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Abstract

Reconstructing the 3D shape of objects from multiple images is an important goal in computer

vision and has been extensively studied for both rigid and non-rigid (or deformable) objects.

Structure-from-Motion (SfM) is an algorithm that performs the 3D reconstruction of rigid

objects using the inter-image visual motion from multiple images obtained from a moving

camera. SfM is a very accurate and stable solution. Deformable 3D reconstruction, however,

has been widely studied for monocular images (obtained from a single camera) and still

remains an open research problem. The current methods exploit visual cues such as the

inter-image visual motion and shading in order to formalise a reconstruction algorithm. This

thesis focuses on the use of the inter-image visual motion for solving this problem. Two

types of scenarios exist in the literature: 1) Non-Rigid Structure-from-Motion (NRSfM) and

2) Shape-from-Template (SfT). The goal of NRSfM is to reconstruct multiple shapes of a

deformable object as viewed in multiple images while SfT (also referred to as template-based

reconstruction) uses a single image of a deformed object and its 3D template (a textured 3D

shape of the object in one configuration) to recover the deformed shape of the object.

We propose an NRSfM method to reconstruct the deformable surfaces undergoing iso-

metric deformations (the objects do not stretch or shrink under an isometric deformation)

using Riemannian geometry. This allows NRSfM to be expressed in terms of Partial Differ-

ential Equations (PDE) and to be solved algebraically. We show that the problem has linear

complexity and the reconstruction algorithm has a very low computational cost compared to

existing NRSfM methods. This work motivated us to use differential geometry and Cartan’s

theory of connections to model NRSfM, which led to the possibility of extending the solution

to deformations other than isometry. In fact, this led to a unified theoretical framework for

modelling and solving both NRSfM and SfT for various types of deformations. In addition, it

also makes it possible to have a solution to SfT which does not require an explicit modelling

of deformation. An important point is that most of the NRSfM and SfT methods reconstruct

the thin-shell surface of the object. The reconstruction of the entire volume (the thin-shell

surface and the interior) has not been explored yet. We propose the first SfT method that

reconstructs the entire volume of a deformable object.
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Resumé

La reconstruction 3D d’objets à partir de plusieurs images est un objectif important de la

vision par ordinateur. Elle a été largement étudiée pour les objets rigides et non rigides (ou

déformables). Le Structure-from-Motion (SfM) est un algorithme qui effectue la reconstruc-

tion 3D d’objets rigides en utilisant le mouvement visuel entre plusieurs images obtenues à

l’aide d’une caméra en mouvement. Le SfM est une solution très précise et stable. La recon-

struction 3D déformable a été largement étudiée pour les images monoculaires (obtenues à

partir d’une seule caméra) mais reste un problème ouvert. Les méthodes actuelles exploitent

des indices visuels tels que le mouvement visuel inter-image et l’ombrage afin de construire

un algorithme de reconstruction. Cette thèse se concentre sur l’utilisation du mouvement

visuel inter-image pour résoudre ce problème. Deux types de scénarios existent dans la

littérature: 1) le Non-Rigid Structure-from-Motion (NRSfM) et 2) le Shape-from-Template

(SfT). L’objectif du NRSfM est de reconstruire plusieurs formes d’un objet déformable tel

qu’il apparâıt dans plusieurs images, alors que le SfT (également appelé reconstruction à

partir d’un modèle de référence) utilise une seule image d’un objet déformé et son modèle 3D

de référence (une forme 3D texturée de l’objet dans une configuration) pour estimer la forme

déformée de l’objet.

Nous proposons une méthode de NRSfM pour reconstruire les surfaces déformables

soumises à des déformations isométriques (les objets ne s’étirent pas ou ne se contractent

pas sous une déformation isométrique) en utilisant la géométrie riemannienne. Cela per-

met d’exprimer le NRSfM en termes d’équations aux dérivées partielles et de le résoudre

algébriquement. Nous montrons que le problème a une complexité linéaire et que l’algorithme

de reconstruction proposé a un coût de calcul très bas comparé aux méthodes existantes de

NRSfM. Ce travail nous a motivé à utiliser la géométrie différentielle et la théorie des con-

nexions de Cartan pour modéliser le NRSfM, ce qui nous a permis d’étendre la solution à

des déformations autres que l’isométrie. En fait, cela a conduit à un cadre théorique unifié

pour modéliser et résoudre le NRSfM et le SfT pour différents types de déformations. Ce

cadre permet également d’avoir une solution au SfT qui ne nécessite pas de modélisation

explicite de la déformation. Un point important est que la plupart des méthodes de NRSfM

et de SfT reconstruisent la surface de l’objet (hypothèse coque mince). La reconstruction de

l’ensemble d’un volume (la surface et l’intérieur d’un objet) n’avait pas encore été explorée.

Nous proposons la première méthode de SfT qui reconstruit le volume complet d’un objet

déformable.
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1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 3D Reconstruction of Deformable Objects . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Shape-from-Template . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Non-Rigid Structure-from-Motion . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 13

2.1 Shape-from-Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Thin-Shell Initialisation Methods . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Thin-Shell Refinement Methods . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Shape-from-Template for Volumetric Objects . . . . . . . . . . . . . . 18

2.1.4 Relationship to our Work . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Non-Rigid Structure-from-Motion . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Methods with Statistics-based Models . . . . . . . . . . . . . . . . . . 19

2.2.2 Methods with Physics-based Models . . . . . . . . . . . . . . . . . . . 22

2.2.3 Relationship to our Work . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Mathematical Formulation 25

3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Manifolds and Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Infinitesimal Planarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Infinitesimal Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Image Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xi



CONTENTS

4 Non-Rigid Structure-from-Motion with Riemannian Geometry 29

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 General Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 The Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.3 Christoffel Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.4 Commutativity under Isometry . . . . . . . . . . . . . . . . . . . . . 34

4.2.5 Infinitesimal Planarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Reconstruction Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Relating the Metric Tensor and the Christoffel Symbols . . . . . . . . 39

4.3.2 Solving for the First-Order Derivatives . . . . . . . . . . . . . . . . . . 40

4.3.3 Solving for the Second-Order Derivatives . . . . . . . . . . . . . . . . 42

4.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Solution under Infinitesimal Planarity . . . . . . . . . . . . . . . . . . 44

4.4.2 General Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.1 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.2 Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5.3 Elastic Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.4 Computation Time Comparison . . . . . . . . . . . . . . . . . . . . . . 55

4.5.5 Nearly-Stationary Objects . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 A Modelling Framework for Deformable 3D Reconstruction 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Affine Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2 Moving Frames on Surfaces . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.3 Moving Frames and Parametrisations . . . . . . . . . . . . . . . . . . 64

5.2.4 Smooth Mappings between Surfaces . . . . . . . . . . . . . . . . . . . 66

5.2.5 Infinitesimally Linear Mappings between Surfaces . . . . . . . . . . . . 69

5.3 Model-Based 3D Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Reconstruction Equations for Smooth Mappings . . . . . . . . . . . . 72

5.3.2 Reconstruction Equations for Infinitesimally Linear Mappings . . . . . 76

5.3.3 Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Model-Free 3D Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Reconstruction Equations . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.1 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xii



CONTENTS

5.5.2 Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.3 Summary of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Volumetric Shape-from-Template 95

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.1 Geometric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.2 Deformation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Volumetric Shape-from-Template . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3.1 Formulation and Non-Convex Solution . . . . . . . . . . . . . . . . . . 98

6.3.2 Convex Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.1 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.2 Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Conclusions 109

7.1 Thin-Shell Deformable 3D Reconstruction . . . . . . . . . . . . . . . . . . . . 109

7.2 Volumetric Deformable 3D Reconstruction . . . . . . . . . . . . . . . . . . . . 110

Appendices 111

A The Metric Tensor 113

B Christoffel Symbols 115

C Differential K-forms 117

Bibliography 119

xiii





List of Figures

1.1 3D reconstruction methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Some applications of the deformable 3D reconstruction methods. . . . . . . . 3

1.3 Contribution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Contribution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Contribution 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Reconstruction of object’s interior . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Surface deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Maximum Depth Heuristics formulation . . . . . . . . . . . . . . . . . . . . . 15

3.1 Illustration of Infinitesimal Linearity . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Image projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Proposed model of Non-Rigid Structure-from-Motion . . . . . . . . . . . . . . 31

4.2 Simplified notation for two images. . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Some images of the rug, table mat, kinect paper and tshirt datasets . . . . . 46

4.4 Synthetic data experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Experiments on short sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Reconstruction error maps and renderings. . . . . . . . . . . . . . . . . . . . . 52

4.7 Experiments on long sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Some images of rubber dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Experiment with an almost stationary object . . . . . . . . . . . . . . . . . . 56

5.1 A moving frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 A moving frame under different parametrisations . . . . . . . . . . . . . . . . 64

5.3 Surfaces related by a common parametrisation . . . . . . . . . . . . . . . . . 65

5.4 Classification of various types of smooth mappings. . . . . . . . . . . . . . . . 66

5.5 An example of skewless deformation . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Modelling of model-based deformable 3D reconstruction . . . . . . . . . . . . 70

5.7 Modelling of model-free deformable 3D reconstruction . . . . . . . . . . . . . 78

5.8 Some images from the sock and balloon datasets . . . . . . . . . . . . . . . . 81

xv



LIST OF FIGURES

5.9 Summary of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.10 Performance of compared methods under noisy conditions . . . . . . . . . . . 85

5.11 Performance of methods on varying curvature . . . . . . . . . . . . . . . . . . 87

5.12 Reconstruction error maps of rubber dataset . . . . . . . . . . . . . . . . . . 88

5.13 Reconstruction error maps of paper dataset . . . . . . . . . . . . . . . . . . . 90

5.14 Reconstruction error maps of balloon dataset . . . . . . . . . . . . . . . . . . 91

5.15 Reconstruction error maps of sock dataset . . . . . . . . . . . . . . . . . . . . 92

5.16 Reconstruction error maps of tissue dataset . . . . . . . . . . . . . . . . . . . 93

6.1 Modelling of volumetric Shape-from-Template . . . . . . . . . . . . . . . . . . 97

6.2 Volume interpolation using Local Rigidity. . . . . . . . . . . . . . . . . . . . . 100

6.3 Synthetic data experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Results on the woggle dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Results on the sponge dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Results on the arm dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.7 Failure case of volumetric Shape-from-Template . . . . . . . . . . . . . . . . . 107

A.1 Translating points in spherical coordinates . . . . . . . . . . . . . . . . . . . . 114

xvi



List of Tables

2.1 Summary of statistics-based Non-Rigid Structure-from-Motion methods . . . 22

2.2 Summary of physics-based Non-Rigid Structure-from-Motion methods . . . . 24

4.1 Performance of warps in noisy conditions . . . . . . . . . . . . . . . . . . . . 48

4.2 Summary of experiments on long sequences . . . . . . . . . . . . . . . . . . . 54

4.3 Experiment on rubber dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Comparison of computation time . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Summary of model-based 3D reconstruction of deformable thin-shell objects . 78

5.2 Summary of model-free 3D reconstruction of deformable thin-shell objects . . 80

6.1 Summary of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xvii





LIST OF TABLES

List of Abbreviations

ARAP As-Rigid-As-Possible

CS Christoffel Symbols

DCT Discrete Cosine Transformation

GS Global Smoothness

IL Infinitesimal Linearity

IP Infinitesimal Planarity

LLS Linear Least Squares

LR Local Rigidity

MDH Maximum Depth Heuristics

NRSfM Non-Rigid Structure-from-Motion

PDE Partial Differential Equations

RMSE Root Mean Square Error

SfM Structure-from-Motion

SfT Shape-from-Template

SIFT Scale Invariant Feature Transform

SOCP Second-order Cone Program

SVD Singular Value Decomposition

TPS Thin-Plate Splines

ToF Time-of-Flight

xix





Chapter 1
Introduction

1.1 Background

An important task in 3D computer vision is to recover 3D information from 2D images

obtained by the camera. This task is widely termed as 3D reconstruction. Although there

are active image sensors such as the Kinect and Time-of-Flight (ToF) cameras available which

can obtain the depth of the view under consideration, passive 3D reconstruction from images

remains an interesting topic for researchers because the scope of 3D sensors is limited due to

the various constraints of size, cost and accuracy. 3D reconstruction methods rely on various

visual cues from images (such as shading, texture, silhouettes, contours and motion) in order

to find 3D descriptors such as the depth map and local surface orientation (or normals) of

the objects.

The objects found in nature can be roughly classified into rigid or non-rigid (or de-

formable) objects. The 3D reconstruction of rigid objects using motion cues, also known

as Structure-from-Motion (SfM) [Hartley and Zisserman, 2000] (see figure 1.1a), has been

widely studied for the past few decades and there are solutions available which are stable

and accurate. SfM exploits the inter-image visual motion information in order to reconstruct

3D from multiple 2D images taken from different views of a rigid object. Rigidity allows

the inter-image visual motion to be expressed in terms of the rotation and translation of the

camera coordinate frames of the images. However, SfM cannot be extended to deformable

objects as between any two images, the deformable object may undergo a deformation and

therefore, the inter-image visual motion cannot be expressed only in terms of the camera

rotation and translation.

In the past decade, the deformable 3D reconstruction problem has been studied exten-

sively in over a hundred research papers. Some of the methods combine motion with other

visual cues to disambiguate the problem and make it well-posed. For example, [Liu-Yin et al.,

2016; Moreno-Noguer et al., 2009; Varol et al., 2012b] combine shading with motion, [Gal-

lardo et al., 2016, 2017] combine shading and contours with motion and [Choe and Kashyap,

1991; White and Forsyth, 2006] combine shading with texture. However, the existing solu-
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CHAPTER 1. INTRODUCTION

tions are not close to SfM in terms of accuracy and stability. Deformable 3D reconstruction

is an important problem to solve as it has a wide range of applications such as in the medical,

sports, entertainment and advertising domains. Some applications are explored in augmented

reality: 1) [Smith et al., 2016] shows how to study the impact of a soft ball on various sur-

faces. This is useful in designing and testing sports equipments. 2) [Haouchine et al., 2013,

2016; Koo et al., 2017; Maier-Hein et al., 2014] show how to augment the deformations of

the body organs in order to aid minimally invasive medical surgeries. 3) [Collins and Bar-

toli, 2015; Ngo et al., 2015] recover the deformation of the objects in real-time which can be

useful in various industries. For example, they can be used by online shopping companies to

enable the customers to try clothes and accessories virtually. Figure 1.2 shows some of these

applications.
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Figure 1.1: 3D reconstruction methods. For rigid objects, SfM is a widely used method (Images

taken from [Snavely et al., 2007]). The 3D reconstruction of deformable objects can be performed by

either NRSfM or SfT methods.

This thesis focuses on the monocular deformable 3D reconstruction methods that use

motion as a visual cue in monocular imaging conditions. We now define the problem in detail

and describe our contributions.
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Figure 1.2: Some applications of the deformable 3D reconstruction methods.
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CHAPTER 1. INTRODUCTION

1.2 3D Reconstruction of Deformable Objects

As mentioned earlier, the 3D reconstruction of rigid objects by SfM cannot be directly ex-

tended to deformable objects. As these objects may undergo deformations, the inter-image

visual motion (strictly induced by the change in camera coordinate frame in the case of SfM)

is now dependent on both camera motion and object deformation. Exploiting this visual

motion (coupled with deformations) becomes a challenging task as the constraints are weaker

in this case.

The goal of this thesis is to propose a general framework for modelling and solving de-

formable 3D reconstruction. At this point, we classify deformable objects as thin-shell (ob-

jects with an infinitesimal thickness, such as a piece of cloth, paper, etc.) and volumetric

objects (objects with non-negligible thickness such as a sponge, cushion, etc.). Volumetric

objects can be considered as thin-shell objects in cases they are represented by their outer-

shells only but at the price of losing inner constraints. We now discuss the two categories of

deformable 3D reconstruction problems that arise in computer vision.

1.2.1 Shape-from-Template

SfT (see figure 1.1b) is the generic name for a set of methods which perform the monocular

3D reconstruction of deformable objects using a 3D template of the object. It is also called

template-based (or model-based) reconstruction in the literature. The inputs of SfT are a

single image and the object’s template, and its output is the object’s deformed shape. The

template (sometimes also called model) is a very strong object-specific prior as it includes a

reference shape, a texture-map and a deformation model. Some SfT problems, such as the

reconstruction of isometric thin-shell objects, have been extensively studied. Some of these

methods are [Bartoli et al., 2015; Brunet et al., 2014; Chhatkuli et al., 2016b; Haouchine

et al., 2014; Moreno-Noguer et al., 2009; Oswald et al., 2012; Perriollat et al., 2011; Salzmann

and Fua, 2011; Vicente and Agapito., 2013]. SfT methods with real-time implementation

are [Collins and Bartoli, 2015; Ngo et al., 2016].

Most of the SfT methods use the thin-shell isometric deformation model which implies

that the geodesic distances between any two points on the object do not change due to the

deformation. Isometry can be seen as local rigidity. Isometry is a very good approximation as

most of the objects in nature undergo near-isometric deformations. Mathematically, it is also

relatively easier to model isometry than other deformations. Our work focuses on isometry

but we do explore other deformations as well and present a general modelling framework

which makes it easier (and practical) to express various deformations.

1.2.2 Non-Rigid Structure-from-Motion

NRSfM (see figure 1.1b) is the generic name for a set of methods which perform the monocular

3D reconstruction of deformable objects from multiple images only. It is also called template-

free (or model-free) reconstruction in the literature. The inputs to NRSfM are multiple images
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1.3. CONTRIBUTIONS

and its output is the object’s 3D shape for every image. In NRSfM, the rigidity constraint of

SfM is replaced by constraints on the object’s shape and deformation model. NRSfM methods

were proposed initially with the low-rank shape basis [Bregler et al., 2000], the trajectory

basis [Akhter et al., 2009], isometry [Chhatkuli et al., 2014; Varol et al., 2009; Vicente and

Agapito, 2012], inextensibility [Chhatkuli et al., 2016a] and elasticity [Agudo et al., 2016].

Existing methods suffer from one or several limitations amongst solution ambiguities, low

accuracy, ill-posedness, inability to handle missing data and high computation cost. NRSfM

thus still exists as an open research problem.

Based on the modelling framework, existing NRSfM methods can be divided into two

main categories: 1) methods with statistics-based modelling and 2) methods with physics-

based modelling. physics-based modelling is the most recent. Most of the NRSfM methods

use a statistics-based modelling. While statistics-based modelling does not take the object’s

nature into account, physics-based modelling is usually limited to thin-shell objects only.

1.2.3 Current Limitations

With this discussion, we want to emphasize the following limitations of existing SfT and

NRSfM methods:

1) Methods with physics-based modelling are capable of handling more complex defor-

mations than methods with statistics-based modelling and they proved to be very successful

in SfT. However, physics-based modelling is seldom used in NRSfM.

2) Most of the existing thin-shell NRSfM methods work with the orthographic projection

model which suffers from flip ambiguities. Therefore, the focus of the new techniques should

be towards solving NRSfM using perspective projection as these solutions are more accurate.

3) Most of the methods deal with isometry or near-isometry which is relatively easier to

model. Other deformations have been less explored.

4) Volumetric SfT has not been explored yet. There are some methods that recover the

closed thin-shell of the object but a complete 3D reconstruction of a deformable object has

not been achieved yet.

Now we discuss our contributions to SfT and NRSfM in detail.

1.3 Contributions

This thesis has three main contributions. Our first contribution is about solving NRSfM with

the use of Riemannian geometry. This is a local formulation which means that the points

on a surface can be reconstructed independently. The particles on an object are attached to

each other and therefore the force causing deformation acts globally. However, the impact

of the force is not necessarily uniform throughout the object which makes it interesting to

study the deformations locally. This local formulation using Riemannian Geometry allows

NRSfM to be expressed in terms of polynomial expressions whose variables are independent

of the number of images under consideration. Our second contribution is about proposing a
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CHAPTER 1. INTRODUCTION

modelling framework for NRSfM and SfT (using differential geometry) which is general and

makes it convenient to handle various kinds of deformations. These solutions are obtained

in terms of the differential or local quantities expressed at a surface, as a set of Partial

Differential Equations (PDE) that hold at each point on the surface. In order to solve the

PDE, we convert them to algebraic expressions by replacing the differentials in the PDE with

algebraic variables. Given enough constraints, these algebraic equations yield a local solution.

This solution can be obtained independently for each point. However, it may not always be

possible to find such a solution. We discuss such conditions. The third contribution is a

solution to SfT for volumetric objects.

To sum up, this thesis contributes in finding an answer to the following questions:

1) Is it possible to the extend the differential physics-based modelling of SfT [Bartoli

et al., 2015] for isometric deformations to NRSfM? Can we solve NRSfM locally from a

PDE formulation?

2) Is it possible to the extend the local formulation of NRSfM to deformations other than

isometry?

3) Can we reconstruct the entire volume of a deformable object in a model-based scenario?

A fundamental assumption. Our framework relates the 3D shapes using the inter-image

warps. These are the functions that register one image to another. Registering wide-baseline

images can be accomplished by Scale Invariant Feature Transform (SIFT) [Lowe, 2004] which

is a sparse-registration method. Dense or semi-dense registration can be achieved using

SIFT Flow [Liu et al., 2011] and DeepFlow [Weinzaepfel et al., 2013] respectively. In order

to register short-baseline images (for example, images from a video sequence), optical flow

methods can be used. It usually gives a dense-registration. Some of the efficient methods

are [Brox et al., 2004; Garg et al., 2013b; Sundaram et al., 2010]. These methods yield a

dense registration. The first and higher order derivatives of the registration can be computed

from the keypoint correspondences (obtained from the previous methods) using [Bookstein,

1989; Pizarro et al., 2016]. We make the assumption that in SfT and in NRSfM, the image

registration can be established by using existing methods. Nevertheless, we only need to find

these warps locally at each point. We use the first and the second-order derivatives of the

warps in the first two contributions while in the third we only need the first order derivatives.

The second-order derivatives are usually noisy, we correct them using Schwarps [Pizarro et al.,

2016]. We show that the use of Schwarps is theoretically justified as well.

Contribution 1: Non-Rigid Structure-from-Motion using Riemannian geometry.

We present a solution to NRSfM using the thin-shell isometric deformation model, that we

hereinafter denote as Iso-NRSfM. We model Iso-NRSfM using concepts from Riemannian

geometry.

We model the object’s 3D shape for each image as a Riemannian manifold and deforma-

tions as isometric mappings. We parametrise each manifold by embedding the corresponding

retinal plane. This allows us to reason on advanced surface properties, namely the metric

6
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tensor and the Christoffel Symbols (CS), directly in retinal coordinates, and in relationship to

the warps. These metric properties allow us to express the differential properties of surfaces,

such as length, which are to be preserved under isometric deformations.

We formulate Iso-NRSfM locally with five variables which are functions of the first and

the second-order derivatives of the inverse-depth of the surface undergoing deformation. We

write the metric tensor and the CS in terms of these variables. We prove two new theorems

showing that for isometric deformations, the metric tensor and the CS may be transferred

between views using only the warps. This limits the number of variables to only five for any

number N of views.

First, we solved Iso-NRSfM in [Parashar et al., 2016] (see figure 1.3) by assuming that

the surface is planar in the infinitesimal neighbourhood of each point. This is the assumption

of Infinitesimal Planarity (IP) which lets us get rid of the second-order derivatives in the

expression of the CS. This limits the variables to only two. These variables correspond to

the ratio of first-order derivatives of the inverse-depth function to the inverse-depth function.

We obtained a system of two cubics in two variables that involve the first and the second-order

derivatives of the warps. This system holds at each point on the surface.

Then, we extended the solution to Iso-NRSfM without the assumption of IP. Our solution

is obtained in two steps. 1) We solve for the first-order derivatives assuming that the second-

order derivatives are known. This is initialised using the solution with IP. 2) We solve for

the second-order derivatives with the first-order derivatives obtained in the previous step.

We obtain a system of 4N −4 linear equations in three variables which is solved using Linear

Least Squares (LLS). We iterate these two steps until the first-order derivatives converge.

The solution gives an estimate of the metric tensor field, and thus of the surface’s normal

field, in all views. The shape is finally recovered by integrating the normal field for each

view. The proposed method has the following features. 1) It has a linear complexity in
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Figure 1.3: Comparison of Iso-NRSfM (with and without IP) with [Chhatkuli et al., 2016a].

the number of views and number of points. 2) It uses a well-posed point-wise solution from

N ≥ 3 views, thus covering the minimum data case. 3) It naturally handles missing data

created by occlusions. 4) It substantially outperforms existing methods in terms of speed
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and accuracy, as we experimentally verified using synthetic and real datasets.

Contribution 2: a unified framework for the 3D reconstruction of deformable

objects using Cartan’s connections. Unlike SfM which is modelled using algebraic pro-

jective geometry, there is no consensus on the modelling framework of NRSfM yet. We

present a modelling framework for NRSfM using the differential geometry of surfaces. In

mathematics, differential geometry is the basis to study the properties of curves and surfaces.

Recently, [Fabbri and Kimia, 2016] proposed to solve SfM using the differential geometry of

3D curves. [Fabbri, 2010] proposed pose estimation and camera calibration using differential

geometry of 3D curves. However, it is not widely used in modelling surfaces for deformable

3D reconstruction. Recently, [Bartoli et al., 2015] proposed solutions to SfT using differential

geometry. These solutions are analytic and therefore, they are very fast and need not be

initialised. The success of our first contribution where we solve NRSfM with Riemannian

geometry (which is a special case of differential geometry) is a motivation for us to use dif-

ferential geometry to propose a general framework to model NRSfM and SfT. Riemannian

geometry is limited to isometric (geodesic-distances preserving) and conformal (angles pre-

serving) deformations whereas differential geometry is more general and can model a wider

range of deformations.

This framework can therefore handle a wide variety of deformation models (including

isometry) in a convenient way and therefore is a practical approach towards NRSfM. We

model surfaces as smooth manifolds [Lee, 2003] and extract differential properties of the

surfaces using differential geometry. Our work is essentially based on Cartan’s theory of

connections [Cartan, 1923, 1924, 1926] devised using the differential geometry of smooth

manifolds and the theory of moving frames [Cartan, 1937]. The connections were at first

formalised as the entities that enable movement along the curves as a parallel transport i.e.,

the orientation of a vector on the curve or surface does not change when it moves in a closed

curve. This is known as a Levi-Civita connection [Lee, 1997]. Cartan generalised the idea

of connections as the entities that transport tangent plane vectors along the curve. Cartan’s

connections are not limited to parallel transport along the curves and therefore, they are

more generic. In this thesis, we always work with Cartan’s connections.

A moving frame is defined as a local frame of reference defined at a point on a surface (or a

manifold). The differential properties of the surfaces such as lengths, angles and areas can be

described using the moving frames. The connections are derived using the moving frame and

its derivatives. They are related to the first, second and the third fundamental forms of the

surfaces [O’Neill, 2006]. Cartan proved that connections are necessary and sufficient to study

the properties of 3D surfaces. From these properties, we derive differential constraints on the

surfaces that lead to a solution to NRSfM and SfT. We solve these constraints algebraically.

We use moving frames and connections to design a modelling framework for the study of

thin-shell deformable objects. Our framework has the following characteristics.

1) Our framework relies on the Infinitesimal Linearity (IL) assumption [Kock, 2010].

Under this assumption, any smooth deformation may be considered to be linear in the in-
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finitesimal neighbourhood of a point while globally it could still be non-linear. This allows

us to express the moving frame and the connections in terms of two variables (the first-order

derivatives of the inverse-depth) only.

2) We prove a theorem stating that connections on any two surfaces can be related to

each other for any kind of smooth (IL) deformation they undergo. This allows the number

of variables to be only two for any number of views used in the reconstruction.

3) We express the physical properties of surfaces (such as lengths, angles and areas) locally

in terms of the moving frames. We express deformation constraints as the physical properties

they preserve. For example, isometry preserves both lengths and angles. We express isometric

deformation constraints as the preservation of lengths and angles defined using moving frames.

We express constraints for other deformations such as conformal (angles made by any three

points on a surface do not change under deformation) and equiareal (areas are preserved under

deformations). We propose a deformation that is a combination of anisotropic scaling (along

surfaces’ frame-basis) and a conformal deformation. We call it the skewless deformation. We

explain it further in chapter 5.

4) These physical properties are related by the image warps across surfaces.

This theoretical framework leads to local solutions to deformable 3D reconstruction in

terms of PDE which we solve algebraically (see figure 1.4 for more details). This frame-

work represents surfaces analytically. Therefore, it is very easy to change surface definition

which makes it very easy for this framework to adapt for different representations. By ex-

Figure 1.4: A broad overview of the problem. Moving frames and connections are the generalisa-

tion of the concepts of metric tensors and CS from Riemannian geometry. We use them to express

differential constraints in terms of PDE. The manipulation of these constraints with or without the

IL assumption leads to reconstruction equations that are also PDE. IL is not necessary to find these

equations, however we use it to simplify the problem. These reconstruction equations may or may

not have an algebraic solution. Here, an algebraic solution implies that the equations can be solved

locally at each point. In this thesis, we solve the equations with possible algebraic (or local) solution.

pressing the deformation constraints in terms of the moving frame and using our theorem

of transfer of connections, we present solutions to deformable 3D reconstruction for various

deformations like isometry, conformity, skewless or equiareal. The solution to NRSfM under

a) isometric/conformal deformations is given by solving a system of two cubics, b) skewless

9
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deformations is given by solving a system of two septics (exploiting the first and second-order

derivatives of the warps) in terms of two variables only.

We show that Iso-NRSfM (our first contribution) can be obtained using this framework as

well. In this solution, we chose isometry to be solved as conformity as it makes the problem

simpler to solve.

Our framework is directly extended to SfT. The existing solutions to isometric and

conformal SfT [Bartoli et al., 2015] can be derived using this framework. We obtain an SfT

solution to a) isometric/conformal and equiareal deformation as two linear expressions, b)

skewless deformation as a system of two cubics in terms of two variables. These expressions

exploit the first and the second-order derivatives of the warps.

Due to our theorem of transfer of connections across smooth surfaces using the inter-image

warps, we propose a solution to SfT which is independent of the deformation constraints

and only imposes deformation to be locally smooth. SfT has previously been solved under

the assumption of smooth deformation in [Bartoli and Özgür, 2016]. We compare it with

our results of SfT. [Salzmann et al., 2007] discussed that such a solution is not well-posed,

however, we show that our solution to smooth deformations is well-posed. We discuss the

reasons which make it well-posed.

Summing up, the proposed framework has the following features. 1) It is a unified mod-

elling framework for NRSfM (and SfT) using differential geometry assuming IL, which can

be extended to various deformations. 2) It brings the solutions to isometric/conformal and

skewless NRSfM as a set of two cubic and septic polynomials respectively in terms of two

variables for any number of views. 3) It brings the solutions to isometric/conformal and

equiareal SfT using a linear system of two equations in two variables only. 4) It brings the

solution to skewless SfT by solving a cubic system of two equations in two variables only. 5)

It also brings a solution to SfT for smooth deformations which is also a system of two linear

equations in two variables only.

Contribution 3: Shape-from-Template for volumetric objects. As discussed earlier,

existing SfT methods are thin-shell SfT essentially, as they are designed for thin objects such

as a piece of paper. However, while thin-shell SfT handles thicker objects such as the woggle

of figure 1.5 or a foam ball, it does not fully exploit the strong constraints induced by the

object’s non-empty interior.

We bring SfT one step further by introducing volumetric SfT, defined as an SfT method

which uses a deformation constraint on the object’s outer surface and interior. An example

is shown in figure 1.5. Volumetric SfT reconstructs the object’s interior deformation, which

is not reconstructed by thin-shell SfT, and reconstructs the object’s outer surface more accu-

rately than thin-shell SfT thanks to the stronger deformation constraint it uses. Volumetric

SfT is challenging as only the front part of the object’s surface is visible in the image: the

object’s back surface and interior have to be inferred with no direct visual observations.

It is important to note that strictly speaking, isometry leads to rigidity in volumes. Only

rigid volumetric objects can preserve geodesic-distances while undergoing deformation. We
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Figure 1.5: Volumetric SfT versus thin-shell SfT. Existing methods are thin-shell SfT. They use

deformation constraints on the object’s surface. For instance, [Bartoli et al., 2012] uses isometric

constraints on the object’s visible (front) surface and reconstructs the object partially, while [Östlund

et al., 2012] uses isometric constraints on the object’s whole closed outer surface and reconstructs

it entirely. Volumetric SfT uses deformation constraints on the object’s surface and interior. This

greatly improves reconstruction accuracy and facilitates reconstruction of the object’s interior. In this

example, the thin-shell SfT methods [Bartoli et al., 2012; Östlund et al., 2012] reach a 3D error of

20 mm and 13 mm respectively on the visible surface, while the proposed volumetric SfT method

reaches a 3D error of 7 mm. It reconstructs the non-visible (back) surface, for which no visual data is

available, with a 3D error of 17 mm.

propose to instantiate volumetric SfT using the As-Rigid-As-Possible (ARAP) deformation

model (a relaxation of isometry), which has been used extremely successfully in Computer

Graphics [Sorkine and Alexa., 2007; Zhang et al., 2010]. The ARAP model maximises local

rigidity while penalising stretching, sheering and compression. More specifically, ARAP has

been widely used to perform mesh editing of animated characters [Zhou et al., 2005; Zollhöfer

et al., 2012] because the resulting deformations locally preserve the object’s structure.

Contrary to thin-shell SfT, volumetric SfT is largely unexplored. Recently, [Innmann

et al., 2016] proposed a method that reconstructs the closed thin-shell surface of the de-

formable object in real-time. This method is named “VolumeDeform” however it does not

reconstruct the interior of the object. The closest method to volumetric SfT is perhaps [Vi-

cente and Agapito., 2013], where SfT has been combined with silhouette-based reconstruction.

However this method requires stronger image cues, including silhouette and point correspon-

dences, and recovers two-way ambiguous shape solutions. In contrast, we solve volumetric

SfT without restricting the topology of the object and using the perspective camera. By using

ARAP, our method preserves the object’s interior structure while jointly reconstructing the

deformation of the object’s full outer surface and interior, as illustrated in figure 1.6. ARAP

volumetric SfT involves solving a non-convex constrained variational optimisation problem.

We discretise the object’s volume and relax the constraints to convert the variational problem

into an unconstrained non-linear least-squares optimisation problem. This problem can then

be solved with standard numerical solvers such as Levenberg-Marquardt. We propose two
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Figure 1.6: As opposed to thin-shell SfT, volumetric SfT reconstructs the object’s interior deforma-

tion. In this example using the data from figure 1.5, a virtual cylinder is placed inside the woggle’s

template. It is then deformed using the deformation reconstructed by volumetric SfT to aid visual-

ization of the object’s reconstructed interior deformation. The second deformation is the one shown

in figure 1.5.

initialisation methods. These methods use isometric thin-shell SfT and propagate the result

through the object’s volume.

The proposed contribution has the following features. 1) We show that isometry in

volumes is essentially a local rigidity or inextensibility constraint. 2) We solve volumetric

SfT in two steps: initialisation and refinement. 3) We propose two methods for initialisation.

4) We perform refinement in two ways: minimising L1 and L2 norms. 5) Experimental

results on synthetic and real data show that volumetric SfT improves accuracy to a large

extent compared to state-of-the-art thin-shell SfT methods.

Thesis layout. We have divided this thesis into 7 chapters. We discuss the state of the

art in chapter 2, mathematical preliminaries in chapter 3. Chapters 4, 5 and 6 give our

first, second and third contributions. Chapter 7 presents our conclusions and perspectives

for future work.
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Chapter 2
Related Work

In this chapter we discuss the existing works on SfT and NRSfM that use motion as a visible

cue in two sections. We sub-categorise these methods based on the constraints they use.

Most of these methods are designed for thin-shell objects but we also discuss the works that

are related to volumetric objects.

2.1 Shape-from-Template

The SfT methods were introduced much later than NRSfM but they evolved quickly. Now

there are stable and real-time SfT methods [Collins and Bartoli, 2015; Ngo et al., 2016].

In general, SfT uses a 3D template of a thin-shell object. This is a very strong prior and

makes SfT a better-posed problem than NRSfM. We classify current SfT methods into two

categories: initialisation and refinement methods. The initialisation methods are the ones

which achieve a fast solution to SfT using deformation constraints. They do not employ

a heavy non-convex optimisation to minimise a cost which consists of a set of constraints

such as deformation, smoothness or reprojection which is the case with refinement methods.

Refinement methods are computationally expensive but more accurate. However, they need

to be initialised. The performance of these methods depends on the accuracy of initialisation.

A good initialisation can significantly reduce their computation time. We recall that the

current SfT solutions are for thin-shell objects only, SfT for volumetric objects has not been

proposed however, we discuss some of the works that use non thin-shell models.

Most of the SfT methods exploit physics-based modelling. Most of them use isometry

as a physical prior but there are some solutions that use elasticity [Haouchine et al., 2014;

Malti et al., 2013], the particle model [Özgür and Bartoli, 2016] or smoothness [Bartoli and

Özgür, 2016]. We organise these two categories of initialisation and refinement into methods

that employ isometric and non-isometric constraints. We now discuss these two categories of

methods.
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2.1.1 Thin-Shell Initialisation Methods

2.1.1.1 Isometric Constraints

Most of the initialisation methods use isometry as a deformation prior. Isometry is a physi-

cal prior on deformation which can be seen as local rigidity. Isometry preserves the geodesic

distances between points on a surface undergoing deformations. Therefore stretching or

shrinking of the surfaces is not allowed. Inextensibility is a relaxation of isometry. It means

that the Euclidean distances between the neighbouring points on the deformed surfaces are

always lower than or equal to the corresponding geodesic distances on the original surface.

Figure 5.1 shows two surfaces S1 and S2 related by a deformation. The isometric and inex-
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Figure 2.1: A surface S1 transforms to surface S2 due to a deformation. The points (P1, P2) on S1

transform to (Q1, Q2) on S2.

tensibility constraints on the points (P1, P2) on S1 and (Q1, Q2) on S2 in terms of distances

between the points can be written as

‖Q2 −Q1‖g = ‖P2 − P1‖g isometry constraint

‖Q2 −Q1‖2 ≤ ‖P2 − P1‖g inextensibility constraint
(2.1)

where ‖.‖2 represents the Euclidean distance and ‖.‖g represents the geodesic distance be-

tween two points on a surface. Therefore, we can see that intextensibility is a relaxed form

of isometry. However, expressing geodesics on an arbitrary surface is not easy. Therefore,

most of the methods approximate the geodesics with euclidean distances by assuming that

the points are very close to each other. For example, the geodesic of (Q1, Q2) on S2 can be

written as the Euclidean distance between them given that Q2 is close enough to Q1. The

sense of closeness or neighbourhood of these points are defined by the methods. Inextensibil-

ity needs to be combined with maximum depth in order to prevent the reconstructed surface

from shrinking. This is called as Maximum Depth Heuristics (MDH).

We now discuss the initialisation methods that use inextensibilty and isometry constraints

in two sections.

2.1.1.2 Inextensibility Constraints

[Perriollat et al., 2011] was the first method to model isometry using the inextensibility

constraint (2.1). It is based on the MDH. It finds a solution to SfT by maximising depth

heuristically while imposing inextensibility constraints. Figure 2.2 shows two surfaces related

with an isometric mapping. Consider Q1 at a distance μ1 from the camera. Assuming that

Q2 is a neighbouring point of Q1, it can be parametrised with the angle α12 between their
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Figure 2.2: A surface S1 transforms to surface S2 due to an isometric deformation. The points

(P1, P2) on S1 transform to (Q1, Q2) on S2. The sightlines of the two points (Q1, Q2) from the camera

C pass through (q1, q2) on the image plane.

sightlines from the camera C. Therefore, we can write

Q1 =

⎡
⎢⎣μ10
0

⎤
⎥⎦ , Q2 =

⎡
⎢⎣μ2 cos (α12)

μ2 sin (α12)

0

⎤
⎥⎦ . (2.2)

Using this parametrisation of the points, the inextensibility constraint in equation (2.1) gives

the upper bound of μ1 as

μ1 ≤
d12

sinα12
, (2.3)

where d12 is the geodesic distance between the 3D points P1 and P2 in the template. This is

the upper bound on the depth of each point. It is chosen to be the minimum upper bound

of all the neighbouring points such that the inextensibility constraint (2.1) is satisfied.

[Salzmann and Fua, 2011] made an improvement by modelling this problem as an Second-

order Cone Program (SOCP) which can be globally solved using convex optimization. The

method parametrises 3D points as the back-projection of 2D image points. Therefore any

point Qi can be expressed as

Qi = zi

[
qi

1

]
, (2.4)

where zi is the depth at the ith point and qi is the normalized image point. The idea is to

maximise the sum of all the depths zi such that the inextensibility constraint (2.1) is satisfied.

This method uses a learned space of deformations using linear local models for small patches.

This limits the applicability of this method to surfaces whose linear local models are known.

However, it shows good performance when there is enough perspective in the images. [Brunet

et al., 2014] proposed an initialization method based on inextensibility constraints solved

using MDH. It used a parametric representation of surfaces using cubic B-splines [Dierckx,
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1993] which reduces the dimensionality of the problem and provides a solution faster.

[Ngo et al., 2016] proposed a modified approach, where the method uses a laplacian

smoothness prior along with inextensibility constraints. The laplacian of the template is

calculated which is assumed to be preserved under the deformation. The laplacian is linearly

parametrised and therefore, the problem can be solved using LLS. It is used as an initialisation

method to the real-time solution to SfT proposed in [Ngo et al., 2015].

The above-mentioned methods use inextensibility constraints which is a relaxation on

isometry and therefore, it is not a strict physical constraint. A more accurate representation

of deformation constraints is possible by using differential modelling which we discuss next.

2.1.1.3 First-Order Differential Isometric Constraints

Recently, [Bartoli et al., 2015] proposed a local analytical solution to SfT using a warp and

first-order differential isometric constraints. It shows that SfT is a well-posed problem for

isometric deformations. It expresses the constraints in terms of first-order PDE and finds an

algebraic solution to it. Since the method is analytical, it is very fast. However, it suffers with

instabilities under near-affine conditions. [Chhatkuli et al., 2016b] proposed an improvement

on these solutions to find an analytical stable solution to depth using the gradient of the

depths which were otherwise discarded in [Bartoli et al., 2015].

The success of these SfT methods inspires us to extend the physics-based differential

modelling of deformation to NRSfM as well. We use differential geometry to formulate the

NRSfM and SfT problems in terms of PDE and we find algebraic solution to them.

2.1.1.4 Non-Isometric Constraints

[Bartoli and Özgür, 2016] proposed to solve SfT by using only smoothness as a deformation

prior. The solution is unique and obtained by solving an LLS problem. It finds the solution

to SfT using reprojection constraints and a smoothness constraint for a fixed scale. The

problem with this method is that smoothness is a very weak constraint which can make this

method unstable.

[Bartoli et al., 2015] also proposed an analytical solution to conformal SfT. This solution

was also formulated using PDE and solved algebraically. Even though this method suffers

form instabilities, it usually performs better or as well as isometric SfT [Bartoli et al., 2015].

Therefore, differential modelling proves to be a good tool for non-isometric deformations as

well.

2.1.2 Thin-Shell Refinement Methods

These methods formulate global deformation constraints and solve them by using a non-

convex optimisation. Therefore, these methods need to be initialised. The initialisation

methods discussed in the previous section can be used to initialise these methods. In fact,

initialisation methods should always be combined with refinement methods in order to get

the best possible reconstruction. The accuracy of initialisation methods makes the refinement
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significantly faster. [Chhatkuli et al., 2016b] showed results by initialising [Brunet et al., 2014]

with their result. They achieved an almost real-time reconstruction. [Collins and Bartoli,

2015] made an improvement on this and achieved a real-time reconstruction. We now discuss

the refinement methods that use isometric and non-isometric constraints in the next two

sections.

2.1.2.1 Isometric Constraints

[Brunet et al., 2014] proposed the first solution to SfT which optimises a statistically opti-

mal cost. The cost is composed of three errors: 3D back-projection, differential isometric

constraints and smoothness. The 3D back-projection error (Ereprojection) accounts for the

difference when the 3D points of the deformed shape project back to the corresponding in-

put image points. The differential isometric constraint error (Eisometry) forces that isometry

holds at infinitesimal level. It ensures that the deformed shape is isometric. The smoothness

error (Esmooth) forces the solution to be smooth. This problem is non-convex and relies on

iterative local optimization such as Levenberg-Marquardt which requires to be initialised and

has a high computation time. The cost is written as

Cost = Ereprojection + lisometryEisometry + lsmoothEsmooth, (2.5)

where the two parameters lisometry and lsmooth are weights to the isometric and smoothness

constraints and need to be tuned. We use a similar cost in order to find a solution to

volumetric SfT.

[Yu et al., 2015] introduced a temporal smoothness constraint in addition to the above

mentioned constraints in order to improve the refinement.

2.1.2.2 Non-Isometric Constraints

[Malti et al., 2011; Ngo et al., 2015] model deformation as conformal and use the pixel intensity

error instead of the reprojection error. [Ngo et al., 2015] is initialised with [Ngo et al., 2016]

and handles occlusions and poorly textured surfaces.

[Özgür and Bartoli, 2016] proposed a solution to SfT by expressing the object as a set of

particles where deformation acts as a set of forces on it. It uses deformation and reprojection

constraints and finds a solution by evolving particles to achieve a global equilibrium due to

the action of various forces (including gravity). It uses boundary points to fix the solution.

[Haouchine et al., 2014; Malti et al., 2013] proposed a solution to SfT for extensible

surfaces by modelling deformation with elasticity. The idea is to minimise the stretching

energy such that the reprojection constraint and boundary points are satisfied.

SfT methods using non-isometric constraints are mostly solved using non-convex optimi-

sation.
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2.1.3 Shape-from-Template for Volumetric Objects

Volumetric objects have non-zero thickness. SfT methods using elasticity [Haouchine et al.,

2014; Malti et al., 2013] require the surface model to include thickness, which must however be

‘small’ so that extension along normal direction may be neglected. In continuum mechanics,

this means that the thickness is at least ten times smaller than the object’s largest dimension.

Therefore, these methods are categorised as thin-shell methods. They require one to provide

the Young modulus of the object’s material and, more importantly, boundary conditions

expressed as a set of known 3D point coordinates, which may restrict their applicability.

A related goal was pursued in [Vicente and Agapito., 2013] where a silhouette-based

method was combined with SfT. The template is also reconstructed from a reference image

using a silhouette-based method inspired from [Oswald et al., 2012]. This method recon-

structs objects that have a plane of symmetry parallel to the image plane and does not infer

concavities, which is also a limitation of most silhouette-based methods [Oswald et al., 2012;

Prasad et al., 2006]. The template is then deformed using a data term based on silhouette,

area and orthographic reprojection constraints. The deformation model extends thin-shell

isometry by placing virtual nodes in the object’s interior, with the objective of preserving the

object’s volume.

2.1.4 Relationship to our Work

In chapter 4, we propose a modelling framework for SfT using differential geometry. This

framework is coherent with methods based on differential modelling [Bartoli et al., 2015] and

is general, therefore, other deformation models can be used. We also propose a solution to

SfT assuming that the deformation is smooth. This means that SfT can be solved analytically

for any kind of deformation without explicitly modelling the deformations.

In chapter 5, we propose volumetric SfT which, in contrast to thin-shell SfT, recovers the

deformation of the object’s outer surface and interior. It formulates the deformation globally

in terms of a cost function and minimises it using non-convex optimisation.
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2.2 Non-Rigid Structure-from-Motion

The first solution to NRSfM for thin-shell objects was proposed in [Bregler et al., 2000] which

modelled deformation using a low-rank shape-basis. It assumes that the shape of an object

can be represented as a linear combination of a low-dimensional shape-basis. We discuss

the two categories of NRSfM methods based on the modelling framework: statistics-based

modelling and physics-based modelling.

2.2.1 Methods with Statistics-based Models

Starting from the work of [Bregler et al., 2000], the low-rank shape-basis has been the most

commonly used shape prior in NRSfM. It is a statistical prior on a set of 3D point cor-

respondences expressed in terms of point correspondences in images that forces the matrix

containing these correspondences to have a fixed low-rank. This matrix can be further de-

composed into a shape-basis and their weights. Inspired from this method, [Akhter et al.,

2009] proposed NRSfM which modelled deformation as a set of trajectory basis. We discuss

statistics-based methods under these two categories.

2.2.1.1 Low-Rank Shape-Basis

For N images, the image observation matrix consisting of the P matched point correspon-

dences across the images is written as

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u11 . . . u1P
v11 . . . v1P
...

. . .
...

uN1 . . . uNP
vN1 . . . vNP

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.6)

where (uji , v
j
i ) represents the image coordinates of the ith point on the jth image. Any shape

can be written as a linear combinations of the K shape-basis Bi. Therefore the shape Si of

the ith image can be written as

Si =

K∑
t=1

litBt, (2.7)

where each shape-basis Bt is 3× P matrix and lit is the set of weights that decide the scale.

Projecting these shape-basis on images under a scaled orthographic projection, we can write

the observation matrix as

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u11 . . . u1P
v11 . . . v1P
...

. . .
...

uN1 . . . uNP
vN1 . . . vNP

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎣
l11R

1 . . . l1KR
1

...
. . .

...

lN1 R
N . . . lNKR

N

⎤
⎥⎥⎦
⎡
⎢⎢⎣
B1

...

Bk

⎤
⎥⎥⎦ = QB, (2.8)
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where Ri consists of the first two rows of the camera projection matrix. The goal is to

decompose W into two matrices Q and B which contain the information of the scale and

the set of shape-basis respectively. Once Q and B are found any shape can be written using

equation (2.7). Q can be further decomposed in order to find the pose.

[Bregler et al., 2000] used Singular Value Decomposition (SVD) to decompose W into Q

and B by fixing K as a low positive integer. Q and B are called the coefficient matrix and

shape-basis matrix respectively. This problem is non-convex and suffers from ambiguities

in the solution to the shape-basis. [Del Bue et al., 2004] proposed a non-linear refinement

to improve the solution. However in order to deal with these ambiguities, different kinds of

priors were proposed by various methods:

1) [Del Bue, 2008] proposed to use shape-basis priors to constrain the B matrix. The

idea is to estimate the shape-basis for some known 3D shapes and use them along with the

unknown shape basis in order to estimate the shapes for all the images. This means that some

of the basis in B are already calculated using few known 3D shapes and W is decomposed in

a way that these known shape bases do not change. Given that the first b elements of B are

known, the shape prior L according to [Del Bue, 2008] is given by

L = N

⎡
⎢⎢⎣
B1

...

Bb

⎤
⎥⎥⎦ = NB. (2.9)

The joint decomposition of W and L into Q, N and B improves the conditioning of the

shape. [Tao and Matuszewski, 2013] extended this idea to allow shapes to have non-linear

deformations by allowing L to be non-linear. B is found from a manifold whose embeddings

are learnt from a representative training dataset of the deformable object under consideration.

This is not a traditional NRSfM method (as it heavily relies on training to find B), however

it does highlight the success of manifold learning.

2) [Torresani et al., 2001] solves this problem by adding a shape regulariser term that

imposed spatial smoothness in the observed shape using an iterative optimisation.

3) [Olsen and Bartoli, 2008] solves this problem by optimising the shape-basis using spatial

and temporal smoothness priors.

4) [Bartoli et al., 2008] uses deformation modes and closeness of points in the mean shape

as priors. It solves the ambiguity by using a low-rank coarse-to-fine shape model which

prioritises the deformation modes that give the coarsest deformations.

5) [Fayad et al., 2010] proposed to model the deformations (patch-wise) with quadratic

models where the linear modes allow shearing and stretching, quadratic modes allow bending

and the mixed modes allow the twisting of the surfaces. These modes are optimised for each

(overlapping) patch using the temporal smoothness priors. Then they are stitched together

to obtain a global surface.

5) [Akhter et al., 2009] shows that an ambiguity in the SVD does not necessarily lead to

an ambiguous reconstruction. They introduced a correction matrix that can be used to obtain
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a unique solution. They showed that the camera orthonormality conditions are sufficient to

find the correction matrix. [Dai et al., 2012] proposed a more efficient solution to find this

matrix by minimising the trace of the shape-basis. Trace-minimisation is a tighter constraint

than rank-minimisation (used in [Akhter et al., 2009]). [Garg et al., 2013a] also used trace

minimisation of the correction matrix in order to find the low-rank shapes. They formulated

the problem as a global variational energy minimisation problem. The goal is to minimise

the trace of the shape-basis, reprojection error and the total spatial variation. This method

performs dense reconstruction and yields good results for faces. However, this algorithm is

computationally very expensive.

Most of these methods express shapes as a linear combinations of shape-basis. This forces

the deformations to be linear. Therefore these methods are applicable to simple deformations

such as a talking face. They do not cope up with the larger deformations such as a walking

man or a tree moving due to the wind unless more constraints are provided.

2.2.1.2 Low-Rank Trajectory-Basis

[Akhter et al., 2009] proposed to replace the shape-basis by a trajectory-basis in the formu-

lation suggested by [Bregler et al., 2000]. This method can easily reconstruct larger defor-

mations than the above-mentioned methods. The fundamental idea behind this method is

to express the trajectory of a point on an image as a linear combination of the trajectory-

basis. The trajectory-basis are obtained using a Discrete Cosine Transformation (DCT)

basis. [Akhter et al., 2009] proposed to decompose the image observation matrix W in equa-

tion (2.6) into R and T using SVD, where R contains the Ri (the first two rows of camera

projection matrix for the ith image) and T is the trajectory-basis matrix.

[Gotardo and Martinez, 2011] proposed a solution that uses additional higher frequencies

of the DCT basis in order to estimate large deformations better than [Akhter et al., 2009].

This method first estimates the 3D using trajectory-basis. It then estimates the shape-basis

by applying a kernel transformation which generalises the inner product with a radial basis

function.

[Torresani et al., 2008] also uses a parametric representation of shape and trajectory-

basis and finds 3D by estimating these parameters using Probabilistic Principal Component

Analysis.

These methods can handle large deformations better than the low-rank shape model

methods but they still need video-sequences or short-baseline data to achieve good results.

Table 2.1 summarises the statistics-based NRSfM methods. All these methods use the or-

thographic projection model. All these methods solve NRSfM with a non-convex formulation

except [Dai et al., 2012] which uses a convex relaxation.

Most of the statistics-based methods use orthographic camera projection which may lead

to flip ambiguities in the reconstruction. Also, these methods are designed for short-baseline

images and therefore, they cannot handle large deformations. For good results, these methods

need a large number of views.
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Method Type of basis Additional priors Complexity of basis

[Bregler et al., 2000] Shape - Linear

[Del Bue, 2008] Shape Shape Linear

[Tao and Matuszewski, 2013] Shape Shape Non-linear

[Dai et al., 2012] Shape - Linear

[Torresani et al., 2001] Shape Spatial smoothness Linear

[Olsen and Bartoli, 2008] Shape Spatio-temporal smoothness Linear

[Bartoli et al., 2008] Shape Deformation modes, point closeness Linear

[Akhter et al., 2009] Trajectory - Linear

[Torresani et al., 2008] Shape, trajectory Spatio-temporal smoothness Linear

[Gotardo and Martinez, 2011] Shape, trajectory - Non-Linear

Table 2.1: Summary of statistics-based NRSfM methods

2.2.2 Methods with Physics-based Models

For a long time, the focus of the research community has been on the statistics-based mod-

elling of deformation. Physics-based modelling for NRSfM is rather recent. In general, these

methods use the physical properties of thin-shell objects to model deformation as in SfT.

They can handle more complex deformations and work with fewer images than methods with

statistics-based modelling. Most of these methods, for example [Chhatkuli et al., 2014, 2016a;

Collins and Bartoli, 2010; Russell et al., 2014; Taylor et al., 2010; Varol et al., 2009; Vicente

and Agapito, 2012] use isometry as a deformation model except [Agudo et al., 2016] which

models deformations using elasticity. [Agudo et al., 2016] first reconstructs the surface by as-

suming that there are no deformation acting on it (basically SfM) and then uses this solution

the predict the deforming shapes. Therefore, this method resembles SfT even though it is

presented as a NRSfM method by the authors.

[Collins and Bartoli, 2010; Taylor et al., 2010] approximate isometry with a rigid rotation

and translation at a local (or piecewise) level. For example, [Collins and Bartoli, 2010; Tay-

lor et al., 2010] solved NRSfM by expressing isometry as local rigidity with an orthographic

camera projection. [Taylor et al., 2010] finds sets of 3 rigid points reconstructed using SfM

whereas [Collins and Bartoli, 2010] performs automatic clustering of point sets. These meth-

ods rely on finding the 3 points in a close neighbourhood in order to make sure that the

assumption of rigid transformation holds. Another approximation was made by [Russell

et al., 2014; Varol et al., 2009], they exploited isometry as piecewise-rigidity. [Russell et al.,

2014] computes fundamental matrices [Hartley and Zisserman, 2000] to obtain the solution

to surface normals. However, fundamental matrices may be unstable in case of small patches.

An improvement on [Varol et al., 2009] was proposed by [Chhatkuli et al., 2014] which

defines isometric constraints between points that are infinitesimally close to each other

while [Varol et al., 2009] defines these constraints on a small patch (assuming piecewise-

rigidity). Both of them assume perspective projection. [Chhatkuli et al., 2014] assumes the

surface to be a set of infinitesimal planes while [Varol et al., 2009] assumes the surfaces to be

represented as a set of planar patches. They then obtain a homography between the corre-

sponding normalised image points of the planes and use homography decomposition [Malis

and Vargas, 2007] to obtain the surface normals. The surface normals thus obtained have
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a two-fold ambiguity which is resolved by using spatial smoothness in [Varol et al., 2009]

while [Chhatkuli et al., 2014] uses additional views to disambiguate the normals. The surface

normals thus obtained are integrated to obtain an up-to-scale representation of the surface.

[Vicente and Agapito, 2012] expressed the deformation using isometric constraint (see

equation (2.1)) and proposed a global solution to NRSfM by performing a discrete non-

convex optimisation based on energy minimization of isometry constraints of all the points

considered. They provided solutions for both orthographic and perspective projection. The

method does not yield a globally optimal solution. The solution assuming orthographic

projection suffers from flip ambiguities.

Recently, [Chhatkuli et al., 2016a] proposed a solution to NRSfM by modelling defor-

mation with the inextensibility constraint (2.1) using the perspective camera model. Relax-

ing isometry to inextensibility makes the problem convex and a globally optimal solution

is obtained using second-order cone programming. The problem is formulated using the

MDH [Perriollat et al., 2011] where the goal is to maximise the point depth for each image

correspondence in the retinal frame under the inextensibility constraints. The point depths

are bounded by the sum of the unknown template distances in order to make sure that a

global minimum is reached.

[Agudo et al., 2014] solves NRSfM using a mix of physics-based deformation prior and

statistics-based priors. [Agudo et al., 2016] solves NRSfM for potentially extensible surfaces.

It requires the surface to be represented as a thin-plate (a surface with considerable thickness),

however it does not reconstruct the volumes. It represents the object’s mechanics in terms of

in-plane stress and out of plane bending. It models the deformation using Navier’s equation

which are solved by using Finite Element Method. However, this method works only for video

sequences. [Agudo et al., 2014, 2016] require an initialisation which is obtained by using SfM

on the first few frames. Therefore these methods resemble SfT in their approach rather than

NRSfM.

Table 2.2 summarises the NRSfM methods using physical priors. The use of physical

priors in NRSfM is limited to isometry. Other deformation priors are unexplored. Most of

these methods are applicable to both short-baseline and wide-baseline data except [Chhatkuli

et al., 2014, 2016a] which break on short-baseline data.

NRSfM methods based on physics-based modelling of deformations (for example, isometry

can be modelled with a rotation and translation at a local level, which incorporates camera’s

rotation and translation as well) do not decouple camera motion and deformation unlike

the NRSfM methods based on statistics-based modelling. The motion of the object or the

camera are both treated as a deformation and hence, camera-motion is not recoverable. A

deformation is therefore regarded as the change in the object from one view to another.

2.2.3 Relationship to our Work

Most of the current NRSfM methods suffer from ambiguities and poor performance in re-

construction. Deformations other than isometry are very rarely explored. The success of
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Table 2.2: Summary of physics-based NRSfM methods

Method Physical prior Constraint Camera model

[Chhatkuli et al., 2014] Local rigidity Local Perpective

[Varol et al., 2009] Local rigidity Piecewise Perspective

[Russell et al., 2014] Local rigidity Piecewise Orthographic

[Taylor et al., 2010] Local rigidity Local Orthographic

[Collins and Bartoli, 2010] Local rigidity Local Orthographic

[Vicente and Agapito, 2012] Isometry Global Orthographic

[Chhatkuli et al., 2016a] Inextensibility Global Perspective

[Agudo et al., 2016] Elasticity Global Perspective

physics-based methods in SfT inspires us to explore NRSfM with the same modelling. We

use differential geometry and Cartan’s theory of connections to model this problem and pro-

pose a modelling framework that extends NRSfM to deformations other than isometry.
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Chapter 3
Mathematical Formulation

3.1 Notation

We define a set of rules that we follow in the next chapters in order to make them easier to

understand. We describe here the general rules and the exceptions we make.

1) We use small-case Latin letters to denote scalars. Exception: In chapter 6, we use ρ

and α to denote scalars.

2) Bold Latin letters denote 2D and 3D vectors.

3) We use Greek letters to denote functions. We express the inverse-depth function in

chapters 4, 5 as β (in the case of planar surfaces) and α (in the case of non-planar surfaces).

Exception: In chapters 4 and 5, we use Γ to express CS and components of a connection

respectively. In chapter 5, f is a multi-valued smooth function defined in R
n with the coor-

dinates f i and their respective basis as ei where i ∈ [1, ..., n].

4) We use a subscript to index the images and a superscript to index the coordinates of

a point.

5) We use calligraphic letters for objects and images. In chapter 6, we use calligraphic

letters for sets, and |A| for the size of set A.

6) We use the operator Jϕ for the Jacobian of a function ϕ.

7) In chapter 4, we use g to denote the metric tensor and Γ to denote the CS matrix.

8) In chapter 5, differential 1-forms are represented as w. d is the operator for exterior

differentiation. The origin is denoted as O.

9) In chapters 4 and 5, we give our modelling for a pair of views. It straightforwardly

generalises to any number of views. We consider two surfaces Mi and Mj , which are rep-

resented by images Ii and Ij . A point in Ii is denoted by x and the corresponding one in

Ij by y. We name the points this way to avoid the subscripts in the equations. Similarly, a

point on the surface Mi is denoted by z and the corresponding point on Mj by w.

10) In chapter 6, the 3D points on the template and object are given by P and Q. Their

corresponding points on the images are given by p and q respectively. A tetrahedron attached

to a 3D point, for example, P is given as a set of 3D points (Pn1,Pn2,Pn3,Pn4).
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CHAPTER 3. MATHEMATICAL FORMULATION

11) In chapters 4 and 5 we omit x and just write the functions described at x as αi, βi

and φi (instead of αi(x), βi(x) and φi(x) ) in order to make the equations compact.

12) In chapters 4 and 5, we also write
∂αi

∂xt
as αi,t,

∂βi
∂xt

as βi,t,
∂φi
∂xt

as φi,t,
∂2αi

∂xt∂xs
as

αi,ts,
∂2βi
∂xt∂xs

as βi,ts and
∂2φi
∂xt∂xs

as φi,ts.

13) In chapters 4 and 5, we write (k1, k2, k3, k4, k5) as the expressions that represent

the ratio of first and second-order derivatives of the inverse-depth of the surface Mi to the

inverse-depth, (p1, p2, p3) which are known quantities on Mi, written in terms of the second-

order derivatives and (c1, c2, c3, c4, c5, c6) which represent the CS at Mi. On Mj , we write

these expressions with a bar as (k̄1, k̄2, k̄3, k̄4, k̄5), (p̄1, p̄2, p̄3) and (c̄1, c̄2, c̄3, c̄4, c̄5, c̄6).

We remind some of these notations in the chapters.

3.2 Manifolds and Surfaces

In general, a manifold is a topological space that resembles the Euclidean space R
n locally.

Therefore, at each point of the manifold one can find a neighbourhood that is homeomorphic

to the Euclidean space of dimension n. 2D manifolds represent surfaces. If embedded in 3D,

they represent 3D surfaces.

3.2.1 Infinitesimal Planarity

IP refers to the assumption that a surface at each point is approximately planar in its in-

finitesimal neighbourhood. This is fundamentally different from piece-wise planarity: in IP,

the surface is globally curved, but in an infinitesimal neighbourhood, it may be represented

by a plane. In other words, each infinitesimal model agrees with the global surface at the

point where IP is assumed, but this agreement holds only at the zeroth order. We define

the IP approximation of any surface as the IP surface where at each point the infinitesimal

plane is the tangent plane of the original surface. Note that while the surface can be globally

curved, the IP approximation is point-wise planar. It is a very interesting concept as it makes

it simpler to derive properties of surfaces.

3.2.2 Infinitesimal Linearity

IL refers to the assumption that a smooth mapping between two surfaces can be represented

by a set of linear mappings which map the infinitesimal neighbourhoods of the correspond-

ing points on the surfaces. Figure 3.1 shows two curves related by a smooth mapping ψ.

According to the formulation of IL in synthetic differential geometry [Kock, 2010] (it uses

IL to formalise theory of connections), given that ψ maps P to Q, there exists at least one

linear function ψL that maps the infinitesimal neighbourhood of P to Q. Therefore, ψ is

represented with an infinite set of linear mappings ψL that map infinitesimal neighbourhoods

of the curves. ψL has the same first-order differentials as ψ. It only assumes that the second

or higher-order differentials are zero as it is a linearization of ψ.
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3.3. PROJECTION

Figure 3.1: Illustration of IL. Two smooth curves are related by a mapping ψ. According to IL,

there exists a linear map ψL that relates P and Q and agrees with ψ at zeroth and first-order.

3.3 Projection

A surface is mathematically related to an image with an image projection function. Figure 3.2

shows a surface M ∈ R
3 being projected into the image I ∈ R

2 with the function Π : R3 →
R
2. We model projection with the perspective camera, where Π takes as input the point

z =
(
z1 z2 z3

)�
on the surface M and outputs its retinal coordinates x =

(
x1 x2

)�
in

the image:

x =
(
x1 x2

)�
= Π(z) =

(
z1

z3
z2

z3

)�
. (3.1)

Figure 3.2: An image embedding φ that relates the 3D surface M with its image I.
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3.4 Image Embedding

The image embedding, denoted as φ : I → M (see figure 3.2), represents the inverse of Π

restricted to the surface M ∈ R
3, as it maps retinal coordinates to the 3D surface. It must

satisfy the following identity:

x = (Π ◦ φ)(x). (3.2)

Smooth functions that comply with equation (3.2) can be expressed with a depth function

ρ ∈ C∞(I,R), where:
φ(x) = ρ(x)

(
x 1

)�
. (3.3)

Alternatively, let α = ρ−1 be the inverse-depth function. This allows us to re-define the

image embedding in equation (3.3) as:

φ(x) =
1

α(x)

(
x 1

)�
. (3.4)

where α is a function that represents the inverse of the depth of the surface at a point

x = (x1, x2) in I. A point on the surface M is given by

z = φ = α−1
(
x1 x2 1

)�
. (3.5)

For general surfaces, α is a non-linear function but for planar surfaces it is linear. Due to the

assumption of IP, the restriction of α to a point becomes linear.

In chapter 4, we will show that working with the inverse-depth for defining the image

embedding has an important role while defining the differential properties of surfaces.
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Chapter 4
Non-Rigid Structure-from-Motion with

Riemannian Geometry

Summary

In this chapter, we propose Isometric Non-Rigid Structure-from-Motion (Iso-NRSfM) using

a theoretical framework based on the Riemmanian manifold to represent the unknown 3D sur-

faces as embeddings of the camera’s retinal plane. This allows us to use the manifold’s metric

tensor and CS fields. These are expressed in terms of the inverse-depth of the 3D surfaces and

its first and second-order derivatives. These are the unknowns for Iso-NRSfM. We prove that

the metric tensor and the CS are related across images by simple rules depending only on the

warps. We show that Iso-NRSfM is solvable from local image warps. It proves that NRSfM

can be solved locally from a PDE formulation. We propose two solutions to Iso-NRSfM: with

and without the assumption of IP. This chapter is based on our published work [Parashar

et al., 2016].

29



CHAPTER 4. NON-RIGID STRUCTURE-FROM-MOTION WITH RIEMANNIAN GEOMETRY

4.1 Introduction

Research in NRSfM is still at an early stage. As we discussed in chapter 2, statistics-based

modelling in NRSfM limits the applicability to short-baseline images only. Also, the use of

orthographic camera projection leads to flip ambiguities. Physics-based modelling in NRSfM

is very recent. It is widely used in SfT [Salzmann and Fua, 2011] and recent works [Bartoli

et al., 2015; Chhatkuli et al., 2016b] show that the differential modelling of surfaces results in

local analytical solution to SfT and makes is a well-posed problem for isometric deformations.

Therefore, local SfT methods are powerful and computationally cheap.

The success of differential modelling in SfT is our motivation for this work. Our goal is

to extend this modelling to NRSfM. We use Riemannian geometry for differential modelling

of NRSfM. The differential quantities metric tensors and CS, defined in this geometry,

represent the properties of surfaces such as length, angles, areas and curvature. For isometric

deformations, we found that these properties are preserved across surfaces. This leads to a

solution for NRSfM using isometry as a deformation prior which we present in this chapter.

This solution performs significantly better than the compared state-of-the-art methods.

The method handles missing data and occlusions, needs very few images to perform recon-

struction, handles large images conveniently without affecting the computation time and

works for both short and wide-baseline images.

Chapter outline. We present the mathematical background of our solution in section 4.2.

It describes the modelling of NRSfM, the concepts of metric tensor and CS, the effect of

the IP assumption on these quantities, the preservation of these quantities under isome-

try. Section 4.3 shows how to use these concepts to write the reconstruction equations for

NRSfM under isometric deformations with and without the assumption of IP. Section 4.4

explains the algorithms and analyses their computational complexity. Section 4.5 discusses

the experiments and section 4.6 concludes.

4.2 Mathematical Background

4.2.1 General Model

Our model of NRSfM is shown in figure 4.1. We have N input images I1, . . . , IN that show

the projection of different isometric deformations of the same surface. The registration warps

(ηij and ηji) between the pair of images (Ii, Ij) are known. In this framework, we compute

these warps using [Pizarro et al., 2016]. This choice is explained and justified by theorem 4.

Abusing notation, we also use Ii to denote an image’s retinal plane, with Ii ⊂ R
2. Surfaces

in 3D are modeled as Riemannian manifolds. This allows us to define lengths, angles and

tangent planes on the surface [Lee, 1997]. We denote Mi ⊂ R
3 as the ith manifold, which can

be seen as a two-dimensional subset embedded in 3D. We use the extrinsic definition of Mi,

where a function embeds a subset of the plane R
2 into R

3. With embedding functions, one

can easily compute manifold characteristics [Lee, 2003] such as the metric tensor and the CS.
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4.2. MATHEMATICAL BACKGROUND

���

���

Figure 4.1: The proposed model of NRSfM, where each surface Mi is a Riemannian manifold defined

by embedding the corresponding retinal plane Ii.

However, these characteristics change according to the coordinate frame. We use the retinal

plane Ii as coordinate frame for Mi and define as φi ∈ C∞(Ii,R3) the image embedding for

Mi. We define as ψij the isometric mapping between manifolds Mi and Mj .

4.2.2 The Metric Tensor

The metric tensor (see appendix A for more details) is a differential quantity used to define

lengths, angles and areas on the surface [Lee, 1997]. The metric tensor of φi (in figure 4.2)

is denoted as gmn[φi]. We use the standard Einstein tensor notation and thus gmn[φi] is a

combined reference to all elements of the metric tensor, a 2×2 matrix in this case. According

to the Einstein summation convention, the summation is done over the indices appearing twice

in the expression. Also, the free indices in an expression (the ones that do not appear twice

in the expression) can be seen as both the indexed element or the whole arrangement. The

indices m and n refer to the components of the coordinate frame of φi. In figure 4.2, we have

Figure 4.2: Simplified notation for two images.
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z = φi(x) and:

Jφi
=

⎛
⎜⎜⎜⎜⎝
∂z1

∂x1
∂z2

∂x1
∂z3

∂x1

∂z1

∂x2
∂z2

∂x2
∂z3

∂x2

⎞
⎟⎟⎟⎟⎠

�

. (4.1)

The metric tensor of φi is then:

gmn[φi] = J�
φi
Jφi

=
∂zs

∂xm
∂zk

∂xn
δsk, (4.2)

with δsk the Kronecker delta function. We recall that according to the Einstein summation

convention, the summation in equation (4.2) is done over indices s and k. The inverse of the

metric tensor is expressed with raised indices gmn[φi]. Given the change of coordinates:

x = η(y) with y =
(
y1 y2

)�
, (4.3)

the metric tensor of φi ◦ η is obtained as:

gst[φi ◦ η] = J�
η J

�
φi
Jφi

Jη =
∂xm

∂ys
∂xn

∂yt
gmn[φi]. (4.4)

4.2.3 Christoffel Symbols

CS (see appendix B for more details) of the second kind are function arrays that describe

several properties of a Riemannian manifold, such as the curvature tensor, the geodesic

equations of curves and the parallel transport of vectors on surfaces [Lee, 1997]. We denote

the CS of embedding φi as Γ
p
mn[φi]. It is useful to represent the CS of φi as two 2 × 2

matrices Γ1
mn[φi] and Γ2

mn[φi], where the upper indices 1 and 2 make reference to the 2D

image coordinates x =
(
x1 x2

)�
, where φi is defined. The CS are given by:

Γp
mn[φi] =

1

2
gpl[φi] (glm,n[φi] + gln,m[φi]− gmn,l[φi]) , (4.5)

where glm,n = ∂nglm. Given a change of coordinates x = η(y), the CS in the new coordinates

are given as:

Γ
q
st[φi ◦ η] =

∂xm

∂ys
∂xn

∂yt
Γp
mn[φi]

∂yq

∂xp
+
∂yq

∂xl
∂2xl

∂ys∂yt
. (4.6)

Note that even though CS are expressed with tensor notation, they are not tensors and thus

equation (4.6) does not correspond to the way tensors change coordinates. The CS of the

image embedding, defined via the inverse-depth in equation (3.4), has a special structure

given in Theorem 1.
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Theorem 1 (CS Structure). Let x ∈ Ii, then Γ
p
mn[φi(x)] is given by:

Γ1
mn[φi(x)] = − 1

αi

(
2αi,1 αi,2

αi,2 0

)
+

(αi)
2Ai

Di

(
αi,11 αi,12

αi,12 αi,22

)

Γ2
mn[φi(x)] = − 1

αi

(
0 αi,1

αi,1 2αi,2

)
+

(αi)
2Bi

Di

(
αi,11 αi,12

αi,12 αi,22

)
,

(4.7)

where αi,k =
∂αi

∂xk
, αi,nm =

∂2αi

∂xn∂xm
and:

Ai = −x1αi +
(
1 +
(
x1
)2)

αi,1 + x1x2αi,2

Bi = −x2αi +
(
1 +
(
x2
)2)

αi,2 + x1x2αi,1

Di =
(
αi − x1αi,1 − x2αi,2

)2
+ (αi,1)

2
+ (αi,2)

2 .

(4.8)

Proof. From the definition of φi(x) in equation (3.4), we can write the Jacobian matrix of

φi(x) as:

Jφi(x) =
1

α2
i

⎛
⎜⎝αi − x1αi,1 −x1αi,2

−x2αi,1 αi − x2αi,2

−αi,1 −αi,2

⎞
⎟⎠. (4.9)

Next we compute the metric tensor by substituting the Jacobian matrix from equation (4.9)

in equation (4.2). The metric tensor is given by

g11[φi(x)] =
1

α4
i

(
ε2 (αi,1)

2
+ (αi)

2 − 2x1αiαi,1

)
g12[φi(x)] =

1

α4
i

(
ε2αi,1αi,2 − x1αiαi,2 − x2αiαi,1

)
g22[φi(x)] =

1

α4
i

(
ε2 (αi,2)

2
+ (αi)

2 − 2x2αiαi,2

)
.

(4.10)

where ε2 = 1 +
(
x1
)2

+
(
x2
)2
. The inverse of metric tensor is given by

g11[φi(x)] =
g22[φi(x)]

det(g[φi(x)])
=

(αi)
8
g22[φi(x)]

Di

g12[φi(x)] = − g12[φi(x)]

det(g[φi(x)])
= −(αi)

8
g12[φi(x)]

Di

g22[φi(x)] =
g11[φi(x)]

det(g[φi(x)])
=

(αi)
8
g11[φi(x)]

Di
.

(4.11)

The derivatives of the metric tensor are given by

g11,1[φi(x)] = −4αi,1

αi
g11[φi(x)] +

2Eiαi,11

(αi)
4

g12,1[φi(x)] = −4αi,1

αi
g12[φi(x)]−

Hi

(αi)
4 +

Eiαi,12 + Fiαi,11

(αi)
4
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g22,1[φi(x)] = −4αi,1

αi
g22[φi(x)] +

2Li

(αi)
4 +

2Fiαi,12

(αi)
4

g11,2[φi(x)] = −4αi,2

αi
g11[φi(x)] +

2Hi

(αi)
4 +

2Eiαi,12

(αi)
4

g12,2[φi(x)] = −4αi,2

αi
g12[φi(x)]−

Li

(αi)
4 +

Eiαi,22 + Fiαi,12

(αi)
4

g22,2[φi(x)] = −4αi,2

αi
g22[φi(x)] +

2Fiαi,22

(αi)
4 , (4.12)

where Ei =
(
1 +
(
x1
)2

+
(
x2
)2)

αi,1 − x1αi, Fi =
(
1 +
(
x1
)2

+
(
x2
)2)

αi,2 − x2αi,

Hi = x2 (αi,1)
2
+ αiαi,2 − x1αi,1αi,2, and Li = x1 (αi,2)

2 αi,1αi +−x2αi,1αi,2.

According to equation (4.5), the CS are given by

Γp
mn[φi(x)] =

1

2
gp1[φi(x)] (g1m,n[φi(x)] + g1n,m[φi(x)]− gmn,1[φi(x)])

+
1

2
gp2[φi(x)] (g2m,n[φi(x)] + g2n,m[φi(x)]− gmn,2[φi(x)]) .

(4.13)

Using the metric tensor and its derivatives from equations (4.10) and (4.12) in the expression

for the CS given in equation (4.13), gives the result in equation (4.7). For example, Γ1
11[φi(x)]

is given by

Γ1
11[φi(x)] =

1

2
g11[φi(x)] (g11,1[φi(x)]) +

1

2
g12[φi(x)] (2g21,1[φi(x)]− g11,2[φi(x)])

=
(αi)

8
g22[φi(x)]

Di

(
−2αi,1

αi
g11[φi(x)] +

Eiαi,11

(αi)
4

)

− (αi)
8
g12[φi(x)]

Di

(
−4αi,1

αi
g12[φi(x)]−

2Hi

(αi)
4

)

− (αi)
8
g12[φi(x)]

Di

(
Fiαi,11

(αi)
4 +

2αi,2

αi
g11[φi(x)]

)
=

−2αi,1

αi
+

(αi)
2Ai

Di
. (4.14)

4.2.4 Commutativity under Isometry

Images and surfaces in Iso-NRSfM follow the commutative diagram shown in figure 4.2.

Therefore,

φj = ψij ◦ φi ◦ ηji
Jφj

= Jψij
Jφi

Jηji .
(4.15)

The metric tensor of φj can be written according to equation (4.2). It is given by

J�
φj
Jφj

= J�
ηjiJ

�
φi
J�
ψij

Jψij
Jφi

Jηji = J�
ηjiJ

�
φi
Jφi

Jηji . (4.16)

The fact that mappings between manifolds are isometric (J�
ψij

Jψij
= I3×3) [Bartoli et al.,
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2015] allows us to derive the following fundamental result: in Iso-NRSfM, both metric tensors

and CS commute between surfaces with a change of variable given by the image warps. This

result is formalised with Theorem 2 and Corollary 1.

Theorem 2 (Metric Tensor Commutation). Let ψij be an isometric mapping between the

manifolds Mi and Mj, then gmn[φj ] = gmn[φi ◦ ηji] with (i, j) ∈ [1, N ]× [1, N ].

Proof. We first write φj in terms of φi using the isometric mapping ψij :

φj = ψij ◦ φi ◦ ηji. (4.17)

From equations (4.4) and (4.17) we have:

gmn[φj ] = gmn[(ψij ◦ φi) ◦ ηji] =
∂xs

∂ym
∂xt

∂yn
gst[ψij ◦ φi]. (4.18)

By definition, isometric mappings do not change the local metric and so g[ψij ◦ φi] = g[φi],

which applied to equation (4.18) gives:

gmn[φj ] =
∂xs

∂ym
∂xt

∂yn
gst[φi]. (4.19)

Identifying equation (4.4) with equation (4.19) gives the equality gmn[φj ] = gmn[φi ◦ηji].

Corollary 1 (CS Commutation). Let ψij be an isometric mapping between the manifolds

Mi and Mj, then Γ
p
mn[φj ] = Γ

p
mn[φi ◦ ηji] with (i, j) ∈ [1, N ]× [1, N ].

Proof. As described in equation (4.5), Γ
p
mn[φj ] is a function of gmn[φj ] and its derivatives.

From Theorem 2 we have that gmn[φj ] = gmn[φi ◦ ηji]. By multiplying this expression in

both sides by gmn[φj ], we get:

gmn[φj ]gmn[φj ] = gmn[φj ]gmn[φi ◦ ηji] = δmn, (4.20)

from which we deduce that gmn[φj ] = gmn[φi ◦ ηji]. Also, by differentiating gmn[φj ] =

gmn[φi ◦ ηji] on both sides we have:

∂lgmn[φj ] = ∂lgmn[φi ◦ ηji], (4.21)

giving gmn,l[φj ] = gmn,l[φi ◦ ηji]. By substitution of these identities in equation (4.19) we

obtain:

Γp
mn[φj ] =

1

2
gpl[φi ◦ ηji](glm,n[φi ◦ ηji] + gln,m[φi ◦ ηji]− gmn,l[φi ◦ ηji]),

and thus the equality Γ
p
mn[φj ] = Γ

p
mn[φi ◦ ηji] holds.

These results show that, given the metric tensor and the CS for one image embedding, they

can be transferred to the rest of the embeddings using the warps, which are known entities
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in Iso-NRSfM. Note that this result cannot be generalised to non-isometric mappings. This

establishes the ground rules for developing a local solution to Iso-NRSfM where the number

of unknowns does not grow with the number of images. The main idea is to define the

unknowns in a reference image and to use the warps to transfer all constraints into it.

4.2.5 Infinitesimal Planarity

We study the differential properties of the image embedding when the surface is a plane. We

then invoke IP to extend these properties point-wise to non-planar surfaces. In this regard

we present Theorem 3 and Corollary 2.

Theorem 3 (Linear Inverse-Depth of a Plane). If M is a plane then its image embedding

at x ∈ I is φ(x) = β(x)−1(x 1)� with β a linear function.

Proof. Suppose M is a plane described by the equation n�z + d = 0, where z =(
z1 z2 z3

)�
and n is the plane’s normal. From equation (3.3), the embedding is expressed

with a depth function φ(x) = ρ(x)
(
x 1

)�
. By combining the depth parametrisation with

the plane equation, we have:

n�ρ(x)
(
x 1

)�
+ d = 0, (4.22)

from which we compute ρ as:

ρ(x) = − d

n�
(
x 1

)� . (4.23)

By defining β(x) = (ρ(x))−1, φ is written as:

φ(x) = β(x)−1(x 1)�, (4.24)

where β(x) is linear in x.

Corollary 2 (CS of a Plane). Let M be a plane and φ(x) the image embedding at x ∈ I,
the CS Γ

p
mn[φ(x)] are given by:

Γ1
mn[φ(x)] =

1

β(x)

(
−2β1(x) −β2(x)
−β2(x) 0

)
Γ2
mn[φ(x)] =

1

β(x)

(
0 −β1(x)

−β1(x) −2β2(x)

)
,

(4.25)

where β1(x) =
∂β(x)

∂x1
and β2(x) =

∂β(x)

∂x2
.

Proof. From the definition of φ(x) in equation (4.24), we can write the Jacobian matrix of

φ(x) as:

Jφ(x) =
1

β(x)2

⎛
⎜⎝β(x)− x1β1(x) −x1β2(x)

−x2β1(x) β(x)− x2β2(x)

−β1(x) −β2(x)

⎞
⎟⎠. (4.26)
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Using equation (4.2), the metric tensor at φ(x) can be written as J�
φ(x)Jφ(x) . The expression

is given by

g11[φ(x)] =
1

β4

(
ε2 (β1)

2
+ β2 − 2x1ββ1

)
g12[φ(x)] =

1

β4
(
ε2β1β2 − x1ββ2 − x2ββ1

)
g22[φ(x)] =

1

β4

(
ε2 (β2)

2
+ β2 − 2x2ββ2

)
.

(4.27)

where ε2 = 1 +
(
x1
)2

+
(
x2
)2
. The derivatives of the metric tensor are given by:

g11,1[φ(x)] = −4β1
β

g11[φ(x)]

g12,1[φ(x)] = −4β1
β

g12[φ(x)]−

(
x2 (β1)

2
+ ββ2 − x1β1β2

)
(β)4

g22,1[φ(x)] = −4β1
β

g22[φ(x)] +
2
(
x1 (β2)

2 β1β +−x2β1β2
)

(β)4

g11,2[φ(x)] = −4β2
β

g11[φ(x)] +
2
(
x2 (β1)

2
+ ββ2 − x1β1β2

)
(β)4

g12,2[φ(x)] = −4β2
β

g12[φ(x)]−

(
x1 (β2)

2 β1β +−x2β1β2
)

(β)4

g22,2[φ(x)] = −4β2
β

g22[φ(x)]. (4.28)

Note that there are no second-order derivatives in the above expression because they vanish

in the case of planes. This leads to the CS in equation (4.25).

Theorem 3 shows that the inverse-depth β of a planar surface is a linear function. Corol-

lary 2 is derived from Theorem 1 and Theorem 3. It shows that the CS have a simplified

structure under infinitesimal planarity, where at any point they have 3 degrees of freedom: β

and its first-order derivatives. Moreover this also shows that both the metric tensor and the

CS share the same 3 unknowns.

From Corollary 2 we find the following constraints over the elements of the CS:

Γ1
22[φ(x)] = Γ2

11[φ(x)] = 0 2Γ2
12[φ(x)] = Γ2

22[φ(x)] Γ1
11[φ(x)] = 2Γ2

12[φ(x)]. (4.29)

We derive Theorem 4 from equation (4.29). It shows that the warps must comply with the

2D Schwarzian derivatives [Sasaki and Yoshida, 2002], which are second-order bilinear PDE

that arise in the field of projective differential geometry.

Theorem 4 (2D Schwarzian Equations for Planes). Given that Mi with i ∈ [1, N ] are

planes, the registration warps ηij with (i, j) ∈ [1, N ] × [1, N ] are point-wise solutions of the
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2D Schwarzian equations.

Proof. The elements of the CS for Mi with i = [1, . . . , N ] have the form of (4.25), and thus

must comply with the following algebraic constraints:

Γ1
22[φi] =Γ2

11[φi] = 0 2Γ2
12[φi] = Γ2

22[φi] Γ1
11[φi] = 2Γ2

12[φi]. (4.30)

From Corollary 1 we have Γ
p
mn[φj ] = Γ

p
mn[φi ◦ ηji]. Now we use equation (4.6) to compute

Γ
p
nm[φi ◦ ηji] from Γ

p
nm[φi] given in equation (4.25). Given that x = ηji(y), we write

Γp
nm[φi ◦ ηji] = ∂1y

p

(
−2

βi,1
βi
∂mx

1∂nx
1 − βi,2

βi

(
∂mx

1∂nx
2 + ∂mx

2∂nx
1
))

+

∂2y
p

(
−2

βi,2
βi
∂mx

2∂nx
2 − βi,1

βi

(
∂mx

1∂nx
2 + ∂mx

2∂nx
1
))

+ ∂1y
p∂2mnx

1 + ∂2y
p∂2mnx

2.

(4.31)

By forcing conditions in equation (4.30) in Γ[φi◦ηji] we obtain the following four second-order

PDE only in ηji

(
∂211x

1
) (
∂1x

2
)
−
(
∂211x

2
) (
∂1x

1
)
= 0(

∂222x
1
) (
∂2x

2
)
−
(
∂222x

2
) (
∂2x

1
)
= 0(

∂11x
1
) (
∂2x

2
)
−
(
∂11x

2
) (
∂2x

2
)
+ 2
((
∂12x

1
) (
∂1x

2
)
−
(
∂12x

2
) (
∂1x

1
))

= 0(
∂22x

1
) (
∂1x

2
)
−
(
∂22x

2
) (
∂1x

1
)
+ 2
((
∂12x

1
) (
∂2x

2
)
−
(
∂12x

2
) (
∂2x

1
))

= 0. (4.32)

These are the 2D Schwarzian equations introduced in [Pizarro et al., 2016], where point-wise

projective warps were investigated.

The 2D Schwarzian derivatives were used in [Pizarro et al., 2016] as a penalty to com-

pute ‘Schwarps’, smooth warps that preserve the deformation’s local projective structure.

Schwarps were shown to improve accuracy in both SfT and NRSfM with respect to other

smoothing penalties based on the bending energy. Theorem 4 theoretically justifies our

choice to use Schwarps for computing our image warps. Nonetheless our method can also be

used with any means to compute the local image warps.

4.3 Reconstruction Equations

We study local solutions to Iso-NRSfM, based on the differential properties derived in the

previous section. We show that Iso-NRSfM can be posed as a non-linear PDE system and

that we can find non-holonomic solutions of this system. We do not deal with boundary

conditions in the PDE as we find algebraic solutions of the system in terms of the non-

holonomic variables. This follows the same path as [Bartoli et al., 2015] for finding local

solutions in Iso-SfT.
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For planes, there is a unique linear relationship between the metric tensor and the CS,

which is why Iso-NRSfM is solvable under the assumption of IP. Corollary 2 shows that both

of them can be expressed in terms of the first-order derivatives of the inverse-depth of the

surface only. We explore this relationship for non-planar surfaces, where we need the first

and the second-order derivatives of the inverse-depth of the surface to express the metric

tensor and the CS. We argue that there is no uniqueness in the relationship between the

metric tensor and the CS anymore, and therefore, there is not a unique solution to Iso-NRSfM

locally. Then, we propose to solve Iso-NRSfM by solving for the first and the second-order

derivatives separately.

4.3.1 Relating the Metric Tensor and the Christoffel Symbols

For a non-planar surface, the CS at z ∈ Mi are given by equation (4.7). We define them as:

Γ1
mn[φi(x)] =

(
c1 c3

c3 c5

)
Γ2
mn[φi(x)] =

(
c2 c4

c4 c6

)
, (4.33)

where c1, c2, c3, c4, c5 and c6 are expressed in terms of the first and second-order derivatives

of αi(x) defined in equation (3.4). The expressions in equation (4.7) are:

c1 = −2k1 + k3Ai c2 = k3Bi c3 = −k2 + k4Ai

c4 = −k1 + k4Bi c5 = k5Ai c6 = −2k2 + k5Bi,
(4.34)

with:

Ai = −x1 +
(
1 +
(
x1
)2)

k1 + x1x2k2

Bi = −x2 +
(
1 +
(
x2
)2)

k2 + x1x2k1

Di =
(
1− x1k1 − x2k2

)2
+ (k1)

2
+ (k2)

2 ,

(4.35)

where k1 =
αi,1

αi
, k2 =

αi,2

αi
, k3 =

αi,11

αiDi
, k4 =

αi,12

αiDi
and k5 =

αi,22

αiDi
. The jacobian and hence

the metric tensor at z can be written in terms of (k1, k2). Our goal is to find a relationship

between the metric tensor parametrised with (k1, k2) and the CS (c1, c2, c3, c4, c5, c6). Having

such a relationship, we can formulate a system of equations exploiting the transfer of variables

in the CS and metric tensor from one surface to another. From c1 and c2 in equation (4.34),

we can write:
c1 + 2k1

c2
=
Ai

Bi
. (4.36)

Similarly, from c5 and c6 in equation (4.34), we can write:

c5
c6 + 2k2

=
Ai

Bi
. (4.37)
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From c3 and c4 in equation (4.34), we find
Ai

Bi
=
c3 + k2
c4 + k1

. We substitute
Ai

Bi
in equations (4.36)

and (4.37), we obtain:

(c1 + 2k1)(c4 + k1) = c2(c3 + k2) (c6 + 2k2)(c3 + k2) = c5(c4 + k1). (4.38)

From the first expression in equation (4.38), we find k2 =
(c1 + 2k1)(c4 + k1)

c2
− c3 and

substitute it in the second expression. We obtain the following quartic in k1:

(c4 + k1)
(
8k31 + 8 (c1 + c4) k

2
1 + 2 (c1 (c1 + 4c4) + c2 (c6 − 2c3)) k1 + 2c21c4 + c1c2 (c6 − 2c3)− c22c5

)
= 0.

(4.39)

This gives up to four possible solutions to k1, which means that there is not a unique rela-

tionship between the CS and the metric tensor.

Combining equation (4.38) with equation (4.34), we can express (k1, k2) in terms of the

CS (c1, c2, c3, c4, c5, c6) as a rational expression of degree two. This gives a system of two

polynomials of degree 8 in 6 variables for each pair of views. Existing solvers such as [Henrion

and Lasserre, 2003] cannot solve such high degree polynomial systems. We conclude that the

first and second-order derivatives of αi(x) cannot be solved jointly via estimating the CS.

However, we see that the expressions of the CS in equation (4.34) are linear in terms of (k1, k2)

and (k3, k4, k5). By assuming (k3, k4, k5) to be known, we can find a unique relationship

between the metric tensor and the CS and vice versa. Therefore, splitting the problem in

two steps of solving for the first and the second-order derivatives of αi(x) separately leads to

a solution to Iso-NRSfM.

4.3.2 Solving for the First-Order Derivatives

We assume that the second-order derivatives of αi(x) are known. They can be assumed to

be zero (as in the case of the infinitesimal planarity assumption) or they can be obtained

by the method we describe next. We show how to solve for the first-order derivatives of

αi(x). We also show that this solution has a similar structure as the solution to Iso-NRSfM

under IP assumption. We first select a pair of surfaces (Mi, Mj) (see figure 4.2) and a

point x = (x1, x2)� ∈ Ii. We evaluate Γ
p
mn[φi] at x, namely Γ

p
mn[φi(x)]. According to

equation (4.7), it is given by:

Γ1
mn[φi(x)] =

(
−2k1 +Aip1 −k2 +Aip2

−k2 +Aip2 Aip3

)
Γ2
mn[φi(x)] =

(
Bip1 −k1 +Bip2

−k1 +Bip2 −2k2 +Bip3

)
,

(4.40)

where k1 =
β1(x)

β(x)
and k2 =

β2(x)

β(x)
. The expressions (p1, p2, p3) are functions of second-order

derivatives of αi(x) and therefore, they are known. Ai and Bi are linear expressions in (k1, k2)
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according to equation (4.8). Next we compute Jφi
in terms of (k1, k2):

Jφi
(x) =

1

β(x)

⎛
⎜⎝1− k1x

1 −k2x1
−k1x2 1− k2x

2

−k1 −k2

⎞
⎟⎠ . (4.41)

By substitution of equation (4.41) in equation (4.2) we have:

g11[φi(x)] =
1

β(x)2

(
k1

2 +
(
k1x

1 − 1
)2

+
(
k1x

2
)2)

g12[φi(x)] =
1

β(x)2

(
k1k2

(
1 +
(
x1
)2

+
(
x2
)2)− k2x

1 − k1x
2
)

g22[φi(x)] =
1

β(x)2

(
k2

2 +
(
k2x

1
)2

+
(
k2x

2 − 1
)2)

.

(4.42)

We define Gmn[φi(x)] = β(x)2gmn[φi(x)], which only depends on (k1, k2). Let x = ηji(y).

We use equation (4.6) and Corollary 1 to compute Γk
mn[φj(y)] = Γk

mn[(φi ◦ ηji)(y)] as:

Γ1
mn[(φi ◦ ηji)(y)] =

(
−2k̄1 +Aj p̄1 −k̄2 +Aj p̄2

−k̄2 +Aj p̄2 Aj p̄3

)

Γ2
mn[(φi ◦ ηji)(y)] =

(
Bj p̄1 −k̄1 +Bj p̄2

−k̄1 +Bj p̄2 −2k̄2 +Bj p̄3

)
,

(4.43)

where according to equation (4.6), (k̄1, k̄2) are linear combinations of (k1, k2) and (p̄1, p̄2, p̄3).

(p̄1, p̄2, p̄3) are known. Aj and Bj are linear expressions in (k̄1, k̄2) according to equation (4.8).

From equation (4.42) one can find gst[φj(y)] in function of (k̄1, k̄2), and thus in function of

(k1, k2).

Alternatively, from equation (4.4) and using the definition of Gmn[φi(x)] and Gmn[φj(y)]

we have the following identity:

1

β(x)2
Gst[φj(y)] =

1

β(y)2
∂xm

∂ys
∂xn

∂yt
Gmn[φi(x)]. (4.44)

We cancel β(x) and β(y) by converting system (4.44) into the following two equations:

G11[φj(y)]

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−G12[φj(y)]

(
∂xm

∂y1
∂xn

∂y1
Gmn[φi(x)]

)
= 0

G22[φj(y)]

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−G12[φj(y)]

(
∂xm

∂y2
∂xn

∂y2
Gmn[φi(x)]

)
= 0.

(4.45)

We recall that both Gmn[φi(x)] and Gst[φj(y)] are only functions of (k1, k2) and x.

Equation (4.45) is a system of two cubics in variables (k1, k2) modeling Iso-NRSfM for

manifolds Mi and Mj at point x ∈ Ii. We denote the two equations as Qij(x, η1j(x), k1, k2).

By keeping the first index as the reference manifold, for instance i = 1, and obtaining the

polynomials for the rest of the views we have 2N − 2 polynomial equations in two vari-
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ables Q1(k1, k2) = {Q1j(x, η1j(x), k1, k2)}Nj=2. The solution (k1, k2) to the polynomial system

Q1(k1, k2) at the point x = x1 allows us to reconstruct the metric tensor, the CS and the

tangent plane for point x1 in view I1. Using equation (4.41) we can reconstruct Jφ1(x1) up

to an unknown scale β(x1)
−1. It is not necessary to recover this scale to estimate a unit

normal, which is computed by taking the cross product of the two columns of Jφ1(x1) and

normalising.

We solve system Q1(k1, k2) by finding the values of (k1, k2) that minimise the sum-of-

squares of all polynomials in the system. This optimisation is solved globally using moment

based convex optimisation [Henrion and Lasserre, 2003]. Given (k1, k2), we calculate (k̄1, k̄2)

by using equation (4.6) at each point.

Notice that the structure of the CS given in equation (4.25) for planes is very similar to

equation (4.40) with (p1, p2, p3) as zeros. This shows that the solution to Iso-NRSfM with the

IP assumption is a special case of this solution. We express the system with zero second-order

derivatives as P1(k1, k2), which is solved in a similar way as Q1(k1, k2).

4.3.3 Solving for the Second-Order Derivatives

We now show how to solve for the second-order derivatives of αi(x), assuming that the first-

order derivatives of αi(x) are known from the previous step (we start by solving for the

first-order derivatives assuming that second-order derivatives are null). The expressions for

the CS in equation (4.40) become linear in the second-order derivatives of αi(x). This means

that Γ
p
mn[φi(x)] is a linear function of (k3, k4, k5). Given that x = ηji(y) and equation (4.6),

Γ
p
mn[(φi ◦ ηji)(y)] is given by:

Γ1
mn[(φi ◦ ηji)(y)] =

(
c̄1 c̄3

c̄3 c̄5

)
Γ2
mn[(φi ◦ ηji(y))] =

(
c̄2 c̄4

c̄4 c̄6

)
, (4.46)

where (c̄1, c̄2, c̄3, c̄4, c̄5, c̄6) are expressed as a linear combination of (k3, k4, k5). Therefore, at

Mj , (k̄3, k̄4, k̄5) are given by the following expressions:

k̄3 =

(
c̄1 + 2k̄1

)
Aj + c̄2Bj

A2
j +B2

j

k̄4 =

(
c̄3 + k̄2

)
Aj +

(
c̄4 + k̄1

)
Bj

A2
j +B2

j

k̄5 =
c̄5Aj +

(
c̄6 + 2k̄2

)
Bj

A2
j +B2

j

.

(4.47)

These expressions show that (k̄3, k̄4, k̄5) can be expressed as a linear combination of

(k3, k4, k5).

In order to solve for the second-order derivatives of αi(x), we differentiate the first-order
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reconstruction equations (4.45). The expressions are given in equation (4.48).

∂G11[φj(y)]

∂x1

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
− ∂G12[φj(y)]

∂x1

(
∂xm

∂y1
∂xn

∂y1
Gmn[φi(x)]

)

+G11[φj(y)]
∂

∂x1

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−G12[φj(y)]

∂

∂x1

(
∂xm

∂y1
∂xn

∂y1
Gmn[φi(x)]

)
= 0

∂G11[φj(y)]

∂x2

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
− ∂G12[φj(y)]

∂x2

(
∂xm

∂y1
∂xn

∂y1
Gmn[φi(x)]

)

+G11[φj(y)]
∂

∂x2

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−G12[φj(y)]

∂

∂x2

(
∂xm

∂y1
∂xn

∂y1
Gmn[φi(x)]

)
= 0

∂G22[φj(y)]

∂x1

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
− ∂G12[φj(y)]

∂x1

(
∂xm

∂y2
∂xn

∂y2
Gmn[φi(x)]

)

+G22[φj(y)]
∂

∂x1

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−G12[φj(y)]

∂

∂x1

(
∂xm

∂y2
∂xn

∂y2
Gmn[φi(x)]

)
= 0

∂G22[φj(y)]

∂x2

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
− ∂G12[φj(y)]

∂x2

(
∂xm

∂y2
∂xn

∂y2
Gmn[φi(x)]

)

+G22[φj(y)]
∂

∂x2

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−G12[φj(y)]

∂

∂x2

(
∂xm

∂y2
∂xn

∂y2
Gmn[φi(x)]

)
= 0.

(4.48)

The derivatives of Gmn[φi(x)] in equation (4.45) are given in equation (4.49).

∂G11[φi(x)]

∂x1
= 2k1

(
x1k1 − 1

)
+ 2
(
εk1 − x1

) (
k3D − k1

2
)

∂G12[φi(x)]

∂x1
= k2

(
2x1k1 − 1

)
+
(
εk2 − x2

) (
k3D − k1

2
)
+
(
εk1 − x1

)
(k4D − k1k2)

∂G22[φi(x)]

∂x1
= 2x1k2

2 + 2
(
εk2 − x2

)
(k4D − k1k2)

∂G11[φi(x)]

∂x2
= 2x2k1

2 + 2
(
εk1 − x1

)
(k4D − k1k2)

∂G12[φi(x)]

∂x2
= k1

(
2x2k2 − 1

)
+
(
εk2 − x2

)
(k4D − k1k2) +

(
εk1 − x1

) (
k5D − k2

2
)

∂G22[φi(x)]

∂x2
= 2k2

(
x2k2 − 1

)
+ 2
(
εk2 − x2

) (
k5D − k2

2
)
,

with D =
(
1− x1k1 − x2k2

)2
+ k1

2 + k2
2 and ε = 1 +

(
x1
)2

+
(
x2
)2
.

(4.49)

Equation (4.49) shows that the derivatives are linear functions of (k3, k4, k5). Using equa-

tion (4.47), the reconstruction equations (4.48) form a linear system in three variables only,

which can be solved using LLS. Therefore, for each pair of manifolds (Mi,Mj) at point

x ∈ Ii, equation (4.48) is a system of four linear equations in variables (k3, k4, k5). We

denote the four equations as Sij(x,y, k3, k4, k5). Fixing the ith manifold as a reference, for

instance i = 1, we obtain 4N − 4 linear equations in three variables which are written as

S1(k3, k4, k5) = {S1j(x, η1j(x), k3, k4, k5)}Nj=2. The solution (k3, k4, k5) to the linear system

S1(k3, k4, k5) for the point x = x1 gives the second derivatives of αi(x). We use them to

compute a better estimate of the CS in equation (4.7). Using equation (4.47), we can obtain

(k̄3, k̄4, k̄5) using (k3, k4, k5).

43



CHAPTER 4. NON-RIGID STRUCTURE-FROM-MOTION WITH RIEMANNIAN GEOMETRY

4.4 Algorithms

We describe our solutions to Iso-NRSfM based on the theoretical results from the previous

sections. First, we describe the algorithm for solving Iso-NRSfM with the IP assumption and

then we describe the algorithm for the general solution. This uses the solution with the IP

assumption as initialisation. The inputs to our system are N images of a deforming object

and their inter-image warps with respect to the first image ηj1 and η1j . The outputs of our

system are the 3D points and normals corresponding to the point correspondences for the N

images. In our formulation, our goal is to find the jacobian of the image embedding. The

normals are then obtained from the jacobian and the 3D points are calculated by integrating

the normal field as in [Chhatkuli et al., 2014].

4.4.1 Solution under Infinitesimal Planarity

With the assumption of IP, we can write the metric tensor of equation (4.40) and the CS of

equation (4.42) on a manifold Mi in terms of two variables which correspond to the ratio

of first-order derivatives of the inverse-depth β of the image embedding φi with the inverse-

depth function. We can also write the metric tensor and the CS on the rest of the images

in terms of the variables in the first image (equations (4.4) and (4.6) respectively), which

leads to two variables for N images. We solve the system of two cubics in two variables

of equation (4.45) for all images by minimising the sum-of-squares of the polynomials. The

algorithm takes the following steps:

Inputs: Warps ηj1, j ∈ [2, N ].

1) Find point correspondences. Select a grid of points on the first image and using the

warps η1j , find the corresponding grid of points on the rest of the images. We evaluated our

method on a 20× 20 grid of points.

2) Find (k1, k2). Evaluate the polynomial P1(k1, k2) and solve by minimising the sum

of squares using [Henrion and Lasserre, 2003]. This gives (k1, k2). Find (k̄1, k̄2) in terms of

(k1, k2) and the ηj1 warps, j ∈ [2, N ], using equation (4.6).

3) Find normals and 3D points. Find the jacobian in terms of (k1, k2) using equa-

tion (4.41). Compute the normals by taking the cross-product of the jacobian’s columns

and normalising it. Use the method in [Chhatkuli et al., 2014] to recover the 3D surfaces by

integrating the normal fields.

Outputs: Points and normals on 3D surfaces.

4.4.2 General Solution

We still have the metric tensors on a manifold Mi in terms of two variables but the CS are

now written in terms of five variables, ratio of the first and the second-order derivatives of the

inverse-depth αi of the image embedding φi with the inverse-depth function. We iteratively

solve for the first and the second-order derivatives alternatively until the first-order derivatives

of αi(x) converge. Our algorithm is:
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Inputs: Warps ηj1, j ∈ [2, N ].

1) Find point correspondences. This step is the same as step 1) from the previous algo-

rithm.

2) Initialise (k1, k2) using the solution under IP. Run step 2) from the previous algorithm.

3) Find the second-order derivatives (k3,k4,k5). Evaluate the linear system S1(k3, k4, k5)

and solve using LLS. This gives (k3, k4, k5). Find (k̄3, k̄4, k̄5) using equation (4.47).

4) Find (k1, k2). Evaluate the sum-of-squares polynomials of the system Q1(k1, k2) and

find (k1, k2) by minimising it using [Henrion and Lasserre, 2003]. Find (k̄1, k̄2) in terms of

(k1, k2) and the warps ηj1, j ∈ [2, N ], using equation (4.6).

5) Repeat steps 3) and 4) until the solution to (k1, k2) converges. The maximum number

of iterations is set to 5.

6) Find normals and 3D points. Run step 3) from the previous algorithm.

Outputs: Points and normals on 3D surfaces.

4.4.3 Complexity Analysis

We discuss the complexity of the algorithm under the IP assumption and in the general

solution. For both solutions, we assume that the warps are provided. We calculate the

warps using schwarps [Pizarro et al., 2016], that impose the Schwarzian equations (4.29) as

a soft constraint. However we would like to point out that we do not require warps between

all possible pairs of images in the sequence. We use a reference view and thus require the

computation of N − 1 warps only, not N2.

Solution with Infinitesimal Planarity

The solution to Iso-NRSfM under IP solves only one sextic polynomial for N images. This

polynomial is formed by computing the sum-of-squares of 2(N − 1) cubic polynomials (4.45).

Forming this sextic polynomial has a linear complexity but solving it is independent of N .

General Solution

The solution to the general case solves for the first and the second-order derivatives of αi(x)

in parts. The approach for solving for the first-order derivatives of αi(x) is similar to the

solution under IP assumption. It also solves one sextic polynomial and therefore, the solution

is independent of N . For the second-order derivatives of αi(x), we obtain 4(N − 1) linear

equations and they are solved using LLS. Therefore, there is a linear complexity in forming

these equations and solving them as well.

4.5 Experimental Results

We tested Iso-NRSfM on synthetic and real datasets. Figure 4.3 shows some images from real

datasets on which the methods were evaluated. For quantitative comparison, we measured

the normal error (mean difference between computed and ground truth normals in degrees)
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Figure 4.3: Some images of the rug, table mat, kinect paper and tshirt datasets. The five rightmost

images of the table mat dataset are zoomed in to improve visibility.

and the depth error (mean difference between computed and ground truth 3D coordinates

in mm). We denote Iso-NRSfM with IP as infP and as iso otherwise. We compared our

method with six other NRSfM methods: diffH [Chhatkuli et al., 2014], mdhI [Chhatkuli

et al., 2016a], kerF [Gotardo and Martinez, 2011], plaH [Varol et al., 2009], pieceI [Taylor

et al., 2010], inextI [Vicente and Agapito, 2012]. All the codes for these methods were

obtained from the authors’ websites except plaH which we re-implemented.

4.5.1 Synthetic Datasets

We simulated random views of a cylindrical surface deforming isometrically. The image size

is 640p×480p and the focal length is 400p. We tracked 400 points. We compared all methods

by varying the number of views and noise in the images. kerF needs a temporal sequence, 10

views are not enough for reconstruction especially for short-baseline viewpoints. It therefore

did not do well. Also, mdhI needs the views to be very different and therefore, it also gave

very bad results on this sequence. [Chhatkuli et al., 2016a] mentioned that their method

fails on such sequences. The results are shown in figure 4.4. The results are obtained after

averaging the errors over 50 trials (the default is 1p noise and 10 views).

4.5.1.1 Varying the Number of Views

infP gives a very good reconstruction for three views which improves when more images

are added. iso performs much better than infP as it does not assume IP; this helps in

reconstructing the high curvature deformations more accurately. The errors of iso are almost

half of infP. plaH and diffH give higher errors than infP and iso with plaH being better

than diffH. However, diffH improves faster with the number of views and gives better results
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Figure 4.4: Synthetic data experiments. Average normal and depth errors with respect to number

of views, noise and curvature. Best viewed in colour.
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Noise (in pixels)→
B-spline control points

1 2 3 4 5

10 .53 .92 1.55 1.94 2.46

20 .99 2.00 2.94 3.93 4.90

30 1.00 2.06 3.02 4.07 5.14

Table 4.1: Performance of warps in noisy conditions. The average pixel error due to added noise

w.r.t. the B-spline control points are shown. The warps reduce the noise only when fewer control

points are used, but then significantly degrade their derivatives.

than plaH for 8-10 views. The performance of these methods is off by almost 5 degrees

compared with infP. pieceI and inextI give decent results only with 8-10 views but their

performance is worst amongst the compared methods. Overall, infP and iso consistently

show lower errors than all other methods.

4.5.1.2 Varying Noise

For the 10 images of the synthetic dataset, we observe that all methods degrade linearly

when noise varying between 1-5 pixels is added. inextI and pieceI show a good tolerance to

noise, even though their performance is worse than all other methods. diffH and plaH give a

slightly better performance than inextI and pieceI. Their performance degrades faster with

noise compared to inextI and pieceI. Even though the normal errors of diffH and plaH are

comparable to inextI and pieceI, their depth errors are lower because they smooth normals

while calculating the depth. infP and iso give best performance with noise. iso performs

better than infP and degrades more slowly than infP. The normal error for infP and iso is

almost half compared to other methods.

We also made an experiment to study the influence of noise on the warps. This is because

we use warps to represent the image transformation and that estimating these could be

reducing some of the noise applied to the correspondences. We simulated two synthetic

images (I1 and I2) and added a 1-5 pixels noise to point correspondences in I2. We computed

the schwarps [Pizarro et al., 2016] (using B-splines) between I1 and I2 using our default

setup (30 control points and a fixed value for the hyperparameter controlling the Schwarps

smoothing). We then computed the standard deviation of the pixel noise after computing

the warps. The result is given in the last row of table 4.1, where we can see that the amount

of noise is almost unaffected. We did the same experiment with fewer control points, which

resulted in improved noise values (see the table 4.1). However, we found that using fewer

points has an impact on the final accuracy as they degrade the derivatives, which directly

influence the output of our method. We conclude that the warps do not remove the noise

from the point correspondences.
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4.5.1.3 Varying Curvature

We simulated a cylindrical surface with a varying radius. The curvature is the inverse of

the radius. We simulated 10 surfaces with the radius varying from 2 to 11 and used 10

different views of each surface for the experiment. We see that the performance of iso and

infP is best amongst the compared methods. Their performance is very similar when the

surfaces are almost flat or less bent. As the curvature of the surfaces increase, we can see

that iso performs much better than infP. iso handles high deformations better than infP

because it estimates the second-order derivatives of the surface while infP assumes them to

be zero. diffH and plaH need wide baseline views with different deformations, therefore,

their performance is worse or comparable with inextI and pieceI.

4.5.2 Real Datasets

We conducted experiments with the four datasets shown in figure 4.3 and performed two

types of experiments. The tshirt dataset is a wide baseline dataset and the rest of them are

short baseline datasets. Our observations are summarised below.

4.5.2.1 Short Sequences

The rug, table mat and kinect paper datasets are long sequences (159, 60 and 191 images

with 350, 300 and 1500 point correspondences) and the t-shirt is a short dataset (10 images,

85 point correspondences). The long sequences are uniformly reduced by picking 10 images

at regular intervals in the sequence. The results are shown in figure 4.5. The results for the

tshirt dataset are averaged over 20 trials of randomly sampled images. The figure clearly

shows that iso works best among the compared methods while the performance of mdhI

and infP is quite good as well.

Rug dataset. iso and infP have the best performance on this dataset; iso being better

than infP. mdhI improves with the number of views and gives comparable results to infP

for 7-10 views. diffH and plaH show a worse performance than mdhI, with plaH being

better. inextI and pieceI are orthographic methods and therefore, they did not do well

on this dataset as it has too much perspective in the deformations. inextI’s depth error is

comparable to plaH but normal error is much higher. This indicates flattening of surfaces

during the reconstruction.

Table mat dataset. iso has the best performance on this dataset. infP and mdhI show a

similar performance in this dataset, and they are closest to iso compared with other methods.

diffH and plaH show a worse performance than mdhI, with plaH being a little bit better

than diffH. inextI and pieceI are orthographic methods and therefore, they did not do well.

Kinect paper dataset. mdhI has the best performance on this dataset. infP and iso are

very close to mdhI. inextI and pieceI have the worst normal error as compared to other
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(a) Rug dataset
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(b) Table mat dataset
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(c) Kinect paper dataset
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(d) Tshirt dataset

Figure 4.5: Experiments on short sequences. The average normal and depth error for each exper-

iment with number of views varying between 3-10 is shown. The views of the rug, table mat and

kinect paper datasets are selected by uniform sampling the long sequences. The views of the tshirt

dataset are selected by randomly sampling the dataset and the results are averaged over 20 trials.

Best viewed in colour.
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methods. Their errors are almost twice as the best performing methods mdhI, infP and

iso. diffH and plaH show better performance in terms of normals as compared to inextI

and pieceI. The performance of diffH, plaH, inextI and pieceI in terms of depth error is

similar.

Tshirt dataset. iso has the best performance on this dataset with infP and mdhI being

very close to iso. diffH is slightly worse than infP and mdhI. plaH follows a similar trend

as diffH, but its performance is worse. inextI and pieceI have poor results on this dataset

because they cannot handle such deformations.

Summary of experiments on short sequences iso and infP give the best performance

on the rug and table mat datasets while mdhI gives best results on the kinect paper dataset.

It is important to note that iso and infP converge quickly as compared to the rest of the

methods. They show very good results for as few as three views. iso converges much quicker

than infP; the errors seem to have been stabilised with four views only. Figure 4.6 shows

3D reconstruction error maps for the rug, table mat, kinect paper and tshirt datasets. We

showed results for iso, infP and mdhI only because they are the most competitive methods

amongst the compared methods. In case of occlusion, iso and infP can reconstruct the entire

surface as long as the surface is visible in at least three images, therefore, even if the kinect

paper dataset is occluded by a hand, it can be reconstructed by them. However, mdhI

reconstructs only the visible part of each surface. Therefore we observe the occlusion in the

reconstruction and rendering as well.

4.5.2.2 Long Sequences

The rug, table mat and kinect paper datasets are long sequences with 60, 159 and 191 images.

Since our method can easily handle a large number of images, it is important to show results

on large sequences by considering all images in the dataset. A limitation of current NRSfM

methods is that they cannot handle a large number of views. Also, several NRSfM methods

such as diffH and plaH [Chhatkuli et al., 2014; Varol et al., 2009] reconstruct the reference

image only and are computationally expensive to recover the other shapes. kerF reconstructs

the entire image set in one execution and therefore, we compare our method with kerF on long

sequences. The cat dataset is a relatively short sequences (60 images) therefore, we added the

results of inextI for this dataset on the entire sequence. Figure 4.7 shows the comparison of

our method with others. It is very clearly visible that our method performs much better than

the compared methods. mdhI and infP show good results as well. Table 4.2 summarises

the results of these methods.

Rug dataset. iso gives the best results among the compared methods on this dataset.

infP’s performance is slightly worse than iso. mdhI shows better performance than kerF,

but it is worse than iso and infP.
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Figure 4.6: Reconstruction error maps and renderings for the rug, table mat, kinect paper and

tshirt datasets. We remind that mdhI reconstructs only the visible part of the surface. Therefore,

the rendering and error map for the kinect paper dataset is broken for this method. Best viewed in

colour.
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(c) Kinect paper dataset

Figure 4.7: Experiments on long sequences. The average normal and depth error for each frame

is shown. The experiment with inextI is only performed for the table mat dataset. Best viewed in

colour.
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Figure 4.8: Images (10, 20, 30, 40, 50) of a partially stretched rubber like surface. The first image

has the least deformation and the last one has the most.

Rug Table mat Kinect paper

Methods En Ed En Ed En Ed

iso 12.9 27.2 10.5 8.2 7.8 6.1

infP 16.7 34.9 12.3 9.6 9.6 7.1

mdhI 18.8 42.3 16.4 10.5 4.8 4.4

kerF 20.0 66.6 19.0 20.0 18.7 24.8

inextI - - 22.4 19.0 - -

Table 4.2: Summary of experiments on long sequences. The average normal (En) and depth error

(Ed), are measured in degrees and mm respectively and shown over the entire sequences.

Table mat dataset. iso has the best performance with infP being very close to it. mdhI

shows better performance than kerF, but both of them are worse than iso and infP. diffH

and plaH need to compute homographies between image pairs, therefore, they grow non-

linearly with the number of views. For 60 images, the execution time goes upto 45 min for

a single reconstruction. Therefore, we did not compare with them. pieceI breaks on this

sequence, therefore we did not include it. The comparison with inextI is done only for this

sequence as it is a relatively smaller sequence. One must also note that inextI, pieceI grow

with the number of views and point correspondences, therefore, they are not very efficient

with a large number of views.

Kinect paper dataset. mdhI shows the best results on this dataset. iso and infP have

similar performance but they are worse than mdhI. kerF has the worst performance; the

errors are almost double of the rest of the methods. It is because this sequence has outliers;

and therefore the performance of kerF is affected. One must note that iso, infP and kerF

reconstruct the occluded part of the paper while mdhI only recovers the visible paper in

each frame.

Summary of experiments on long sequences. Table 4.2 summarises the results of

the compared methods on the rug, table mat and kinect paper datasets. iso and infP give

the best performance on rug and the table mat datasets while mdhI gives the best results

on the kinect paper dataset. kerF gives decent results on the rug and table mat datasets

but does not do well on the kinect paper dataset. However, its performance is always worse

than iso, infP and mdhI. inextI was only compared on the table mat dataset; it gives the

worst results compared to the other methods.
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Experiment 1 2 3 4 5

No. of images 10 20 30 40 50

infP 19.1 26.6 29.3 32.7 36.1

iso 14.1 22.7 27.0 28.3 34.8

Table 4.3: Mean shape error (in degrees) for the experiment with partially stretched surface. The

error increases with the number of images as the deformation increases. iso performs better than

infP.

Summary of experiments. In the experiments that we performed, we observed that

iso and infP show the best results amongst all compared methods. mdhI shows a good

performance. Its results are comparable to ours for the tshirt and kinect paper datasets. This

method is based on the MDH, it usually requires a lot of images with different viewpoints

to give good results. diffH and plaH are based on homography decomposition. They suffer

from ambiguities in the normals. They disambiguate the normals assuming the smoothness

of the surfaces which is not a strong assumption to make. These methods work well with

wide baseline datasets. kerF is a method based on statistical modeling designed to work

for video sequences. It needs a good estimation of the radius of the kernel in which the

similarities between the two shapes are measured. pieceI and inextI are methods based on

orthographic projection. They suffer from convex-concave flip ambiguities.

4.5.3 Elastic Objects

Our methods model deformations with isometry. In case of non-isometric deformations,

theorem 2 and corollary 1 do not hold and therefore, there is no meaningful theoretical

solution guaranteed. However, we solve Iso-NRSfM by finding a set of CS that minimise

the sum of squares of polynomials in equation (4.45). Therefore, we made an experiment

to test Iso-NRSfM with objects deforming non-isometrically in order to test the limitation

for our methods infP and iso. We used the partially stretched surface dataset introduced

in [Özgür and Bartoli, 2016]. It consists of 50 shapes of an elastic surface partially stretched

from its longest side in a sequential order. The images are shown in figure 4.8. We made

five experiments on this dataset. These experiments include 10, 20, 30, 40 and 50 images

respectively. The experiment with 10 images has the least elastic deformation (this can be

seen in figure 4.8) and the one with 50 images has the most elastic deformation. For each

experiment, we calculate the shape error for each image. The mean shape error calculated

over the entire image set in each experiment increases about linearly with the degree of

extension. Therefore, we see that the method does not collapse completely for non-isometric

deformations but gracefully degrades. Table 4.3 summarises the results of this experiment.

4.5.4 Computation Time Comparison

We compared the performance of our methods with the others in terms of computation time

on a standard computer with 16 GB RAM. Ours and the rest of the methods are implemented
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Figure 4.9: Experiment with an almost stationary object. The first five images of the table mat

sequence are used. The reconstruction of iso is shown in red. The ground truth is indicated with

black. Es represents the mean shape error (in degrees). Ed represents the mean depth error (in mm).

The performance of iso is almost the same as infP on these five images. Best viewed in colour.

infP iso mdhI kerF plaH diffH pieceI inextI

10 11.2 51 8.9 14.1 65 86 180 210

30 13.1 52.4 21.3 26.3 3090 2280 850 1299

60 14.8 55.1 65.8 44.8 - - - -

Table 4.4: Comparison of computation time (in seconds) for 10, 30 and 60 views. The best performing

method is highlighted in bold. infP and iso show a much lower increase in computation time while

plaH, diffH, pieceI and inextI show a drastic increase. They could not be evaluated for 60 views.

in MATLAB. infP takes ≈ 10 seconds for any number of images. iso is initialised with infP,

and the solution to the first and the second-order derivatives of αi(x) is found iteratively

upto 5 iterations. Solving for the first-order derivatives takes a similar duration as infP

while solving for second-order derivatives and integrating normals have a linear complexity

but they are very fast. We made an experiment with 10, 30 and 60 views. We observed

that the computation time of iso (≈ 60 seconds) and infP (≈10 seconds) is almost the same

(very small increase) in the three experiments. mdhI and kerF also are very fast but the

computation time increases significantly as the number of images increases. plaH, diffH,

pieceI and inextI show a drastic increase in computation time on changing the number of

images from 10 to 30. We did not compute these timings for 60 images. Table 4.4 summarises

the results.

4.5.5 Nearly-Stationary Objects

We made an experiment with a nearly-stationary object. In the table mat dataset, we picked

the first 5 frames which are shown in figure 4.9. The mat is nearly-stationary. We observed

that our methods iso and infP did get a decent reconstruction for these datasets. The errors

are higher as compared to the experiments with the full sequence, as expected. Figure 4.9

shows the images and the reconstruction. The results are shown for iso. The performance of

infP was almost the same as iso. This shows that the solution to Iso-NRSfM is well-posed.

There is always a solution for N ≥ 3, as long as the images are not exactly the same.

56



4.6. CONCLUSIONS

4.6 Conclusions

We proposed a theoretical framework for modelling and solving NRSfM locally for surfaces

deforming isometrically. It uses Riemannian manifolds and applies to the minimal and re-

dundant cases of N ≥ 3 views. Unlike existing methods, the proposed method has only five

variables to solve for N views. Therefore, it can handle a large number of views without a

significant increase in the computation time. The complexity is linear, which is a substantial

improvement from the current state-of-the-art. Since the method is local, it handles missing

data and occlusions. However, it does not handle self-occlusions but they could be inferred

a posteriori. We proposed two methods that solve NRSfM with and without the assumption

of IP. The performance of these methods is quite similar (except in computation time). This

shows that IP is a good assumption to make. We tested our methods on datasets with wide-

baseline and short-baseline viewpoints, large and small deformations. Our results show that

the proposed methods consistently give significantly better results than the state-of-the-art

methods even for as few as three views.
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Chapter 5
A Modelling Framework for Deformable 3D

Reconstruction

Summary

In this chapter, we propose a generic modelling framework for deformable 3D reconstruction

using differential geometry and Cartan’s theory of connections. We express the properties of

surfaces in terms of differential quantities such as moving frames and connections and show

how to express the deformation constraints in terms of these quantities. With the assumption

of IP, we derive PDE for the reconstruction of surfaces with isometric, conformal, skewless,

equiareal deformations and solve them algebraically. We show that NRSfM is not solvable

for equiareal deformations. We also obtain a solution for SfT without modelling deformation

explicitly. This solution is derived under the assumption of IL.
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5.1 Introduction

In the previous chapter, we obtained a solution to NRSfM (Iso-NRSfM) for deformable thin-

shell objects undergoing isometric deformations. It uses the differential quantities of metric

tensor and CS to model NRSfM. It is a significant improvement on the state-of-the-art. It

is a local solution which has limited variables for any number of images, which makes it

computationally very cheap. However, it gives very good results with very few images. It

handles missing data and occlusions implicitly and works with both short and wide-baseline

images. It shows that physics-based modelling in NRSfM leads to better solutions than

existing ones.

In this chapter, we extend NRSfM to deformations other than isometry. Our goal is to pro-

pose local solutions which maintain the strengths of Iso-NRSfM. We generalise the concepts

of metric tensor and CS from Riemannian geometry (defined for isometry and conformity

only) to moving frames and connections in differential geometry. Differential geometry is

a very good tool for physics-based modelling as in pure mathematics, it is well-established

that it is the comprehensive study of surfaces. Cartan’s theory of connections not only gen-

eralises the concept of CS on surfaces but also gives the laws that combine moving frames

and connections in order to completely describe the properties of surfaces. It then leads to

interesting results. With differential geometry and Cartan’s connections, we propose a unified

framework for modelling NRSfM and SfT. This framework is local and coherent with other

solutions to NRSfM (Iso-NRSfM) and SfT [Bartoli et al., 2015] with differential modelling.

This framework allows us to go one step further in NRSfM and SfT and to model these

problems for various types of deformations in terms of PDE. With the assumption of IP,

we show that these PDE can be solved algebraically. We show that nonetheless equiareal

NRSfM cannot be solved locally.

An interesting result in this chapter is the solvability of SfT using geometric constraints

instead of deformation constraints. We show that the solution is unique and well-posed.

This chapter contributes a modelling framework for deformable 3D reconstruction. It is

general, practical and easy to use.

Chapter outline. We present the mathematical background of this framework in sec-

tion 5.2. It describes the connections, moving frames and shows how to express deformation

constraints using these quantities. Section 5.3 proposes a framework for model-based recon-

struction of deformable objects (SfT) and the reconstruction algorithm. Section 5.4 proposes

a framework for model-free reconstruction of deformable objects (NRSfM) and the recon-

struction algorithm. Section 5.5 discusses the experiments and section 5.6 concludes.

5.2 Mathematical Background

We describe surfaces and deformations using concepts from differential geometry and the

theory of manifolds. We discuss next some of the deformations relevant to this framework.
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5.2.1 Affine Connections

In differential geometry, a connection is a geometric object attached to a point on a smooth

manifold. It transports some of the geometric properties (such as lengths, angles and areas)

of the surface at this point to its neighbourhood.

Definition 1. Cartan’s affine connection is a set of geometric relations (expressed in terms

of the affine moving frame defined locally at a point in space) that relate a point to its in-

finitesimal neighbourhood.

In order to define an affine connection in an n-dimensional space, we fix an origin O

and n-linearly independent basis vectors (e1, e2, . . . , en) originating from O which describe a

frame at f as

f = O+ f1e1 + f2e2 + .......+ fnen, (5.1)

where f t are the coordinates of the point f on the manifold. An affine connection is described

using the following first order differential system which represents the vectorial variations of

f and the coordinate basis:

df = w1e1 + w2e2 + . . .+ wnen

det = w1
t e1 + w2

t e2 + . . .+ wn
t en,

(5.2)

where the 1-forms (see appendix C for details) wt and ws
t are known as dual and connection

forms respectively. Note that this formulation of connections is applicable to any kind of

frame. In case of moving frames, a connection 1-form describes the change in the moving

frame as one moves to the infinitesimal neighbourhood of a point on the manifold. An affine

connection defines the local geometric and physical properties (such as unit lengths and areas)

of the affine space around a point in the manifold. Cartan’s vision behind connections [Cartan,

1923, 1924, 1926] was to define geometric properties on an object without defining the object

itself. He derived these laws using the theory of moving frames [Cartan, 1937] which we

describe next.

5.2.2 Moving Frames on Surfaces

The moving frame in a 3D surface M is a set of 3 linearly independent vectors. It can be

defined in several ways. The connection forms defined in equation (5.2) are dependent on the

particular choice of the moving frame. In general we assume that any point on the surface

(manifold) admits a local parametrisation described by the function f(x1, x2) (see figure 5.1).

A natural choice is to use the tangent vectors of the surface to define the moving frame:

e1 =
∂f

∂x1
e2 =

∂f

∂x2
e3 =

∂f

∂x1
× ∂f

∂x2
, (5.3)
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Figure 5.1: A moving frame on a surface M defined using a local parametrisation (x1, x2).

with e�1 e3 = 0 and e�2 e3 = 0. The expression of the total derivative of f in terms of the

moving frame is given by

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2, (5.4)

By identifying the terms in equation (5.4) with equation (5.2), we obtain the dual forms

w1 = dx1, w2 = dx2 and w3 = 0. The connection forms can be found by taking the total

derivative of the basis vectors

det =
∂et
∂x1

dx1 +
∂et
∂x2

dx2, (5.5)

and finding the representation of equation (5.5) in the basis formed by the moving frame

(e1, e2, e3):

det = w1
t e1 + w2

t e2 + w3
t e3, (5.6)

where ws
t = Γs

t1dx
1 + Γs

t2dx
2 and Γs

tk are scalar functions. In case of the frame used in

equation (5.3), Γs
tk for s, t, k ∈ {1, 2} are CS of the surface and Γs

tk with s = 3 and t, k ∈ {1, 2}
contain the coefficients of the second fundamental form of the surface.

Example 1. Given the following surface of a plane:

f(x1, x2) = ux1 + vx2 + o, (5.7)

where u and v are three-dimensional unit vectors that define the plane and o is a three-

dimensional displacement vector, we define the moving frame of equation (5.3):

e1 = u e2 = v e3 = u× v. (5.8)

62
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The total derivative is given by

df =
(
dx1 dx2

)(
u v

)�
=
(
ω1 ω2

)(
e1 e2

)�
. (5.9)

As e1 and e2 are constant vectors then de1 = 0 and de2 = 0. This makes all connection forms

ws
t = 0 for t ∈ {1, 2} and s ∈ {1, 2, 3}. We remind that this result is correct for the particular

parametrization of the plane given in equation (5.7) and the moving frame in equation (5.8).

Example 2. If the plane of equation (5.7) is projected into the image with coordinates

(x̄1, x̄2), it can be alternatively parametrised using the image embedding φ from equation (3.3)

as

φ =
1

β(x̄1, x̄2)

⎛
⎜⎝x̄

1

x̄2

1

⎞
⎟⎠ , (5.10)

with

β(x̄1, x̄2) = −

n�

⎛
⎜⎝x̄

1

x̄2

1

⎞
⎟⎠

n�o
n = u× v. (5.11)

The moving frame on the surface M described by the image embedding (5.11) is given by

e1 = φ1 =
1

β2
(
β − x̄1β1,−x̄2β1,−β1

)�
e2 = φ2 =

1

β2
(
−x̄1β2, β − x̄2β2,−β2

)�
e3 = φ1 × φ2 =

1

β3
(
β1, β2, β − x̄1β1 − x̄2β2

)�
.

(5.12)

Using the frame and its first-order derivatives, we obtain the connection forms ws
t related to

φ. We write ws
t = Γs

tkdx̄
k and obtain

⎛
⎜⎝Γ1

11 Γ2
11 Γ3

11

Γ1
21 Γ2

21 Γ3
21

Γ1
31 Γ2

31 Γ3
31

⎞
⎟⎠ = − 1

β

⎛
⎜⎝2β1 0 0

β2 β1 0

0 0 3β1

⎞
⎟⎠

⎛
⎜⎝Γ1

12 Γ2
12 Γ3

12

Γ1
22 Γ2

22 Γ3
22

Γ1
32 Γ2

32 Γ3
32

⎞
⎟⎠ = − 1

β

⎛
⎜⎝β2 β1 0

0 2β2 0

0 0 3β2

⎞
⎟⎠ .

(5.13)

As expected, the connections in equation (5.13) are different from those of Example 1.

Equation (5.13) plays an important role in this paper as it shows the general structure of

the connection’s coefficients for planar surfaces and by extension the IP approximation of

surfaces described by their image embeddings.

We now show how to write moving frames and connections on planar surfaces.
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5.2.3 Moving Frames and Parametrisations

Figure 5.2 shows a surface M defined using two different parametrizations f(x) and g(x̄).

The domains of f and g are mutually homeomorphic and η is the diffeomorphic mapping

that expresses the change of coordinates:

x = η(x̄) =

(
η1(x̄)

η2(x̄)

)
. (5.14)

By differentiating, we obtain the relation between the dual forms of the two parametrisations

as

dx1 =
∂x1

∂x̄1
dx̄1 +

∂x1

∂x̄2
dx̄2

dx2 =
∂x2

∂x̄1
dx̄1 +

∂x2

∂x̄2
dx̄2.

(5.15)

Figure 5.2: A moving frame on a surface Mi defined using local parametrisations (x1, x2) and

(x̄1, x̄2) related by η.

Given that g = f ◦ η in figure 5.2, we obtain Jg = JfJη. Therefore, the moving frames

vectors (ē1, ē2, ē3) and (e1, e2, e3) defined using (x̄1, x̄2) and (x1, x2) respectively are related

by the following relationship (
ē1 ē2

)
=
(
e1 e2

)
Jη

ē3 = ē1 × ē2 = |Jη|(e1 × e2) = |Jη|e3(
ē1 ē2 ē3

)
=
((
e1 e2

)
Jη |Jη|e3

)
.

(5.16)

Differentiating the above relation and expressing the derivatives of frame bases according to
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equation (5.2), we obtain

(
ē1 ē2 ē3

)⎛⎜⎝w̄
1
1 w̄1

2

w̄2
1 w̄2

2

w̄3
1 w̄3

2

⎞
⎟⎠ =

(
e1 e2 e3

)⎛⎜⎝w
1
1 w1

2

w2
1 w2

2

w3
1 w3

2

⎞
⎟⎠Jη +

(
e1 e2

)
dJη

(
ē1 ē2 ē3

)⎛⎜⎝w̄
1
3

w̄2
3

w̄3
3

⎞
⎟⎠ =

(
e1 e2 e3

)⎛⎜⎝w
1
3

w2
3

w3
3

⎞
⎟⎠ |Jη|+ e3d|Jη|.

(5.17)

In these equations, we express
(
e1 e2 e3

)
as
((
e1 e2

)
Jη |Jη|e3

)( J−1
η

|Jη|−1

)
and using

equation (5.16), we write the relation between the connection forms as(
w̄1
1 w̄1

2

w̄2
1 w̄2

2

)
= J−1

η

(
w1
1 w1

2

w2
1 w2

2

)
Jη + J−1

η dJη(
w̄3
1 w̄3

2

)
= |Jη|−1

(
w3
1 w3

2

)
Jη(

w̄1
3

w̄2
3

)
= J−1

η

(
w1
3 w2

3

)
|Jη|

w̄3
3 = w3

3 + d (|Jη|) |Jη|−1.

(5.18)

Equations (5.16) and (5.18) show that the moving frame and the connections of the 3D

surface M (in figure 5.2) derived using the functions f and g are linearly related in terms

of the first and second-order derivatives of η. We refer to these equations as the change of

variable equations of moving frames and connections. In the next section, we show how to

draw relations between different surfaces.

Figure 5.3: Two surfaces M1 and M2 related by ψ are parametrised using (x1, x2).
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5.2.4 Smooth Mappings between Surfaces

Mappings are defined by functions that connect points between two surfaces. Figure 5.3

shows a mapping ψ : M1 → M2 between surface M1 and M2, respectively parametrized by

embeddings f(x) and g(x). The mapping ψ takes a point z on M1 and transports it to z̄

on M2. Therefore, z̄ = ψ(z). We assume that mappings between surfaces are diffeomorphic

which implies that they are smooth, bijective and with a smooth inverse.

Among this general class of mappings we study the following types: 1) isometric

(distances-preserving), 2) conformal (angle-preserving), 3) equiareal (area-preserving) and

4) skewless (orthogonal frame basis’ angle-preserving). The set of isometric mappings is a

subset of 2), 3) and 4) and is also given by the intersection of 2) and 3). The set of skewless

mappings includes 1), 2) and a subset of 3). These properties are described in figure 5.4. All

these kinds of mappings are identified by how they affect the metric tensor (first fundamental

form) between the two surfaces. They are thus defined with first order differential constraints.

���������	
�	�
����	
��������������

Figure 5.4: Classification of various types of smooth mappings.

Given that g and ḡ are the metric tensors of M1 and M2 respectively, where:

g = J�
f Jf ḡ = J�

g Jg (5.19)

the four categories of mappings are described by the following invariants:

Type of mapping Invariant

Isometric g = ḡ

Conformal g ∝ ḡ

Equiareal |g| = |ḡ|
Skewless γ(g) = γ(ḡ)

(5.20)

where

γ(g) =
g2
12

g11g22
(5.21)

Given the moving frames (e1, e2, e3) at M1 and (ē1, ē2, ē3) at M2 from equation (5.3), the

coefficients of the metric tensor can be described as follows from equation (5.19):

g =

(
e�1 e1 e�1 e2
e�2 e1 e�2 e2

)
ḡ =

(
ē�1 ē1 ē�1 ē2
ē�2 ē1 ē�2 ē2

)
(5.22)
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From equations (5.22) and (5.20), the four categories of mappings can be transferred to

constraints on the frames.

Isometric Mappings

Isometric mappings preserve the lengths and angles of the moving frames on the corresponding

points on the two surfaces. The constraints are

ē�1 ē1 = e�1 e1 ē�2 ē2 = e�2 e2 ē�1 ē2 = e�1 e2. (5.23)

Conformal Mappings

Conformal mappings preserve the angles of the moving frames on the corresponding points on

the two surfaces but the lengths of the frame vectors are isotropically scaled. The constraints

are (
ē�1 ē1 ē�2 ē2 ē�1 ē2

)
∝
(
e�1 e1 e�2 e2 e�1 e2

)
. (5.24)

Equiareal Mappings

Equiareal mappings preserve the area (expressed as the squared norm of the cross product

of tangent vectors) of the tangent plane defined by the moving frames on the corresponding

points on the two surfaces. The constraint is

|ē1 × ē2|2 =
(
ē�1 ē1

)(
ē�2 ē2

)
−
(
ē�1 ē2

)2
=
(
e�1 e1

)(
e�2 e2

)
−
(
e�1 e2

)2
= |e1 × e2|2 .

(5.25)

Skewless Mappings

Skewless mappings preserve the angles along the orthogonal frame basis on the surface. It

is composed of two local anisotropic scaling along the orthogonal frame basis followed by a

conformal mapping (see figure 5.5 for more details). Next we prove a theorem to formalise

the construction of these mappings.

Theorem 5 (Skewless Mappings). A mapping is skewless iff it can be only decomposed into

a conformal mapping and two anisotropic scaling along the orthogonal frame basis.

Proof. First we prove the reverse implication of the theorem, i.e., two anisotropic scaling and

a conformal mapping lead to a skewless mapping. In figure 5.5, we have

ψxyc = ψc ◦ ψy ◦ ψx. (5.26)

Since ψx and ψy are anisotropic local scaling along the orthogonal frame basis, they preserve

the angles along the orthonormal frame basis. Therefore, ψx, ψy and their composition is a
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Figure 5.5: An example of skewless deformation. A surface grid undergoes anisotropic scaling in

two orthogonal directions and then undergoes a conformal transformation. Therefore, only the angles

between the basis are preserved.

skewless mapping. ψc is a conformal mapping and therefore, it is skewless too, which makes

ψxyc a skewless mapping.

Note that ψc ◦ ψy ◦ ψx and ψc ◦ ψx ◦ ψy are both skewless mappings as the anisotropic

scalings are commutative. However, ψx ◦ ψc ◦ ψy is not a skewless mapping anymore due to

the non-commutativity of the conformal mapping.

In order to prove the forward implication, we need to show that a skewless mapping ψxyc

can always be decomposed into a conformal mapping ψc and two anisotropic local scalings

along the orthogonal frame basis.

We can always express ψxyc as

ψxyc = ψc ◦ ψy ◦ ψx ◦ ψu, (5.27)

where ψu is an unknown mapping. On decomposing ψxyc as in equation (5.27), we have

that ψy ◦ ψx ◦ ψu must be a skewless mapping. ψu cannot be a conformal mapping as it is

non-commutative with anisotropic scalings. ψu can be expressed as

ψu = ψx′ ◦ ψy′ ◦ ψx′y′ , (5.28)

where ψx′ and ψy′ are transformations along the orthogonal frame basis. ψx′y′ represents a

transformation that is not along the orthogonal frame basis and therefore it does not preserve
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the angles along the orthogonal frame basis.

Therefore ψy ◦ ψx ◦ ψu can only be a skewless mapping if ψx′y′ is identity. Otherwise, it

causes a scaling which is not along the orthogonal frame basis which makes ψy ◦ ψx ◦ ψu a

non-skewless mapping.

Hence a skewless mapping can only be defined as a combination of anisotropic scaling

followed by a conformal mapping.

The constraint for skewless mappings is

(
ē�1 ē2

)2(
ē�1 ē1

) (
ē�2 ē2

) = (
e�1 e2

)2(
e�1 e1

) (
e�2 e2

) . (5.29)

It is possible to propose more kinds of mappings and express the properties they preserve in

terms of the moving frames. In the next section we will show how to exploit these properties

(expressed in terms of moving frames) for the reconstruction of deformable objects.

5.2.5 Infinitesimally Linear Mappings between Surfaces

In this section we show that linear mappings preserve the connection forms across surfaces.

This is a very important property that we use in this chapter to propose a reconstruction algo-

rithm (without having to categorise the mapping according to equation (5.20)) by extending

these properties to the so-called infinitesimally linear maps.

Theorem 6. (Linear Mappings) A linear mapping between two planes preserves the connec-

tion forms (w1
1, w

1
2, w

2
1, w

2
2).

Proof. Given that g = ψ ◦ f in figure 5.3, we have Jg = 0. The moving frames (e1, e2, e3) and

(ē1, ē2, ē3) on the planes M1 and M2 are related by

(
ē1 ē2

)
= Jψ◦f

(
e1 e2

)
=
(
Jψ◦fe1 Jψ◦fe2

)
. (5.30)

Equation (5.30) shows the relation between the moving frames (e1, e2, e3) at M1 and

(ē1, ē2, ē3) at M2. Therefore, on differentiating this relation we obtain(
dē1 dē2

)
= Jψ◦f

(
de1 de2

)
+ dJψ◦f

(
e1 e2

)
. (5.31)

Given that ψ is a linear mapping, dJψ◦f = 0 in the previous equation. We multiply the

two expressions obtained in the above equation with ē�1 and expand the expression using the

connection relations in equation (5.2) and obtain

w̄1
1 ē1ē

�
1 + w̄2

1 ē2ē
�
1 = Jψ◦f

(
w1
1e1 + w2

1e2
)
ē�1

w̄1
2 ē1ē

�
1 + w̄2

2 ē2ē
�
1 = Jψ◦f

(
w1
2e1 + w2

2e2
)
ē�1 .

(5.32)
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Since wt
s are scalar functions (they are differential forms), we employ equation (5.30) and

rewrite the above expression as

w̄1
1 ē1ē

�
1 + w̄2

1 ē2ē
�
1 = w1

1 ē1ē
�
1 + w2

1 ē2ē
�
1

w̄1
2 ē1ē

�
1 + w̄2

2 ē2ē
�
1 = w1

2 ē1ē
�
1 + w2

2 ē2ē
�
1 .

(5.33)

Since (ē1, ē2) are linearly independent, on expressing ws
t in terms of Γs

tkdx
k in the above

equation we obtain Γ̄s
tk = Γs

tk and therefore,
(
w̄1
1 w̄1

2 w̄2
1 w̄2

2

)
=
(
w1
1 w1

2 w2
1 w2

2

)
.

We use the concept of IL mappings which allows us to extend the result of Theorem 6

for mappings between two generic surfaces. To summarise, it is possible to find constraints

on smooth mappings (with an assumption of IL) without adding a deformation prior (like

isometry or conformity).

In the next section, we show how to use theorem 6, the moving frame constraints derived

for smooth mappings in equations (5.23)-(5.25) and the change of variable for moving frames

in equation (5.16) and connections in equation (5.18) for 3D reconstruction of deformable

objects.

5.3 Model-Based 3D Reconstruction

We now propose a general framework based on the theory of connections presented in the

previous section to model and to solve SfT for thin-shell objects.

Figure 5.6: Modelling of model-based 3D reconstruction of deformable objects from a single view.

Figure 5.6 shows the general modelling of SfT. Given a 3D model T (template) of the

object, our goal is to find the surface M as observed in the image I. η is the image warp

from I to the flattened 3D model Tf . η is known and can be estimated in practice with dense

image registration methods. ψ is the deformation function between T and M. For rigid

objects ψ is a Euclidean transformation. We model the surface M and the model T using

image embeddings φ1 and φ2:
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φ1(x
1, x2) =

1

β1(x1, x2)

⎛
⎜⎝x

1

x2

1

⎞
⎟⎠ φ2(x̄

1, x̄2) =
1

β̄2(x̄1, x̄2)

⎛
⎜⎝x̄

1

x̄2

1

⎞
⎟⎠ (5.34)

Following equation (5.3) the moving frames (et1, e
t
2, e

t
3) and (ē1, ē2, ē3) on T and M respec-

tively are given as

et1 = φ11 =
1

β21

(
β1 − x1β11,−x2β11,−β11

)�
et2 = φ12 =

1

β21

(
−x1β12, β1 − x2β12,−β12

)�
et3 = φ11 × φ12 =

1

β31

(
β11, β12, β1 − x1β11 − x2β12

)�
,

(5.35)

ē1 = φ̄21 =
1

β̄22

(
β̄2 − x̄1β̄21,−x̄2β̄21,−β̄21

)�
ē2 = φ̄22 =

1

β̄22

(
−x̄1β̄22, β̄2 − x̄2β̄22,−β̄22

)�
ē3 = φ̄21 × φ22 =

1

β̄32

(
β̄21, β̄22, β̄2 − x̄1β̄21 − x̄2β̄22

)�
.

(5.36)

Using equation (5.22) we compute the elements of the metric tensor in T as:

(
et1
)�
et1 =

1

k2
(
ε2k21 + 1− 2x1k1

)
=
Et

k2(
et2
)�
et2 =

1

k2
(
ε2k22 + 1− 2x2k2

)
=
Gt

k2(
et1
)�
et2 =

1

k2
(
ε2k1k2 − x1k2 − x2k1

)
=
Ft

k2
,

(5.37)

where ε2 =
(
1 +
(
x1
)2

+
(
x2
)2)

, k = β1, k1 =
β11
β1

and k2 =
β12
β1

. Under the assumption of

infinitesimal planarity, the first-order derivatives of these expressions are given by

∂Et

∂x1
= −2k1Et

∂Ft

∂x1
= −k2Et − k1Ft

∂Gt

∂x1
= −2k2Ft

∂Et

∂x2
= −2k1Ft

∂Ft

∂x2
= −k1Gt − k2Ft

∂Gt

∂x2
= −2k2Gt.

(5.38)

Similarly, we can write (Ē, F̄ , Ḡ) and their first-order derivatives for (ē1, ē2, ē3) at M in terms

of (k̄1, k̄2, k̄).

In order to compare the moving frames at the two surfaces T and M, we need to define

them in the same parametrisation space. Therefore, we derive (E,F,G) at M1 in terms of

(x̄1, x̄2) by using the change of variable as suggested in equation (5.16)
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E =

(
∂x1

∂x̄1

)2

Et + 2
∂x1

∂x̄1
∂x2

∂x̄1
Ft +

(
∂x2

∂x̄1

)2

Gt

F =
∂x1

∂x̄1
∂x1

∂x̄2
Et +

(
∂x1

∂x̄1
∂x2

∂x̄2
+
∂x2

∂x̄1
∂x1

∂x̄2

)
Ft +

(
∂x2

∂x̄1

)2

Gt

G =

(
∂x1

∂x̄2

)2

Et + 2
∂x1

∂x̄2
∂x2

∂x̄2
Ft +

(
∂x2

∂x̄2

)2

Gt. (5.39)

The derivatives of (E,F,G) according to equation (5.38) are given by

∂E

∂x̄1
= −2

(
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
k2

)
E + 2

∂2x1

∂ (x̄1)2
A1 + 2

∂x2

∂ (x̄1)2
A2

∂E

∂x̄2
= −2

(
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
k2

)
F + 2

∂2x1

∂x̄1∂x̄2
A1 + 2

∂x2

∂x̄1∂x̄2
A2

∂G

∂x̄1
= −2

(
∂x1

∂x̄2
k1 +

∂x2

∂x̄2
k2

)
F + 2

∂2x1

∂x̄1∂x̄2
C1 + 2

∂x2

∂x̄1∂x̄2
C2

∂G

∂x̄2
= −2

(
∂x1

∂x̄2
k1 +

∂x2

∂x̄2
k2

)
G+ 2

∂2x1

∂ (x̄2)2
C1 + 2

∂x2

∂ (x̄2)2
C2

∂F

∂x̄1
= −

(
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
k2

)
F −

(
∂x1

∂x̄2
k1 +

∂x2

∂x̄2
k2

)
E

+
∂2x1

∂x̄1∂x̄2
A1 +

∂x2

∂x̄1∂x̄2
A2 +

∂2x1

∂ (x̄1)2
C1 +

∂x2

∂ (x̄1)2
C2

∂F

∂x̄1
= −

(
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
k2

)
G−

(
∂x1

∂x̄2
k1 +

∂x2

∂x̄2
k2

)
F

+
∂2x1

∂x̄1∂x̄2
C1 +

∂x2

∂x̄1∂x̄2
C2 +

∂2x1

∂ (x̄2)2
A1 +

∂x2

∂ (x̄2)2
a2

where

A1 =
∂x1

∂x̄1
Et +

∂x2

∂x̄1
Ft, A2 =

∂x1

∂x̄1
Ft +

∂x2

∂x̄1
Gt

C1 =
∂x1

∂x̄2
Et +

∂x2

∂x̄2
Ft, C2 =

∂x1

∂x̄2
Ft +

∂x2

∂x̄2
Gt.

(5.40)

Now that we have both (E,F,G) and (Ē, F̄ , Ḡ) with respect to (x̄1, x̄2), we write the con-

straints for various kinds of deformations expressed in equations (5.23)-(5.25). Since (k1, k2, k)

are known, our goal is to find (k̄1, k̄2, k̄) in order to obtain the normal and depth at M.

5.3.1 Reconstruction Equations for Smooth Mappings

We now derive the reconstruction equations for the various types of deformations we discussed

in section 5.2.
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Isometric Mappings

Given that ψ is an isometric mapping, the relationship between the moving frames at M and

T are described in equation (5.23). This gives the following three constraints:

E

k2
=
Ē

k̄2
F

k2
=
F̄

k̄2
G

k2
=
Ḡ

k̄2
. (5.41)

We differentiate these constraints under the assumption of IP (using the expressions in equa-

tions (5.38) and (5.40)) and obtain the following equations

k̄1 =
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
k2 −

1

2E

(
∂2x1

∂ (x̄1)2
A1 +

∂2x2

∂ (x̄1)2
A2

)

k̄2 =
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
k2 −

1

2G

(
∂2x1

∂ (x̄2)2
C1 +

∂2x2

∂ (x̄2)2
C2

)
,

where

A1 =
∂x1

∂x̄1
E +

∂x2

∂x̄1
F, A2 =

∂x1

∂x̄1
F +

∂x2

∂x̄1
G,

C1 =
∂x1

∂x̄2
E +

∂x2

∂x̄2
F, C2 =

∂x1

∂x̄2
F +

∂x2

∂x̄2
G.

(5.42)

These expressions are linear in (k̄1, k̄2), independent of (k, k̄) and exploit the first and the

second-order derivatives of the warp η. k̄ can be recovered from equation (5.41) using (k̄1, k̄2)

obtained from the solution of equation (5.42).

Conformal Mappings

Given that ψ is a conformal mapping, the relationship between the moving frames at M and

T are described in equation (5.24). This gives the following three constraints:

1

k2

(
E G F

)
∝ 1

k̄2

(
Ē Ḡ F̄

)
1

k2

(
E G F

)
= α2 1

k̄2

(
Ē Ḡ F̄

)
,

(5.43)

where α2 is the scale of conformity. On differentiating these expressions, we obtain equa-

tion (5.42) with (k̄1, k̄2) replaced with α2(k̄1, k̄2). We get rid off the (k, k̄) and ∝ in equa-

tion (5.43) by taking ratios of (E,F,G) with (Ē, F̄ , Ḡ). This leads to

EḠ = ĒG FḠ = F̄G. (5.44)

Using (k̄1, k̄2) obtained from the solution of equations (5.42) in this equation, we obtain a

quadratic equation in α2 which leads to two possible solutions (upto ambiguity) for conformal

mappings. k̄ can be recovered from equation (5.43) using (k̄1, k̄2) and α
2.

[Bartoli et al., 2015] proposed an analytical solution for isometric and conformal mappings

by solving the quadratic expressions in (5.41).
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Equiareal Mappings

Given that ψ is an equiareal mapping, the relationship between the moving frames at M and

T is described in equation (5.25). This is the only constraint due to the equiareal mappings.

By differentiating this constraint, we obtain two first-order constraints.

EG

k4
− F

k4

2

=
ĒḠ

k̄4
− F̄ 2

k̄4

∂

∂x̄i

(
Ē

k2

)
Ḡ

k̄2
+
Ē

k̄2
∂

∂x̄i

(
Ḡ

k2

)
− 2

F̄

k̄2
∂

∂x̄i

(
F̄

k2

)
=(

∂

∂x1

(
E

k2

)
∂x1

∂x̄i
+

∂

∂x2

(
E

k2

)
∂x2

∂x̄i

)
G

k2

+

(
∂

∂x1

(
G

k2

)
∂x1

∂x̄i
+

∂

∂x2

(
G

k2

)
∂x2

∂x̄i

)
E

k2

− 2
F

k2

(
∂

∂x1

(
F

k2

)
∂x1

∂x̄i
+

∂

∂x2

(
F

k2

)
∂x2

∂x̄i

)
∀i ∈ (1, 2)

(5.45)

Using the expressions of differentials from equations (5.38) and (5.40), the above-mentioned

constraints are written as

EG

k4
− F

k4

2

= det (Jη)
2

(
EtGt

k4
− Ft

k4

2)
=
ĒḠ

k̄4
− F̄ 2

k̄4

k̄1

(
ĒḠ

k̄4
− F̄ 2

k̄4

)
=

(
EtGt

k4
− Ft

k4

2)
det (Jη)

2

(
k1
∂x1

∂x̄1
+ k2

∂x2

∂x̄1

)

−
(
EtGt

k4
− Ft

k4

2)
detJη

(
∂x1

∂x̄1
∂2x2

∂x̄1∂x̄2
+
∂x2

∂x̄2
∂2x1

(∂x̄1)2

)

+

(
EtGt

k4
− Ft

k4

2)
detJη

(
∂x2

∂x̄1
∂2x1

∂x̄1∂x̄2
+
∂x1

∂x̄2
∂2x2

(∂x̄1)2

)

k̄2

(
ĒḠ

k̄4
− F̄ 2

k̄4

)
=

(
EtGt

k4
− Ft

k4

2)
det (Jη)

2

(
k1
∂x1

∂x̄2
+ k2

∂x2

∂x̄2

)

−
(
EtGt

k4
− Ft

k4

2)
detJη

(
∂x1

∂x̄1
∂2x2

(∂x̄2)2
+
∂x2

∂x̄2
∂2x1

∂x̄1∂x̄2

)

+

(
EtGt

k4
− Ft

k4

2)
detJη

(
∂x2

∂x̄1
∂2x1

(∂x̄2)2
+
∂x1

∂x̄2
∂2x2

∂x̄1∂x̄2

)
.

(5.46)

Using the first constraint in the rest, we end up with the following expressions

k̄1 detJη = detJη

(
k1
∂x1

∂x̄1
+ k2

∂x2

∂x̄1

)
−(

∂x1

∂x̄1
∂2x2

∂x̄1∂x̄2
+
∂x2

∂x̄2
∂2x1

(∂x̄1)2

)
+

(
∂x2

∂x̄1
∂2x1

∂x̄1∂x̄2
+
∂x1

∂x̄2
∂2x2

(∂x̄1)2

)

k̄2 detJη = detJη

(
k1
∂x1

∂x̄2
+ k2

∂x2

∂x̄2

)
−
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(
∂x1

∂x̄1
∂2x2

(∂x̄2)2
+
∂x2

∂x̄2
∂2x1

∂x̄1∂x̄2

)
+

(
∂x2

∂x̄1
∂2x1

(∂x̄2)2
+
∂x1

∂x̄2
∂2x2

∂x̄1∂x̄2

)
. (5.47)

Given that (k1, k2) and the first and second-order derivatives of η are known, these ex-

pressions are linear in (k̄1, k̄2). k̄ can be found by using (k̄1, k̄2) obtained from equation (5.47)

in equation (5.45).

Skewless Mappings

Given that ψ is a skewless mapping, the relationship between the moving frames at M and

T is described in equation (5.29). We write the constraint as

F 2ĒḠ = F̄ 2EG. (5.48)

This expression is independent of (k, k̄). This constraint can be rewritten as

(
ĒḠ− F̄ 2

)
F 2 = (detJη)

2 (EG− F 2
)
F̄ 2(

ĒḠ− F̄ 2
)
EG = (detJη)

2 (EG− F 2
)
ĒḠ.

(5.49)

By differentiating the skewless constraint in equation (5.48), we get

2F

(
∂F

∂x1
∂x1

∂x̄i
+
∂F

∂x2
∂x2

∂x̄i

)
ĒḠ+ F 2

(
∂Ē

∂x̄i
Ḡ+ Ē

∂Ḡ

∂x̄i

)
=

2F̄
∂F̄

∂x̄i
EG+ F̄ 2

(
∂E

∂x1
∂x1

∂x̄i
+
∂E

∂x2
∂x2

∂x̄i

)
G

+ F̄ 2E

(
∂G

∂x1
∂x1

∂x̄i
+
∂G

∂x2
∂x2

∂x̄i

)
∀i ∈ (1, 2)

(5.50)

We expand these expressions using equations (5.38) and (5.40) and obtain

EF
(
ĒḠ− F̄ 2

)
(
∂x1

∂x̄2
k1 +

∂x2

∂x̄2
)− F̄ Ē(EG− F 2)k̄2 =

FĒḠ

(
∂2x1

∂x̄1∂x̄2
A1 +

∂x2

∂x̄1∂x̄2
A2 +

∂2x1

∂ (x̄1)2
C1 +

∂x2

∂ (x̄1)2
C2

)

F̄ 2

(
E

(
∂2x1

∂x̄1∂x̄2
C1 +

∂x2

∂x̄1∂x̄2
C2

)
+G

(
∂2x1

∂ (x̄1)2
A1 +

∂x2

∂ (x̄1)2
A2

))

GF
(
ĒḠ− F̄ 2

)
(
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
)− F̄ Ḡ(EG− F 2)k̄1 =

FĒḠ

(
∂2x1

∂x̄1∂x̄2
C1 +

∂x2

∂x̄1∂x̄2
C2 +

∂2x1

∂ (x̄2)2
A1 +

∂x2

∂ (x̄2)2
A2

)

F̄ 2

(
G

(
∂2x1

∂x̄1∂x̄2
A1 +

∂x2

∂x̄1∂x̄2
A2

)
+ E

(
∂2x1

∂ (x̄2)2
C1 +

∂x2

∂ (x̄2)2
C2

))
where

A1 =
∂x1

∂x̄1
E +

∂x2

∂x̄1
F, A2 =

∂x1

∂x̄1
F +

∂x2

∂x̄1
G,
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C1 =
∂x1

∂x̄2
E +

∂x2

∂x̄2
F, C2 =

∂x1

∂x̄2
F +

∂x2

∂x̄2
G.

Using equations (5.48) and (5.49) in the above expressions, we obtain the following two

constraints for skewless deformation

EGF̄ k̄2 − EFḠ

(
k1
∂x1

∂x̄2
+ k2

∂x2

∂x̄2

)
+B1Ḡ+ detJ−1

η D1EGḠ = 0

EGF̄ k̄1 −GFĒ

(
k1
∂x1

∂x̄1
+ k2

∂x2

∂x̄1

)
+B2Ē + detJ−1

η D2EGĒ = 0.

where

A1 =
∂x1

∂x̄1
Et +

∂x2

∂x̄1
F t, A2 =

∂x1

∂x̄1
F t +

∂x2

∂x̄1
Gt,

C1 =
∂x1

∂x̄2
Et +

∂x2

∂x̄2
F t, C2 =

∂x1

∂x̄2
F t +

∂x2

∂x̄2
Gt,

B1 = G

(
A1

∂2x1

(∂x1)2
+A2

∂2x2

(∂x1)2

)
+ E

(
C1

∂2x1

∂x1∂x2
+ C2

∂2x2

∂x1∂x2

)
,

B2 = F

(
A1

∂2x1

∂x1∂x2
+A2

∂2x2

∂x1∂x2

)
+ E

(
C1

∂2x1

(∂x2)2
+ C2

∂2x2

(∂x2)2

)
,

D1 = −∂x
2

∂x̄2
∂2x1

(∂x1)2
+
∂x1

∂x̄2
∂2x2

(∂x1)2
+
∂x2

∂x̄1
∂2x1

∂x1∂x2
− ∂x1

∂x̄1
∂2x2

∂x1∂x2
,

D2 = −∂x
2

∂x̄2
∂2x1

∂x1∂x2
+
∂x1

∂x̄2
∂2x2

∂x1∂x2
+
∂x2

∂x̄1
∂2x1

(∂x2)2
− ∂x1

∂x̄1
∂2x2

(∂x2)2
.

(5.51)

Given that (k1, k2) and the first and second-order derivatives of η are known and (Ē, F̄ , Ḡ)

are quadratic in (k̄1, k̄2) (written according to equation (5.37)), these expressions are cubic

in (k̄1, k̄2). These expressions are independent of (k, k̄) and therefore, k̄ cannot be found for

skewless mappings.

5.3.2 Reconstruction Equations for Infinitesimally Linear Mappings

Given that ψ an infinitesimally linear mapping, according to theorem 6, the connection forms

(
(
wf
)1
1
,
(
wf
)1
2
,
(
wf
)2
1
,
(
wf
)2
2
) defined using φ1 at T are the same as the respective connection

forms (w̄1
1, w̄

1
2, w̄

2
1, w̄

2
2) defined using θ at M. Using equation (5.18), the connection forms

at M defined using θ are related by a change of variable with the CS at the same surface

defined using φ2.

Therefore, the connections at T (parametrised with x1 and x2) are related to the connec-

tions atM (parametrised with x̄1 and x̄2) by a change of variable suggested in equation (5.18)

for any smooth and IL mapping ψ between them. The components of these connection forms
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under a change of variable are given by(
Γ̄k
11 Γ̄k

12

Γ̄k
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22

)
=
∂x̄k

∂x1
J−1
η

(
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)
Jη

+
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∂x2
J−1
η

(
Γ2
11 Γ2
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Γ2
21 Γ2

22

)
Jη + J−1

η

∂Jη

∂xk
,

(5.52)

where k = (1, 2) and J−1
η =

⎛
⎜⎝
∂x̄1

∂x1
∂x̄1

∂x2
∂x̄2

∂x1
∂x̄2

∂x2

⎞
⎟⎠. These components of the connection forms for

the image embedding described in equation (3.4) are evaluated in equation (5.12). For T
and M, these expressions are written only in terms of (k1, k2) and (k̄1, k̄2) respectively. This

leads to the following two constraints

k̄1 =
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
k2 −

∂x̄2

∂x1
∂2x1

∂x̄1x̄2
− ∂x̄2

∂x2
∂2x2

∂x̄1x̄2

k̄2 =
∂x1

∂x̄2
k1 +

∂x2

∂x̄2
k2 −

∂x̄1

∂x1
∂2x1

∂x̄1x̄2
− ∂x̄1

∂x2
∂2x2

∂x̄1x̄2
.

(5.53)

Since (k1, k2) are known, these equations are linear in terms of (k̄1, k̄2). These expressions

are independent of (k, k̄) and therefore, k̄ cannot be found for IL mappings.

We rewrite this solution as

(
1 0

0 1

)(
k̄1

k̄2

)
= J�

η

(
k1

k2

)
−

⎛
⎜⎝
∂x̄2

∂x1
∂2x1

∂x̄1x̄2
+
∂x̄2

∂x2
∂2x2

∂x̄1x̄2
∂x̄1

∂x1
∂2x1

∂x̄1x̄2
+
∂x̄1

∂x2
∂2x2

∂x̄1x̄2

⎞
⎟⎠ . (5.54)

The right hand side of the expression is known and therefore we see that there is a unique

solution for IL mappings. This is coherent with the solution in [Bartoli and Özgür, 2016]

(which also shows that non-isometric SfT has a unique solution). [Salzmann et al., 2007]

argued that it is not possible to solve SfT at zeroth-order without using a deformation prior.

Warps provide additional priors in terms of the first and the second-order derivatives which

leads to additional constraints and makes our solution well-posed.

5.3.3 Reconstruction Algorithm

We wrote reconstruction equations for various kinds of smooth deformations in equa-

tions (5.42), (5.47), (5.51) and (5.53). All of these equations are expressed in terms of the

unknowns (k̄1, k̄2). We present the following algorithm to solve these equations.

Inputs: The warp η and (k, k1, k2) on the corresponding points of T and M.

1) Find (k̄1, k̄2). For isometric and conformal deformations, the solution to equation (5.42)

gives (k̄1, k̄2). These equations are linear in (k̄1, k̄2). For skewless deformations, equa-

tions (5.51) are cubic in (k̄1, k̄2). We solve them by minimising the sum-of-squares us-

ing [Henrion and Lasserre, 2003]. For equiareal and infinitesimally linear deformations, equa-
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Deformation Assumption Degree of constraints Scale Normals

Isometric IP 1 Yes Yes

Conformal IP 1 Yes Yes

Skewless IP 3 No Yes

Equiareal IP 1 Yes Yes

Smooth IL 1 No Yes

Isometric [Bartoli et al., 2015] - 2 Yes Yes

Conformal [Bartoli et al., 2015] - 2 No Yes

Table 5.1: Summary of model-based 3D reconstruction of deformable thin-shell objects. For each

deformation we obtain two constraints in (k̄1, k̄2). The degree of these constraints is shown in the

table and discuss whether depths and normals for deformation are recoverable.

tions (5.47) and (5.53) are also linear in (k̄1, k̄2) and therefore easily solvable.

3) Find normals at M. Compute unit normal at each point on M according to equa-

tion (5.12) in terms of (k̄1, k̄2).

4) Find depth at M. For isometric, conformal and equiareal deformations, the scale can

be evaluated by using (k̄1, k̄2) in equations (5.41), (5.43) and (5.45) respectively. For skewless

deformations, the scale cannot be recovered.

Outputs: Points (for isometric and equiareal deformations) and normals on 3D surfaces.

Model-based 3D reconstruction of deformable thin-shell objects is summarised in table 5.1.

5.4 Model-Free 3D Reconstruction

We propose local solutions to 3D reconstruction of a deformable thin-shell object from multi-

ple views. Figure 5.7 shows the modelling. We have N input images I1, . . . , IN representing

���

���

Figure 5.7: Modelling N views of a deforming 3D surface.

different deformations of the same object M1, . . . ,MN viewed in a perspective camera. Our

goal is to reconstruct the surfaces viewed in the N images. ηij represents the image warp
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between the pair of images (Ii, Ij). ψij is the deformation function between Mi and Mj

modelled using the image embedding described in equation (3.4). We write the constraints

for a pair of views i and j. This modelling can be extended to any number of image pairs.

The moving frames (ei1, e
i
2, e

i
3) and (ē1, ē2, ē3) on Mi and Mj are written according to equa-

tion (5.12). The expressions (Ei, Fi, Gi), (Ē, F̄ , Ḡ) and their first-order derivatives are ex-

pressed according to equations (5.37) and (5.38). Using equation (5.39), we can write (e1, e2)

at Mi which allows us to write (E,G, F ) and its derivatives with respect to (x̄1, x̄2). In this

case, we can write the reconstruction equations in a similar fashion to the previous section

but the unknowns are both (k1, k2, k) and (k̄1, k̄2, k̄). Under the assumption of IL, we can

express (k̄1, k̄2, k̄) in terms of (k1, k2, k) using equation (5.53) which allows us to restrict the

unknowns to (k1, k2, k) only.

5.4.1 Reconstruction Equations

Now we derive the reconstruction equations for the various types of smooth deformations we

discussed in this chapter.

Isometric/Conformal Mappings

Given that ψ is an isometric/conformal mapping (with the isometric and conformal mapping

constraints in equations (5.41) and (5.43) respectively), the reconstruction equations for a

pair of views Ii and Ij are given in equation (5.44) as a set of two cubic expressions in terms of

(k1, k2) and (k̄1, k̄2). Using equation (5.53) in equation (5.44), we obtain two cubic equations

in terms of (k1, k2) only. We proposed a solution to these equations for isometric deformations

in chapter 4. It is important to note that the solution in previous chapter uses metric tensors

and CS. Using the proposed framework it becomes clear that isometry and conformity share

the same constraints in the context of NRSfM. This result was straightforward from the

theory developed in chapter 4.

Equiareal Mappings

Given that ψ is an equiareal mapping, the reconstruction equations are given in equa-

tion (5.47) in terms of (k1, k2) and (k̄1, k̄2). Using equation (5.53) in equation (5.47) leads

to a system of equations independent of (k̄1, k̄2) and (k1, k2). Therefore, these expressions

cannot be used to solve for (k1, k2). Next we prove that equiareal NRSfM cannot be solved

algebraically.

Theorem 7 (Non-solvability of Equiareal NRSfM). Equiareal NRSfM is not locally solvable.

Proof. The constraint in equiareal mappings is given by equation (5.45). Without the as-

sumption of IP, these expressions are in terms of β, β̄ and their first and second-order

derivatives. Using equation (5.53), this results in 7 variables (β, β̄ and the first and second-

order derivatives of β) in 3 equations. This system is not solvable. Even if we differentiate

equation (5.45) further, it always results in higher number of variables than equations.
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Deformation Assumption Degree of constraints Scale Normals

Isometric IL 3 No Yes

Conformal IL 3 No Yes

Skew-less IL 7 No Yes

Equiareal IL 3 No No

Smooth IL 1 No No

Isometric - 3 No Yes

Conformal - 3 No Yes

Skew-less - 7 - -

Equiareal - 3 No No

Smooth - 1 No No

Table 5.2: Summary of model-free 3D reconstruction of deformable thin-shell objects. For each

deformation we obtain two constraints in (k1, k2). The degree of these constraints is shown in the

table and discuss whether depths and normals for deformation are recoverable.

Under the assumption of IP, the simplified constraint is given in equation (5.47). Using

equation (5.53) in this constraint leads to expressions independent of (k̄1, k̄2) and (k1, k2).

Therefore, it is not solvable. Differentiating equation (5.47) to find more constraints under

the assumption of IP does not make sense as it contradicts the assumption of IP. Hence, we

show that the PDE (5.45) for equiareal NRSfM does not possess a local solution.

Skewless Mappings

Given that ψ is a skewless mapping, the reconstruction equations are given in equation (5.51)

in terms of (k1, k2) and (k̄1, k̄2). Using equation (5.53) in equation (5.51), we obtain two

septic equations in terms of (k1, k2) only. These equations can be solved by minimising the

sum-of-squares.

Smooth Linear Mappings

Given that ψ is a smooth infinitesimal mapping, there can only be two constraints obtained

from equation (5.53) in terms of (k1, k2) and (k̄1, k̄2) respectively. Therefore, a solution for

(k1, k2) cannot be obtained. This is an important result as it becomes clear that NRSfM

cannot be solved based only on deformation smoothness.

5.4.2 Reconstruction Algorithm

We wrote reconstruction equations for various kinds of smooth deformations in equa-

tions (5.44), (5.47), (5.51) and (5.53). All of these equations are expressed in terms of the

unknowns (k1, k2). We present the following algorithm to solve these equations.

Inputs: Warps ηj1, j ∈ [2, N ]. The index 1 corresponds to the first image in the sequence.

It can be chosen randomly.
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1) Find point correspondences. Select a grid of points on the first image and using the

warps η1j , find the corresponding grid of points in the rest of the images. We evaluated our

method on a 20× 20 grid of points.

2) Find (k1, k2). For isometric, conformal and skewless deformations, the solution to

equations (5.44) and (5.51) gives (k1, k2). We solve these equations by minimising the sum-

of-squares using [Henrion and Lasserre, 2003].

3) Find (k̄1, k̄2). (k̄1, k̄2) can be written in terms of (k1, k2) and the first and second order

derivatives of ηji using equation (5.53).

4) Find normals at M. Compute unit normal at each point on M according to equa-

tion (5.12) in terms of (k̄1, k̄2) and (k1, k2).

5) Find depth at M. The depth can be evaluated by using the method described

in [Chhatkuli et al., 2014].

Outputs: Points (for isometric deformations only) and normals on 3D surfaces.

Model-free 3D reconstruction of deformable thin-shell objects is summarised in table 5.2.

Figure 5.8: Images from the sock and balloon datasets. Some of the tracked points are shown. Best

viewed in colour.

5.5 Experiments and Discussion

We tested our proposed methods for model-based and model-free reconstruction of thin-shell

deformable objects on two synthetic and four real datasets. These datasets show objects

undergoing different types of deformations according to the properties of their material.

The Cylinder dataset is a synthetic dataset which consists of isometric deformations of a

cylindrical surface viewed in images of the size 640p× 480p with a focal length of 400p. 400

points are tracked across the isometrically deformed surfaces. The Paper dataset (introduced

in [Varol et al., 2012a]) consists of 190 images (with 1500 tracked points) of a paper deforming

isometrically. The synthetic Rubber dataset (introduced in [Özgür and Bartoli, 2016]) consists

of 50 partially-stretched surfaces of a rubber with 400 tracked points. The Tissue dataset is a

piece of elastic tissue with 100 points matched to a undeformed model of the tissue. It has only

one image. This dataset was introduced in [Bartoli and Özgür, 2016]. The Balloon dataset

consists of 20 surfaces (3000 point tracks) of a balloon deformed conformally. This dataset
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was recorded using Kinect2.0 and the point tracks were obtained using [Sundaram et al.,

2010]. The Sock dataset consists of 20 surfaces (3500 point tracks) of a sock that undergoes

elastic deformations on one direction only. This dataset was recorded using Kinect2.0 and

the point tracks were obtained using [Sundaram et al., 2010]. A few images of the Balloon

and Sock datasets are shown in figure 5.8.

For quantitative comparison, we measured the normal error (mean difference between

computed and ground-truth normals in degrees) and the depth error (mean difference between

computed and ground-truth 3D coordinates in mm).

In the model-free scenario (NRSfM), we proposed solutions using isometric, conformal

and skewless deformation constraints. Our solution for conformal and isometric deforma-

tions is obtained by solving same equations. Therefore, our method IsoConN represents a

solution to NRSfM assuming that the object undergoes isometric or conformal deformation

and SkewN represents the solution to NRSfM assuming skewless deformations. We com-

pare our results with MDHN (maximum depth heuristics based NRSfM method proposed

in [Chhatkuli et al., 2016a]) and KerN (low-dimensional shape-basis based NRSfM method

proposed in [Gotardo and Martinez, 2011]).

In the model-based scenario (SfT), we proposed solutions using isometric, (IsoS), con-

formal (ConS), skewless (SkewS) and equiareal (EqArS) deformation constraints. We also

proposed a solution (NoDefS) which does not need deformation to be modelled explicitly.

It assumes IL. We compare our results with isometric (IsoFS) and conformal (ConFS)

SfT proposed in [Bartoli et al., 2015] and LinModS (also an isometry based SfT proposed

in [Salzmann and Fua, 2011]). We also compare our results with NoIsoS (a smoothness

based SfT proposed in [Özgür and Bartoli, 2016]). [Özgür and Bartoli, 2016] proposed five

solutions, we report only the best working solution for this method as NoIsoS. We now

discuss the results of these methods on each dataset separately.

5.5.1 Synthetic Datasets

We evaluated the performance of the compared methods on two synthetic datasets: Cylinder

and Rubber.

5.5.1.1 Cylinder Dataset

The cylinder dataset consists of images of a cylindrical surface deforming isometrically. We

added a random noise with a Gaussian distribution of 1 pixel of standard deviation to the

images of the dataset. The mean normal and depth error of each compared method is eval-

uated by averaging the result of the experiment over 20 trials. For evaluating SfT methods,

the results are shown in figure 5.9. The first four methods (IsoConN, SkewN, MDHN and

KerN) are NRSfM methods. IsoConN shows the best performance amongst the NRSfM

methods in this dataset. The images of this dataset do not come from a video sequence,

therefore KerN did not do well for this dataset. In this dataset, the object and the camera

do not move while deforming. This makes the problem ill-posed. [Chhatkuli et al., 2016a]
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Figure 5.9: Normal and depth errors on all datasets. The errors shown are evaluated by averaging

the errors on the entire imageset. The first four methods shown are NRSFM methods and the rest

are SfT methods. In general, the performance of SfT methods is better than NRSfM methods on

these datasets. The methods ending with N and S are NRSfM and SfT methods respectively. NoIsoS

represents the best performing SfT method in [Bartoli and Özgür, 2016]. Best viewed in colour.
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reported this as a failure scenario for MDHN and therefore, it did not perform well for this

dataset. The model-based (SfT) methods, however, showed a much better performance as

compared to NRSfM methods on this dataset. IsoS, ConS, EqArS, NoDefS, IsoFS and

ConFS are all analytical solutions to SfT. Our methods (IsoS, ConS, EqArS, NoDefS)

are linear solutions to SfT (exploiting the first and second-order derivatives of the warp η )

while the solutions for IsoFS and ConFS are obtained by solving quadratic equations (see

equation (5.20)) consisting of only the first-order derivatives of the warp and the embedding.

The constraints in our methods are obtained by using equation (5.20) and its derivatives

which forces the solution to be locally smooth implicitly. Therefore, IsoS, ConS, EqArS

and NoDefS show better performance than IsoFS and ConFS. SkewS (assumes the defor-

mation to be skewless) does not show good results on this dataset. This is probably because

it is less-constrained than other deformation models. IsoFS, ConFS and LinModS show

a similar performance on this dataset. The performance of these methods is very good.

NoIsoS is the best performing method out of the five methods proposed in [Bartoli and

Özgür, 2016]. It needs high perspective in images and therefore it performed very well in this

dataset. The performance of this method is quite close to other SfT methods (IsoS, ConS,

IsoFS, ConFS and LinModS). In general, this method is unstable in the sense that the

performance of the proposed methods in [Bartoli and Özgür, 2016] is usually very different

from each other. We picked the best performing method for each image in the dataset by

comparing the reconstruction with the ground truth.

Performance of methods under noisy conditions. We evaluated the performance of

the methods under noisy conditions. We added 1-5 pixel noise to the images of the dataset

and obtain the results for each method. We report the normal and depth errors for each

experiment averaged over 20 trials. Figure 5.10 shows our results. Our SfT (IsoS, ConS,

SkewS, EqArS, NoDefS) and NRSfM (IsoConN, SkewN) methods show a very stable

performance in noisy conditions. The performance of other methods is very stable as well.

Our methods (both SfT and NRSfM) exploit the first and second-order derivatives of the

warps. These derivatives (especially the second-order ones) may be largely affected by the

noise. Therefore, the methods EqArS, NoDefS, IsoConN (which solve SfT/NRSfM in

terms of the first and second-order derivatives of the warp only) show a larger increase in

the errors compared to other methods (such as IsoFS and ConFS) that use the first-order

derivatives of the warps only. LinModS, NoIsoS, ConS and IsoS are very stable in the

presence of noise. The skewless methods SkewN and SkewS also show a good tolerance to

noise even though their performance on this dataset is not so good. MDHN and KerN do

not perform well on this dataset and therefore it is largely affected by noise as well.

Curvature test of our methods. The best performing methods on this dataset are EqArS

and NoDefS (with NoDefS being better). These solutions (like the rest of our methods)

are dependent on the first and second-order derivatives of the warps. The second-order

derivatives may be unstable however they can be corrected by warp refinement methods such

as [Pizarro et al., 2016]. However it may be difficult to find them in some cases, therefore it

is interesting to see the performance of these methods without second-order derivatives. We
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Figure 5.10: Normal and depth errors on the cylinder dataset by varying the noise from 1 to 5

pixels. The mean of errors on the entire imageset of each dataset is reported. Best viewed in colour.
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make an approximation to the solution of NoDefS (SfT under IL assumption) by disregarding

the second-order derivatives. The new solution is called NoDefS0. Figure 5.11 shows the

results of all methods with respect to the varying curvature of the surface. The curvature is

the inverse of the radius. In this experiment we show reconstruction for 10 surfaces of the

cylinder with the radius varying from 2 to 10. In general the reconstruction errors increase

with bending. However, IsoConN, SkewN and NoDefS do not show a sharp increase in

errors due to bending. NoDefS0 is affected by bending (especially with strong bending),

however it still shows decent reconstruction for highly bent surfaces.

The interesting thing about NoDefS is the simplicity of the solution. The reconstruction

algorithm is only two lines of code given that (k1, k2) in equation (5.53) are obtained from

the template. This means that the computational cost of this method is very low as it

involves simple addition and multiplications only. Even by ignoring second-order derivatives,

NoDefS0 gives decent results.

5.5.1.2 Rubber Dataset

We evaluated all compared SfT and NRSfM methods on the first 20 images of this dataset.

The rubber is partially stretched from its longest side in a sequential order. Figure 5.9

summarises the performance of different methods on this dataset. The reconstruction of

surfaces 10 and 20 by the compared methods are shown in figure 5.12. Amongst NRSfM

methods, IsoConN shows the best performance. The rest of the NRSfM methods do not

perform well. Amongst SfT methods, LinModS shows the best performance with EqArS

and NoDefS being close (in terms of depth). Figure 5.12 shows that the curvature of

the surface 10 is best captured by EqArS with NoDefS whereas surface 20 is decently

reconstructed by LinModS only. For low deformations of this dataset, EqArS withNoDefS

show better results than LinModS but they cannot cope up with the higher deformations

of this dataset.

5.5.2 Real Datasets

Now we discuss the results of the compared methods on real datasets.

5.5.2.1 Paper Dataset

This dataset consists of 191 images. We picked 20 images by uniformly sampling the dataset.

This makes the dataset more closer to wide-baseline and therefore, KerN does not have good

results. Figure 5.9 summarises the performance of the compared methods on this dataset.

Amongst NRSfM methods, MDHN shows the best performance, with IsoConN being very

close to it. SkewN also shows good results on this dataset. Our SfT methods show a very

good performance on this dataset. NoIsoS also leads to decent reconstruction in this dataset.

However, LinModS shows the best performance. The reconstructions of two surfaces of this

dataset are shown in figure 5.13. IsoFS and ConFS do not show a good performance on the

selected images of this dataset. We recall that in order to compare them with our methods,
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Figure 5.11: Normal and depth errors on the cylinder dataset by varying the radius from 2 to 10.

The surface with radius 2 is the most curved. The mean of errors on the entire imageset of each

dataset is reported. Best viewed in colour.
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Figure 5.12: Error maps for surfaces 10 and 20 from the rubber dataset. The second image shows

the maximum stretch of the rubber. The depth error maps show the difference in the reconstruction

and ground truth. Best viewed in colour.
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we do not perform the refinement step proposed for these methods. This is because our goal

is to compare the analytical solutions of these methods to ours.

5.5.2.2 Balloon Dataset

This dataset consists of 20 images uniformly sampled from a video sequence of 80 images.

We observe that the mean normal error for all NRSfM methods on this dataset is around 20

degrees which is very high as compared to the performance of these methods on other datasets.

However, the mean depth error for these methods is quite comparable to the rest of the

datasets. This indicates to the flattening of the reconstructed surface. However, IsoConN

shows the best performance amongst compared NRSfM methods. Our SfT methods except

SkewS show a very good performance on this dataset and their results are very similar.

The reconstruction from SkewS is quite flat. IsoFS, ConFS and NoIsoS, all of these

methods also lead to flat reconstructions. LinModS performed quite well on this dataset.

Its performance is quite close to EqArS and NoDefS which are the best performing methods

on this dataset. This dataset is near-affine and therefore, most of the methods did not do

well. The reconstructions of two surfaces of this dataset using the compared methods are

shown in figure 5.14.

5.5.2.3 Sock Dataset

This dataset consists of 20 images from a video sequence of a sock being stretched in one

direction only. Analytical methods show a very good performance on this dataset. Amongst

NRSfM methods, SkewN showed the best performance as the sock is undergoing almost

skewless deformation. The reconstruction of normals by IsoConN is quite good but it cannot

cope with the stretching of the surface and therefore, it leads to a higher depth error. MDHN

and KerN did not do well on this dataset. SfT methods except NoIsoS (it completely broke

on this dataset) showed a very good reconstruction even though the object was stretched.

NoDefS shows the best performance. However, the rest of the methods are quite competitive.

An important thing to note is that even though IsoFS andConFS show the best performance

in computing normals, their computation of depth is not as good as IsoS and ConS. This is

because IsoS and ConS use the constraints of IsoFS and ConFS (given in equation (5.20))

along with additional constraints obtained by differentiating equation (5.20) which gives IsoS

and ConS the liberty to reconstruct stretched surfaces better. The reconstructions of two

surfaces of this dataset using the compared methods are shown in figure 5.15.

5.5.2.4 Tissue Dataset

This dataset contains a single image and therefore only SfT methods could be compared

for this dataset. NoDefS shows the best performance on this dataset with the rest of the

methods (except SkewS, ConS and NoIsoS) being close enough to the best solution. The

reconstructions of the tissue using the compared methods are shown in figure 5.16.
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Figure 5.13: Error maps for two surfaces the paper dataset. The depth error maps show the

difference in the reconstruction and ground truth. Best viewed in colour.
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Figure 5.14: Error maps for two surfaces the balloon dataset. The depth error maps show the

difference in the reconstruction and ground truth. Best viewed in colour.
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Figure 5.15: Error maps for two surfaces the sock dataset. The depth error maps show the difference

in the reconstruction and ground truth. Best viewed in colour.
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Figure 5.16: Error maps of reconstruction from all SfT methods of the tissue dataset. Best viewed

in colour.

Discussion on smoothness. An important point to note here is that NoIsoS and NoDefS

both reconstruct the surface without modelling deformation explicitly. However, we found

NoIsoS to be unstable. [Bartoli and Özgür, 2016] proposed five solutions to cope with the

stability issue. Also, it needs the input image to have a high amount of perspective in order

to give decent results. The main idea of this method is to use smoothness (expressed in terms

of the second-order differentials of the surface) in order to reconstruct surfaces. Our solution

to NoDefS (along with other solutions) also relies on the second-order derivatives of the

surfaces under the assumption of IL. Our experiments show that our solution to NoDefS is

not unstable. We discuss the difference between the two solutions now. [Bartoli and Özgür,

2016] exploit smoothness by minimising the second order derivatives of the surface. For a

function f described in equation (5.1), it tries to minimise d2f . Using equations (5.3),(5.4)

and (5.5), we write

d2f = d
(
e1dx

1 + e2dx
2
)
= de1dx

1 + de2dx
2. (5.55)

Therefore, this solution tries to minimise (de1, de2) whereas our solution (NoDefS) is ob-

tained by imposing a structure to the components of (de1, de2) (connection forms in equa-

tion (5.6)). This is the underlying difference between the two methods. This structure of

(de1, de2) cannot be studied without differential geometry which makes this framework a

comprehensive study of deformations.
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5.5.3 Summary of Experiments

The results of all the compared methods on each dataset are summarised in figure 5.9. On

these datasets, the best performing NRSfM methods are IsoConN and MDHN. For SfT

methods, our methods (except SkewS) showed a very good performance on all the datasets.

NoDefS showed the best performance on most of the datasets. LinModS showed a very

good performance on these datasets, it showed the best performance in the rubber and

paper datasets. However, NoDefS and EqArS have been very competitive with LinModS.

SkewN gives very good results on the sock dataset. This is because the sock is undergoing

a skewless deformation. An important point to note about skewless deformation is that it

should be along the two directions of the orthogonal frame basis of the surface. Therefore,

SkewN and SkewT can perform better if the basis is orthogonal and is aligned to the

direction of deformation. This means that the frame basis on a surface should be aligned

to the direction of deformation which needs to be known apriori. Our SfT methods (except

SkewS) are linear and therefore, computationally very cheap. In general, for 50 images and

400 points, it takes 2-5 seconds for these methods to evaluate the results. The computation

time for our NRSfM methods is about 15-20 seconds for around 100 points tracked over 30

images. These computation times are reported on a standard PC.

5.6 Conclusions

We presented a theoretical modelling framework for deformable 3D reconstruction using

differential geometry and Cartan’s theory of connections. This includes the model-based

and model-free cases. We showed how to obtain solutions to isometric, conformal (same as

the isometric solution) and skewless NRSfM under the assumption of IP using this framework.

We showed that equiareal NRSfM cannot be solved locally. We used this framework to find

solutions to isometric, conformal, skewless and equiareal SfT under the assumption of IP.

These solutions are computationally very cheap. Using this framework, we also proposed a

solution to SfT (under the assumption of IL) without modelling the deformation explicitly.

Our methods rely on the first and second-order derivatives of the warp function which are

known to be unstable when obtained using sparse registration algorithms. We used a warp

refinement method presented in [Pizarro et al., 2016]. As discussed in the previous chapter,

it is a theoretical requirement for our methods to comply with the Schwarzian equations

presented in [Pizarro et al., 2016]. Therefore, it makes sense to use this method for warp

correction. Our NRSfM methods solve the minimum data case, have linear complexity in the

number of points, handle missing data, work for both short and wide-baseline datasets, work

with both large and small number of images. Our experiments showed that the proposed

NRSfM and SfT methods outperform most of the compared methods in terms of accuracy

and computation time.
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Chapter 6
Volumetric Shape-from-Template

Summary

In this chapter we propose a solution to SfT for deformable volumetric objects. The objective

is to infer an object’s shape from a single image and a 3D object template. It uses the object’s

full volume to express the deformation constraints and reconstructs the object’s surface and

interior deformation. This is a challenging problem because for opaque objects, only a part of

the outer surface is visible in the image. Inspired by mesh-editing techniques, we use an ARAP

deformation model that softly imposes local rigidity. We formalise ARAP isometric SfT as

a constrained variational optimisation problem which we solve using iterative optimisation.

This chapter is based on our published work [Parashar et al., 2015].
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CHAPTER 6. VOLUMETRIC SHAPE-FROM-TEMPLATE

6.1 Introduction

The objective in SfT is to obtain the object’s deformed shape in the camera coordinate frame

using a deformation constraint formulated from the object’s physical material. Existing

SfT methods use deformation constraints on the object’s outer surface, whose thickness is

considered infinitesimal. We thus call them thin-shell SfT methods. Thin-shell SfT is very

well adapted to thin objects, such as a piece of paper or a balloon, whose outer surfaces may

be well approximated by an open or a closed surface. Even though thin-shell SfT methods

can handle thicker objects such as a foam ball, they do not fully exploit the strong constraints

induced by the object’s non-empty interior.

Volumetric SfT reconstructs the object’s interior deformation (which is not reconstructed

by thin-shell SfT) and reconstructs the object’s outer surface more accurately than thin-shell

SfT due to the stronger deformation constraint it uses. The biggest challenge for volumetric

SfT is to reconstruct the object’s back surface and interior.

We solve volumetric SfT using the ARAP deformation model. It maximises local rigidity

while penalising stretching, sheering and compression. It helps in preserving the object’s

interior structure and enables to reconstruct the object’s full outer surface and interior.

We present volumetric SfT as an unconstrained non-linear least-squares optimisation

problem which can be solved using standard numerical solvers such as Levenberg-Marquardt.

We propose two heuristic initialisation methods. Experimental results on synthetic and real

data show that volumetric SfT improves accuracy to a large extent compared to state-of-the-

art thin-shell SfT methods.

Chapter outline. We present the mathematical modelling of volumetric SfT in section 6.2.

It describes the modelling of volumetric SfT model and the deformation. Section 6.3 defines

volumetric SfT and proposes a solution. Section 6.4 discusses the experiments and section 6.5

concludes.

6.2 Mathematical Modelling

6.2.1 Geometric Model

Figure 6.1 shows a general diagram of volumetric SfT extending a thin-shell framework de-

scribed in the previous chapter. We denote the 3D template as the volume VT ⊂ R
3, the

unknown deformed volume as VS ⊂ R
3, and their respective outer surfaces as ∂VT and ∂VS .

We denote as S ⊂ ∂VS the deformed object’s visible surface part, i.e., the part which is

directly observed in the input image I ⊂ R
2, and T ⊂ ∂VT the corresponding part in the

template surface. We use a 2D surface parameterisation space F , called the flattened tem-

plate. This allows us to represent the template’s outer surface ∂VT by a known invertible

embedding Δ ∈ C2(F ,R3). In practice, F and Δ may be computed from ∂VT by any flat-

tening method; we use conformal flattening [Sheffer et al., 2005]. Using F , the unknown
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deformed surface S may be represented by an embedding ϕ ∈ C2(F ,R3). The deformation

between VT and VS is the unknown mapping ψ ∈ C2(VT ,R
3).
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Figure 6.1: General diagram of volumetric SfT. The visible surface part is shown in blue.

The task in volumetric SfT is not only to compute the volume VS of the deformed object,

but to find a full volume deformation function ψ ∈ C2(VT ,R
3), matching points between the

object’s template and deformed states. This is a challenging task, as most of VS is not directly

observed in the image: assuming the object is opaque, the only visual information comes from

the outer surface’s visible part. The surface embedding ϕ may of course be directly recovered

from the volume deformation ψ computed by volumetric SfT as ϕ = ψ◦Δ. Depending on the

formulation, thin-shell SfT computes either the surface embedding ϕ [Bartoli et al., 2012] or

a 3D surface deformation, which is a restriction of ψ to ∂VT [Östlund et al., 2013]. The full

volume deformation ψ cannot be directly recovered in either case. Our initialisation strategy

for volumetric SfT involves inferring ψ from ϕ through two new solutions which we name

volume interpolation.

A point in the 3D template is given by P and the corresponding point on the flat template

is p. In a similar way, a point on the deformed object is given by Q. The corresponding point

in the image is given by q. Finally, we define η ∈ C2(F ,R2) as the registration warp between

F and the image. Estimating the warp directly gives two pieces of information. First,

it identifies the subset G ⊂ F corresponding to the surface’s visible part in the flattened

template. Second, it establishes the reprojection constraint on ϕ and ψ as:

η = Π ◦ ϕ = Π ◦ ψ ◦Δ, (6.1)
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where Π denotes perspective projection in coordinates normalised with respect to the camera’s

intrinsics Π(Q) = 1
Q3 (Q

1 Q2)� with Q = (Q1Q2Q3)�.

6.2.2 Deformation Model

Thin-shell isometry allows SfT to resolve the visible surface part uniquely [Bartoli et al.,

2012] and to extrapolate the non-visible surface part [Östlund et al., 2013]. Applied to an

object’s interior volume, isometry yields the following differential constraint on the mapping

ψ:

J�
ψJψ = I3×3. (6.2)

According to the Mazur-Ulam theorem [Rassias and Šemrl., 1993], equation (6.2) constrains

ψ to be a rigid transformation. So as to model deformations, one must relax equation (6.2).

One possibility is the so-called ARAP heuristic [Sorkine and Alexa., 2007], which means

searching for ψ such that

∥∥∥J�
ψJψ − I3×3

∥∥∥2
p
(p denotes the type of norm) is minimised over

VT . We propose to combine ARAP with the reprojection constraint to preserve the object’s

local structure while driving its deformation to comply with the image constraints.

6.3 Volumetric Shape-from-Template

We present ARAP volumetric SfT, which finds the deformation ψ that transforms the volume

VT into the unknown volume VS whose surface is partially observed in I.

6.3.1 Formulation and Non-Convex Solution

Problem formulation. Combining the reprojection constraint (6.1) with ARAP leads to

the following variational problem:

min
ψ
ρ

∫
VT

∥∥∥J�
ψJψ − I

∥∥∥2
p
dVT︸ ︷︷ ︸

ARAP penalty

+(1− ρ)

∫
G
‖η −Π ◦ ψ ◦Δ‖22 dG︸ ︷︷ ︸

Reprojection

. (6.3)

The reprojection constraint is convex, but the ARAP penalty is not. Problem (6.3) is thus

difficult to solve, as it involves integrals and equality constraints. Local analytical solutions,

as the ones proposed in the previous chapter and in [Bartoli et al., 2012] for thin-shell SfT,

are not applicable at non-visible points since they do not have a data term. This is because

the reprojection constraint applies on the visible surface part S only, corresponding to the

subset G of the flattened template.

Discretisation and optimisation. We evenly discretise the template volume VT with a

set of 3D points PVT
. We define the deformation functional εd[ψ] :

εd[ψ] =
1

|PVT
|
∑

P∈PVT

∥∥∥J�
ψ (P)Jψ(P)− I3×3

∥∥∥2
p
, (6.4)
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where |PVT
| represents the size of set PVT

.

We write εr[ψ] over a regular discretisation PG of G:

εr[ψ] =
1

|PG |
∑
p∈PG

‖η(p)−Π(ψ(Δ(p)))‖22. (6.5)

Finally, we optimise the following unconstrained non-linear least-squares problem:

ψ = argmin
ψ
ρεd[ψ] + (1− ρ)εr[ψ] 0 < ρ < 1, (6.6)

where ρ is a weight that balances the ARAP penalty and the reprojection constraint.

In order to find a numerical solution to problem (6.6), we use a parametric representation

of the solution ψ̃ ∈ C2(VT × R
n,R3), where n is the dimension of the parameter space. Let

L ∈ R
n be the parameter vector and Q ∈ VT , we have ψ̃(Q,L) ∈ VS . We have multiple

choices for ψ̃ such as the popular linear basis expansion representations (the NURBS [Piegl,

1991], the Thin-Plate Splines (TPS) [Bookstein, 1989], the B-Spline [Carl and Boor, 1978],

tetrahedron mesh displacements, etc.). We use the TPS representation.

Problem (6.6) is then optimised using Levenberg-Marquardt. Iterative methods can be

highly accurate but because problem (6.6) is non-convex due to the ARAP penalty, the

iterations may converge to a non-global minimum. Therefore, it is important to provide an

initial solution close to the global minimum.

6.3.2 Convex Initialisation

Our initialisation strategy finds an approximate solution ψ0 to problem (6.3) in two main

steps.

1) Isometric thin-shell SfT. We first compute the embedding ϕ that represents the

visible surface S. We approximate the deformation from T to S by thin-shell isometry, giving

the following problem reformulation:

Find ϕ s.t.

⎧⎨
⎩J�

ϕJϕ = J�
ΔJΔ

η = Π ◦ ψ ◦Δ
on G, (6.7)

where Jϕ is a 3× 2 matrix. Problem (6.7) has an analytical solution given in [Bartoli et al.,

2012].

2) Volume interpolation. We use ϕ to infer ψ representing the full volume deformation.

We propose two strategies.

i) Global Smoothness (GS). Our first strategy is based on the assumption that the de-

formation of the volume is smooth. We can, therefore, formulate the problem as finding the

smoothest volumetric deformation such that the deformation at the surface agrees with the
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solution from thin-shell SfT. We write the discretised transport error:

εe[ψ] =
1

|PG |
∑
p∈PG

‖ϕ(p)− ψ(Δ(p))‖22. (6.8)

Because ϕ was computed in step 1), this is a linear least-squares cost in ψ. We then compute

ψ0 as the solution of the following system:

ψ0 = argmin
ψ
αεe[ψ] + (1− α)εs[ψ] 0 < α < 1, (6.9)

where εs =
∫∫

‖d2ψ
dp2 ‖22dp is a smoothing term called the bending energy and α is a weight

balancing the transport error and smoothness. As in the non-convex solution, we use a

TPS representation of ψ. The bending energy is then a quadratic function of the TPS

parameters [Bookstein, 1989], making problem (6.9) linear least-squares, thus convex and

easily solvable. GS is a natural way of initialising ψ from ϕ, but as smoothness is the only

constraint it uses to propagate the visible surface deformation, it may spoil the object’s

inner local structure by causing local shear, shrinking and extension. Our second volume

interpolation method addresses this issue.

ii) Local Rigidity (LR). This method is based on the idea that from thin-shell SfT,

we can compute a local rigid transform at every point on the visible surface to propagate

shape through the object’s volume, in an ARAP manner. The key idea is to initialise ψ

on the surface’s visible part from ϕ, and use local rigidity to iteratively ‘complete’ ψ. This

is implemented by iteratively drawing local rigid transformations to locally extrapolate the

deformation. Concretely, we first find correspondences to all points in PVT
(which may be

seen as a discretisation of ψ) and then fit a continuous parametric representation of ψ. We

write the corresponding point of P ∈ PVT
as Q(P).

We first use a Delaunay triangulation of the point set PVT
to define a tetrahedral mesh.

A given tetrahedron has four vertices, which we denote as Pn1 , Pn2 , Pn3 and Pn4 . Drawing
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Figure 6.2: Volume interpolation using Local Rigidity.

a local rigid transformation is achieved by selecting a tetrahedron which has three vertices,

say the first three ones, lying in the ‘completed’ domain of ψ, for which Qni = Q(Pni) exist

for i = 1, . . . , 3. At the early iterations, this means that these three vertices will have to be
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6.4. EXPERIMENTAL RESULTS

in the surface’s visible part, and that Qni = ϕ(Δ−1(Pni)), i = 1, . . . , 3. From these three

correspondences {Pni ↔ Qni}, i = 1, . . . , 3, we fit a rigid transform Ω in the least-squares

sense using [Horn et al., 1988]. Completing ψ by local rigidity is then simply done by setting

Q(Pn4) = Ω(Pn4). At each iteration, we cycle through all tetrahedra with three vertices lying

in the completed domain of ψ. This obviously causes the fourth vertex of many tetrahedra

to receive multiple predictions, as several tetrahedra may share it as their single unknown

vertex. In order to approximate ARAP as best as possible, we keep the prediction for which

Ω was fitted with the lowest error. We stop the iterations when all points in PVT
have been

given a correspondence. We finally define the discretised transport error:

ε′e[ψ] =
1

|PVT
|
∑

P∈PVT

‖Q(P)− ψ(P)‖22, (6.10)

and obtain ψ0 as the solution of the following optimisation problem:

ψ0 = argmin
ψ
αε′e[ψ] + (1− α)εs[ψ] 0 < α < 1, (6.11)

where α is a weight balancing the transport error and smoothness. Equation (6.11) is linear

least-squares, thus convex and easily solved.

6.4 Experimental Results

We report experiments with synthetic data and three sets of real data with different ge-

ometries and materials: a woggle, a sponge and an arm. The refinement solution (6.3) is

tested using the L1 and L2 norms, and is then called L1-refinement and L2-refinement re-

spectively. The two initialisation solutions are called GS-initialisation and LR-initialisation.

We also compare with two isometric thin-shell SfT methods [Bartoli et al., 2012; Östlund

et al., 2013], which were discussed as being representative of the state-of-the-art in the in-

troduction. We use a constant weight ρ = 0.005 in the refinement problem (6.6) (for both

L1-refinement and L2-refinement) and a constant weight α = 0.0001 in both equation (6.9)

for GS-initialisation and equation (6.11) for LR-initialisation. We noticed that the algorithms

were not very sensitive to these values up to an order of magnitude.

6.4.1 Synthetic Datasets

We test our method for volumetric SfT in various conditions of noise, deformation and corre-

spondences. We simulate a box of dimension 20× 20× 10cm3 and deform it by bending each

of its layers along a vertical rule with some varying bending angle. The higher the bending

angle, the more important the box’s deformation. If the bending angle is zero, the box is

undeformed. We then create a virtual image of the box by projecting it using a perspective

camera and add noise to the pixels. The default bending angle is 10 degrees. The results are

shown in figure 6.3, and are averaged over multiple runs for each geometric configuration.
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Figure 6.3: Synthetic data experiments.The graphs on the left show the 3D volume error and the

ones on the right show the error on the 3D visible surface. Best viewed in colour.
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The three graphs on the left column of figure 6.3 show the 3D volume error in mm, computed

as the Root Mean Square Error (RMSE) over a dense grid of points sampled over the ob-

ject’s outer surface and interior. The results on these graphs thus only concern the proposed

volumetric SfT methods. We observe that the refinement methods all do significantly better

than all initialisation methods. LR-initialisation does consistently and substantially better

than GS-initialisation. This is explained by the fact that LR-initialisation follows the ARAP

methodology for local propagation, while GS-initialisation simply uses smoothness, which is

a weaker constraint. L2-refinement does generally better than L1-refinement, except when

the deformation increases beyond a certain point. All methods degrade with the amount of

deformation and noise. Increasing the number of points improves the refinement methods

but slightly degrades the initialisation methods. The three graphs on the right column of

figure 6.3 show the visible surface error in mm, computed as the RMSE over a dense grid of

points sampled over the object’s visible surface.
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Figure 6.4: Results on the woggle. The green boxes show the best performing algorithm for each

deformation level.

The same observations which we made for the refinement methods on the 3D volume error

can be made, and the general trends also apply to the two tested thin-shell SfT methods. Im-

portantly, we observe that volumetric SfT does consistently and in several case substantially

better than thin-shell SfT, even if the measured error concerns only the visible surface part,
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CHAPTER 6. VOLUMETRIC SHAPE-FROM-TEMPLATE

which is theoretically handled well by both types of methods. This means that the extra

constraints used in volumetric SfT compared to thin-shell SfT have a very positive influence

on this part of the reconstruction too.
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Figure 6.5: Results on the sponge. The green boxes show the best performing algorithm for each

deformation level.

6.4.2 Real Datasets

We evaluate the performance of the methods with three real-world objects captured across a

range of deformed states.

6.4.2.1 Test Data and Ground Truth Acquisition

The three objects are a foam tube called a woggle (figure 6.4), a sponge (figure 6.5) and a

human arm (figure 6.6). We construct the 3D template of each object using Photoscan, a

dense rigid SfM package [Photoscan, 2014]. To achieve this we photograph the objects in a

rigid pose from a number of different viewpoints in order to capture the full 3D geometry

(we use 47, 55 and 78 images for the three objects respectively). We apply a small amount of

manual post-processing to fill holes and make the templates watertight. Then we physically

apply forces to the real objects to obtain a set of deformed shapes, which we grouped into
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Tube Data Sponge Data Arm DataError Analysis

(in mm) Low Med. High Low Med. High Low Med. High

Thin-shell SfT1 11.8 16.0 19.8 8.0 15.3 31.8 18.5 20.1 33.4

Thin-shell SfT2 10.4 11.4 12.7 6.0 25.5 35.4 15.5 18.9 35.7

GS-initialisation 11.1 13.5 17.3 6.9 15.1 31.6 15 18.3 31.6

LR-initialisation 10.8 11.3 13.8 6.9 13.0 28.5 13.5 14.2 25.6

L1-refinement + GS 2.1 6.7 11.0 5.4 5.2 7.0 3.4 4.1 5.2

L1-refinement + LR 1.8 6.4 9.0 5.3 5.1 6.9 2.9 4.1 5.1

L2-refinement + GS 2.2 5.6 7.1 3.4 4.9 8.5 3.0 4.5 7.3

L2-refinement + LR 2.1 5.6 7.1 3.6 4.5 8.3 2.7 4.2 6.8

Table 6.1: 3D visible surface error Ef for the datasets shown in figures 6.4, 6.5 and 6.6. Thin-shell

SfT1 [Bartoli et al., 2012] and Thin-shell SfT2 [Östlund et al., 2013].

three levels: low, medium and high deformation. For each level we compute the ground truth

shape by photographing again the deformed object from approximately 50 viewpoints and

then running Photoscan. Because Photoscan provides the reconstructed object and the pose

for each camera image, this provides us with the ground truth shape of the object’s outer

surface (including the back surface) in camera coordinates.

Similarly to the vast majority of previous SfT methods, ours takes as input point corre-

spondences between the 3D template and the input image. These can be computed auto-

matically using for instance SIFT combined with outlier detection [Pilet et al., 2005; Pizarro

and Bartoli, 2012]. However, to keep the results independent of the matching algorithm, we

define correspondences manually. For the three objects this gives between 50 to 350 corre-

spondences per image. We click between 30 and 40 correspondences per image and create

the others using TPS interpolation [Bookstein, 1989].

6.4.2.2 Performance Metrics and Method Comparison

We calculate two types of 3D errors, Ef and Eb, both expressed in mm, for the visible

and non-visible surface parts respectively, as the RMSE discrepancy between the true and

reconstructed 3D points at the correspondences. For each of the three datasets, and each of

the three deformation levels, the top of each figure shows the template, the input image and

the ground truth shape. On each figure, the deformation goes through low, medium and high

level from left to right. The rows then show the results of both initialisation methods and

their use to initialisation both refinement methods, giving a total of six combinations.

The 3D errors Ef , including the two thin-shell methods, are finally summarised in ta-

ble 6.1.

We observe that LR-initialisation gives consistently better results than GS-initialisation,

which is in accordance with our observations made on simulated data. The difference becomes

very important for stronger deformations. This has a very small impact on the refinement

results, for both refinement methods. We can observe small differences between the two

refinement methods. However, refinement+LR converges faster than refinement+GS because
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Figure 6.6: Results on the arm. The green boxes show the best performing algorithm for each

deformation level.
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LR-initialisation is closer to the correct solution. However, none of them is consistently better

than the other, even if for the woggle L2-refinement is slightly more accurate, whereas for the

sponge and arm L1-refinement is slightly more accurate. The 3D error Ef for volumetric SfT

for both refinement methods is consistently smaller than for thin-shell SfT. Depending on

the dataset and the deformation level, it is between two and ten times smaller. This confirms

our observations made on simulated data that, even if the surface’s visible part is handled

naturally by both volumetric and thin-shell SfT, the stronger volume deformation constraints

used by the former allows it to obtain a much more accurate result.
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Figure 6.7: Testing with the top image led to the local minimum shown in the bottom image.

The results shown in figures 6.4, 6.5 and 6.6 show that the reconstructed object shape

is visually close to the true shape. This means that volumetric SfT could allow a user to

handle a physical object as a proxy interactor in applications such as virtual shape editing.

Quantitatively, the woggle, sponge and arm are 37 cm, 15 cm and 20 cm long, respectively.

The relative highest error over the whole reconstructed volume deformation, for the highest

level of deformation, is thus smaller than 5%, 7% and 5% of the objects’ size, respectively.

Our unoptimised MATLAB implementation on a standard desktop with 3.1GHz processor

takes between 10 - 25 seconds for the refinement to converge. The computation time for

LR-initialisation is 3-5 seconds while for GS-initialisation it is 1-2 seconds.

In practice, volumetric SfT always converges with LR or GS-initialisation. But, in order

to create conditions of failure, we initialised the refinement at equation (6.11) very far from

the optimal solution. Figure 6.7 shows a failure case in the sponge dataset.

6.5 Conclusions

We presented volumetric SfT, which reconstructs an object from a single image and a 3D

template, by using deformation constraints on the object’s outer surface and interior. Pre-
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vious thin-shell SfT methods use constraints on the object’s outer surface only. Volumetric

SfT is thus to be used with non-empty and non-flat objects. We proposed an implementation

of volumetric SfT using ARAP. Our implementation uses non-convex refinement and has an

initialisation procedure following an ARAP propagation of a surface deformation obtained

by thin-shell SfT through the object’s volume. Our method has significantly more accurate

results than state-of-the-art isometric thin-shell SfT, reducing the error of an order of mag-

nitude in some cases. Experiments with synthetic and real data show that our method has a

typical maximum relative error of 5% in reconstructing the deformation of an entire object,

including its back and interior for which no visual data is available. ARAP volumetric SfT

opens the way to doing Human-Computer Interaction using a proxy object such as a cush-

ion and a simple monocular webcam. Volumetric SfT may also be instantiated with other

deformation models, such as biomechanical models.
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Chapter 7
Conclusions

In this thesis, we presented solutions to thin-shell deformable 3D reconstruction in both

model-based (SfT) and model-free (NRSfM) cases. We also proposed an SfT solution for

reconstructing volumetric objects. We conclude the deformable 3D reconstruction for thin-

shell and volumetric objects and also discuss the future prospects.

7.1 Thin-Shell Deformable 3D Reconstruction

We proposed a unified framework for modelling NRSfM and SfT using differential geometry

and Cartan’s theory of connections. This framework is general and easy to use for the

physics-based modelling of various kinds of deformations. We also proposed a deformation

model (skewless deformation) and showed how to perform deformable 3D reconstruction with

the skewless deformation prior. We presented a solution to SfT which does not require an

explicit modelling of deformation. We also showed that this framework is coherent with

existing SfT solutions [Bartoli et al., 2015]. It is also coherent with our solution to NRSfM

(proposed in chapter 4) for objects undergoing isometric deformations, which was developed

using Riemannian geometry. This method, in fact, served as an inspiration to look beyond

isometry in deformable 3D reconstruction.

Our methods are a significant improvement on the state-of-the-art in terms of accuracy,

simplicity, computational complexity and applicability to wider situations. These methods

are applicable to both wide and short-baseline images, handle a large number of images,

yield a very accurate reconstruction with very few images and deal with missing data and

occlusions implicitly.

These methods are local and can be solved analytically. Therefore, one can conclude

that local and analytical methods are very quick and accurate. They are capable of playing

a very important role in achieving real-time solutions to NRSfM and SfT without using

high-performance computing devices.

This thesis is a new step towards local and analytical construction of NRSfM and SfT

solutions. However there is still a lot to be explored about this local framework and its
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applicability to real-life 3D reconstruction scenarios. Now we discuss future prospects:

1) Image embedding. We have proposed an embedding to describe the surface. This

embedding is very efficient but one needs to explore more embeddings in order to find an

efficient way to model the surfaces.

2) Warp issue. We use warps in all the solutions we proposed. Warps can be a source of

error (especially when higher order derivatives are required). We refine the warps according

to [Pizarro et al., 2016]. However, they are the bottleneck of our methods. We suspect that

higher accuracy in warps can be achieved by using learning methods such as Convolutional

Neural Networks.

3) Warp correction. Our methods rely on the second-order derivatives of the warps which

are usually a big source of error. Like [Pizarro et al., 2016] presented a warp correction

method based on Schwarzian equations, other methods are also possible in the model-based

scenario.

4) Combining visual cues. So far, our framework only exploits inter-image motion. Some

of the deformable reconstruction methods like [Wang et al., 2016] use other visual cues, such

as shading and are capable of reconstructing challenging objects. It would be interesting to

find out if other cues, like contours and shading can also be used in our framework.

5) Non-smooth objects. Since our methods are local, they need the surfaces to be locally

smooth only. Our methods could be extended to non-smooth objects and a reconstruction

similar to [Yu et al., 2015] be achieved. Obtaining warps for non-smooth objects should be

explored.

6) Real-time NRSfM and SfT solutions. Since the local methods are computationally very

efficient, making real-time applications with these methods should be explored.

7.2 Volumetric Deformable 3D Reconstruction

The challenge for volumetric reconstruction is to reconstruct the parts of the objects that

are not seen in the camera: the interior and the back surface. It is, therefore, not possible to

reconstruct volumes in a model-free case. We presented the first SfT solution to reconstruct

volumes. It involved a non-convex optimisation which could be initialised by two of our

proposed methods. We also showed that volumetric SfT yields a better reconstruction than

the thin-shell SfT methods. This is because volumetric constraints are much stronger than

the constraints on the surfaces.

A complete volumetric reconstruction should yield a more accurate registration of objects

that lie in the interior, such as tumours inside the body organs. However most of the body

organs do not deform near-isometrically, therefore it is important to model volumetric SfT

with a deformation model less strict than ARAP. One such deformation model is conformity.

In future, we intend to explore volumetric SfT with incompressibility (volume-preserving)

deformations. This constraint is widely used in biomechanical modelling. [Delingette, 1998]

discussed the aptness of this constraint for modelling soft body organs.
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Appendix A
The Metric Tensor

In order to describe a physical surface, one must define a coordinate system where mea-

surements like lengths, angles and areas can be defined. The metric tensor [Lee, 1997] is

a function which is defined on a physical surface to obtain these measurements. We use a

simple example to develop a better understanding of the metric tensor. For this purpose, we

consider an infinitesimal vector �v in the Euclidean 3-space.

If we use a Cartesian coordinate system, we can define the length ds of �v using Pythagoras’

law for distances as:

ds2 = dx2 + dy2 + dz2 =
(
dx dy dz

)⎛⎜⎝1 0 0

0 1 0

0 0 1

⎞
⎟⎠
⎛
⎜⎝dxdy
dz

⎞
⎟⎠ , (A.1)

where dx, dy and dz represent the components of �v in x, y and z coordinates respectively

and the identity matrix in equation (A.1) is the metric tensor. The metric tensor is denoted

as g. The identity metric tensor implies that the distances remain constant as one moves

along the coordinate frame. Now if we measure the length of the same infinitesimal vector �v

in a spherical coordinate system (r, θ, φ), we have:

ds2 = dr2 + r2dθ2 + r2sin2θdφ2 =
(
dr dθ dφ

)⎛⎜⎝1 0 0

0 r2 0

0 0 r2sin2 θ

⎞
⎟⎠
⎛
⎜⎝drdθ
dφ

⎞
⎟⎠ , (A.2)

Here, the metric tensor g is not the identity and changes at each point. This is necessary in

order to measure the same distances at various locations in the coordinate frame. Fig. A.1

shows two points A and B represented on a spherical coordinate system. Moving these

points to A′ and B′, in the direction of the r−coordinate, will also change the distance

between them. However, this does not happen in a Cartesian coordinate system. On further

elaboration, we see that the change of coordinates from Cartesian to spherical (described by
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Figure A.1: Translating points A and B in spherical coordinates.

the transformation function f), results in the following expression for the metric tensor:

(x, y, z) = f(r, θ, φ) g = JT
f Jf (A.3)

In this case g depends only on Jf as the metric tensor in the Cartesian coordinate system is

the identity.

Moving on to the application of this theory in our work, we have a surface Mi (see

Fig. 4.2) undergoing an isometric deformation which leads to Mj . A point z ∈ Mi becomes

w ∈ Mj . Since ψij is an isometric deformation, the infinitesimal distances around w will

be the same as that of z, as both of them represent the same point on different isometric

surfaces. This is analogous to equations (A.1) and (A.2).
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Appendix B
Christoffel Symbols

In the previous section we saw that the metric tensor in a Cartesian coordinate system

(equation (A.1)) is written as an identity matrix, but this may not be true for the metric

tensors in other coordinate systems (equation (A.2)). In such coordinate systems, since the

metric tensor keeps on changing with the coordinates, we can define its change using CS.

Therefore, CS is a set of numbers which are the components of vectors that represent the

change in metric tensor. They are defined as the CS of first kind (Γcab) and the CS of second

kind (Γd
ab) related by the expression Γcab = gcdΓ

d
ab. Therefore it is very easy to recover the

CS of one kind given the other ones. In our work, we found that the expressions of the CS

of second kind were simpler and therefore, we use only these. In the Cartesian coordinate

system, the metric tensor is the identity and therefore, all the CS of second kind are zero.

However, in the spherical coordinate system, the metric tensor is variable and the CS of

second kind are:

Γr =

⎛
⎜⎝0 0 0

0 −r 0

0 0 −r sin2 θ

⎞
⎟⎠ Γθ =

⎛
⎜⎝ 0 r−1 0

r−1 0 0

0 0 − sin θ cos θ

⎞
⎟⎠Γφ =

⎛
⎜⎝ 0 0 r−1

0 0 cot θ

r−1 cot θ 0

⎞
⎟⎠ . (B.1)

They are expressed in terms of the metric tensor and its first-order derivatives. Therefore,

we can define them at various surfaces and use them in our framework, just like the metric

tensor. The CS are given by:

Γp
mn =

1

2
gpl (glm,n + gln,m − gmn,l) , (B.2)

where glm,n = ∂nglm and gpl = (gpl)
−1. We write the derivatives of the metric tensor for the

spherical coordinate system as:

∂rg =

⎛
⎜⎝0 0 0

0 2r 0

0 0 2r sin2 θ

⎞
⎟⎠ ∂θg =

⎛
⎜⎝0 0 0

0 0 0

0 0 r2 sin 2θ

⎞
⎟⎠ ∂φg =

⎛
⎜⎝0 0 0

0 0 0

0 0 0

⎞
⎟⎠ . (B.3)
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APPENDIX B. CHRISTOFFEL SYMBOLS

Given gpl =

⎛
⎜⎝1 0 0

0 r−2 0

0 0 r−2sin−2 θ

⎞
⎟⎠ and glm,n (obtained in equation (B.3)), we obtain the CS

of the spherical coordinate system given in equation (B.1) using equation (B.2). For example,

Γr
θθ, according to equation (B.2) is given by

Γr
θθ =

1

2
grr (grθ,θ + grθ,θ − gθθ,r) +

1

2
grθ (gθθ,θ + gθθ,θ − gθθ,θ) +

1

2
grφ (gφθ,θ + gφθ,θ − gθθ,φ)

=
1

2
(0 + 0− 2r) + 0 + 0 = −r.

(B.4)
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Appendix C
Differential K-forms

A differential K-form represents a smooth section on the infinitesimal tangent space of the

manifold. For example, a 0-form describes a point on the manifold, a 1-form describes a line

element, a 2-form describes an area element, a 3-form describes a volume element, and so on.

In differential geometry, differential forms [Cartan, 1970; O’Neill, 2006] are used to

perform the multivariate calculus independently of the coordinates. A scalar function f ,

parametrised with m variables (x1, x2, . . . xm) such that a point f = f(x1, x2, . . . xm) is a

0-form. In this case, the exterior derivative of f is the same as the total derivative of f .

Now, the differential 1-form expressing the exterior derivative of f is given by

df =

m∑
t=1

∂f

∂xt
dxt, (C.1)

where dxt are the 1-forms and
∂f

∂xt
represents a linear function on the tangent space of the

function f in R
n.

Differential forms are defined locally, in terms of the local coordinates. Hence they are

easily transferable from one coordinate system to another and therefore, very useful for

defining local properties of the surfaces.
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