the seafloor is thought 

to be of few hours (Delaney et al., 1987; Alt, 1995). Furthermore, Seewald and Seyfried 

(1990) showed that Si concentration response to temperature change was slow compared 

to Fe and Mn. So, all depends on the geological hypothesis considered at the start, i.e. 
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permeability, which greatly influence pressure estimates. What we propose to do is to carry 

out calculations that are based on quartz solubility relation from Foustoukos and Seyfried 

(2007b), Fe–Mn geothermometer from Pester et al. (2011) and NaCl-H2O properties from 

Driesner and Heinrich (2007) but for which P estimates are acquired by injection of 

calculated temperature and fluid density that best matches the measured concentrations of 

hydrothermal fluids (our 2013 LSHF chemistry survey). The errors in pressure (±25 bars) 

are based on the error on temperature from Fe–Mn thermometer (± 11°C) applied to the 

model of quartz solubility. Therefore, the estimated pressure acquired for the roof of the 

reaction zone should not be taken as “true” pressure of equilibration (or depth estimation) 

but rather as a proxy of residence time in the reaction zone due to incomplete Si 

equilibrium. The results as a P and T path of the fluids are shown in Figure 6.  

We estimate the P and T conditions of Capelinhos fluids at 350 bars and 404°C, 

corresponding to a depth of ~2300 mbsf (ρ=800kg/m3), while results for the NE, SW and 

SE sites would suggest lower P–T conditions (~300 bars and ~370°C), i.e. shallower depth 

~1600 mbsf. The shallower and colder P and T conditions at the sites situated near the lava 

lake depict a higher residence time in the upflow zone compared to Capelinhos and 

therefore indicate conditions closer to the seafloor conditions. We anticipate that rapid fluid 

extraction at Capelinhos leads to relatively low residence time in the upflow zone and 

consequently limited changes in chemistry after phase separation. This fast extraction 

might be triggered by enhanced permeability associated with the system of normal faults 

that bound the axial graben to the east. Capelinhos is located near a minor west-facing fault 

that belongs to this system, ~1.5 km to the east of the larger offset fault that was labelled 

F2 by Combier et al. (2015; Fig IV - 6). It is clear that fluids from Capelinhos have cooled 

from reaction zone (~400°C) to the discharge (324°C), nevertheless they record little 

evidence of further interactions with the substratum along the upflow. We believe that 

Capelinhos fluids have cooled conductively but exited the seafloor fast enough to maintain 

a chemical composition close to that at phase separation condition until they reached the 

surface. 
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At the lava lake spatial scale, the SE sites (Tour Eiffel, Aisics and Montsegur) show similar 

Cl end-members as well as major and trace element end-member concentrations (Ca, Na, 

K, Li, Br, Cs, Rb, Sr; Table IV - 3). However, Si content is lower at Aisics and Montségur 

than at Tour Eiffel. This difference leads to an apparent shallow equilibration of Aisics and 

Montségur (Fig IV - 6), but this is probably an artifact due to Si loss along the upflow 

through amorphous silica precipitation induced by conductive cooling (Fig IV - 5 and 6). 

Also, the “shallow” equilibration could be a locally enhanced residence time of the fluid 

discharging at Montsegur and Aisics compared to TE, but since Aisics and TE are just a 

few meters apart (Fig IV - 1), it seems unlikely. 

The consistency of P and T inferred from Y3, Crystal, South Crystal and Tour Eiffel makes 

it clear that most fluids have the same residence time in the upflow zone. However, end-

member fluids of Capelinhos and Cyprès sites clearly suggest a higher pressure and/or 

temperature conditions and therefore extraction from a deeper part of the reaction zone 

through a complex channeling network to the seafloor.  

Information about channeling pathway of hydrothermal fluid to the surface can be obtained 

by studies of fossil hydrothermal system, such as the sulfides formations in the Troodos 

ophiolite (Keith et al., 2016). Although this study is not directly comparable to our fluid 

data, an analog phenomenon might be happening at the LSHF. These authors discussed the 

formation of sulfides of a fossil hydrothermal system in the Troodos ophiolite based on the 

variation of Fe/Zn ratio in sphalerite. They concluded that the massive sulphides were 

formed by a 400°C fluid, whilst the stockwork sulphide indicate cooler fluid temperature. 

Cooler temperatures were accompanied by mineralogical and isotopic evidence of seawater 

mixing. At LSHF, the lower temperature recorded by some fluid end-members could be 

related to intense cooling of the substratum due to the along-axis recharge zone and 

enhanced cold seawater saturated environment as the upflow zone becomes shallower. The 

lack of iron in the main LSHF fluids compared to Capelinhos is then explained by loss 

through sulfide precipitation following conductive cooling. By comparison, the fluids of 

the fossil lava lake LSHF sites, which originate from the same deep rooted source, display 

lower Fe–Mn concentrations leading to calculated temperature indicative of conductive 

cooling (Fig IV - 5). Fractures observed on the axial graben allows local seawater recharge 

(Humphris et al., 2002; Ondréas et al., 2009), which enhances conductive cooling of the 

sealed upflow zone and leads to Si and/or Fe and Mn losses within the stockwork (Fig IV 

- 6). This faulting allows seawater to percolate down to the brittle ductile front as deep as 
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2800 mbsf (Crawford et al., 2013). By conductive cooling of the upflow zone, the down-

flowing seawater feeds an actively forming stockwork  

77. Chloride variability within the LSHF. 

Several studies investigate discharge of brine phases to explain worldwide salinity variation 

in submarine hydrothermal fluids. With the use of numerical modelling, Schoofs and 

Hansen (2000) conclude that high chlorinity fluids could be due to slow brine entrainment 

leading to depletion of the brine layer at depth. This process could produce fluid venting 

with salinity up to two-time higher than that of seawater, accompanied by a cooler exit 

temperature (Schoofs and Hansen, 2000). At LSHF, Crystal, South Crystal, Sapins, and Y3 

end-member fluids are characterized by salinities just slightly above that of seawater while 

discharging within the highest temperature recorded at the LSHF, i.e. up to 340°C. These 

features contradict numerical modelling predictions that argue for cooler fluid discharge 

when brine is entrained (Schoofs and Hansen, 2000).  

Using numerical modelling, Fontaine and Wilcock (2006) investigated the buoyancy of a 

brine and its capacity to flow upward. They showed that brine produced under supercritical 

conditions with salinity lower than 20-25wt% NaCl could flow towards the surface while 

being stored within the rock backwater porosity in the reaction zone. Meanwhile, vapor 

phase flows preferentially through wider cracks (Goldfarb and Delaney, 1988; Fontaine 

and Wilcock, 2006). These authors further developped the hypothesis that permeability 

gradients could act as a barrier for brine upflow and tend to concentrate brine at the base of 

the layer 2A (Fontaine et al., 2007). When the upflow zone is saturated with brine, or during 

cooling of the system, brine can be entrained, and mixed with vapor or seawater salinity 

hydrothermal fluid, which leads to fluid discharge with higher salinity than seawater.  

Coumou et al. (2009) conducted numerical modelling to investigate salinity variations at 

discharge zones for different heat flux and pressure. For a pressure of 150 bars at the 

seafloor and ~250 bars at the bottom of the system, i.e. phase separation zone ~1000mbsf, 

these simulations show temporal variations in vent fluid salinity with several spikes at 

salinity higher than seawater over periods of several years. These salinity spikes are also 

associated with little temperature spikes of a few degree (<10°C). However, these salinity 

and temperature spikes were not observed for simulations at higher pressures (250 and 350 

bars at the seafloor) while assuming the same heat flux. Coumou et al. (2009) explain these 

salinity pulses as due to brine mobilization as the porosity of the upflow zone gets saturated. 
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Deep phase separation leads to vapor and brine formation but due to different physical 

behavior and the wetting effect of the liquid (brine) phase, brines will segregate and be 

stored in backwater porosity or will coat the walls of larger channels (Fontaine and 

Wilcock, 2006). As long as brine saturation is lower than a threshold value (10-20%), the 

brines do not form a continuous medium and remain immobile. However, when this 

threshold is reached, and provided that the vertical pressure gradients in the upflow is high 

enough compared to brine density (Fontaine and Wilcock, 2006; Fontaine et al., 2007), then 

the brine phase is ready to be flushed (Coumou et al., 2009). Further mixing of this brine 

with vapors and/or seawater during the upflow produces a transient spike in salinity. 

Salinity then returns to the initial vapor-like one, while the brine layer builds up again and 

reduce saturation of the backwater porosity.  

In the natural hydrothermal environment, flushing of the brine backwater porosity is 

illustrated over a 12-15 months period by in-situ monitoring of Cl concentrations at the 

Main Endeavour Field (Larson et al., 2009). These authors showed evidence of Cl 

variability related to brine entrainment and were able to reconstruct the brine salinity and 

temperature. They explained brine entrainments by changes in the layer 2A permeability 

and brine storage up to the base of layer 2A. Considering the LHSF, chlorinity contents of 

the Y3 end-member fluid increased from 436 mM in 1993 (Von Damm et al. 1998) to 586 

mM in 2013 (this study, Table 3). Furthermore, the increase in Cl content is found with a 

decrease in Si end-member (corresponding to ~30 bars, close to the error), which argue for 

a higher residence time in the upflow zone. Although the physical conditions at LSHF (170 

bar at seafloor, ~400 bars at phase separation zone) are different from the numerical models 

of Coumou et al. (2009), we propose that Cl spikes, i.e. salinity variations, could be caused 

by fluid circulation dynamics rather than mixing in subsurface or phase separation 

conditions. This is based on the recent study of Barreyre and Sohn (2016) who assessed the 

thickness of layer 2A based on the tidal response of temperature sensors positioned at 

LSHF. They pointed out that the base of layer 2A was not homogeneously deep over the 

LSHF, showing a difference of 300m between the west and east of the fossil lava lake area, 

with the deepest base of layer 2A on the eastern site at 600 mbsf (Fig IV - 6). From our 

2013 LSHF chemical survey, we propose that the decreasing Cl contents from west to east 

of the fossil lava lake (SW group at ˜580 mM to Capelinhos at ˜260 mM) are affected by 

the increasing thickness of the layer 2A from west to east, whereby modifying the dynamic 

of the hydrothermal fluid circulation cell. Nonetheless, the effect of shallow permeability 
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on the variability of discharging fluid salinity needs then to be further addressed by 

numerical modelling as permeability is a crucial parameter for the residence time of the 

fluid in the upflow zone.  

CConclusion 

A new active site, named Capelinhos, was discovered at LSHF in 2013. The site is situated 

approximately 1.5 km east of the main Lucky Strike axial graben and fossil lava lake, where 

the well-known LSHF vents are located. Capelinhos vents high temperature black smoker 

fluids at 324°C. Its fluid chemistry has two distinct characteristics compared to the other 

LSHF vent sites: 1) the lowest Cl concentration ever measured at LSHF and 2) the highest 

Fe and Mn concentration (2800 μM and 640μM respectively. By combining 

geothermobarometer based on end-member fluid chemistry, we show that Capelinhos 

fluids were formed at supercritical conditions, as are the other vapor-dominated fluids from 

LSHF. The temperature of the phase separation zone, estimated from Si-Cl 

geothermobarometry is 438°C and its depth is 2600mbsf. These results are in agreement 

with the maximum depth of microseismic events reported in Crawford et al. (2013) which 

are interpreted as due to rapid heat exchange between hot rocks and down-going 

hydrothermal fluids. 

Equilibrium temperatures calculated using the Fe–Mn geothermometer of Pester et al 

(2011) range between ~370°C for LSHF fluids and ~400°C for Capelinhos. By combining 

quartz solubility with these calculated temperatures, the minimum equilibration 

temperature and pressure in the reaction zone appears to be deeper for Capelinhos fluids 

(350 bars) than for LSHF (300 bars). Because the fluids vent at temperatures that are still 

well within the greenschist facies realm, these conditions are not thought to be 

representative of the top of the reaction zone. More accurately, they are indicative of 

significant differences in the residence time of the fluid in the upflow zone between 

Capelinhos and the other LSHF vents. 

We propose a new model of the hydrothermal path based on data from Capelinhos. When 

crossing the 2-phase boundary, the recharging fluid undergoes phase separation at ~2600 

mbsf. The fluid starts flowing upward and differentiate by entrainment of brine in 

subsurface. Fluids (vapor and brines) moving upwards beneath the lava lake undergo 

intense conductive cooling due to high residence time in the upflow zone related to the 

heterogeneous thickness of the layer 2A and complex porous/fractured media.. These brine 
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mixing and cooling processes likely participates to the formation of an extensive stockwork 

beneath the lava lake. Fluids (vapors) discharging at Capelinhos, diverted from the vertical 

upflow zone by a high angle fault zone, undergo significant cooling but limited chemical 

changes. 
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Figure IV- S 1 Diagram of 87Sr/86Sr as a function of Mg/Sr (a) and SO4/Sr (b). a) shows the usual way of 
determining the Sr isotope end-member of fluids. b) is a method for determining Si isotope end-member of 
fluid by using sulfate. Sulfate in fluids will be dependent on seawater entrained during sampling, as SO4 is 
enriched in SW compared to pure hydrothermal fluid. Sulfate will also be dependent on anhydrite. Dissolution 
of anhydrite could contribute to Ca, SO4 and Sr concentration measured in the fluid and consequently, Sr 
isotope signature. Assuming Sr isotope signatures of SW and hydrothermal fluid, dissolution of anhydrite 
dissolution bias can be corrected as in Fig IV- S1b. Consequently, endmember determined for SW sites are 
better determined by SO4/Sr least square regression. When no suspicion of anhydrite dissolution, Mg/Sr 
should be prefer d for slightly negative end-member values of SO4 would overcorrect Sr isotope 
determination (e.g. Capelinhos). 
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CHAPITRE 5 

TIME-SERIE STUDY OF HOT VENT CHEMISTRY FROM THE 

LUCKY STRIKE HYDROTHERMAL FIELD (37°N): 

CONTRIBUTION FROM THE EMSO-AZORES DEEP SEA 

OBSERVATORY. 
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AAbstract 

The Lucky Strike hydrothermal field located at 37°N on the Mid Atlantic Ridge is one of 

the most studied hydrothermal field on a slow spreading ridge. This hydrothermal field has 

been chosen to host a deep sea observatory equipped with geophysical and biological 

modules that communicate through satellite with the on-shore laboratory at Ifremer in near 

real-time. In this context of long-term study of the Lucky strike hydrothermal field, high 

temperature fluids have been collected each year since 2009 during maintenance cruises of 

the infrastructure of the observatory. This study presents the fluid chemistry of end-

members from 2009 to 2015 determined for 13 hydrothermal vents. First, we show that at 

least two time scales are at play with (1) the sampling time scale of ~1 hour; (2) the yearly 

variations. 

Sampling of more than 300 high temperature fluid since 2009 displayed 5% of samples 

with anomalously low Si concentration (2–3 mM), inconsistent with mixing with seawater 

at the discharge. From this observation we propose that a subsurface aquifer of conductively 

cooled hydrothermal fluid surrounds the focused conduit of high temperature fluid. This 

fluid is episodically flushed within the chimney in line with temperature data from 

autonomous probe (Barreyre et al. 2014). 

On the year–scale, together with the literature data, we analyze the changes that have 

occurred at this field since its discovery and first fluid samples from 1993. Based on the Si 

and Cl data from the newly discovered Capelinhos site, which vents the most vapor 

dominated fluid, we infer the P and T conditions of the phase separation and confirm that, 

although a little difference is noticed, the longer known Tour Eiffel and Montségur sites 

(also vapor dominated) are suitable to estimate accurately the P and T conditions of the 

phase separation zone. Therefore, we estimate these conditions for the complete time series 

of these sites (12 years). We show that along the 12 year study represented (6 years from 

literature and 6 years from this work), the P–T are mostly stable with P between 380 and 

390 bars and T between 430 and 440 °C. Some excursions toward shallower and cooler 

conditions (P~360 and T~425°C) coincide with seismic events observed by geophysical 

data. Furthermore, Ca/Na ratios, which are a proxy of albitisation, from 1993 to 2015 have 

fluctuated following a “boom and bust” behavior related to the seismic events. The time 

span between two peaks of the “boom and bust” pattern is of ~7 years. Intersite variations 

can be explained by phase separation and preferential uptake of Ca into the brine phase for 
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all but the South Eastern sites. This suggests that the substratum underneath the SE sites 

are more altered than for the other sites (i.e. North Eastern, South Western, Central and 

Capelinhos).  

The Fe and Mn are proxies of the reaction zone temperature but no variations are observed 

for the fluids. Capelinhos fluids display an apparent Fe–Mn calculated temperature of 

~403°C while the other sites display temperatures between 350 and 380°C. This difference 

is interpreted to be due to metal trapping in the reaction zone, therefore if we consider 

Capelinhos fluids as representative of the metal mobilized , then we can estimate the Fe 

trapped in subsurface to be ~65% that of the total Fe mobilized.  

Furthermore, isotopic data for Li and Sr indicate contrasting W/R ratios. The Li data shows 

W/R ratio close to 1 attesting for a relatively fresh basalt underneath. The Sr based W/R 

ratio indicates a higher value (7–8) due to residual strontium. 

RRésumé 

Le champs hydrothermal de Lucky Strike, situé à 37°N sur la ride médio-atlantique est un 

des sites les plus étudié sur une dorsale à faible taux d’accrétion. Ce champ hydrothermal 

a été choisi pour accueillir un observatoire fond de mer équipé de modules dédié à la 

géophysique et à la biologie du système hydrothermal qui communique les données par 

satellite en temps réel avec le centre Ifremer à Brest. Dans ce contexte d’étude en série 

temporelle, les fluides de haute température ont été échantillonnés depuis 2009 à l’occasion 

de campagne annuelle de maintenance de l’observatoire. Cette étude présente les 

compositions chimiques des fluides end-member calculées pour les années 2009 et 2015 

pour 13 sites actifs. Dans un premier temps, nous mettons en évidence l’existence de 

plusieurs échelles de variabilité temporelle. La première étant une variabilité à l’échelle de 

l’heure. La seconde est la variation temporelle.  

Depuis 2009, le prélèvement de plus de 300 fluides de haute température montré pour 5% 

d’entre eux des valeurs étonnamment faible en Si (2–3mM), qui ne s’expliquent pas par un 

mélange entre un fluide pure et l’eau de mer. A partir de cette observation, nous proposons 

un modèle de circulation hydrothermal en subsurface. Dans ce modèle un fluide 

hydrothermal refroidi à l’équilibre avec le quartz à des conditions de pressions et de 

température de 1170 (plancher océanique de cette zone) et 150 °C est stocké en subsurface, 

à proximité des évents hydrothermaux de haute température, et parfois ressort de manière 
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épisodique, ce qui fait écho aux profils de température montrant des variations du même 

ordre (Barreyre et al., 2014). 

Sur l’échelle de temps pluri-annuelle, à partir de nos données et de celles de la littérature, 

nous étudions les changements chimiques des fluides depuis la découverte du champ 

hydrothermal en 1993. En nous basant sur le géothermobaromètre Si–Cl, nous déterminons 

que les conditions de pression et de température de separation de phase estimée à partir des 

fluides de Capelinhos sont sensiblement les même que celles estimées par les fluides des 

sites Tour Eiffel et Montsegur. Ainsi, nous pouvons estimer ces conditions en couvrant 

l’intégralité de la période de temps de la base de données chimiques dont nous disposons. 

Nous montrons que sur les 12 années représentées, les estimations sont stable avec des 

pressions entre 380 et 390 bars et des températures entre 430 et 440°C.Quelques 

évènements vers des conditions moins profonde sont observable (P=360 bars et T~425°C) 

semblent coïncider avec des évènements sismique observé avec l’instrumentation de 

l’observatoire. De plus, le rapport Ca/Na est un indicateur d’albitisation, de 1993 à 2015 ce 

rapport a fluctué suivant un profil en dent de scie pour tous les sites. Les variations du 

rapport entre les sites s’explique par la separation de phase et par le partitionnement 

préférentiel du Ca dans la phase saumure, sauf pour les sites du Sud Est qui montre un 

rapport plus élevé. Cela suggère un substratum plus altéré dans la zone de remontée de ces 

sites (Tour Eiffel, Montsegur, Aisics, Cimendeff). 

Le Fe et le Mn sont des indicateurs de la température de la zone de réaction et ne montrent 

pas de variations temporelles. Les fluides de Capelinhos montrent une température 

d’équilibre apparente d’environ 40°C tandis que les sites situés autour du lac de lave 

indiquent des températures entre 350 et 380°C. Cette différence peut être interprétée en 

termes de piégeage de métaux dans la zone de remontée. Ainsi en se basant sur le rapport 

Fe/Mn de Capelinhos est le rapport des fluides au départ de la zone de remontée, et que les 

teneurs en Mn sont conservé. On peut évaluer que 65% du Fe mobilisé dans la zone de 

réaction est stocké dans la zone de remontée, ainsi les faibles concentrations en Fe et Mn 

des sites autour du lac de lave ne sont pas due à un substratum altéré mais plutôt à la 

formation du stockwork. 

De plus, les données isotopiques de Li et Sr suggèrent des rapports eau–roche (W/R) 

différent. Pour le Li, les valeurs du W/R montre des rapports proches de 1, ce qui atteste de 

la relative fraicheur du substrat. En revanche, pour le Sr, les valeurs de W/R sont plus 
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élevées (entre 7 et 8) et s’expliquent par des relations plus complexes avec des minéraux 

secondaires et d’altération.  

 

11. Introduction 

Mid Ocean Ridges (MOR) spread both magmatically by sill injection (Henstock et al., 

1993; Phipps Morgan et al., 1987), and tectonically through long-lived detachment faults 

eventually forming oceanic core complexes (Cannat et al., 2006; Escartín et al., 2008; 

Ildefonse et al., 2007). These mechanisms allow seawater to flow through the oceanic crust 

and discharge above the anomalous heat formed by the Axial Magma Chamber beneath the 

ridge. Therefore, the chemistry of the discharging hydrothermal fluid is highly dependent 

on the deep geological processes acting at ridge axis. Many studies have investigated the 

chemical response of hydrothermal fluids to volcanic eruption during replenishment of the 

axial magmatic chamber (Butterfield et al., 1997; Pester et al., 2014; Von Damm, 2004, 

2000). Time series studies were essentially carried out at fast-spreading ridge, e.g. the East 

Pacific Rise (EPR), where magmatic activity is intense (Campbell et al., 1988). But most 

of them were based on little time span which ones up to a couple of years (Campbell et al., 

1988; Von Damm, 2004). In particular, the longest time series of black smoker fluids span 

over a 17 years time period at the EPR with fluid samples collected at two-year’s time 

interval. Between 1990 and 2009, two sill intrusion events occurred in 1992 and 2007 

(Pester et al., 2014; Von Damm, 2004). Pester et al. (2014) were able to link magmatic 

activity to differences in fluid chemistry expressed as higher H2 and H2S, lower Chloride 

concentrations. Furthermore, the increasing transition metal variations, i.e. Fe and Mn in 

particular, have shown to be correlated to these events, with stable concentrations in 

between these two events (Pester et al., 2014). 

To date, most of the long term study on hydrothermal fluid chemistry focused on fast 

spreading ridges but little has been studied in a slow-spreading ridge (Pester et al., 2014; 

Von Damm et al., 1995). Despite the continuous discovery of hydrothermal vents on ultra-

slow to slow spreading ridges and the wide variety observed in fluid chemistry, the time 

dependent processes of these systems has not been assessed thus far (Edmonds, 2008) and 

reference therein). In recent years, the European Multidisciplinary Seafloor and water-

column Observatory (EMSO program) enabled the set-up of 15 deep-sea observatories at 

key locations of the European Seas. Among them, the EMSO-Azores node was installed in 
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2010 at the Lucky Strike hydrothermal field (LSHF) located at 37ºN on the Mid-Atlantic 

Ridge (MAR), whereby the instrumental infrastructure is dedicated to yearly monitoring of 

hydrothermal system dynamics (Colaço et al., 2011; Person et al., 2009). The geographical 

location of the LHSF in vicinity of the Azores Islands made it an accessible target in less 

than a sailing day. The LSHF constitutes one of the largest hydrothermal field known to 

date on slow-spreading ridge, i.e. 1 km2 (Humphris et al., 2002), and since its discovery in 

1992, several research cruises characterized the geological, geochemical, geophysical and 

biological context of the vents (Barreyre et al., 2012; Charlou et al., 2000; Fouquet et al., 

1995; Langmuir et al., 1997; Leleu et al., submitted; Ondréas et al., 2009; Pester et al., 

2012; Von Damm et al., 1998; Escartin et al., 2015). Since 2009, hot vents have been 

sampled on yearly-basis at this location, providing a 7 year time-series in the frame of the 

EMSO-Azores. Together with the previous published chemistry data (Charlou et al., 2000; 

Langmuir et al., 1997; Leleu et al., submitted; Pester et al., 2012; Von Damm et al., 1998), 

this dataset constitutes the longest time series, i.e. 12 years (1993 - 2015), of fluid chemistry 

on slow-spreading ridge. 

In this study, we report on the chemical variations observed in hot hydrothermal vents along 

the 12 years long time series and we interpret them as indicative of processes occurring at 

depth (reaction zone and/or subsurface). We also discuss the reliability of end-member 

interpretations when not related to a solid background in terms of sample collection and 

geophysical, geological information. Within this comprehensive study of vent interrelation 

and hydrothermal circulation, we assess the amounts of iron stored at depth in these systems 

as massive sulfides. Elemental concentrations are further completed by Sr and Li isotopic 

composition of the most recent fluids to constrain precipitation/dissolution and/or mixing 

processes operating at the subsurface. 

22. Geological context 

The Lucky Strike segment is ~65 km long and is situated south of the Azores islands along 

the MAR between 37°03'N and 37°37'N (Detrick et al., 1995). The recent spreading rate is 

~2.2 cm/yr (Cannat et al., 1999; Miranda et al., 2005). A fossil lava lake (300m in diameter) 

framed by three ancient volcanic cones constitutes the central volcanic edifice, tectonised 

by N010°–N030° faults and fissures, where the LSHF is hosted (Fig. V – 1; Fouquet et al., 

1995). The fossil lava lake was formed during the last volcanic event and is poorly 

tectonised, indicating a relatively recent setting compared to the volcanic cones (Humphris 
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et al., 2002; Ondréas et al., 2009). A magmatic lens (or AMC) was identified by seismic 

study at a depth of about 3500 m below the summit of the volcano (Singh et al., 2006). 

Micro-seismic events recorded by ocean bottom seismometers between 2007 and 2009 

cluster at depths between 1800 and 2500m below seafloor (mbsf) just above the AMC. 

They are interpreted as the product of hydraulic fracturing induced by penetration of cold 

down-going fluids into hot rocks (Crawford et al., 2013). Furthermore, intense seismic 

swarms were also identified since then within the deep-sea observatory infrastructure, in 

August-September 2011 and October 2012 (Crawford et al., 2015).  

 

Table V - 1 Summary of hydrothermal sites presenting different parameter. 

 
The LSHF vents display several types of structures and chemistry (Barreyre et al., 2012; 

Leleu et al., submitted). These hydrothermal vents are distributed around the central fossil 

lava lake in 5 different areas that are characterized by specific chemical venting fluids 

(Leleu et al., submitted). We will summarize underneath the main features of each area and 

associated fluids. 

The northwestern (NW) area hosts several active sites with high temperature vents (Bairo 

Alto, Nuno, Helene and Jason) on a curvilinear scarp formed by mass wasting and partly 

comprised of massive sulfides (Escartin et al., 2015; Ondréas et al., 2009). The fluid 

chemistry showed a chlorinity equivalent to that of seawater but fluid sampling is poor with 
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only two sites sampled, i.e. Jason in 1996 and Elisabeth in 2008. This area was chosen as 

an exclusion zone to preserve the original hydrothermal habitat, in respect with the Lucky 

Strike Marine Protected area (Mullineaux, 1998). As a consequence, this area is off limits 

for sampling and no further samples were acquired. 

 

Figure V - 1 Micro-bathymetric map of the Lucky Strike Hydrothermal Field. The dashed area represent the 
different salinity observed from this study. Red dashed area repsresent the most Cl depleted fluid of 
Capelinhos. Blue dashed area represent the vapor dominated fluids from the SE of the lava lake. Light purple 
area represents the Intermediary salinity group in the vicinity of the lava lake limit. The green dashed areas 
represent the high salinity fluids that are found at the SW and NE of the lava lake. The grey dashed area 
represent the fluids of the NW areas which are not part of this study. 

The northeastern (NE) hydrothermal area is constituted of surficial hydrothermal deposits 

hosting numerous inactive structures and 2 active venting sites named Sintra and Y3 (Table 

V - 1). Y3 site (also named 2608 vent, Barreyre et al., 2012) is isolated in the north eastern 

part of the fossil lava lake and was sampled regularly since 1996. At present, these fluids 

discharging as black smoker at 326°C are rich in Si, Fe and Mn have higher salinity than 

seawater. In contrast, fluids at Sintra site have relatively clear and low exit temperature at 

196-209°C and low amount of trace metal concentrations, displaying evidence of 

conductive cooling (Table V - 1; Leleu et al., submitted). Y3 is a well-known site due to its 

18m high chimney, but it was found collapsed in 2013 and stands since then as a gathering 

of 1-2 m high chimneys sitting on top of a 2-3m diameter pedestal. 

The southwestern (SW) area is situated at the southwestern end of the fossil lava lake, 

which is truncated by a 20m high scarp. This scarp is caused by movement along a normal 

fault that post-dates the last eruption (Ondréas et al., 2009). The absence of large 
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hydrothermal deposits in this area implies that there has been venting since recent times, 

however, inactive oxidizing chimneys were observed partially buried by lavas. The active 

venting occurs along the fault scarp (South Crystal, Crystal, Sapins and White Castle) or 

on the lava lake itself (Cyprès) (Fig V - 1). Among these active vent sites, fluid chemistry 

is variable in terms of chlorinity concentrations whereby South Crystal, Crystal and Sapins 

exhibit Cl concentrations equivalent or slightly higher than that of seawater whereas White 

Castle and Cyprès present lower chlorinity ones (Leleu et al., submitted). Furthermore, 

major and trace element concentrations do vary from site to site without any specific trend, 

e.g. Ca content ranges between 44.9 and 37.9 mM among them (Leleu et al., submitted). 

The southeastern (SE) area is composed of hydrothermally cemented volcanoclastic 

breccias. This impermeable substrate was called “slab” (Cooper et al., 2000; Humphris et 

al., 2002). Cooper et al. (2000) investigated the chemical composition of fluid issued from 

the slab. These authors suggested that the slab hosted and drove conductively heated 

seawater. This slab is thought to have sealed the permeability of the seafloor in this area, 

which lead to fluid discharge through faults. Active vent sites are numerous in this area as 

reported by Charlou et al. (2000) and Von Damm et al. (1998). The lack of clear marking 

and photo-mosaic of the seafloor did not permit a clear follow up of some of these vents 

through the years, e.g. Petit Chimiste, Hélène (Barreyre et al., 2012). The most well-known 

sites are Tour Eiffel, Aisics, Montsegur, Cimendeff and Isabel (Humphris et al., 2002; 

Ondréas et al., 2009). Apart from Isabel site which shows almost clear venting, all of them 

are black smokers discharging fluids at temperature above 300°C with high concentrations 

in metals. Nonetheless, all of them display lower chlorinity than seawater and Tour Eiffel 

has been the most vapor-dominated site identified at LSHF until the discovery of 

Capelinhos in 2013 (Escartin et al., 2015; Leleu et al., submitted). 

The Capelinhos site is situated approximately 1.5 km eastward of the main LSHF on the 

western flank of the axial volcano (Escartin et al., 2015). It is set on pillow lava and 

comprises several chimneys forming a “candelabra-like structure” on top of a 10 meters 

high sulfide mound. Extinct chimneys are characterized by orange colored oxidizing 

material while active chimneys are dark grey and covered by a white filamentous bacterial 

mat. Diffuse venting at Capelinhos is limited to the close vicinity of the black smokers at 

the base of the edifice. Capelinhos expels black smoker fluids at temperatures up to 324°C 

and is the most vapor-dominated fluid together with the most-enriched metal concentrations 

of all the LSHF (Leleu et al., submitted). 
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33. Materials and methods 

3.1 Sampling 

The fluid samples studied in this paper were collected during the Bathyluck cruise in 2009, 

and within the MoMAR program (EMSO-Azores) from 2010 to 2015 maintenance cruises 

on the French Research vessels Pourquoi Pas? and La Thalassa. The 13 sampling sites (12 

sites in the main LSHF, and Capelinhos) were chosen to spatially document the fluid 

diversity identified at Lucky Strike by previous studies (Von Damm et al., 1998; Charlou 

et al., 2000; Pester et al., 2012; Chavagnac et al., 2015; Leleu et al., submitted). From 2009 

to 2015, each vent site was sampled four times in succession (total duration of sampling <1 

hour) to allow a better characterization of the end-member fluid. In-situ temperatures were 

measured in the vents prior to sampling using the ROV Victor 6000 high temperature probe 

that was inserted inside the chimney with immediate temperature reading in the ROV 

control room. High-temperature fluids were collected with 200ml titanium gas-tight 

samplers handled and triggered by the hydraulic arm of the ROV. In 2009, further fluid 

sampling was carried out using 750ml capacity titanium bottles, which are not gas-tight. 

The time delay between each fluid sampling at a given vent did not exceed 20 minutes. The 

samples were processed immediately on board of the research vessel after the ROV 

recovery. First, gases were extracted from sampler and stored in stainless steel canisters or 

glass bottles for further on-shore analysis. The fluid samples were then extracted, filtered 

through 0.45μm Millipore filters and split into different aliquots stored at 4°C in a cold 

room for onshore analysis. pH, Eh, salinity and conductivity were measured on-board 

immediately after processing.  

3.2. Elemental concentration measurement 

All the chemical analyses were conducted at the Geosciences Environment Toulouse (GET) 

laboratory, the IUEM laboratory and the Ifremer Brest center. Ca, Na, K, Mg, Si, Fe, Mn 

and Li concentrations were determined with an inductively coupled plasma absorption 

emission spectrometer (ICP-AES; Horiba Ultima2). Error on analysis are indicated in Table 

2. The instrument is calibrated using mono elemental solutions, multi elemental solution 

and IAPSO standard solution (Besson et al., 2014). The latter is a seawater standard 

solution provided by OSIL (UK) and certified for its salinity. Salinity controls major 

elements concentrations in seawater (Millero et al., 2008). Li concentration measurements 

of IAPSO give an average concentration of 24.6 ± 0.3 μM (rsd=1%; n=4). The analytical 
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drift is quantified by the standard bracketing method after every 8 samples. Analytical 

precision is better than 2%. Sr, Rb and Cs concentrations were measured using an 

inductively coupled plasma mass spectrometer ICP-MS Agilent5000. The standard used is 

the NASS 6 solution (international seawater standard certified for some trace metals) and 

gives values of 79.1μM, 1.17μM, 1.19 nM for Sr, Rb and Cs respectively (n=3). Drift 

corrections are made using an in-house multi-elementary standard doped with In and Re 

before analysis. Anions (Cl, SO4, and Br) were determined by anionic chromatography 

calibrated with a IAPSO standard seawater solution that was diluted at different proportion 

with MQ-H2O to the cover the entire range of anion concentrations. 

3.3. Sr and Li isotopic compositions 

Sr isotopic composition of individual fluid sample was measured at the GET laboratory 

using a MAT FINIGAN 261 thermal ionization mass spectrometer. Analyses were 

performed on the purest samples, i.e. the lowest pH and Mg values. Sr was isolated from 

the matrix using Sr-Spec resin (Eichrom, USA). The 87Sr/86Sr ratio was determined as the 

average of 100 measurements of ion intensities following the static collection mode. The 
87Sr/86Sr ratios were normalized to 86Sr/88Sr = 0.1194. Measured values for NBS 987 

standard (recommended values of 0.710250) was 87Sr/86Sr = 0.710250 ± 0.000011 (2σE, n 

= 14). 

The sample chosen for Sr isotope composition were also analyzed for their Li isotopic 

composition. Li was separated and isolated from the matrix using a two cationic exchange 

column eluted with HCl 1N. Li isotopes were determined using a MC-ICP-MS Neptune at 

the GET laboratory and Ifremer laboratory. Li analysis were done by standard bracketing 

using a IRMM-16 Li standard of the same concentration. Analytical uncertainty was 0.2 ‰ 

(1sd). IRMM-16 is equivalent within error to the widely used standard L-SVEC. Therefore, 

the δ7Li values determined by IRMM-16 are directly comparable to those determined 

relative to L-SVEC. Li isotopes are expressed with a δ notation as follow:  

݅ܮ଻ߜ  ൌ ቌ ቆ ௅௜ళ ௅௜ల൘ ቇ௦௔௠௣௟௘
ቆ ௅௜ళ ௅௜ల൘ ቇூோெெ–ଵ଺ െ 1ቍ ൈ 1000 

In addition, IASPO seawater solution was also processed as the sample protocol and its Li 

isotopic composition was measured at δ7Li=30.5 ± 0,2 ‰, in line with literature values at 

30.7±0.4 ‰ (Rosner et al., 2007)  
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Table V - 2 Analytical method 

 
44. Results 

During percolation of seawater in the oceanic crust, water/rock interactions allow 

precipitation of secondary phases such as smectite and chlorite. As a result, the 

hydrothermally modified seawater becomes increasingly depleted in Mg toward a zero Mg 

hydrothermal fluid. It is difficult to sample hydrothermal fluid without entraining small 

amounts of surrounding seawater into the fluid sampler. Consequently, the composition of 

the end-member hydrothermal fluids are calculated by linear extrapolation to zero-Mg of 

the least-square regression method (Von Damm et al., 1985). Only hydrothermal end-

members will be considered in the discussion section. Although the Mg extrapolation is 

sometimes debatable (Gamo et al., 1996; Ravizza et al., 2001), most end-member 

calculated values of sulfate in our samples are close to zero which supports the Mg 

extrapolation approach. 

For each year and each site since 2009, chemical analyses were carried out on fluid samples. 

We acquired the most extensive chemical and isotopic dataset for 2013, 2014 and 2015 

samples, for which the results are presented in Fig V – 2 and 3 as the concentration variation 
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of eight elements (Cl, Si, Ca, Na, Fe, Mn, Sr, and Li) against Mg concentration. We then 

calculated the chemical composition of hydrothermal fluid end-members for the period 

comprised between 2009 and 2015, whose results are reported in table 3. We present the 

results in two distinct sections: 1) the definition of site groups between 2013 and 2015 

based on individual chemical analyses, and 2) elemental variation of end-members for each 

site groups since 1993 till 2015. 

4.1. Group of sites between 2013 and 2015 

Chloride in hydrothermal fluid is the major ion in solution. Vent fluids from the LSHF 

display both enrichment and depletion in that element compared to Cl seawater 

concentration at 545 mM. In addition, geological observations indicate that hydrothermal 

vents exhibit different morphologies (see section 2.1). In order to simplify the interpretation 

over the 30 sites that have been sampled and studied since 1992, several groups of sites 

were identified based on their chemical similarities and on site location in comparison to 

the vent-free fossil lava lake. Leleu et al. (submitted) defined 5 groups of sites for which 

we summarize underneath the main features over the period 2013 to 2015. 

The NE sites are Y3 at the very limit of the lava lake (Fig V - 1) and Sintra on the 

hydrothermal talus. Both of them have Cl concentrations equivalent or slightly above 

seawater (Table V - 3). 

The SW group is composed of sites (South Crystal, Crystal and Sapins) aligned along a 

minor fault close to South Western scarp of the fossil lava lake. They display the highest 

temperature measured at the LSHF, i.e. 340°C at South Crystal (Table V - 1). Between 

2013 and 2015, only South Crystal, Crystal and Sapins were sampled and all of them show 

Cl concentrations slightly higher than that of seawater but equivalent values to those of the 

NE sites.  

The SE group correspond to the sites situated on the highly faulted and hydrothermal slab 

covered area between the North Eastern and Southern volcanic cones. It comprises the 

active vent sites named Tour Eiffel, Aisics, Montsegur and Cimendeff. They have Cl 

concentrations being ~20–25% lower than that of seawater. 

The central group represents an intermediary group both spatially and chemically between 

the SW/NE and SE sites as evidenced by Cl concentration. It comprises Cyprès and White 

Castle, located on the western side of the fossil lava lake, that have Cl concentrations 
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slightly lower than seawater (~5 – 10%) as well as Isabel, located on the eastern side of the 

fossil lava lake, exhibiting Cl concentration at 10% lower than seawater.  

The last group is composed only of 1 active site, i.e. Capelinhos, which has Cl concentration 

at 60% lower than seawater. This site is situated well away from the fossil lava lake (Leleu 

et al., submitted). This is the most-vapor dominated site of all LSHF ones and has remained 

as such since its discovery in 2013. 

The Cl dispersion is further observed among these site groups showing variable major and 

trace element concentrations in Na, K, Ca and Li whereby the later increases in 

concentration for increasing Cl ones. However, this is not systematically the case for other 

elements such as Si, Fe, Mn, Br, Cs and Rb, for example the central group may exhibits 

higher concentrations of Si and Mn than the SW and NE groups. 

4.2. Time-series of hot vent chemistry since 1993 

In this section, we will consider the concentrations of hydrothermal end-members 

calculated from the measured samples over the period 2009 till 2015. The results are 

reported in Table V - 3 together with previous literature datasets according to the group of 

sites previously defined. Within this framework and based on the literature, we will add 

Statue of Liberty to the NE group, Helene and Nuno to the SW group and Petit Chimiste 

and Marker 6 to the SE group. 

4.2.1. Chloride, sulfate and bromine 

The lowest and stable Cl concentrations found at LSHF are the fluids from the Capelinhos 

site at 262 mM. Prior to 2013, i.e. year of Capelinhos discovery, the SE group was the most 

vapor-dominated fluid known at LSHF with Cl concentrations that vary from 400 to 450 

mM but mostly around ~430 mM, with the lowest value between 2008 and 2011. Over the 

period spanning from 1993 and present, the NE group presents the highest Cl content of all 

LSHF groups with a maximum value at 588mM. The 2008 fluids mark the transition from 

Cl-depleted fluids compared to seawater to Cl-enriched fluids from the NE and SW groups. 

The SW sites have shown over the years chlorinities very close to those of the NE group. 

Note, however, that prior to 2011, the SW group displayed a rather vapor-dominated Cl 

concentration at 515-535 mM while rising up abruptly at ~580mM in 2011 (TableV – 3). 
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Figure V - 2 Cl, Si, Na, Ca vs Mg diagrams showing the dilution effect of hot fluids by local deep seawater 
entrainment. Concentrations are in mM. These diagrams are used to determine the endmembers 
concertation by extrapolation of the least square regression to Mg=0. Groups of sites are presented as 
explained in Leleu et al., sub. Open circle: capelinhos; Open triangle: central group (Isabel, White Castle, 
Cyprès); Full square: North Eastern group (Y3 and Sintra); Full circle: South Eastern sites (Aisics, Tour Eiffel, 
Montsegur Cimendeff); Full triangle: South West group (Crystal, South Crystal, Sapins). 
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Figure V - 3 Fe, Mn, Sr, Li vs Mg diagrams showing the dilution effect of hot fluids by local deep seawater 
entrainment. Mg concentrations are in mM, Fe, Mn, Sr and Li concentrations are in μM. Symbols are the 
same as used in Fig V - 2. 
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The Cl concentration of the central group shows two different and distinctive behaviors 

whereby Isabel and White Castle sites display limited Cl concentration variations between 

464 and 505 mM over the years while Cyprès site exhibits increasing chlorinity starting at 

489mM in 2009 to 548mM at present time. 

Sulfate (SO4) is removed from the initial seawater by anhydrite precipitation and reduction 

to H2S. Therefore, the SO4 content of the hydrothermal end-members reflect the seawater 

entrainment in the same manner as does Mg. Generally, calculated end-member display 

negative values of SO4. On the contrary, some end-members display positive 

concentrations, for example in 2010, 2012 and 2014 for the SE group (Table 3). 

Bromide (Br) content generally shows the same variations as for Cl ones, from year to year 

and from site group to site group. Br is considered as a conservative element in submarine 

hydrothermal system. Accordingly, the lowest concentrations are found at 394μM for 

Capelinhos and the highest ones at 1037μM for the SW sites close to the seawater value at 

838 μM.  

 4.2.2 Na, K and Ca 

Na, K and Ca are the major cations in solution. They are dependent on the Cl concentration 

and water-rock interaction equilibrium but all of them are enriched in hydrothermal fluids 

compared to seawater concentrations.  

Na concentrations are correlated to Cl ones as it is the major cation that counter balance the 

charge of the solution to maintain electro-neutrality. As a result, Na concentrations vary 

from 205 mM for the most Cl-depleted fluids at Capelinhos to 493 mM for the most Cl-

enriched ones at the SW group. The SE group shows progressive decreasing Na 

concentration from 400 mM in 1993 until 310 mM in 2009, from when it increases 

gradually till its present concentration at about 341 mM. The NE group exhibits seawater 

value in 1993, decreasing abruptly to 400 mM in 1994 from when Na concentrations 

increase with little variations from year to year until seawater value at present time. The 

SW and NE group shows the highest Na concentrations of all the LSHF groups through the 

years. The central group for which we have an annual survey since 2008, exhibits Na 

concentrations fluctuating between those of the NE and SE groups. 

Ca and K concentrations vary according to Cl concentrations as the lowest concentrations 

are at 16.8 and 12.1 mM for Capelinhos fluids and the highest ones at 53.7 and 29.8 mM 

for NE/SW groups, respectively. The Ca concentrations show two principal features: 1) a 
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“general” increase since 1993 for all the LSHF groups, and 2) a sharp decrease since 2013 

for all LSHF groups. In contrast, the K concentrations have varied significantly from year 

to year and from group to group. Two general trends affecting all LSHF groups can be 

observed with 1) a general increase between 1993 and 1997 and 2) a V-shape distribution 

between 2008 and 2015 with the lowest concentrations in 2011. 

4.2.3 Silica 

The silica concentrations of hydrothermal end-members are comprised generally between 

10.2 and 18.6mM any year between 1993 and 2015, apart from two outsiders for the central 

group in 2009 and the SE group in 2012. Capelinhos has Si concentrations slightly 

decreasing from 14.1 to 13 mM since 2013. The SE group has values ranging between 13 

and 15 mM, however some vents display very low Si concentration down to 1.7mM 

between 2009 and 2012. The NE group displays a wide range of Si concentrations because 

Sintra and Statue of Liberty have a rather stable Si concentration at 11.3 - 13.2 mM while 

Y3 vent has Si concentrations which vary between 13.9 and 17.5 mM. The SW group 

displays increasing Si concentrations from 1996 to 2013 (14.8 to 17.5 mM) and decreasing 

concentrations from 2013 to 2105. The central group displays different ranges in 

concentrations from site to site but each of them exhibit their lowest value in 2009. 

4.2.4 Iron and Manganese 

All groups display enriched concentrations of both Fe and Mn compared to seawater ones 

whereby the highest concentrations are obtained for Capelinhos site at 2.7 mM and 

~600μM, respectively. For the Fe concentrations and in the 1990’s, the NE and SE groups 

were the most-enriched ones whereas the SW group was the most-depleted one. Since 2008, 

all groups display, overall, a V-shape trend of Fe concentrations mimicking the trend 

observed for K ones. Within this trend, the SW group is now the most enriched ones 

compared to the NE group, which is the most-depleted one. The Mn concentrations display 

similar variation as those obtained for Fe concentrations apart from the Y3 site of the NE 

group, which shows systematically Mn concentrations equivalent to those of the SW group. 

For the central group, the Mn concentrations tend to increase progressively since 2009 

while the Fe concentrations do vary from site to site but still within the Fe range define by 

the SW and NE groups. 

4.2.5 Rubidium, Strontium, Cesium and Lithium 

The dataset of Rb, Cs and Li concentrations is quite limited compared to the Sr one, for 

which systematic measurements on all groups of the LSHF were carried out since 1993. 
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Rb, Sr, Cs and Li concentrations vary accordingly to Cl concentration, whereby the most 

Cl-depleted group, i.e. Capelinhos, exhibits the lowest concentrations at 16.8μM, 33.4μM, 

128μM, and 188.5μM, respectively whereas the SW and NE groups as the most Cl-enriched 

ones show the highest concentrations at 50.1 μM, 179.3 μM, 277 μM, and 444.1μM, 

respectively (Table V - 3). Since 2010, the Cs concentrations have continuously increased 

from year to year and for all groups of sites. There is limited amount of Li concentrations 

with an annual survey between 2013 and 2015, exhibiting a sudden increase by up to 40% 

of the Li concentrations in 2015. This is observed for all groups without exception. In 

comparison, the Rb concentrations of all LSHF groups exhibit a sharp increase in 2008 and 

2013. Finally, the Sr concentrations display similar fluctuations through the years as it is 

observed for K, Fe and Ca ones for the period comprised between 2008 and 2013. Since 

2013, the Sr concentrations have slightly decreased. Note that in 2013, the SE group do not 

show a sharp increase in concentration compared to all other ones. 

4.2.6 Strontium and Lithium isotopic compositions  

The strontium isotopic compositions of end-members are determined based on selected 

samples of each group by linear extrapolation of Mg/Sr to 0. The less radiogenic 87Sr/86Sr 

end-member is determined at 0.7038 for Capelinhos in 2013 whereas the most radiogenic 

one is determined at 0.7045 for White Castle site belonging to the central group. 

The Li isotopic compositions are reported in Table 3 as delta notation referring to the 
7Li/6Li of the IRMM-16 (NIST) international standard. The δ7Li end-member values range 

between +4.1‰ and +6.4‰. No differences appear between groups. 
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Table V - 3: calculated end member values of the fluids sampled at Lucky Strike. End-member values for fluids 
from 1933 to 2008 are from the literature (Charlou et al., 2000; Pester et al., 2012; Von Damm et al., 1998).  
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55 Discussion 

5.1 Time-series of hot vent chemistry: a matter of time-scale 

Time series study of hydrothermal vent chemistry require special attention due to the 

temporal scale at which fluids are collected compared to the time scale at which 

seismic/tectonic/magmatic processes are taking place. From the discharge to geological 

processes, time scale variation of 10 orders of magnitude are at play (Lowell et al., 1995) 

and reference there in). The duration of a hydrothermal field is thought to be in the order 

of 103–106 years while the residence time of the fluid within the oceanic crust is constrained 

between 1 to 10 years (Lowell et al., 1995). At the discharge, precipitation of sulfide 

particles takes place within 0.3 to 3s of the turbulent mixing between hot hydrothermal 

fluid and cold deep-seawater. So the time scale at which samples are collected are complex 

parameters.  

 

Figure V - 4 Mixing diagram between hydrothermal fluids and seawater based on Mg concentration. They 
focus on the low dissolved Si samples. Grey dots are measured black smoker samples. All data presented 
regroups sample measurements from 2009 to 2015. 

Focusing on one vent at the LSHF seems unlikely representative of the dynamic of 

hydrothermal fluid circulation due to the geographic extension and complex inter-relation 

between vents (Barreyre et al., 2012; Escartin et al., 2015; Leleu et al., submitted). It is also 

important to identify and distinguish short time scale processes acting on several minutes 

to day range as shown by temperature records (Barreyre et al., 2014) over longtime 

processes taking place on months as evidenced by seismic swarms (Crawford et al., 2013). 
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In other words, any geophysical variations depicted at any hydrothermal field and at 

different time-scale should also be transferred and/or recorded in the chemical composition 

of hydrothermal end-members. Fluid sampling is carried out during research oceanic 

cruises most of the time on a yearly basis, implying punctual sample collection as a 

snapshot of hydrothermal fluid circulation. Taking the LSHF as an example, over the 348 

fluid samples collected since 2009, 17 of them (5% of total sample collection) shows a 

systematic depletion in dissolved Si with values comprised between 1.5 and 2mM (Fig V - 

4). This is significant and cannot be disregarded or rejected. In addition, this depletion 

cannot be accounted by direct dilution with surrounding deep seawater based on the 

following evidences: 1) the occurrence of this type of fluids is not associated to any specific 

sites or years (Table V - 3; Fig V - 4), 2) these low silica samples are collected during the 

same dives and within 10-20 minutes to other samples that display expected black smoker 

Si concentrations (Table V - 3), 3) they don’t show any dilution evidence for other 

elements, i.e. low Si samples located on the south eastern side of the fossil lava lake have 

chlorinity typical of the SE group, and 4) Si depleted fluids can be found as well as at low 

Mg concentrations, close to the pure hydrothermal end-members. Furthermore, in 2015, 

sampling of Sapins hydrothermal vents, i.e. SW group, leads to complete extinction of the 

discharging vents (in situ Tmeasured at 302°C, Table 1), indicating that the fluid sampler 

inflow (~200ml in 2–3s) was higher than the vent fluid outflow (MoMARsat 2015 Cruise 

report). At this site, 3 samples out of the 4 collected ones exhibit this Si concentration 

depletion. We argue that these fluids, that have lost ~85% of their dissolved Si 

concentrations compared to normal black smoker fluids, are the results of Si precipitation 

from “normal” hydrothermal fluid. 

Using Si geothermometer for seawater-like solution at 170 bar (depth of LSHF at 

1700mbsl, Von Damm et al., 1991), we find that a temperature of 100 to 150°C is necessary 

to obtain a dissolved Si concentrations at 1.5 to 2.3 mM respectively. This is further 

sustained by experimental study of basalt-water alteration which shows Si concentrations 

between 2.3 and 3 mM at 150°C (James et al., 2003). Alternatively, heating of seawater in 

contact with basalt induces Si-Mg precipitates to form at temperature starting at 250°C 

(Bischoff and Seyfried, 1978). Such process may produce the observed low Si 

concentration but cannot account for the measured Mg and Cl concentrations of our 

samples compared to seawater (Bischoff and Seyfried, 1978; Von Damm et al., 1991). 

Furthermore, the linear trend between Cl and Mg concentrations including these low Si 
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fluids do not allow to decipher them from “normal” black smoker fluids (Fig V - 4). We 

propose that a shallow aquifer composed of conductively cooled hydrothermal fluid is 

actively forming the hydrothermal slab that is composed of silicified basaltic breccias (Fig 

V - 4). Cooper et al. (2000) proposed that seawater could be conductively heated within the 

subsurface by the up-flowing high temperature hydrothermal fluid. This hydrothermal 

seawater would participate to the formation of the hydrothermal slab largely found around 

the SE sites (Humphris et al., 2002). We propose that in a manner similar to what is 

proposed by Cooper et al. (2000), high temperature fluids can be conductively cooled at 

the subsurface edges of the upflow zone and form a shallow aquifer, in filling local porosity, 

close to the main discharge (Fig V - 5).  

 

Figure V - 5 Cartoon of shallow hydrothermal circulation beneath the hydrothermal vents. Modified from 
Cooper et al. (2000). The silica cemented breccias or slab form an impermeable cap where conductively 
heated seawater and conductively cooled hydrothermal fluid can mix and sometimes be entrained in the 
focused fluids. Black arrows represent the high temperature fluids, the grey arrows are the proposed 
conductively cooled hydrothermal fluid. Dashed arrows represent the conductively heated seawater. 

The dynamic of such a cooled hydrothermal fluid is probably related to subsurface/seafloor 

processes such as tidal pressure change. In situ autonomous temperature sensors recorded 

not only the tidal signal but also episodic temperature excursion (Barreyre et al., 2014). 

This is evidenced as either a temperature drop of 4°C to 160°C from the initial temperature 

over a few hours, or a temperature increase up to 10°C for several days (Barreyre et al., 
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2014). These temperature surveys of focused fluids highlight the high temporal variability 

of discharging fluid temperature and therefore the potential for contrasted and variable fluid 

chemistry. We anticipate that the fluid collections at Sapins may represent one example of 

low temperature fluid excursion. In summary, interpreting time-series of hot fluid 

chemistry is not as strait forward as anticipated and call upon caution for apparent chemical 

variability of focused hydrothermal end-members from one year to the other. Furthermore, 

we suggest that a pool of hydrothermal fluid, conductively cooled and more or less mixed 

with deep seawater, is located in the subsurface vicinity of focused fluids (Fig V - 5). Only 

extensive fluid sampling over long-term time series allow to reveal the occurrence of 

peculiar fluid. 

5.2 Proxy of phase separation conditions and its reliability: Application to SE 

group from 1993 to 2015. 

To study the fluid elemental variations over long-term time series, we chose a global 

approach by using exclusively fluid end-members but excluding the low Si samples 

presented in the previous section. Differences in fluid salinity compared to seawater are 

widely observed in hydrothermal fluids of submarine environments that are most likely 

related to phase separation. Therefore, studies have been conducted to better understand 

this process and the effect of P and T on the solution salinity (Bischoff, 1991; Bischoff and 

Rosenbauer, 1985; Driesner, 2007; Foustoukos and Seyfried, 2007b, c). The fluid flow 

properties that depends on substrate permeability, impact the chemical response to P–T 

conditions and variations, which in turn may produce chloride variability in the discharging 

fluids (Fontaine et al., 2007; Fox, 1990; Goldfarb and Delaney, 1988; Leleu et al., 

submitted). Previous fluid chemistry studies argue for a unique phase separating source 

feeding the LSHF and flowing towards the seafloor, despite a fairly high chemical diversity 

(Leleu et al., submitted; Pester et al., 2012; Von Damm et al., 1998).  

Fontaine et al., (2009) developped a geothermobarometer based on the Cl and Si 

concentrations with the hypothesis that these two element concentrations are fixed at phase 

separation conditions without any further modification along the up-flow pathway to the 

seafloor. On one hand, Cl depends on the phase separation condition as vapor and brine 

phases will form above the two-phase boundary of seawater. The vapor phase being less 

dense than the brine one, will flow up-wards more efficiently than the brine one. Physical 

properties of brine and vapor phases are radically different from one another as the brine 
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wetting effect enables its condensation on the fracture walls and the backwater porosity 

(Fontaine et al., 2007; Goldfarb and Delaney, 1988). Therefore, the brine phase is 

quantitatively stored at depth during this process (Fontaine et al., 2007). Nevertheless, 

venting of brine phase by entrainment during the upflow is punctually observed and might 

be related to uncomplete brine/vapor segregation (Larson et al., 2009). This entrainment 

may occur when the phase separation conditions change and are insufficient to sustain the 

same fluxes of brine and vapor (Schoofs and Hansen, 2000). Alternatively, brine 

segregation may lead to the saturation of the backwater porosity, provoking brine flushing 

effect on punctual time-scales (Coumou et al., 2009; Fontaine et al., 2007). 

On the other hand, Si is widely used in submarine system as a chemical proxy of quartz 

equilibrium at depth, whose concentrations reflect specific P–T conditions (Fournier, 1983; 

Foustoukos and Seyfried, 2007a; Von Damm et al., 1991). Si is systematically enriched in 

black smoker fluids compared to seawater due to alteration process of basaltic glass and 

silicate minerals at depth. However, the occurrence of quartz veins in the reaction zone and 

upflow zones in both ophiolites and oceanic crust suggest that dissolved Silica is controlled 

by quartz precipitation conditions at depth (Alt et al., 1989; Delaney et al., 1987). 

Therefore, the solubility of quartz has been investigated in the NaCl-H2O system to be used 

as a geothermobarometer in hydrothermal system (Fournier, 1983; Von Damm et al., 1991; 

Foustoukos and Seyfried, 2007a). Numerical modeling studies suggest that quartz 

maximum precipitation will occur concomitantly to phase separation condition (Steele-

MacInnis et al., 2012). This is confirmed by occurrence of high salinity fluid inclusions in 

quartz forming in the reaction zone (Kelley and Robinson, 1990). Note that quartz 

occurrence with greenschist facies mineral assemblages as well as hydrothermal fluids that 

are conductively cooled and/or mixed with seawater, may bias the P–T condition estimates 

due to quartz/amorphous silica precipitation along the up-flow pathway to the seafloor 

(Steele-MacInnis et al., 2012; Von Damm et al., 1998). 

Si–Cl geothermobarometer is applicable to vapor-dominated fluids, which are most likely 

to flow fast enough to avoid any substantial changes in element concentrations on the way 

up to the seafloor. Capelinhos site is the most vapor-dominated fluid venting at the LSHF 

and was sampled yearly since 2013 (Leleu et al., submitted). Prior to 2013, the most vapor-

dominated vents at LSHF were Tour Eiffel and Montségur sites, both of them belonging to 

the SE group. Figure V - 6a and 6b show the application of the Si-Cl geothermobarometer 

to these two sites over the period 1993 to 2015 in comparison to Capelinhos group for 2013 
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till 2015, respectively. At Capelinhos group, the separation phase occurs at 380-370 bars 

and 437-442°C, with little variation over three years arguing for a maximum depth of the 

reaction zone at 2800-2500 mbsf (Leleu et al., submitted). In comparison and for the same 

time period at Tour Eiffel and Montségur sites, the separation phase is determined to take 

place at 390–370 bars and 437 – 442 °C, which are equivalent to P and T estimates of 

Capelinhos. Despite higher chlorinity in Tour Eiffel and Montségur fluids compared to 

Capelinhos, the three of them reflect the same P–T conditions at depth for separation phase 

between 2013 and 2015. Within this framework, Tour Eiffel and Montségur sites can be 

used as a proxy of P–T estimates of the separation phase prior to 2013. 

Overall, P–T estimates of separation phase cluster for all two sites at 380 ± 10 bars and 435 

± 5°C, over the period spanning between 1993 and 2015, in line with P–T conditions 

determined for Capelinhos site (Fig V - 6c). These estimates indicate that phase separation 

is located at ˜2650 ± 200 mbsf, approximately 700 m above the roof of the AMC. Note that 

since 2013, the phase separation zone seems to “move” toward the surface, by ~200 meters 

(Fig V - 6c). However, departure from these general estimates are nevertheless observed 

on punctual years, whereby temperature remains essentially constant for concomitant for 

larger pressure range, e.g. isothermal decompression. For example, pressure drops to 355 

bars for both Tour Eiffel and Montsegur sites in 2009, while in 2011 and 1994 only Tour 

Eiffel site indicates lower P estimate at 345 and 365 bars, respectively. These punctual 

lower pressure estimates may provide valuable information about fluid modification during 

the upflow to the seafloor as a response to magmatic and/or tectonic events that may control 

ultimately silica precipitation and/or brine entrainment/segregation. 

For instance in 2009, a seismic swarm has been recorded by the seismometer array of the 

EMSO observatory infrastructure (Crawford et al., 2013). The depth of the intense seismic 

activity has been evaluated to occur between 2500 and 3000 mbsf, in the depth range of 

phase separation predicted by Si-Cl geothermobarometer (Crawford et al., 2013; Leleu et 

al., submitted). Crawford et al. (2013) argue that the 3 month-long event swarm in April–

June 2009, results from a thermal cracking of the rocks due to down-flowing cold seawater. 

Note that fluid sampling in September 2009, occurred a couple of months after the timing 

of these seismic events which are observed less than a year later than the 2008 AMC 

replenishment, i.e. evidenced by high CO2 concentrations in fluids collected in July 2008 

(Pester et al., 2012).  
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Similarly, lower P excursion inferred from July 2011 fluid chemical composition takes 

place before the occurrence of seismic swarm detected in August-September 2011 

(Crawford et al., 2015) but still less than a year after the AMC replenishment, evidenced 

by high dissolved CO2 concentrations in October 2010 fluids (Chavagnac, pers. comm.) . 

The magmatic activity in 2010 is sustained by a drastic change of micro-organism diversity 

preserved in in-situ microbial-colonisators which display enhanced occurrence of 

thermophile archaea (Rommevaux et al., submitted).  

Although the shallower P - T estimates should be taken with caution, they at least provide 

information about a perturbation of the upflow zone, either by temperature and/or pressure 

changes associated with a displacement of the cracking front. Depth changes of the cracking 

front are a likely place for phase separation but it remains to elucidate the time-scale at 

which the impact of seismic swarm is preserved and recorded by the chemical features of 

hot vents. At least from these two particular examples, we may suggest that a two month 

delay between seismic swarm and fluid sampling allows to detect any depth variability of 

the thermal cracking front. 
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Figure V - 6 Si-Cl chart for P and T determinations in the separation phase. Modified from Fontaine et al. 
(2009). Si and Cl variations are representative of specific P and T conditions. Tour Eiffel endmembers from 
1993 to 2015 are represented in a); Montségur endmembers from 1993 to 2015 are represented in b). Both 
are represented with Capelinhos endmembers from 2013, 2014 and 2015. C) presents the evolution of the P 
and T estimated based on a and b. Blue dashed line are the observed magmatic CO2 degassing (Pester et al., 
2012; Chavagnac et al., unpublished data). Green dotted line mark the seismic swarms recorded by the OBS 
network (Crawford et al., 2013, 2015). 
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5.3 Alteration state of the substratum 

Despite the discrete chemical variability between each group of vents, and more locally 

between each vents, a general trend can be drawn by using boxplots of all the data available 

for each year. We believe that this approach is best suited to describe the temporal chemical 

variability at the hydrothermal system over a long-term time scale. 

In hydrothermal vent fluids, Na and Ca concentrations are found respectively depleted and 

enriched compared to seawater ones. This is due to the alteration degree of calcic 

plagioclase (anorthite) to more stable sodic plagioclase (albite; Berndt and Seyfried Jr, 

1993; Von Damm, 1988). The Ca/Na ratios constitutes a proxy of plagioclase equilibria by 

means of anorthite percentage in equilibrium with the fluids, i.e. the extent of albitisation 

process (Berndt and Seyfried Jr, 1993; Pester et al., 2012). Keep in mind that during phase 

separation, Ca is preferentially partitioned into the brine phase while Na will remain in the 

vapor phase (Pester et al., 2015). This means that Ca/Na ratios will not only depend on 

plagioclase alteration in the reaction zone but also to phase separation process. 

Focusing on the 2013-2015 fluids which are the most representative of the diversity 

identified at LSHF, we observe the effect of phase separation on the Ca/Na ratios as shown 

on Figure V - 7. The lowest Ca/Na values at 0.08, are found for Capelinhos vent site while 

the highest Ca/Na ones at 0.105 are obtained for the most brine-dominated fluids of the SW 

group. This trend is coherent with phase separation process for Capelinhos, central and SW 

groups but do not explain the very Ca/Na ratios obtained on the NE and SE groups (Fig V 

- 7). The NE sites have markedly higher Ca/Na ratios than the SW sites by up to 20% 

although both of them exhibit similar Cl content above seawater values. We interpret these 

variations as being due to the intense alteration of the substratum as evidenced by surficial 

hydrothermal deposits and lower temperature of discharging fluid, e.g. ˜200ºC (Humphris 

et al., 2002; Ondréas et al., 2009). This area probably encountered already a high degree of 

albitisation at depth. In contrast, the SW group sits on an area which doesn’t display such 

deposits but merely post-dating lava lake fractures and fresh lava, e.g. probably reflecting 

a much less altered substrate at depth. The SE group displays high Ca/Na ratios equivalent 

to the NE ones, although the fluid venting is vapor-dominated at this location. We showed 

earlier that the SE group, among which Tour Eiffel belongs, may be used as a proxy of 

Capelinhos site for determining the P–T conditions taking during phase separation. The 
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large variation of Ca/Na ratios between Capelinhos and the NE group towards higher values 

clearly illustrates higher degree of albitisation of the substratum in the SE area.  

 

Figure V - 7 Boxplot diagram presenting the fluid Ca/Na ratios per group of site groups for 2013, 2014, 2015 
as a function of the Cl concentration. 

Using boxplots of all the Ca/Na ratios for each year and group of sites, we may assess the 

temporal variability of the albitisation process over time,as shown in Figure V - 8. On a 

global temporal point of view, the albitisation process seems to increase progressively 

between 1993 and 1997, whereby the 1993 SE and NE groups are characterized by Ca/Na 

ratios at 0.008 identical to those of Capelinhos at present time and increasing up to 0.1 in 

1997. Since 2008, each group of sites display higher Ca/Na values than in 1993, in line 

with on-going albitization of the substrate. Over the 2008 till 2015 period, two magmatic 

events took place in 2008 and 2010 together with three month-long seismic swarms in 

April-June 2009, August-September 2011 and October 2012 (Crawford et al., 2015). All of 

them probably influenced the hydrothermal circulation by changing the brittle/ductile 

boundary and emplacing new materials and/or allowing access to fresher rocks. The latter 

would provide a comprehensive explanation to the sudden increase of Ca/Na ratios taking 

place in 2009 and 2010. Further evidence on the extent of the oceanic crust alteration can 

be extracted from the temporal variability of K/Cl ratios, even though K as an alkali element 

is as sensitive to phase separation as Ca (Berndt and Seyfried, 1990) displaying 
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concomitant increasing K/Cl ratios and Cl concentrations. While this is clearly observed 

on the temporal variability of site groups (Table V - 2), the simultaneous co-variation of 

the each group K/Cl curves (Fig V - 9) and from year to year, may point out the oxidizing 

conditions of the oceanic crust alteration. Between 2008 and 2015, the K/Cl ratios have 

systematically decreased from 0.052 in 2008 to 0.038 in 2011 while systematically 

increasing back to 0.052 in 2015.  

 

Figure V - 8 Time series of Ca/Na boxplots of end-members selected for different groups (see text for details). 

In summary, the relative Ca/Na ratios of the fluids within the same area are representative 

of alteration process occurring at depth, but for inter-comparison, it is necessary to take 

into account the partitioning of these elements during phase separation. 
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Figure V - 9: Time serie of K/Cl values of the endmember from table V – 2. 

5.4 Apparent temperature of greenschist mineral equilibration (Fe-Mn 

variations per sites). 

Pester et al. (2011) used basalt alteration with seawater experiment and compiled data from 

the literature to investigate the response of Fe and Mn concentration to temperature change. 

These elements are highly dependent on temperature and environmental conditions as well 

as pH and redox. These authors were able to develop a geothermometer based on the ratio 

of Fe and Mn. Fig V - 10 display Fe and Mn on a logarithmic scale for different groups. 

The highest temperature recorded by this geothermometer is 400°C for Capelinhos vent 

site. Conductive cooling in such diagram is marked by an apparent enrichment in Mn 

compared to Fe. This is due to a faster response to temperature change of Fe, while Mn 

behaves more conservatively. The SE area displays also a trend typical of conductive 

cooling. Again, caution need to be taken because Fe precipitate as it mixes with seawater 

at the seafloor discharge. Poor quality samples, with significant amount of seawater 

entrained, will display a similar trend as a conductive cooling in the subsurface.  

The SE sites display a maximum temperature of equilibrium with greenschist facies 

minerals at 375°C, especially for Tour Eiffel, which show almost no variations through the 

years (Table V - 3). Some of the fluids in the SE area display a trend toward conductive 
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cooling out of the range of equilibrium with basalt. Some have been discussed already by 

Pester et al. (2012), especially the 1993 and 1996 group. Montsegur fluids seem to follow 

this conductive cooling trend in 2014, but rather than a subsurface process affecting 

reaction temperatures, it is more likely due to the poor quality data sampled this year which 

had at best ~10mM of Mg, i.e. ~20% of seawater entrained. That much seawater 

entrainment likely resulted in loss of Fe.  

 

 

Figure V - 10 Fe and Mn diagram on logarithmic scales. Grey dots are experimental data from literature. 
Solid line represent the basalt alteration experiment with a 95% confidence interval (dashed black line). 
Dotted grey lines are isotherm for basalt experiments at different temperatures. 

In the South West area, Crystal site is interesting in that it shows a gradual increase in 

temperature. Crystal earned its name from the crystal clear discharging fluid at T=281°C 

(Von Damm et al., 1998). Since then, Crystal site has evolved and show now the highest 

temperature of the LSHF with the close-by South Crystal site, venting fluid at temperature 

of ~340°C. In 1996, Crystal was well within the basalt alteration experiment range, at lower 

temperature than 325°C, and progressively attained higher temperature close to 380°C. 

Sapins, which is situated close by the Crystal and South Crystal sites, vents at lower 
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temperature, and accordingly display lower temperature of equilibration (i.e. <350°C). The 

fluids from sapins lies on the conductive cooling trend, and from 2013 to 2015 seems to 

cool in subsurface. Alike Montsegur fluid in 2014, samples of Sapins in 2015 display the 

low Si fluids. Although it is clear that samples for Sapins in 2015 have an apparent poor 

quality, regarding the Mg concentration, we believe that the apparent cooling observed 

from Fe and Mn concentrations is significant and indicate that Sapins is currently clogging 

due to silica precipitation of a cold hydrothermal fluid. Sapins expels clear fluid at ~300°C 

which indicates high temperature at depth but also that seawater entrainment will not 

modify drastically the Fe and Mn concentrations. This suggest that unlike fluids from 

Montsegur sampled in 2014, the seawater entrained is not the cause of the apparent low 

temperature but the conductive cooling during upflow. 

The North East area has been well studied in former fluid studies (Charlou et al., 2000; Von 

Damm et al., 1998), the Fe and Mn concentrations of the sites situated at the old deposits 

area with many inactive sites (Statue of Liberty) are consistent with a low temperature of 

fluids conductively cooled. They display a temperature of equilibration around 325°C, that 

is stable through the years for a discharge temperature of 210°C. Statue of Liberty is now 

extinct but Sintra shows constant temperatures of ~207±10°C since 1993. Y3 is situated on 

the edge of the fossil lava lake and displays higher temperature of equilibration at ~375°C 

and stable through the years. The lowest apparent temperature at Y3 is attained in 2012 

(~340°C), which also coincides with the collapse of the 18 meters high chimney of Y3. 

 The central sites, that include White Castle, Isabel and Cyprès, all display temperatures 

equilibrated between 325 and 350°C. The Fe and Mn concentrations are coherent with the 

basalt experiment (Fig V - 10). This group is characterized by a cooler temperature of 

equilibrium, despite high dissolved Si concentration for Cyprès (Leleu et al., submitted).  

Capelinhos’ temperature of equilibration is 400°C, and is stable for 2013, 2014 and 2015.  

To sum up, we observe 3 temperatures of apparent equilibrium with greenschist mineral 

facies. The most active vent is the Capelinhos site with several chimneys venting ~324°C 

fluid and indicating 400°C in subsurface. Next comes fluids equilibrated at T~370°C, and 

discharging at T>300°C (SW sites: South Crystal, Crystal; SE: Tour Eiffel, Aisics, 

Montsegur; NE: Y3). Other vents that discharge fluids at temperature between 200 and 300 

indicate lower temperatures of equilibration. Leleu et al. (submitted) discussed that a 

unique source fluid was feeding the whole hydrothermal system. Capelinhos fluids are 
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channeled shortly after phase separation likely through a deep reaching fault transporting 

fluid to the discharge zone fast enough to limit the chemical reaction with the host rock. 

The low chlorinity also is important concurring with the fast extraction of these fluids. 

Therefore, Capelinhos fluids best represent the fluid after phase separation. This means that 

the apparent lower temperature of equilibrium with greenschist facies minerals are related 

to cooling processes and storage of both Fe and Mn. We cannot account for the Mn storage 

but we can calculate a “missing Fe” amount that would represent Fe sequestered in the 

stockwork beneath the LSHF. Therefore, normalization to Fe/Mn ratio equivalent to that of 

Capelinhos (~4.4) provides a minimum estimate of the Fe sequestered within the 

subsurface. As it is difficult to evaluate the subsurface storage of Fe in terms of volume 

without too many unconstrained assumptions, we can nevertheless provide a relative 

storage range of 65% (±14%) for the sites around the lava lake. In other words, only ~35% 

of Fe mobilized in the reaction zone is discharged into the seawater at the main LSHF. 

5.5 Three years isotopic variations  

Major elements in records last mineral equilibria encountered during upflow. They provide 

valuable indications of fluid-rock interaction in the upflow zone. But phase separation 

effects on fluid chemistry might alter or reset the fluid chemistry and lead to biased 

conclusions. Therefore the need of indicators that would not be affected by phase separation 

is important. Isotopes of Strontium and Lithium are perfectly suited for this as they both 

have a different signature in sources (i.e, basalt and seawater) and neither of them will be 

fractionated during phase separation. The conjunction of both isotopes is valuable because 

they are not controlled by the same minerals. Sr isotope are mainly controlled by 

plagioclase dissolution, and anhydrite precipitation (Berndt et al., 1988), while elemental 

Li is quantitatively extracted from basalt (Seyfried Jr et al., 1998) and incorporated by Mg-

bearing secondary phases such as chlorite and smectite (Millot, 2013; Seyfried Jr et al., 

1998).  

Sr isotopes variations: from yearly stable signature to sampling time-scale variations. 

Some samples display a typical Sr isotope enrichment toward more radiogenic value. These 

samples also show enrichment in Ca, SO4 and Sr, which is coherent with anhydrite 

dissolution in subsurface. Comparison of Strontium isotope end-members determinations 

has been done by Mg/Sr and SO4/Sr extrapolation. Usually end-members are determined 

by Mg/Sr end-members but in the case of anhydrite dissolution prior sampling, a significant 
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amount of Strontium might be added to the solution, and will bias the determined end-

member toward more radiogenic values. A way to treat this issue is to investigate the 

relations between Sr isotope and SO4/Sr. As Mg, SO4 is supposed to be completely removed 

from the hydrothermal vents, through anhydrite precipitation and sulphur reduction in the 

H2S form. If the SO4 end-member is different from zero, this means that anhydrite is 

intervening somehow. Usually, Mg extrapolation yields to SO4 endmember value lower 

than zero. This is due to limited anhydrite precipitation at the discharge because the 300°C 

fluid, rich in calcium mixes with a 2°C seawater, rich in SO4. If the SO4 endmember is 

higher than 0, this means that anhydrite has been dissolved shortly before sampling and/or 

within the sampler. This provides extra sulfate to the solution compared to what would be 

expected from simple hydrothermal fluid/seawater mixing. This entrainment might explain 

some high Sr isotope value for the fluid, therefore 87Sr/86Sr isotope end-member are 

corrected by extrapolation through SO4/Sr=0 when needed (Fig V - 11). Despite correction, 

some samples still display anomalously high Sr isotope ratio. Equivalent variations have 

been observed at EPR (Ravizza et al., 2001). These authors observed at Biovent a 

systematic deviations toward higher Sr isotope ratio and suggested that an intermediary 

fluid (IF) was at play within the subsurface for this vent. This IF is supposed to have lost 

~50% of Mg from seawater with unchanged Sr concentration nor isotopic signature, which 

corresponds to fluids sampled in the 504B borehole (Magenheim et al., 1995). They 

estimate this IF to account for 3 to 10% of the volume sampled. Although the implication 

of an identical IF in some samples from Lucky Strike fluids would not account for the 

observed variations, another type of fluid depleted in Mg and enriched in radiogenic 

strontium could explain this discrepancy. This enrichment is not observed at one specific 

site but in several sites and years. Again these observations seems to be in the order of a 

really short timescale (within several minutes) at the field scale but they are decoupled from 

the shallow cooled hydrothermal fluid discussed previously.  

Nevertheless, on a time scale of a few years, general observations can be done. The first 

observation is the apparent stable Sr signature over 3 years for fluid samples targeted for 

analysis. The second observation is the difference between groups and especially between 

vents. Capelinhos shows the lowest Sr isotope ratios of the groups together with Crystal, 

South Crystal and Y3, that show 87Sr/86Sr=0.7039-0.7040. The highest end-member is 

found for the vents of the South Eastern area with 87Sr/86Sr=0.7042–0.7043. The vents of 
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the central area have Sr isotope ratio in between these two values (87Sr/86Sr=~0.7041; Table 

V – 3). 
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Figure V - 1187Sr/86Sr of fluid samples presented as a function of Mg/Sr and Mg/SO4. The color code indicate 
the year of samples collection. Each graph presents the determination of Sr isotope end-member 
determination. 

Other samples display typical enrichment in sulfate. These samples also show enrichment 

in Ca and Sr which is coherent with anhydrite dissolution in subsurface. These samples will 

be discussed in the isotope section. Nevertheless, anhydrite dissolution and quartz 

precipitation in close-subsurface clearly indicates that dynamic processes occurs within the 

close vicinity of vents and are hardly observable on yearly sample basis. 

Li isotopes: signature of fresh basaltic Li vs. secondary mineral fractionation. 

Lithium isotopes are difficult to interpret as they vary between sites. No systematic 

differences in δ7Li is found with Cl (Fig V - 12). This is coherent with the studies from 

Seyfried Jr et al. (1998) that found no fractionation of Li isotope during phase separation. 

For individual sites, different pattern are observed from 2013 to 2015. Most of the sites are 

constant throughout the years (Tour Eiffel, Aisics, Montségur, Cyprès, South Crystal, 
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Sintra and Y3) except Capelinhos, crystal and White Castle have significant lower δ7Li in 

2015 (Table V - 3). This is opposed to sapins and Isabel sites which display an increase 

toward heavier values. This is accompanied by a general increase in Li isotope for all the 

sites.  

 

Figure V - 12 δ7Li vs Cl diagram showing that Li isotopes are not affected by phase separation. 

Li and Sr isotope suggest a residual seawater component of 15 to 20% (Fig V - 13). From 

2013 to 2015, no significant changes in the end-members are observable. Still a significant 

change has occurred when comparing to the data from 1997 samples (Bray, 2001). The 

Tour Eiffel sample display Li isotope slightly heavier than the samples from 2013, 2014 

and 2015. 7Li enrichment can happen relative to 6Li incorporation into secondary minerals 

(Chan et al., 1993, 1992). If we consider quantitative leaching of Li from the basalt, this 

would imply that basalt from the ridge at lucky strike have already supported intensive 

alteration leading to heavier signature than standard MORB and consistent with the fresh 

basalt value from Bray (2001). Otherwise, the slight department from the accepted MORB 
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value would be due to secondary minerals precipitation with uptake of 6Li. Our preferred 

hypothesis is the quantitative leaching of Li with almost no fractionation. This hypothesis 

is supported by the analysis of fresh basalt at 5 ‰ from Lucky Strike (Bray, 2001). 

The Li signature of LSHF fluid indicate also that Li is leached from basalt at high 

temperature without significant fractionation. Therefore Li is a good indicator of the water–

rock ratios for the global circulation cell leading to the changes observed from the seawater 

to the hydrothermal fluid. 
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Figure V - 13 δ 7Li vs 87Sr/86Sr diagram showing the sources for basalt and seawater with mixing curves. 
MORB values are δ7LiMORB=3.4 ±1.4, LiMORB=4ppm; δ7LiSW=30.5, LiSW=0.17ppm. Grey dots are the measured 
samples, coloured dots represents calculated endmembers. 
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5.6 Water–Rock determination 

The water–rock ratio (W/R) is a parameter that provides an idea of the amount of water that 

has interacted with a rock to produce the observed concentration of the element of interest 

in the fluid. Calculation of W/R needs parameters such as fresh rock concentrations and 

isotopic signatures and starting fluid concentrations and isotopic signature. Several studies 

investigates the W/R ratio of hydrothermal fluids (Berndt et al., 1989; Chan et al., 2002; 

Foustoukos et al., 2004; Verney-Carron et al., 2015; Von Damm et al., 1985). They use Li 

and Sr to evaluate W/R of fluids through different method. Li is quantitatively removed 

from basalt which means that the fluid will be highly enriched in Li and that the W/R will 

be small (close to 1). If higher W/R are found for an element this would mean that this 

element is not easily extractable and/or incorporated into secondary phases. Furthermore 

phase separation partitions trace elements preferentially in the brine phase (Sr, Rb, and Cs) 

or in the vapor phase (Li). This means that element concentrations not only depend on rock 

interaction but might be concentrated or diluted by the effect of phase separation. This 

process could lead to a biased W/R ratio if changes in chlorinity are not accounted for 

(Berndt et al., 1989; Foustoukos et al., 2004). For example, low Li and Cl fluids with high 

Li/Cl ratios display a higher enrichment in Li than the high Li and Cl fluids with lower 

Li/Cl values.  

Trace element partitioning has been investigated by several authors and found that on a 

log(elt/Cl)-log(Cl), the slope provided by least square regression was the same for several 

phase separation experiments and independent of the starting fluid concentration. Using 

this value of slope, extracted from our data of trace elements, it is possible to apply a 

correction to the W/R calculation.  

The strontium cycle in the ocean crust is mainly controlled by plagioclase dissolution and 

recrystallization and anhydrite precipitation. Berndt et al. (1988) developped a model for 

W/R determination that accounts both Sr uptake by anhydrite precipitation and Sr release 

by plagioclase dissolution using the following equations: 

ܹ ܴ⁄ ൌ Sr୰ ൈ ൤ భ౏౨౟ି భూ౨൬ భ౏౨౟ି భ౏౨౜൰൨୪୬൬౏౨౟౏౨౜൰ି୪୬ ሺ୊୧ሻ  (1) 

௜ܨ ൌ ௌ௥ఴళ ௌ௥ఴలൗ ೑ି ௌఴళ ௌ௥ఴలൗ ೝௌ௥ఴళ ௌ௥ఴలൗ ೔ି ௌ௥ఴళ ௌ௥ఴలൗ ೝ  (2) 
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௙ܨ ൌ ௌ௥ఴళ ௌ௥ఴలൗ ೔ି ௌ௥ఴళ ௌ௥ఴలൗ ೑ௌ௥ఴళ ௌ௥ఴలൗ ೔ି ௌఴళ ௌ௥ఴలൗ ೝ (3) 

Sr are concentration in ppm, with the subscript as: i: initial in solution, r: rock, f: final in 

solution.  

As these equations uses the Sr concentration of the final fluids, it is important to correct it 

for phase separation. Partitioning between vapor and brine has been established by 

experimental studies (Foustoukos and Seyfried, 2007b; Pester et al., 2015; Pokrovski et al., 

2005). Confrontation to natural samples of brine and vapor from the LSHF suggests that 

similar partitioning is occurring at depth (Leleu et al., submitted; Pester et al., 2012). 

Therefore, correction of phase separation can be done by extrapolation of log (elt/Cl) to log 

(Cl) value of seawater (starting fluid). This provides a good approximation of the 

concentration of the element (Sr or Li) without phase separation.  

Li based W/R ratios have been calculated using the model of Magenheim et al. (1995). This 

model accounts that an incrementally altered rock and partitioned Li into the fluid and 

alteration phases. The relationship between W/R ratio with both isotope X and Y in solution 

is described as follows (Chan et al., 2002; Foustoukos et al., 2004; Magenheim et al., 1995; 

Millot et al., 2010): ܴ ܹൗ ൌ െ ଵ஽ ൈ ݈݊ ቂ ௑ೝି஽௑௑ೝି஽௑బቃ (4) 

 ܴ ܹൗ ൌ െ ଵఈ஽ ൈ ݈݊ ቂ ௒ೝିఈ஽௒௒ೝିఈ஽௒బቃ (5) 

X and Y are Li6 and Li7 respectively, r and 0 subscripts stand for rock and initial fluid 

(seawater). D is the elemental partitioning between the Li in solution and the coexisting 

minerals. The fractionation factor α for Lithium at between fluid and minerals has been 

determined empirically. As the reaction zone temperature is probably around 400°C as 

indicated by Fe/Mn geothermometer for Capelinhos vent site, a value of D=0.23 and 

α=0.997 were used for W/R calculation (Berger et al., 1988; Chan et al., 2002; Millot et al., 

2010). Interestingly, Li in 2015 increase in every group of sites. Therefore the calculated 

W/R ratio for Li in 2015 moves toward values lower than one. This increase in Lithium 
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imply that fresh basaltic material is available. This is also consistent with the observations 

of Rb and K, also considered as extractable elements. 

 

Figure V - 14 W/R ratio presented for different group and calculated from Sr and Li. Uncorrected from phase 
separation are indicated in grey. Boxplots regroup the year 2013, 2014 and 2015 for each groups. 

Figure V - 14 shows the results of the W/R calculated for Li and Sr with corrected and 

uncorrected concentrations. W/R are similar for the Li which means that Li is leached 

quantitatively from the rocks as expected. W/R ratios calculated for Sr are generally higher 

because Sr is comprised in precipitation and dissolution processes of albitisation (Berndt et 

al., 1988). The W/R ratio for the SE sites are higher than for the other groups. This is 

coherent with an increased albitisation as suggested in the previous section. 

CConclusion 

The yearly monitoring of a slow spreading ridge hydrothermal system provides valuable 

information on the dynamics of fluid circulation, conditions, and W/R reactions. Repetitive 

sampling allowed to identify a shallow pool of cooled hydrothermal fluid which 

complements a pre-existing model of shallow seawater circulation. This fluid contributes 

to the formation of a hydrothermal slab by quartz precipitation. This hydrothermal fluid 
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dynamics is related to minute/day scale, opposite to year scale differences in end-member 

chemistry.  

Geothermobarometry such as Si–Cl has been shown to be sensitive to deep processes of 

cracking, responding to seismic events. Following a seismic swarm beneath the fossil lava 

lake, the Si-Cl indicate relatively cooler and shallower T and P than maximum inferred 

conditions. But it is difficult to assess the meaning of this indicator and decipher if seismic 

activity induced a perturbation in the chemistry, or if the equilibrium of Quartz is reached 

after a seismic activity at different condition. For these reasons, Si and Cl are useful to 

indicate a perturbation in chemistry, but fail to conclude on small variations in P and T 

conditions. 

From the 1993 to 2015, a relative increase in the Ca/Na of the fluids seems to indicate that 

albitisation occurs in the subsurface. But since “continuous”, yearly sampling from 2008 

to 2015, the Ca/Na ratio display a boom and bust pattern which suggest a more complicated 

process is governing Ca and Na chemistry in time. Moreover further interpretations on 

chemistry change are limited due to the lack of information during the 9 year gap between 

1997 and 2008.  

Li isotopes argue for a quantitative leaching from the host rock with W/R calculated at ~2 

for all the groups. Sr isotope ratios allows the calculation of W/R which indicate a higher 

value for the South Eastern sites which is coherent with the high Ca/Na ratio at these sites. 

This suggest that the substratum of SE area is highly altered relatively to the fluids found 

in the other areas. 

This study highlights the importance of repetitive sampling and time serie follow up of a 

hydrothermal field such as Lucky Strike, whose size and vents location likely result in a 

complex pattern of fluid circulation. Nevertheless, despite one of the largest dataset on fluid 

chemistry, temporal constraints are only to be interpreted on the sampling scale or of the 

cruise scale (e.g. 20 minutes and 1 year respectively). Such deep-sea observatory need a 

more comprehensive and continuous sampling strategy that integrate the infrastructure 

already in place.  
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AAbstract 

This study presents data of REE in hydrothermal fluids from the Lucky Strike hydrothermal 

field. The fluids were sampled during 3 maintenance cruises of the Emso Azores deep sea 

observatory onboard the French R/V “Pourquoi pas?” in 2013, 2014 and 2015. They were 

analyzed for major and trace elements, and isotopes (87Sr/86Sr and δ7Li). The present study 

focus on 1) the behavior of REE within the mixing zone in the proximal hydrothermal 

plume and 2) the information from REE chondrite normalized patterns of the end-member 

fluids.  

On the proximal plume, we show that Eu behaves conservatively while the other REE 

clearly display early scavenging. This affects the REE chondrite normalized pattern by 

enhancing the positive Eu anomaly typical of submarine hydrothermal fluids.  

The study of end-member fluid concentration does not reveal any apparent relation between 

total REE concentration and salinity of the fluid, the latter being a controlled by phase 

separation processes. However, the relative abundance of LREE and HREE, characterized 

by the general slope of the chondrite normalized REE pattern, increases with Cl 

concentration. This suggests that phase separation fractionates the REE with LREE 

enrichment in the brine phase. Furthermore, the calculated Eu anomaly of the endmember 

fluid suggests a control by the alteration phases in subsurface, such as albite.  

Résumé 

Cette étude présente des données de terres rares contenues dans des fluides hydrothermaux 

provenant du champ hydrothermal de Lucky Strike. Ces fluides ont été échantillonnés au 

cours de 3 campagne océanographique dans le cadre du projet d’observatoire fond de mer 

EMSO–Açores, à bord du navire « Pourquoi pas ? » en 2013, 2014 et 2015. Ils ont été 

analysés pour les éléments majeurs, mineures et race ainsi que pour les isotopes du Sr et du 

Li. La présente étude se concentre sur 1) les concentrations en terre rare des fluides 

hydrothermaux purs normalisés au chondrite, puis en 2) sur le comportement des terres 

rares dans les premiers mètres de mélange eau de mer et fluide hydrothermal. 

L’étude des fluides purs ne révèle pas de corrélation entre la concentration totale en terre 

rare et la chlorinité des fluides. En revanche, l’enrichissement en terre rare légère, avec 

l’indicateur Nd/Yb, semble corréler au Cl, ce qui est cohérent avec le partitionnement des 
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terres rares entre les phases vapeur et saumure lors de la séparation de phase. De plus, les 

anomalies en Eu calculées suggèrent un contrôle minéralogique dans la zone de remontée, 

liée à l’albitisation. 

Concernant les fluides de la zone de mélange, nous montrons un fort piégeage des terres 

rares par les particules précipités. Ce piégeage n’est pas dépendant de la spéciation, comme 

en atteste les calculs d’anomalie en Eu. Les mesures effectuées sur les isotopes du Nd 

mettent en évidence des phénomènes de dissolution de matériel porche des compositions 

de l’eau de mer et invisible via les concentrations mesurées. Ce phénomène peut donner 

lieu à des échanges à plus grande échelle spatiale pouvant potentiellement modifier le 

rapport isotopique du Nd dans l’océan à proximité des rides océanique, sans en modifier la 

concentration. 

  

11 Introduction 

Among the periodic table of chemical elements, the “rare earth elements” (REE) represent 

a unique group of 15 elements whose atomic numbers range from 57 (Lanthanum) to 71 

Lutetium). From La to Lu, the atomic mass increases while the radius of the atom decreases, 

resulting in variable fractionations between the different REE during different processes, 

i.e. igneous, metamorphic, hydrothermal and sedimentary. Accordingly, REEs are useful 

geological tracers (Haas et al., 1995). Within the global biogeochemical cycles, the 

hydrothermal submarine vents are a major source of numerous elements to the ocean 

(Elderfield and Schultz, 1996). Recently, Resing et al., (2015) showed that the Iron 

originating from the East Pacific Rise could be traced up to 4,300 km away from the mid-

ocean ridge (MOR). However, hydrothermal vents have been considered as a sink of REEs 

rather than a source to the ocean, due to co-precipitation process occurring in the buoyant 

to non-buoyant hydrothermal plumes, i.e. REE scavenging by mineral surface charge 

(German et al., 1990; Jeandel et al., 2013).  

Fluids originated from various hydrothermal fields located at MORs, backarc basins and 

subduction zones display similar REE patterns when normalized to chondrite (Allen and 

Seyfried, 2003; Douville et al., 2002, 1999; Klinkhammer et al., 1994; Michard, 1989; Cole 

et al., 2014; Craddock et al., 2010). Over all, they are characterized by various light REE 

enrichment over heavy REE together with positive Europium anomalies (Michard, 1989; 

Craddock et al., 2010). However, none of these studies have investigated the variability of 



215 

 

REE distribution within a hydrothermal field displaying a broad spectrum of chlorine 

concentrations. 

Alternatively, the fate of hydrothermal REE once expelled into deep seawater was 

investigated solely through the REE signatures of particulate matters while the dissolved 

phase has been poorly examined (German et al., 2002). As a result, the REE record of 

hydrothermal venting has largely been studied from a sedimentary perspective (Chavagnac 

et al., 2008, 2005; German et al., 2002, 1990). Recent studies highlighted mechanisms of 

elemental exchange only detectable through isotopic studies, i.e. Nd isotopic composition 

(Lacan and Jeandel, 2005, 2001). This process taking place at the interface between the 

continental margin and the ocean and is called “boundary exchange”. Moreover, Jeandel et 

al. (2013) introduced the hypothesis that a “ridge exchange” process, similar to the 

“boundary exchange” one, may occur and modify the Nd isotopic composition of deep 

seawater. This hypothesis was based on Nd isotope signatures of deep Pacific seawater 

being much more radiogenic than the accepted values at depth where Mn concentration 

were maxima. 

To address this hypothesis of “ridge exchange”, this study reports on the dissolved REE 

concentrations and the Nd isotopic compositions of black smoker end-members and 

buoyant hydrothermal fluids collected within the first seconds of end-member fluids mixing 

with seawater. We chose the Lucky Strike hydrothermal field at 37°N along the Mid 

Atlantic Ridge because the dynamic of hydrothermal activity at this location was monitored 

continuously since 2010 via the set-up of the deep-sea observatory (EMSO-Azores), 

providing a well detailed geological, mineralogical, geochemical, and biological 

framework. We investigate, first, the effect of end-member chemical compositions on the 

REE distributions of each selected hydrothermal sites before assessing the fate of 

hydrothermal REE in the early phase of mixing above the vents.  

22 Geological and hydrothermal setting 

2.1. Geological context 

The Lucky Strike hydrothermal field (LSHF) is located on the Lucky Strike Segment of the 

Mid Atlantic Ridge (MAR) at 37°N, 400 km to the Southwest of the Azores island 

(Langmuir et al., 1997). The LSHF is situated at a depth of 1700mbsl on top of a central 

volcano whose central flat depression constituted by a fossil lava lake, is surrounded by 

three old and fractured volcanic cones (Fouquet et al., 1995). Since the discovery of the 
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LSHF in 1992, most of the observed hydrothermal activity (20 to 30 active vents) was 

described close by and around to the fossil lava lake boundaries as well as between the 

north east and south east cones, which is an area heavily faulted (Humphris et al., 2002; 

Von Damm et al., 1998; Barreyre et al., 2012; Escartin et al., 2015; Leleu et al., submitted; 

Figure VI - 1). The LSHF vents display various structures from small hydrothermal mounds 

to tens of meters high sulfide towers sitting on large mounds. Temperatures of focused 

hydrothermal fluids vary between 196 and 340ºC, while diffuse venting occurs through 

cracks at temperatures below 100°C and flanges with pool temperatures higher than 200°C 

(Cooper et al., 2000; Barreyre et al., 2012). In recent years, hydrothermal activity was 

investigated up to several km away from the main LSHF via ROV dives, during which the 

active Capelinhos site (324ºC) was discovered in 2013 on top of pillow lavas approximately 

1.5 km eastwards of the Tour Eiffel site (Escartin et al., 2015; Leleu et al., submitted). 

 

Figure VI - 1 Micro-bathymetric map of the Lucky Strike Hydrothermal Field. Red dots represent sites sampled 
in this study. Gray dots represent sites sampled in previous studies. 

The substratum at Lucky Strike segment is a complex basaltic assemblage of E-MORB 

(Enriched -Mid Ocean Ridge Basalt) and T-MORB (Transitional-MORB between E-

MORB and Normal MORB; Dosso et al., 1999; Gale et al., 2011; Hamelin et al., 2013). 

These rocks reflect the geochemical gradient observed south of the Azores triple junction 

between the plume and mantle sources (Dosso et al., 1999; Gale et al., 2011; Hamelin et 

al., 2013). 
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The Lucky Strike hydrothermal field has been the object of several studies since its 

discovery in 1992 (Charlou et al., 2000; Dziak, 2004; Langmuir et al., 1997; Pester et al., 

2012; Singh et al., 2006; Von Damm et al., 1998). Since 2010, it is the selected place to set 

up a multidisciplinary deep sea observatory (Colaço et al., 2011). This deep sea observatory 

constitutes the EMSO-Azores node and comprises a continuous biological, geophysical and 

geochemical investigation (Colaço et al., 2011). Especially, the fluids from Lucky Strike 

are the most documented at the MAR in terms of spatial variation within a single field and 

in terms of temporal variations (Charlou et al., 2000; Leleu et al., 2015, submitted, in prep.; 

Pester et al., 2012; Von Damm et al., 1998). 

2.2. Focused hydrothermal fluids 

Repeated fluid sampling shows persistent inter-site differences in the chloride composition 

of end-member hot fluids, resulting from distinct fluid pathways and distinct rock 

compositions in the reaction zone and/or in the upflow zone (Langmuir et al., 1997; Von 

Damm et al., 1998; Charlou et al., 2000; Pester et al., 2012; Chavagnac et al., 2015; Leleu 

et al., submitted). These studies set up the perfect conditions to investigate the control on 

REE geochemical behavior, as primary rock vs. complexation and Chlorine distribution. 

The fluid chemistry variability at LSHF can be classified into 5 groups based on salinity 

and location within the hydrothermal field compared to the fossil lava lake locations (Leleu 

et al., submitted), which are, from low to high Cl concentrations: Capelinhos, the South 

Eastern sites (Tour Eiffel. Aisics, Montsegur), the central sites (White Castle, Cyprès), the 

North Eastern sites (Sintra, Y3) and the South Western sites (South Crystal). All the details 

on the spatial and temporal chemical variability of hydrothermal fluids are reported in Leleu 

et al. (submitted, in prep). We will summarize underneath the major features: 

• The distribution of major cations (Ca, Na, and K) and trace elements (Br, Li, Cs, 

Rb, and Sr) concentrations when compared to chloride concentrations (260-580 mM) argue 

for a unique source that undergoes phase separation and feeds the LSHF (Leleu et al., 

submitted). 

• The phase separation zone at the LSHF is estimated at 2500-2800 mbsf at 

temperature of 430-440°C, based on Si and Cl values of the most vapor dominated fluids 

(Fontaine et al., 2009; Leleu et al., submitted). 

• The temperature of the roof of the reaction zone is estimated at 400°C for 

Capelinhos but clusters around 370°C for the other sites at the LSHF. The salinity 
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differences between sites originate from permeability gradient within the subsurface, 

whereby vapor-dominated fluids preferentially flow through large pipe and fissure while 

the brine-dominated phase will tend to fill backwater porosity and smaller scale fissures 

(Fontaine et al., 2007; Leleu et al., submitted). 

• Capelinhos, as the most vapor-dominated fluid, probably follows an almost direct 

upflow to the discharge area at the seafloor, limiting further interaction with the host rock 

and/or subsurface mixing, prior to discharge (Leleu et al., submitted). By comparison, the 

fluids issued from other sites of the main LSHF, remain in a lower permeability zone, 

enhancing water-rock interaction with host-rock, i.e. chemical interactions between the up 

flowing hydrothermal fluids and unaltered seawater through cooling/mixing processes. 

• Chemical variability expressed in terms of metal concentrations, e.g. Fe and Mn, is 

controlled by upflow zone, brine saturation state in subsurface, permeability and faulting 

(Leleu et al., submitted). 

33 Method 

3.1 Sample collection 

The focused and buoyant hydrothermal fluids were collected during three maintenance 

cruises, MoMARsat 2013, 2014 and 2015, of the EMSO-azores deep sea observatory on 

board the R.V. Pourquoi Pas?. In-situ temperatures were measured in vents prior to 

sampling using the ROV Victor 6000 high temperature probe. 14 focused fluids were 

sampled with 200 ml gas tight titanium syringe manipulated and triggered via the hydraulic 

arm of the ROV Victor6000. These samples were selected over the vent chemical diversity 

of the LSHF based on Cl concentrations as defined in Leleu et al., (submitted). The samples 

were processed immediately on board after the ROV recovery. First, gases were extracted 

from sampler and stored in canisters for future on-shore analysis. The fluid samples were 

then extracted with a clean and sterile plastic syringe, filtered through 0.45μm Millipore 

filters and split into different aliquots for onshore analysis and stored at 4°C in a cold room. 

pH, Eh, salinity and conductivity were measured on-board immediately after processing. 

The studied sample characteristic are listed in table VI - 1. 

Fluid sampling in the buoyant hydrothermal plume at temperatures below 150°C was 

carried out using the PEPITO sampler equipped on the ROV Victor 6000 (Cotte et al., 

2015; Sarradin et al., 2009). The snorkel of the PEPITO device which is manipulated by 
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the hydraulic arm of the ROV Victor 6000, was placed within the buoyant hydrothermal 

plume. In-situ temperature sensor attached to the PEPITO snorkel allowed real-time 

monitoring of temperature, enabling fluid collection at selected temperatures. This 

sampling device permits in situ 0.45μm filtration of fluids as described in Cotte et al. 

(2015). 17 buoyant hydrothermal fluids were collected at Aisics, White Castle, Y3 and 

Capelinhos within the same ROV dive as focused hydrothermal fluids collection. The 

samples were processed immediately on board after the ROV recovery and split into 

different aliquots for on-shore analyses. The general information of each studied sample is 

reported in table VI - 1. 
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Table VI - 1 Summary of fluid samples used for the REE measurement. The Ti syringe samples are pure 
hydrothermal fluid while the PEPITO samples are buoyant plume samples. 

 
3.2 Sample processing and determination of REE concentrations 

The analytical methods used for major and trace element concentrations in focused and 

buoyant hydrothermal fluids were described in detail in previous publications (Leleu et al., 

submitted; Cotte et al., 2015). 

Sample processing was carried out at the LEGOS laboratory of the Observatoire Midi-

Pyrénées. We used 10 ml of high temperature hydrothermal fluid and 15-30ml of buoyant 

hydrothermal plume fluids for REE concentration determinations. The REE pre-

concentration and purification technic developed at the LEGOS laboratory for seawater 

(Lacan et al., 2001, 2005), had to be modified and adapted to the peculiar chemical 

composition of hydrothermal fluid. Before any chemical treatment, a solution of tri-spikes 

i.e. 146Nd, 153Eu and 174Yb isotopes, was added to all samples together with a droplet of 

ultrapure H2O2 to ensure all the conversion of dissolved Fe present as Fe2+ in reducing 

hydrothermal fluids, to its oxidized Fe3+ form. After homogenization during 24 h at room 
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temperature, the pH of the solution was risen up to 8 to promote the precipitation of Fe oxy-

hydroxide particles Fe(OH)3 which scavenge by adsorption all dissolved REE. The 

solutions were left to sediment for another 24 h at room temperature before centrifugation 

and removal of supernatant. The precipitate was rinsed three times with MQ-H2O to ensure 

the removal of all major ions, e.g. Na and Ba in particular. The precipitate was then 

evaporated and dissolved in bi-distilled HCl 6M prior to liquid chromatography with a 

AG1-X8 anionic column to isolate the REE fraction from the remaining major elements, 

i.e. the Fe used for precipitation. After elution of the REE, the solution is then evaporated 

on a hotplate till dryness and dissolved into HCl 2N for elution through AG50W-X8 

cationic column. This last step allows removal of Ba, which is crucial for isobaric 

interferences with the spiked Nd. The details of the procedure are described in Saleban Ali 

(2016). 

REE concentration analyses were performed with a High-Resolution Inductively Coupled 

Mass Spectrometer (HR-ICP-MS) Element XR at the Observatoire Midi-Pyrénées. Sample 

introduction was done by an Aridus desolvating nebulizer to reduce oxide formation, which 

was controlled by analyzing a Ce solution, measured at <0.05%. Samples were dissolved 

in a HNO3 0.3N solution doped with Indium and Rhenium to follow the plasma fluctuation 

through the course of the analyses. Calibration of the instrument was performed with an in-

house multiple REE standard at 10, 50 and 100ppt. Measured background intensities of 

ultrapure HNO3 0.3N in between samples were subtracted to the sample intensity, which 

corresponds to 0.01-0.2% for the LREE and 0.2-0.6% for the HREE. Instrumental errors 

are usually less than 3% for the LREE and for the HREE. 

3.3 Nd isotopic compositions 

The un-spiked fluid samples were treated through the previous steps of co-precipitation, 

and double column exchange with an additional column to isolate Nd from the other REEs. 

Nd is eluted with HCl 0.25M from a Ln-spec resin. Nd isotopic composition measurements 

were conducted at the IUEM laboratory in Brest on a Thermo-Ionized Mass Spectrometer 

(Thermo Finnigan Triton). The 143Nd/144Nd ratio was defined as the average of 100 

measurements of ion intensities following the static collection mode. The 143Nd/144Nd ratios 

were normalized to 146Nd/144Nd = 0.7219. Measured 143Nd/144Nd values for La Jolla 

standard of 1-5 ng Nd (recommended values of 0.511860) was 0.511850 ± 12 (1σE, n = 
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13). The Nd isotopic composition uses a εNd notation to reflect the 143Nd/144Nd ratio 

compared to CHUR (Chondrite Uniform Reservoir) as follows: 

εNd ൌ ൞ቆ ಿ೏భరయಿ೏భరర ቇೞೌ೘೛೗೐ቆ ಿ೏భరయಿ೏భరర ቇ಴ಹೆೃ
െ 1ൢ ൈ 10ସ  

3.4 REE End-member calculation and Normalization 

Pure hydrothermal fluids often highlight small amounts of seawater entrainment during 

fluid sampling. It is now widely accepted that hydrothermal fluids are Mg free due to Mg 

uptake by secondary mineral taking place during the hydrothermal circulation within the 

host rock (Campbell et al., 1988; Von Damm, 1988). As Mg is a major element of seawater, 

it is used to calculate the concentrations in pure hydrothermal fluids by extrapolating the 

measured Mg concentration to nil. 

Two normalization values are used to visualize the REE concentrations obtained in pure 

and buoyant hydrothermal fluids: 1) chondrite abundances in order to compare their REE 

patterns to that of the substratum (Craddock et al., 2010; Douville et al., 1999; 

Klinkhammer et al., 1994; Michard, 1989) and 2) North Atlantic Deep Water values 

(NADW, Zheng et al., 2016) to investigate the REE distribution within a couple of meters 

of the proximal hydrothermal plume. The anomalous behaviors of Eu, La and Ce are 

quantified as Eu/Eu *, La/La *, and Ce/Ce * of normalized values following the equations: ா௨ಿா௨∗ಿ ൌ ா௨ಿೄ೘ಿశಸ೏ಿమ  (1) 

௅௔ಿ௅௔∗ಿ ൌ ௅௔ಿయൈሺ಴೐ಿశಿ೏ಿሻమ  (2) 

஼௘ಿ஼௘∗ಿ ൌ ஼௘ಿଶ௉௥ಿ ିேௗಿ (3) 

 

The anomalies are calculated by extrapolation of the neighboring elements (e.g. Sm and 

Gd) to the expected value of an element (e.g. Eu). They depend on the normalization values 
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used to describe the REE patterns. The La anomaly is calculated by extrapolation of the Ce 

and Nd. 

Depending on the normalization, we will index the different anomalies with SW for 

NADW, and Ch for chondrite normalization. Fractionation among the REE distribution is 

reported as Nd/Yb for M-REE over HREE and La/Yb for LREE over HREE. 

44 Results 

4.1 REE concentrations of pure hydrothermal end-member fluids 

The REE concentrations of individual pure hydrothermal fluids are reported together with 

the calculated end-member values in Table VI - 2 and 3. The results report to the dissolved 

REE concentrations. Hydrothermal fluids used for this study chlorinity range between 260 

mM and 580 mM, which cover the chemical variation observed in the LSHF (Leleu et al., 

submitted). The total REE concentrations expressed as Σ[REE] vary from 5,1 nM (White 

Castle in 2013) up to 24,5 nM (Capelinhos in 2013), i.e. corresponding to 50-200 times 

more enriched values than seawater ones at 0,12 nM (Zheng et al., 2016). In addition, the 

Σ[REE] do not correlate with any fluid groups or year of sampling, but do vary within a 

single vent. For example, the Σ[REE] has been evaluated on two samples of the Capelinhos 

site in 2013 which have been collected within 20 minutes from each other. These two 

samples have Σ[REE] at 24,5 and 17,7 nM.The Eu concentration accounts for 20% of 

Σ[REE] in M13FLU30, and ~10% of Σ[REE] in M13FLU31. This highlights that absolute 

concentrations have to be treated with caution due to apparent small-scale temporal 

variability of fluid REE concentrations. Therefore, we will focus on ratio and normalized 

concentrations rather than absolute concentrations to avoid any over-interpretation. Figure 

VI - 3 presents the chondrite-normalized REE patterns of all end-member compared to 

previous REE datasets acquired on hydrothermal fluids collected at LSHF, local T- and N-

MORB at Lucky Strike segment and NADW. All the end-member fluids exhibit the typical 

light–REE (LREE) enrichment over the heavy-REE (HREE) together with a strong positive 

Eu/EuCh* anomaly at 5,3 - 55,2 (Table VI - 2), in line with previous findings (Douville et 

al., 1999). Moreover, among the LREE distribution, samples display either positive or 

negative La/LaCh* anomalies, ranging between 0,4 and 9.1 (Table VI - 2).  



224 

 

4.2 REE concentrations of the buoyant hydrothermal plume fluids 

The REE concentrations of 17 buoyant hydrothermal fluids are reported together with those 

of their associated hydrothermal end-member values in Table VI - 3, and inform about the 

dissolved REE concentrations. All hydrothermal plume fluids have REE concentrations 

lower than their respective end-member fluid concentrations, but still significantly higher 

than those of the NADW. At the Aisics site, they have the highest Σ[REE] values at 3,4 - 6 

nM while the Capelinhos plume samples show the lowest Σ[REE] at 1 – 1.5 nM. Figure 4 

presents the NADW normalized REE patterns of all buoyant hydrothermal fluids alongside 

their respective hydrothermal end-members. Furthermore, the REE patterns of buoyant 

hydrothermal plume fluids mimic those of pure end-members, indicating that the REE 

source is of hydrothermal origin but diluted to different degrees with NADW. Overall, all 

samples display a strong enrichment in LREE over HREE together with strong positive 

Eu/EuSW* and Ce/CeSW* anomalies. Note, however, that some discrepancies are 

highlighted from site to site in terms of La/LaSW* anomalies as it is the case for the Aisics 

site, and the MREE enrichment over LREE and HREE as it is the case for the Capelinhos 

site. 

4.3 Nd Isotopic composition of hydrothermal fluids 

The Nd isotopic compositions were measured on four pure and eleven buoyant ones, and 

are reported in Table 3. The εNd values of pure hydrothermal fluids range between +8,9 

and + 9 at Aisics and White Castle, and are +7,8 at Capelinhos and Y3 sites. In comparison, 

the εNd values of buoyant hydrothermal plumes vary between +6,6 and +8,9, the latter 

being identical within error to the Nd isotope signature of the pure hydrothermal fluids. 

55 Discussion 

5.1 Subsurface controls 

5.1.1 State of the art 

The first studies of REE concentrations in submarine hydrothermal fluids suggested that 

their REE patterns when normalized to chondrite reflect the primary control by the 

mineralogical and chemical composition of the host rocks (Douville et al., 1999; Michard, 

1989). In particular, plagioclase was considered as the main source of REE, while 

albitisation was the process responsible for their dispersion in the fluid phase, a scenario a 

priori consistent with the parallelism between REECH patterns of fluid and plagioclase 
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phenocrysts (from Lucky Strike basalts, Fig VI - 2). Recent studies on REE complexation 

highlight the role of chemical conditions (i.e. redox) and secondary mineral alteration state 

rather than a primary host rock control on REE distribution (Allen and Seyfried, 2005; Bach 

et al., 2003; Haas et al., 1995). Especially, the pronounced positive Eu anomaly observed 

in hydrothermal fluids was interpreted as being controlled by plagioclase phenocryst 

dissolution owing to the similarities between chondrite-normalized REE patterns of 

plagioclase and of the hydrothermal fluid. (Douville et al., 1999; Klinkhammer et al., 1994). 

However, this simple and attractive scenario has been undermined by theoretical 

considerations on the thermodynamic properties of each REE and water/rock experiments 

(Allen and Seyfried, 2005). Especially, experiments on plagioclase–free ultramafic rocks 

have revealed the same positive Eu anomaly in the reacted fluids, leading to a speciation 

control of REE behavior rather than a mineralogical control. This speciation did not affect 

the distribution of the other REE.  
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Table VI - 2 Measured and calculated end-member (bold) of the fluid samples. 
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Figure VI - 2 Hydrothermal fluid REE pattern normalized to Chondrite (Evensen et al., 1978).Grey solid lines 
represent the potential source of REE, NADW (Zheng et al., 2016), T-MORB and E-MORB (Hamelin et al., 
2013) and plagioclase phenocrysts (Douville et al., 1999). 

REE might form strong complexes with Cl, F, SO4 (Migdisov et al., 2016, and references 

therein). F and SO4 concentrations of seawater are mostly lost in the first stage of the 

recharge zone because F is incorporated into clay-like minerals and SO4 is consummed by 

anhydrite precipitation, and/or reduced to H2S (Von Damm, 1988). Cl is the only inorganic 

ligand left to the fluid and is highly concentrated compared to any other element. Under 

highly reducing conditions such as in hydrothermal fluids, the Eu is in the bivalent form 

while the other REEs remain in trivalent state (Migdisov et al., 2016). Bivalent Eu behaves 

as Sr at such conditions, due to similar ionic radii (Shannon, 1976, fig VI - 4), and is 

incorporated into the same secondary minerals. 
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Figure VI - 3 Ionic radii (8 coordination number) for each trivalent REE element and Ce4+, Eu2+ and Sr2+ based 
on Shannon (1976). 

5.1.2 The effect of phase separation 

Phase separation partitioning of major and trace element has been broadly investigated both 

experimentally and from natural systems (Berndt and Seyfried Jr, 1997; Bischoff and 

Rosenbauer, 1989; Foustoukos and Seyfried, 2007; Pester et al., 2015; Pokrovski et al., 

2005). These studies have shown different partitioning behavior into brine or vapor 

depending on the element for example, Sr will partition into the brine preferentially while 

Li will partition into the vapor phase (Leleu et al., submitted). However little is known 

about partitioning of REE elements during phase separation. Shmulovich et al. (2002) 

investigated experimentally the REE partitioning at conditions relevant to subseafloor 

systems, such as black smoker fields, and showed that HREE were preferentially 

concentrated into the vapor phase, while LREE were concentrated into the brine.  

Although LSHF fluids display a wide range of chlorinity (i.e. 260 - 580 mM), Leleu et al. 

(submitted) showed that major and trace element distribution is controlled by phase 

separation of a unique deep-rooted fluid. This provides a unique opportunity to test 
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experimental results of phase separation on a natural system at the scale of a hydrothermal 

field. 

 

Figure VI - 4 Nd/Yb ratios compared to Cl concentration in mM.  

The concentrations of ∑REEs or each REEs of the Lucky Strike fluids don’t show any clear 

correlation with chloride concentrations (Table VI - 2). However, taking Nd and Yb as 

representative of L-REE and H-REE respectively, we can use the Nd/Yb ratio to assess the 

effect of phase separation on the L-REE and H-REE partitioning between vapor and brine. 

As hydrothermal fluids may display at different degrees both La and Ce anomalies (Table 

VI – 2 and 3), we chose Nd for the L-REE. The Nd/Yb ratios display some scattering within 

a single group but in general do show a general increase with Cl concentrations, e.g. the 

high salinity fluid from the SW and NE area display a Nd/Yb ratio ranging from ~60 to ~90 

while the most vapor dominated fluid from Capelinhos has Nd/Yb ratios ranging between 

~15 and ~40. This suggests that L-REE is preferentially partitioned into the brine phase, 

marking the effect of phase separation (Fig VI - 4). The sites venting fluids with an 
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intermediate chlorinity (i.e. the Central and SE groups) all have Nd/Yb ratios between the 

lowest and highest salinity fluids. Our results clearly show that phase separation leads to 

an L-REE enrichment of the brine phase while the vapor one is enriched in H-REEs, in line 

with experimental results (Shmulovich et al., 2002). 

5.1.3 Mineralogical controls on REE distribution of hydrothermal fluids 

When normalized to chondrite, REE distribution displays, at first order, similar patterns 

(fig VI - 2) characterized by a large Eu anomaly and enrichement in L–REE over H–REE. 

As black smoker fluids result from the interaction between seawater and basalt, the 

chondrite-normalized REE patterns of MORBs and North Atlantic Deep waters are 

represented for comparison. First of all, hydrothermal fluids are significantly more enriched 

in REEs than seawater: three order of magnitude for the LREEs, and one order of magnitude 

for the HREEs. The general slope indicates enrichment of LREE over HREE, which 

highlights the REE partitioning due to phase separation (see previous section). The second 

feature that can be observed is an Eu enrichment of all the fluids, as evidenced by the 

positive Eu anomalies as high as 55.  

Although REECh patterns at Lucky Strike hydrothermal fluids seem uniform from group to 

group, the Eu anomalies do vary between 5 and 55, which may be indicative of subsurface 

processes, i.e. secondary mineral formation such as anhydrite, and/or primary host rock 

influences, i.e. albitisation of magmatic feldspars (Douville et al., 1999; Klinkhammer et 

al., 1994). 

The Eu anomaly is minimum at 5 for the SE sites which exhibit ~Cl=420mM while the Eu 

anomalies scatter within the same range, between 9.8 and 55 for other sites which are 

characterized by low and high Cl contents (260 - 580 mM; fig VI - 2). This clearly shows 

that the magnitude of the Eu anomalies is independent from the phase separation process. 

In reduced hydrothermal fluids, Eu is in the bivalent form, while the other REEs remain in 

trivalent state (Migdisov et al., 2016). As the Eu and Sr elements have similar ionic radii 

(Shannon, 1976), the Eu element should be incorporated into the same Sr-bearing 

secondary minerals. Leleu et al. (in prep) showed that the SE sites are marked by higher 

Ca/Na ratio (~0.12) and more radiogenic Sr isotopic composition (~0.7043) compared to 

the other sites (Ca/Na = and 87Sr/86Sr=0.7038–0.7040). These features indicate that the SE 

sites are imprinted by a more pronounced stage of albitisation compared to the other sites 

(Fig VI – 5b). These observations confirm that the extent of Eu anomaly is controlled by 
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secondary mineral processes and not only by the reducing conditions, even though these 

conditions are necessary. 

 

Figure VI - 5 a: Diagram of Eu anomaly (chondrite normalized) against Cl concentration in mM. b: Strontium 
isotope ratios against Eu anomaly (chondrite normalized). 

Finally, three samples (2 at Capelinhos and 1 at South Crystal) display strong positive 

La/LaCh* anomalies at 2.5 - 9 (table VI - 2). As Capelinhos is Cl depleted and South Crystal 

is Cl-enriched, the La/LaCh* anomalies do not result from phase separation process. Such 

La anomaly has already been observed at other submarine hydrothermal systems, such as 

the Snake Pit’s hydrothermal field on the MAR at 23ºN (Douville et al., 1999) and the 

Sister’s Peak, Two Boats, and Mephisto sites on the MAR at 5°S (Schmidt et al., 2010). 

Allen and Seyfried (2005) obtained similar La anomalies during water-rock experiments 

on ultramafic rock.  

Douville et al. (1999) suggested that such La anomaly may result from different La 

complexation behavior with chloride consecutively to an increase in subseafloor 

temperature. However, at LSHF, Leleu et al. (in prep) argue that the P–T conditions of the 

reaction zone have remained stable between 2013 and 2015, suggesting that a temperature 

increase cannot account for the La anomalies. Moreover, Douville et al. (1999) suggested 

that the La anomaly may be representative of the primary rocks as some feldspar crystals 

display similar La enrichment. At LSHF, the Eu/EuCh* anomalies do not show any 

difference in feldspars for the two sites which exhibit positive La/LaCh* anomalies. Based 

on experimental datasets, Allen and Seyfried (2005) also suggested a Cl complexation 
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influence on La concentration. However at LSHF, the three concerned samples have 

different Cl concentrations. 

Alternatively, water-column studies have also detected La anomalies in the dissolved and 

particulate phases of different waters masses in the Polar Frontal zone. Garcia-Solsona et 

al. (2014) proposed that the La anomalies result from the partial dissolution of barite 

crystals, as La has similar size as barium ion (Piper, 1974). In our case study, the La 

anomaly can be explained by similar process as barite commonly forms as a secondary 

mineral at hydrothermal system.  

To sum-up, chondrite-normalized REE patterns of end-member fluids provide crucial 

information about phase separation process (L-REE enrichment over H-REE), degree of 

alteration (Eu/EuCh* and 87Sr/86Sr), and partial dissolution of hydrothermal mineral 

(La/LaCh*). 

5.2 Fate of REE within the proximal buoyant hydrothermal plume:  

Current knowledge of trace element behavior in hydrothermal plume 

In hydrothermal plumes, most of the dissolved trace elements present in high quantities in 

hot and reducing hydrothermal fluid, do not stay in a dissolved form once they are 

discharged into the alkaline and oxygenated environment of the deep seawater (see for 

review German and Seyfried, 2014; and reference therein). This is due to co-precipitation 

and oxy-hydroxide scavenging processes that take place along the mixing continuum from 

the proximal buoyant plume till dispersion of non-buoyant hydrothermal plume within the 

water column. These processes have been identified based on the variation of element 

concentrations measured in particulate matter collected within the non-buoyant 

hydrothermal plume (German et al., 1991, 1990; Rudnicki and Elderfield, 1993; Sherrell et 

al., 1999; Trocine and Trefry, 1988) These studies have shown that dissolved metals such 

as Cu, Zn, Fe and Pb precipitate within seconds of fluids mixing as polymetallic sulfide 

minerals, settling down immediately at the hydrothermal site. Note that additional sulfate 

minerals, e.g. anhydrite and barite, together with amorphous silica may form as well, 

leading to systematic depletion in Cu, Pb, Zn, Fe, Ba, Ca and Si concentrations of the non-

buoyant hydrothermal particles (Lilley et al., 1995). In contrast, oxyanions behave as stable 

dissolved species controlled by a fixed ratio of their concentration over dissolved Fe ones. 

These ratios of particulate matter are distinctive but homogeneous from one ocean to the 

other, reflecting chemical composition of the water mass at the sampling site rather than 
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hydrothermal input (Feely et al., 1996). Finally, other trace elements such as REE, Th and 

Pa, are particle-reactive and are enriched according to the Fe content in the particulate phase 

(German et al., 1991, 1990). This is due to the formation of Fe oxy-hydroxides that 

dominates in young non-buoyant hydrothermal plume, and that scavenge by mineral 

surface charge seawater-derived dissolved elements. 

Overall, the distribution of any hydrothermally-sourced element to the water column have 

been explained by inorganic and/or organic geochemical processes, arguing that a 

hydrothermal plume acts as a sink rather than a source of trace elements to the water column 

(German and Seyfried, 2014; Klinkhammer et al., 1983). However, the detection of high 

dissolved Fe anomalies in the deep water column starting from the ridge axis till several 

hundreds of km away from the discharge area (Nishioka et al., 2013; Resing et al., 2015), 

clearly challenges this conclusion, and in particular the REE whose behavior have been 

identified as being iron-dependent. 
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Table VI - 3 Measured concentrations of samples from the hydrothermal plume and associated pure fluid 
concentrations. 
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The present study provides the unique opportunity to assess the fate of REE within the 

buoyant hydrothermal plume, i.e. at a maximum of height of 2m above the discharge area, 

by measuring the REE concentration of the dissolved hydrothermal fraction and to identify 

the impact of hydrothermal fluid onto the Nd isotopic signature of the NADW. REE 

concentrations and Nd isotopic compositions have never been measured on the dissolved 

fraction of any buoyant hydrothermal plume thus far. 

Table VI - 4 Major and trace element concentrations associated to REE concentrations of the hydrothermal 
plume fluid samples. 

 
 

Quantification of pure end-member and NADW contributions in the buoyant hydrothermal 

plume 

To evaluate the fate of REE within the proximal buoyant plume, it is primordial to quantify 

the relative proportion of pure hydrothermal fluid compared to NADW. This can be done 

using two independent parameters: in-situ temperature measurements based on an adiabatic 

mixing hypothesis and Mg concentrations of the solution, i.e. conservative behavior of Mg 

within the buoyant hydrothermal plume, as illustrated in figure VI - 6. Apart from two 

exceptions at Y3 site, all fluid samples plot on or within error bars onto the mixing trend, 

indicating coherent calculated proportions of pure end-member and NADW components in 

the fluid mixture. Moreover, individual pure hydrothermal fluids that were analyzed, are 

very close to the calculated end-member (i.e. >97% of pure end-member). In comparison, 

PL2-598-D2 plume 37,7 96,7 146,00 64,30 2,27 7,62 4,50
PL2-598-D3 plume 35,3 108,5 165,70 72,90 2,27 7,61 4,32
PL2-598-E1 plume 33,1 121,0 194,60 83,40 2,33 7,58 4,04
PL2-598-E2 plume 30,4 132,9 220,70 96,00 2,30 8,03 4,65
PL2-598-E3 plume 29,8 153,8 230,00 102,20 2,25 8,13 4,74
M15FLU01 pure 1,1 307,0 512,3 251,60 2,04 9,34 5,68
PL5-601-C1 plume 41,5 92,7 87,70 68,80 1,27 19,94 4,88
PL5-601-C2 plume 33,9 100,4 147,80 122,30 1,21 19,05 4,88
PL5-601-C3 plume 38,6 116,7 110,60 91,10 1,21 19,77 4,77
PL5-601-D1 plume 38,2 112,9 107,80 91,70 1,18 19,80 4,76
M15FLU27 pure 1,0 311,0 360,7 351,40 1,03 19,85 5,16
PL6-602-D1 plume 38,3 89,1 512,20 107,60 4,76 22,65 4,19
PL6-602-D2 plume 35,7 100,9 585,60 122,20 4,79 23,32 4,80
PL6-602-D3 plume 34,7 111,8 741,40 159,90 4,64 20,28 3,85
PL6-602-E1 plume 30,8 121,2 768,40 158,20 4,86 22,77 4,61
PL6-602-E3 plume 30,9 139,1 857,30 197,10 4,35 22,77 4,65
M15FLU37 pure 1,3 319,0 2503,7 597,60 4,19 23,78 6,55
PL7-582-B1 plume 35,8 45,2 50,50 28,50 1,77 13,63 5,01
PL7-582-B3 plume 37,0 70,4 99,00 50,60 1,96 12,31 4,90
PL7-582-C2 plume 33,5 127,2 172,70 88,90 1,94 12,51 5,00
M14FLU16 pure 1,0 323,0 552,5 273,70 2,02 14,48 7,20

Mn Fe/Mn EuCI/EuCI* CeCI/CeCI*sample ID
Type of 
sample

Mg Temperature Fe

Y3

capelinhos

white castle

aisics

Site
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the samples of buoyant hydrothermal plume fluids are composed of 14-50% of pure end-

member. In summary, by combining two independent parameters, i.e. temperature and 

dissolved Mg concentration, the buoyant hydrothermal fluid corresponds to a dilution 

factor by NADW entrainment comprised between 2,5 and 9,6 of pure end-members. 

 

  

Figure VI - 6 comparison of the proportion of hydrothermal fluid in percent based on magnesium 
concentration and in situ temperature recorded during sample collection. 

REE distribution within the buoyant hydrothermal plume 

The deep seawater normalization is better than chondrite normalization to investigate the 

mixing process of seawater and hydrothermal fluid. The NADW-normalized REE patterns 

of all buoyant plume fluids mimic those of the pure end-member as well as strong positive 

Ce/CeSW * and Eu/EuSW * anomalies but at intermediate REE concentrations between those 

of the pure end-member and the NADW (Fig VI - 6). These features clearly evidence the 

diluting effect of NADW, which contains 103 less REE than pure end-member (Zheng et 

al., 2016). Finally, the dissolved Fe/Mn ratios of each buoyant hydrothermal fluid exhibit 
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rather homogeneous values for each sites (Aisics: 2,25-2,33; White Castle: 1,18-1,27, 

Capelinhos: 4,35-4,76, and Y3: 1,77-1,94). As suggested by Cotte et al. (personal 

communication), these values are similar to Fe/Mn ratios calculated on dissolved phase of 

pure end-members (Aisics: 2,03; White Castle: 1,18; Capelinhos: 4,20; Y3: 2,02). 

 

 

Figure VI - 7 NADW normalized REE patterns of hydrothermal fluids from MoMAR 2014, 2015. Red lines 
indicate the two mixing poles (pure fluid and deep seawater). Blue line represents the measured plume fluid 
samples. 

 

All the REEW patterns display high enrichment in LREE compared to HREE apart from the 

fluids of the Capelinhos site whose REEW patterns display a concave shape with a 

maximum reached at Sm (Fig VI - 7). Such concave shape has been described for pure fluid 
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on the MAR at the 5°S (Schmidt et al., 2010). These fluids are inferred to originate from 

anhydrite precipitation in the subsurface, a process that would tend to preferentially uptake 

LREE and that could account for the bell shaped REESW observed at Capelinhos. 

 

Figure VI - 8 Total REE concentration compared to theoretical concentration (dashed line) as a function of 
the hydrothermal fluid proportions. Open symbols represent the plume samples, full symbols represent the 
pure fluid samples. 

Based on the relative proportions of pure end-member and NADW presented in the 

previous section, we can determine the evolution of REE concentrations in the mixture with 

increasing contribution of the NADW, as shown in figure VI - 8. When compared to the 

theoretical dilution, assuming a conservative mixing trend, between NADW waters and 

pure hydrothermal fluid end-members, nearly all the analyzed plumes samples are lower 

than the predicted values (excepted two samples at Aisics and Y3 which are within error). 

Such deviations from theoretical values argue for REE scavenging due to surface charge 

process during mineral precipitation in the early stages of discharge (German et al., 1991, 

1990).  
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Figure VI - 9 displays the detailed mixing behavior for three elements, Ce, Eu, and Yb. Ce 

and Yb are representative of the LREE and HREE respectively. Furthermore, Ce has a 

peculiar behavior in seawater (Migdisov et al., 2016). Eu is also known to behave peculiarly 

in hydrothermal fluid (Migdisov et al., 2016). Even accounting for the error on 

hydrothermal fluid proportion, scavenging can be observed for each of the three elements. 

Ce displays a systematic depletion compared to the expected concentration. Eu seems to 

behave more conservatively, as they are close to the theoretical mixing line than the other 

elements, but still display evidence of scavenging (Fig VI – 9). The systematic depletion of 

Ce could be explained by the oxidation and removal by Cerianite precipitation which is 

responsible for the negative Ce anomaly of the REECh pattern of seawater (Migdisov et al., 

2016). The concave patterns from capelinhos are also visible on this diagram as compared 

to the other site, the extent of scavenging is higher. Measured concentrations of Ce and Yb 

in Capelinhos fluids display a dramatic scavenging but such loss is not observed for Eu, or 

not to such extent.  

To further investigate the scavenging process, figure VI - 10 displays the Eu anomaly for 

NADW–normalized values of both samples and theoretical values, based on the 

conservative mixing of Eu, Gd and Sm. The theoretical lines are constructed by calculation 

of the Eu anomaly of a conservative mixture of the hydrothermal fluid end member and the 

NADW.  

Scavenging might be different for Eu2+ and the other REE3+ due to speciation and ionic 

radii (Fig VI - 3). In this case the Eu anomaly should not behave conservatively through 

mixing. Fig VI - 10 shows that nearly all the calculated anomalies from the measured 

samples agree with a conservative mixing trends. This doesn’t mean that scavenging is not 

occurring but rather that scavenging affects Eu2+ the same way it affects the other REE. 

Furthermore, this shows that the Eu anomaly values of hydrothermal fluid from the buoyant 

plume record that of the pure fluid till a high degree of mixing/dilution despite evidence of 

scavenging (Fig VI - 9). For Aisics, the EuSW/EuSW* anomaly has a value of 9.3. The plume 

values for this site are situated between 7.6 and 8.1, which is slightly lower than expected 

by theoretical curve (Fig VI - 10). Lower than expected Eu anomaly might be due to a 

preferential uptake of Eu compared to its neighboring REE (Sm, Gd) or a mixed component 

from more diluted location from the plume. 
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Figure VI - 9 Comparison of elemental concentration measured in the plume sample and the theoretical 
mixing line between NADW and end-member fluid (solid line) fir Ce, Eu and Yb. 
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Figure VI - 10 Proportion of hydrothermal fluid compared to the normalized Eu anomaly. Solid lines are 
theoretical mixing line between measured endmember fluid and seawater. 

5.3 Isotopic evolution within the plume 

To investigate on the effect of scavenging within the plume, Nd isotopes have been 

measured both buoyant plume and pure fluid samples. The end-member fluids display 

contrasting values consistent with the basalt diversity observed in the basalt within and 

close to Lucky Strike εNd values between 6.1 and 9.1 (Hamelin et al., 2013). 

When focusing on the plume samples from Aisics and White Castle, isotopic data provides 

an additional information about plume processes. Figure VI - 11 shows the isotopic 

composition expressed as εNd compared to the proportion of hydrothermal fluids. 

Theoretical mixing curves are shown for several scenario. Conservative mixing show an 

almost constant isotopic composition with decreasing proportion of hydrothermal fluid 

explained by the high difference in concentration in the sources. The dashed lines are 

scenarios of mixing with a scavenging of the initial fluid concentration for 50, 80 and 90% 

of initial concentration loss. The plume samples of White Castle display isotopic 

compositions close to the conservative mixing curve, and situated within error indicating 
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limited scavenging. This observation is consistent with the REE concentrations observed 

in the previous section. 

On the contrary, the plume samples from Aisics seem to indicate a ~90% loss which is not 

observed on REE concentration measurement (Fig VI - 7) and not suggested by Eu 

anomalies (Fig VI - 9). The only viable explanation for such values of εNd is entrainment 

and dissolution of small particles formed at lower mixing proportions of fluid. Because the 

sampling device uses in-situ filtration, those particles have to be less than 0.45μm long. 

This model of scavenging by precipitation and dissolution is a step forward into evidence 

for the ridge exchange processes that could affect the Nd isotopic balance of water masses 

in the oceans (Jeandel et al., 2013).  

 

Figure VI - 11 Nd isotope ratios for plume and end-member fluids against their hydrothermal fluid proportion 
based on temperature. Dashed line mimic an initial loss of Nd of 50, 60, and 90 percent. Grey area represent 
the error of the model based on the error of the end-member. 

CConclusion 

The REE investigation of REE concentration of hydrothermal fluids from the Lucky Strike 

hydrothermal fluids provides useful indicators of both subsurface and discharge processes. 

This study also questions the relative importance of mineral phases versus complexation 

control.  
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During the first moments of discharge of the hydrothermal fluid and the first stages of 

mixing with seawater, trivalent REE are scavenged by mineral precipitation while divalent 

Eu tend to act more conservatively. This peculiar behavior tends to produce a large EuN 

anomaly observable at high dilution of hydrothermal fluid in seawater. 

However, the scavenging indicators might be obscured by redissolution of particles formed 

in a more evolved fluid-seawater mix, especially changing the isotopic composition without 

significantly changing the concentrations. This process is a first step into characterizing a 

ridge exchange .  

Furthermore, the data presented in this study suggest that Cl-complexes and phase 

separation influence the relative abundance of LREE over the HREE. The slope of REECh 

pattern therefore depends on Cl concentration. The reduced form of Eu is responsible for 

the observed anomaly but the extent of Eu anomaly seems to depend on the nature of the 

host rock, and especially the alteration stage through albitisation.  
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CONCLUSION ET PERSPECTIVES 

 

Ce travail de thèse s’est déroulé dans un contexte d’observatoire fond de mer. Un effort 

important a été apporté à l’échantillonnage systématique des fluides hydrothermaux lors 

des trois campagnes MoMARsat (2013, 2014, 2015) auxquelles j’ai eu la chance de 

participer. L’analyse chimique très complète réalisée à terre a permis d’apporter un jeu de 

données complémentaire de celles effectuées par les instruments déployés chaque année. 

Cela m’a permis de construire une base de données chimique inédite en contexte de dorsale 

lente. L’élaboration de cette base de données a également nécessité du développement 

analytique notamment pour la mesure de la concentration en terres rares et en Li dont la 

composition isotopique n’était pas mesurée auparavant au GET pour ce type d’échantillons.  

Les fluides hydrothermaux ont la particularité d’être chargés en sels. Mais à l’instar de l’eau 

de mer, il n’existe pas de solution standard internationalement reconnue et utilisée dans la 

communauté scientifique pour certifier de la qualité des mesures effectuées et de confirmer 

leur inter comparabilité entre différentes équipes. Plus particulièrement, la mesure de la 

concentration du Li dans une matrice de type eau de mer a fait l’objet d’une étude fine car 

celle-ci était primordiale pour la bonne détermination de la composition isotopique de Li, 

et de son application comme traceur de processus. La problématique autour du Li 

élémentaire comme pour beaucoup d’éléments est qu’il n’existe pas de standard 

international tout à fait adapté aux fluides hydrothermaux de type fumeur noir. En effet, 

des standards d’eau de mer existent pour quelques éléments traces (par exemple le NASS 

6 est une solution d’eau de mer de référence certifié pour les éléments suivant : As, Cd, Cr, 

Co, Cu, Fe, Pb, Mn, Mo, Ni, U, V, et Zn avec des concentrations variant de 0.01 à 10 ppb); 

il n’y a pas d’équivalent pour les éléments ultra-traces. Nous avons utilisé le IAPSO qui est 

un standard de salinité de l’eau de mer, parce que les éléments dissous dans nos fluides sont 
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liés à la concentration en Cl en solution. Ainsi nous avons obtenu d’excellents résultats sur 

la mesure du Li élémentaire dans une solution chargée en sel (i.e. le IAPSO), nous donnant 

une entière confiance dans les concentrations mesurées dans les fluides hydrothermaux. 

Les mesures qui ont pu ainsi être acquises pour la détermination des isotopes du Lithium 

ont une qualité que nous avons pu tester a posteriori par comparaison avec ce qui est connu 

par ailleurs sur la composition isotopique en Li de l’eau de mer. 

Au cours de cette thèse, la découverte du site hydrothermal de Capelinhos à l’écart du lac 

de lave fossile a donné accès à une autre échelle spatiale de la circulation hydrothermale à 

Lucky Strike. Il est alors apparu nécessaire de réinterpréter les données chimiques en tenant 

compte de ce nouveau site pour proposer un chemin de circulation de fluide au sein de la 

lithosphère. Ainsi, les sites hydrothermaux ont été classifiés par groupe en fonction de leur 

salinité et de leur position géographique par rapport au lac de lave fossile. Cette 

réinterprétation a été faite en ne prenant en compte que les fluides échantillonnés en 2013 

qui offraient la meilleure couverture spatiale à ce moment. Elle s’appuie aussi sur des 

données géophysiques, acquises au sein de l’observatoire, telles que celles apportées par 

les capteurs de température autonome. La distribution des éléments traces selon la 

chlorinité de chaque groupe de sites met en exergue une source unique en profondeur, 

alimentant l’ensemble de la cellule hydrothermale à Lucky Strike. Par ailleurs, l’application 

de plusieurs outils géochimiques (géothermomètre Si–Cl, solubilité du quartz et 

géothermomètre Fe–Mn) a permis d’estimer les conditions de pression et température lors 

des interactions eau-roche en profondeur. Ces estimations sont différentes pour les fluides 

de Capelinhos et pour les fluides hydrothermaux « historiquement » connus autour du lac 

de lave fossile. Ces estimations concernent deux aspects : l’une porte sur les conditions de 

séparation de phase tandis que l’autre fixe les conditions atteintes par les minéraux du faciès 

schiste vert. Ces estimations de P et T dépendent en grande partie du (des) postulat(s) de 

départ, c’est-à-dire des hypothèses qui sont faites pour l’utilisation de ces outils. Ainsi, la 

zone de séparation de phase a été évaluée à des conditions de pression et de température de 

390 bars et 438°C. Ceci correspond à une profondeur de 2600 m sous le plancher océanique. 

Cette estimation est équivalente à celles proposées par Fontaine et al. (2009) pour des 

fluides du site Tour Eiffel collectés en 1994 et 1997. Toutefois, en choisissant d’autres 

hypothèses telles que la concordance des courbes de solubilité du quartz avec les 

températures données par les rapports Fe/Mn (contrôlé par les minéraux du faciès schiste 

vert), il est possible de « localiser » l’endroit où se font les dernières interactions eau/roche 



251 

 

en utilisant à la fois la solubilité du quartz pour estimer la pression et le rapport Fe/Mn pour 

contraindre la température. Cette dernière estimation décrit donc la fin des interactions eau–

roche que nous définissons comme étant le toit de la zone de réaction. Ceci indique une 

pression de 340 bars pour Capelinhos et une température de 400°C alors que les autres sites 

ont une température calculée plus faible comprise entre 350 et 380°C pour une pression de 

l’ordre de 300 bars. Ces deux estimations ne sont pas indépendantes l’une de l’autre, car 

toutes deux se basent sur la solubilité du quartz. Pourtant, si nous considérons que la zone 

de séparation de phase marque le début de la remontée de fluide tandis que le toit de la zone 

de réaction marque la fin de l’enregistrement des conditions P et T par les compositions 

des fluides, alors l’écart de P et T entre l’estimation de la zone de séparation de phase (qui 

est la même d’un groupe de sites à l’autre) et le toit de la zone de réaction (qui diffère selon 

le groupe de sites) donne une idée qualitative des temps de résidence dans la zone de 

remontée du fluide. Ainsi, Capelinhos, avec un toit de zone de réaction plus chaud et plus 

profond que les autres groupes, montre un temps de résidence relativement court, en 

cohérence avec sa plus faible densité (plus forte flottabilité). Par contre, les autres groupes, 

qui sont enrichis en Cl par rapport à Capelinhos, ont un temps de résidence dans la zone de 

remontée relativement plus long, donc une interaction avec le substratum potentiellement 

plus marquée. 

De plus, la diversité des concentrations en Cl observées et en particulier leur variabilité 

temporelle (les sites de Y3 et Crystal passent d’une concentration en Cl à dominance vapeur 

en 1993 à celle à dominance saumure en 2013) semble liée à la structure de la croûte. 

Autrement dit, la composition de ces fluides est contrôlée par des paramètres physiques et 

structuraux du plancher océanique comme la présence de failles F2 pour Capelinhos et la 

perméabilité et l’épaisseur de la couche sismique 2A (plus épaisse à l’ouest qu’à l’est du 

lac de lave fossile (Arnulf et al., 2011). Ainsi, nous avons discuté de l’effet de la structure 

de la croûte sur la composition des fluides hydrothermaux à la décharge.  

Pour résumer, une zone de séparation de phase provoque la remontée d’un fluide 

initialement homogène. La ségrégation plus ou moins efficace selon la structure de la croûte 

et la perméabilité va être responsable de la diversité des concentrations en Cl observée au 

niveau du plancher océanique. Les fluides de Capelinhos, bien qu’éloignés de la source de 

chaleur (~1.5 km du lac de lave surplombant la lentille magmatique axiale), vont enregistrer 

les conditions les plus profondes. Par conséquent, les autres fluides vont dériver des fluides 

de Capelinhos en passant plus de temps dans la zone de remontée. 
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A partir de ce modèle de circulation hydrothermale, nous avons réinterprété les variations 

temporelles entre 1993 et 2015 de la composition chimique des fluides à deux échelles de 

temps : 1) L’échelle de l’échantillonnage, de ~10 min entre chaque échantillon d’un même 

site, et 2) L’échelle annuelle de la campagne d’échantillonnage. 

A l’échelle de l’échantillonnage entre 2009 et 2015, le prélèvement de 350 échantillons de 

fluides hydrothermaux a permis de mettre en évidence l’existence d’un fluide hydrothermal 

refroidi (~100–150°C) dans la roche encaissante poreuse et qui est proche du fluide 

hydrothermal focalisé chaud. Ce fluide hydrothermal refroidi conductivement est 

complémentaire de celui envisagé dans le modèle de réchauffement conductif de l’eau de 

mer par la proximité du fluide chaud. Nous aurions ainsi deux compartiments isolés qui 

échangent de la chaleur en subsurface depuis la zone de décharge des fluides 

hydrothermaux de haute température qui sont, quant à eux, focalisés. Ce fluide montre une 

origine commune avec le fluide chaud focalisé, de par sa concentration en Cl qui est 

similaire à celle du fluide de haute température, mais qui est caractérisée par une 

concentration systématiquement plus faible en Si (~2mM). Les occurrences de ce type de 

fluides interviennent à une échelle de temps inférieure à l’heure. Ces observations 

impliquent que cet emmagasinement de fluide est très localisé au site de décharge. Une 

telle dynamique est à rapprocher aux observations de saut ou de chute épisodique des 

températures enregistrées par les sondes de température autonome (Barreyre et al., 2014). 

Ce fluide local qui a perdu du Silicium par précipitation de quartz et/ou de silice amorphe, 

participe probablement intensément à la formation du stockwork. Ainsi, des processus très 

locaux de subsurface sont à l’œuvre et ne sont détectables qu’en échantillonnant 

abondamment et à un pas de temps resserré. 

A l’échelle pluriannuelle, nous ajoutons une base de données de 6 ans d’échantillonnage 

des mêmes sites répartis partout sur le champ hydrothermal, à laquelle j’ai participé pendant 

3 ans. A partir des données de la littérature et ce malgré un gap d’échantillonnage de 9 ans 

entre 1997 et 2008, les fluides de Lucky Strike sont étudiés depuis 22 ans, ce qui forme la 

plus grande série temporelle de composition de fluides pour une dorsale lente. Entre 2013 

et 2015, les fluides de Tour Eiffel et de Montségur en comparaison avec ceux de Capelinhos 

montrent des estimations de pression et de température de la zone de séparation de phase 

cohérentes entre elles. Les fluides de Monségur et de Tour Eiffel étaient les plus appauvris 

en Cl dans les années 1990 et ont une couverture temporelle qui s’étale sur 12 ans. Nous 

pouvons donc utiliser le géothermobaromètre Si-Cl sur ces 2 sites pour suivre la variabilité 
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des conditions P et T de la zone de séparation de phase à l’échelle annuelle. L’étude de ces 

variations depuis 1993 montre une tendance qui reste stable à une température autour de 

425–440°C et à une pression comprise entre 390 et 380 bars, équivalente à 2800 à 2600 m 

de profondeur. Quelques évènements ou excursions vers des profondeurs/pressions moins 

élevées (P entre 360–340 bars, équivalent à 2200-2400 m sous le plancher océanique) sont 

toutefois à noter à la suite d’événements sismiques enregistrés par les OBS en Avril-Juin 

2009, Août-Septembre 2011 et Octobre 2012 (Crawford et al., 2015) ou par des données 

géochimiques avec des concentrations élevées en CO2 en 2008 et 2010 (Pester et al., 2012; 

Rommevaux et al., soumis). Ces variabilités suggèrent que la zone de remontée des fluides 

depuis la zone de séparation de phase peut être perturbée par des évènements profonds et 

se répercuter sur la chimie du fluide à la décharge. Ce genre d’observations n’a jamais été 

fait jusque-là sur un champ hydrothermal de dorsale lente. 

Par ailleurs, le rapport élémentaire Ca/Na est un bon indicateur des processus d’altération, 

en particulier de l’albitisation. Dans les années 1990, le rapport Ca/Na a augmenté 

globalement, ce qui est cohérent avec une augmentation de degré d’altération du 

substratum. Cependant depuis 2008, tous les groupes de sites semblent indiquer des 

variations en « dents de scie », la valeur la plus basse ayant été atteinte en 2011. Ces 

rapports bien qu’inégaux selon les groupes étudiés, ne montrent pas forcément les mêmes 

degrés d’altération. La séparation de phase va avoir tendance à appauvrir préférentiellement 

le Ca dans la phase vapeur, comme l’atteste le très faible rapport Ca/Na à Capelinhos par 

rapport aux autres groupes. Seuls les sites du sud-est montrent un fort rapport Ca/Na qui ne 

peut pas être attribué à la séparation de phase. Cela suggère une altération accrue par rapport 

aux autres sites. 

Les temps de résidence différents entre Capelinhos et les autres groupes autour du lac de 

lave fossile, sont marqués par des différences de température calculée dans la zone de 

réaction. Le temps de résidence dans la zone de remontée est relativement long autour du 

lac de lave fossile et se traduit par un refroidissement conductif marqué. Ce processus 

provoque une perte significative des éléments tels que le Fe et le Mn, puisque les fluides 

issus du champ de Lucky Strike sont 3-4 fois plus appauvris en Fe que ceux de Capelinhos. 

Cette perte de Fe peut s’expliquer par la formation de pyrite ou d’autres minéraux du facies 

schiste vert, correspondant à un stockage de ~60% de la quantité de Fe mobilisée dans la 

zone de réaction. Nous proposons que les plus faibles flux de métaux à Lucky Strike ne 
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sont pas dus à un substrat très altéré, mais sont plutôt les conséquences d’un refroidissement 

conductif accru en subsurface dans la zone autour du lac de lave fossile. 

Dans la zone de remontée, l’impact des processus affectant la composition des fluides peut 

être appréhendé par le couplage des concentrations élémentaires en Sr et Li corrigées de 

l’effet de séparation de phase et des compositions isotopiques 87Sr/86Sr et 7Li/6Li. Les 

mesures des isotopes du Li montrent une signature des fluides très proche de celle du 

basalte. Ainsi, en utilisant ces compositions isotopiques et les concentrations en Li 

corrigées, nous obtenons des valeurs du rapport eau-roche, i.e. W/R, comprises entre 1 et 2 

pour tous les groupes de sites décrits. Cette valeur confirme l’hypothèse d’un substratum 

basaltique peu altéré. Par contre, la diversité des compositions isotopiques en Sr des fluides 

a révélé que 15–20% du Sr en solution étaient d’origine eau de mer résiduelle. Cette 

contribution résiduelle en Sr induit des rapports W/Rs calculés supérieurs à 5 mais qui se 

répartissent néanmoins en deux groupes distincts. Les groupes du NE et SW présentent des 

rapports W/Rs de 5 identiques à ceux de Capelinhos, alors que les groupes du SE et du 

centre montrent, quant à eux, des rapports W/Rs plus élevés à 6-7. Cette variabilité des 

rapports W/Rs retranscrit pour ces deux groupes de sites soit un stade d’altération plus élevé 

soit une influence de précipitation/dissolution de minéraux de type anhydrite sur le parcours 

de remontée de fluide. 

L’effet de précipitation/dissolution de minéraux secondaires peut être évalué à partir de la 

distribution des terres rares dans les fluides hydrothermaux. En nous basant sur la diversité 

des spectres normalisés aux chondrites des fluides purs, nous pouvons observer l’effet de 

séparation de phase se traduisant par un enrichissement relatif en terres rares légères dans 

les phases les plus salées. L’anomalie en Eu qui est principalement due à une valence 2+, 

différente des autres terres rares qui ont une valence 3+, montre une affinité des terres rares 

avec le cycle géochimique du Sr, cohérent avec des rayons ioniques similaires dans ces 

conditions très réductrices. Ainsi l’étendue de l’anomalie en Eu va être contrôlée par le 

degré d’albitisation du substratum. 

Les terres rares mesurées dans le panache proximal entre 150 et 50°C ont subi un piégeage 

important, par incorporation ou adsorption dans les particules précipitées, avec des 

concentrations mesurées systématiquement inférieures aux concentrations théorique de 

mélange entre les fluides purs et l’eau de mer environnante. Cependant les anomalies en 

Eu calculées pour le mélange théorique entre les 2 pôles et l’anomalie calculée pour les 

échantillons mesurés du panache sont cohérentes ce qui implique que la spéciation des 
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éléments n’influence pas le piégeage observé. L’étude des isotopes de Nd a montré, en plus 

du piégeage, que des phénomènes de re-dissolution de particules avaient lieu dans le 

panache. Ceci confirme l’existence d’un phénomène de « ridge exchange », équivalent à 

celui nommé « boundary exchange », et qui est observé aux interfaces océan–plateforme 

continentale et qui est capable de modifier la composition isotopique en Nd sans en changer 

la concentration. Etant donné la répartition des sites hydrothermaux sur les dorsales, il est 

clair que ce phénomène pourrait former une composante importante pour contraindre le 

bilan chimique de l’eau de mer. 

Au cours de cette thèse, j’ai pu établir un classement cohérent des sites hydrothermaux 

selon leurs caractéristiques géochimiques et isotopiques et j’ai proposé un nouveau modèle 

de circulation de fluide hydrothermal basé sur des campagnes d’échantillonnage exhaustif. 

A travers une étude spatio-temporelle de composition des fluides hydrothermaux entre 

1993 et 2015, j’ai pu mettre en relation la chimie des fluides et les phénomènes détectés 

par des mesures géophysiques (séismicité, température in-situ). D’une part, l’étude des 

terres rares dans les fluides purs apporte des informations du contrôle minéralogique sur 

l’Eu en subsurface. D’autre part, l’étude des concentrations en terres rares du panache 

hydrothermal est très prometteuse pour contraindre l’impact des flux hydrothermaux sur la 

composition chimique et isotopique de l’océan, en particulier le cycle biogéochimique du 

Nd dans l’océan. 

Mises bout à bout, ces observations montrent la voie à suivre pour les années futures. Les 

variations chimiques, pour les fluides et physiques, pour la croûte océanique en subsurface, 

sont concomitantes. Cependant, les moyens d’avoir un suivi temporel de la composition 

des fluides ne sont pas aussi développés que pour l’équipement géophysique (sonde de 

température, OBS). Un lien doit être fait entre l’échelle de temps et le pas de 

l’échantillonnage des fluides et les mesures in-situ des paramètres physiques. En ce sens, 

un projet de préleveur in-situ autonome de fluides de haute température est développé au 

GET en collaboration avec TOP industrie et va répondre à cette problématique. Un tel 

système pourrait être couplé à des capteurs de température et prélever le fluide pur lors des 

évènements épisodiques repérés par les actuelles sondes de température autonome 

(Barreyre et al., 2014). Ces évènements montrent à la fois des chutes de température de 

l’ordre de 150°C, ou des hausses de température d’une dizaine de °C et s’étalent sur 1 à 10 

jours. L’échantillonnage de telles périodes de temps pourrait donner des éléments de 

réponse aux hypothèses émises durant cette thèse. 
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D’autres projets de la collaboration avec des équipes américaines ont lieu en ce moment au 

sein de l’observatoire pour mettre en place un capteur de Cl in-situ à Lucky Strike. Ce 

capteur de chlorinité in-situ a montré son efficacité pour lier des phénomènes physiques et 

les compositions chimiques des évents hydrothermaux dans un contexte de dorsale rapide. 

Une telle approche pourrait apporter des éléments complémentaires sur la diversité de 

salinité en contexte de dorsale lente. Notamment, couplée à de la modélisation de 

circulation de fluide bi-phasique, l’hypothèse du contrôle par la structure de la croûte et la 

répartition de la porosité sur la composition des fluides pourrait être plus amplement 

discutée. Ces 2 projets de préleveurs et capteurs pourront se baser sur le modèle de 

circulation proposé dans cette thèse. 

De plus, le phénomène de dissolution de phases minéralogiques secondaires observé via 

les isotopes du Nd dans les fluides du panache hydrothermal pourrait être une source de 

modification isotopique du Nd dans l’océan à grande échelle, analogue à ce qu’on a déduit 

des mesures de Fe provenant du panache hydrothermale de l’EPR jusqu’à 4300 km de 

distance de la dorsale (Resing et al., 2015). Pour confirmer un tel effet, d’autres analyses 

pourraient être effectuées pour tester les effets des contextes magmatiques (EPR), 

tectonique (faille de détachement, 13°N MAR), en plus des informations fournies par 

Lucky Strike (à la fois en contexte tectonique et magmatique). Ainsi il serait possible 

d’améliorer l’évaluation de l’impact global de l’hydrothermalisme aux dorsales su le bilan 

chimique du Nd dans l’océan. 
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CONCLUSION AND PERSPECTIVES 

Black smoker fluids from the Lucky Strike hydrothermal field located at 37°N on the Mid 

Atlantic ridge have been studied during this PhD Thesis. This hydrothermal field is one of 

the largest on the seafloor and the vents display a chemical variety at the discharge that is 

yet to be explained. This thesis was carried out in the context of a deep sea observatory. 

Therefore, an important focus was brought on the systematic sampling of hydrothermal 

fluids during the three MoMAR cruises (in 2013, 2014, and 2015) I have been involved in. 

The chemical analysis performed on–shore allowed to build a complete dataset that 

complement the ones collected by the in–situ instruments deployed each year. This 

chemical dataset is unique in the context of a slow spreading ridge. Building this dataset 

needed some analytical or protocol developments in order to validate Rare Earth Element 

(REE) and Li elemental and isotopic composition measurements as the Li isotope 

measurement was not done at the GET laboratory for this kind of samples. 

Hydrothermal fluids are charged in salts. Unlike seawater, standard solution with 

internationally recognized certified concentration for major and/.or trace elements does not 

exist for this type of samples. Certified solutions are commonly used in the scientific 

community to validate the measurement of concentrations. A special care has been brought 

for Li concentration analysis to ensure reproducible and accurate measurements. The Li 

isotopic analyses need to be accurate and precise at specific Li concentration to optimize 

the standard bracketing method. The issue with Li measurements, as for many other 

elements, is that no international standard exist for such concentrations in a salted matrix 

of that of black smokers. Some standards do exist for trace elements in seawater (e.g. NASS 

6 is a seawater standard solution certified for the following elements: As, Cd, Cr, Co, Cu, 

Fe, Pb, Mn, Mo, Ni, U, V, and Zn at concentration range between 0.1 to 10ppb) but there 

is no equivalent for hydrothermal fluids. Because dissolved elements are related to salinity, 

we used the IAPSO (seawater reference with a certified salinity) as a standard for 

calibration and control on major elements concentrations (Ca, K, Na, Br, Cl, SO4, and Mg) 

and trace element (Sr, Cs, Rb, and Li). We obtained excellent results in Li concentration 

measurement in salted matrix (i.e. IAPSO), allowing us to be confident in the measured 

concentrations in the fluids. Therefore the Li isotope compositions are also of a good 

quality as confirmed by analysis of standard Li materials (IAPSO and IRMM-16). 
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During this thesis, the discovery of a new high temperature venting site named Capelinhos, 

and located out of the fossil lava lake vicinity, highlights that hydrothermal circulation 

underneath the Lucky Strike hydrothermal field is of broader scale. It was then necessary 

to propose a new hydrothermal circulation model by re-interpreting the chemical data of 

the fluids of Lucky Strike including fluids from Capelinhos. Hydrothermal sites have been 

classified in groups according to their geographical position referenced to the lava lake and 

based on their Cl concentrations. This re-interpretation only takes into account the fluids 

sampled in 2013 that cover most of the known active sites. It also takes into account 

geophysical constraints acquired through the deep-sea observatory such as autonomous 

temperature sensors and microseismicity. The trace element distribution compared to the 

Cl concentration of each group highlights that the whole hydrothermal field is fed by a 

unique deep rooted source. The application of several geochemical tools allows for the 

estimation of pressure and temperature conditions of water–rock interactions (Si–Cl 

geothermobarometer; quartz solubility and Fe/Mn geothermometer). These estimations 

differ for Capelinhos fluids when compared to the other groups. The first estimation based 

on Si–Cl geothermobarometer relates to the phase separation zone while the Fe/Mn and 

quartz solubility estimation relates to the reaction zone (in the greenschist facies 

conditions). These estimations highly depend on the hypothesis that are made. Phase 

separation has been estimated at 390 bars (~2600 mbsf) and 438°C. This estimation is 

equivalent to that proposed by Fontaine et al. (2009) for fluids of the Tour Eiffel site and 

collected in 1994 and 1997. Nevertheless, if we make the hypothesis that quartz and 

greenschist facies mineral reach equilibrium concomitantly, then the estimated P and T 

conditions depict the roof the reaction zone. This indicates a temperature and pressure of 

~400°C and 340 bars respectively for Capelinhos, while estimations range from 350 to 

380°C and ~300 bars for the other groups. These two estimations are not independent from 

each other because they are both based on the quartz solubility assumption. However, we 

can consider that the phase separation zone depicts the beginning of fluid upflow, so that 

we can determine relatively the residence time of the fluid within the upflow zone as being 

related to the difference between the estimated roof of reaction zone and the phase 

separation zone. Therefore, Capelinhos, with a deep and hot roof of reaction zone, has a 

short residence time compared to the other sites, which is coherent with its low density 

fluids (high buoyancy). The more Cl enriched groups exhibit relatively longer residence 

time in the upflow zone, and potentially a marked interaction with the substrate. 
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Moreover, the Cl concentration diversity at Lucky Strike, and particularly its variability 

with time (Y3 and Crystal show Cl concentrations lower than seawater in the 1990s but 

have higher concentrations at the present time), is linked to the crustal structure. The 

chemical diversity is controlled by physical and structural parameters such as large faults 

(F2 for Capelinhos) and the shallow permeability of the seismic layer 2A (thicker to the 

West of the lava lake; Arnulf et al. 2011). 

To summarize, the phase separation zone triggers the upflow of a homogeneous fluid. Brine 

segregation is more or less efficient depending on physical controls and fracturing of the 

crust and is responsible for the chemical diversity observed at the discharge. Capelinhos 

fluids are relatively far from the axial magmatic lens but preserved a chemical composition 

that is representative of a deeper origin. However, the fluids located around the lava lake 

will evolve further by spending relatively more time in the upflow zone, and therefore by 

recording a chemical signature coherent with more pronounced water-rock interactions. 

From this model, we reinterpreted the temporal variations between 1993 and 2015 of the 

chemical composition of hydrothermal fluids at two time scales: 1) the sampling time scale 

(~10min) and 2) the annual time scale. 

At the sampling time scale, between 2009 and 2015, 350 samples were collected. The 

chemical dataset provided evidence of a conductively cooled hydrothermal fluid (~100–

150°C) within the rock and closed to the focused fluid. This cooled fluid is complementary 

to the conductively heated sweater inferred from Cooper et al. (2000). So at the subsurface, 

two compartments exchange heat without (or limited) matter exchange. This cooled fluid 

originates from the focused hot fluid as shown by identical Cl concentrations, but is 

characterized by a systematic lower Si concentration (~2–3mM). The fact that these fluids 

are sampled in such a small time scale implies that their dynamics are controlled by 

localized subsurface process. This dynamics could be linked to the episodic temperature 

drops observed by the autonomous temperature probes (Barreyre et al., 2014). This 

hydrothermal fluid, although cooled probably participates to the stockwork formation by 

quartz and/or amorphous silica precipitation. These types of processes are only observed 

thanks to repeated and dense sampling and fluid collection at short time scale. 

Regarding the long-term time-scale, the dataset covers 22 years of sampling (1993 to 2015) 

with a 11 years gap between 1997 and 2008. We added up to 6 years of chemical end-

members at the same sites at the Lucky Strike hydrothermal field since the installation of 
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the observatory. This study constitutes the longest time series study of hydrothermal fluids 

on a slow spreading ridge. Between 2013 and 2015, Tour Eiffel and Montségur fluids show 

the same estimations of P and T conditions for the phase separation zone as Capelinhos 

does. This allows to infer the P and T variations for phase separation, through the Si–Cl 

geothermobarometer, for the complete time series for these two sites, each one having a 

12–year long fluid records. Since 1993, the estimation seems stable between 425–440°C 

and 390–380 bars (2800–2600 mbsf). Some events are nevertheless noticeable indicating 

P and T conditions of equilibration toward shallower conditions (360–340 bars), which 

correspond to seismic activity recorded by OBS in 2009, 2011, 2012 (Crawford et al., 2015) 

or to CO2 increase in the fluid in 2008 and 2010 (Pester et al 2012; Rommevaux et al., 

submitted). This indicates that the upflow zone may undergo some deep changes which are 

recorded somehow by the fluid. This cross-correlation between geophysical and 

geochemical observations has never been obtained at a slow spreading ridge, thus far. 

Moreover, the Ca/Na ratio is a good indicator of substratum alteration through albitisation. 

Since the 1990s, the Ca/Na ratios of fluids have increased, which suggests that the 

substratum is albitized. Since 2008, the Ca/Na variations seem to behave as a boom and 

burst pattern with the lowest value attained in 2011. Comparison of groups shows different 

Ca/Na ratios, which are not necessarily linked to the alteration state, but rather to the 

partitioning of Ca during phase separation. However, the high Ca/Na ratio of fluids from 

the South Eastern group is not explained by Ca partitioning during phase separation which 

indicates that for this area, the substratum is highly albitized compared to the other. 

The difference of residence time between Capelinhos and the other groups is marked by 

the temperature difference at the roof of the reaction zone. This indicates an enhanced 

conductive cooling for the fluids around the fossil lava lake by loss of elements such as Fe 

and Mn that are currently 3 to 4 time less concentrated than for Capelinhos fluids. This loss 

can be explained by the precipitation of pyrite for instance or other minerals belonging to 

the greenschist facies. If we consider that Capelinhos are representative of the fluid 

chemistry without Fe loss, then for the other groups, ~60% of Fe mobilized in the reaction 

zone is stored by mineral precipitation in the upflow zone. Therefore, the low Fe and Mn 

concentrations observed at Lucky Strike are due to mineral precipitation and stockwork 

formation rather than an altered substrate. In the upflow zone, fluid–rock interactions can 

be inferred by coupling the Sr and Li concentrations and isotopic compositions (87Sr/86Sr 

and 7Li/6Li). The Li isotopic composition measured in the fluid are very close to the basaltic 
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signature which indicates limited Li isotope fractionation by secondary mineral formation, 

and quantitative leaching of basaltic Li. Calculation of W/R ratios based on Li isotopic 

composition and concentration indicates values between 1 and 2, coherent with interactions 

and leakage of a relatively fresh basalt. However, the Sr isotopic compositions display a 

systematic diversity between groups with the SE groups displaying 87Sr/86Sr values at 

0.7043 while the other groups display values at 0.7039-0.704. The coupling of Li and Sr 

isotopic signatures indicates that 15–20% of Sr residual originates from seawater. The W/R 

ratios determined by Sr concentrations and isotopic signatures argue that groups from the 

North East, South West and Capelinhos are around 5 but the South East and Central sites 

show W/R slightly higher (at ~7–8). Again, this could be related to enhanced albitisation 

and/or anhydrite dissolution that would affect the geochemical cycle of Sr. 

The effect of precipitation/dissolution of minerals can be evaluated under the scope of REE 

concentrations in hydrothermal fluids. Based on the diversity observed for the chondrite 

normalized REE patterns we can infer the effect of phase separation on their distribution at 

the scale of the hydrothermal field. Also the Eu anomaly is found to be due to its speciation 

and valence in a reduced environment which behave differently than the other trivalent 

REE. As Eu is bivalent is such environment, it behaves like Sr and can be incorporated in 

Sr bearing minerals such as anhydrite/albite. Therefore, the magnitude of Eu anomaly is 

controlled by the alteration of the substratum, and particularly by albitisation.  

Dissolved REE have also been measured in the buoyant plume at temperature between 

150°C and 20°C. The measurements show that scavenging is occurring through 

adsorption/incorporation into precipitated particles. The measured REE are systematically 

lower than expected by conservative mixing but the calculated Eu anomaly is equivalent to 

that obtained for conservative mixing. This means that the speciation does not affect the 

efficiency of scavenging. The Nd isotopic compositions of buoyant plume fluids have also 

been measured and their mixing have been modeled. Some measured Nd isotopic 

compositions indicate that scavenging occurs which removes 90% of the initial Nd. This 

observation is not coherent with the magnitude of the scavenging observed from the 

measured concentrations. This can only be explained by redissolution of particles formed 

in a more seawater dominated part of the plume. This tends to confirm the process of “ridge 

exchange”, equivalent to the “boundary exchange” observed at the continent–ocean 

interface. These processes are able to change the Nd isotopic composition without changing 

its concentration. The hydrothermal activity is found everywhere on the mid-ocean ridge 



262 

 

and back arc basin, therefore this ridge exchange could have a real impact on the Nd budget 

of the ocean. 

During this thesis, I was able to classify the hydrothermal sites based on their geochemical 

and geographical characteristics and to propose a new model for hydrothermal fluid 

circulation. Through our spatial and temporal study of the fluid composition between 1993 

and 2015, I was able to link fluid chemical composition and process detected by 

geophysical measurements. REE study of pure fluid samples indicates that the magnitude 

of Eu anomaly is controlled by substratum mineralogy. The study of dissolved REE in a 

buoyant plume is of great interest to constrain the Nd isotopic budget of the ocean. 

Chemical variations of the fluids are accompanied by geophysical events (temperature 

drops, seismic swarms…). However, the means of temporal survey of fluid composition 

are not as developped as for geophysical surveys. Therefore a link should be done between 

the time scale of fluid sampling and in-situ measurement of physical parameters. The GET 

is currently developping an automated pure fluid sample device in collaboration with TOP 

industry. This device will be able to be linked to the seafloor stations and be programmed 

to sample concomitantly to a geophysical event, as temperature drops recorded by HT 

probes. Sampling of pure fluid during this kind of event would greatly improve the 

comprehension of the system at the subsurface-chimney scale. 

Other project of collaboration are actually taking place at Lucky Strike such as the 

installation of an in–situ Chlorinity sensor. This sensor has proved to be efficient to 

decipher tidal signals from episodic brine flush on a fast spreading ridge. Such approach 

would be of great interest to explain further the Cl diversity and dynamics of the fluids from 

the LSHF related to a slow spreading ridge and could provide broader advance to the 

hypothesis proposed for a structural control on the Cl concentrations though different brine 

segregation. These 2 projects of in-situ instruments probing the fluid chemistry will benefit 

from the proposed model of circulation. 

Furthermore, the dissolution process observed through Nd isotopic compositions in the 

buoyant fluid are of great interest in the ocean chemical budget. The importance of 

hydrothermal activity in that domain has recently been restated by the study of Resing et 

al. (2015) who were able to trace an EPR hydrothermal plume to as far as 4300 km east of 

the ridge in the pacific ocean through Fe concentration. To confirm such an impact, the 

same kind of measurement could be performed under different setting such as magmatic 
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accretion context (EPR), tectonic accretion (Ocean Core Complex, 13°N, MAR) besides 

the information brought by Lucky Strike (tectonic and magmatic context). This would 

facilitate a global scale model for the ocean chemistry. 

.  
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ABSTRACT: Travertine are found in ophiolite massifs in association with bicarbonate-depleted hyperalkaline spring
waters (pH up to 11.9), in contrast with most continental carbonates (e.g., travertine, tufa, speleothems) that
precipitate from calcium bicarbonate-enriched waters. Here travertines formed from bicarbonate-depleted
hyperalkaline spring water were subjected to a multidisciplinary and multi-scale approach to evaluate their potential
as proxies of past climatic records and sequestration of atmospheric CO2.
Two mechanisms of calcium carbonate precipitation were apparent: 1) hydration-hydroxylation reaction due to the

mixing of hyperalkaline and surface runoff waters, or 2) dissolution of atmospheric CO2(g) into hyperalkaline waters.
For two sites, the bulk chemical signature of travertines (Mg, Ca, and Sr wt%) are consistent with ‘‘prior calcite

precipitation’’ (PCP) processes and thus likely records the environmental conditions at the time of their formation.
However, for the third site, the trace-element concentrations in the various carbonate fabrics indicate some
recrystallization. Constant d18O values indicate that hydration and hydroxylation reactions completely buffer the
oxygen isotope composition of the water (equilibrium state) from which a paleo-temperature can be estimated. In
contrast, d13C values reflect potential carbon sources, either from surface runoff waters or atmospheric CO2.
Within the framework of continental carbonate, calcium carbonate formation in bicarbonate-depleted hyperalka-

line environments results in a linear and positive co-variation of d18O and d13C values and defines a unique and
distinctive stable-isotope field on a d18O–d13C plot, in contrast to carbonates formed in more typical bicarbonate-
enriched environments. Moreover, the combined variations in d18O, d13C, and 87Sr/86Sr between laminae document
the changes in the paleo-activity of hyperalkaline spring and surface runoff waters on the time scale of formation. The
87Sr/86Sr ratio represents a tracer for quantifying surface runoff water contribution. Furthermore, the amount of CO2

sequestrated in travertine has been estimated following different scenarios of formation. The calculated CO2

sequestrated for these deposits ranges from 9 kgCO2 yr
–1 to 522 kgCO2 yr

–1.

INTRODUCTION

Continental carbonates (e.g., speleothems, calcrete, lacustrine limestone,

travertine, calcareous tufa, and tufa) are characterized by specific

petrofacies resulting from a complex and dynamic interplay of physical,

chemical, and biological activity (e.g., Pentecost 2005 and reference

therein; Fouke 2011; Gandin and Capezzuoli 2014; Arenas et al. 2014;

Capezzuoli et al. 2014). The characterization of continental carbonate is of

growing interest because of their ability to preserve paleoenvironmental

and paleoclimate information at the time of their formation.

Overall, continental carbonates form predominantly at ambient

temperature from calcium bicarbonate–enriched (Ca-CO3
2– type) waters.

Alkalinity is derived either from dissolution of carbonate minerals, CO2

present in the atmosphere and soils above water table, or CO2 thermally

generated in the deep Earth’s crust (Pentecost and Viles 1994; Pentecost

2005).

Alternatively, continental carbonates can be associated with hyperalka-

line thermal springs located in ophiolite massifs, where circulating

groundwaters interact with deep crustal rock and are typically depleted

in dissolved inorganic carbon (DIC, e.g., Oman: Neal and Stanger 1983,

Chavagnac et al. 2013a; New Caledonia: Launay and Fontes 1985, Monnin

et al. 2014; Philippines: Abrajano et al. 1988). In this case, the

serpentinization process has led to the conversion of initial Mg-HCO3

type waters into Ca-OH type hyperalkaline waters depleted both in DIC

and Mg but enriched in Ca (Barnes et al. 1967; Barnes and O’Neil 1969;

Barnes et al. 1978; Neal and Stanger 1984; Bruni et al. 2002; Cipolli et al.

2004; Sader et al. 2007; Kelemen and Matter 2008; Chavagnac et al.

2013b; Monnin et al. 2014). Precipitation of calcium carbonate from

hyperalkaline spring waters is possible only if carbonate ions are available

which is typically accomplished in two ways: 1) mixing between DIC-

depleted hyperalkaline waters and DIC-rich surface runoff waters, and/or
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2) via diffusion and dissolution of atmospheric CO2(g) into spring waters.

As a result, the conditions leading to calcium carbonate formation in

hyperalkaline springs is fundamentally different from carbonates that

precipitate from bicarbonate-rich waters. However, thus far little is known

on the reliability of these deposits as a proxy for past climatic records.

The purpose of this study is to provide a comprehensive and detailed

study of three calcium carbonate deposits formed at DIC-depleted

hyperalkaline springs in the Oman ophiolite. The objectives are 1) to

assess the relationship between the petrologic features and fabrics and the

geochemical and isotopic signatures, and 2) to discuss the potential of

these deposits as proxies for the past climatic record and sequestration of

atmospheric CO2.

BACKGROUND

General Spring Characteristics and Nomenclature

The general characteristics of carbonate deposits collected in Oman can

be summarized as follows:

1) They are associated with warm-temperature (20–658C) hyperalkaline
springs (pH ranges from 10 to 11.9) extremely depleted in Mg and

DIC; the springs are preferentially located near two major structural

discontinuities, i.e., the basal thrust plane (the contact between the

peridotitic mantle section and the underlying sedimentary and

metamorphic rocks) and the ‘‘paleo-Moho’’ (the contact between the

peridotite mantle section and the overlying gabbroic crustal section)

(Neal and Stanger 1984; Pauckert et al. 2012; Chavagnac et al. 2013a).

2) Gas emissions at these springs are essentially composed of H2(g) and

CH4(g) without any CO2(g) (Sano et al. 1993; Boulart et al. 2013).

3) Mineral assemblage forming at spring discharge is essentially

composed of calcite and aragonite (Chavagnac et al. 2013b).

4) Climatic conditions, e.g., arid or wet seasons, influence the formation

rates and the morphologies of the carbonate deposits (Clark and

Fontes 1990; Clark et al. 1992).

Over the last 20 years, classification and definition of continental

carbonates have evolved based on lithological, petrological, geochemical,

and isotopic characteristics (e.g., Capezzuoli et al. 2014; Gandin and

Capezzuoli 2008; Pentecost 2005; Ford and Pedley 1996; Pentecost and

Viles 1994).

Based on the most recent classification of Capezzuoli et al. (2014), the

Oman carbonate deposits share characteristics that are indicative of both

travertine and tufa deposits, i.e., ‘‘calcareous tufa’’ or ‘‘travitufa.’’ However,

their formation is directly linked to the activity of hyperalkaline waters,

which testifies to a hydrothermal origin, i.e., a closer link to travertine

terminology. Therefore, we refer to these deposits as travertine in

agreement with previous publications (Clark and Fontes 1990; Clark et

al. 1992; Mervine et al. 2014).

Geological Context

The Oman ophiolite is one of the largest and best-preserved sections of

oceanic lithosphere (30,000 km2) exposed on land (Coleman 1981), (Fig. 1).

The ophiolite is composed of two major lithological units, the mantle section

and the crustal section. The mantle section rests on top of a metamorphic,

amphibolitic sole, itself resting on sedimentary rocks (carbonates,

sandstones, and radiolarites) (e.g., Coleman 1981). It is formed mostly by

variably serpentinized residual mantle harzburgites and dunites. Mafic to

felsic intrusive lithologies (pyroxenites, wehrlites, troctolites, gabbros,

tonalities) are a minor although ubiquitous constituent of the mantle section

(Boudier and Coleman 1981; Ceuleneer et al. 1996; Amri et al. 1996;

Python and Ceuleneer 2003). The crustal section, which overlies the mantle

section, is more heterogeneous in terms of lithology, including ultramafic

and gabbroic cumulates (Juteau et al. 1988; Abily and Ceuleneer 2013),

granitic differentiates, and extrusive rocks (diabase dikes and pillow lavas)

(Pallister and Hopson 1981; Alabaster et al. 1982; Amri et al. 1996).

At present, alteration of the ultramafic rocks through serpentinization

reactions is driven by percolation of ancient and/or modern meteoric waters

through fractures (Chavagnac et al. 2013a). Serpentinization reactions lead

to the formation of hyperalkaline springs (25 to 408C, Chavagnac et al.

2013a), which are numerous over the entire ophiolite belt and associated

with travertine deposits (Neal and Stanger 1984; Kelemen et al. 2011;

Chavagnac et al. 2013a; Mervine et al. 2014) (Figs. 1, 2).

Climate of Oman

The ophiolite crops out in the Northern Oman Mountains, located at the

southeastern horn of the Arabian Peninsula (22–248N). The climatic

conditions are typical of a dry tropical area, with maximum air temperature

ranging between 20 and 358C during winter and . 408C in summer. The

climate of the northeastern side of the mountain faces the Gulf of Oman

and has some marine influence, whereas the southwestern side faces the

Arabian Sands and is predominantly continental. The present-day average

rainfall on the Northern Oman Mountains is on the order of 100 mm yr–1

(Clark and Fontes 1990) and is influenced by two sources of precipitation:

the Mediterranean Sea and the Indian Ocean. These two influences define a

boundary called the Inter-Tropical Convergence Zone (ITCZ). The ITCZ

varies seasonally along a north to south gradient. The Oman hydrology is

highly variable because of the rainfall intensity variation and evaporation

rates (Kwarteng et al. 2009).

Paleoclimate Records of Oman

Over longer timescales, paleoclimate studies on various materials

(speleothems, lake sediments, and travertine) have revealed an alternation of

humid and arid periods in Oman (Clark and Fontes 1990; Clark et al. 1992;

Fleitmann et al. 2003; Fleitmann et al. 2004; Fleitmann et al. 2007; Fuchs and

Buerkert 2008; Mervine et al. 2014). 14C dating methods, geochemistry, and

stable-isotope (C and O) signatures were used to determine the timespan

during which precipitation intensity had varied. For example, Fleitmann et al.

(2003) linked the temporal d18O variations of the precipitation recorded in

speleothems (between –12 and –4%) from Hoti cave (Oman) to the ITCZ

shifts. Typically, previous results concentrated their effort on either

geochemical features or petrological ones, rather than a combination of the

two. Such observations are, however, crucial to elucidate the causal-

consequence link between climate change and travertine morphology.

SAMPLES AND METHODS

Among a large series of travertine sites visited during three field

campaigns (December 2008, January 2010, and January 2011), three sites

were selected from hyperalkaline springs for which geological setting,

chemical composition of hyperalkaline spring waters, gas emissions, and

mineralogical assemblages have been carefully studied (Neal and Stanger

1984; Weyhenmeyer et al. 2002; Pauckert et al. 2012; Chavagnac et al.

2013a; Chavagnac et al. 2013b; Boulart et al. 2013; Mervine et al. 2014)

(Fig. 1, Table 1) and best elucidate the different styles of carbonate

precipitation. The samples were sawn with a diamond blade perpendicular

to the lamination for microscopic-scale description. In addition, we used a

micro-dremel to powder each lamina of samples 32 and 33, which were

first identified in microscopic observations (Fig. 3). To decipher whether

travertine formed in a DIC-depleted environment constitutes a potential

proxy of past climate variability, each sample was consequently

characterized using various analytical techniques (details are reported in

the Appendix Supplementary Material). We summarize their usefulness

below:
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� Scanning electron microscopy (SEM) coupled with energy-dispersive

spectroscopy (EDS) to identify chemical changes in the sample, based

on code color imaging of chemical elements on thin-section areas.
� Raman analysis and cathodoluminescence in order to determine calcium

carbonate polymorphs from thin sections.
� Electron microprobe analyses to detect and observe the repartition of

substituted elements into the carbonates, such as magnesium (Mg) and

strontium (Sr).
� Oxygen and carbon isotope compositions were conducted to identify

precipitation mechanisms and to characterize mixing processes.
� 87Sr/86Sr isotope composition in order to quantify the mixing proportion

between surface runoff and hyperalkaline spring waters that control the

formation of travertine.

RESULTS

Site Description and Petrographic Analysis

In the first section of this paper, we describe each sampling site

following the concept of sedimentary depositional facies (Fouke et al.

2001; Veysey et al. 2008; Fouke 2011) together with the main microscopic

observations. In the following sections, we present the stable-isotope and

radiogenic-isotope compositions from two of the sites.

‘‘Mamy Nova’’ Site (Sample 28)

Site ‘‘Mamy Nova’’ is located in the wadi Zabyn, running through the

Fizh massif (Fig. 1). The local topographic and geological setting

corresponds to a mixing area between runoff and groundwaters that

interacted with mantle peridotites on their way to the spring, although the

main discharge itself lies on a gabbroic substratum. However, no

sedimentary and metamorphic rocks are found in wadi Zabyn upstream

from spring waters, which run exclusively in the mantle harzburgites. In

the valley bottom, terrace deposits composed of cemented gravel bars are

partially preserved, topping the gabbroic substratum. Both terrace and

substratum are incised by the stream flow. The hyperalkaline spring

discharge is located 1 to 2 m above the surface waters and emerges from a

fractured zone running through the lower crustal section (Table 1; Fig. 2).

Modern to ancient carbonate deposits occur from the spring discharge area

over a distance of 1 km along the surface waters. Carbonate encrustation

around gravels can be observed in the stream bottom. Small-scale (10 cm

high) step-shaped micro-terracettes are present in the channel facies.

FIG. 1.—Simplified geological map of the

Sultanate of Oman (modified from Chavagnac et

al. 2013b).
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Sample 28 was taken from a carbonate gravel bar, which consists of a

conglomerate of ultramafic rocks partially cemented by calcium carbonate.

Pores are partially filled with detrital material consisting of a mixture of

micritic allochems (clotted peloids partially cemented or redissolved),

micrite, clays, and ultramafic fragments (Fig. 4A). Precipitation of

carbonates occurred in the vadose zone, as suggested by the presence of

aragonite microstalactic cement in some pores and discontinuous ’ 100-

lm-thick drusy calcite cement that precipitated around the pores (Fig. 4B,

C, D). Si- and Mg-rich clavate (10–25 lm in diameter and rich in organic

matter) that underline a growth stage of the drusy isopacheous sparite, as

FIG. 2.—Photographs of the sampling sites presenting the carbonate depositional facies at the hyperalkaline springs.
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well as the presence of aragonite needle-like features topped by a Si- and

Mg-rich film (Fig. 4B).

‘‘Gravière’’ Site (Sample 32)

At this site, the substratum of the hyperalkaline spring is located close to

the boundary between mantle peridotites and lower crustal gabbroic

cumulates. Meteoric waters travel through a large drainage system

originating in the sedimentary and metamorphic rocks of the Saih Hatat

and running through mantle peridotites (Table 2; Fig. 1). The valley is

partially filled with highly cemented gravel bars that are incised by stream

flow and partially covered by uncemented modern gravels. The hyper-

alkaline spring emerges on cemented gravel bars, where it mixes with the

surface runoff waters (Fig. 2). At the spring discharge area, a modern

carbonate deposit can be observed covering the stream bottom. Sample 32

was taken in the channel facies where the wadi Mansah and the

hyperalkaline spring mix (Fig. 2). A green algae and/or bacterial mat

covers the modern surface of the carbonate deposit in the channel facies

(Fig. 2).

On a macroscopic scale, the sample is composed of a succession of 13

laminae exhibiting distinctive coloration, mineralogy, fabrics, and porosity

(Fig. 5). The observations are summarized in Table 2. The sample displays

a very complex spatial organization, with an alternation of light-,

intermediate-, and dark-gray layers (Fig. 5). The laminae are composed

of gothic-arch calcite, crystallized aragonite bushes, drusy calcite cement

(Fig. 5, zones A and B), a Mg-, and Si-rich organic material (Fig. 5, zones

A, B, D, and E) that contains also Al, dark-gray spheroids (Fig. 5, zone C),

and micro-spheroids embedded in Mg-, Al-, and Si-rich organic material

(Fig. 5, zone D). Large pores are also filled with drusy calcite cement (Fig.

5, zone C).

‘‘ Irma’’ Site (Sample 33)

The ‘‘Irma’’ site is located along the foothills of the Samail Massif in

mantle peridotites overlying the sedimentary rocks of the Hawasina

TABLE 1.—Location and geological context of travertine samples. Chemical composition of hyperalkaline springs: Chavagnac et al. (2013b);

Mineralogical precipitatese: Chavagnac et al. (2013a).

Site Name

Latitude

(N)

Longitude

(E)

Altitude

(masl)

Geological

Context T (8C) pH

Surface

Precipitatee

Stream-Bed

Precipitatee

Consolidated

Precipitatee

28 Mamy

Nova

248310221 568180071 395 Within the crustal section,

bedded gabbro and

ultrabasic cumulates

38.6 11.0 Aragonite, brucite Aragonite, brucite Aragonite, calcite,

hydrotalcite? Iowaite?

32 Gravière 238190211 588130421 367 Mixing peridotite gabbro,

very altered

31.0 11.5 Calcite, aragonite Aragonite, brucite,

suolunite

Aragonite, calcite,

hydrotalcite?

33 Irma 228480431 578500161 485 In serpentinite, just above

the contact with

Hawasinah

25.8 11.7 Calcite, aragonite Calcite Calcite

FIG. 3.—Macroscopic photographs of the three studied carbonate samples. On samples 32 and 33 hand specimens, we denote the laminae identified upon microscopic

observation.
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Formation and the greenschists and amphibolites of the metamorphic sole

(Fig. 1). The local drainage system is located entirely within highly

serpentinized mantle peridotites. The site itself is a large kilometer-wide

terrace characterized by a layer of recent travertine several meters thick.

There is no obvious surface runoff, implying that the precipitation of

calcium carbonate takes up carbon from atmospheric CO2 (Table 2; Fig.

2). Deposits form successive pools separated by aprons around and

downstream of the hyperalkaline spring (Fig. 2).

Sample 33 was collected in the flowing hyperalkaline spring. It consists

of calcite raft (sparite) deposits alternating with more organic-rich layers of

vuggy calcite (micrite) displaying a laminoid-fenestral fabric (type LF-A

according to Flügel (2004); Fig. 6A, B). Sparite overgrowths are observed

on both sides of the rafts (Fig. 6D). Ultramafic detrital particles may occur

between rafts (Fig. 6C).

Chemical Composition of Carbonate Fabrics

Electron microprobe analyses were carried out on the various calcium

carbonate fabrics. Chemical compositions of carbonate samples are

reported in Table 3 and Figure 7 according to the sample and from

FIG. 4.—Microscopic observations of sample 28 in A) plane-polarized light; B) SEM-EDX; C) detail of a pore which depicts aragonite bush, and both aragonite and calcite

cement in transmitted polarized-light microscopy; D) view of area C) in cathodoluminescence. Legend: pel, peloid; c, ultramafic element of the conglomerate; iso cal,

isopachous calcite cement; dis, dissolution feature; sf org, spherical feature (organic material); cf org, clavate feature (organic material); dis, dissolution feature; cal pal,

palisade calcite.
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lamina to lamina. Carbonates exhibit different Mg and Sr content from

one sample to another and from one lamina fabric to the other. For

example, sparite calcite contains little Mg (’ 0.05 wt%) and Sr (’ 0.05

wt%). It contrasts with Mg-rich drusy calcite (Mg¼0.54 wt%, Sr¼0.05

wt%) and Sr-rich aragonite needles (Mg ¼ 0.08 wt%; Sr ¼ 0.58 wt%)

(Table 3).

Carbon, Oxygen, and Strontium Isotope Compositions

Carbon (C) and oxygen (O) isotope compositions were determined on

13 laminae of sample 32 and 6 laminae from sample 33. The results are

reported in Table 4 and Figure 8. Sample 32 displays variations in d18O
values ranging between –1.22 and –6.13% VPDB and d13C values ranging

between –10.75 and –6.52% VPDB. However, the central part of sample

TABLE 2.—Microscopic description of samples based on petrographic fabrics and mineralogy.

Travertine Site/Name Lamina Petrographic Fabric

28/Mamy Nova lamina 1: contact with substrate Fibrous aragonite

lamina 2: pore filling Needle-like aragonite

32/Gravière lamina 1 and 2: contact with substrate Laminae of recrystallized aragonite bushes and drusy calcite cement

lamina 3 to 13: contact with stream waters Low-gray aragonite bushes and relatively darker spheroids to the top of thin

section with a major structure at lamina 7/8 boundary made of thick dark

organic matrix

33/Irma lamina 1 to 26 Calcite rafts fabric (sparite) and mixed calcite and organic material (micrite)

as laminoid-fenestral fabric

FIG. 5.—Detailed microscopic observations of sample 32 based on thin-section SEM chemical maps. Zone A) Pore spaces are filled with clays as shown by high

concentration of Si, Mg, and Al elements at the transition between laminae 2 and 3. Zone B) Acicular calcium carbonate is approximately oriented toward the surface and

grows from a micritic circular point. A thin film composed of Si, Al, Mg, and O overlies each generation of needle aragonite. Zone C) The transition between laminae 6 and 7

exhibits a variation from Si- and Mg-rich areas in the dark micritic lamina to Si, Mg, and Al-rich micro-oncoid, together with the occurrence of Si, Mg-rich lm-size grain

(serpentine). Zone D) The sparry calcium carbonate in a pore in lamina 7 is haloed by Mg-Si-rich matrix. This lamina is irregularly thick. Some calcium carbonate crystals are

contained in the matrix, the most remarkable example being the rectangular crystal in the dark matrix. A Ca carbonate layer formed over the matrix, first sparry calcite, then

intergrown needle-like aragonite with the Si-Mg-rich matrix in contact with a pore. Zone E) The dark micritic lamina 9 appears to be composed of several rounded carbonates

crystals in a Mg-Si-rich matrix.
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32 is characterized by a nearly constant d18O value with a mean value of

–3.9% (VPDB). Some laminae of sample 33 show an extreme depletion in

both 13C and 18O isotopes, with d18O values ranging from –16.54% to

–10.12% (VPDB) and d13C values from –22.84% to –12.62% (VPDB).

While the 87Sr/86Sr ratio varies between 0.707282 and 0.707994 in

sample 32, it is almost constant in sample 33 with a mean value of

0.70821, which is similar to that of hyperalkaline spring at this site

(0.708164; Table 4). For sample 32, the most radiogenic Sr isotope ratio

FIG. 6.—A, B) microscopy observations of sample 33 in transmitted polarized-light microscopy. C, D) Detail of a raft growth pattern in transmitted polarized-light

microscopy and cathodoluminescence, respectively.

TABLE 3.—Electron microprobe analyses of calcium carbonates.

Site Lamina Petrofabric

Number of

Analysis Mg wt% Sr wt% Ca wt% ln(Mg/Ca) 1 rD ln(Sr/Ca) 1 rD

28 all 260 0.24 0.34 39.47 –6.0 1.8 –5.3 1.5

dark lamina (isopach calcite) 120 0.44 0.05 39.49 –5.1 1.3 –6.8 1.3

light lamina (aragonite fiber) 140 0.08 0.58 39.45 –7.2 1.8 –4.4 0.8

32 all 223 0.29 0.09 39.68 –5.5 1.4 –6.6 1.6

lamina 2 (gothic arch calcite and aragonite bushes) 36 0.20 0.11 39.76 –5.5 1.1 –6.4 1.5

lamina 6 (aragonite bush and calcite cement) 50 0.27 0.16 39.64 –5.7 1.6 –6.2 1.6

lamina 7 (spheroid calcite) 30 0.39 0.03 39.60 –5.1 1.1 –7.1 1.0

lamina 7 (in-filling sparite) 42 0.11 0.07 39.85 –6.6 1.4 –6.7 1.4

lamina 8 (micro-spheroid calcite) 34 0.34 0.07 39.67 –5.1 1.5 –6.6 1.4

lamina 10 (drusy calcite) 31 0.54 0.05 39.55 –4.6 1.0 –6.9 1.1

33 all (spar calcite) 29 0.05 0.05 39.90 –7.1 1.1 –6.7 0.9
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(close to surface-water signature) is measured in lamina 1 at the contact

with the substrate, while the least radiogenic Sr isotope ratio (close to

hyperalkaline spring signature) is measured in lamina 8, located next to a

lm-thick Si- and Mg-rich layer (Table 4).

DISCUSSION

Linking Fabrics and Chemical Composition of Travertines

The distinctive fabrics of aragonite and calcite crystals seem to support the

primary formation of these minerals (Renaut and Jones 1997). Nevertheless, it

is necessary to decipher whether their morphologies express the environmental

conditions at which they formed, or if they result from post-formation

recrystallization. Divalent cations in aqueous solution (e.g., Mg, Sr, Ba, Mn,

and Fe) may substitute for Ca in the crystal lattice during precipitation and

recrystallization of carbonate, and when compared to their lamina fabric, can

help elucidate primary versus secondary mineral phases. Our approach is

based on previous karst waters and speleothem studies which showed that a

constant slope in a ln(Sr/Ca) vs. ln(Mg/Ca) plot is due to a low Sr and Mg

partition coefficient in calcite (Huang et al. 2001; Fairchild et al. 2000;

Fairchild et al. 2006; McMillan et al. 2005; Johnson et al. 2006; Mattey et al.

2009), where dissolved Mg and Sr ions preferentially remain in solution while

Ca precipitates as calcium carbonate. This chemical trend applied to

speleothems has been named ‘‘prior calcite precipitation’’ (PCP). Based on

a worldwide study of speleothems, Sinclair (2011) and Sinclair et al. (2012)

were able to distinguish co-variation of Mg, Ca, and Sr concentrations that

truly reflect environmental conditions compared to those induced by post-

formation recrystallization. When applied to our samples as shown in Figure

7, the average ln(Mg/Ca) and ln(Sr/Ca) ratios of carbonate, without any

distinction between carbonate fabrics, plot on or in error bars of the PCP slope

(Fig. 7A), suggesting early calcite–water interaction, and not recrystallization.

However, the situation is more complicated when this approach is applied

locally to the various carbonate fabrics of a travertine sample. For instance,

in sample 28 (Fig. 7B), the dark sparitic lamina plots underneath the PCP

slope whereas the white needle-like aragonite fabric plots above the PCP

trend towards the range of calcite recrystallization. The combination of fabric

and chemical compositions suggests at least partial carbonate recrystalliza-

tion. Therefore, the geochemical record for climatic reconstruction is less

useful for the cemented gravels in sample 28. Alternatively, all of the various

carbonate fabrics of sample 32 plot slightly underneath the PCP trend (Fig.

7C), due potentially to different mixing proportions between hyperalkaline

springs and runoff waters, which supply significant amounts of Mg and

bicarbonate ions in solution compared to lack of supply of Mg from the

hyperalkaline waters (Chavagnac et al. 2013b). Here, higher Mg content in

carbonates suggests either an increase in runoff water proportion or a

reduction of hyperalkaline spring-water influence. Finally, sparite calcite

crystals of sample 33, which are formed at the air–water interface, show

ln(Mg/Ca) and ln(Sr/Ca) ratios coherent with PCP processes, recording

paleo-environmental conditions at the time of their precipitation.

Isotopic Records in Travertine

If well preserved, the carbon and oxygen isotopes can record

environmental information in carbonate deposits (e.g., Darling et al.

2005; Lachniet 2009; Brady et al. 2010). The d13C values can be used to

infer the origin of the carbon source, i.e., atmospheric CO2 and/or DIC

 
FIG. 7.—Cross-plots of ln(Sr/Ca) vs. ln(Mg/Ca) according to Sinclair (2011) and

Sinclair et al. (2012), A) the average bulk calcium carbonate composition of samples

28, 32, and 33, B) two fabrics average compositions of sample 28, and C) average

chemical composition of the laminae defined for sample 32 (including the different

fabrics identified).
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from runoff waters. The d18O is commonly used as a proxy for temperature

and rainfall which is controlled by evaporation, condensation, climate,

altitude, latitude, and distance from seawater (Dansgaard 1964).

Figure 8 presents the variation in d18O values as a function of d13C
values for all laminae, and depicts two different trends. For sample 32, the

d18O values are almost constant, while the d13C values are variable. A

positive correlation is observed between atmospheric signature and calcite

crust values for sample 33. These two distinctive trends can be interpreted

through two different mechanisms: (1) hydration-hydroxylation reactions

(CO2(aq) þ H2O � HCO3
–
(aq) þ Hþ, and CO2(aq) þ OH– � HCO3

–
(aq),

respectively) or (2) a kinetic effect during diffusion and dissolution of

atmospheric CO2 at the air–water interface (Neal and Stanger 1984; Clark

and Fontes 1990; Clark et al. 1992).

For sample 32, the d18O values remain nearly constant for all laminae,

apart from three, with variable d13C values (Fig. 8). The low occurrence of

aragonite (less than 10%; Chavagnac et al. 2013a) does not seem to affect

the oxygen isotope composition significantly, as the latter has a nearly

constant value throughout the laminae. Constant d18O values likely

indicate that hydration and hydroxylation reactions completely buffer the

oxygen isotope composition of water (i.e., equilibrium state). Oxygen

isotope equilibrium between HCO3
–
(aq) and H2O is achieved, and therefore

d18O values are not affected by kinetic effects (Mickler et al. 2006).

Therefore, it is possible to calculate the equilibrium temperature using the

following equation (Grossman 2012 and references therein):

T ¼ 15:7� 4:363ðd18Ocal � d18OwaterÞ þ 0:123ðd18Ocal � d18OwaterÞ2
ð1Þ

Where T is temperature (8C), d18Ocal (carbonate) is given relative to the

VPDB standard and d18Owater is the oxygen isotope composition of the

water (in SMOW) (Table 4). A value of –1.6% (SMOW) was chosen for

the d18Owater, in line with water being a mixture between groundwater from

the ophiolite aquifer at –1.0 to –1.4% (SMOW, Matter et al. 2005) and

surface runoff waters at –1.6 to –2.41% (SMOW, Weyhenmeyer 2000).

Sample 32 records wide temperature variations between 14.1 and 37.98C
(mean temperature of 25.4 6 118C). The lowest temperature of 14.18C is

striking. Nevertheless, it is not completely inconsistent with a drastic

TABLE 4.—Thickness (cm), d18O (VPDB), d
13C (VPDB) and

87Sr/86Sr ratios of individual laminae of samples 32 and 33. Calculated values of mixing

contribution of hyperalkaline springs in % and paleotemperature are also reported (see text for details).

Site-Lamina Number Thickness d13C PDB % d180 SMOW % d 18O PDB % 87Sr/86Sr (2rE)

% Hyperalkaline

Water in the

Mixing Area

Calculated

Paleotemperature

in 8C

Site 32-1 0.4 –7.71 29.48 –1.39 0.707994 (11) 33.3 14.8

Site 32-2 0.2 –8.08 29.66 –1.22 0.707947 (6) 35.9 14.1

Site 32-3 0.4 –6.52 26.66 –4.12 0.707813 (7) 43.5 27.5

Site 32-4 0.5 –6.91 26.84 –3.96 0.707761 (9) 46.5 26.6

Site 32-4 duplicata –6.69 26.86 –3.93 26.5

Site 32-5 0.5 –7.26 27.1 –3.7 0.707784 (8) 45.2 25.4

Site 32-5 duplicata –7.36 26.56 –4.23 28.0

Site 32-6 0.7 –7.89 26.99 –3.81 0.707749 (10) 47.2 25.9

Site 32-7 0.8 –7.86 27.23 –3.57 0.707695 (12) 50.3 24.8

Site 32-8 0.7 –10.75 27.31 –3.49 0.707282 (12) 74.5 24.4

Site 32-9 0.3 –10.52 27.14 –3.67 0.707390 (9) 68 25.2

Site 32-10 0.2 –9.77 26.66 –4.13 0.707513 (8) 60.9 27.5

Site 32-11 0.2 –9.24 27.13 –3.68 0.707743 (10) 47.5 25.3

Site 32-12 0.2 –9.53 26.60 –4.18 0.707419 (8) 66.3 27.8

Site 32-13 0.6 –8.94 24.60 –6.13 0.707438 (8) 65.3 37.9

Site 33-1 1 –12.62 20.48 –10.12 0.708163 (11) n.d. n.d.

Site 33-2 1 –15.53 19.69 –10.89 0.708214 (7) n.d. n.d.

Site 33-6 1.7 –21.27 16.03 –14.44 0.708197 (6) n.d. n.d.

Site 33-9 0.5 –20.26 15.64 –14.81 0.708260 (9) n.d. n.d.

Site 33-14 1.2 –22.84 14.05 –16.36 0.708209 (8) n.d. n.d.

Site 33-20 2 –21.96 13.86 –16.54 0.708177 (9) n.d. n.d.

spring 33bW1 n.m. n.m. n.m. 0.708164 (8) n.d. n.d.

spring 32W1 n.m. n.m. n.m. 0.706686 (8) n.d. n.d.

spring 33W1 (pH ¼ 9.8) n.m. n.m. n.m. 0.708614 (48) n.d. n.d.

spring 33W1 (pH ¼ 10.5) n.m. n.m. n.m. 0.708522 (18) n.d. n.d.

Calcite raftsa –25.5 n.m. –15.1 n.m. n.d. n.d.

–25.6 –16.5 n.d. n.d.

–25.8 –16.8 n.d. n.d.

–24.8 –16.9 n.d. n.d.

Rain waterb –7 –0.55 to –2.95 n.d. n.m. n.d. n.d.

Ophiolite aquiferc –13.6 to –15.6 –1.0 to –1.4 n.d. n.m. n.d. n.d.

Surface water from wadi

samail catchmentd –11.9 to –13.8 –1.60 to –2.41 n.d. 0.70844 to 0.70870 n.d. n.d.

a Clark and Fontes (1992).
b Matter et al. (2005) and Weyhenmeyer (2000).
c Matter et al. (2005).
d Weyhenmeyer et al. (2002).

n.d. not determined.

n.m. not measured.
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cooling of 6.5 6 0.68C for late Pleistocene Oman groundwaters

(Weyhenmeyer et al. 2000). Unfortunately, the lack of sample ages

severely restricts the interpretation of these paleo-temperatures in terms of

a temporal climatic record.

In contrast, d18O and d13C values in sample 33 are close to calcite crust

(sparite) values reported in Clark et al. (1992) (Fig. 8). Calcite precipitation

is induced by evaporation and atmospheric conversion of gaseous CO2 into

carbonated species at the air–water interface. In this context, the coupled

depletions in 18O and 13C result from both hydroxylation reactions and

kinetic effects based on the difference in diffusion rates of 13CO2 and
12CO2 (Dietzel et al. 1992; Clark et al. 1990).

As a result, stable-isotope compositions alone are seriously limited to

assess past climatic conditions without additional information on carbonate

fabric and chemical composition. However, d13C values may be useful to

elucidate the sources of carbon supply in this particular DIC-depleted

environmental context of travertine formation.

Hyperalkaline Spring vs. Surface Runoff Waters and the Climatic

Record

Further information about the climatic record may be provided by

strontium isotope composition because each geological formation and

solution exhibits distinctive 87Sr/86Sr ratios in this region. To confirm a

potential contribution of surface runoff waters in travertine formation, the

mixing equation of Albarède (1995) was used:

ð87Sr=86SrÞM ¼
��

fA*SrA*ð87Sr=86SrÞA
�

þ
�
ð1� fAÞ*SrB*ð87Sr=86SrÞB

��
=
�
ðfA*SrAÞ

þ ð1� fAÞ*SrB
�

ð2Þ

where A and B stand for two components, i.e., surface runoff and

hyperalkaline waters, fA the proportion of component A in the mixture, SrA
and SrB are the Sr concentration of components A and B, respectively, and

M is a mixture of these two components characterized by (87Sr/86Sr)M
isotope composition. In our study, the measured 87Sr/86Sr from each laminae

of travertine represents the mixture M. For the calculations, Sr concentra-

tions of 5.7 lmol l–1 and 6.1 lmol l–1 and 87Sr/86Sr ratios of 0.70860 and

0.706686 were taken for surface runoff waters (Weyhenmeyer 2000) and

hyperalkaline waters, respectively (Chavagnac et al. 2013b). Sr concentration

and isotope composition of hyperalkaline waters are considered constant, as

the springs are perennial. The results are presented in Table 4.

Figure 9A illustrates the variation in 87Sr/86Sr ratios, d18O and d13C
values as a function of laminae thickness throughout sample 32. Strikingly,

the Sr isotope signature co-varies with the d13C values throughout sample

32, whereby the contribution of surface runoff waters varied from 25 to

67%. While the contribution of each end member is almost constant (about

45–50%) in laminae 3 to 7, a 25% decrease is noted at the transition

between laminae 7 and 8, where the 87Sr/86Sr ratios decrease from

0.707695 to 0.707282 (Fig. 9). This observation seems to indicate a

significant change in the hydrological regime where the contribution from

surface water becomes subsidiary to the spring water. This is also sustained

by the strong accumulation of Si- and Mg-rich organic material observed in

microscopic scale at this transition, suggesting less surface runoff water. In

comparison, the co-variation in Sr and C isotope compositions from

laminae 8 to 11 indicates an increasing contribution of surface runoff water

from 25 to 34% (Fig. 9).

Additionally, the variation in d18O values of sample 32 are similar to

what was obtained for a speleothem in Hoti cave (from –1.39% to –6.13%
for sample 32, from –2 to –6% for the Hoti Cave’s speleothem; Burns et al.

2001; Fleitmann et al. 2007). For the speleothem with a constant

FIG. 8.—Plot of d18O values vs. d13C values of

distinctive laminae of samples 32 and 33.

Atmospheric CO2 has a d13C value of –7%.

Calcite crust (black square): Clark et al. 1992;

Oman travertines (cross): Clark and Fontes 1990,

Mervine et al. 2014; Surface runoff waters (black

triangle): Weyhenmeyer 2000; Ophiolite aquifer

(black dot) and rain water (white triangle): Matter

et al. 2005.
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temperature in the cave, the reason for such variations of the d18O values

are interpreted as being due to the northward shift of the ITCZ (Burns et al.

2001; Fleitmann et al. 2007). However, in our study we do not have any

temporal constraint of travertine formation; it is therefore difficult to infer

with confidence the d18O signature of the dominating rain waters. So

because neither temperature nor sources are well constrained, in terms of

the past climatic record, we can conclude only that the contribution of

surface waters in the mixing area has fluctuated through time.

For comparison, all laminae of sample 33 exhibit 87Sr/86Sr ratios very

close to the signature of hyperalkaline spring water (i.e., 0.708164),

indicating no evidence of mixing with surface waters (Fig. 9B). In contrast,

large variations in d13C values are observed (between –12.6 and –22.8%
VPDB, Fig. 9B). In this sample, the kinetic effect induced by the diffusion

of CO2(g) at the air–water interface is the major process modifying the C

isotope compositions. The unique source of C in sample 33 is atmospheric

CO2(g), i.e., a potentially arid climate, as there is no evidence of surface

runoff waters based on both 87Sr/86Sr ratios and the link between carbonate

fabric and chemical composition.

In summary, the stable-isotope and radiogenic-isotope signatures of

laminae document the paleo-activity of hyperalkaline spring waters

through time, and contribute to a better understanding of the mechanisms

leading to the formation of travertine in a DIC-depleted environment.
87Sr/86Sr ratios have shown to be a useful tracer for quantifying surface

runoff water contribution in this setting.

DIC-Depleted vs. DIC-Enriched Environment for Continental

Carbonate Formation

In Oman, the close relationship between the occurrence of travertine and

the DIC-depleted hyperalkaline spring waters contrasts radically with most

of continental travertines that precipitate from DIC-enriched waters

(Capezzuoli et al. 2014). A fundamental question arises from this

particular mode of formation: What do the stable-isotope compositions

of carbonates record when they are formed in such contrasted DIC

environments?

Figure 10 compares the variations in d13C and d18O values obtained in

this study with data presented in the literature and obtained on both DIC-

depleted and DIC-enriched environments. Each carbonate deposit defines

different fields, although some data from Oman travertines overlap with

tufa. All carbonates formed under continental DIC-depleted hyperalkaline

conditions define a linear and positive trend between the negative values of

d13C and d18O values. This is in line with the data acquired on carbonate

deposits found at the Liguria hyperalkaline waters (Teboul et al. 2016). In

addition, carbonates associated with submarine hyperalkaline springs (e.g.,

the Lost City hydrothermal field located at 308 N along the Mid-Atlantic

Ridge, 800 m water depth; Kelley et al. 2001), exhibit positive d13C and

d18O values, at the top end of the linear trend defined by carbonates found

at continental DIC-depleted hyperalkaline conditions. Their stable-isotope

signature is consistent with marine carbonates, for which the main source

of carbon is provided by seawater bicarbonate ions. In general terms, the

FIG. 9.—Variations of d18O and d13C values

and 87Sr/86Sr ratio along the A) sample 32 and B)

sample 33. Sr-isotope composition of surface

runoff water are from Weyhenmeyer 2000.
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variation of stable-isotope signatures reflects the source of carbon supply

and the processes that led to carbonate formation, i.e., hydration and

hydroxylation reactions and/or diffusion of CO2(g) at the air–water

interface, rather than climatic records.

For DIC-enriched environment, Gandin and Capezzuoli (2008)

demonstrated that calcareous tufa exhibits negative d13C and d18O values

that represent outgassing of meteoric and soil derivation (Pentecost 2005)

and cool temperature and saturation levels of spring water (Chafetz and

Lawrence 1994), respectively. Photosynthetic effects associated with

development of microorganisms remained very limited. The C and O

stable-isotope compositions reflect the signature of the water from which

the calcareous tufa derived, i.e., the local climatic regime. Tufas present

negative but intermediate stable-isotope compositions between ‘‘DIC-

depleted’’ travertine and calcareous tufa. This reflects the physicochemical

signature of karstic water and microorganism activity (Capezzuoli et al.

2014). Finally, ‘‘DIC-enriched’’ travertines are characterized by positive

d13C but negative d18O values, which illustrate the complex interplay

between the source of groundwater thermally heated and tectonic and

volcanic activity. In the latter case, little information can be obtained for

the past climatic record, but it provides an innovative way to monitor past

volcanic carbon dioxide emissions (Capezzuoli et al. 2014).

To summarize, carbonate deposits have a great potential for better

defining the physicochemical environmental conditions and the processes

that led to their formation. In their study of calcitic–aragonitic travertine–

tufa deposits (DIC-enriched environment), Teboul et al. (2016) argue that

combining geochemical tracers (Ba and Sr among others) with stable-

isotope compositions provide valuable constraints on hydrogeological and

paleo-hydrogeological circulation. Based on the present study (DIC-

depleted environment), the combination of geochemical tracers with fabric

description provides a crucial indicator of crystallization versus recrystal-

lization at the time of carbonate formation, and thus a potential proxy of

past environmental conditions. When these observations are combined

with isotopic tracers such as O, C, and Sr, then the environmental

conditions can be better defined in terms of surface-runoff contribution and

source of carbon supply.

Sequestration of Atmospheric CO2 during Travertine Formation

Precipitation rate of travertine from hyperalkaline springs is variable,

and will depend on the amount of calcium available, spring flow rate, and

temperature, among other parameters (Pentecost 2005). The amount of

atmospheric CO2(g) uptake and calcium carbonate amount sequestered in

travertine can be estimated either based on the volume and age of the

travertine terraces (e.g., Mervine et al. 2014), or from the chemistry and

flow rate of spring waters. In the latter case, the assumption is made that

calcite precipitation occurs until thermodynamic equilibrium with

atmospheric PCO2 is reached, or evaporation is total. Calcite was taken

as the reference for calculations as it is the main mineral found in travertine

(it is also the more stable mineral versus aragonite over geologic time).

Volume of calcite precipitate was estimated for sites 28, 32, and 33 based

on average chemistry analyses (data from this study and Pentecost 2005)

and flow rate at spring (unpublished data), according to the following

equation:

Vtravertine ¼ Vcal

1� /
¼ Q3 vcal

1� /

Z
t

DCa dt ð3Þ

Vtravertine is the volume of precipitated travertine (which can also be

expressed as a rate, i.e., m3 yr–1, when divided by time t), Vcal is the

volume of precipitated calcite, / is the porosity of travertine, tcal is the

molar volume of calcite (m3 mol–1), and DCa is the difference in calcium

concentration between the spring ([Cai]) and the calcium-depleted solution

FIG. 10.—Plot of d18O values vs. d13C values

of distinctive laminae (travertine 32 and 33). a

Mervine et al. 2014; b Caton 2009, Janssen et al.

1999; c Cremaschi et al. 2010, Pola et al. 2014,

Chafetz and Lawrence 1994, Guo et al. 1996, Kele

et al. 2008, Fouke et al. 2001; d O’Neil and Barnes

1971, Schwarzenbach et al. 2013, Teboul et al.

2016; e Früh-Green et al. 2003, Dubinina et al.

2007.
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(equal to [Caeq] when thermodynamic equilibrium is reached, or to [Caev]

¼ 0 M when evaporation is total). [Caeq] was calculated from geochemical

modeling using CHESS (Van der Lee 1998). First, the chemical

equilibrium of the solutions at the spring was calculated using the CHESS

database and the Debye-Hückel model of activity correction. Charge

balance was set on OH– and DIC was imposed through a low fugacity of

CO2 (resulting in values from 10–12 to 3 3 10–10 atm). Due to the low

amount of DIC, all the discharge waters are undersaturated with respect to

calcite. The calculated pH (pHi) is in good agreement with values

measured in the field (Table 5). Secondly, a fugacity of CO2 of 2.83 10–4

atm was imposed to mimic equilibrium with Quaternary interglacial

atmospheric PCO2. Dissolution of CO2 from the atmosphere into the waters

causes oversaturation with respect to calcite, aragonite, and mono-

hydrotalcite (except for site 33, where water remains undersaturated with

mono-hydrotalcite). The saturation index (SI) of calcite is higher than 1,

enabling precipitation, but it is worth noting that SI for site 33 is smaller

than the critical supersaturation of 4–10 reported in Pentecost (2005);

there, precipitation must be triggered by evaporation, which is in

agreement with the observation of calcite rafts. Given an average porosity

of 35% (Noiriel, unpublished data), the volume of travertine deposit varies

for site between ’ 0.1 and ’ 10 m3 yr–1. Calculation assuming about 50

travertine deposits in Oman for a cumulative flow rate of 25 l s–1 (i.e., Q¼
0.5 l s–1 in average), an average [Cai]¼ 1.67 mM, and an estimate of the

total travertine area in the Samail Ophiolite of 107 m2 (Kelemen and Matter

2008; Mervine et al. 2014) gives a deposition rate of ’ 0.05 mm yr–1

sequestering ’ 5 104 kg CO2 yr
–1. This value is three orders of magnitude

smaller than the one estimated by Mervine et al. (2014) on the same

number of travertine deposits. As [Cai] is generally between 1 and 2 mM

for hyperalkaline springs (Chavagnac et al. 2013b), the flow rate represents

the largest uncertainty in the calculation, which could have been higher in

the past, leading to a higher deposition rate (regardless, it is not likely to be

three orders of magnitude higher than actual). CO2 can also be transformed

into organic matter through biological processes (e.g., photosynthesis),

although its content in travertine does not generally exceed a few percent

(Pentecost 2005). On the other hand, a lower PCO2 (e.g., during Quaternary

glacial periods) or a saturation index higher than 0 (i.e., equilibrium not

reached and Ca being exported through streams after mixing with runoff

waters) will counterbalance the deposition rate.

From equilibrium calculations, it appears that the best conditions to

store CO2 as calcium carbonate depend on initial Ca concentration and

surface waters mixing with hyperalkaline springs. It seems clear that the

rate of sequestration of atmospheric CO2 also depends on the mechanism

of precipitation, which should be accounted for large-scale evaluation.

CONCLUSION

A detailed multi-disciplinary approach, from macroscopic to micro-

scopic scale, has been accomplished on three travertine samples formed

under DIC-depleted hyperalkaline environments in order to 1) assess the

relationship between the petrologic features and fabrics and the

geochemical and isotopic signatures, and 2) discuss the potential of these

deposits as proxies for past climatic record and sequestration of

atmospheric CO2. The samples illustrate two distinct mechanisms of

calcium carbonate formation, either from mixing of hyperalkaline and

surface runoff waters (sample 28 and 32) or from dissolution of

atmospheric CO2(g) into hyperalkaline waters (sample 33).

We conclude:

� Travertines as a whole are characterized by chemical compositions,

expressed in terms of Mg, Ca, and Sr contents, consistent with ‘‘prior

calcite precipitation’’ (PCP) process, i.e., the record of environmental

conditions at the time of their formation. However, by comparing trace-

element concentrations from one fabric to the other (sparite, drusy,

spheroid calcite to aragonite micro-stalactic and needle-like aragonite), it

is possible to distinguish between recrystallization conditions (sample 28)

and temporal variation of environmental conditions (samples 32 and 33).
� The linear and positive variations in d18O and d13C values between

laminae reflects two different mechanisms: (1) hydration-hydroxylation

reactions from which a paleo-temperature of water can be extracted

(sample 32) and/or (2) kinetic effects induced by diffusion of CO2 at the

air–water interface (sample 33).
� The combined variations in O, C, and Sr isotope signatures between

laminae document the paleo-activity of hyperalkaline spring and surface

runoff waters through formation time scales. The 87Sr/86Sr ratio

represents a useful tracer for quantifying surface runoff water

contribution, and acts as an indicator of rainfall intensity.
� In the framework of continental carbonates, travertine formed in a DIC-

depleted environment exhibit d18O and d13C values that contrast to those

formed in a DIC-enriched environment. With the prospect of assessing

the past climatic record, it appears necessary 1) to combine the detailed

petrological observations with chemical compositions at the lamina to

unravel crystallization versus recrystallization processes, and 2) to

corroborate radiogenic and stable-isotope analyses for quantifying

precipitation intensity.
� Finally, the influence of climate should be addressed when quantifying

carbonation rates, as shown by the range of CO2 sequestered in the

different scenarios illustrated by our samples (from 9 kg CO2 yr
–1 to 522

kg CO2 yr
–1).

SUPPLEMENTAL MATERIAL

An Appendix is available from JSR’s Data Archive: http://sepm.org/pages.

aspx?pageid¼229.
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TABLE 5.—Results of geochemical modeling with CHESS giving an

estimate of CO2 uptake and travertine deposits rate (per year). Input data:

[CO2]¼ 280 ppm, porosity ¼ 0.35, data of [Cai] from Chavagnac et al.

(2013b) and Q from (Chavagnac, unpublished data).

Site 28 Site 32 Site 33

Average for

50 sites

Q (l s–1) 0.5 0.2 0.1 25

[Cai] spring (M) 1.18 10–3 1.88 10–3 1.09 10–4 1.67 10–3

pHi (modelling result) 11.0 11.5 11.6

SI calcite (log) 1.34 1.73 0.40

SI aragonite (log) 1.19 1.58 0.25

SI Monohydrotalcite (log) 0.46 0.87 –0.14

[Caeq] (M) 2.18 10–4 1.24 10–4 4.53 10–5 1.29 10–4

Hypothesis 1: thermodynamic equilibrium is reached

CO2 sequestred (kg yr–1) 666 487 9 5.4 104

Vtravertine /t (m3 yr–1) 8.6 6.3 0.1 692

Hypothesis 2: evaporation is total

CO2 sequestred (kg yr–1) 817 522 15 5.8 104

Vtravertine /t (m3 yr–1) 10.5 6.7 0.2 749
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QUÉMENEUR, M., ERAUSO, G., POSTEC, A., QUENTAS-DOMBROWSKI, L., PAYRI, C., AND

PELLETIER, B., 2014, Fluid chemistry of the low temperature hyperalkaline hydrothermal

system of Prony Bay (New Caledonia): Biogeosciences, v. 11, p. 5687–5706.

NEAL, C., AND STANGER, G., 1983, Hydrogen generation from mantle source rocks in Oman:

Earth and Planetary Science Letters, v. 66, p. 315–320.

NEAL, C., AND STANGER, G., 1984, Calcium and magnesium hydroxide precipitation from

alkaline groundwaters in Oman, and their significance to the process of serpentinization:

Mineralogical Magazine, v. 48, p. 237–241.

O’NEIL, J.R., AND BARNES, I., 1971, C13 and O18 compositions in some fresh-water

carbonates associated with ultramafic rocks and serpentinites: western United States:

Geochimica et Cosmochimica Acta, v. 35, p. 687–697.

PALLISTER, J., AND HOPSON, C., 1981, Samail ophiolite plutonic suite: field relations, phase

variation, cryptic variation and layering, and a model of a spreading ridge magma

chamber: Journal of Geophysical Research, v. 86, p. 2593–2644.

PAUCKERT, A.N., MATTER, J.M., KELEMEN, P.B., SHOCK, E.L., AND HAVIG, J.R., 2012, Reaction

path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the

peridotite of the Samail Ophiolite, Sultanate of Oman: Chemical Geology, v. 330–331, p.

86–100.

PENTECOST, A., 2005, Travertine: Berlin, Springer-Verlag, 445 p.

PENTECOST, A., AND VILES, H., 1994, A review and reassessment of travertine classification:
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Résumé 

Cette thèse présente une étude détaillée de la composition des fluides de haute température du champ hydrothermal de Lucky Strike (37°N, 
dorsale médio atlantique) s’appuyant sur 3 campagnes d’échantillonnage réalisées dans le cadre de l’observatoire fond de mer EMSO–
Açores. Ce champ hydrothermal s’est développé autour d’un lac de lave fossile bordé au Nord-Ouest, Nord Est et Sud Est par des cônes 
volcaniques plus anciens. En 2013, la découverte du site hydrothermal de Capelinhos à l’Est, et présentant des compositions de fluides 
inédites à Lucky Strike (concentration faible en Cl et forte en Fe et Mn), nous permet de proposer un nouveau modèle de circulation 
hydrothermale basé sur l’application de géothermobaromètres (Si ; Si–Cl ; Fe–Mn) chimiques sur 13 évents hydrothermaux. Nous avons 
défini 5 groupes de sites selon leur chlorinité et leur position par rapport au lac de lave. Les fluides de Capelinhos, dominés par la phase 
vapeur, sont rapidement extraits de la zone de séparation de phase (estimée à 2600 m sous le plancher océanique). Les fluides à proximité 
du lac de lave, avec des chlorinités variables, suggèrent un rééquilibrage à des pressions et températures plus faibles qu’à Capelinhos, 
cohérent avec des processus de refroidissement conductif et/ou d’entrainement de saumures prenant place lors de la remontée des fluides 
jusqu’à la base de la couche 2A. La fluctuation de la chlorinité témoigne de la variabilité du temps de résidence du fluide dans la zone de 
remontée, et ses relations avec les caractéristiques physiques de la croûte océanique. Nous avons évalué la variabilité temporelle de la 
composition des fluides collectés au cours des campagnes effectuées entre 2009 et 2015. Deux échelles de temps sont mises en évidence. 
(1) l’échelle de l’échantillonnage, i.e. de l’heure, répond à des phénomènes de subsurface, et révèle qu’un fluide hydrothermal refroidi 
conductivement (T<150°C) est stocké dans la roche poreuse entourant le site de décharge. (2) l’échelle de temps pluri-annuelle montre une 
fluctuation des conditions de P et T apparentes de la zone de séparation de phase et du degré d’altération du substratum dans la zone de 
réaction. Les variations intersites du rapport Ca/Na (indicateur du degré d’albitisation) sont dues à la séparation de phase, à l’exception des 
sites du Sud–Est du lac de lave qui indiquent un degré d’altération plus élevé. La concentration en Li et sa composition isotopique indiquent 
que le basalte du substratum est relativement frais avec des rapports W/R proches de 1 pour tous les groupes, avec des δ7Li du fluide 
identiques au substratum. Pour le Sr nous calculons des rapports W/R plus élevés, autour de 7-8, qui sont dus au Sr de l’eau de mer initiale 
qui est partiellement stocké et à la formation de minéraux secondaires (l’albite et l’anhydrite) lors des interactions eau–roche dans le faciès 
schiste vert. La faible teneur en métaux des fluides situés autour du lac de lave est probablement due à un piégeage en subsurface, équivalent 
à ~65% du Fe mobilisé dans la zone de réaction (basé sur les teneurs des fluides de Capelinhos). La variabilité de chlorinité des fluides de 
Lucky Strike offre l’opportunité d’étudier le comportement des terres rares à l’échelle d’un site hydrothermal. Ainsi, nous montrons l’effet 
de la séparation de phase sur les terres rares légères et lourdes ainsi que le lien entre l’Eu et le cycle géochimique du Sr. Les terres rares 
dissoutes dans le panache hydrothermal montrent une perte au cours du mélange ainsi que des phénomènes de redissolution visible via la 
signature isotopique en Nd. Cette modification des compositions isotopiques en Nd de l’eau de mer profonde est similaire au « boundary 
exchange » observé aux interfaces océan–plateforme continentale. Au vue de la répartition des champs hydrothermaux sur les dorsales 
océaniques, ce phénomène pourrait avoir un impact sur le bilan océanique du Nd et donner lieu à un phénomène de « ridge exchange ». 

Mots–clés : Fumeur noir ; séparation de phase ; isotope ; circulation hydrothermale ; variabilité spatio–temporelle. 

Abstract 

This thesis present a detailed study of the composition of high temperature fluid from the Lucky Strike hydrothermal field (37°N, Mid 
Ocean Ridge) collected during three sampling campaigns within the framework of the deep sea observatory EMSO-Azores. The 
hydrothermal field has developped around a fossil lava lake framed by three ancient volcanic cones. In 2013, the discovery of a new active 
site to the East of the system, and presenting an unprecedented fluid composition at Lucky Strike (low Cl concentration and high Fe and 
Mn concentration), lead to a new model of hydrothermal circulation based on chemical geothermobarometer (Si; Si–Cl) and 
geothermometer (Fe–Mn) applied to 13 venting sites. We defined 5 groups of sites based on their chlorinity and location around the lava 
lake. It appears that vapor-dominated Capelinhos fluids were extracted relatively fast from the phase separation zone (estimated at 
~2600mbsf). Nevertheless, fluids in the vicinity of the lava lake, both vapor and brine dominated, display P and T conditions of equilibration 
lower than for Capelinhos fluids. This highlights on-going equilibration process through conductive cooling and/or brine entrainment in 
the upflow zone up to the layer 2A of the oceanic crust. Chlorinity variations highlight the varying residence time in the upflow of the 
fluids between vents which depends on physical characteristics of the crust. We studied the temporal variability of fluid composition 
collected between 2009 and 2015. Two time scales have been evidenced. The first is the sampling scale, i.e. ~1h, and corresponds to 
subsurface processes indicating that a hydrothermal fluid, conductively cooled (T<150°C), was stored in the porous substratum close to 
the discharge. The second is at the scale of the year. It shows fluctuations of P and T conditions in the phase separation and different degree 
of alteration of the substratum in the reaction zone. Intersites variations of Ca/Na ratios (proxies for albitisation) are related to phase 
separation expected the South Eastern sites that display a more altered substratum. To avoid this issue, we use Li and Sr isotopes which 
are not affected phase separation.  Li concentration and isotopic composition indicates that basalt substratum is relatively fresh with W/R 
ratio close to 1 calculated for all groups with δ7Li of fluid equivalent to substratum. Sr concentration and isotopic composition suggest 
higher W/R ratio (~7–8) because of seawater Sr partially removed in the recharge. Moreover, other parameters are at play such as secondary 
mineral formation (albite, anhydrite) during water rock interaction in the greenschist facies. Because the basalt is relatively fresh, the low 
metal content in the fluid around the lava lake is due to storage, in the subsurface, of approximately ~60–70% of Fe that is mobilized in 
the reaction zone compared to Fe–Mn rich Capelinhos fluids. Furthermore, the Cl variability from the fluids at Lucky Strike brings a unique 
opportunity to study the REE distribution from the reaction zone to the discharge into the deep ocean. We show that the LREE are 
preferentially concentrated into the brine phase. Furthermore, the Eu is linked to the Sr geochemical cycle. Dissolved REE from buoyant 
plume fluids highlight a scavenging effect. The Nd isotopic compositions indicate redissolution process. This Nd isotopes modification of 
the deep seawater is similar to the process of “boundary exchange” that occurs at the ocean/continents interface. Considering the global 
distribution of submarine hydrothermalism, the Nd modification at the ridge could have an impact on the global Nd cycle in the oceans 
and act as a “ridge exchange”. 

Keywords: Black Smoker; phase separation; isotope; hydrothermal circulation; time-serie. 

 


