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General Introduction

Energy and sustainability are two major problems the world faces today. Renewable en-

ergy has been regarded as a promising means to solve these problems while smart grid

is developed to improve energy efficiency, reliable and robust. The growth of distributed

energy resources along with sustainable development, environmental issues are imposing

new control challenges. Wind energy is an environment friendly, renewable and economical

energy resource which has been regarded as an overwhelming competitor in the distributed

generation.

The wind is a free, clean and renewable energy source on our planet. It has served mankind

for centuries to pump water, grind grain, and move ships. Wind has been utilized as a

source of power for thousands of years for such task as propelling sailing ships, grinding

grain, pumping water, and powering factory machinery. In the United States the first wind

electric systems were built in the late 1890s. By the 30s and 40s of last century, plenty of

small-capacity, wind electric systems were in used in rural areas not served by the power

grid. Since the oil shocks of the 70s of last century, which heightened awareness of our

energy problems, the demand for renewable energy has been increasing rapidly during

recent decades [3]. Within a decade or so, dozens of manufacturers installed thousands

of new wind turbines. With the discovery of electricity and development of electric pow-

er, wind energy found new applications in human society in the form of providing clean

and inexhaustible electric power in a wide range of scales and capacities. Nowadays, wind

powered generation operates at variety of sizes between small residential and utility scales.

Modern utility-scale wind power is the fastest growing energy sector in the world. It is

becoming an important part in the national energy mix for many countries. The US con-

tinued to see growth and remains on top in total installed capacity followed by China and
1



2 GENERAL INTRODUCTION

Germany. Wind power is capable of becoming a major contributor to world‘s electricity

supply over the next three decades, according to a report by the U.S Department of Energy.

It is well known that a wind turbine’s efficiency is highly dependent on the operating con-

ditions, such as wind speed, pitch angle and tip-speed ratio. In the aim to assure optimal

operating conditions as well as to maximize the active power, parameter identification,

diagnostics and feedback control are going to play an important role. The wind system is

hard to obtain out, and the parametric varying be considered as uncertain system. Reli-

able measurements from the system are necessary to implement these designs. However

it is not always possible to use sensors for measurements. Especially, in the conditions

of gust inside the normal wind. Furthermore, available commercially sensors are too big

and costly. Therefore, we have two kind of method to solve the uncertain bound problem.

The first adaptive controller is a promising way to solve the uncertain bound problem.

And state observer designs serve as a replacement for physical sensors, for obtaining the

unavailable quantities and making feedback control implementable, are of great interest.

Sliding mode technique is known for its insensitivity to external disturbances, high accu-

racy and finite time convergence. Sliding mode observers have been widely used for fault

reconstruction in the past two decades. Edwards et al. [4] proposed a fault reconstruction

approach based on equivalent output error injection. In this method, the resulting residual

signal can approximate the actuator fault to any required accuracy. Based on the work of

[4], Tan et al. [5] proposed a sensor fault reconstruction method for well-modeled linear

systems through the Linear Matrix Inequality (LMI) technique. This approach is of less

practical interest, as there is no explicit consideration of disturbance or uncertainty. To

overcome this, the same authors [6] proposed a FDI scheme for a class of linear systems

with uncertainty, using LMI for minimizing the L2 gain between the uncertainty and the

fault reconstruction signal. Linear uncertain system models can cover a small class of

nonlinear systems by representing nonlinear parts as unknown inputs. However, they will

introduce too many unknown inputs which will make perfect or approximate decoupling

difficult. Therefore, the study of nonlinear observer-based FDI has received considerable

attention in the past few years. Jiang et al. [7] proposed a sliding mode observer based

fault estimation approach for a class of nonlinear systems with uncertainties. Yan et al. [8]

proposed a precise fault reconstruction scheme, based on equivalent output error injection,

for a class of nonlinear systems with uncertainty. A sufficient condition based on LMI is
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presented for the existence and stability of a robust sliding mode observers. The limitation

is that requires a strong structural condition of the distribution associated with uncertain-

ties. Later, this structural constraint was relaxed by the same authors [9], where the fault

distribution vector and the structure matrix of the uncertainty are allowed to be functions

of the system’s output and input. However, all these works require that the bounds of the

uncertainties and/or faults are known. Although in the work of [9], the requirement on

the bound of uncertainty is removed, but it still needs to know the bound of the fault signal.

The idea of using a dynamical system to generate estimates of the system states was pro-

posed by Luenberger in 1964 for linear systems [10]. In spite if the extensive development

of robust control techniques, Sliding Mode Control (SMC) remains an efficiency solution

for handling bounded uncertainties/disturbances and unmodeled dynamics in both con-

trol and estimation problems. From the practical point of view, a wind energy conversion

system is a nonlinear dynamic plant, with multiple inputs, multiple outputs, variables

strongly coupled, model uncertainty and external disturbances. Sliding mode techniques

[11] known for its insensitivity to parametric uncertainty and external disturbance, are

intensively studied and developed for control, estimation, Fault Tolerate Control (FTC)

and Fault Diagnosis and Isolation (FDI) problems, existing in the wind power system. In

particular, Higher Order Sliding Mode (HOSM) approaches are considered as a successful

technique due to the following advantages [12]:

• Robustness with respect to parametric uncertainties;

• Possible to generate continuous output injection signals;

• Remove the conventional relative degree restrictions;

• Possible to offer ’chattering’ attenuation.

The research filed of this thesis is ’Adaptive HOSM Design, Fault Tolerant Control and

its Application to Wind Turbine Systems and Power Converters’. In general, this topic is

of great importance and interest in industry and engineering, mainly for its economic and

reliability reasons.
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0.1 Motivations

Motivated by a large amount of important practical problems, in particular, wind power

generation systems which have received great attention in the context of energy and pol-

lution crises. Wind Energy Conversion System (WECS) with Induction Machine (IM),

known as a high specific energy source is one of the most promising alternative energy

sources due to high energy efficiency, low cost, ease of installation and environment friend-

ly. Induction Machine is suitable for a wide variety of applications, from stationary power

generations to electric automotive devices. Fig. 0.1 shows a typical system configuration

Generator

Power Converters

Gearbox

and

shaft

Machine side

converter

Grid side

converter

DC

GridTurbine

blades

Figure 0.1. Electrical energy conversion system

which is general in industry. It consists of numerous interconnected components, i.e. wind

turbine (horizon three blades mechanical device), an induction machine, we use doubly-

fed induction generator (DFIG) here, a back-to-back converters (including a three-phase

AC/DC rectifier, a three-phase DC/AC inverter, connected by a DC bus). The wind tur-

bine is a mechanical device which can absorb kinetic energy from the wind, it is a high

nonlinear and complex decoupled system. The gearbox and shaft increase the rotation

speed given by the turbine, to adjust the rotation speed suitable for the generator. The

DFIG can convert the energy from mechanical form into electrical form. The stator of

DFIG is connected to the power grid directly and the rotor is connected to the power con-

verters. The power converters are key components which deliver the power produced by

energy sources, i.e. source grid, wind turbine generator. Fig. 0.1 shows a power electronics
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topology of the wind energy conversion system which is a general configuration in industry.

Generally, there are four typical working regions which need different control policies

according to various wind speed. The operation of a wind generator presents four typical

working regions differentiated by upward wind speed, as shown in Fig. 0.2:

• Region I: below cut-in speed

• Region II: maximum generable power

• Region III: constant rated power

• Region IV: above cut-off speed
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Figure 0.2. The power curve of WECS versus wind speed

The power characteristics of a wind turbine are defined by the power curve, which re-

lates the mechanical power of the turbine to the wind speed. The power curve is a wind

turbine’s certificate of performance that is guaranteed by the manufacturer. The Interna-

tional Energy Association (IEA) has developed recommendations for the definition of the

power curve. The recommendations have been continuously improved and adopted by the

International Electrotechnical Commission (IEC). The standard, IEC61400-12, is widely

accepted as a basis for defining and measuring the power curve.
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The typical working regions are shown by power curve versus different wind speed in Fig.

0.2. As the wind speed grows up, the wind turbine (WT) shuts down and the system

generates no power at beginning where it is called zero power region. When the wind

speed reaches the cut-in speed and below the rated wind speed, the wind turbine works

in the maximum power point tracking (MPPT) region. In this region, the speed of wind

turbine is controlled by kinds of MPPT controllers to make sure that the wind turbine is

operated at the optimal tip-speed ratio [13]. The tip-speed ratio (TSR) is defined by the

wind turbine tip speed in proportion to the wind speed, and it plays a vital role in extract-

ing the kinetic energy from wind to turbine shaft [14]. For all the wind turbines around

the world, this is a common issue which also makes great challenge during the process

of wind energy extracting process. On one hand, if the rotor of wind turbine rotates too

slowly, most of the wind passes through the space between two blades without doing any

work; on the other hand, if the rotor of wind turbine rotates too quickly, the area swept

by the rotor will become impassable for the wind like a solid panel. Hence, there is an

optimal tip-speed ratio for a certain wind turbine to get the maximum power. The third

region is the constant power region, where the power is dynamically equal to the rated

power as a result of varieties of mechanism control, like pitch control, stall control, or yaw

control. In this region, the wind system is working in the rated condition. The last region

is the cut-off region, where the wind speed is above the cut-off speed. The harmful wind

is too strong to drive the wind system generating electricity, but to cause the electrical

overloading and mechanical damage. The turbine shuts down in this region to protect

for stranger winds. Most MPPT controllers require measuring wind speed [15][16] and

wind turbine speed data in real-time. Therefore, time delay in measuring process would

affect the control precision, which is an overshooting caused by delay. In practice, the

anemometer is usually installed as a wind speed detector making the wind turbine operate

at the optimal speed. Whereas, using anemometer would reduce the system’s dynamic

response and would also increase the costs of the equipment and maintenance. Moreover,

since the turbine works in a three-dimension space, it makes the wind speed has a different

distribution in the turbine rotating plane. Consequently, the effective wind speed (EWS)

cannot be measured directly. So there is a need to design a sensor-less control system for

wind system. However, previous EWS estimation works do not consist of the whole wind

generator system [3][17]. In this thesis, we propose a method that the EWS estimation

has been applied in the controller which cooperates with the wind turbine, the generator,

and the converters.
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This thesis builds a whole wind system with a MPPT controller based on adaptive sliding

mode control. To get maximum power, only a variable speed wind turbine can be applied

to this MPPT controller. We propose a method to estimate the optimal tip speed ratio. It

is based on power balance equations which describes the relationship between the turbine

torque and turbine speed versus the wind speed of the turbine rotor. Additionally, for

safety reasons many systems require a fault tolerant control (FTC) for different types of

faults. The faults in the actuators are very important since they may cause the control

target is not reached or even worst a complete lost of stability. Normally, redundancy in

actuators is used, but this requires the design of several control algorithms and a switching

strategy in order to assure the correct controller is activated (see [18, 19, 20] and the

reference therein for more information about fault tolerant control schemes). A FTC with

a fixed control allocation (CA) using output integral sliding mode (OISM) is going to be

proposed.

0.2 Contribution of the Thesis

In this thesis, we concentrate on the adaptive control and observation problems in the

wind energy generation subsystem and power converters. First part, a novel Adaptive

first order Sliding Mode (ASM) controller is developed for uncertain system. Second part,

a High Order Sliding Mode (HOSM) controller is developed for uncertain system. Third

part, Output Integral Sliding Mode (OISM) control and observer design for Linear Pa-

rameter Varying (LPV) system are addressed.

An adaptive controller are proposed for nonlinear system, and has been applied for the

Wind Energy Conversion System (WECS) in order to Track the Maximum Power Point

(MPPT) under the unknown of the WECS, with inside parameter varying and outside

disturbance. Lyapunov-based adaptive first and high order sliding mode is developed to

converge the sliding variables to a predefined region, which eliminate the chattering. The

performance of the above two adaptive controllers are evaluated by comparison with oth-

er adaptation algorithm applied in a real time wind emulation system. The robustness

against measurement noise and parameter variations is also validated simutanously.

An OISM is designed from available voltage inputs and supply manifold currents mea-



8 GENERAL INTRODUCTION

surements. The state estimation, parameter identification are performed simultaneously.

The system states, i.e. direct and quadrature flux of the rotor are estimated successfully.

This eliminates the need of an expensive flux sensor. The fault in actuators are considered

in this study. It is reconstructed faithfully through analyzing the information, which is

obtained on-line from comparisons between the measurements from the sensor installed in

the real system and the outputs of the observer system.

The main contributions achieved in this thesis are:

• Lyapunov analysis demonstrates that the proposed adaptive-gain first order sliding

mode algorithm establishes ’real’ sliding mode without a priori knowledge of the

upper bound of the fault signal, meanwhile, the gains of the proposed algorithm

allow decreasing once the error converges to a predefined neighborhood exactly;

• The proposed adaptive-gain HOSM control algorithm are proved theoretically and

the robustness of the proposed algorithm against parametric variation and measure-

ment noise have also been validated;

• The proposed FTC strategy assures, by using only output information, theoretical

exact compensation of the faults effects in the critical input channels (matched ef-

fects) and the minimization in the non-critical (unmatched) ones just after the initial

time, allowing total failures of certain actuators. To guarantee theoretical exact re-

construction of the state vector right after the initial time a hierarchical observer

using only the fault-free outputs is used.

0.3 Outline of the Thesis

This dissertation is organized into five major chapters. Chapter 1 provides adaptive high

order sliding mode controller designs for uncertain systems. Chapter 2 describes the model

of wind energy system. Chapter 3 provides the first order adaptive sliding mode controller

design for WECS, which can be easily implemented in small wind turbine applications.

Simulation results validate the advantages of the proposed controller. Chapter 4 presents

an adaptive HOSM control for wind energy system. Comparison are made, simultaneously.

The proposed method is validated by MATLAB simulation. Chapter 5 describes the FTC

control based on LPV model and observer design for WECS. The performance variables,
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flux of the stator and d-axis current of the rotor, are observed in order to realize fault

tolerant control. Finally, some conclusions and future research directions are discussed.





Chapter 1

Adaptive High Order Sliding Mode

Control Design

One of the most important problems is control under heavy uncertainty condition. While

there are a number of sophisticated methods like adaptation based on identification and

observation, or absolutely stability methods, the most obvious way to withstand the un-

certainty is to keep some constraints by ’brutal force’. Indeed any strictly kept equality

removes one ’uncertainty dimension’. The sliding mode approach is regarded as an efficient

tool to design robust controllers for complex high order nonlinear dynamic plant operating

under uncertain conditions. The research in this area was initiated in the former Soviet

Union in 50th of last century [21]. And the sliding mode control methodology has sub-

sequently received much more attention from the international control community within

the last decades with the development of electronic technology.

Sliding mode control has found wide application in the areas of robust control, fault

tolerant control (FTC), fault reconstruction in recent years. Their well known advantages

are robustness and insensitivity to external disturbance. High order sliding mode control

has better performance as compared with classical sliding mode based controller because

their output is continuous and does not require filtering. Adaptive sliding mode controller

does not need the knowledge of the uncertainties. However, insofar as we are aware, the

adaptive sliding mode controllers can not guarantee the convergence region of the states.

This chapter is going to present the traditional adaptive sliding mode controllers.
11
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1.1 State-of-the-art

Robust finite time stability of uncertain nonlinear systems has become significant in prac-

tice. The uncertainties are assumed to be bound which is hard to obtain exactly while it

affects the stability in many cases. The demand for renewable energy has been growing

rapidly during last decade [22]. The control of wind energy conversion system (WECS) is

mainly to focus on improving the utilization of the wind energy, which is known as maxi-

mum power point tracking (MPPT) technique [13]. A nonlinear model predictive control

of WECS has been presented in [23] to promise the maximum power efficiency. [24] adopts

a growing neural gas network-based field oriented controller (FOC) to obtain the optimal

tip speed ratio as well as the active power. Sliding mode controllers of WECS have been

presented in [25] [26]. However, all these controllers do not take into consideration of the

bound of the wind speed and other perturbations. For the robustness, the coefficients of

those controllers need to be tuned frequently, according to the varying disturbances and

perturbations. As wind is an uncertain resource, the bound of the variation of wind speed

affects the control of WECS. Robust control of WECS has become significant in both

theory and practice. The uncertainties are assumed to be bounded physically. Moreover,

the knowledge of the bound is hard to obtain exactly while it affects the precise control

of WECS. It follows a challenge to design a robust controller of WECS, where the upper

bound of the uncertainty is not requested. The desired controller might not require the

knowledge of the uncertainties bound.

For the cases of unknown bounds, adaptive sliding mode (ASM) controllers have been p-

resented in [27] [28] firstly. Huang et al. [29] develops an adaptive controller which ensure

the convergence without the bound values. However, the algorithm can only increase the

gain, which leads the gain over-estimation. Plestan et al. [1] proposes a new controller of a

bounded uncertain system without the gain over-estimation. However, this algorithm has

a drawback that it can not guarantee the sliding variable converge to a promised neighbor-

hood. As for [30], the gain is adjusted properly to get a sufficient value to counteract the

uncertainties, but the state still has overshooting around the neighborhood. Other works

design an adaptive first or higher order sliding mode in [31, 32, 33, 2, 34, 35, 36, 37, 38].

An adaptive super twisting SM controller in [31] can continuously force the sliding variable

and its first derivative to zero with unknown boundary. [32] presents an adaptive twisting

SMC without gain over-estimation, which is a further development of [31]. [33] presents an
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adaptive super twisting SM controller aiming to reduce chattering effect, and it is applied

for an electro-pneumatic actuators system. An adaptive integral high order SM controller

in [2] eliminates the need of knowledge about the upper bound of the uncertainties. The

ASM controller in [39] converges a perturbed chains of integrators to a neighborhood of

zero without the prior knowledge of the perturbation bound. [35] proposes a twising ASM

controller and observer with unknown boundaries. [36] develops high order ASM controller

based on a first order ASM of unknown bound perturbed system. Discrete time ASM con-

troller is considered in [37] which rejects the unknown bounded disturbance varying slowly

with respect to the sample frequency. [38] is an advanced ASM controller of multi-input

multi-output system.

1.2 Sliding Mode Control

The sliding mode approach is recognized as an efficient tool to design robust controller-

s for complex high order nonlinear dynamic plant operating under uncertain conditions.

The ’sliding mode’ phenomenon may appear in dynamic systems governed by ordinary

differential equations with discontinuous state functions in the right hand sides.

The design methods for sliding mode control involving two independent subproblems of

lower dimensions:

• design of the desired dynamics for a system of the (n −m)th order by proper choice

of a sliding manifold s = 0

• enforcing sliding motion in this manifold which is equivalent to a stability problem

of the mth order system

Consider the nonlinear system, affine in the control, defined in the Brunovsky canonical

form as






ẋ1 = x2

...

ẋ2 = x3

ẋ3 =ψ(x, t )+ϕ(x, t )+γ(x, t )u

y = x1

(1.1)



14 CHAPTER 1. ADAPTIVE HIGH ORDER SLIDING MODE CONTROL DESIGN

where x ∈ X ⊂R is the state vector with X an open set of Rn , and u ∈U ⊂R is the control

input with U an open set of R. The term y is a measured smooth output-feedback func-

tion. The nominal system dynamics are represented by ψ(x, t ), a known function defined on

X . The functions ϕ(x, t ) and γ(x, t ) defined for x ∈ X , are sufficiently smooth but uncertain.

System 1.1 can be written in input-output terms as

y (n) =ψ
(

ỹ , t
)

+ϕ
(

ỹ , t
)

+γ
(

ỹ , t
)

u (1.2)

where ỹ =
[

y ẏ . . . y (n−1)
]

. We assume that, the functions ϕ (x, t ) and γ (x, t ) are

bounded by some positive constants ϕ̄, γm and γM , such that

0 ≺ γm ≤ γ (x, t ) ≤ γM ,
∣
∣ϕ (x, t )

∣
∣≤ ϕ̄ (1.3)

Then we are dealing with the following differential inclusion

y (n) ∈ψ
(

ỹ , t
)

+
[

−ϕ̄, ϕ̄
]

+
[

γm ,γM

]

u (1.4)

where ϕ̄ is the limit or bound of parameter uncertainty in the model, due to some possible

simplification, unmodeled dynamics and/or external perturbation. The terms γm and γM

represent the bounds of the uncertainty in the gain with respect to the controller u.

1.2.1 Design of sliding Manifold

Let s(x, t ) : X ×R
+ → R be a measured smooth output-feedback function, and we assume

that the control objective is to force s to zero. Here the function s(x, t ) is called sliding

variable, and the set

S = {x ∈ X | s (x, t ) = 0} (1.5)

represents a sub-manifold of X of dimension n −1, called the sliding surface .

Definition 1.2.1. There exists an ideal sliding regime on S, if there exists a finite time

Ts such that all solutions of System satisfy the condition s(x, t ) = 0 for any time t ≥ Ts .

Definition 1.2.2. Given the sliding variable σ(x, t ), the real sliding surface associated

to 1.5 is defined as (with σ> 0)

S∗ = {x ∈ X | |s(x, t )| < δ} (1.6)
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In this case, the dynamics of system 1.1 belong to a system of a dimension lower than

the dimension of System (1.1). This autonomous system is called reduced system, and its

dynamics are determined only by the choice of the sliding surface. For our example 1.1,

the control objective is to force the output y to track a reference signal yr e f , which is a

sufficiently smooth function. In other words, the objective is to ensure the convergence

of the tracking error e = y − yr e f to zero. One of the simplest sliding manifolds for this

case is the hypersurface constructed from linear combination of the tracking error e and

its higher time derivatives. We consider the following sliding variable

s (x, t ) = e(n−1) + ln−2e(n−2) + l1ė + l0e (1.7)

with li , i = 0, . . . ,n −2 are positive constants such that the polynomial

P (θ) = θ(n−1) + ln−2θ
(n−2) + l1θ+ l0 (1.8)

is Hurwitz. Therefore, after establishment of ideal sliding regime on S, the dynamics of

the reduced system is determine by the stable associate differential equation

e(n−1) + ln−2e(n−2) + l1ė + l0e = 0 (1.9)

As a result, the tracking error e will converge to zero exponentially. In this section, we

determined the dynamics of reduced system presented by the sliding surface. The next

step is to tune a control law u, which forces the state trajectory of System 1.1 to reach

the sliding surface in a finite-time, i.e to force sliding variable s(x, t ) to converge to zero in

finite time.

1.2.2 Control Design

The control law u should be designed in such way that the trajectories of system 1.1 reach

and stay on the sliding surface S in spite of perturbation and uncertainty. It should be

remembered that the sliding variable s(x, t ) of Equation 1.8 is null on S. Consider the

dynamics of s(x, t ) given as follow

s (x, t ) ∈ψ
(

ỹ , t
)

+
[

−ϕ̄ ϕ̄
]

+
[

γm ,γM

]

u +
∑n−2

i=0
li e(i+1) y (n)

r e f
(1.10)

The controller u should ensure a local attractivity to S in its neighborhood, i.e the tra-

jectory of system 1.1 should be directed to S. A condition of stability of s(x, t ) = 0, called

condition of attractivity, should be satisfied by the controller. The well-known Lyapunov‘s
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direct method requires a positive C radially-unbounded function V (s), called Lyapunov

Function, satisfying V (0) = 0 and V (∞) = ∞. The function V (s) represents a fictitious

energy and give a global information of the System, and its time derivative V gives an

information of the stability of the system. If V (s) is negative for s 6= 0, then the system is

asymptotically stable. One of the proposed Lyapunov function is the classical quadratic

function

V (s) =
1

2
s2 (1.11)

The function V (s) is clearly positive definite. Its time derivative should be negative to

ensure the convergence of s(x, t ) to zero

V̇ = sṡ ≤ 0 (1.12)

The previous condition (attractivity condition) ensures only the asymptotic convergence of

s. Otherwise, for purpose of finite-time stability, a stronger condition needs to be imposed.

In Classical Sliding Mode, a non-linear condition, called condition of η-attractivity, is used

V̇ = sṡ ≺ η |s| ,η> 0 (1.13)

Condition 1.13 is satisfied, if the controller u takes the form

u =−Usi g n (s) (1.14)

where U is chosen sufficiently large to compensate the perturbation, uncertainty and the

deviation between the systemâĂŹs dynamics and Sliding variable dynamics. Usually, U is

a sufficiently large constant. In order to satisfy Condition (1.12), U can be tuned as

U ≥ max
x∈X

(

1

γm

(∣
∣
∣
∣
∣
ψ (x, t )+

n−2∑

i=0

li e(i+1) − y (n)
r e f

∣
∣
∣
∣
∣
+ ϕ̄+η

))

(1.15)

To summarize, we can describe the behavior of system in two steps:

• Reaching phase: It corresponds to the time t ∈ [0,Ts]. During this phase, the state

trajectory converges to the sliding surface S.

• Sliding phase: It corresponds to the time interval t ∈ [Ts ,∞], in which the state

trajectories are confined to the sliding surface S. During this phase, the behavior of

the system is entirely determined by the choice of the sliding surface.
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In ideal Sliding Mode regime, the requested controller u should be able to switch at

an infinite frequency. This is not possible in real life, due to the delay between the

measurement and the generation of the command. This may cause the system to leave

the sliding surface. Then, once the sign of the control is reversed order, the trajectories

return on this surface and on the other side, and so on. This undesirable phenomena

of oscillation around the sliding surface is called Chattering. One of the most effective

methods to reduce chattering is the use of Higher Order Sliding Mode Control, which will

be addressed in next Section.

1.3 Output Feedback Sliding Mode Control

Real systems are often suffered from disturbances and uncertainties which may affec-

t the system performance greatly. Various control methods have been proposed in the

literature [40, 41, 42]. HOSM control with properties of robustness with respect to uncer-

tainties/perturbations and finite time convergence, has been proven to be effective to this

problem [43, 44, 45, 46]. However, a lack of HOSM control is the use of sliding variables

higher order derivatives. From a practical point of view, it decreases the interest in the

presence of measurement noise. This motivated the development of output feedback SMC

in order to remove this lack.

Two kinds of solutions are possible for the design of output feedback SMC. One solution

is static output feedback using the available measurement information alone. A number

of algorithms have been developed for robust stabilization of uncertain systems which are

based on output feedback control schemes [47, 48, 49, 44]. In [47], a geometric condition is

given to guarantee the existence of the sliding surface and the stability of the reduced order

sliding motion. Edwards and Spurgeon [48] proposed an algorithm which is convenient for

practical use. However, both of [47] and [48] require that the disturbance is matched, i.e.

acts in the channels of the inputs. In many cases, the disturbance suffered by practical

systems does not act in the input channel. Moreover, the system under consideration in

[47, 48] is minimum phase and has relative degree one. In [44], an optimal version of the

so-called ’twisting’ algorithm has been provided which requires the derivative of sliding

variable. The STA which requires no information of output time derivative was proposed

by Levant [49], but it is restricted to the system with relative degree equal one with respect

to the control input.
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The other one consists in designing the controllers based on state observers or differen-

tiators, such as High Gain Observers (HGOs) [50, 51, 52, 53, 54], SMOs [42, 55, 56, 57,

58, 59, 60]. Moreover, the performance of an observer-based sliding mode controller can

be improved significantly by keeping the plant system and the observer system operating

closely [56]. Khalil et al. [52] demonstrated that, under the hypothesis that a stabilizing

globally bounded state feedback control is available, using a high gain observer one can

recover the performance achieved under state feedback. Thus, a rather general nonlinear

separation principle was established. The main drawbacks of HGOs are its sensitive to

the measurement noise peaking effect with high gains. Especially, as the observer gain

increases, the bandwidth of the observer is extended, exacerbating the presence of mea-

surement noise. We should recall that asymptotic observers represent an issue which has

not been entirely resolved in the realm of nonlinear systems, due to the lack of nonlinear

separation principle. A robust exact differentiator [61] featuring finite time convergence

was designed based on the STA [49]. Its implementation does not need the separation

principle to be proved. These differentiators have been successfully applied in [62, 63, 64].

The stability analysis of HOSM output feedback control has been done by Levant [57].

In the following part, the design of observer based HOSM output feedback control will

be introduced. For the sake of simplicity, we focus on single-input-single-output (SISO)

systems.

1.3.1 Second Order Sliding Mode Definitions

Consider a discontinuous differential equation in the sense of Filippov [65]

ẋ = v(x), (1.16)

where x ∈ X ⊂R
n is the state vector, v is a locally bounded measurable (Lebesgue) vector

function. The equation can be replaced by an equivalent differential inclusion

ẋ ∈ V(x), (1.17)

If the vector-field v is continuous almost everywhere, V(x) is the convex closure of the set

of all possible limits of V(y) as y → x, while {y} are continuity points of v . Solutions of

the equation are defined as absolutely continuous functions x(t ), satisfying the differential

inclusion almost everywhere [66].
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Let a constrain function given by

s(t , x(t )) = 0, (1.18)

where s : Rn →R is a sufficiently smooth function.

Definition 1.3.1. [66] Suppose that

• Successive total time derivatives s and ṡ are continuous functions of the system state

variables. In other words, the discontinuity does not appear in the ṡ;

• The set s = ṡ = 0 is non-empty and consists of Filippov’s trajectories [66].

Then, the motion on the set s = ṡ = 0 is called a second sliding mode with respect to the

constraint function s (Fig. 1.1).

0s s  0s 

0s 

Figure 1.1. Second order sliding mode trajectory
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1.3.2 Second Order Sliding Mode Dynamics

Consider the following nonlinear system [49]

ẋ(t ) = f (t , x(t ),u),

s(t ) = s(t , x) ∈R,
(1.19)

where x ∈ X ⊂ R
n is the state vector, u ∈ U ⊂ R is the bounded control input, t is the

independent variable time and f is a sufficiently smooth uncertain vector function. The

control objective is to force the sliding variable and its time derivative s(t ) and ṡ(t ) to zero

in finite time, i.e.

s(t ) = ṡ(t ) = 0. (1.20)

Assume that the control task is fulfilled by its zero dynamics with respect to the sliding

variable s(t , x). By differentiating the sliding variable s twice,

ṡ(t ) =
∂

∂t
s(t , x)+

∂

∂x
s(t , x) f (t , x,u),

s̈(t ) =
∂

∂t
ṡ(t , x,u)+

∂

∂x
ṡ(t , x,u) f (t , x,u)

︸ ︷︷ ︸

ϕ(t ,x)

+
∂

∂u
ṡ(t , x,u)

︸ ︷︷ ︸

γ(t ,x)

u̇(t ).
(1.21)

Depending on the relative degree [67] of the nonlinear SISO system (1.19), two cases are

considered

• Case a : relative degree r = 1, i.e.,
∂

∂u
ṡ 6= 0;

• Case b : relative degree r = 2, i.e.,
∂

∂u
ṡ = 0,

∂

∂u
s̈ 6= 0.

1.3.2.1 Relative Degree 1

In this case, the control problem can be solved by the classical first order SMC, neverthe-

less second order SMC can be used in order to avoid chattering. Shortly speaking, the

time derivative of the control u̇(t ) may be considered as the actual control variable. A

discontinuous control u̇(t ) steers the sliding variable s and its time derivative ṡ to zero, so

that the plant control u is continuous and the chattering is avoided [49, 68].

The second time derivative s̈ (1.21) is described by the following equation

s̈ = ϕ(t , x)+γ(t , x)u̇(t ), (1.22)
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where ϕ(t , x) and γ(t , x) are some bounded functions. The following conditions are assumed

[68]:

1. The control values belong to the set U = {u : |u| ≤UM }, where UM=constant>1.

2. There exists u1 ∈ (0,1) such that for any continuous function u(t ) with |u(t )| > u1,

there is t1, such that s(t )u(t ) > 0 for each t > t1.

3. There exist positive constants s0, Km and KM such that if |s(t , x)| < s0, then

0 < Km < γ(t , x) < KM , ∀ u ∈U , x ∈ X , (1.23)

and the inequality |u| > u0 entails ṡu > 0.

4. There exists constant C such that within the region |s(t , x)| < s0 the following in-

equality holds,

∣
∣ϕ(t , x)

∣
∣ ≤ C , ∀ u ∈U , x ∈ X . (1.24)

Condition 2 means that there exists a proper control u(t ) forcing the sliding variable into

a set for any initial value of state, given that the boundedness conditions on the sliding

dynamics defined by conditions 3 and 4 are satisfied. It follows from (1.22), (1.23) and

(1.24) that all solutions satisfy the differential inclusion

s̈ ∈ [−C ,C ]+ [Km ,KM ]u̇(t ), (1.25)

1.3.2.2 Relative Degree 2

In this case, the control problem statement can be derived by considering the variable u

as a state variable and u̇ as the actual control. Suppose the system dynamics (1.19) is

affine in the control law, i.e.,

f (t , x(t ),u) = a(t , x)+b(t , x)u, (1.26)

where a : Rn+1 → R
n and b : Rn+1 → R

n are sufficiently smooth uncertain vector functions.

Eq. (1.21) can be rewritten as

ṡ(t ) =
∂

∂t
s(t , x)+

∂

∂x
s(t , x)a(t , x)+

∂

∂x
s(t , x)b(t , x)u =

∂

∂t
s(t , x)+

∂

∂x
s(t , x)a(t , x),

s̈(t ) =
∂2

∂t 2
s(t , x)+

∂

∂x
s(t , x)

∂

∂t
a(t , x)

+
[

∂2

∂t∂x
s(t , x)+aT (t , x)

∂2

∂x2
s(t , x)+

∂

∂x
s(t , x)

∂

∂x
a(t , x)

][

a(t , x)+b(t , x)u(t )
]

= ϕ(t , x)+γ(t , x)u(t ).

(1.27)
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The following conditions are assumed [68]:

1.
∂

∂x
s(t , x)b(t , x) ≡ 0,

[
∂2

∂t∂x
s(t , x)+aT (t , x)

∂2

∂x2
s(t , x)+

∂

∂x
s(t , x)

∂

∂x
a(t , x)

]

b(t , x) 6= 0,

∀t , u ∈U , x ∈ X

(1.28)

The differential equations (1.19, 1.26) with discontinuous right hand side admits

solutions in the Filippov sense on the second sliding manifold s = ṡ = 0.

2. There exists u1 ∈ (0,1) such that for any continuous function u(t ) with |u(t )| > u1,

there is t1, such that s(t )u(t ) > 0 for each t > t1.

3. There exist positive constants s0, Km and KM such that if |s(t , x)| < s0, then

0 < Km < γ(t , x) < KM , ∀ u ∈U , x ∈ X , (1.29)

and the inequality |u| > u0 entails ṡu > 0.

4. There exists constant C such that within the region |s(t , x)| < s0 the following in-

equality holds,

∣
∣φ(x,u, t )

∣
∣ ≤ C , ∀ u ∈U , x ∈ X . (1.30)

It follows from (1.23), (1.24) and (1.27) that all solutions satisfy the differential inclusion

s̈ ∈ [−C ,C ]+ [Km ,KM ]u(t ), (1.31)

1.3.3 Second Order Sliding Mode Controllers

In this part, the most well known second order sliding mode controllers are introduced, e.g.,

super-twisting Controller, twisting controller and sub-optimal controller. These controllers

are insensitive to some model perturbations and external disturbances. Given that the

expression for the sliding manifold is known, it is possible to design the constant parameters

of the controllers [66].
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1.3.3.1 Super-Twisting Control Algorithm

The STA was developed to control systems with relative degree one in order to avoid

chattering in Variable Structure Control (VSC). The trajectories on the second sliding

manifold are shown in Fig. 1.2

Consider the system (1.25), the control algorithm is defined [49]

u(t ) = u1(t )+u2(t ),

u̇1(t ) =







−u, if |u| > 1

−αsign(s). otherwise

u2(t ) =







−λ|s0|ρsign(s), if |s| > s0

−λ|s|ρsign(s). otherwise

(1.32)

where α, λ are positive constants and ρ ∈ (0,1). The sufficient conditions for the finite time

convergence to the sliding manifold are

α >
C

Km
, λ2 ≥

4C

K 2
m

KM (α+C )

Km(α−C )
(1.33)

The STA does not need the evaluation of the sign of the time derivative of the sliding

variable. For the choice ρ = 1, the origin is an exponentially stable equilibrium point.

The choice ρ = 0.5 assures that the maximum real second order sliding is achieved. For

0 < ρ < 0.5 the convergence to the origin is even faster. The choice 0 < ρ < 1 assures the

finite time convergence to the origin [49, 69].

1.3.3.2 Twisting Control Algorithm

This algorithm is characterized by a twisting around the origin, shown in Fig. 1.3 The

finite time convergence to the origin of the plane is due to the switching of the control am-

plitude between two different values. The control amplitude switch at each axis crossing

which requires the sign of the time derivative of the sliding variable ṡ.

In case the relative degree r = 1. Consider the system (1.25), the twisting algorithm is

defined by the following control law [49]

u̇(t ) =







−u, if |u| > 1

−αmsign(s), if sṡ ≤ 0, |u| ≤ 1

−αM sign(s). if sṡ > 0, |u| ≤ 1

(1.34)
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s

s

Figure 1.2. Super-twisting algorithm phase trajectory

where αM > αm > 0 and the sufficient conditions for the finite time convergence to the

sliding manifold are

αm >
4KM

s0
, αm >

C

Km
, KmαM > KMαm +2C . (1.35)

In case the relative degree r = 2. Consider the system (1.31), the twisting algorithm is

defined by the following control law [57]

u = −r1sign(s)− r2sign(ṡ), r1 > r2 > 0, (1.36)

the sufficient conditions for the finite time convergence to the sliding manifold are

(r1 + r2)Km > (r1 − r2)KM +2C , (r1 − r2)Km > C . (1.37)

A particular case of the controller with prescribed convergence law [49, 66] is given by

u = −αsign
(

ṡ +λ|s|
1
2 sign(s)

)

, α> 0, λ> 0 and αKm −C >
λ2

2
. (1.38)

Controller (1.38) is close to a terminal sliding mode controller [70].
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s

s

Figure 1.3. Twisting algorithm phase trajectory

1.3.3.3 Sub-Optimal Control Algorithm

The second order sliding mode controller was developed as a sub-optimal feedback imple-

mentation of the classical time optimal control for a double integrator [12]. This algorithm

ensures the finite time convergence of s and ṡ to zero, confining the trajectories within

limit parabolic arcs (including the origin). Both twisting and jumping (in which s and ṡ

do not change sign) behaviors are possible (see Fig. 1.4). Unlike most SOSMC algorithms,

sub-optimal control does not require continuous estimate of ṡ, only depends on upon the

instances when the value of ṡ is zero.

Let the relative degree r = 2. Consider the system (1.31), the control algorithm is defined

by the following control law [49, ?]

u(t ) = −α(t )VM sign(s −
s∗

2
),

α(t ) =







α∗, if

(

s −
1

2
s∗

)
(

s∗− s
)

> 0

1, otherwise

(1.39)

where s∗ is the latter singular value of the function s(t) which corresponds to the zero value

of ṡ and α∗ is a positive constant. The sufficient conditions for the finite time convergence
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to the sliding manifold are

α∗ ∈ (0,1]∩
(

0,
3Km

KM

)

,

VM > max

(
C

α∗Km
,

4C

3Km −α∗KM

)

.
(1.40)

s

s

Figure 1.4. Sub-optimal algorithm phase trajectory

1.4 High Order Sliding Mode Control

A class of nonlinear dynamic system is considered as follows:







ẋ = f (x)+ g (x)u

y = s (x)
(1.41)

where x ∈ Rn are the state variables, u ∈ Rm is the control input, and s(x) ∈ Rm is the

measured output function known as the sliding variable. It is assumed that f (x) and g (x)

are smooth functions.

Definition 1.4.1. In system 1.41, the time derivatives of s, with ṡ, . . . , sr−1 are considered

continuous. A set is called r th order sliding set, which is a non empty integral set in
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the Filippov sense, if and only if

Sr =
{

x |s (x, t ) = ṡ (x, t ) = . . . = s(r−1) (x, t ) = 0
}

(1.42)

the motion on Sr is called r th order sliding mode with respect to the sliding variable s.

The aim of the first order sliding mode control is to force the state trajectories to move

along the sliding manifold s(x) = 0. In the higher order sliding mode control, the purpose

is to move the states along the switching surface s(x) = 0 and to keep its (r −1) successive

time derivatives viz ṡ, . . . , sr−1 to zero by using a suitable discontinuous control action. The

r th order derivative of s(x) satisfies the following equation:

sr (x) =ϕ (x)+γ (x)u (1.43)

where ϕ (x) = Lr
f s (x) and γ (x) = Lg Lr

f s (x). Here, L f and Lg are the Lie derivatives of the

smooth functions in 1.41. The corresponding sliding regularity condition has the form

r ank
{

∇si , . . . ,∇si
(ri−1) |i = 1, . . . ,m

}

= r1 + . . .+ rm (1.44)

A sliding mode is called stable if the corresponding integral sliding set is stable.

Assumption 1. Functions ϕ (x) and γ (x) are bounded uncertain functions, and without

loss of generality, let also the sign of the control gain γ be constant and strictly positive.

Thus, there exist γm ∈R
+,γM ∈R

+,ϕ̄ ∈R
+ such that

0 < γm < γ< γM ,
∣
∣ϕ

∣
∣≤ ϕ̄ (1.45)

for x ∈ X ⊂ R
n , X being a bounded open subset of Rn within which the boundedness of the

system dynamics is ensured.

The r th order sliding mode control of system 1.41 with respect to the sliding variable

s(x) can be expressed as






żi = zi+1

żr =ϕ (x)+γ (x)u
(1.46)

where 1 ≤ i ≤ r −1, and
[

z1 z2 . . . zr

]T
=

[

s (x) ṡ (x) . . . sr−1 (x)
]T

.

The objective of HOSM control is to design controllers for System 1.46 with respect to s,

which is equivalent to the stabilization of System 1.43 to the origin, ideally in finite time.

Since these controllers are to be discontinuous feedback laws u = U (z), solutions of 1.46

need to be understood here in Filippov sense, defined as follows:



28 CHAPTER 1. ADAPTIVE HIGH ORDER SLIDING MODE CONTROL DESIGN

Definition 1.4.2. A control algorithm is said to establish real sliding mode of order r

with respect to s when for any local set of initial conditions and for any finite time interval

[t1, t2], there exist constants 1. . .r such that for all t > t1, the following inequalities are

satisfied

|s1| ≤∆1, |s2| ≤∆2, . . . |sr | ≤∆r (1.47)

1.5 Adaptive Sliding Mode Control

The sliding mode control is a very popular strategy for control of nonlinear uncertain

systems, with a very large frame of applications fields. Due to the use of discontinuous

function and high control gain, its main features are the robustness of closed-loop system

and the finite-time convergence. However, its design requires the knowledge of uncertain-

ties bound, which could be, by a practical point-of-view, a hard task; it often follows that

this bound is over-estimated, which yields to excessive gain. Then, the main drawback of

the sliding mode control, the well-known chattering phenomenon, is important and could

damage actuators and systems. A first way to reduce the chattering is the use of a bound-

ary layer: in this case, many approaches have proposed adequate controller gains tuning.

A second way to decrease the chattering phenomenon is the use of higher order sliding

mode controller. However, in these both control approaches, knowledge of uncertainties

bound is required. As the objective is the not-requirement of the uncertainties bound, an

other way consists in using adaptive sliding mode, the goal being to ensure a dynamical

adaptation of the control gain in order to be as small as possible whereas sufficient to

counteract the uncertainties/perturbations. As recalled previously, this problem is an ex-

citing challenge for applications given that, in many cases, gains are also over-estimated,

which gives larger control magnitude and larger chattering. In order to adapt the gain,

many controllers based on fuzzy tools have been published; however, these papers do not

guarantee the tracking performances. Control gain in [29] dynamics directly depends on

the tracking error (sliding variable): the control gain is increasing since sliding mode is not

established. Once it is the case, gain dynamics equals 0. The main drawback of this ap-

proach is the gain over-estimation with respect to uncertainties bound. Furthermore, this

approach is not directly applicable, but requires modifications for its application to real

systems: thus, the sign function is replaced by a saturation function whom the boundary

layer width affects accuracy and robustness. Furthermore, no boundary layer width tuning

methodology is provided. A method has been proposed in [71] in order to limit the switch-
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ing gain must be mentioned. The idea is based on use of equivalent control: once sliding

mode occurs, disturbance magnitude is evaluable and allows an adequate tuning of con-

trol gain. However, this approach requires the knowledge of uncertainties/perturbations

bounds and the use of low-pass filter, which introduces signal magnitude attenuation, de-

lay, and transient behavior when disturbances are acting. A gain-adaptation algorithm

[72] is proposed by using sliding mode disturbance observer. The main drawback is that

the knowledge of uncertainties bounds is required to design observer-based controller.

1.5.1 Adaptive Twisting Algorithm

The adaptation process in the controller consists of dynamically increasing the control

gain α(t ) such that the sliding variable and its derivative converge to the equilibrium

point s = ṡ = 0 in the 2-sliding mode (2-SMC) in finite time regardless of the bounded

perturbation with the unknown bound. Thereafter the gain α(t ) starts to reduce. This

gain reduction gets reversed as soon as the system trajectories again start deviating from

the equilibrium.

The following Twisting control algorithm is considered

u =−α
(

sg n (x)+0.5sg n
(

y
))

(1.48)

where the adaptive gain α(t , x, y). For any initial conditions a real 2-sliding mode is

established in the domain M :
{

x, y : N
(

x, y
)

≤ η
}

,η>µ in finite time via twist control with

the adaptive gain

α̇=







ω1p
2γ1

1
γ1

− 2ax2+|x|y2

|α−α∗|3
sg n

(

N
(

x, y
)

−µ
)

α≥αmin

χ α<αmin

(1.49)

with the establishment of the following conditions α > 2D and 0 < γ <
4
p

2

3

p
α (0.5α−D),

where γ1, ω1, µ, χ and αmi n are arbitrary positive constants, and α∗ is a sufficiently large

constant.

1.5.2 Adaptive first order algorithm of Plestan [1]

The controller of [1] displayed in this section does not estimate the boundary of pertur-

bation and uncertainties. But, there is an eminent price to do that: the new strategy
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guarantees a real sliding mode only. Consider the nonlinear uncertain system

ẋ = f (x)+ g (x)u , (1.50)

where x ∈ X ⊂ R is state vector, u ∈ R the control input. The f (x) and g (x) are bounded

smooth uncertain functions. f (x) contains unmeasured disturbances term and g (x) 6= 0 for

x ∈ X .

The control objective consists in stabilize the continuous function s(x, t ). Suppose that

s admits a relative degree 1 with respect to the controller u, and the derivation of the

sliding variables as:

ṡ =
∂s

∂t
+

∂s

∂x
ẋ

=
∂s

∂t
+

∂s

∂x
f (x)

︸ ︷︷ ︸

ϕ(x,t )

+
∂s

∂x
g (x)

︸ ︷︷ ︸

γ(x,t )

·u

=ϕ (x, t )+γ (x, t )u

(1.51)

The functions ϕ (x, t ) and γ (x, t ) are supposed to be bounded and satisfy the following

assumptions

0 < γm ≤ γ (x, t ) ≤ γM , |ϕ (x, t ) | ≤ϕM , (1.52)

where γm , γM and ϕM are unknown positive constants.

Definition 1.5.1. Consider the non-empty real sliding surface S∗ given by 1.6, and assume

that it is locally an integral set in the Filippov sense. The corresponding behavior of system

1.51 on 1.6 is called real sliding mode with respect to the sliding variable s(x, t ).

Consider the following controller

K̇ =







K̄ |s (x, t )| si g n (|s (x, t )|−ε) i f K >µ

µ i f K ≤µ
(1.53)

with K (0) > 0, K̄ > 0, ε> 0 and µ> 0 very small. The parameter µ is introduced in order to

get only positive values for K . Given the nonlinear uncertain system 1.51 with the sliding

variable s(x, t ) dynamics 1.51 controlled by 1.511.51, there exists a finite time tF > 0 so

that a real sliding mode is established for all t ≥ tF , i.e. |σ(x, t )| <σ for t ≥ tF , with

δ=

√

ε2+
ψ2

M

KΓm
(1.54)

In conclusion, s converges to the domain |s| ≤ δ in a finite time, but could be sustained in

the bigger domain |s| ≤ δ. Therefore, the real sliding mode exists in the domain |s| ≤ δ.
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1.5.3 Adaptive Integral High Order Algorithm [2]

Consider the system which is represented by the SISO integrator chain as







ż1 = z2

ż2 = z3

...

żr =ϕ(z)+γ(z)u +∆(z, t )

(1.55)

The control objective is to drive the states of 1.55 to z = 0 at the fixed finite time

Theorem 1. Let k1,k2, . . . ,kn > 0 be such that the polynomial φ (λ) = λn + knλ
n−1 + . . .+

k2λ+ k1 is Hurwitz. For system 1.55, there exists a value such ε ∈ (0,1) that for every

ε ∈ (1−ε,1), the origin is a globally stable equilibrium in finite time under the feedback

ωnom (z) =−k1sg nz1|z1|α1 −k2sg nz2|z2|α2 − . . .−knsg nzn |zn |αn (1.56)

where, α1, α2, . . . , αn satisfy αi−1 =
αiαi+1

2αi+1 −αi
, i = 2, . . . ,n with αn+1 = 1

Consider an integral sliding surface

s (z) = zn − zn (0)−
ˆ

ωnom (z)d t (1.57)

The initial condition of the system is defined by zn(0). The nominal control wnom ensures

the convergence of the chain of integrators in finite time as given in Theorem 1.

Using the constant plus proportional reaching law yields

ṡ =−ρ1s −ρ2sg n(s) (1.58)

where ρ1 ≥ 0, ρ2 >∆(z, t ) to satisfy the reaching law condition, the control is obtained as

u̇ =−γ̄(z)−1
{
˙̄ϕ (z)+˙̄γ (z)u − ω̇nom +κ (żn −ωnom)+ρ1s +ρ2sg n(s)

}

(1.59)

The parameter ρ2 will be estimated by using the adaptation law

ρ2 = v ‖s‖ (1.60)

where v is a positive constant.
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1.6 Conclusion

In this chapter, we discuss the ASM control design for uncertain nonlinear systems. First-

ly, we introduced traditional first order sliding mode design for uncertain systems. Then

the first order design strategies were extended to a class of high order systems. However,

the choice of the algorithms gains depends on the knowledge of boundary of uncertainties.

Therefore, an adaptive-gain SOSM algorithm was proposed without a priori requiring the

knowledge of the boundary of uncertainty, meanwhile, the gains of the algorithm stop

increasing when the observation error converges to zero exactly.

In the next chapter, a complex nonlinear system, i.e., wind energy conversion system

(WECS) will be presented. Adaptive control design and FTC will be concerned for this

system in the subsequent chapters.



Chapter 2

Modeling of Wind Energy Conversion

System

Wind energy has been regarded as an environmentally friendly alternative energy source

which has attracted much attentions [13]. Many initiatives have been launched to improve

the utilizing of wind power in electricity generation [73]. Subsequent interest in wind sys-

tems expanded in the support of utility grid, more reliable and relatively cost declined [74].

This section is organized as follow. the model of wind power systems are briefly discussed

in 2.2. The configuration of the system has been presented in 2.1. The traditional control

methods have been introduced in 2.3. Finally, the conclusion has been given in 2.4

2.1 System Configuration and Topology

A wind energy conversion system (WECS) is composed of several parts to achieve kinetic-

to-electric energy conversion. Wind generator is mechanical and electrical device that

convert the kinetic energy of wind into mechanical energy and are under intensive devel-

opment in the past few years as they are regarded as an efficient carbon free electricity

production technology. It forces electric flow through an external electrical device. For

wind power applications, fixed speed wind turbine is mostly operated with a squirrel cage

induction generator (SCIG) and a multiple stage gearbox during the 1980s and 1990s.

That fact that the rotor circuit of an SCIG is not accessible can be changed if the ro-

tor circuit is wound and made accessible via slip rings. Permanent magnet synchronous
33



34 CHAPTER 2. MODELING OF WIND ENERGY CONVERSION SYSTEM

generators (PMSG) are becoming increasingly popular because of their ability to reduce

failures in the gearbox and lower maintenance problems. However, the price of PMSG

is very expensive. Since the late 1990s, most wind turbines, in which the power level

was increased to 1.5 MW and above, have adopted variable speed operation because of

the grid requirement for power quality. For these variable speed applications, doubly fed

induction generators (DFIG) are commonly used together with a multi stage gearbox and

power electric converters. The DFIG typically operates about 30% above and below syn-

chronous speed, sufficient for most wind speed conditions. It also enables generator-side

active power control and grid-side reactive power control. The reduced-capacity converter

is less expensive and requires less space, which makes the DFIG WECS popular in today’s

market. The common topology adopting the DFIG generator for wind power applications

is shown in Fig. 2.1.
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Figure 2.1. The configuration of variable speed wind energy conversion system

The side view of a typical wind turbine is shown in Fig. 2.1. There are several variants

to this layout of components, particularly for wind turbine with DFIG. Nonetheless, the

figure serves as a general reference to locate and describe the different parts in modern

wind turbines [75][76]:

• Wind turbine, which is an instrument capturing wind energy by blades and convert-
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ing the wind kinetic power to mechanical power.

• Gearbox, which is a transmission device to adapt the rotation speed for the generator.

• Generator, which converts the power from mechanical form into electricity form. The

stator of the generator is connected to the grid directly, while the rotor is interfaced

with the grid through a power converter system with reduced power capacity.

• Converters, which is used as an interface connecting the DFIG rotor and the power

grid.

Variable-speed wind turbines can achieve maximum energy conversion efficiency over a

wide range of wind speeds. The turbine can continuously adjust its rotational speed ac-

cording to the wind speed. In doing so, the tip speed ratio, which is the ratio of the

blade tip speed to the wind speed, can be kept at an optimal value to achieve the ma-

ximum power conversion efficiency at different wind speeds. To make the turbine speed

adjustable, the wind turbine generator is normally connected to the utility grid through

a power converter system. The converter system enables the control of the speed of the

generator that is mechanically coupled to the rotor (blades) of the wind turbine. The main

advantages of the variable-speed turbine include increased wind energy output, improved

power quality, and reduced mechanical stress. The main drawbacks are the increased

manufacturing cost and power losses due to the use of power converters. Nevertheless,

the additional cost and power losses are compensated for by the higher energy produc-

tion. Furthermore, the smoother operation provided by the controlled generator reduces

mechanical stress on the turbine, the drive train and the supporting structure. This has

enabled manufacturers to develop larger wind turbines that are more cost-effective. Due

to the above reasons, variable-speed turbines dominate the present market. This case has

been studied on variable-speed turbine topolgy. The following section focuses on the wind

energy generation system mathematics model.

2.2 WECS Modeling

The proposed wind turbine model with control scheme is composed of the following sys-

tems, shown in Fig. 2.2:

• Aerodynamic model, evaluates the turbine torque τt as a function of wind speed v

and the turbine angular speed ωt
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Figure 2.2. Block scheme of a variable speed wind turbine model

• Pitch system, evaluates the pitch angle β dynamics as a function of pitch reference

bref β∗

• Mechanical system, evaluates the generator speed ωt and turbine angular speed ωm

as a function of turbine torque τt and generator torque τm

• Electrical machine and power converters transform the generator torque into a grid

current as a function of voltage grid

• Control system, evaluates the generator torque, pith angle and reactive power refer-

ences as a function of wind speed and grid voltage
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2.2.1 Aerodynamics System Modeling

The system of variable wind turbine with the power converters is a high order, high non-

linear and complex coupled system. The aerodynamic power Pa in watt can be extracted

from the wind turbine is

Pa = 0.5πρr 2Cp (λ,β)v3 (2.1)

where, r is the blade radium of turbine blades (m), v is the wind velocity (m/s), ρ is

the air density of the area (kg /m3). πr 2 is the area swept by the turbine blades. As a

result, πr 2vρ is the mass of the air passing through the turbine swept area in a unit time.

Consequently, 0.5πr 2v3ρ is the kinetic energy of the wind at the velocity v in a unit time.

As a matter of fact, it is impossible to obtain all the kinetic energy from the wind.

Therefore a power coefficient Cp can be represented to describe the percentage of the wind

power by utilizing the following equation

Cp (λ,β) = c1(
c2

λi
− c3β− c4)e

−c5
λi + c6λ (2.2)

λ=
vt i p

v
=

ωt r

v
(2.3)

1

λi
=

1

λ+0.08β
−

0.035

β3 +1
(2.4)

where, c1 to c6 are parameters designed by the turbine installation, ωt is the angular

speed of the turbine blades (r ad/s), λ is the tip-speed ratio defined as the ratio between

the turbine blades tip speed vt i p = ωt r and wind speed v in (2.3). β is the pitch angle

(deg ). Ct is the turbine torque coefficient, which defined as

Ct =Cp /λ (2.5)

As shown in Fig. 2.3, the Cp grows up according various wind speed and has an unique

peak point.

2.2.2 Transmission System Modeling

The torque produced by the turbine and the mechanic torque delivered by the gearbox is

τt =
Pa

ωt
=

πρr 2Cp (λ,β)v3

2ωt
(2.6)

τt = kg bτm ,ωmr = kg bωt (2.7)

where, kg b is the gearbox ratio. τt represents the aerodynamic torque in the turbine
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Figure 2.4. Turbine torque τt versus different wind speed and the maximum power point line

side. τm and ωmr are the mechanic torque and mechanical speed of the generator in the

machine side, respectively. Or in the form using the torque coefficient Ct :

τm =
τt

kg b
=

πρr 3Ct (λ,β)v2

2kg b
(2.8)

Fig. 2.4 shows the curves of turbine torque versus different wind speed with maximum

power point line.
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2.2.3 Doubly Fed Induction Generator Modeling

The dynamic and steady-state model of the DFIG is introduced, which consists of the

differential equations to describe the electromagnetic dynamic of the stator and rotor in

synchronous frame as Fig. 2.5 shows. The effects of slotting have been neglected. It is

assumed that the permeability of the iron parts is infinite and the flux density is radial in

the air-gap. And for simplicity in the notation, the time dependence of the magnitudes

will be omitted in the following sections. In subsequent sections, the magnitudes and

parameters of the rotor are always referred to the stator. The simplified and idealized

DFIG model can be described as three windings in the stator and three windings in the

rotor, as illustrated in Fig. 2.5.
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Figure 2.5. Ideal three-phase windings (stator and rotor) of the DFIG

These windings are an ideal representation of the real machine, which helps to derive

an equivalent electric circuit, as shown in Fig. 2.6. Under this idealized model, the

instantaneous stator voltages, current, and fluxes of the machine can be described by the
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following electric equations:

vs A = Rs is A +
dψs A

d t
(2.9)

vsB = Rs isB +
dψsB

d t
(2.10)

vsC = Rs isC +
dψsC

d t
(2.11)

where Rs is the stator resistance; is A, isB , and isC are the stator currents of phases A,

B , and C ; vs A, vsB , and vsC are the applied stator voltages; and ψs A, ψsB , and ψsC are

the stator fluxes. The stator side electric magnitudes, at steady state, have a constant
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Figure 2.6. DFIG electric equivalent circuit

sinusoidal angular frequency θm , the angular frequency imposed by the grid. Similarly,

the rotor magnitudes are described by

vr a = Rr ir a +
dψr a

d t
(2.12)

vr b = Rr ir b +
dψr b

d t
(2.13)

vr c = Rr ir c +
dψr c

d t
(2.14)

where Rr is the rotor resistance referred to the stator; ir a , ir b, and ir b are the stator

referred rotor currents of phases a, b, and c; vr a , vr b, and vr c are the stator referred

rotor voltages; and ψr a , ψr b, and ψr c are the rotor fluxes. Under steady state operating

conditions, the rotor magnitudes have constant angular frequency, ωr . Assuming a general

DFIG built with different turns in the stator and rotor, all parameters and magnitudes of
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the rotor are referred to the stator. It was indicated that the relation between the stator

angular frequency and the rotor angular frequency is

ωr +ωm =ωs (2.15)

where ωr is the electrical angular frequency of the machine. Similarly, ωm is the mechanical

angular speed, related to the electrical frequency by means of a pair of poles pr :

ωr = prωm (2.16)

Hence, the rotor variables (voltages, currents, and fluxes) present a pulsation or that varies

with the speed. And the electromagnetic torque τe generated by the DFIG shown in Fig.

Rotor

J
m

m

DFIG

Figure 2.7. Mechanical axis of the DFIG

2.7 mathematically represented by the following equation:

τe −τm = J
dωm

d t
(2.17)

where J is equivalent inertia of the mechanical axis, τm express external torque applied to

the mechanical axis, here it is the torque from the gearbox. ωm is mechanical rotational

speed. From the mechanical model, it is possible to derive the electric rotational speed

ωm and the angle θm .

2.2.4 Space Vector Technique

By assuming a symmetrical three-phase operation in sinusoidal steady-state, whereby cur-

rents, voltages, and flux linkages are sinusoids and form a positive sequence, then, for

example, the instantaneous stator currents, if Is is the rms value of the current and ω is

its angular frequency and t the time, can be expressed as follows:

is (t ) = |is |e jωt = Ise jωt (2.18)
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where j is the imaginary unit, a = e
j 2π/3 is the complex operator that makes a vector ro-

tate 2π/3 rad in the counter-clockwise direction, |is | is the amplitude of the stator current

space-vector.

Because of the earlier emphasized physical meaning, the space-vector quantity has been

historically defined with reference to the AC electric machine currents. Its application

can, however, be extended to any three-phase time-varying quantity, being it not related

to electric machines. Given therefore a set of three-phase quantities xA (t ), xB (t ), and

xC (t ), the corresponding space-vector could be defined in this way:

x (t ) = k
[

xA (t )+axA (t )+a2xA (t )
]

= |x|e j ax = xD (t )+ j xQ (t ) (2.19)

where xD (t ) and xQ (t ) are, respectively, the instantaneous values of the sD and sQ com-

ponents of the stator current space-vector corresponding to the real and imaginary com-

ponents of the space-vector in the complex plane.

Let x (t ) = xD (t )+ j xQ (t ) be a generic space-vector. It should be remarked that its direct and

quadrature components xD (t ) and xQ (t ) can be directly computed from the three-phase

variables xA (t ), xB (t ), and xC (t ) and vice versa. The transformation from the three-phase

into the biphase variables is called 3/2 transformation, or DQ transformation, while that

from the biphase into the three-phase variables is called 2/3 transformation. Both these

transformations are linear and depend on the constant factor k in the definition of the

space-vector 2.19.

A nonlinear transformation is needed to retrieve the space-vector xg = x
g
x + j x

g
y expressed

in this generic reference frame rotating at the speed ωg from the corresponding x (t ) =
xD (t )+ j xQ (t ) expressed in the stationary reference frame:

xg = x
g
x + j x

g
y = xe− jθg (2.20)

Decomposing 2.20 in its real and imaginary components, it is possible to compute x
g
x , x

g
y

starting from the corresponding components in the stationary reference frame xD, xQ as

xg = xD cos
(

θg

)

+xQ sin
(

θg

)

x
g
y =−xD sin

(

θg

)

+xQ cos
(

θg

) (2.21)

where the θg implies the chosen space vector direction, which has the infinite reference

frame. Hence, in Fig. 2.8, the transformation from abc into the d q reference frame is
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Figure 2.8. WECS transformation to d q reference frame.

illustrated. The x notation represents voltages or currents. For the rotor voltages and

currents, only a rotational transformation is required. However, for stator voltages and

currents, rotational and Clarke transformations become necessary. Finally, for both stator

and rotor fluxes, the DQ components are calculated by means of the rotational transfor-

mation. In this case, the DQ reference frame rotates at ω angular frequency. The space

vectors referred to this DQ rotating frame also rotate but at different speed, that is, or

angular frequency.

Consequently, by applying these last transformations in Fig. 2.8, the space vector dia-

grams of Fig. 2.6 are converted to the space vector diagrams of Fig. 2.9. In this case,

the d q reference frames rotate at θm electric pulsation, θψ which denotes stator flux di-

rection, so the space vectors referred to this d q rotating frame are stationary. This leads

to constant d q components of the space vector projections, due to this rotating d q axis.
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Figure 2.9. dq Model of the DFIM in synchronous coordinates.

Then, it is possible to derive DQ to d q components, from the calculated abc components,

without needing a different model of the machine. So, by simply using reference frame

transformations, the behavior of the machine is inferred in DQ and d q reference frames.

The fact that the rotor circuit of DFIG is not accessible can be changed if the rotor circuit

is wound and made accessible via slip rings, which offers the possibility of controlling the

rotor circuit so that the operational speed range of the generator can be increased in a

controlled manner.

The dynamic and steady-state model of the DFIG is introduced, which consists of the

differential equations to describe the electromagnetic dynamic of the stator and rotor in
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synchronous d q frame as follows:

ψ̇sd = −Rs ir d +ωLψsq + vsd (2.22)

ψ̇sq = −Rs ir q −ωLψsd + vsq (2.23)

ψ̇r d = −Rr ir d + (ωL −ωr )ψr q + vr d (2.24)

ψ̇r q = −Rr ir q − (ωL −ωr )ψr d + vr q (2.25)

ψsd = Ls isd +Lmir d (2.26)

ψsq = Ls isq +Lmir q (2.27)

ψr d = Lr ir d +Lmisd (2.28)

ψr q = Lr ir d +Lmisq (2.29)

where the variables, the direct components and quadrature components are represented as

d and q for short. The isd and isq are stator current viewed from rotating reference of d q

parts. Similarly, ir d and ir q are rotor currents. ψsd and ψsq are stator flux linkages. ψr d

and ψr q are rotor flux linkages. Ls , Lr and Lm are the stator, the rotor and the mutual

inductance. Rs and Rr are the resistance of the stator and rotor. ωL is the frequency of

the grid.

The mechanical part of the DFIG also has been transfered, generator rotor electrical

angular speed ωr equals prωr m , where pr is the number of the pole pairs of the generator.

τe =
3

2

Lm

Ls
pr

(

ψsq ir d −ψsd ir q

)

(2.30)

ω̇r = pr ω̇m =
pr

J
(τt −τe ) (2.31)

2.2.5 Dynamic reduced order model of WECS

When the system is working in the nominal region, the q-axis of the reference frame is

aligned with the stator flux vector. Assuming that the d-axis of the stator reference frame

is aligned with the stator flux spatial vector, the stator flux dynamic equations can be

rewritten as follows. When the system is working in the nominal region, the q-axis of the

reference frame is aligned with the stator flux vector. The stator flux dynamic equations
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can be rewritten as follows:

ψsd = VL/ωL

ψsq = 0

ψ̇sd = 0

ψ̇sq = 0

(2.32)

By replacing 2.32 into 2.22–2.29 state equations of the WECS can be expressed as follows,

with x =
[

ir d ir q ωr

]

, u =
[

vr d vr q

]

,

ẋ1 = −
LsRr

L2
eq

x1 + (ωL −x3)x2+
Ls

L2
eq

ur d (2.33)

ẋ2 = −(
LmVL

ωLL2
eq

+x1)(ωL −x3)−
LsRr

L2
eq

x2+
Ls

L2
eq

ur q (2.34)

ẋ3 =
ρπr 3Cp v2kg b p2

r

2Jλ
+

3LmVL p2
r

2JLsωL
x2 (2.35)

where, L2
eq = Lr Ls −L2

m .

2.3 State of Arts of Control System

Scalar control of Induction Machines (IM), although yet successfully employed in indus-

try, is not adoptable for those application requiring high dynamic performance (e.g., servo

drives, flying shears, rolling mills, robotic manipulators). The open-loop control of the

magnetic flux linkage, typical of scalar control, makes the generation of the rated electro-

magnetic torque of the machine basically impossible at very low and zero speed. Field

oriented control (FOC shown in Fig 2.10) of IM drives was introduced almost 30 years

ago, but it has been intensively studied and over the last few years, becoming nowadays

the industrial standard as far as high-performance IM drives are concerned. Its develop-

ment has been a significant breakthrough in the field of control of electrical drives with

IM since it has permitted the use of this kind of motor for applications where only DC

motors offered adequate dynamic performance. FOC permits the IMs to be controlled

with dynamic performance comparable with that achievable with DC motor drives, but

without the drawbacks caused by the brushes.
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The application of FOC has been possible, even at an industrial level, thanks to the

development of power electronics, resulting in reliable, cheap and fast-switching off-the-

shelf power devices along with powerful low cost digital programmable architectures. As

a matter of fact, today, IM drives are a valid alternative to DC motor drives, also from

an economical point of view. The controller is designed for rotating all the blades at the
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Figure 2.10. PI based FOC Scheme

same angle or each of them independently. This independent regulation gives more degrees

of freedom to the control system. This particular operation would reduce the stresses in

the blades. The independent regulation of blades is an important innovation that will

bring more intelligence into the control system of wind turbines. In studying a dynamic

control system, a blade pitch involves many torques and forces. The representation of this

torques requires modeling the structural dynamics of the blade, the behavior of the air

around the blades, or the inclusion of friction in the bearings. Moreover, regulation of the
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speed of rotation around the longitudinal axis of the blades has a bandwidth much greater

than that of the control of the angle itself. Given these last two observations, the most

standard approach is to represent the loop control, the rate of change of pitch angle, and

a linear system of first order containing the main dynamics of the actuator (hydraulic or

electric). In fact, when modeling the pitch control, it is very important to model the rate

of change of this angle. Indeed, given the effort sustained by the blades, the variation

of the pitch must be limited. It is limited to about during normal operation and 20 for

emergencies. Regulation of the blade angle is modeled as shown in Fig. 2.11, by a PI

controller that generates a reference rate of change of pitch; this reference is limited and

a firstorder system gives the dynamic behavior of speed control of pitch variation. The

pitch angle itself is then obtained by integrating the variation of the angle. Pitch control is

normally used for large wind turbines. During normal operating conditions with the wind

speed in the range from 3 to 15m/s, the pitch angle is set at its optimal value to capture

the maximum power from the wind. When the wind speed becomes higher than the rated

value, the blade is turned out of the wind direction to reduce the captured power. The

blades are turned in their longitudinal axis, changing the pitch angle through a hydraulic

or electromechanical device located in the rotor hub attached to a gear system at the base

of each blade. As a result, the power captured by the turbine is kept close to the rated

value of the turbine.

PI 

Controller


1

1d s 
1

s

  d  d

Figure 2.11. Wind energy conversion system

2.4 Conclusion

In this chapter, we introduced the system configuration and topology of the wind energy

conversion system. And the system has been modeled in electrical and mechanical parts.

Space vector of induction machine has been introduced in order to decouple and simplify

the DFIG model. Finally, a traditional field oriented control has been designed for the
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system. In the following chapter, an advanced adaptive control of the system will be

designed based on first order sliding mode control.





Chapter 3

First order ASMC for Uncertain System

and Application on WECS

Robust finite time stability of uncertain nonlinear systems has become significant in prac-

tice. The uncertainties are assumed to be bound is hard to obtain exactly while it affects

the stability in many cases. The call for renewable energy has been growing rapidly during

last decade [22]. Wind energy regarded as an environmental friendly alternative energy

has attracted much attentions of industry and academy. The main control objective of a

wind energy conversion system (WECS) is focus on improving the utilization of the wind

energy, which is famously emerged as maximum power point tracking (MPPT) technique

[13]. A sensorless control for small WECS has been presented in [77] to promise the maxi-

mum power efficiency. [78] adopts a neural network based field oriented controller (FOC)

to obtain the optimal tip speed ratio as well as the active power. However, all these con-

trollers do not take consideration of the bounds of the wind speed and other perturbations.

As a result, their positive gains of the controllers have to be chosen carefully, as a large

value to overcome the perturbations. Sliding mode controllers of WECS have been pre-

sented in [25] and [26]. However, the gains of the controllers are fixed. For the robustness,

the coefficients of those controllers need to be tuned frequently, according to the varying

disturbances and perturbations in practice. As wind is an uncertain resource, the bound

of the variation of wind speed affects the stability of WECS. Robust control of WECS

has become significant in both theory and practice. The uncertainties are assumed to be

bounded physically. Moreover, the knowledge of the bound is hard to obtain exactly while
51
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it affects the precise control of WECS. It follows a challenge to design a robust controller of

WECS, where the upper bound of the uncertainty is not requested. The desired controller

might not require the knowledge of the uncertainties bound.

The chapter is organized as follows. In section 3.1, the state of arts of adaptive sliding

mode control has been discussed. In section 3.2, the theory of a new sliding mode algorithm

is introduced, and the mathematical model of the WECS is discussed, and the proposed

controller is applied to regulate the WECS. Section 3.3 gives simulation results of the

WECS conducted by the controller in MATLAB SIMULINK. Also a comparison algorithm

is given to validate the better dynamic performance of the proposed scheme. At last,

section 3.4 draws the conclusion.

3.1 Introduction

For the cases of unknown bounds, adaptive sliding mode (ASM) controllers have been

presented in [27] [28] firstly. Huang et al. [29] develops an adaptive controller which can

work without the bound values. The controller of [29] need not to know the bound of

uncertainties, or other disturbances comprised in the system. The gain of the controller is

dynamically tuned in order to ensure the convergence of a sliding variable. However, the

algorithm can only increase the gain, which leads the gain over-estimation. An important

design goal for an adaptive controller is to ensure a dynamical adaptation of the control

gain as small as possible. In order to adaptive the gain, many controllers have been pub-

lished [79]. However, methods proposed in those papers can not guarantee the tracking

performances. Furthermore, the gain dynamics equals to zero, when the sliding variable

converges to zero. It leads the controller stop working. As the boundary layer width

affects accuracy and robustness, boundary layer width tuning methodology is provided in

[79]. However, this approach requires the knowledge of uncertainties and disturbances.

One of the adaptive sliding mode controller proposed in [1] (by Plestan et al.) must be

mentioned to solve the problems above. Plestan et al. [1] present a novel controller of

a bounded uncertain system without the problem of gain over-estimation. However, this

algorithm is not able to guarantee the sliding variable converge to an exact neighborhood.

As for [30], the gain is adjusted properly to get a sufficient value to counteract the un-

certainties, but the state still has overshooting around the neighborhood. Other works

design an adaptive first or higher order sliding mode in [31, 32, 33, 2, 34, 35, 36, 37, 38].
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A super twisting ASM controller in [31] can continuously force the sliding variable and its

first derivative to zero with unknown boundary. [32] presents an adaptive twisting SMC

without gain over-estimation, which is a further development of [31]. [33] presents a super

twisting ASM controller aiming to reduce chattering effect, and it is applied for an electro-

pneumatic actuators system. An integral high order ASM controller in [2] eliminates the

need of knowledge about the upper bound of the uncertainties. The ASM controller in [39]

converges a perturbed chains of integrators to a neighborhood of zero without the prior

knowledge of the perturbation bound. [35] proposes a twising ASM controller and observer

with unknown boundaries. [36] develops high order ASM controller based on a first order

ASM of unknown bound perturbed system. Discrete time ASM controller is considered in

[37] which rejects the unknown bounded disturbance varying slowly with respect to the

sample frequency. [38] is an advanced ASM controller of multi-input multi-output system.

However, the common drawback for all these works is that the insurance of forcing the

sliding variable inside the neighborhood of zero does not exist.

In our approach, the sliding variable converges to a predefined neighborhood without any

overshooting. According to the knowledge of authors, it is the first work attributing this

performance. This approach has been studied in this thesis for first order system. Our

future objective is to generalize this first step for arbitrary order.

As recalled previously, this problem is a challenge for some applications, when the sliding

mode is achieved. But its adaptive gain is overestimated after reaching of its sliding mode.

In this chapter, we present Lyapunov-based adaptive first order sliding mode controller of

WECS. The advantage is that in the case where the bound of the uncertainty is unknown,

the controller is able to converge the sliding variable to a predefined neighborhood of the

origin and never get out of it. Additionally, it presents interest to develop the application

of the proposed algorithm, which is an ideal option to control the uncertain WECS oper-

ating in perturbed environments. This new adaptive controller results following attractive

characteristics:

• Insurance of convergence to a predefined neighborhood of zero without any over-

shooting

• Rapid adaptation dynamically responses to the error
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3.2 Theoretical study

In this section, the theory of the algorithm is studied with the proof based on Lyapunov

analysis. Additionally, the BH algorithm is compared with the similar work of Plestan et

al. [1].

3.2.1 Problem formulation

Recall the classical problem formulation presented in [1].

The control objective is to stabilize the continuous function s(x, t ). Suppose that s has a

relative degree 1 with respect to the controller u, and the derivation of the sliding variables

as:

ṡ =
∂

∂x
[s]

[

f (x)+ g (x)u
]

=
∂s

∂t
+

∂s

∂x
f (x)

︸ ︷︷ ︸

ϕ(x,t )

+
∂s

∂x
g (x)

︸ ︷︷ ︸

γ(x,t )

·u

=ϕ (x, t )+γ (x, t )u

(3.1)

The functions ϕ (x, t ) and γ (x, t ) are supposed to be bounded and satisfy the following

assumptions

0 < γm ≤ γ (x, t ) ≤ γM , |ϕ (x, t ) | ≤ϕM , (3.2)

where γm , γM and ϕM are unknown positive constants.

Remark 1. In our study, we don’t use any assumptions for the time derivative of ϕ (x, t )

and γ (x, t ).

3.2.2 Idea behind the proposed controller

The controller has an objective to force the sliding variable s to a neighborhood of zero

|s| ≤ ε for some positive predefined ε. Our idea consists of forcing s in finite time to

a smaller neighborhood defined by |s| ≤ ε/2 by increasing the gain as in [1]. Then the

controller forces s to remain in the predefined neighborhood (|s| ≤ ε) for all consecutive

time by creating some unreachable edge on |s| = ε.
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3.2.3 Main result

Consider the following controller

u =−K (s, t ) · si g n (s) , (3.3)

where K is the adaptive gain defined as

K̇ = k1 until |s| <
ε

2
,

K =
εK̄

ε−|s|
later,

(3.4)

with K (0), K̄ and k1 are arbitrary positive constants.

Then there exist a finite time T and a constant ε̄< ε, such that

(i) ∀t ≥ T, |s| ≤ max(0, ε̄),

(ii) limsup |u| ≤ max(K̄ ,
ϕM

γm
).

(3.5)

Proof. The proof is given in two steps.

First step: Convergence of s to |s| ≤ ε/2.

We assume first that the initial condition of s satisfies |s| > ε/2, then the adaptive gain can

be defined by K̇ = k1. In this case the convergence is evident.

Second step: s remains in |s| ≤ ε.

We assume now that the initial condition in this phase satisfies |s| ≤ ε/2, and we proof that

for all next time that |s| ≤ ε.

Consider the Lyapunov Function V =
1

2
s2, then its time derivative can be given as follows

V̇ = s
(

ϕ+γu
)

= s ·ϕ− s ·γ ·
K̄ · si g n (s)

ε−|s|

≤ |s| · ϕ̄−
|s| ·γm · K̄ ·ε

ε−|s|
= −

|s|
ε−|s|

·
(

γm · K̄ ·ε− ϕ̄ ·ε+|s| · ϕ̄
)

(3.6)

It’s easy to get that V̇ < 0, for max(0, ε̄) < |s| < ε, where

ε̄= ε

(

1−
γmK̄

ϕ̄

)

. (3.7)
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This proves the item (4.10 (i)).

As the adaptive gain K is monotonous for s ∈ (0,ε), then by simple computation one gets

that

limsup |u| ≤ max(|u|(s=0), |u|(s=ε̄)). (3.8)

This ends the proof.

In order to illustrate the theory, we fix our objective to force s to |s| ≤ ε= 0.2. We consider

the following simulations in Fig. 3.1 and Fig. 3.2.
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Figure 3.1. Behavior of adaptive gain K
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Figure 3.2. Controller u and sliding variable s
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The adaptive gain K (t ) will increase and it forces the sliding variable s to converge to a

small neighborhood of zero (|s| ≤ 0.1) in around 3 second. Then it will force s to remain

in |s| ≤ ε= 0.2 for all subsequent time.

3.2.4 Discussion and comparison

In the study of [1], the neighborhood of convergence is defined by |s| ≤ ε̄p , where ε̄p is

defined as

ε̄p =

√
√
√
√ε2 +

ϕ2
M

K̄γm

(3.9)

Clearly, ε̄p > ε means that the neighborhood of convergence is greater than the required.

In addition it can not be estimated as ϕM and γm are unknown.

Otherwise, in our result we get

ε̄= ε

(

1−
γmK̄

ϕ̄

)

< ε. (3.10)

We can ensure the convergence for predefined region. To our best knowledge, it is the first

work that get such a result.

3.2.5 Control objective

As the Fig. 3.3 shows that the power coefficient curves have the unique maximum point

Cp max, which are related to the optimal tip-speed ratio λopt . A limit on the amount

of the power that can be captured from the wind is known as the Betz Limit which is

approximately 59.3% of the attainable kinetic power. Considering the imperfection of the

turbine, this value will drop. Fig. 3.3 depicts the relationship of Cp versus λ curve, the

maximum value of Cp is 0.4953 (Cp max = 0.4953) , and the respective λopt is 7.2.

The control problem addressed in this thesis is to regulate the torque and the reactive

power as follows:

eQ = Q (t )−Qr e f (t ) < εd

eτ = τe (t )−τopt (t ) < εq

(3.11)
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Figure 3.3. Power coefficient versus tip-speed ratio in different pitch angle

The torque developed by the machine and the reactive power injected by the system into

the grid can be written as:

Q =
3

2
VL(

Lm

Ls
ir d −

VL

LsωL
) (3.12)

τe = −
3

2

LmVL

LsωL
pr ir q (3.13)

For the turbine torque given in (4.46-4.46), to achieve MPPT objective, the torque could

be rewritten as:

τopt (t ) =
Pmax

ωt
=

1

2
ρπr 5Cp max

ω2
r p2

r

λ3
opt kg b

3
(3.14)

To simplify the expression, a coefficient kopt describing the relationship between torque

and rotor speed is defined as:

kopt =
1

2
ρπr 5

Cp max

λ3
opt

(3.15)

3.2.6 Adaptive sliding mode controller application

Define the sliding variables equal to the errors of the control variables:

sd (t ) = eQ =Q (t )−Qr e f (t ) (3.16)

sq (t ) = eτ = τe (t )−τopt (t ) (3.17)
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State Model

Adaptive

Sliding Mode 

Controller

Sliding Surface
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Figure 3.4. Control system block diagram

The control objective is to steer the variables s = [sd , sq ] and its first time derivative ṡ to

a predefined region ε in finite time. From (4.61-3.17), we have:

sd (x) =
3

2
VL(

Lm

Ls
ir d −

VL

LsωL
)−Qr e f (t ) (3.18)

sq (x) = −
3

2

LmVL

LsωL
pr ir q −

kopt

p2
r k3

g b

ω2
r (3.19)

The first order derivative of sliding variables ṡd and ṡq are:

ṡd =−
3

2

LmRr VL

L2
eq

x1 +
3

2

LmVL

Ls
(ωL −x3) x2

︸ ︷︷ ︸

ϕd

−
∂

∂x
Qr e f

︸ ︷︷ ︸

ϕd

+
3

2

LmVL

L2
eq

︸ ︷︷ ︸

γd

ur d

(3.20)
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ṡq =
3

2

(

L2
mV 2

L pr

Lsω
2
L

L2
eq

+
LmVL pr

LsωL
x1

)

(ωL −x3)

︸ ︷︷ ︸

ϕq

−
kopt

k3
g b

(

ρπr 3Cp v2kg b

Jλ
+

3LmVL

JLsωL
x2

)

x3

︸ ︷︷ ︸

ϕq

+
3

2

LmVLRr pr

L2
eqωL

x2

︸ ︷︷ ︸

ϕq

−
3

2

LmVL pr

L2
eqωL

︸ ︷︷ ︸

γq

ur q

(3.21)

The control diagram of the system is shown in Fig. 3.4. The block of MPPT control

provides optimal value of the torque, the sliding mode surface is generated by the states.

Finally, the proposed controller gives rotor voltages to the system.

3.3 Simulation results

The implementation of the wind turbine aerodynamics, generator dynamics, and sliding

mode control architecture in SIMULINK are shown from Fig. 3.5 to Fig. 3.13. The wind

speed model is generated by a test function, which is able to produce varying degrees

of wind speed variations. This particular wind speed function is chosen to demonstrate

the effectiveness of the controller design because of its highly time-varying, and the wide

range.
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Figure 3.5. Controlled direct-axis current ir d
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Figure 3.6. Controlled quadrature-axis current ir q of the rotor
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Figure 3.7. Controlled mechanic rotation speed wmr

The first test results shown in Fig. 3.5 and 3.6 are that of the d-axis rotor current ir d (t )

and the q-axis rotor current ir q (t ). As can be seen by Fig. 3.5 and 3.6, the ir d (t ) and ir q (t )

curves controlled by the proposed algorithm are stable and clear. The mechanic rotation

speed ωmr in Fig. 3.7 is presented in the same environment, and the controller depicts

good performance in transient process during system tuning. It is clear from the figures

that the proposed controller is robust against wind speed variations.

Fig. 3.8 to Fig. 3.13 show the performance of the two sliding controllers. Fig. 3.8 and Fig.

3.9 show the controllers ur d and ur q . Fig. 3.10 and Fig. 3.11 depict the adaptive gain Kd

and Kq of ur d and ur q . The gain linearly increases before 0.3 sec. Until the errors converge
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Figure 3.9. Quadrature-axis controller ur q

to the region predefined by ε, the algorithm is changed to the second part. The zoom-in

pictures of Fig. 3.12 and Fig. 3.13 show that the errors will never exceed the predefined

limit εd = 10 var and εq = 0.1 N m, which are sufficiently small errors for WECS control.

Fig. 3.12 and Fig. 3.13 are curves of the sliding variables sd and sq , which stands for

the error of torque and the error of the reactive power. The errors of the sliding variables

are extremely small compared with the work in [25], where the vibration of the system is

greater than 3N m.

The second simulation results of a comparison work are shown in Fig. 3.14 and Fig.

3.15. The sliding variables with another adaptive controller of Plestan et al.[1] method
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Figure 3.10. Adaptive gain Kd of direct-axis controller ur d
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Figure 3.11. Adaptive gain Kq of quadrature-axis controller ur q

are applied in the same WECS, for the same control objective as well. It should be

noted that, the errors of the compared controller of Plestan et al. exceed the convergence

neighborhood εd = 10 var and εq = 5 N m. The simulations depict that the proposed

controller can constrain the tracking error in the predefined neighborhood ε without any

overshooting, and for this reason we obtain better control performance from the proposed

controller.
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Figure 3.12. Sliding variable sd in case of the proposed algorithm
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Figure 3.13. Sliding variable sq in case of the proposed algorithm

3.4 Conclusion

This chapter presents a novel first order Lyapunov based adaptive controller. It allows

the sliding variable to converge to a predefined neighborhood without any over-estimation.

Then we apply the proposed controller to the wind energy system. Finally, we compared

another adaptive controller adopting the method of Plestan et al. [1] with our algorithm.

The simulation results show that the tracking error controlled by the proposed algorithm

will never escape from the convergence region predefined. It means the proposed controller

has a better control character.



3.4. CONCLUSION 65

Time (s)
0 50 100 150

S
d

(v
a
r)

0

200

400

600

80 85 90 95
-20

-10

0

10

20

Figure 3.14. Sliding variable sd in case of Plestan et al. [1] algorithm
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Chapter 4

Adaptive HOSM Control for Uncertain

System and Application on WECS

4.1 Introduction

Control under uncertainty condition, including parameter variation, unmodeled dynamic

and external disturbance, has attracted much attention of modern control theory [80].

Sliding mode control (SMC) is one of the most powerful control strategy for its robustness

against internal and external perturbances [21]. Due to the use of discontinuous function,

the chattering phenomenon occurs, which is the main disadvantage of the conventional

SMC for its implementation in a wide range of applications [42]. High order sliding mode

(HOSM) controllers have been presented, in [81, 82, 83, 84], which allow to attenuate the

chattering. In addition, HOSM control can remove the conventional relative degree re-

strictions [57]. However, those controllers do not have constructive algorithm for the gain

tuning, and they require the knowledge of uncertainties bound which are usually overesti-

mated.

[?, 85, 2] present adaptive sliding mode (ASM) controllers which do not require the knowl-

edge of uncertainties bound. The dynamical adaptation of the control law design focuses

on tuning a large gain to conquer the perturbations. However, in those works, their dynam-

ic adaptation laws only have increasing gains, which inevitably arise gain overestimation

leading to undesirable chattering. [38, 1] present ASM controllers using dynamic control
67
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law with a decreasing gain after convergence which solve the gain overestimation problem.

However, the gain decreases very slowly, in some approach it needs large time for the

controller to be adjusted to a proper value. Also the control law does not guarantee that

the sliding variable remains inside the neighborhood after convergence. [30, ?] present a

controller to converge the states to a neighborhood of the origin, but the states may over-

shoot this neighborhood. [35, 86] present adaptive HOSM controllers, and [28, 87, 37, 88]

presents discrete time ASMC. However, their states are not able to converge to a neigh-

borhood rigidly. To our best knowledge, there is no contemporary work can ensure the

convergence to a predefined neighborhood of origin.

In this chapter, we present a new Lyapunov-based adaptive HOSM controller for nonlin-

ear systems. The problem has been formulated as the stabilization of a perturbed integral

chain with unknown bounded uncertainties. Our main contribution is that the proposed

controller can converge the sliding variables to a predefined neighborhood of origin without

any overshooting. Additionally, the controller has been applied on a wind energy conver-

sion system (WECS) to prove its advantages. A variable speed WECS is a high nonlinear

system with unknown but physically bounded uncertainties. The controller of WECS is

designed to maximize the active power and regulate the reactive power, which is so-called

maximum power point tracking (MPPT) technique [13, 22, 24, 89]. And owning to the

main attractive advantage of the controller, the controlled states have an exact conver-

gence to the predefined neighborhoods. It helps alleviate the mechanical stress without

chattering problem by generating continuous control input.

The chapter is organized as follows. Section II briefly discusses the problem formulation

and the assumptions. Section III shows the design of the high order sliding mode controller

with a r − th order integral chain approach. The application on a wind energy conversion

system example is carried out in Section VI with simulation results. Section V concludes

the work.

4.2 Problem Formulation and Control Objective

Consider a nonlinear system






ẋ = f (x)+ g (x)u

y =σ (x)
(4.1)



4.2. PROBLEM FORMULATION AND CONTROL OBJECTIVE 69

where x ∈R
n is the state vector, and u ∈R is the control input. y ∈R is the measured out-

put function. σ ∈R is known as the sliding variable. f (x) and g (x) are uncertain bounded

smooth functions, and g (x) 6= 0.

Assumption 2. - The relative degree of the system assumed to be constant and equal to

r. This means that the controller will appear for the first time in the r -th time derivative.

Assumption 3. - The r -th order derivative of σ satisfies the following equation

σr = ϕ (·)+γ (·)u
(4.2)

where, the functions ϕ (·) = Lr
f σ and γ (·) = Lg Lr−1

f σ.

Assumption 4. Functions ϕ (·) and γ (·) are supposed to be bounded. There exist unknown

positive constants γm, γM , ϕM that

0 < γm ≤ γ (·) ≤ γM , |ϕ (·) | ≤ϕM (4.3)

Represent the system by a r -th order integral chain as:






ż1 = z2

ż2 = z3

...

żr−1 = zr

żr =ϕ (·)+γ (·)u

(4.4)

where (σ,σ̇, · · · , σr−1) = (z1, z2, · · · , zr ).

The control objective consists of forcing the states z1 and its first (r −2)-th time derivatives

(z1, z2, · · · , zr−1) to an arbitrary predefined neighborhood of zero with the respect of the

states zi in (4.4). This means

limsup
z→∞

|zi | ≤∆i , i = 1, · · · , (r −1) (4.5)

where, the positive parameters ∆1,∆2, · · · ,∆r−1 are predefined.

Before the control design, we recall the boundary layer definition.



70

CHAPTER 4. ADAPTIVE HOSM CONTROL FOR UNCERTAIN SYSTEM AND APPLICATION ON

WECS

Definition 1. In a µ-vicinity of the origin, the so-called boundary layer satµ(·) is defined

as follows [90]. For |s| >µ, satµ(s) is just equal to si g n(s). For |s| ≤µ, satµ(s) is continuous

shown in Fig. 4.1.

satµ(s) =







si g n(s), f or |s| >µ
s

µ
, f or |s| ≤µ

(4.6)

where µ is arbitrary positive constant.
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Figure 4.1. Function satµ(s)

4.3 Control design

In this section, we design the controller in two steps. Firstly, the new adaptation algo-

rithm for the first order system has been introduced. The continuous controller forces

one integrator system converge to a predefined neighborhood of zero. Secondly, we cope

the recalled the first order controller with a linear controller ωnom which can stabilize a

(r −1)-th order integral chain. The controller converges (r −1)-th order integrators to a

predefined neighborhood.

4.3.1 First order controller

Consider the perturbed one integrator system

ṡ = Φ (·)+Γ (·)u (4.7)
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with the bounded functions Γ (·) ,Φ (·) that

0 < Γm ≤ Γ (·) ≤ ΓM , |Φ (·) | ≤ΦM Φ̄(x, t ) (4.8)

where Γm , ΓM , ΦM are unknown positive constants, and Φ̄(x, t ) is a known positive function

which depends on state and time.

Theorem 2. Consider the following controller

u =







u1 =−
(

k1t +k2Φ̄
2
)

sat ε
2

(s) until |s| <
ε

2
,

u2 =−
(

k3

1− |s|
ε

+k2Φ̄
2

)

sat ε
2

(s) later,
(4.9)

where k1, k2, k3 are arbitrary positive constants. Then there exist a finite time tT and

constant ε̄< ε, such that

(i) ∀t ≥ tT , limsup |s| ≤ max
(ε

2
, ε̄

)

,

(ii) limsup |u2| ≤ max

(

k3 +k2Φ̄
2,k2

(
ΦM

2

4Γm
2k2

2
+ Φ̄

2

))

.
(4.10)

The function
k3

1− |s|
ε

is depicted in Fig. 4.2. The proof of (4.10) is given as follows. Item

s
-10 -5 0 5 10

-50

-25

0

25

50

"

Figure 4.2. Function
k3

1− |s|
ε

(4.10 (i)) and item (4.10 (ii)) are proved separately. For the attraction condition sṡ < 0,

interested reader could refer to Khalil‘s book [41].
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Proof. The proof of item (4.10 (i)) is split into two steps. For the first step, we show that

u1 yield for the attraction condition sṡ < 0 after tT , where |s| >
ε

2
. We provide the proof

that s will converge to the neighborhood |s| <
ε

2
in finite time. For the second step of the

proof (4.10 (i)), once the sliding variable reaches the neighborhood of |s| ≤
ε

2
, the u2 work-

s for the finite time convergence, and forces the sliding variable stay in the neighborhood ε.

Suppose that |s| >
ε

2
at the beginning,

sṡ = s (Φ+Γu)

= s[Φ−Γ
(

k1t +k2Φ̄
2
)

sat ε
2

(s)]

≤ |s|
(

ΦM Φ̄−Γmk2Φ̄
2
∣
∣
∣sat ε

2
(s)

∣
∣
∣−Γmk1t

∣
∣
∣sat ε

2
(s)

∣
∣
∣

)

(4.11)

for |s| >
ε

2
we have sat ε

2
(s) = si g n(s)

sṡ ≤ |s|
(

ΦM Φ̄−Γmk2Φ̄
2 −Γmk1t

)

=−|s|Γmk2

(

Φ̄
2 −

ΦM Φ̄

Γmk2
+

k1

k2
t

)

=−|s|Γmk2

[(

Φ̄−
ΦM

2Γmk2

)2

−
ΦM

2

4Γm
2k2

2
+

k1

k2
t

]

=−|s|Γmk2

[(

Φ̄−
ΦM

2Γmk2

)2

+
k1

k2

(

t −
ΦM

2

4Γm
2k2k1

)]

(4.12)

Thus, after a finite time, tT =
ΦM

2

4Γm
2k2k1

, we get sṡ < 0. |s| is decreasing to reach |s| ≤
ε

2
in

finite time. Then u2 begins to work for forcing the sliding variable inside the neighborhood

|s| ≤ ε̄.

Then, suppose that once |s| ≤
ε

2
,

sṡ = s (Φ+Γu)

= s[Φ−Γ

(

k3

1− |s|
ε

+k2Φ̄
2

)

sat ε
2

(s)]

≤ |s|
(

ΦM Φ̄−Γmk2Φ̄
2
∣
∣
∣sat ε

2
(s)

∣
∣
∣−

Γmk3

1− |s|
ε

∣
∣
∣sat ε

2
(s)

∣
∣
∣

)

(4.13)
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The worst case is to take consideration of |s| >
ε

2
. We have sat ε

2
(s) = si g n(s)

sṡ ≤ |s|
(

ΦM Φ̄−Γmk2Φ̄
2
∣
∣
∣sat ε

2
(s)

∣
∣
∣−

Γmk3

1− |s|
ε

∣
∣
∣sat ε

2
(s)

∣
∣
∣

)

=−|s|
(

Γmk2Φ̄
2 −ΦM Φ̄+

Γmk3

1− |s|
ε

)

=−|s|Γmk2



Φ̄
2 −

ΦM

Γmk2
Φ̄+

k3

k2

(

1− |s|
ε

)





=−|s|Γmk2





(

Φ̄−
ΦM

2Γmk2

)2

−
ΦM

2

4Γm
2k2

2
+

k3

k2

(

1− |s|
ε

)





(4.14)

As a result, the upper bound of the sliding variable is given that

limsup |s| ≤ max
(ε

2
, ε̄

)

< ε

where, ε̄= ε

(

1−
4Γm

2k2k3

ΦM
2

)

< ε.

This proves item (4.10 (i)).

Then we provide the proof of (4.10 (ii)). The upper bound of the controller has been

ensured.

Proof. For |s| ∈ (0, ε̄), the adaptive gain is monotonous. We estimate a bound of u2

|u2| =

∣
∣
∣
∣
∣
−

(

k3

1− |s|
ε

+k2Φ̄
2

)∣
∣
∣
∣
∣

∣
∣
∣sat ε

2
(s)

∣
∣
∣

= k2




k3

k2

(

1− |s|
ε

) + Φ̄
2





(4.15)

When |s| ≤ ε̄, (4.15) becomes

|u2| ≤ k2










k3

k2

(

1−
ε
(

1− 4Γm 2k2k3

ΦM
2

)

ε

) + Φ̄
2










= k2

(
ΦM

2

4Γm
2k2

2
+ Φ̄

2

)

(4.16)
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From (4.15) with |s| = 0, we get

|u2| = k3 +k2Φ̄
2 (4.17)

As a result, the upper bound of u2 is

limsup |u2| ≤ max

(

k2

(
ΦM

2

4Γm
2k2

2
+ Φ̄

2

)

,k3 +k2Φ̄
2

)

This proves item (4.10 (ii)).

4.3.2 Stabilization of the (r −1)-th integral chain

Consider the following system which is represented by the pure integrator chain as







ż1 = z2

ż2 = z3

...

żr−1 =ωnom

(4.18)

We recall a linear controller ωnom to stabilize the (r −1)−th order integral chain, interested

reader could refer to Khalil‘s book [41].

Theorem 3. Let a1, a2, · · · , ar−1 > 0 be such that the polynomial ωnom = a1z1 +a2z2 +·· ·+
ar−1zr−1 is Hurwitz. For the system (4.18), the origin is an exponential stable equilibrium

under the feedback ωnom [41].

There exists a positive definite matrix P for all positive definite matrix Q, such that,

PA+ AT P =−Q. (4.19)

Let z = [z1, z2, · · · , zr−1]T . A Lyapunov function is selected as V = zT P z, then its time

derivative can be given as follows

V̇ = żT P z + zT P ż

= zT AT P z + zT PAz

= zT
(

AT P +PA
)

z

=−zT Qz

≤−λmin‖z‖2

(4.20)
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where, A=














0 1

0 1

0
. . .

. . . 1

a1 a2 · · · ar−2 ar−1














,

λmin is the minimum eigenvalue of P .

Then consider the system with perturbation g , which is represented as

ż = Az + g (4.21)

where, A=














0 1

0 1

0
. . .

. . . 1

a1 a2 · · · ar−2 ar−1














,

and g = [0, · · · ,0,Ψ]T . Ψ is unknown and bounded perturbation, |Ψ| < ε with ε predefined.

The same Lyapunov function is selected as V = zT P z, then its time derivative can be given

as follows

V̇ = żT P z + zT P ż

=
(

zT AT + g T
)

P z + zT P
(

Az + g
)

= zT AT P z + g T P z + zT PAz + zT P g

= zT
(

AT P +PA
)

z + g T P z + zT P g

=−zT Qz + g T P z + zT P g

≤−λmin‖z‖2 +2
∥
∥g

∥
∥λmax ‖z‖

≤−λmin ‖z‖
(

‖z‖−
2ελmax

λmin

)

(4.22)

where, λmin and λmax are the minimum and maximum eigenvalue of matrix P . This implies

limsup
z→∞

‖z‖ ≤
2ελmax

λmin
(4.23)

Finally we get

limsup
z→∞

zi <∆i with

∆i ≤
2ελmax

λmin
, i = 1, . . . ,r −1.

(4.24)
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4.3.3 Main Controller

Consider the sliding surface

s = zr −ωnom (4.25)

The first time derivative of s is

ṡ = żr − ω̇nom

= ϕ+γu − ω̇nom (4.26)

The system is represented as

ṡ = Φ+Γu (4.27)

with Φ=ϕ− ω̇nom , and Γ= γ.

For ΦM is the maximum parameter of the polynomial controller, Φ̄ (x, t ) is a function of

the states, the bound of Φ is

Φ=ϕ− ω̇nom

=−a1z2 −a2z3 −·· ·−ar−1zr + Φ̄

≤ max(1, a1, a2, · · · , ar−1)
︸ ︷︷ ︸

ΦM

(1+|z2|+ |z3|+ · · ·+ |zr |)
︸ ︷︷ ︸

Φ̄(x,t )

,

(4.28)

The bound of Γ is 0 < γm < γ≤ γM , where γm and γM are unknown.

Replacing the control law (4.9) to system (4.27), the sliding variable s is forced to converge

to the predefined neighborhood of zero with |s| < ε, which implies |zr −ωnom | < ε. Then we

have

żr−1 = ωnom +Ψ, (4.29)

with |Ψ| < ε (4.30)

From (4.22) (4.23) (4.24), we know that

limsup
z→∞

zi <∆i with (4.31)

∆i ≤
2ελmax

λmin
, i = 1, . . . ,r −1, (4.32)

It is easy to get the parameter ε from (4.32) ε ≤
λmin

2λmax
∆, if we want to force the sliding

variable zi in the range of ∆.
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4.3.4 Acadamic Example

In order to illustrate the theory, the proposed controller is applied to a triple integrator

uncertain system as the acadamic example. Consider a three integral chains system that






ż1 = z2

ż2 = z3

ż3 =ϕ+γu

(4.33)

where ϕ= si n(t ),γ= 3+ si n(2t ).

Using the nominal controller ωnom =−4z1 −2z2, we have

ż2 =ωnom +Ψ with |Ψ| < ε (4.34)

Then, a sliding surface can be defined as

s = z3 −ωnom (4.35)

= 4z1 +2z2 + z3 (4.36)

First time derivative of s is

ṡ = 2ϕ+2γu +4z2 (4.37)

Using the proposed ASM control law in (4.9), where k1, k2 and k3 are given to be 1, 0.2,

and 1. For system (4.33), we have z = [z1, z2]T , A =




0 1

−4 −2



, g = [0,ε]T . Consider a

Lyapunov function V = zT P z,P =






3

2

1

8
1

8

5

16




 , we have

V̇ = zT (AT P +PA)z + g T P z + zT P g (4.38)

= −zT Qz + g T P z + zT P g (4.39)

≤ −‖z‖2 +2λmax (P )ε‖z‖ (4.40)

where Q = AT P +PA =




1 0

0 1



.

We fix the control objective that |z1| < 0.2, |z2| < 0.3 as the converge region predefined.

Solving the inequality ε<
mi n(0.2,0.3) ·λmax (P )

2
= 0.1513, finally, we choose ε= 0.15.
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Simulation has been made by MATLAB SIMULINK. Choose that z1(0) = 2, z2(0) = 1,

z3(0) =−3. The results are shown from Fig. 4.3 to Fig. 4.6.
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Figure 4.3. Adaptive gain K

The adaptive gain K (t ) is shown in Fig. 4.3. The adaptive gain K is increasing at the

beginning to eliminate the perturbation, and decreasing rapidly when the gain is too high.

After the sliding surface is reached, the adaptive gain is varying during a small region to

compensate the perturbation and never overestimated.
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Figure 4.4. Controller u

The behavior of proposed controller is given in Fig. 4.4. Attribute to the sat (·) function,
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the controller is continuous to avoid the chattering phenomenon. In the adaptive first

order SM controller, we use a discontinuous controller. However, the chattering happens

when the sliding variable is approximately equal to zero.
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Figure 4.5. Sliding variable s

To illustrate the theory, the sliding variable s is pictured in Fig. 4.5. The zoom of Fig.

4.5 shows that the sliding variable s never escapes from the predefined value ε< 0.15 after

the sliding surface reached.
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Figure 4.6. States z1 and z2

Additionally, the state z1 and z2 are zoomed in Fig. 4.6. For the control objective, we



80

CHAPTER 4. ADAPTIVE HOSM CONTROL FOR UNCERTAIN SYSTEM AND APPLICATION ON

WECS

predefine a neighborhood of zero to converge |z1| < 0.2, |z2| < 0.3. It is clearly depicted that

the blue line z1 and the red line z2 are less than 0.2. The integral chains z1 and z2 are

limited in the predefined region.

4.4 Adaptive HOSM controller for WECS

The system of variable speed wind generator with the back-to-back power converters is a

high order, high nonlinear system [22] [78] [24]. The variable speed structure can operate at

its optimal working point according to the various wind speed, which is so-called maximum

power point tracking (MPPT) technique allowing the power generation maximize [26] [91]

[89] [92]. The main control objective is to control the turbine torque to follow the optimal

value, and to regulate the reactive power as command at the meanwhile with predefined

errors. The proposed controller has been applied to the system to realize the control

objective with the goodness of mechanical stress alleviation.

4.4.1 System Configuration

A Grid-connected variable speed wind system based on a double fed induction machine is

considered in Fig. 4.7, consisting of the following parts [93] [13] [75] [94]:

• Turbine is the most important device to capture wind energy by its blades, and

converting the wind kinetic power to mechanical torque.

• Gearbox and shaft increase the rotation speed given by the turbine, to suit the

generator speed, assumed to be perfectly stiff in our study.

• Double fed induction generator (DFIG), which converts the power from mechanical

form into electricity form. The stator of DFIG is connected to the grid directly, and

the rotor is connected to the power converters.

• Converters are connected with the rotor of DFIG and the grid, adopting the famous

back-to-back configuration.
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Generator

Power Converters

Gearbox

and

shaft

Machine side

converter

Grid side

converter

DC

GridTurbine

blades

Figure 4.7. System configuration

4.4.2 Model of WECS

4.4.2.1 Aerodynamics

The aerodynamic power Pa in watt can be extracted from the wind turbine is

Pa = 0.5πρr 2Cp (λ,β)v3 (4.41)

where, r is the blade radium of turbine blades (m), v is the wind velocity (m/s), ρ is

the air density of the area (kg /m3). πr 2 is the area swept by the turbine blades. As a

result, πr 2vρ is the mass of the air passing through the turbine swept area in a unit time.

Consequently, 0.5πr 2v3ρ is the kinetic energy of the wind at the velocity v in a unit time.

As a matter of fact, it is impossible to obtain all the kinetic energy from the wind. There-

fore a power coefficient Cp can be represented to describe the percentage of the wind power

utilizing

Cp (λ,β) = c1(
c2

λi
− c3β− c4)e

−c5
λi + c6λ (4.42)

λ=
vt i p

v
=

ωt r

v
(4.43)

1

λi
=

1

λ+0.08β
−

0.035

β3 +1
(4.44)

where, c1 to c6 are parameters designed by the turbine installation, ωt is the angular

speed of the turbine blades (r ad/s), λ is the tip-speed ratio defined as the ratio between

the turbine blades tip speed vt i p = ωt r and wind speed v in (4.43). β is the pitch angle

(deg ).
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4.4.2.2 Gearbox and Shaft

The torque produced by the turbine and the mechanic torque delivered by the gearbox is

τt =
Pa

ωt
=

πρr 2Cp (λ,β)v3

2ωt
(4.45)

τt = kg bτm ,ωmr = kg bωt (4.46)

where, kg b is the gearbox ratio. τt represents the aerodynamic torque in the turbine side.

τm and ωmr are the mechanic torque and mechanical speed of the generator in the machine

side, respectively.

4.4.2.3 Double Fed Induction Generator

The dynamic and steady-state models of the double fed induction generator (DFIG) is

introduced, which consists of the differential equations to describe the electromagnetic

dynamic of the stator and rotor in synchronous frame as follows:

ψ̇sd = −Rs ir d +ωLψsq + vsd (4.47)

ψ̇sq = −Rs ir q −ωLψsd + vsq (4.48)

ψ̇r d = −Rr ir d + (ωL −ωr )ψr q + vr d (4.49)

ψ̇r q = −Rr ir q − (ωL −ωr )ψr d + vr q (4.50)

ψsd = Ls isd +Lmir d (4.51)

ψsq = Ls isq +Lmir q (4.52)

ψr d = Lr ir d +Lmisd (4.53)

ψr q = Lr ir d +Lmisq (4.54)

where the variables, the direct components and quadrature components are represented as

d and q for short. The isd and isq are stator current viewed from rotating reference of d-q

parts. Similarly, ir d and ir q are rotor currents. ψsd and ψsq are stator flux linkages. ψr d

and ψr q are rotor flux linkages. Ls , Lr and Lm are the stator, the rotor and the mutual

inductance. Rs and Rr are the resistance of the stator and rotor. ωL is the frequency of

the grid. The generator rotor electrical angular speed ωr equals ωr = prωr m , pr is the

number of the pole pairs of the generator. L2
eq = Lr Ls −L2

m .
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4.4.2.4 Reduced Order Model

As it is shown in Fig. 4.7, both the stator and rotor of DFIG provide electricity to the power

grid. However the former is directly connected to the grid, while the latter is partially

through a back-to-back converter. As a result, the flux of the stator is synchronous with

the grid flux, and the voltage is fixed by the grid as well. The dynamic equations of the

WECS are given below, with x =
[

ir d ir q ωr

]

, u =
[

ur d ur q

]

,

ẋ1 = −
LsRr

L2
eq

x1 + (ωL −x3)x2+
Ls

L2
eq

u1 (4.55)

ẋ2 = −(
LmVL

ωLL2
eq

+x1)(ωL −x3)−
LsRr

L2
eq

x2+
Ls

L2
eq

u2 (4.56)

ẋ3 =
ρπr 3Cp v2kg b p2

r

2Jλ
+

3LmVL p2
r

2JLsωL
x2 (4.57)

4.4.3 Control Objective and Controller Design

There are two main control objectives:

• Reactive power control: The real reactive power Q tracks a given signal Q∗, with

a predefined and acceptable error. The reference value Q∗ is given by a superior

command.

• Torque control: The real turbine torque T tracks an optimal signal T ∗, with a

predefined and acceptable error. The torque should be regulated by the controller

with a small error of T ∗. It would help to protect the actuator of controller from

mechanic worn-off.

The tracking errors of the torque and the reactive power are:

eQ = Q −Q∗ (t )

eT = T −T ∗ (t )
(4.58)

Our control objective is defined as
∣
∣eQ

∣
∣<∆d

|eT | <∆q

(4.59)

where, ∆d and ∆q are chosen to be a predefined region of the errors, which are tolerable

for the system.
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The reactive power Q injected by the system into the grid and the torque T developed by

the turbine and can be written as

Q =
3

2
VL(

Lm

Ls
x1 −

VL

LsωL
) (4.60)

T = −
3

2

LmVL

LsωL
pr x2 (4.61)

With the MPPT control technique, the optimal torque T ∗ could be rewritten as:

T ∗ (t ) =
kopt p2

r

kg b
3

x2
3 (4.62)

Define two sliding variables [σd ,σq ] equal to the tracking errors of the control variables

[eQ ,eT ], we have two sliding surfaces that

σd (x) =
3

2
VL(

Lm

Ls
x1 −

VL

LsωL
)−Q∗ (t ) (4.63)

σq (x) = −
3

2

LmVL

LsωL
pr x2 −

kopt

p2
r k3

g b

x2
3 (4.64)

The first order derivative of sliding variables σ̇d and σ̇q are:

σ̇d =−
3

2

LmRr VL

L2
eq

x1 +
3

2

LmVL

Ls
(ωL −x3) x2

︸ ︷︷ ︸

ϕd

−
∂

∂x
Qr e f

︸ ︷︷ ︸

ϕd

+
3

2

LmVL

L2
eq

︸ ︷︷ ︸

γd

u1

(4.65)

σ̇q =
3

2

(

L2
mV 2

L pr

Lsω
2
L

L2
eq

+
LmVL pr

LsωL
x1

)

(ωL −x3)

︸ ︷︷ ︸

ϕq

−
kopt

k3
g b

(

ρπr 3Cp v2kg b

Jλ
+

3LmVL

JLsωL
x2

)

x3

︸ ︷︷ ︸

ϕq

+
3

2

LmVLRr pr

L2
eqωL

x2

︸ ︷︷ ︸

ϕq

−
3

2

LmVL pr

L2
eqωL

︸ ︷︷ ︸

γq

u2

(4.66)

where, ϕd , ϕq , γd , and γq are systematic uncertainties. Then rewrite the σd and σq as

σd1 and σq1, we have two second order integral chains

σ̇d1 = σd2

σ̇d2 = ϕ̇d + γ̇d u1 +γd u̇1

(4.67)
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and

σ̇q1 = σq2

σ̇q2 = ϕ̇q + γ̇q u2 +γq u̇2

(4.68)

To apply ASM control law in (4.9), we define two new second order integral chain such as

żd1 = zd2

żd2 = Φd +ΓdUd

(4.69)

and

żq1 = zq2

żq2 = Φq +ΓqUq

(4.70)

where, Φd = ϕ̇d + γ̇d u1, Γd = γd , and the parallel definition, Φq = ϕ̇q + γ̇q u2, Γq = γq and

the new controller U1 = u̇1 U2 = u̇2. Finally, the control objective is represented as

|zd1| <∆d
∣
∣zq1

∣
∣<∆q

(4.71)

4.4.4 Simulation Results

To demonstrate the promised behavior of the controller, simulation has been carried out

using MATLAB. To show the robustness of the motion with unknown parameter variations,

unmodeled dynamics, and external disturbances in the sliding mode, perturbations are

introduced to the nominal systems with a variation amplitude of 10%.
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Figure 4.8. The controller Ud and Uq
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And two external variables wind speed and superior reactive power command are simu-

lated by test functions. The wind emulator generates wind speed v using an approximate

function v(t ) = vav (1− 0.18cos(2πt )− 0.18cos(2πt/60)), where vav = 10m/s is the average

wind speed. The superior reactive power command signal Q∗(t ) is given as a step signal

after a low pass filter.

To assess the ability of the controller which is able to force the error inside a predefined

region, great but acceptable errors ∆d = 10var and ∆q = 5N m have been chosen. As we

have two cascaded control loops of the direct axis and quadrature axis, the label d and q

are related to the parameters of Ud and Uq . Consequently, the parameters of the controller

εd = 10, εq = 5, k1 = k3 = 5, k2 = 0.1 are chosen.
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Adaptive gain of Ud

Time (s)
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15
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Figure 4.9. The adaptive gain of Ud and Uq

The controllers Ud and Uq are designed in (4.69) (4.70) with an adapted algorithm ac-

cording to (4.9).

Fig. 4.8 to Fig. 4.13 show the good characters of the proposed controller. The two

continuous controllers Ud and Uq are shown in Fig. 4.8. Ud and Uq have a transient

vibration at the beginning seconds, which is largely due to the start-up procedure of the

system. Ud and Uq are increased fast by the first part of the adaptation algorithm. After

the control large enough to force the system to converge, Ud and Uq begin to fall down

during a very short period of time. Fig. 4.9 shows the adaptive gains of the controllers Ud
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Figure 4.10. The controller ud and uq
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Figure 4.11. Sliding variable sd and sq

and Uq . The gains are estimated effectively by the adaptation law without prior knowledge

of the uncertainties bounds. It should be noted that the proposed controller can adapt

to a proper value very quickly, because the gain can decrease very fast according to the

unknown perturbance of the system without any over estimation. And ud and uq are

given in Fig. 4.10 as the output of ASMC module. Continuous control input do not have

harmful chattering on the actuators.

Two sliding variables sd and sq are shown in Fig. 4.11. In order to converge the sliding

variables to a predefined neighborhood of zero, Fig. 4.12 and Fig. 4.13 shows the integral
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Figure 4.12. Integral chains of direct axis zd1 and zd2
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Figure 4.13. Integral chains of quadrature axis zq1 and zq2

chains of the direct control loop zd1, zd2, and the integral chains of the quadrature control

loop zq1, zq2. Phsically, zd1 is the tracking error of the reactive power, and zq1 represents

the tracking error of the torque in blue solid line. Their first derivatives are depicted in red

dash lines. As the control objective is forcing zd1, zq1, and their first derivative zd2, zq2

to converge to the predefined neighborhood ∆d = 10var and ∆q = 5N m, it is clearly from

Fig. 4.12 and Fig. 4.13 that |zd1| and
∣
∣zq1

∣
∣ are restricted in the predefined neighborhood

|zd1| < 10 and
∣
∣zq1

∣
∣< 5. Moreover, these states never exceed the predefined neighborhood

after their first convergence to the neighborhood. The curves are smooth and continuous,

without any overshooting the restricted region in the zoom pictures of Fig. 4.12 and Fig.

4.13. This result is quite different with other ASM controllers.
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Figure 4.15. Rotor currents ir d and ir q and rotor speed ωr

Fig. 4.14 to Fig. 4.17 show the performance of the controlled WECS. Fig. 4.14 shows

the final input voltages ur d and ur q of the DFIG rotor. It is clearly that input voltage is

smooth and continuous. This chattering-free character is attractive because it will alleviate

the mechanical stress of the WECS actuators. The states of WECS, such as rotor currents

ir d , ir q and rotor speed ωr , are shown in Fig. 4.15. It can be observed that the curves

of the states are very smooth. Fig. 4.16 and Fig. 4.17 show the tracking performance

of the reactive power Q and torque Ta . The real value in blue solid line responds to the

variation of the reference value in red dash line very fast. The WECS, initially working in
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turn-off state, has been given at time 0 s a step Q∗ variation from 0 to 40 var . And in the

consequent simulation, Q tracks the reference signal composed of a set of transitions from

high to low Q∗ vice and versa. As expected, the error of Q is limited in a predefined region

shown in the zoom of Fig. 4.16 and never exceeds after its first convergence. Meanwhile,

T converges properly to T ∗ too.
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Figure 4.16. Tracking performance of Q
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4.5 Conclusion

A new adaptive HOSM controller for uncertain systems has been presented in this chapter.

The controller has been designed in the control scheme to deal with the unknown bounded

uncertainty of the arbitrary order integral chains system. The proposed controller promises

that once the sliding variable is forced into a predefined neighborhood, its trajectory would

never get out of the neighborhood. The proposed control law is continuous, and can reduce

the chattering phenomenon of sliding mode, for which is suitable for practical application.

The stability is proved by Lyapunov analysis. Academic simulation result is given to

show the controller performance. Additionally, the proposed controller is applied to a

WECS for practical applications. The simulation result shows that the error of the torque

and the error of the reactive power converge to a predefined value, which could help

reducing mechanic worn out of the practical system. It can be expected for a wide range

of application on arbitrary high-order complex nonlinear model in practice.





Chapter 5

Fault Tolerant Control with On-line

Allocation for Linear Time Varying

Systems

In the previous chapter, we have designed adaptive HOSM control for wind energy con-

version system. We now turn attention towards the fault tolerant control with online

allocation. A FTC with a fixed control allocation for LTV systems using only output

information is going to be proposed. The designed controller compensates theoretically

exactly just after the initial time the fault effects in the critical input channels while min-

umize the effects in the non-critical ones. A hierarchical observer using only the fault-free

outputs is given assuring theoretical exact reconstruction of the state vector right after

the initial time.

This chapter is organized as follows. Section 5.2 presents the problem formulation and the

necessary assumptions. Section 5.3 gives the design procedure for the OISM controller.

The hierarchical observer methodology is explained in Section 5.4. While Section 5.5

discusses the issues of a bad reconstruction of the control input and states. Moreover,

sufficient stability conditions are developed. In Section 5.6 the wind turbine case of study

is presented, together with a brief discussion of the issues that can arise in the application

of the methodology. Finally, Section 5.7 summaries the chapter.
93
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5.1 Introduction

Several control allocation schemes have been developed. [95] design a family of controllers

for control allocation identifying the faults by solving a minimization problem. [96] gives

a control allocation approach based on the solution of a system of linear equations subject

to constraints. [97] proposes a real time adaptive scheme for a high performance aircraft

based on a linear control allocation problem and a weighted pseudo-inverse for fault re-

construction, while [98] uses a sequential quadratic programming approach. In [99] a fault

tolerant sliding mode for systems with actuator faults is proposed. The fault identification

is made by using a test control input.

In [100] an on-line control allocation is proposed based on an optimization procedure. This

methodology allows that once the fault has been identified, the controller can be reconfig-

ured automatically assuring the control objective is fulfilled. Based on this idea [101] uses

a sliding mode controller for fault tolerant control and on-line allocation by seeing the ad-

ditive faults as perturbations of a linear time invariant system, allowing the identification

of the faults, and to redistribute the control in the available actuators without external

information. Following this same idea, [102] uses an integral sliding mode controller for

on-line control allocation. However, this techniques were developed for linear time invari-

ant systems and require the knowledge of the system’s states.

To avoid the necessity of the states, it is possible to use observers based on sliding modes.

In specific in [103] an output integral sliding mode (OISM) technique is proposed for linear

time invariant systems. This technique allows to make the system insensitive to matched

uncertainties/perturbations and to reconstruct its states theoretically exactly just after

the initial time. Recently, [104] broaden this result to linear time varying systems (LTV).

The objective of the chapter is to design a fault tolerant controller with on-line control

allocation for LTV systems using an OISM methodology and a control allocation scheme

similar to the one proposed in [100, 101]. This algorithm will allow on-line identification

of the faults by using any fault detection and identification (FDI) schemes available in the

literature [4, 19, 105, 101]. Moreover, sufficient conditions to assure the stability remains

even when the states or the faults are not well reconstructed will be presented.
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Wind energy is the fastest growing renewable power source around the world, but the in-

creasing number and size of turbines have raised the necessity of compensate the effects of

the faults to reduce the damage and to increase the efficiency[106, 107, 108]. In [108, 109]

different kind of faults and its relevance for wind turbine are presented. In this benchmark

papers the actuators are subject to abrupt or slow changes in its dynamics, besides torque

offsets and stuck actuators. In [110, 106, 111, 107, 109, 112, 113] different approaches to

deal with actuator faults have been presented, from fault tolerant architectures, compen-

sation of identified faults, reconfiguration of controllers and control allocation schemes.

But at the best of our knowledge, there is not any control scheme based in a sliding mode

technique applied for fault tolerant control and on-line allocation of the wind turbine.

The proposed FTC and control allocation scheme will be applied to a linear parameter

varying model of a wind turbine subject to partial and total faults in the actuators. Re-

dundancy will be assumed as well as controllability restrictions. The system will be studied

in two different scenarios, when the faults are completely reconstructed by a suitable FDI

scheme and when the reconstruction is deficient.

5.2 Problem Formulation

Assume a LTV system subject to actuator faults,

ẋ(t ) = A(t )x(t )+Bu(t )(I −K (t ))u(t ),

y(t ) =C (t )x(t ),
(5.1)

where x(t ) ∈R
n , u(t ) ∈R

m , y(t ) ∈R
p represent the states, inputs and outputs respectively.

A(t ) ∈ R
n×n , Bu(t ) ∈ R

n×m , C (t ) ∈ R
p×n are known matrices. K (t ) = diag(k1,k2, . . . ,km(t )),

denotes the possible actuators faults, where 0 ≤ ki(t ) ≤ 1, if ki(t ) = 0 there is no fault in the

i-actuator, and ki(t ) = 1 denotes a complete one.

Assumption 1. The matrices A(t ),Bu(t ),C (t ) are n̄−2,n̄−1,n̄−1 times continuously dif-

ferentiable. This matrices and its derivatives are bounded and known.

Assumption 2. Assume the redundancy in actuators is such that rank(Bu(t )) = l < m.

Using rank factorization it is always possible to represent the control matrix as Bu(t ) =
Bv (t )B(t ), where Bv (t ) ∈ R

n×l and B(t ) ∈ R
l×m (see [114, Section 5.4,pp 144]). Let v̄(t ) =
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B(t )u(t ) then u(t ) = B+(t )v̄(t ), where

B+(t ) =W (t )B T (t )
(

B(t )W (t )B T (t )
)−1

,

with W = (I −K ) [100, 101]. Then the system takes the form

ẋ(t ) = A(t )x(t )+Bv (t )B(t )W (t )B+(t )v̄(t ). (5.2)

Considering ṽ(t ) =
(

B(t )W (t )B T (t )
)−1

v̄(t ) the system can be rewritten as

ẋ(t ) = A(t )x(t )+Bv (t )B(t )W (t )2B T (t )ṽ(t ). (5.3)

Finally, defining a ”virtual control” v(t ) such that ṽ(t ) = (B(t )B T (t ))−1v(t ),

φ(t ) =
(

B(t )W (t )2B T (t )(B(t )B T (t ))−1 − I
)

v(t )

as the unknown input, and adding and subtracting Bv (t )v(t ) the system (5.1) can be

rewritten as

ẋ(t ) = A(t )x(t )+Bv (t )v(t )−Bv (t )φ(t ),

y(t ) =C (t )x(t ).
(5.4)

It is logic to assume the control effort v(t ) is bounded. Hence, since ki ∈ [0,1], and the

matrices B(t ) are assumed bounded, it is possible to assure ‖φ(t )‖ ≤φmax .

Our aim is to assure on-line control allocation and fault tolerant control

for LTV systems using an output integral sliding mode controller allow-

ing on-line detection and isolation of the considered faults

In order to achieve the above objectives the matrices A(t ),Bv (t ),C (t ) must fulfil the follow-

ing usual conditions.

Assumption 3. The pair (A(t ),Bv (t )) is uniformly completely controllable with controlla-

bility index nc .

Assumption 4. The pair (A(t ),C (t )) is uniformly completely observable with observability

index no.

Assumption 5. The pair (A(t ),Bv (t ),C (t )) is strongly observable.

Assumption 6. n̄ = max{nc ,no}.
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Since we want to construct and output based fault tolerant control consider:

Assumption 7. The value of x(t ) and K (t ) for all t ≥ t0 are unknown.

Assumption 8. The initial condition is unknown but bounded.

‖x(0)‖ ≤µ.

Assumption 9. Assume rank(C (t )Bv (t )) = l and p > l .

5.2.1 Nominal System

Assuming the system do not have actuator faults, i.e. W (t ) = I , a nominal systems is

proposed

ẋN (t ) = A(t )xN (t )+Bv (t )vN (t ),

yN (t ) =C (t )xN (t ).
(5.5)

Without loss of generality assume vN (t ) = −K (t )xN (t ), where K (t ) is a bounded matrix

designed such that the closed loop system

ẋN (t ) = (A(t )−Bv (t )K (t ))xN (t )

is exponentially stable. Then, for all t ≥ t0 there exist a matrix P (t ) ∈ R
n×n and positive

constants c1,c2,c3 such that

c1I ≤ P (t ) ≤ c2I

satisfies

− Ṗ (t ) = P (t )(A(t )−Bv (t )K (t ))+ (A(t )−Bv (t )K (t ))T P (t )+Q(t ), (5.6)

with

Q(t ) ≥ c3I .

5.3 Output Integral Sliding Mode Controller

In order to assure the effects of the additive faults do not affect the behaviour of the system

an OISM ”virtual controller” is proposed. First, assume v(t ) = vN (t )+ v I (t ), where v I (t ) is

a sliding mode controller assuring the compensation of the additive faults. To design v I

define a sliding surface

s(y, t ) =G(t )
(

y(t )− y(t0)
)

−
t
ˆ

t0

(G (τ)x̂(τ)+D(τ)vN (τ))dτ, (5.7)
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where the vector x̂(t ) is the observed state given by a hierarchical observer [104],

G (t ) = Ġ(t )C (t )+G(t )Ċ (t )+G(t )C (t )A(t ),

D(t ) =G(t )C (t )B(t ) and G(t ) is a design projection matrix, such that

det(D(t )) 6= 0 and
dG(t )C (t )

d t
6= 0.

Sufficient conditions assuring the existence of a first order sliding mode are given in the

next theorem.

Theorem 4. If det(D(t )) 6= 0 and v I (t ) is designed as a first order sliding mode controller

of the form

v I (t ) =−β
D(t )T s(y, t )

‖D(t )T s(y, t )‖
, (5.8)

where

β>φmax +‖D(t )−1
G (t )‖‖x(t )− x̂(t )‖.

The trajectory of (5.4) converges right after the initial time to the surface s(y, t ) and the

control v I (t ) is capable to compensate theoretically exactly the additive fault φ(t ) for all

t ∈ (t0, t f ], i = 1,2, . . . ,r .

Proof. The proof of this statement comes directly from [104, Theorem 5]

Without loss of generality, assume G(t ) is designed such that D(t ) = I . During the sliding

phase the equivalent control [115]

v I ,eq (t ) =−G (t ) (x(t )− x̂(t ))−φ(t )

is achieved and (5.4) takes the form

ẋ(t ) = Ã(t )x(t )+Bv (t )vN (t )+Bv (t )G (t )x̂(t ),

y(t ) =C (t )x(t ),
(5.9)

where Ã(t ) = A(t )−Bv (t )G (t ).

Remark 2. Under the assumptions of this work the sliding mode dynamics are observ-

able.∗

∗For a bigger discussion about this result see [104, Theorem 4].



5.4. STATES RECONSTRUCTION 99

The dimension of the controller v I (t ) and the sliding variable s(y, t ) will depend on Bu ’s

rank. Note that since we assure the system is in the sliding mode for all t ≥ t0, the control

v I (t ) contains the equivalent control since the first moment. With this information and

with a FDI scheme the value of K (t ) can be obtained and the real control u(t ) reconstructed

(see [19, Chapter 6],[4, 105] and the reference there in).

5.4 States Reconstruction

To fulfil the objective of the chapter it is necessary to reconstruct the states of the system.

For the sliding mode dynamics (5.9), design a hierarchical observer on the time interval

[t0, t f ] †.

˙̃x(t ) = Ã(t )x̃(t )+Bv (t )vN (t )+Bv (t )G (t )x̂(t )−KO(t )
(

y(t )−C (t )x̃(t )
)

, (5.10a)

ẋak
= Ã(t )x̃(t )+Bv (t )vN (t )+Bv (t )G (t )x̂(t )

−Lk (Nk−1(t )Lk )−1
(

vO,k (t )+ Ṅk−1(t )
(

x̃(t )−xak

))

,
(5.10b)

x̂(t ) = x̃(t )+On̄
+vOav

(t ); (5.10c)

where

vOav
(t ) =














C (t )xa1(t )−C (t )x̃(t )

vO,1av
(t )

vO,2av
(t )

...

vO,(n̄−1)av
(t )














∈R
p (5.11)

and

On̄ =











N0(t )

N1(t )

...

Nn̄−1(t )











, (5.12)

with N0(t ) =C (t ) and Nk (t ) = Nk−1(t )A(t )+
d Nk−1(t )

d t
for k = 1, . . . , n̄.

This observer is composed by three parts. The first part (5.10a) is a Kalman-Bucy type

stabilizer, the matrix KO(t ) should be designed such that it assure exponential stability

†Here we just present a brief explanation of the observer, for a deep discussion see [104].
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of the error dynamics. (5.10b) conforms a sliding mode observer that will reconstruct

theoretically exactly just after the initial time the output and its derivatives. The next

theorem gives the guideline for its design.

Theorem 5. [104] If the auxiliary state vectors xak , for all k = 1, . . . , n̄ −1 are designed

as (5.10b) where Lk ∈ R
n×p is a design matrix such that det (Ni (t )Lk ) 6= 0, and the initial

conditions should satisfy

C (t0)xa1(t0) = y(t0),

and

Nk (t0)x̃(t0)+ vO,k−1(t0) = Nk (t0)xak (t0).

Moreover, the variables sk are designed as

s1(y(t ), xa1, (t )) = y(t )−C (t )xa1(t ) (5.13)

and

sk (y(t ), xak (t )) = Nk−1(t )x̃(t )+ vk−1(t )−Nk−1(t )xak
, (5.14)

for 1 < k < n̄ −1. The control input vO,k (t ) is designed as a first order sliding mode

vO,k (t ) = Mk (t )
sk (y(t ), xak (t ))

‖sk (y(t ), xak (t ))‖
,

where the scalar gain Mk (t ) should satisfy the condition

‖Nk (t )‖‖x(t )− x̃(t )‖ < Mk (t ).

Then, for all t ∈ [t0, t f ]

vO,keq
(t ) = Nk (t ) (x(t )− x̃(t )) and k = 1. . . n̄ −1,

and it is possible to reconstruct completely all the vector functions Nk (t )x(t ), k = 1, . . . , n̄−1.

Finally, (5.10c) reconstructs theoretically exactly just after the initial time the states of

the system if vO,kav
(t ) = vO,keq

(t ). The values vO,kav
(t ) are approximations of the equivalent

control vkeq
(t ), obtained from vO,k (t ) with a first order low-pass filter:

τv̇O,kav
(t )+ vO,kav

(t ) = vO,k (t ).

Due to the approximation process the state cannot be exactly reconstructed, but the lower

the filter gain τ is the lower the error will be.
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5.5 Discussion: u(t ) reconstruction

The state is reconstructed using a hierarchical observer that is capable to reconstruct the-

oretically exactly the state just after the initial moment [104] and the control input v I (t )

is capable to reconstruct in the same manner the additive faults φ(t ). However, in order

to reconstruct the control it is necessary to first identify the unknown matrix K (t ).

The additive fault v I ,eq (t ) contains K (t ) and can be reconstructed from v I (t ) by using a

first order filter

τv̇ I ,ap (t )+ v I ,ap (t ) = v I (t ), (5.15)

with a time constant τ sufficiently small [115]. Under the assumption that the state is full

reconstructed, i.e. ‖x(t )− x̂(t )‖ = 0.

v I ,ap (t ) ≈−φ(t ).

To reconstruct K (t ) a FDI scheme can be used. But this schemes normally cannot re-

construct exactly the faults. This combine with the filtration errors introduces unwanted

dynamics to the system. Moreover, the reconstruction of u(t ) depends on the approximate

values ki and x̂(t ). Taking all this into account, the next theorem will gives sufficient

conditions to assure stability of the system.

Theorem 6. Let W̄ (t ) = W (t )+∆W (t ) and x̂(t ) = x(t )+∆x(t ) the reconstructed values of

the additive faults W (t ) and the states x(t ). If

‖∆W (t )‖ ≤αW <
c1c3

2c2
2κ1κ

2
2κ3κ4

and ‖∆x(t )‖ ≤ αx . Then, (5.4) is stable and its states are ultimately bounded with an

ultimate bound

xub =
c2γ

Υc1θ
.

Proof. The proof of this fact is made using the comparison method [116, Chapter 9].

First let us analysed the nominal case, i.e. ∆W (t ) = 0, ∆x(t ) = 0. Under this conditions,

v I ,eq (t ) =−φ(t ), u(t ) =W (t )B T (t )(B(t )B T (t ))−1v(t ) and

ẋ(t ) = A(t )x(t )+Bv (t )vN (t )

= (A(t )−Bv (t )K (t )) x(t ).
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Let

V (x(t )) = x(t )T P (t )x(t )

be the nominal candidate Lyapunov function, with P (t ) satisfying the time varying Lya-

punov equation (5.6). This Lyapunov equation is bounded by

c1‖x(t )‖2 ≤V (x(t )) ≤ c2‖x(t )‖2

and its time derivative along the trajectories of (5.4) is negative definite:

V̇ (x(t )) ≤−c3‖x(t )‖2.

For the general case, v I ,eq (t ) =−φ(t )−G (t ) (x(t )− x̂(t )) =−φ(t )−G (t )∆x(t ), u(t ) = W̄ (t )B T (t )(B(t )B T (t ))−1v(t )

and (5.4) conforms a perturbed linear system

ẋ(t ) = A(t )x(t )+Bv (t )vN (t )+Bv (t )Ξ(t )v(t )

= (A(t )−Bv (t )K (t )) x(t )+ g (x(t ), t );

where Ξ(t ) = B(t )W (t )∆W (t )B T (t )(B(t )B T (t ))−1, and

g (x(t ), t ) = Bv (t ) (−Ξ(t )K (t )x − (Ξ(t )+ I )K (t )∆x +Ξ(t )v I (t )) .

This term constitutes a bounded perturbation with a vanishing at the origin part and a

non-vanishing one. Recall that ‖W (t )‖ ≤ 1 and ‖v I (t )‖ ≤
p

lβ. By assumption 2 Bv (t ),B(t )

are bounded and by design K (t ) is also bounded. Let the positive constants κ1, κ2

and κ3 be its respective bounds. Note that since rank(B(t )) = l it is possible to assure

‖(B(t )B T (t ))−1‖ ≤ κ4. Then,

‖Ξ(t )‖ ≤αW κ2
2κ4

and

‖g (x(t ), t )‖ ≤ δ‖x(t )‖+γ;

where δ=αW κ1κ
2
2κ3κ4 and γ=

p
lβαW κ1κ

2
2κ4 +αW αxκ1κ

2
2κ3κ4 +αxκ1κ3. It is easy to see

that if

αW <
c1c3

2c2
2κ1κ

2
2κ3κ4

,

then

δ<
c1c3

2c2
2

.
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The time derivative of the nominal Lyapunov function along the trajectories of the per-

turbed system is bounded by

V̇ (x(t )) ≤−c3‖x(t )‖2 +2c2δ‖x(t )‖2 +2c2γ‖x‖

≤−
[

c3

c2
−

2c2

c1
δ

]

V (x(t ))+2c2γ

√

V (x(t ))

c1
.

(5.16)

Hence, by [116, Lemma 9.4], it is possible to assure

‖x(t )‖ ≤
√

c2

c1
µe−Υ(t−t0) +

c2γ

c1Υ

(

1−e−ε(t−t0)
)

,

with Υ=
1

2

[
c3

c2
−δ

2c2

c1

]

. Observe that if the bounds αW and αx became sufficiently small,

we can assure exponential stability of (5.4). Now, since γ is a constant, the state x(t ) is

ultimately bounded with the ultimate bound

xub =
c2γ

Υc1θ
,

with θ ∈ (0,1) an arbitrary constant (see [116, Lemma 9.6]).

5.5.1 Academic Example

Let’s apply the proposed methodology to a LTVmodel (5.1) with x(t ) =
[

x1 x2 x3 x4

]T
,

A(t ) = A0 + A1ρ1(t )+ A2ρ2(t ), Bu(t ) = B0(1+ρ1(t )+ρ2(t ))

and y(t ) =
[

x1 x2 x4

]T
, where

A0 =










0 1 0 0

0 0 1 0

0 0 0 1

1 2 3 4










, A1 =










0 1 0 1

1 0 0 1

0 0 1 0

1 1 1 1










,

A1 =










0 −1 0 −1

−1 0 0 0

0 0 0 −1

−7 0 −2 0










, B0 =










0 0 0

0 0 0

0 0 0

1 1 1










,

ρ1(t ) = 1 + 0.3sin(πt ) and ρ2(t ) = −1 − 0.6cos(πt ). The rank decomposition of Bu(t ) is

composed by

Bv (t ) =










0

0

0

ρ1(t )+ρ2(t )+1










, and B =
[

1 1 1
]

.



104

CHAPTER 5. FAULT TOLERANT CONTROL WITH ON-LINE ALLOCATION FOR LINEAR TIME

VARYING SYSTEMS

Nominal Behaviour
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Figure 5.1. Nominal Behaviour of the Academic System

The proposed nominal controller is a simple feedback control law with a gain scheduling

scheme. The nominal behaviour of the system is shown in Fig. 5.1.

It is assumed that the system is affected by actuator faults, that conform a continuous

functions guaranteeing the system remains controllable (see the first graphic of Fig 5.2).

Note that the proposed faults assure the non-existence of a complete fault in every ac-

tuator at the same time. The behaviour of the system in the absence of a fault tolerant

control scheme is presented in Fig. 5.3.

Now applying the OISM fault tolerant control to the academic system‡. The additive

faults are rejected completely for the system and the stability remains (see Fig. 5.4). The

control allocation is done assuming the value K can be completely reconstructed since the

initial time, i.e. ∆W = 0 and with a controller gain β = 600. However, it is very difficult

to reconstruct completely the K vector and normally it is only possible to identified the

average of the active faults. The K vector was identified using the reconstructed value of

‡The present simulation was done with a step size ∆t = 1e − 6 since as it was shown in [104] the
observation error ‖x(t )− x̂(t )‖ will be lower with a small step size.
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Fault Reconstruction: Pseudoinverse methodology
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Figure 5.2. Aditive Faults Reconstruction using a pseudoinverse methodology for the identified
perturbation v I ,ap (t )

Faulty System Behaviour: Only Nominal Controller
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Figure 5.3. Behaviour of the Academic System subject to additive faults in the absence of a fault
tolerant control scheme: Nominal Behavior (red line), Faulty System (blue line)
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the equivalent control v I ,ap (t ) and a pseudo-inverse approach (see Fig. 5.2). As it can be

seen the reconstructed value is the average of the original signal K . Fig. 5.5 shows the

states of the system when the control allocation is done with the obtained K̄ value and

with β= 2100. Observe that the objective of the fault tolerant control is not significantly

affected and the states remains ultimately bounded, but in order to assure the sliding

motion the controller gain should be increased.

Faulty System Behaviour: OISM Controller
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Figure 5.4. Behaviour of the Academic System subject to additive faults. OISM fault tolerant
control scheme assuming the K value is completely reconstructed since the initial time: Nominal
Behavior (red line), Faulty System (blue line)
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Faulty System Behaviour: OISM Controller
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Figure 5.5. Behaviour of the Academic System subject to additive faults. OISM fault tolerant
control scheme, K reconstructed with a pseudoinverse methodology: Nominal Behavior (red line),
Faulty System (blue line)

5.6 FTC with on-line allocation of Wind Energy Conversion

System

Wind power generating system based on a doubly fed induction generator (DFIG) has

been considered as one of the most widely used industrial configurations that shown in

Fig.(5.6). We here consider the WECS as a LTV system. The model of wind turbine

generally has two parts. The first part is the aerodynamic model with the turbine blade,

which extracts the kinetic energy from the wind. And the second part is the electrical

model with DFIG, which converts the mechanical energy into electrical power.
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Figure 5.6. The configuration of the wind generation system

5.6.1 LPV Model of the Wind turbine system

The wind energy captured by the turbine blades is

Pa = 0.5ρπR2V 3Cp (λ),

λ=
ωt R

V
,

(5.17)

where R is the length of the turbine blades, V is the speed of wind, ωt is the turbine

rotation speed, λ is the tip-speed ratio and Cp is the power coefficient that describes how

much kinetic energy the turbine extracts from the wind. Cp is a function of λ, which has

a unique maximum point.

Consider a drive train system which is stiff and could change the turbine torque from a

large scale into a suitable working region of the generator

ωm = ngωt ,

ωr = pωm ,
(5.18)

where ng is the ratio of gearbox, p is the pole pair of the generator and ωm and ωr denote

the mechanical speed and the electrical speed of the generator.

The wind turbine system adopts a DFIG generator. The advantage of DFIG is to reduce

the converter costs, for the stator of DFIG connecting to the power grid directly. The
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model of DFIG system is defined in the stator flux reference frame. The direct and

quadrature component of the synchronous frame are represented as d and q in short.

λ̇sd =−Rs isd +ωsλsq + vsd ,

λ̇sq =−Rs isq +ωsλsd + vsq ,

λ̇r d =−Rr ir d + (ωr −ωs)λr q + vr d ,

λ̇r q =−Rr ir q − (ωr −ωs)λr d + vr q ,

λsd = Ls isd +Msr ir d ,

λsq = Ls isq +Msr ir q ,

λr d = Lr ir d +Msr isd ,

λr q = Lr ir q +Msr isq ;

(5.19)

where Ls ,Lr ,Msr are the stator inductance, rotor inductance and mutual inductance, re-

spectively. Rs and Rr are the stator resistance and rotor resistance. The motion dynamic

equation of DFIG is

ω̇m = p
Msr

JLs

(

λsq ir d −λsd ir q

)

−
TL

J
−

F

J
ωm . (5.20)

The rest parameters are defined as follows

γ1 =
Rr L2

s +Rs M 2
sr

σLsLr
, γ2 =

Msr

σLsLr
, γ3 =

1

σLr
, σ= 1−

M 2
sr

LsLr
, τs =

Ls

Rr
.

Assume a linear parameter varying model (5.19) with

x(t ) =
[

x1 x2 x3 x4

]T
=

[

λsd λsq ir d ir q

]T
,

and consider the rotation speed ωr (t ) as the time varying parameter. For each controller,

we have three same voltage actuators working together to support the inputs vd and vq

to the system. We assume the system has an external known input u0 =
[

vsd , vsq

]T
and

redundancy in actuators, so the control input has the form

u =
[

ud1 uq1 ud2 uq2 ud3 uq3

]T
.

Finally, the system is represented as a LPV model

ẋ = Ax +B0u0 +B1(1−K )u
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Figure 5.7. The power coefficient Cp versus generator speed ωr under different wind speed V

and y(t ) =
[

x2 x3 x4

]T
=C x as the outputs, where

A =














−
1

τs
ωs

Msr

τs
0

−ωs −
1

τs
0

Msr

τs
γ2

τs
−γ2ωs −γ1 ωs −ωr

γ2ωr
γ2

τs
−(ωs −ωr ) −γ1














, B0 =










1 0

0 1

−γ2 0

0 −γ2










,

B1 =










0 0 0 0 0 0

0 0 0 0 0 0

γ3 0 γ3 0 γ3 0

0 γ3 0 γ3 0 γ3










, C =







0 1 0 0

0 0 1 0

0 0 0 1







.

5.6.2 Control Objective

It is impossible that the turbine obtain all the kinetic energy from the wind in reality.

Cp is an uni-modal function with the variation of the generator speed ωr and wind speed

V , as Fig.(5.7) shown. As a result, the nominal controller of the wind system is designed

to maximize the power generation. According to[22], the limitation of Cp is 0.4. Then

Cp (λopt ) = 0.4, when λ equals to its optimal value λopt = 7.2. From (5.17) and (5.18), the

optimal generator speed ωr opt is given as
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ωr opt =
pngλopt V

R
(5.21)

The maximum value of Cp is available when the generator speed is tracking the reference

ωr opt , which is so-called maximum power point tracking (MPPT) technique [13]. The final

control objective is to force the generator speed ωr =ωr opt , even in the presence of faults

in the actuator.

5.6.3 Simulation Results

The simulations have been carried out using MATLAB/SIMULINK. In our work, the

emulator of wind turbine uses this equation to approximate the wind speed V with

V = Vav (1− 0.18cos(2πt )− 0.18cos(2πt/60)), where Vav is the average wind speed. The

simulation results are shown in Fig.5.8 to Fig.5.16 from 0sec to 2sec. We assume the

system has not any fault during the first 0.05sec. To avoid the transient stage that in-

crease the size of the controller gain, the observer starts working since initial time while

the sliding mode controller does it until the 0.05sec. The results presented in the images

are restricted to the period of time 0.05sec to 2sec.

The proposed nominal controller of system is composed by two cascade PI control laws

based on field-oriented-control (FOC) [117]. On the d-axis, a flux control loop commands

the inner direct current loop. While on the q-axis, a speed loop rules the inner quadrature

current loop. The behavior of the system with the nominal controller is shown in Fig.5.8.

Note that when the system works without perturbation, the generator speed tracks the

optimal value.

The faults in the actuators are considered to be partial fault between [0,1] (see Fig.5.9).

Fig.5.10 shows the tracking performance of the nominal PI controller in the presence of

faults. Clearly, the speed (blue solid line) could not follow the varying reference value (red

dash line). And the current references have changed due to the faults.

After that, we adopt an OISM controller to compensate the faults in the actuators. Fig.5.11

shows the tracking performance of the proposed methodology under the assumption that

the value of the faults is available from the initial time. Note that the speed, d-axis cur-
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Figure 5.8. The tracking performance of nominal PI controller without perturbation. The red
dash lines are the reference values, and the blue solid lines are the real signals of speed and d/q
currents.
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Figure 5.9. The faults in the actuators
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Figure 5.10. The tracking performance of nominal PI controller with perturbation. The red dash
lines are the reference values, and the blue solid lines are the real signals of speed and d/q currents.
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Figure 5.11. The tracking performance of proposed controller with perturbation. The red dash
lines are the reference values, and the blue solid lines are the real signals of speed and d/q currents.
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rent and q-axis current performances are similar to the nominal ones. The additive faults

reconstruction is presented in Fig5.13.

Fig.5.12 shows the observed states and the real states of the system. The observed states

converge to the real states theoretically, exactly just after initial time.
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Figure 5.12. The observer performance of proposed structure. The red dash line are the real
states, the blue solid line are the observed states

Then, the faults in actuators were reconstructed using a Pseudo-inverse methodology (see

Fig.5.14). Under this assumption the proposed OISM controller can work in a quite good

manner. The reconstruction of φ is shown in Fig5.15. But note that, the size of the faults

is increased, making necessary to increase the gain of OISM controller. The speed loop

and current loops are given in Fig.5.16 and are almost equal as the nominal ones.
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5.7 Conclusion

A fault tolerant control with on-line control allocation using only output information was

proposed. The designed control makes the system insensitive to partial and complete

faults in the actuators theoretically exactly just after the initial time. The controller gain

needs to be increased when all the available actuators have significant faults. The effects of

possible errors in the reconstructed states and faults was studied, and sufficient conditions

to assure stability of the system was found.

The proposed methodology was applied to a wind turbine assuring the maximum power

can be achieved even when the actuators are faulty. Two sceneries were studied: when

the real value of the faults is available and when the faults are reconstructed using a very

simple empirical methodology that is only capable to reconstruct the average of the faults.

This shows that it is possible to assure the stability of the system and the control objective

when the faults are not well reconstructed but it is necessary to increase the controller

gain.
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Conclusion and Perspectives

Overview

The efficiency of wind energy conversion system (WECS) is highly dependent on the oper-

ating conditions, environmental disturbances and varying parameters, such as wind speed,

pitch angle, tip-speed ratio, sensitive resistor and inductance. The uncertainties of WECS

is hard to obtain exactly while it affects the stability. In the aim to assure optimal operat-

ing conditions, maximum power point tracking (MPPT), on-line control allocation, robust

control and fault tolerant control are going to play an important role. The thesis work

concerns the establishment of an adaptive controller solution of wind energy conversion

system with a doubly fed induction generator. After a literature review, the thesis mainly

includes these components:

Firstly, we discuss the adaptive sliding mode (ASM) control design for uncertain nonlinear

systems. Traditional first order sliding mode design has been introduced for uncertain sys-

tems. Then the first order design strategies were extended to a class of high order systems.

The nonlinear model of the wind energy conversion system has been studied. Variable

speed WECS with a double-fed induction generator (DFIG) has been controlled. The

works offer a current controller for the wind power system. The control objective is to

maximize the total active power supplied by the system and to regulate the reactive power

injected by the voltage source converters synchronized to the power grid.

A novel Lyapunov-based adaptive first order sliding mode and a novel Lyapunov-based

adaptive high order sliding mode (HOSM) controller for uncertain system have been p-
119
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resented. A continuous control input has been designed. Stability of arbitrary order

integrator chains has been proved by Lyapunov function. The main contribution of the

proposed controller is to force the sliding variables and their first time derivatives to a

predefined neighborhood of zero. Additionally, the sliding variables and their first time

derivatives will remain in the predefined neighborhood for all consequential time after the

first convergence. Our Approach has been compared to the result of Plestan et al. [1].

Simulations have been made to demonstrate the advantage of the proposed algorithm.

This algorithm computes efficiently and performs quite well on chattering elimination.

Then it is devoted to the application of an output integral sliding mode (OISM) method-

ology for fault tolerant control (FTC) and on-line control allocation of linear time varying

(LTV) systems. The considered faults are restricted to actuators faults modelled as addi-

tive ones. A study of the effects of possible errors in the reconstruction of the faults and

states is presented. Finally, an application to a wind turbine model is presented.

Future Research

This thesis may be extended in the future in the following aspects:

• This study validates the observer performance on a test bench with emulated wind

energy conversion system. In the future, a real experimental platform can be set up

by integrating real components of the wind energy conversion system, such as wind

turbine, power converters and induction motor. By performing real experiments, we

can further validate the performance of the proposed observer and control strategies

in practical applications.

• The objective is to further research especially in the stability, even in actuators

faults, to ensure better robust control and reduce chattering phenomenon. In fur-

ther research, other faults affect dynamic performance and cause low voltage ride

through (LVRT), which lead to significant voltage drop will be studied in future.

The extension of proposed observer design for wind energy conversion system to the

application fault-tolerant control designs will be considered for future.

• The wind energy conversion system is highly nonlinear and requires efficient control.

In the future work, the proposed observer will be integrated into feedback control
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design, such as control of tip speed ratio. The control design will be integrated with

observers in order to reduce additional physical sensors.

• Power management control strategies for the wind energy conversion system, es-

pecially for wind farm, will be considered in future. Based on the technologies of

intelligent algorithm, the autonomous energy management system could be studied

on basis of the previous work. For example, with the advanced advisor, one or more

sensor-less wind turbines are considered in the wind farm for this coordination. As

for the energy management system, converters can approach the interface with wind

turbine and synchronize with the power grid in an adaptive way as the sequence

plan generated by MPPT algorithm.





Appendices

A1: NOMENCLATURE

ρs Angle of the grid-voltage space vector.

ug Grid-side inverter phase voltages.

ig Grid-side inverter phase currents.

L and R Interconnection series inductance and its parasitic resistance.

P and Q Active and reactive powers, exchanged between the inverter and

the grid.

ωr Pulsation of the electrical grid.

us Motor-side inverter phase voltages.

is Motor-side inverter phase currents.

τe Electromagnetic torque.

ψr Rotor-flux linkage space vector.

ρr Angle of the rotor-flux linkage space vector.

pr Number of pole pairs.

ωm Machine speed (in mechanical angles).

ωt Wind-turbine speed.

pt Turbine mechanical power.

cp Performance power coefficient of the turbine.

ct Performance torque coefficient of the turbine.

ρ Air density

v Wind tangential speed.

λ Tip speed ratio of the rotor blade tip speed.

β Blade pitch angle.

123
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A2: INDUCTION MOTOR PARAMETERS

Symbol Parameter Value

Pr ated Rated power [kW] 2.2

Ur ated Rated voltage [V] 220

Pole-paris 2

Rs Stator resistance [Ω] 2.9

Ls Stator inductance [mH] 223

Rr Rotor resistance [Ω] 1.52

Lr Stator inductance [mH] 229

Lm 3-phase magnetizing inductance [mH] 217

J Moment of inertia [kg·m2] 0.0048

A3: WIND TURBINE PARAMETERS

Parameter Value

R[m] 2.5

λopt 7

Cpmax 0.45

n 4.86

Generator rated power [kW] 5.5

Generator rated speed [rpm] 1500
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Résumé :

Les principaux défis pour le déploiement de systèmes de conversion de l’énergie éolienne est de maximiser la puissance

électrique produite, malgré les variations des conditions météorologiques, tout en minimisant les coûts de fabrication

et de maintenance du système. L’efficacité de la turbine éolienne est fortement dépendante des perturbations de

l’environnement et des paramètres variables du système, tels que la vitesse du vent et l’angle de tangage. Les incertitudes

sur le système sont difficiles à modéliser avec précision alors qu’ils affectent sa stabilité. Afin d’assurer un état de

fonctionnement optimal, malgré les perturbations, le commande adaptative peut jouer un rôle déterminant. D’autre part,

la synthèse de commandes tolérantes aux défauts, capables de maintenir les éoliennes connectées au réseau après la

survenance de certains défauts est indispensable pour le bon fonctionnement du réseau. Le travail de cette thèse porte

sur la mise en place de lois de commande adaptatives et tolérantes aux défauts appliqués aux systèmes de conversion

de l’énergie éolienne. Après un état de l’art, les contributions de la thèse sont:

Dans la première partie de la thèse, un modèle incertain non linéaire du système de conversion d’énergie éolienne avec

un générateur à induction à double alimentation est proposé. Une nouvelles approches de commande adaptative par

mode glissant est synthétisée et ensuite appliquée pour optimiser l’énergie issue de l’éolienne.

Dans la deuxième partie, une nouvelle commande par modes glissants tolérante aux défauts et basée sur les modes

glissants intégrales est présentée. Puis, cette méthode est appliquée afin de forcer la vitesse de la turbine éolienne à sa

valeur optimale en prenant en compte des défauts qui surviennent sur l’actionneur.

Mots clés: Commande adaptative par mode glissant, commande tolérantes au défauts, système de conversion de l’énergie

éolienne, robustesse, optimisation de puissance.

Abstract:

The main challenges for the deployment of wind energy conversion systems (WECS) are to maximize the amount of good

quality electrical power extracted from wind energy over a significantly wide range of weather conditions and minimize

both manufacturing and maintenance costs. Wind turbine’s efficiency is highly dependent on environmental disturbances

and varying parameters for operating conditions, such as wind speed, pitch angle, tip-speed ratio, sensitive resistor and

inductance. Uncertainties on the system are hard to model exactly while it affects the stability of the system. In order to

ensure an optimal operating condition, with unknown perturbations, adaptive control can play an important role. On the

other hand, a Fault Tolerant Control (FTC) with control allocation that is able to maintain the WECS connected after the

occurrence of certain faults can avoid major economic losses. The thesis work concerns the establishment of an adaptive

control and fault diagnosis and tolerant control of WECS. After a literature review, the contributions of the thesis are:

In the first part of the thesis, a nonlinear uncertain model of the wind energy conversion system with a doubly fed induction

generator (DFIG) is proposed. A novel Lyapunov-based adaptive Sliding Mode (HOSM) controller is designed to optimize

the generated power.

In the second part, a new output integral sliding mode methodology for fault tolerant control with control allocation of linear

time varying systems is presented. Then, this methodology has been applied in order to force the wind turbine speed to its

optimal value the presence of faults in the actuator.

Keywords: Adaptive Sliding Mode Control, Wind Energy Conversion System, Double-Fed Induction Generator, Maximum

Power Point Tracking, Lyapunov Analysis, On-line Control Allocation, Fault Tolerant Control, Fault Diagnosis
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