Skip to Main content Skip to Navigation

Electrophoretic deposition of nanoparticles for controlled optical properties‏

Abstract : The production of hot water by using efficient photothermal solar collectors is growing in importance to limit the use of fossil fuels. Black copper (CuO) has proved to be one of the viable solar-selective coatings owing to its nearly intrinsic properties. The formation of a tandem absorber based on CuO thin film deposited onto a highly IR reflecting metallic substrate is processed by electrophoretic deposition (EPD).In this way, the stabilization of a CuO colloidal suspension is studied previously by adding Mg(NO3)2 in isopropanol (IPA) or polyethylenimine (PEI) in water suspension. Both acts as positively charging agents and allow the realisation of a cathodic EPD. The colloidal stability as a function of the stabilizing agent content is studied prior to EPD, by dynamic light scattering (DLS) coupled with laser doppler velocimetry.CuO tandem absorbers are obtained by varying different EPD parameters to control the final thickness and also the morphology. Consequently, the optical selectivity of the tandem material is tuned and optimized. The deposition yield is compared relative to the different applied voltage range, deposition time and nanoparticle concentrations. Homogeneous deposits are obtained for [CuO]=5x10-4 g/cm3 from both suspensions. The optimum applied voltage is found to be 50 for IPA suspension and 2 for H2O suspension, for deposition times of 30 mins and 120 mins, respectively. The composition and the thickness of the coatings are analysed by Grazing Incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM) and the density is obtained from energy-dispersive X-ray spectroscopy (EDX). For the previously mentioned optimized conditions, CuO tandem absorbers derived from IPA suspension possess a density of 1.69 g/cm3 with high surface roughness. In contrast, homogeneous and regular surfaces is obtained from water suspensions having a higher density of 5.7 g/cm3.Moreover, absorptance (α) and emittance (ԑ) are calculated from the reflectance spectra of the UV-Vis-NIR and the Fourier transform InfraRed (FTIR) spectroscopy, respectively. α and ԑ were combined to determine the efficiency (ƞ) of the tandem material. Tandems obtained from water suspension has ƞ=0.8 -0.87 while from IPA ƞ=0.7. Besides, the applicability of this EPD is checked by performing other deposit of CuO on metallic substrates of different types.CuO tandems obtained from water suspensions are clearly more prominent to be used as solar selective tandem absorbers due to the high calculated ƞ value reported. The efficiency of such selective tandem absorbers was further enhanced by carbonization (pyrolysis under inert atmosphere) of the polymer (PEI) embedded in the coating. Otherwise, a thin film of SiO2 nanoparticles was deposited at the surface of the selective tandem absorbers to protect them. Both routes were successfully processed and proved to raise ƞ to 0.9.
Document type :
Complete list of metadatas

Cited literature [105 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Wednesday, September 12, 2018 - 2:09:28 PM
Last modification on : Monday, May 6, 2019 - 2:22:01 PM
Long-term archiving on: : Thursday, December 13, 2018 - 1:29:18 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01872737, version 1


Sanaa Shehayeb. Electrophoretic deposition of nanoparticles for controlled optical properties‏. Material chemistry. Université Montpellier, 2017. English. ⟨NNT : 2017MONTT195⟩. ⟨tel-01872737⟩



Record views


Files downloads