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General Introduction

Energy and sustainability are two major problems the world faces today. Renewable en-
ergy has been regarded as a promising means to solve these problems while smart grid
is developed to improve energy efficiency, reliable and robust. The growth of distributed
energy resources along with sustainable development, environmental issues are imposing
new control challenges. Wind energy is an environment friendly, renewable and economical
energy resource which has been regarded as an overwhelming competitor in the distributed

generation.

The wind is a free, clean and renewable energy source on our planet. It has served mankind
for centuries to pump water, grind grain, and move ships. Wind has been utilized as a
source of power for thousands of years for such task as propelling sailing ships, grinding
grain, pumping water, and powering factory machinery. In the United States the first wind
electric systems were built in the late 1890s. By the 30s and 40s of last century, plenty of
small-capacity, wind electric systems were in used in rural areas not served by the power
grid. Since the oil shocks of the 70s of last century, which heightened awareness of our
energy problems, the demand for renewable energy has been increasing rapidly during
recent decades [3]. Within a decade or so, dozens of manufacturers installed thousands
of new wind turbines. With the discovery of electricity and development of electric pow-
er, wind energy found new applications in human society in the form of providing clean
and inexhaustible electric power in a wide range of scales and capacities. Nowadays, wind
powered generation operates at variety of sizes between small residential and utility scales.
Modern utility-scale wind power is the fastest growing energy sector in the world. It is
becoming an important part in the national energy mix for many countries. The US con-

tinued to see growth and remains on top in total installed capacity followed by China and
1



GENERAL INTRODUCTION

Germany. Wind power is capable of becoming a major contributor to world‘s electricity

supply over the next three decades, according to a report by the U.S Department of Energy.

It is well known that a wind turbine’s efficiency is highly dependent on the operating con-
ditions, such as wind speed, pitch angle and tip-speed ratio. In the aim to assure optimal
operating conditions as well as to maximize the active power, parameter identification,
diagnostics and feedback control are going to play an important role. The wind system is
hard to obtain out, and the parametric varying be considered as uncertain system. Reli-
able measurements from the system are necessary to implement these designs. However
it is not always possible to use sensors for measurements. Especially, in the conditions
of gust inside the normal wind. Furthermore, available commercially sensors are too big
and costly. Therefore, we have two kind of method to solve the uncertain bound problem.
The first adaptive controller is a promising way to solve the uncertain bound problem.
And state observer designs serve as a replacement for physical sensors, for obtaining the

unavailable quantities and making feedback control implementable, are of great interest.

Sliding mode technique is known for its insensitivity to external disturbances, high accu-
racy and finite time convergence. Sliding mode observers have been widely used for fault
reconstruction in the past two decades. Edwards et al. [4] proposed a fault reconstruction
approach based on equivalent output error injection. In this method, the resulting residual
signal can approximate the actuator fault to any required accuracy. Based on the work of
[4], Tan et al. [5] proposed a sensor fault reconstruction method for well-modeled linear
systems through the Linear Matrix Inequality (LMI) technique. This approach is of less
practical interest, as there is no explicit consideration of disturbance or uncertainty. To
overcome this, the same authors [6] proposed a FDI scheme for a class of linear systems
with uncertainty, using LMI for minimizing the L, gain between the uncertainty and the
fault reconstruction signal. Linear uncertain system models can cover a small class of
nonlinear systems by representing nonlinear parts as unknown inputs. However, they will
introduce too many unknown inputs which will make perfect or approximate decoupling
difficult. Therefore, the study of nonlinear observer-based FDI has received considerable
attention in the past few years. Jiang et al. [7] proposed a sliding mode observer based
fault estimation approach for a class of nonlinear systems with uncertainties. Yan et al. [8]
proposed a precise fault reconstruction scheme, based on equivalent output error injection,

for a class of nonlinear systems with uncertainty. A sufficient condition based on LMI is
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presented for the existence and stability of a robust sliding mode observers. The limitation
is that requires a strong structural condition of the distribution associated with uncertain-
ties. Later, this structural constraint was relaxed by the same authors [9], where the fault
distribution vector and the structure matrix of the uncertainty are allowed to be functions
of the system’s output and input. However, all these works require that the bounds of the
uncertainties and/or faults are known. Although in the work of [9], the requirement on

the bound of uncertainty is removed, but it still needs to know the bound of the fault signal.

The idea of using a dynamical system to generate estimates of the system states was pro-
posed by Luenberger in 1964 for linear systems [10]. In spite if the extensive development
of robust control techniques, Sliding Mode Control (SMC) remains an efficiency solution
for handling bounded uncertainties/disturbances and unmodeled dynamics in both con-
trol and estimation problems. From the practical point of view, a wind energy conversion
system is a nonlinear dynamic plant, with multiple inputs, multiple outputs, variables
strongly coupled, model uncertainty and external disturbances. Sliding mode techniques
[11] known for its insensitivity to parametric uncertainty and external disturbance, are
intensively studied and developed for control, estimation, Fault Tolerate Control (FTC)
and Fault Diagnosis and Isolation (FDI) problems, existing in the wind power system. In
particular, Higher Order Sliding Mode (HOSM) approaches are considered as a successful
technique due to the following advantages [12]:

Robustness with respect to parametric uncertainties;

Possible to generate continuous output injection signals;

Remove the conventional relative degree restrictions;

Possible to offer ’chattering’ attenuation.

The research filed of this thesis is ’Adaptive HOSM Design, Fault Tolerant Control and
its Application to Wind Turbine Systems and Power Converters’. In general, this topic is
of great importance and interest in industry and engineering, mainly for its economic and

reliability reasons.



GENERAL INTRODUCTION

0.1 Motivations

Motivated by a large amount of important practical problems, in particular, wind power
generation systems which have received great attention in the context of energy and pol-
lution crises. Wind Energy Conversion System (WECS) with Induction Machine (IM),
known as a high specific energy source is one of the most promising alternative energy
sources due to high energy efficiency, low cost, ease of installation and environment friend-
ly. Induction Machine is suitable for a wide variety of applications, from stationary power

generations to electric automotive devices. Fig. 0.1 shows a typical system configuration

Turbine Grid
blades ==
Generator
1
]I : Power Converters
Gearbox Machine side Grid side
and converter converter
D
shaft ) {:1} ¢ al_ i

Figure 0.1. Electrical energy conversion system

which is general in industry. It consists of numerous interconnected components, i.e. wind
turbine (horizon three blades mechanical device), an induction machine, we use doubly-
fed induction generator (DFIG) here, a back-to-back converters (including a three-phase
AC/DC rectifier, a three-phase DC/AC inverter, connected by a DC bus). The wind tur-
bine is a mechanical device which can absorb kinetic energy from the wind, it is a high
nonlinear and complex decoupled system. The gearbox and shaft increase the rotation
speed given by the turbine, to adjust the rotation speed suitable for the generator. The
DFIG can convert the energy from mechanical form into electrical form. The stator of
DFIG is connected to the power grid directly and the rotor is connected to the power con-
verters. The power converters are key components which deliver the power produced by

energy sources, i.e. source grid, wind turbine generator. Fig. 0.1 shows a power electronics
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topology of the wind energy conversion system which is a general configuration in industry.

Generally, there are four typical working regions which need different control policies
according to various wind speed. The operation of a wind generator presents four typical

working regions differentiated by upward wind speed, as shown in Fig. 0.2:
e Region I: below cut-in speed
e Region II: maximum generable power
e Region III: constant rated power

e Region IV: above cut-off speed

| 1l 1 \%
< —><————><—————><————>
100 b
S
o)
3
<
= 60 b
8]
S
I
e
(5]
o)
=
20 b
0 . |
Cut-In Speed Rated Speed Cut-Out Speed

Wind Speed (m/s)

Figure 0.2. The power curve of WECS versus wind speed

The power characteristics of a wind turbine are defined by the power curve, which re-
lates the mechanical power of the turbine to the wind speed. The power curve is a wind
turbine’s certificate of performance that is guaranteed by the manufacturer. The Interna-
tional Energy Association (IEA) has developed recommendations for the definition of the
power curve. The recommendations have been continuously improved and adopted by the
International Electrotechnical Commission (IEC). The standard, IEC61400-12, is widely

accepted as a basis for defining and measuring the power curve.
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The typical working regions are shown by power curve versus different wind speed in Fig.
0.2. As the wind speed grows up, the wind turbine (WT) shuts down and the system
generates no power at beginning where it is called zero power region. When the wind
speed reaches the cut-in speed and below the rated wind speed, the wind turbine works
in the maximum power point tracking (MPPT) region. In this region, the speed of wind
turbine is controlled by kinds of MPPT controllers to make sure that the wind turbine is
operated at the optimal tip-speed ratio [13]. The tip-speed ratio (TSR) is defined by the
wind turbine tip speed in proportion to the wind speed, and it plays a vital role in extract-
ing the kinetic energy from wind to turbine shaft [14]. For all the wind turbines around
the world, this is a common issue which also makes great challenge during the process
of wind energy extracting process. On one hand, if the rotor of wind turbine rotates too
slowly, most of the wind passes through the space between two blades without doing any
work; on the other hand, if the rotor of wind turbine rotates too quickly, the area swept
by the rotor will become impassable for the wind like a solid panel. Hence, there is an
optimal tip-speed ratio for a certain wind turbine to get the maximum power. The third
region is the constant power region, where the power is dynamically equal to the rated
power as a result of varieties of mechanism control, like pitch control, stall control, or yaw
control. In this region, the wind system is working in the rated condition. The last region
is the cut-off region, where the wind speed is above the cut-off speed. The harmful wind
is too strong to drive the wind system generating electricity, but to cause the electrical
overloading and mechanical damage. The turbine shuts down in this region to protect
for stranger winds. Most MPPT controllers require measuring wind speed [15][16] and
wind turbine speed data in real-time. Therefore, time delay in measuring process would
affect the control precision, which is an overshooting caused by delay. In practice, the
anemometer is usually installed as a wind speed detector making the wind turbine operate
at the optimal speed. Whereas, using anemometer would reduce the system’s dynamic
response and would also increase the costs of the equipment and maintenance. Moreover,
since the turbine works in a three-dimension space, it makes the wind speed has a different
distribution in the turbine rotating plane. Consequently, the effective wind speed (EWS)
cannot be measured directly. So there is a need to design a sensor-less control system for
wind system. However, previous EWS estimation works do not consist of the whole wind
generator system [3][17]. In this thesis, we propose a method that the EWS estimation
has been applied in the controller which cooperates with the wind turbine, the generator,

and the converters.



0.2. CONTRIBUTION OF THE THESIS

This thesis builds a whole wind system with a MPPT controller based on adaptive sliding
mode control. To get maximum power, only a variable speed wind turbine can be applied
to this MPPT controller. We propose a method to estimate the optimal tip speed ratio. It
is based on power balance equations which describes the relationship between the turbine
torque and turbine speed versus the wind speed of the turbine rotor. Additionally, for
safety reasons many systems require a fault tolerant control (FTC) for different types of
faults. The faults in the actuators are very important since they may cause the control
target is not reached or even worst a complete lost of stability. Normally, redundancy in
actuators is used, but this requires the design of several control algorithms and a switching
strategy in order to assure the correct controller is activated (see [18, 19, 20] and the
reference therein for more information about fault tolerant control schemes). A FTC with
a fixed control allocation (CA) using output integral sliding mode (OISM) is going to be
proposed.

0.2 Contribution of the Thesis

In this thesis, we concentrate on the adaptive control and observation problems in the
wind energy generation subsystem and power converters. First part, a novel Adaptive
first order Sliding Mode (ASM) controller is developed for uncertain system. Second part,
a High Order Sliding Mode (HOSM) controller is developed for uncertain system. Third
part, Output Integral Sliding Mode (OISM) control and observer design for Linear Pa-
rameter Varying (LPV) system are addressed.

An adaptive controller are proposed for nonlinear system, and has been applied for the
Wind Energy Conversion System (WECS) in order to Track the Maximum Power Point
(MPPT) under the unknown of the WECS, with inside parameter varying and outside
disturbance. Lyapunov-based adaptive first and high order sliding mode is developed to
converge the sliding variables to a predefined region, which eliminate the chattering. The
performance of the above two adaptive controllers are evaluated by comparison with oth-
er adaptation algorithm applied in a real time wind emulation system. The robustness

against measurement noise and parameter variations is also validated simutanously.

An OISM is designed from available voltage inputs and supply manifold currents mea-
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surements. The state estimation, parameter identification are performed simultaneously.
The system states, i.e. direct and quadrature flux of the rotor are estimated successfully.
This eliminates the need of an expensive flux sensor. The fault in actuators are considered
in this study. It is reconstructed faithfully through analyzing the information, which is
obtained on-line from comparisons between the measurements from the sensor installed in

the real system and the outputs of the observer system.

The main contributions achieved in this thesis are:

e Lyapunov analysis demonstrates that the proposed adaptive-gain first order sliding
mode algorithm establishes 'real’ sliding mode without a priori knowledge of the
upper bound of the fault signal, meanwhile, the gains of the proposed algorithm

allow decreasing once the error converges to a predefined neighborhood exactly;

e The proposed adaptive-gain HOSM control algorithm are proved theoretically and
the robustness of the proposed algorithm against parametric variation and measure-

ment noise have also been validated;

e The proposed FTC strategy assures, by using only output information, theoretical
exact compensation of the faults effects in the critical input channels (matched ef-
fects) and the minimization in the non-critical (unmatched) ones just after the initial
time, allowing total failures of certain actuators. To guarantee theoretical exact re-
construction of the state vector right after the initial time a hierarchical observer

using only the fault-free outputs is used.

0.3 Outline of the Thesis

This dissertation is organized into five major chapters. Chapter 1 provides adaptive high
order sliding mode controller designs for uncertain systems. Chapter 2 describes the model
of wind energy system. Chapter 3 provides the first order adaptive sliding mode controller
design for WECS, which can be easily implemented in small wind turbine applications.
Simulation results validate the advantages of the proposed controller. Chapter 4 presents
an adaptive HOSM control for wind energy system. Comparison are made, simultaneously.
The proposed method is validated by MATLAB simulation. Chapter 5 describes the FTC

control based on LPV model and observer design for WECS. The performance variables,
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flux of the stator and d-axis current of the rotor, are observed in order to realize fault

tolerant control. Finally, some conclusions and future research directions are discussed.






Chapter 1

Adaptive High Order Sliding Mode
Control Design

One of the most important problems is control under heavy uncertainty condition. While
there are a number of sophisticated methods like adaptation based on identification and
observation, or absolutely stability methods, the most obvious way to withstand the un-
certainty is to keep some constraints by 'brutal force’. Indeed any strictly kept equality
removes one 'uncertainty dimension’. The sliding mode approach is regarded as an efficient
tool to design robust controllers for complex high order nonlinear dynamic plant operating
under uncertain conditions. The research in this area was initiated in the former Soviet
Union in 50th of last century [21]. And the sliding mode control methodology has sub-
sequently received much more attention from the international control community within

the last decades with the development of electronic technology.

Sliding mode control has found wide application in the areas of robust control, fault
tolerant control (FTC), fault reconstruction in recent years. Their well known advantages
are robustness and insensitivity to external disturbance. High order sliding mode control
has better performance as compared with classical sliding mode based controller because
their output is continuous and does not require filtering. Adaptive sliding mode controller
does not need the knowledge of the uncertainties. However, insofar as we are aware, the
adaptive sliding mode controllers can not guarantee the convergence region of the states.

This chapter is going to present the traditional adaptive sliding mode controllers.
11
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1.1 State-of-the-art

Robust finite time stability of uncertain nonlinear systems has become significant in prac-
tice. The uncertainties are assumed to be bound which is hard to obtain exactly while it
affects the stability in many cases. The demand for renewable energy has been growing
rapidly during last decade [22]. The control of wind energy conversion system (WECS) is
mainly to focus on improving the utilization of the wind energy, which is known as maxi-
mum power point tracking (MPPT) technique [13]. A nonlinear model predictive control
of WECS has been presented in [23] to promise the maximum power efficiency. [24] adopts
a growing neural gas network-based field oriented controller (FOC) to obtain the optimal
tip speed ratio as well as the active power. Sliding mode controllers of WECS have been
presented in [25] [26]. However, all these controllers do not take into consideration of the
bound of the wind speed and other perturbations. For the robustness, the coefficients of
those controllers need to be tuned frequently, according to the varying disturbances and
perturbations. As wind is an uncertain resource, the bound of the variation of wind speed
affects the control of WECS. Robust control of WECS has become significant in both
theory and practice. The uncertainties are assumed to be bounded physically. Moreover,
the knowledge of the bound is hard to obtain exactly while it affects the precise control
of WECS. It follows a challenge to design a robust controller of WECS, where the upper
bound of the uncertainty is not requested. The desired controller might not require the

knowledge of the uncertainties bound.

For the cases of unknown bounds, adaptive sliding mode (ASM) controllers have been p-
resented in [27] [28] firstly. Huang et al. [29] develops an adaptive controller which ensure
the convergence without the bound values. However, the algorithm can only increase the
gain, which leads the gain over-estimation. Plestan et al. [1] proposes a new controller of a
bounded uncertain system without the gain over-estimation. However, this algorithm has
a drawback that it can not guarantee the sliding variable converge to a promised neighbor-
hood. As for [30], the gain is adjusted properly to get a sufficient value to counteract the
uncertainties, but the state still has overshooting around the neighborhood. Other works
design an adaptive first or higher order sliding mode in [31, 32, 33, 2, 34, 35, 36, 37, 38].
An adaptive super twisting SM controller in [31] can continuously force the sliding variable
and its first derivative to zero with unknown boundary. [32] presents an adaptive twisting

SMC without gain over-estimation, which is a further development of [31]. [33] presents an
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adaptive super twisting SM controller aiming to reduce chattering effect, and it is applied
for an electro-pneumatic actuators system. An adaptive integral high order SM controller
in [2] eliminates the need of knowledge about the upper bound of the uncertainties. The
ASM controller in [39] converges a perturbed chains of integrators to a neighborhood of
zero without the prior knowledge of the perturbation bound. [35] proposes a twising ASM
controller and observer with unknown boundaries. [36] develops high order ASM controller
based on a first order ASM of unknown bound perturbed system. Discrete time ASM con-
troller is considered in [37] which rejects the unknown bounded disturbance varying slowly
with respect to the sample frequency. [38] is an advanced ASM controller of multi-input

multi-output system.

1.2 Sliding Mode Control

The sliding mode approach is recognized as an efficient tool to design robust controller-
s for complex high order nonlinear dynamic plant operating under uncertain conditions.
The ’sliding mode’ phenomenon may appear in dynamic systems governed by ordinary

differential equations with discontinuous state functions in the right hand sides.

The design methods for sliding mode control involving two independent subproblems of

lower dimensions:

e design of the desired dynamics for a system of the (n—m)th order by proper choice

of a sliding manifold s=0

e enforcing sliding motion in this manifold which is equivalent to a stability problem

of the mth order system

Consider the nonlinear system, affine in the control, defined in the Brunovsky canonical

form as

X1=X2

g =x3 (1.1)
X3=y(x, D+ 0)+yx Du

y=x
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where x € X cR is the state vector with X an open set of R”, and u€ U cR is the control
input with U an open set of R. The term y is a measured smooth output-feedback func-
tion. The nominal system dynamics are represented by w(x, f), a known function defined on

X. The functions ¢(x, t) and y(x, t) defined for x € X, are sufficiently smooth but uncertain.

System 1.1 can be written in input-output terms as

Y=y (30 +e(p)+y (7 u (1.2)

where y=| y y ... y® ] We assume that, the functions ¢ (x,f) and y(x, ) are

bounded by some positive constants @, v, and yps , such that
0<Ym<YWD<ym|okxn|<p (1.3)
Then we are dealing with the following differential inclusion
y" ey (j,1)+ [ -p, @ ] +ymym|u (1.4)
where ¢ is the limit or bound of parameter uncertainty in the model, due to some possible
simplification, unmodeled dynamics and/or external perturbation. The terms y,, and yum
represent the bounds of the uncertainty in the gain with respect to the controller u.

1.2.1 Design of sliding Manifold

Let s(x, 1) : X xR"™ — R be a measured smooth output-feedback function, and we assume
that the control objective is to force s to zero. Here the function s(x, 1) is called sliding

variable, and the set
S={xeX|s(x,t)=0} (1.5)
represents a sub-manifold of X of dimension n—1, called the sliding surface.

Definition 1.2.1. There exists an ideal sliding regime on S, if there exists a finite time

Ts such that all solutions of System satisfy the condition s(x,t) =0 for any time t=Ts .

Definition 1.2.2. Given the sliding variable o(x,t), the real sliding surface associated

to 1.5 is defined as (with 0 >0)

S*={xeX|l|s(x, 1) <&} (1.6)
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In this case, the dynamics of system 1.1 belong to a system of a dimension lower than
the dimension of System (1.1). This autonomous system is called reduced system, and its
dynamics are determined only by the choice of the sliding surface. For our example 1.1,
the control objective is to force the output y to track a reference signal y,or , which is a
sufficiently smooth function. In other words, the objective is to ensure the convergence
of the tracking error e =y —yrof to zero. One of the simplest sliding manifolds for this
case is the hypersurface constructed from linear combination of the tracking error e and

its higher time derivatives. We consider the following sliding variable

sx,)=e" V+1, "Dy L+ ye (1.7)
with [;,i =0,...,n—2 are positive constants such that the polynomial

PO =0""V41, .02+ 1,0+1 (1.8)

is Hurwitz. Therefore, after establishment of ideal sliding regime on S, the dynamics of

the reduced system is determine by the stable associate differential equation
e(”_l) + ln_ze("_z) +llé+loe=0 (19)

As a result, the tracking error e will converge to zero exponentially. In this section, we
determined the dynamics of reduced system presented by the sliding surface. The next
step is to tune a control law u, which forces the state trajectory of System 1.1 to reach
the sliding surface in a finite-time, i.e to force sliding variable s(x, ) to converge to zero in

finite time.

1.2.2 Control Design

The control law u should be designed in such way that the trajectories of system 1.1 reach
and stay on the sliding surface S in spite of perturbation and uncertainty. It should be
remembered that the sliding variable s(x, ) of Equation 1.8 is null on S. Consider the

dynamics of s(x, ) given as follow

sennew(70)+| o ¢ |+ lrmyulus D5 ey (1.10)

The controller u should ensure a local attractivity to S in its neighborhood, i.e the tra-
jectory of system 1.1 should be directed to S. A condition of stability of s(x, ) =0, called

condition of attractivity, should be satisfied by the controller. The well-known Lyapunov'‘s
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direct method requires a positive C radially-unbounded function V(s), called Lyapunov
Function, satisfying V(0) =0 and V(oo) = co. The function V(s) represents a fictitious
energy and give a global information of the System, and its time derivative V gives an
information of the stability of the system. If V(s) is negative for s#0, then the system is
asymptotically stable. One of the proposed Lyapunov function is the classical quadratic

function
1,
V)= (1.11)

The function V(s) is clearly positive definite. Its time derivative should be negative to

ensure the convergence of s(x, ) to zero
V=s§<0 (1.12)

The previous condition (attractivity condition) ensures only the asymptotic convergence of
s. Otherwise, for purpose of finite-time stability, a stronger condition needs to be imposed.

In Classical Sliding Mode, a non-linear condition, called condition of n-attractivity, is used

V=s$<nlsl,n>0 (1.13)
Condition 1.13 is satisfied, if the controller u takes the form
u=-Usign(s) (1.14)

where U is chosen sufficiently large to compensate the perturbation, uncertainty and the
deviation between the systeméAZs dynamics and Sliding variable dynamics. Usually, U is

a sufficiently large constant. In order to satisfy Condition (1.12), U can be tuned as

e
. 1+ _ n
xeX lie yref

U= max(L (‘w(x, n+
Ym i=0

+(p+n)) (1.15)

To summarize, we can describe the behavior of system in two steps:

e Reaching phase: It corresponds to the time t € [0, T5]. During this phase, the state

trajectory converges to the sliding surface S.

e Sliding phase: It corresponds to the time interval t € [T, 00], in which the state
trajectories are confined to the sliding surface S. During this phase, the behavior of

the system is entirely determined by the choice of the sliding surface.
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In ideal Sliding Mode regime, the requested controller u should be able to switch at
an infinite frequency. This is not possible in real life, due to the delay between the
measurement and the generation of the command. This may cause the system to leave
the sliding surface. Then, once the sign of the control is reversed order, the trajectories
return on this surface and on the other side, and so on. This undesirable phenomena
of oscillation around the sliding surface is called Chattering. One of the most effective
methods to reduce chattering is the use of Higher Order Sliding Mode Control, which will

be addressed in next Section.

1.3 Output Feedback Sliding Mode Control

Real systems are often suffered from disturbances and uncertainties which may affec-
t the system performance greatly. Various control methods have been proposed in the
literature [40, 41, 42]. HOSM control with properties of robustness with respect to uncer-
tainties/perturbations and finite time convergence, has been proven to be effective to this
problem [43, 44, 45, 46]. However, a lack of HOSM control is the use of sliding variables
higher order derivatives. From a practical point of view, it decreases the interest in the
presence of measurement noise. This motivated the development of output feedback SMC

in order to remove this lack.

Two kinds of solutions are possible for the design of output feedback SMC. One solution
is static output feedback using the available measurement information alone. A number
of algorithms have been developed for robust stabilization of uncertain systems which are
based on output feedback control schemes [47, 48, 49, 44]. In [47], a geometric condition is
given to guarantee the existence of the sliding surface and the stability of the reduced order
sliding motion. Edwards and Spurgeon [48] proposed an algorithm which is convenient for
practical use. However, both of [47] and [48] require that the disturbance is matched, i.e.
acts in the channels of the inputs. In many cases, the disturbance suffered by practical
systems does not act in the input channel. Moreover, the system under consideration in
[47, 48] is minimum phase and has relative degree one. In [44], an optimal version of the
so-called ’twisting’ algorithm has been provided which requires the derivative of sliding
variable. The STA which requires no information of output time derivative was proposed
by Levant [49], but it is restricted to the system with relative degree equal one with respect

to the control input.
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The other one consists in designing the controllers based on state observers or differen-
tiators, such as High Gain Observers (HGOs) [50, 51, 52, 53, 54], SMOs [42, 55, 56, 57,
58, 59, 60]. Moreover, the performance of an observer-based sliding mode controller can
be improved significantly by keeping the plant system and the observer system operating
closely [56]. Khalil et al. [52] demonstrated that, under the hypothesis that a stabilizing
globally bounded state feedback control is available, using a high gain observer one can
recover the performance achieved under state feedback. Thus, a rather general nonlinear
separation principle was established. The main drawbacks of HGOs are its sensitive to
the measurement noise peaking effect with high gains. Especially, as the observer gain
increases, the bandwidth of the observer is extended, exacerbating the presence of mea-
surement noise. We should recall that asymptotic observers represent an issue which has
not been entirely resolved in the realm of nonlinear systems, due to the lack of nonlinear
separation principle. A robust exact differentiator [61] featuring finite time convergence
was designed based on the STA [49]. Its implementation does not need the separation
principle to be proved. These differentiators have been successfully applied in [62, 63, 64].
The stability analysis of HOSM output feedback control has been done by Levant [57].

In the following part, the design of observer based HOSM output feedback control will
be introduced. For the sake of simplicity, we focus on single-input-single-output (SISO)

systems.
1.3.1 Second Order Sliding Mode Definitions
Consider a discontinuous differential equation in the sense of Filippov [65]
x = v, (1.16)

where x € X cR" is the state vector, v is a locally bounded measurable (Lebesgue) vector

function. The equation can be replaced by an equivalent differential inclusion
x € V(x), (1.17)

If the vector-field v is continuous almost everywhere, V(x) is the convex closure of the set
of all possible limits of V(y) as y — x, while {y} are continuity points of v. Solutions of
the equation are defined as absolutely continuous functions x(#), satisfying the differential

inclusion almost everywhere [66].
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Let a constrain function given by
s(t,x(1) = 0, (1.18)
where s:R"” — R is a sufficiently smooth function.

Definition 1.3.1. [66] Suppose that

e Successive total time derivatives s and § are continuous functions of the system state

variables. In other words, the discontinuity does not appear in the $;
o The set s=$=0 is non-empty and consists of Filippov’s trajectories [66].

Then, the motion on the set s=$§=0 is called a second sliding mode with respect to the

constraint function s (Fig. 1.1).

Figure 1.1. Second order sliding mode trajectory
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1.3.2 Second Order Sliding Mode Dynamics
Consider the following nonlinear system [49]

x(1)
s(1)

f,x(0), w),

1.19
s(t,x) €R, ( )

where x € X c R"” is the state vector, u € U c R is the bounded control input, ¢ is the
independent variable time and f is a sufficiently smooth uncertain vector function. The
control objective is to force the sliding variable and its time derivative s(¢) and $(¢) to zero

in finite time, i.e.
s(y = s = o (1.20)

Assume that the control task is fulfilled by its zero dynamics with respect to the sliding

variable s(t,x). By differentiating the sliding variable s twice,

. _ 0 0

s = atS(t,x)+ axS(t,x)f(t,x, u),

0 o9 o, . (1.21)
St = \ms(t,x, u)+6xs(t,x, u)f(t,x,u)f\aus(t,x, u)lu(t).

wE{x) y(;TX)

Depending on the relative degree [67] of the nonlinear SISO system (1.19), two cases are

considered
: . J .
e Case a : relative degree r =1, i.e., a—s;éO;
u
: : 0 . J ..
e Case b : relative degree r =2, i.e., —$§=0, —§#0.
ou ou

1.3.2.1 Relative Degree 1

In this case, the control problem can be solved by the classical first order SMC, neverthe-
less second order SMC can be used in order to avoid chattering. Shortly speaking, the
time derivative of the control #(f) may be considered as the actual control variable. A
discontinuous control () steers the sliding variable s and its time derivative § to zero, so

that the plant control u is continuous and the chattering is avoided [49, 68].

The second time derivative § (1.21) is described by the following equation

§ = @t,x) +y(t,x)u), (1.22)
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where ¢(t, x) and y (¢, x) are some bounded functions. The following conditions are assumed
[68]:

1. The control values belong to the set U ={u:|u| < Uy}, where Up=constant>1.

2. There exists u; € (0,1) such that for any continuous function u(#) with |u()| > u,,

there is 1, such that s(f)u(f) >0 for each > 1;.

3. There exist positive constants sy, Kj; and Ky such that if |s(z,x)| < sp, then
0<Ky<y(t,x) <Ky, VueU, xeX, (1.23)
and the inequality |u| > uy entails su > 0.

4. There exists constant C such that within the region |s(t, x)| < sy the following in-
equality holds,

|(p(t,x)| < C,VYueU, xeX. (1.24)

Condition 2 means that there exists a proper control u(¢) forcing the sliding variable into

a set for any initial value of state, given that the boundedness conditions on the sliding

dynamics defined by conditions 3 and 4 are satisfied. It follows from (1.22), (1.23) and
(1.24) that all solutions satisfy the differential inclusion

§ € [~C,Cl+ K, Knlun(t), (1.25)

1.3.2.2 Relative Degree 2

In this case, the control problem statement can be derived by considering the variable u
as a state variable and @ as the actual control. Suppose the system dynamics (1.19) is

affine in the control law, i.e.,
[, x(®,w) = al(t,x)+b(t,x)u, (1.26)

where a:R"™! - R" and b:R"™! — R" are sufficiently smooth uncertain vector functions.

Eq. (1.21) can be rewritten as

$() = is(t,x)+is(t,x)a(t,x)+is(t,x)b(z‘,x)u:is(z‘,x)+is(t,x)a(t,x),
ot 0x 0x ot 0x
§(n) = —25(t x) + is(t x)ga(t X)
or? ’ 0x ’ ot ’ (1.27)
+ a—zs(t ) +al(t x)a—zs(r 0+ st a0 [a(r X) +b(t x)u(t)]
otox ' ox2 T ox " ox ’ ’

= @, x)+y(t,x)ult).
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The following conditions are assumed [68]:

1.
0
—s(t,x)b(t,x) =0,
axaz 02 0 0
_— T - = = (1.28)
ataxs(t,x)+a (t,x)ax2 s(t,x) + axs(t,x)axa(t,x) b(t,x) #0,

Vt, uelU, xe X

The differential equations (1.19, 1.26) with discontinuous right hand side admits

solutions in the Filippov sense on the second sliding manifold s=s§=0.

2. There exists u; € (0,1) such that for any continuous function u(#) with |u()| > u,,

there is 1, such that s(f)u(f) >0 for each > 1;.
3. There exist positive constants sy, Kj; and Ky such that if |s(z,x)| < sp, then
0<Ky,<yt,x) <Ky, VueU, xeX, (1.29)
and the inequality |u| > uy entails su > 0.

4. There exists constant C such that within the region |s(t,x)| < sy the following in-

equality holds,

|p(x,u,0)| = C, Y ueU, xeX. (1.30)

It follows from (1.23), (1.24) and (1.27) that all solutions satisfy the differential inclusion

§ € [-C,Cl+I[Kpy, Kpmlu(e), (1.31)

1.3.3 Second Order Sliding Mode Controllers

In this part, the most well known second order sliding mode controllers are introduced, e.g.,
super-twisting Controller, twisting controller and sub-optimal controller. These controllers
are insensitive to some model perturbations and external disturbances. Given that the
expression for the sliding manifold is known, it is possible to design the constant parameters

of the controllers [66].
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1.3.3.1 Super-Twisting Control Algorithm

The STA was developed to control systems with relative degree one in order to avoid
chattering in Variable Structure Control (VSC). The trajectories on the second sliding
manifold are shown in Fig. 1.2

Consider the system (1.25), the control algorithm is defined [49]

u() = w()+ux1),

_ ~u, if ul> 1

u () =
—asign(s). otherwise (1.32)
—AlsolPsign(s), if |s| > sg

up(t) =

—Als|Psign(s).  otherwise

where @, A are positive constants and p € (0,1). The sufficient conditions for the finite time
convergence to the sliding manifold are

a > Kim’ 2 > %—?\nﬁgig (1.33)
The STA does not need the evaluation of the sign of the time derivative of the sliding
variable. For the choice p =1, the origin is an exponentially stable equilibrium point.
The choice p = 0.5 assures that the maximum real second order sliding is achieved. For
0 < p <0.5 the convergence to the origin is even faster. The choice 0 < p <1 assures the

finite time convergence to the origin [49, 69].

1.3.3.2 Twisting Control Algorithm

This algorithm is characterized by a twisting around the origin, shown in Fig. 1.3 The
finite time convergence to the origin of the plane is due to the switching of the control am-
plitude between two different values. The control amplitude switch at each axis crossing

which requires the sign of the time derivative of the sliding variable §.

In case the relative degree r = 1. Consider the system (1.25), the twisting algorithm is

defined by the following control law [49]

~u, if Jul > 1
) = < —apsign(s), if s§<0, lul<1 (1.34)

—apysign(s). if s§>0, |ul<1
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Figure 1.2. Super-twisting algorithm phase trajectory
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where ap > @, > 0 and the sufficient conditions for the finite time convergence to the

sliding manifold are

4K C
a, > M am > —, Kpay > Kyan,+2C. (1.35)
So K

In case the relative degree r =2. Consider the system (1.31), the twisting algorithm is

defined by the following control law [57]
u = -—rsign(s)—rpsign(s), rp >r2>0, (1.36)
the sufficient conditions for the finite time convergence to the sliding manifold are

(rn+nr)K, > (rl—l‘g)KM+2C, (rn—-r)kK, > C. (137)

A particular case of the controller with prescribed convergence law [49, 66] is given by

/12
u = —asign(s‘+/1|s|%sign(s)), >0, A>0 and aK,-C> > (1.38)

Controller (1.38) is close to a terminal sliding mode controller [70].
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Figure 1.3. Twisting algorithm phase trajectory

1.3.3.3 Sub-Optimal Control Algorithm

The second order sliding mode controller was developed as a sub-optimal feedback imple-
mentation of the classical time optimal control for a double integrator [12]. This algorithm
ensures the finite time convergence of s and § to zero, confining the trajectories within
limit parabolic arcs (including the origin). Both twisting and jumping (in which s and $
do not change sign) behaviors are possible (see Fig. 1.4). Unlike most SOSMC algorithms,
sub-optimal control does not require continuous estimate of §, only depends on upon the

instances when the value of § is zero.

Let the relative degree r =2. Consider the system (1.31), the control algorithm is defined
by the following control law [49, 7]

*

—a(t) Vysign(s — S—),

u(t)

1
a*, if (s—zs*)(s*—s)>0 (1.39)

al(l)
1, otherwise

where s* is the latter singular value of the function s(t) which corresponds to the zero value

of $ and a” is a positive constant. The sufficient conditions for the finite time convergence
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to the sliding manifold are

* 3K,
a € (0,1]1n O’K_ )
M
c i ) (1.40)
Vv > max , .
a* K, 3K, —a* Ky

A o

S

Figure 1.4. Sub-optimal algorithm phase trajectory

1.4 High Order Sliding Mode Control

A class of nonlinear dynamic system is considered as follows:

X=fxX)+gx)u

J= s (1.41)

where x € R,, are the state variables, u € R,, is the control input, and s(x) € R, is the
measured output function known as the sliding variable. It is assumed that f(x) and g(x)

are smooth functions.

r—1

Definition 1.4.1. In system 1.41, the time derivatives of s, with $,...,s' " are considered

continuous. A set is called rth order sliding set, which is a non empty integral set in
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the Filippov sense, if and only if
S'={xls(x,0) =$(x,n)=...=s"V(x,1) =0} (1.42)
the motion on S" is called rth order sliding mode with respect to the sliding variable s.

The aim of the first order sliding mode control is to force the state trajectories to move
along the sliding manifold s(x) =0. In the higher order sliding mode control, the purpose
is to move the states along the switching surface s(x) =0 and to keep its (r — 1) successive
time derivatives viz §,...,s" ! to zero by using a suitable discontinuous control action. The

rth order derivative of s(x) satisfies the following equation:
SSW=px)+yx)u (1.43)

where ¢ (x) = L}s(x) and vy (x) = LgL}s(x). Here, Ly and Lg are the Lie derivatives of the

smooth functions in 1.41. The corresponding sliding regularity condition has the form
rank{Vs;,...,Vs;""Vi=1,...m}=r +...+ 1 (1.44)
A sliding mode is called stable if the corresponding integral sliding set is stable.

Assumption 1. Functions ¢ (x) and y(x) are bounded uncertain functions, and without
loss of generality, let also the sign of the control gain y be constant and strictly positive.

Thus, there exist y,m € RY,yp € RT, @ € RY such that

0<yYm<y<ym|o|<@ (1.45)

for xe X cR", X being a bounded open subset of R" within which the boundedness of the

system dynamics is ensured.

The rth order sliding mode control of system 1.41 with respect to the sliding variable

s(x) can be expressed as

Zj = Zj4+1 (1.46)
Zr=@pxX)+yX)u

where 1<i<r-1, and [ zZ1 2 ... Zr ]Tz[ s(x) $(x) ... s w ]T-

The objective of HOSM control is to design controllers for System 1.46 with respect to s,
which is equivalent to the stabilization of System 1.43 to the origin, ideally in finite time.
Since these controllers are to be discontinuous feedback laws u = U(z), solutions of 1.46

need to be understood here in Filippov sense, defined as follows:
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Definition 1.4.2. A control algorithm is said to establish real sliding mode of order r
with respect to s when for any local set of initial conditions and for any finite time interval
[t1, 2], there exist constants 1...r such that for all t > t;, the following inequalities are

satisfied

|Sl|SA1,|82|SAZ,...|Sr|SAr (147)

1.5 Adaptive Sliding Mode Control

The sliding mode control is a very popular strategy for control of nonlinear uncertain
systems, with a very large frame of applications fields. Due to the use of discontinuous
function and high control gain, its main features are the robustness of closed-loop system
and the finite-time convergence. However, its design requires the knowledge of uncertain-
ties bound, which could be, by a practical point-of-view, a hard task; it often follows that
this bound is over-estimated, which yields to excessive gain. Then, the main drawback of
the sliding mode control, the well-known chattering phenomenon, is important and could
damage actuators and systems. A first way to reduce the chattering is the use of a bound-
ary layer: in this case, many approaches have proposed adequate controller gains tuning.
A second way to decrease the chattering phenomenon is the use of higher order sliding
mode controller. However, in these both control approaches, knowledge of uncertainties
bound is required. As the objective is the not-requirement of the uncertainties bound, an
other way consists in using adaptive sliding mode, the goal being to ensure a dynamical
adaptation of the control gain in order to be as small as possible whereas sufficient to
counteract the uncertainties/perturbations. As recalled previously, this problem is an ex-
citing challenge for applications given that, in many cases, gains are also over-estimated,
which gives larger control magnitude and larger chattering. In order to adapt the gain,
many controllers based on fuzzy tools have been published; however, these papers do not
guarantee the tracking performances. Control gain in [29] dynamics directly depends on
the tracking error (sliding variable): the control gain is increasing since sliding mode is not
established. Once it is the case, gain dynamics equals 0. The main drawback of this ap-
proach is the gain over-estimation with respect to uncertainties bound. Furthermore, this
approach is not directly applicable, but requires modifications for its application to real
systems: thus, the sign function is replaced by a saturation function whom the boundary
layer width affects accuracy and robustness. Furthermore, no boundary layer width tuning

methodology is provided. A method has been proposed in [71] in order to limit the switch-
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ing gain must be mentioned. The idea is based on use of equivalent control: once sliding
mode occurs, disturbance magnitude is evaluable and allows an adequate tuning of con-
trol gain. However, this approach requires the knowledge of uncertainties/perturbations
bounds and the use of low-pass filter, which introduces signal magnitude attenuation, de-
lay, and transient behavior when disturbances are acting. A gain-adaptation algorithm
[72] is proposed by using sliding mode disturbance observer. The main drawback is that

the knowledge of uncertainties bounds is required to design observer-based controller.

1.5.1 Adaptive Twisting Algorithm

The adaptation process in the controller consists of dynamically increasing the control
gain a(t) such that the sliding variable and its derivative converge to the equilibrium
point s =$=0 in the 2-sliding mode (2-SMC) in finite time regardless of the bounded
perturbation with the unknown bound. Thereafter the gain a(¢) starts to reduce. This
gain reduction gets reversed as soon as the system trajectories again start deviating from
the equilibrium.

The following Twisting control algorithm is considered
u=-a(sgnx) +0.5sgn(y)) (1.48)

where the adaptive gain a(f,x,y). For any initial conditions a real 2-sliding mode is
established in the domain M:{x,y: N(x,y) <n},n>p in finite time via twist control with
the adaptive gain

wq
v2Y1
. —————sgn(N(x,y) - ) a=amin
@= % _ % (1.49)

X @ < Amin

42
with the establishment of the following conditions a@ >2D and 0 <y < T\/_\/E(O.Sa—D),
where y1, w1, g, ¥ and a;,i, are arbitrary positive constants, and a* is a sufficiently large

constant.

1.5.2 Adaptive first order algorithm of Plestan [1]

The controller of [1] displayed in this section does not estimate the boundary of pertur-

bation and uncertainties. But, there is an eminent price to do that: the new strategy
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guarantees a real sliding mode only. Consider the nonlinear uncertain system
i=f)+gu, (1.50)

where x € X cR is state vector, u € R the control input. The f(x) and g(x) are bounded
smooth uncertain functions. f(x) contains unmeasured disturbances term and g(x) #0 for
xeX.

The control objective consists in stabilize the continuous function s(x, £). Suppose that
s admits a relative degree 1 with respect to the controller u, and the derivation of the

sliding variables as:

.0,
-0t Ox
—Q+§f(x)+§ (xX)-u
~or " ox ox® (1.51)
—— N——
@(x,1) yY(x,1)

=px,)+yx,u
The functions ¢ (x,1) and y(x, ) are supposed to be bounded and satisfy the following
assumptions
0<Ym<yxD<ym lpx0l<eoy, (1.52)

where y,,, Ym and ¢y are unknown positive constants.

Definition 1.5.1. Consider the non-empty real sliding surface S* given by 1.6, and assume
that it is locally an integral set in the Filippov sense. The corresponding behavior of system

1.51 on 1.6 is called real sliding mode with respect to the sliding variable s(x, t).

Consider the following controller

) Kls(x,t)lsign(s(x,t)|—¢) if K>
Fe Is(x, )lsign(s(x,)l—€) if u (1.53)
u if K=su
with K(0) >0, K>0, £>0 and 1 >0 very small. The parameter p is introduced in order to
get only positive values for K. Given the nonlinear uncertain system 1.51 with the sliding
variable s(x,t) dynamics 1.51 controlled by 1.511.51, there exists a finite time tz >0 so

that a real sliding mode is established for all t = tg, i.e. |o(x,1)| <o for ¢t = tg , with

2
5=\/52+W—M (1.54)
K[y,

In conclusion, s converges to the domain |s| <§ in a finite time, but could be sustained in

the bigger domain |s| <§. Therefore, the real sliding mode exists in the domain |s| <§.
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1.5.3 Adaptive Integral High Order Algorithm [2]

Consider the system which is represented by the SISO integrator chain as
21=2p
2= (1.55)
zr=@)+y(@)u+Alz1)

The control objective is to drive the states of 1.55 to z=0 at the fixed finite time

Theorem 1. Let ki, k,...,k, >0 be such that the polynomial ¢p(A) = A" + koA 4+
koA + k1 is Hurwitz. For system 1.55, there exists a value such € € (0,1) that for every

€€ (1-¢,1), the origin is a globally stable equilibrium in finite time under the feedback
Wnom (2) = —ki1sgnzi|z1|1* — kasgnzp|zp|* — ... — knsgnzylz,|*" (1.56)

Qi1

where, @y, Az, ..., &y satisfy aj_1 = i=2,...,n with ap41 =1

2
2041 — @
Consider an integral sliding surface

s(2) =z, -2z, (0)—/wnom(z)dt (1.57)

The initial condition of the system is defined by z,(0). The nominal control wnom ensures
the convergence of the chain of integrators in finite time as given in Theorem 1.

Using the constant plus proportional reaching law yields
§=—p15—pasgn(s) (1.58)
where p1 =20, p2 > A(z, 1) to satisfy the reaching law condition, the control is obtained as
i=—72) o (2) +y (2) U~ Dnom + K (Zn — Onom) + P15+ p25gN(s)} (1.59)
The parameter p, will be estimated by using the adaptation law
p2 =vlsll (1.60)

where v is a positive constant.
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1.6 Conclusion

In this chapter, we discuss the ASM control design for uncertain nonlinear systems. First-
ly, we introduced traditional first order sliding mode design for uncertain systems. Then
the first order design strategies were extended to a class of high order systems. However,
the choice of the algorithms gains depends on the knowledge of boundary of uncertainties.
Therefore, an adaptive-gain SOSM algorithm was proposed without a priori requiring the
knowledge of the boundary of uncertainty, meanwhile, the gains of the algorithm stop

increasing when the observation error converges to zero exactly.

In the next chapter, a complex nonlinear system, i.e., wind energy conversion system
(WECS) will be presented. Adaptive control design and FTC will be concerned for this

system in the subsequent chapters.



Chapter 2

Modeling of Wind Energy Conversion
System

Wind energy has been regarded as an environmentally friendly alternative energy source
which has attracted much attentions [13]. Many initiatives have been launched to improve
the utilizing of wind power in electricity generation [73]. Subsequent interest in wind sys-
tems expanded in the support of utility grid, more reliable and relatively cost declined [74].
This section is organized as follow. the model of wind power systems are briefly discussed
in 2.2. The configuration of the system has been presented in 2.1. The traditional control

methods have been introduced in 2.3. Finally, the conclusion has been given in 2.4

2.1 System Configuration and Topology

A wind energy conversion system (WECS) is composed of several parts to achieve kinetic-
to-electric energy conversion. Wind generator is mechanical and electrical device that
convert the kinetic energy of wind into mechanical energy and are under intensive devel-
opment in the past few years as they are regarded as an efficient carbon free electricity
production technology. It forces electric flow through an external electrical device. For
wind power applications, fixed speed wind turbine is mostly operated with a squirrel cage
induction generator (SCIG) and a multiple stage gearbox during the 1980s and 1990s.
That fact that the rotor circuit of an SCIG is not accessible can be changed if the ro-

tor circuit is wound and made accessible via slip rings. Permanent magnet synchronous

33
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generators (PMSG) are becoming increasingly popular because of their ability to reduce
failures in the gearbox and lower maintenance problems. However, the price of PMSG
is very expensive. Since the late 1990s, most wind turbines, in which the power level
was increased to 1.5 MW and above, have adopted variable speed operation because of
the grid requirement for power quality. For these variable speed applications, doubly fed
induction generators (DFIG) are commonly used together with a multi stage gearbox and
power electric converters. The DFIG typically operates about 30% above and below syn-
chronous speed, sufficient for most wind speed conditions. It also enables generator-side
active power control and grid-side reactive power control. The reduced-capacity converter
is less expensive and requires less space, which makes the DFIG WECS popular in today’s
market. The common topology adopting the DFIG generator for wind power applications

is shown in Fig. 2.1.

Uop
@ 8
Ltgg
@ u
gC
O
T ST T T T T T T T T T T T T T R
|l Machine Side | I Grid Side I
: : Converter I I Converter :
|G <R[ 145 B <A .
| |<lr_A . T | R4 Ly 41_‘51\ |
\ T 10 Ry Lip s |
Tt 7 | == | -
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) I | |
|| J@ J@ ] | 4 J@ J@ |
Turbine| | ! T |
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Figure 2.1. The configuration of variable speed wind energy conversion system

The side view of a typical wind turbine is shown in Fig. 2.1. There are several variants
to this layout of components, particularly for wind turbine with DFIG. Nonetheless, the
figure serves as a general reference to locate and describe the different parts in modern
wind turbines [75][76]:

e Wind turbine, which is an instrument capturing wind energy by blades and convert-
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ing the wind kinetic power to mechanical power.
e Gearbox, which is a transmission device to adapt the rotation speed for the generator.

e Generator, which converts the power from mechanical form into electricity form. The
stator of the generator is connected to the grid directly, while the rotor is interfaced

with the grid through a power converter system with reduced power capacity.

e Converters, which is used as an interface connecting the DFIG rotor and the power

grid.

Variable-speed wind turbines can achieve maximum energy conversion efficiency over a
wide range of wind speeds. The turbine can continuously adjust its rotational speed ac-
cording to the wind speed. In doing so, the tip speed ratio, which is the ratio of the
blade tip speed to the wind speed, can be kept at an optimal value to achieve the ma-
ximum power conversion efficiency at different wind speeds. To make the turbine speed
adjustable, the wind turbine generator is normally connected to the utility grid through
a power converter system. The converter system enables the control of the speed of the
generator that is mechanically coupled to the rotor (blades) of the wind turbine. The main
advantages of the variable-speed turbine include increased wind energy output, improved
power quality, and reduced mechanical stress. The main drawbacks are the increased
manufacturing cost and power losses due to the use of power converters. Nevertheless,
the additional cost and power losses are compensated for by the higher energy produc-
tion. Furthermore, the smoother operation provided by the controlled generator reduces
mechanical stress on the turbine, the drive train and the supporting structure. This has
enabled manufacturers to develop larger wind turbines that are more cost-effective. Due
to the above reasons, variable-speed turbines dominate the present market. This case has
been studied on variable-speed turbine topolgy. The following section focuses on the wind

energy generation system mathematics model.

2.2 WECS Modeling

The proposed wind turbine model with control scheme is composed of the following sys-

tems, shown in Fig. 2.2:

e Aerodynamic model, evaluates the turbine torque 7, as a function of wind speed v

and the turbine angular speed w;
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Figure 2.2. Block scheme of a variable speed wind turbine model

e Pitch system, evaluates the pitch angle 8 dynamics as a function of pitch reference
bref g*

e Mechanical system, evaluates the generator speed w; and turbine angular speed wy,

as a function of turbine torque 7; and generator torque 7,

e Electrical machine and power converters transform the generator torque into a grid

current as a function of voltage grid

e Control system, evaluates the generator torque, pith angle and reactive power refer-

ences as a function of wind speed and grid voltage
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2.2.1 Aerodynamics System Modeling

The system of variable wind turbine with the power converters is a high order, high non-
linear and complex coupled system. The aerodynamic power P, in watt can be extracted
from the wind turbine is

p,= 0.5npr2Cp(/1, B) v (2.1)

where, r is the blade radium of turbine blades (m), v is the wind velocity (m/s), p is
the air density of the area (kg/ m3). wr? is the area swept by the turbine blades. As a
result, nr2vp is the mass of the air passing through the turbine swept area in a unit time.
Consequently, 0.57721°p is the kinetic energy of the wind at the velocity v in a unit time.

As a matter of fact, it is impossible to obtain all the kinetic energy from the wind.
Therefore a power coefficient C,, can be represented to describe the percentage of the wind

power by utilizing the following equation

c s
Cp(A,B) 201(1—2.—63,3—04)611' +cgA (2.2)
l
o
A=—tp o0 (2.3)
v v
1 1 0.035

1. _ 2.4
A A+0.088 M+l (2:4)

where, ¢; to cg are parameters designed by the turbine installation, w; is the angular
speed of the turbine blades (rad/s), A is the tip-speed ratio defined as the ratio between
the turbine blades tip speed v;p = w,r and wind speed v in (2.3). B is the pitch angle
(deg). C; is the turbine torque coefficient, which defined as

Cr=CplA (2.5)

As shown in Fig. 2.3, the C, grows up according various wind speed and has an unique

peak point.

2.2.2 Transmission System Modeling

The torque produced by the turbine and the mechanic torque delivered by the gearbox is

P, mwpriC,\A, B3
_Pa_7pr Gy pv7 (2.6)
Wy 20W;¢

Tt =KgpTm, Wmr = kgp (2.7)

Tt

where, kgj, is the gearbox ratio. 7, represents the aerodynamic torque in the turbine
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Figure 2.3. Power coefficient Cp, versus different wind speed
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Figure 2.4. Turbine torque 1 versus different wind speed and the mazximum power point line

side. T;;, and W, are the mechanic torque and mechanical speed of the generator in the

machine side, respectively. Or in the form using the torque coefficient Cy:

3 2
7 wpr’CiA, v
=t _r ZtVeR 2.8
= e 2kg) (28)

Fig. 2.4 shows the curves of turbine torque versus different wind speed with maximum

power point line.
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2.2.3 Doubly Fed Induction Generator Modeling

The dynamic and steady-state model of the DFIG is introduced, which consists of the
differential equations to describe the electromagnetic dynamic of the stator and rotor in
synchronous frame as Fig. 2.5 shows. The effects of slotting have been neglected. It is
assumed that the permeability of the iron parts is infinite and the flux density is radial in
the air-gap. And for simplicity in the notation, the time dependence of the magnitudes
will be omitted in the following sections. In subsequent sections, the magnitudes and
parameters of the rotor are always referred to the stator. The simplified and idealized
DFIG model can be described as three windings in the stator and three windings in the

rotor, as illustrated in Fig. 2.5.

Figure 2.5. Ideal three-phase windings (stator and rotor) of the DFIG

These windings are an ideal representation of the real machine, which helps to derive
an equivalent electric circuit, as shown in Fig. 2.6. Under this idealized model, the

instantaneous stator voltages, current, and fluxes of the machine can be described by the
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following electric equations:

. d
vSA:RszsA+% (2.9)
. d
Vs = Rsisp + —Z;B (2.10)
. dWSC
=R + 2.11
Usc slsC At ( )

where R; is the stator resistance; is4, isg, and isc are the stator currents of phases A,
B, and C; vsa, vsp, and vsc are the applied stator voltages; and ya, ¥sp, and ¢ are

the stator fluxes. The stator side electric magnitudes, at steady state, have a constant

dy, dy,,
. R+ e _ ___da . R '
i AAA——N m-_/\/w._.”“
. ™M |
+
dy dy,,
i R+ - - - dt + R, .
| ¥
Vsa dy., dy,, Vra
, dt
Vb i R * - - - + R, -
;_J\/\/\/_'_(W\q_ | | /\/\/\/H+ v,
V)

Figure 2.6. DFIG electric equivalent circuit

sinusoidal angular frequency 6,,, the angular frequency imposed by the grid. Similarly,

the rotor magnitudes are described by

. Ay rq
=R + 2.12
Ura rlra dr ( )
. d
Urp = Ryiyp+ Z;b (2.13)
. d
Vre = Rylpe+ % (2'14)

where R, is the rotor resistance referred to the stator; i,,, i,p, and i, are the stator
referred rotor currents of phases a, b, and ¢; v,q, V;p, and vy, are the stator referred
rotor voltages; and ¥4, ¥rp, and ;. are the rotor fluxes. Under steady state operating
conditions, the rotor magnitudes have constant angular frequency, w,. Assuming a general

DFIG built with different turns in the stator and rotor, all parameters and magnitudes of
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the rotor are referred to the stator. It was indicated that the relation between the stator

angular frequency and the rotor angular frequency is
Wr+ Wy =w; (2.15)

where w; is the electrical angular frequency of the machine. Similarly, w, is the mechanical

angular speed, related to the electrical frequency by means of a pair of poles p;:
Wy = pProm (2.16)

Hence, the rotor variables (voltages, currents, and fluxes) present a pulsation or that varies

with the speed. And the electromagnetic torque 7, generated by the DFIG shown in Fig.

)

Figure 2.7. Mechanical azis of the DFIG

DFIG

2.7 mathematically represented by the following equation:
dwm
Te—Tm=J]—— 2.17
o= 2" (27)
where J is equivalent inertia of the mechanical axis, 7, express external torque applied to
the mechanical axis, here it is the torque from the gearbox. w,, is mechanical rotational
speed. From the mechanical model, it is possible to derive the electric rotational speed

wm, and the angle 6,,.

2.2.4 Space Vector Technique

By assuming a symmetrical three-phase operation in sinusoidal steady-state, whereby cur-
rents, voltages, and flux linkages are sinusoids and form a positive sequence, then, for
example, the instantaneous stator currents, if I; is the rms value of the current and w is

its angular frequency and t the time, can be expressed as follows:

is (1) = isl e/ = I;el®"* (2.18)
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27
where j is the imaginary unit, a = e] /3 is the complex operator that makes a vector ro-
tate 27/3 rad in the counter-clockwise direction, |is| is the amplitude of the stator current

space-vector.

Because of the earlier emphasized physical meaning, the space-vector quantity has been
historically defined with reference to the AC electric machine currents. Its application
can, however, be extended to any three-phase time-varying quantity, being it not related
to electric machines. Given therefore a set of three-phase quantities x4 (f), xp(f), and

xc (1), the corresponding space-vector could be defined in this way:
x(0) = k[xa (D) +axa () +a*xa (0] = x|/ = xp (£) + jxo () (2.19)

where xp () and xq (f) are, respectively, the instantaneous values of the sD and sQ com-
ponents of the stator current space-vector corresponding to the real and imaginary com-

ponents of the space-vector in the complex plane.

Let x (¢) = xp (1)+ jxq (¢) be a generic space-vector. It should be remarked that its direct and
quadrature components xp (f) and xq (#) can be directly computed from the three-phase
variables x4 (t), xg (t), and x¢ (#) and vice versa. The transformation from the three-phase
into the biphase variables is called 3/2 transformation, or DQ transformation, while that
from the biphase into the three-phase variables is called 2/3 transformation. Both these
transformations are linear and depend on the constant factor k in the definition of the

space-vector 2.19.

A nonlinear transformation is needed to retrieve the space-vector x& = x& + jx§ expressed
in this generic reference frame rotating at the speed wg from the corresponding x(f) =
xp (£) + jxq (£) expressed in the stationary reference frame:

x8=x§+ jxb = xe /% (2.20)
4

y
starting from the corresponding components in the stationary reference frame xD, xQ as

Decomposing 2.20 in its real and imaginary components, it is possible to compute x&, x

x8 = xp cos (Bg) + xsin (Og)

g

(2.21)
xy = —xpsin (fg) + xq cos (fg)

where the 0 implies the chosen space vector direction, which has the infinite reference

frame. Hence, in Fig. 2.8, the transformation from abc into the dg reference frame is
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Figure 2.8. WECS transformation to dq reference frame.

illustrated. The x notation represents voltages or currents. For the rotor voltages and
currents, only a rotational transformation is required. However, for stator voltages and
currents, rotational and Clarke transformations become necessary. Finally, for both stator
and rotor fluxes, the DQ components are calculated by means of the rotational transfor-
mation. In this case, the DQ reference frame rotates at w angular frequency. The space
vectors referred to this DQ rotating frame also rotate but at different speed, that is, or

angular frequency.

Consequently, by applying these last transformations in Fig. 2.8, the space vector dia-
grams of Fig. 2.6 are converted to the space vector diagrams of Fig. 2.9. In this case,
the dq reference frames rotate at 0,, electric pulsation, 6y which denotes stator flux di-
rection, so the space vectors referred to this dq rotating frame are stationary. This leads

to constant dq components of the space vector projections, due to this rotating dg axis.
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Figure 2.9. dq Model of the DFIM in synchronous coordinates.

Then, it is possible to derive DQ to dq components, from the calculated abc components,
without needing a different model of the machine. So, by simply using reference frame

transformations, the behavior of the machine is inferred in DQ and dgq reference frames.

The fact that the rotor circuit of DFIG is not accessible can be changed if the rotor circuit
is wound and made accessible via slip rings, which offers the possibility of controlling the
rotor circuit so that the operational speed range of the generator can be increased in a

controlled manner.

The dynamic and steady-state model of the DFIG is introduced, which consists of the

differential equations to describe the electromagnetic dynamic of the stator and rotor in
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synchronous dq frame as follows:

Ysa = —Rsipg+0rWsq+vsq (2.22)
Vsqg = —Rslrg—0r¥sa+ Vsq (2.23)
Yra = —Rrira+@L—0)Prq+ra (2.24)
Vrg = —Rrirg—(@L—0)Yrq+Urg (2.25)
Ysa = Lsisa+Lmira (2.26)
Ysq = Lsisg+Lmirg (2.27)
Yra = Lyirg+Lmisa (2.28)
Yrqg = Lrira+Lmisg (2.29)

where the variables, the direct components and quadrature components are represented as
d and g for short. The i;q and is4 are stator current viewed from rotating reference of dg
parts. Similarly, i,4 and ir; are rotor currents. ¥sq and yg, are stator flux linkages. .4
and v, are rotor flux linkages. Ls, L, and Ly, are the stator, the rotor and the mutual
inductance. Rs and R, are the resistance of the stator and rotor. wy is the frequency of

the grid.

The mechanical part of the DFIG also has been transfered, generator rotor electrical

angular speed w, equals p,w;;,, where p, is the number of the pole pairs of the generator.

3L . .
Te= EL_mpr (U/sqlrd _'Wsdqu) (2.30)
N
. . Pr
W = Prom = T (Tr—Te) (2.31)

2.2.5 Dynamic reduced order model of WECS

When the system is working in the nominal region, the g-axis of the reference frame is
aligned with the stator flux vector. Assuming that the d-axis of the stator reference frame
is aligned with the stator flux spatial vector, the stator flux dynamic equations can be
rewritten as follows. When the system is working in the nominal region, the g-axis of the

reference frame is aligned with the stator flux vector. The stator flux dynamic equations
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can be rewritten as follows:

Ysa = Vilog
= 0
z“’ . (2.32)
sd =
1psq =0

By replacing 2.32 into 2.22-2.29 state equations of the WECS can be expressed as follows,

with x=1 i.4 irq Wy ]’ u:[ UVra VUrg ]’
) LsR L
X = - zzrx1+(a)L—X3)X2+LTSurd (2.33)
eq eq
L,V LsR L
B o= —(CESE 4 X)L~ X3) -~ Xpt g (2.34)
wLLeq eq Leq
30 12 2
nr3C,v2kgp 3L, VL p?
iy = DL pl CebPr | SomILPr (2.35)
274 2 L1

where, L3, =L, L~ L},

2.3 State of Arts of Control System

Scalar control of Induction Machines (IM), although yet successfully employed in indus-
try, is not adoptable for those application requiring high dynamic performance (e.g., servo
drives, flying shears, rolling mills, robotic manipulators). The open-loop control of the
magnetic flux linkage, typical of scalar control, makes the generation of the rated electro-
magnetic torque of the machine basically impossible at very low and zero speed. Field
oriented control (FOC shown in Fig 2.10) of IM drives was introduced almost 30 years
ago, but it has been intensively studied and over the last few years, becoming nowadays
the industrial standard as far as high-performance IM drives are concerned. Its develop-
ment has been a significant breakthrough in the field of control of electrical drives with
IM since it has permitted the use of this kind of motor for applications where only DC
motors offered adequate dynamic performance. FOC permits the IMs to be controlled
with dynamic performance comparable with that achievable with DC motor drives, but

without the drawbacks caused by the brushes.
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The application of FOC has been possible, even at an industrial level, thanks to the
development of power electronics, resulting in reliable, cheap and fast-switching off-the-
shelf power devices along with powerful low cost digital programmable architectures. As
a matter of fact, today, IM drives are a valid alternative to DC motor drives, also from

an economical point of view. The controller is designed for rotating all the blades at the
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Figure 2.10. PI based FOC Scheme

same angle or each of them independently. This independent regulation gives more degrees
of freedom to the control system. This particular operation would reduce the stresses in
the blades. The independent regulation of blades is an important innovation that will
bring more intelligence into the control system of wind turbines. In studying a dynamic
control system, a blade pitch involves many torques and forces. The representation of this
torques requires modeling the structural dynamics of the blade, the behavior of the air

around the blades, or the inclusion of friction in the bearings. Moreover, regulation of the
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speed of rotation around the longitudinal axis of the blades has a bandwidth much greater
than that of the control of the angle itself. Given these last two observations, the most
standard approach is to represent the loop control, the rate of change of pitch angle, and
a linear system of first order containing the main dynamics of the actuator (hydraulic or
electric). In fact, when modeling the pitch control, it is very important to model the rate
of change of this angle. Indeed, given the effort sustained by the blades, the variation
of the pitch must be limited. It is limited to about during normal operation and 20 for
emergencies. Regulation of the blade angle is modeled as shown in Fig. 2.11, by a PI
controller that generates a reference rate of change of pitch; this reference is limited and
a firstorder system gives the dynamic behavior of speed control of pitch variation. The
pitch angle itself is then obtained by integrating the variation of the angle. Pitch control is
normally used for large wind turbines. During normal operating conditions with the wind
speed in the range from 3 to 15m/s, the pitch angle is set at its optimal value to capture
the maximum power from the wind. When the wind speed becomes higher than the rated
value, the blade is turned out of the wind direction to reduce the captured power. The
blades are turned in their longitudinal axis, changing the pitch angle through a hydraulic
or electromechanical device located in the rotor hub attached to a gear system at the base
of each blade. As a result, the power captured by the turbine is kept close to the rated

value of the turbine.

B pr | 4P 1 dﬁm s
S

+ Controller T 1

Figure 2.11. Wind energy conversion system

2.4 Conclusion

In this chapter, we introduced the system configuration and topology of the wind energy
conversion system. And the system has been modeled in electrical and mechanical parts.
Space vector of induction machine has been introduced in order to decouple and simplify

the DFIG model. Finally, a traditional field oriented control has been designed for the
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system. In the following chapter, an advanced adaptive control of the system will be

designed based on first order sliding mode control.






Chapter 3

First order ASMC for Uncertain System
and Application on WECS

Robust finite time stability of uncertain nonlinear systems has become significant in prac-
tice. The uncertainties are assumed to be bound is hard to obtain exactly while it affects
the stability in many cases. The call for renewable energy has been growing rapidly during
last decade [22]. Wind energy regarded as an environmental friendly alternative energy
has attracted much attentions of industry and academy. The main control objective of a
wind energy conversion system (WECS) is focus on improving the utilization of the wind
energy, which is famously emerged as maximum power point tracking (MPPT) technique
[13]. A sensorless control for small WECS has been presented in [77] to promise the maxi-
mum power efficiency. [78] adopts a neural network based field oriented controller (FOC)
to obtain the optimal tip speed ratio as well as the active power. However, all these con-
trollers do not take consideration of the bounds of the wind speed and other perturbations.
As a result, their positive gains of the controllers have to be chosen carefully, as a large
value to overcome the perturbations. Sliding mode controllers of WECS have been pre-
sented in [25] and [26]. However, the gains of the controllers are fixed. For the robustness,
the coefficients of those controllers need to be tuned frequently, according to the varying
disturbances and perturbations in practice. As wind is an uncertain resource, the bound
of the variation of wind speed affects the stability of WECS. Robust control of WECS
has become significant in both theory and practice. The uncertainties are assumed to be

bounded physically. Moreover, the knowledge of the bound is hard to obtain exactly while
51
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it affects the precise control of WECS. It follows a challenge to design a robust controller of
WECS, where the upper bound of the uncertainty is not requested. The desired controller

might not require the knowledge of the uncertainties bound.

The chapter is organized as follows. In section 3.1, the state of arts of adaptive sliding
mode control has been discussed. In section 3.2, the theory of a new sliding mode algorithm
is introduced, and the mathematical model of the WECS is discussed, and the proposed
controller is applied to regulate the WECS. Section 3.3 gives simulation results of the
WECS conducted by the controller in MATLAB SIMULINK. Also a comparison algorithm
is given to validate the better dynamic performance of the proposed scheme. At last,

section 3.4 draws the conclusion.

3.1 Introduction

For the cases of unknown bounds, adaptive sliding mode (ASM) controllers have been
presented in [27] [28] firstly. Huang et al. [29] develops an adaptive controller which can
work without the bound values. The controller of [29] need not to know the bound of
uncertainties, or other disturbances comprised in the system. The gain of the controller is
dynamically tuned in order to ensure the convergence of a sliding variable. However, the
algorithm can only increase the gain, which leads the gain over-estimation. An important
design goal for an adaptive controller is to ensure a dynamical adaptation of the control
gain as small as possible. In order to adaptive the gain, many controllers have been pub-
lished [79]. However, methods proposed in those papers can not guarantee the tracking
performances. Furthermore, the gain dynamics equals to zero, when the sliding variable
converges to zero. It leads the controller stop working. As the boundary layer width
affects accuracy and robustness, boundary layer width tuning methodology is provided in
[79]. However, this approach requires the knowledge of uncertainties and disturbances.
One of the adaptive sliding mode controller proposed in [1] (by Plestan et al.) must be
mentioned to solve the problems above. Plestan et al. [1] present a novel controller of
a bounded uncertain system without the problem of gain over-estimation. However, this
algorithm is not able to guarantee the sliding variable converge to an exact neighborhood.
As for [30], the gain is adjusted properly to get a sufficient value to counteract the un-
certainties, but the state still has overshooting around the neighborhood. Other works
design an adaptive first or higher order sliding mode in [31, 32, 33, 2, 34, 35, 36, 37, 38|.
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A super twisting ASM controller in [31] can continuously force the sliding variable and its
first derivative to zero with unknown boundary. [32] presents an adaptive twisting SMC
without gain over-estimation, which is a further development of [31]. [33] presents a super
twisting ASM controller aiming to reduce chattering effect, and it is applied for an electro-
pneumatic actuators system. An integral high order ASM controller in [2] eliminates the
need of knowledge about the upper bound of the uncertainties. The ASM controller in [39]
converges a perturbed chains of integrators to a neighborhood of zero without the prior
knowledge of the perturbation bound. [35] proposes a twising ASM controller and observer
with unknown boundaries. [36] develops high order ASM controller based on a first order
ASM of unknown bound perturbed system. Discrete time ASM controller is considered in
[37] which rejects the unknown bounded disturbance varying slowly with respect to the
sample frequency. [38] is an advanced ASM controller of multi-input multi-output system.
However, the common drawback for all these works is that the insurance of forcing the

sliding variable inside the neighborhood of zero does not exist.

In our approach, the sliding variable converges to a predefined neighborhood without any
overshooting. According to the knowledge of authors, it is the first work attributing this
performance. This approach has been studied in this thesis for first order system. Our

future objective is to generalize this first step for arbitrary order.

As recalled previously, this problem is a challenge for some applications, when the sliding

mode is achieved. But its adaptive gain is overestimated after reaching of its sliding mode.

In this chapter, we present Lyapunov-based adaptive first order sliding mode controller of
WECS. The advantage is that in the case where the bound of the uncertainty is unknown,
the controller is able to converge the sliding variable to a predefined neighborhood of the
origin and never get out of it. Additionally, it presents interest to develop the application
of the proposed algorithm, which is an ideal option to control the uncertain WECS oper-
ating in perturbed environments. This new adaptive controller results following attractive

characteristics:

e Insurance of convergence to a predefined neighborhood of zero without any over-

shooting

e Rapid adaptation dynamically responses to the error
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3.2 Theoretical study

In this section, the theory of the algorithm is studied with the proof based on Lyapunov
analysis. Additionally, the BH algorithm is compared with the similar work of Plestan et
al. [1].

3.2.1 Problem formulation

Recall the classical problem formulation presented in [1].

The control objective is to stabilize the continuous function s(x, £). Suppose that s has a
relative degree 1 with respect to the controller u, and the derivation of the sliding variables

as:

0
§=o—1s] [f(x)+gx) ul

63+asf()+63 )
=+ — X -— X) U
at " ox ax® (3.1)
—_—
@(x,1) Y (x,1)

=p(x,)+y(x,u
The functions ¢ (x,t) and v (x, ) are supposed to be bounded and satisfy the following
assumptions

0<ym=<y,D<ym lpx|<eoum, (3.2)

where y,,, Ym and @y are unknown positive constants.

Remark 1. In our study, we don’t use any assumptions for the time derivative of ¢ (x, 1)

and y(x,t).

3.2.2 Idea behind the proposed controller

The controller has an objective to force the sliding variable s to a neighborhood of zero
|s| < & for some positive predefined €. Our idea consists of forcing s in finite time to
a smaller neighborhood defined by |s| < €/2 by increasing the gain as in [1]. Then the
controller forces s to remain in the predefined neighborhood (|s| <€) for all consecutive

time by creating some unreachable edge on |s|=¢.
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3.2.3 Main result

Consider the following controller
u=-K(s,t)-sign(s),

where K is the adaptive gain defined as

£
= k1 until |s| < 2

eK
e—|s|

later,

with K(0), K and k; are arbitrary positive constants.

Then there exist a finite time T and a constant & < g, such that

(i) Vi=T, |s| <max(0,8),

(i)  limsuplul < max(K, 2Y).
m

Proof. The proof is given in two steps.

First step: Convergence of s to |s| <¢g/2.

(3.3)

(3.4)

(3.5)

We assume first that the initial condition of s satisfies |s| > &€/2, then the adaptive gain can

be defined by K = k;. In this case the convergence is evident.

Second step: s remains in |s| < €.

We assume now that the initial condition in this phase satisfies |s| < /2, and we proof that

for all next time that |s| < €.

1
Consider the Lyapunov Function V = 532, then its time derivative can be given as follows

Vo= sp+yu)
K-sign(s)

e—|sl
_ls|.'}/m.K.£

e—|s|

= s~(p—s.’y-

Is|-@

IA

K

- (f}/mkg_(p£+|s|(p)

e—|s|
It’s easy to get that V< 0, for max(0,&) < |s| < &, where

K
éze(l—YL).
@

(3.6)



BN APTER 3. FIRST ORDER ASMC FOR UNCERTAIN SYSTEM AND APPLICATION ON WECS

This proves the item (4.10 (i)).
As the adaptive gain K is monotonous for s € (0,¢), then by simple computation one gets
that
limsup |u| < max(|uls=o), | uls=7)- (3.8)
This ends the proof.
O

In order to illustrate the theory, we fix our objective to force s to |s| <& =0.2. We consider

the following simulations in Fig. 3.1 and Fig. 3.2.

w ~
T T
I I

Adaptive gain K
o

e

Time (s)

Figure 3.1. Behavior of adaptive gain K

Controller u and sliding variable s

Figure 3.2. Controller u and sliding variable s
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The adaptive gain K(t) will increase and it forces the sliding variable s to converge to a
small neighborhood of zero (|s| 0.1) in around 3 second. Then it will force s to remain

in |s| <€ =0.2 for all subsequent time.

3.2.4 Discussion and comparison

In the study of [1], the neighborhood of convergence is defined by [s| < &,, where &, is
defined as

(3.9)

Clearly, £, > € means that the neighborhood of convergence is greater than the required.
In addition it can not be estimated as ¢p; and y,, are unknown.
Otherwise, in our result we get

K
é=£(l—%)<£. (3.10)

We can ensure the convergence for predefined region. To our best knowledge, it is the first

work that get such a result.

3.2.5 Control objective

As the Fig. 3.3 shows that the power coefficient curves have the unique maximum point
Cpmax, which are related to the optimal tip-speed ratio Ap;. A limit on the amount
of the power that can be captured from the wind is known as the Betz Limit which is
approximately 59.3% of the attainable kinetic power. Considering the imperfection of the
turbine, this value will drop. Fig. 3.3 depicts the relationship of C, versus A curve, the

maximum value of Cy is 0.4953 (Cpmax = 0.4953) , and the respective Aop; is 7.2.

The control problem addressed in this thesis is to regulate the torque and the reactive

power as follows:

Q) = Qrep (1) <éq
Te (1) _Tapt(t) <&q

Q (3.11)

Q
<
Il
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Figure 3.3. Power coefficient versus tip-speed ratio in different pitch angle

The torque developed by the machine and the reactive power injected by the system into

the grid can be written as:

= =Vi(—ig—- 3.12

Q 2 L( Ls lrd stL ( )
3 LmVL .

= —= 3.13

fe 2 Lywy, Prirq ( )

For the turbine torque given in (4.46-4.46), to achieve MPPT objective, the torque could

be rewritten as:

Pmax 1 5 Wy Py
Topt () =——=—pnr’C R E— 3.14
opt o, ZP pmax/l?(;ptkgbB ( )

To simplify the expression, a coefficient k,p; describing the relationship between torque

and rotor speed is defined as:

1 C
Kopt = Epm’s’ p3max (3.15)
Aopt

3.2.6 Adaptive sliding mode controller application

Define the sliding variables equal to the errors of the control variables:

eQ=Q(I)—Qref(l') (316)

Sq (1)



3.2. THEORETICAL STUDY

v ﬂ'opr
Te > wr
MPPT
rd
Adaptive ) -
Sliding Mode u WECS Dynamic - Q*
Controller 9 State Model e i
lrd
N Sliding Surface
qu
S, S,

Figure 3.4. Control system block diagram

The control objective is to steer the variables s = [s4, s4] and its first time derivative § to

a predefined region € in finite time. From (4.61-3.17), we have:

3 Ly, %3
= =Vi(— — t 3.18
Sq (x) > .( L lrd Ls(UL) Qref( ) ( )
3 LmVL . kop[ 2
S (x) = —-—=— lyg— W 3.19
7 2 Lowy "M 23, (3.19)

The first order derivative of sliding variables §; and $; are:

3LuR V.  3Ln,VL

X (wg — x3) x;
5 L%q 1 2 L, L—X3) X2

Sq =

Pa
6 Q +3 LmVL (320)
ax <"l Lz,
%’_JH—‘
Yd

~

Urd

Pa
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. _3(LaVipr LmVi
Sg== mn ZL 2r n prxl (wr — x3)
2\Lswils, Lswr
P
_kop[ pnrstvzkngrngVLx .
&, JA JLw, )™ (3.21)
g

3 Lin VLR, pr 3L Vipr
+- xz__ 2 rq
2 Ly,or

2 quwL

v

¢4 Y
The control diagram of the system is shown in Fig. 3.4. The block of MPPT control

provides optimal value of the torque, the sliding mode surface is generated by the states.

Finally, the proposed controller gives rotor voltages to the system.

3.3 Simulation results

The implementation of the wind turbine aerodynamics, generator dynamics, and sliding
mode control architecture in SIMULINK are shown from Fig. 3.5 to Fig. 3.13. The wind
speed model is generated by a test function, which is able to produce varying degrees
of wind speed variations. This particular wind speed function is chosen to demonstrate
the effectiveness of the controller design because of its highly time-varying, and the wide

range.

O Il Il Il Il
0 20 40 60 80 100

Time (s)

Figure 3.5. Controlled direct-axis current irq
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Figure 3.6. Controlled quadrature-azis current irq of the rotor
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Figure 3.7. Controlled mechanic rotation speed Wy,

The first test results shown in Fig. 3.5 and 3.6 are that of the d-axis rotor current i,4(f)
and the g-axis rotor current i,4(f). As can be seen by Fig. 3.5 and 3.6, the i,4(f) and Irq(2)
curves controlled by the proposed algorithm are stable and clear. The mechanic rotation
speed wpn,r in Fig. 3.7 is presented in the same environment, and the controller depicts
good performance in transient process during system tuning. It is clear from the figures

that the proposed controller is robust against wind speed variations.

Fig. 3.8 to Fig. 3.13 show the performance of the two sliding controllers. Fig. 3.8 and Fig.
3.9 show the controllers u,4 and u;4. Fig. 3.10 and Fig. 3.11 depict the adaptive gain Ky

and Ky of u;4 and u;4. The gain linearly increases before 0.3 sec. Until the errors converge
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Figure 3.8. Direct-axis controller u,q
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Figure 3.9. Quadrature-azis controller u,q

to the region predefined by €, the algorithm is changed to the second part. The zoom-in
pictures of Fig. 3.12 and Fig. 3.13 show that the errors will never exceed the predefined
limit €4 =10 var and €, =0.1 Nm, which are sufficiently small errors for WECS control.
Fig. 3.12 and Fig. 3.13 are curves of the sliding variables s; and s;, which stands for
the error of torque and the error of the reactive power. The errors of the sliding variables
are extremely small compared with the work in [25], where the vibration of the system is

greater than 3Nm.

The second simulation results of a comparison work are shown in Fig. 3.14 and Fig.

3.15. The sliding variables with another adaptive controller of Plestan et al.[1] method
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Figure 3.10. Adaptive gain Ky of direct-axis controller u,q
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Figure 3.11. Adaptive gain K, of quadrature-axis controller u,q

are applied in the same WECS, for the same control objective as well. It should be
noted that, the errors of the compared controller of Plestan et al. exceed the convergence
neighborhood €4 =10 var and €, =5 Nm. The simulations depict that the proposed
controller can constrain the tracking error in the predefined neighborhood & without any
overshooting, and for this reason we obtain better control performance from the proposed

controller.
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Figure 3.12. Sliding variable sz in case of the proposed algorithm

150
0.1
100 ! 0.05
B 0
g
= 50} -0.05
-0.1
0 50 100
O L
0 20 40 60 80 100

Time (s)

Figure 3.13. Sliding variable sq in case of the proposed algorithm

3.4 Conclusion

This chapter presents a novel first order Lyapunov based adaptive controller. It allows
the sliding variable to converge to a predefined neighborhood without any over-estimation.
Then we apply the proposed controller to the wind energy system. Finally, we compared
another adaptive controller adopting the method of Plestan et al. [1] with our algorithm.
The simulation results show that the tracking error controlled by the proposed algorithm
will never escape from the convergence region predefined. It means the proposed controller

has a better control character.
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Figure 3.14. Sliding variable sq in case of Plestan et al. [1] algorithm
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Figure 3.15. Sliding variable sq in case of Plestan et al. [1] algorithm






Chapter

Adaptive HOSM Control for Uncertain
System and Application on WECS

4.1 Introduction

Control under uncertainty condition, including parameter variation, unmodeled dynamic

and external disturbance, has attracted much attention of modern control theory [80].

Sliding mode control (SMC) is one of the most powerful control strategy for its robustness
against internal and external perturbances [21]. Due to the use of discontinuous function,
the chattering phenomenon occurs, which is the main disadvantage of the conventional
SMC for its implementation in a wide range of applications [42]. High order sliding mode
(HOSM) controllers have been presented, in [81, 82, 83, 84], which allow to attenuate the
chattering. In addition, HOSM control can remove the conventional relative degree re-
strictions [57]. However, those controllers do not have constructive algorithm for the gain
tuning, and they require the knowledge of uncertainties bound which are usually overesti-

mated.

[?, 85, 2] present adaptive sliding mode (ASM) controllers which do not require the knowl-
edge of uncertainties bound. The dynamical adaptation of the control law design focuses
on tuning a large gain to conquer the perturbations. However, in those works, their dynam-
ic adaptation laws only have increasing gains, which inevitably arise gain overestimation

leading to undesirable chattering. [38, 1] present ASM controllers using dynamic control
67
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law with a decreasing gain after convergence which solve the gain overestimation problem.

However, the gain decreases very slowly, in some approach it needs large time for the
controller to be adjusted to a proper value. Also the control law does not guarantee that
the sliding variable remains inside the neighborhood after convergence. [30, ?]| present a
controller to converge the states to a neighborhood of the origin, but the states may over-
shoot this neighborhood. [35, 86] present adaptive HOSM controllers, and [28, 87, 37, 88]
presents discrete time ASMC. However, their states are not able to converge to a neigh-
borhood rigidly. To our best knowledge, there is no contemporary work can ensure the

convergence to a predefined neighborhood of origin.

In this chapter, we present a new Lyapunov-based adaptive HOSM controller for nonlin-
ear systems. The problem has been formulated as the stabilization of a perturbed integral
chain with unknown bounded uncertainties. Our main contribution is that the proposed
controller can converge the sliding variables to a predefined neighborhood of origin without
any overshooting. Additionally, the controller has been applied on a wind energy conver-
sion system (WECS) to prove its advantages. A variable speed WECS is a high nonlinear
system with unknown but physically bounded uncertainties. The controller of WECS is
designed to maximize the active power and regulate the reactive power, which is so-called
maximum power point tracking (MPPT) technique [13, 22, 24, 89]. And owning to the
main attractive advantage of the controller, the controlled states have an exact conver-
gence to the predefined neighborhoods. It helps alleviate the mechanical stress without

chattering problem by generating continuous control input.

The chapter is organized as follows. Section II briefly discusses the problem formulation
and the assumptions. Section III shows the design of the high order sliding mode controller
with a r— th order integral chain approach. The application on a wind energy conversion
system example is carried out in Section VI with simulation results. Section V concludes

the work.

4.2 Problem Formulation and Control Objective

Consider a nonlinear system

x=fx)+gx)u
fx+g (4.1)

y=0(x)
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where x € R” is the state vector, and u € R is the control input. y€R is the measured out-
put function. o € R is known as the sliding variable. f(x) and g(x) are uncertain bounded

smooth functions, and g(x) #0.

Assumption 2. - The relative degree of the system assumed to be constant and equal to

r. This means that the controller will appear for the first time in the r-th time derivative.

Assumption 3. - The r-th order derivative of o satisfies the following equation

O,r — (p()+)/()u (4 2)

where, the functions @ () = L}a and y () = LgL}_IU.

Assumption 4. Functions @ (-) and v (-) are supposed to be bounded. There exist unknown

positive constants Ym, Ym, ©m that

0 < Ym=yO=sym, leO)l<seum (4.3)

Represent the system by a r-th order integral chain as:

21=2
Zo =23
$ (4.4)
Zr-1= 2y
Zr=p()+y(u

where (0,0, ---, (Ir_l) =(z1, 22, ***, 2r).

The control objective consists of forcing the states z; and its first (r—2)-th time derivatives
(21,22, -+ ,2r-1) to an arbitrary predefined neighborhood of zero with the respect of the

states z; in (4.4). This means

limsup|z;|<A;, i=1,---,(r—1) (4.5)
Z—00
where, the positive parameters Aj,Ay,---,A,_1 are predefined.

Before the control design, we recall the boundary layer definition.
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Definition 1. In a u-vicinity of the origin, the so-called boundary layer saty(-) is defined

as follows [90]. For |s| > p, sat,(s) is just equal to sign(s). For|s| < u, sat,(s) is continuous

shown in Fig. 4.1.

sign(s), forls|>pu

4.6
i,forlsls,u (4.6)

saty(s) =

where W is arbitrary positive constant.

1.5

-1.5 L L L I I
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

S

Figure 4.1. Function sat,(s)

4.3 Control design

In this section, we design the controller in two steps. Firstly, the new adaptation algo-
rithm for the first order system has been introduced. The continuous controller forces
one integrator system converge to a predefined neighborhood of zero. Secondly, we cope
the recalled the first order controller with a linear controller w,q,; which can stabilize a
(r —1)-th order integral chain. The controller converges (r —1)-th order integrators to a

predefined neighborhood.

4.3.1 First order controller

Consider the perturbed one integrator system

§ = OO+ (u (4.7)
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with the bounded functions I'(-),® () that
0 < Tp<T(=<Ty, |®0)|<dyD(x,1) (4.8)

where T, Ty, @37 are unknown positive constants, and ®(x, ¢) is a known positive function

which depends on state and time.

Theorem 2. Consider the following controller

B £
w = - (kit+ ke ®%) sate (s) until |s| <,

Ly P ) 4.9
Uy = — (—38| + kp @? satz (s) later, )
1 _

£

where ki, ko, k3 are arbitrary positive constants. Then there exist a finite time tr and

constant € < €, such that

(i) Vi= tT,limsupISISmax(g,é),

/4 li < ks + ko ®?, k Py’ D2 (4.10)
(ii) imsup |uy| < max| ks + k,@°, k» m+

ks
_lsl

£

The function is depicted in Fig. 4.2. The proof of (4.10) is given as follows. Item

50

25+

-50
-10 -5 0 5 10

Figure 4.2. Function B
e

(4.10 (i)) and item (4.10 (ii)) are proved separately. For the attraction condition s$§ <0,
interested reader could refer to Khalil‘'s book [41].



CHAPTER 4. ADAPTIVE HOSM CONTROL FOR UNCERTAIN SYSTEM AND APPLICATION ON
WECS
Proof. The proof of item (4.10 (i)) is split into two steps. For the first step, we show that

€
u; yield for the attraction condition s$ <0 after tr, where |s| > 7 We provide the proof
€
that s will converge to the neighborhood |s| < > in finite time. For the second step of the

proof (4.10 (i)), once the sliding variable reaches the neighborhood of |s| < g, the uy work-
s for the finite time convergence, and forces the sliding variable stay in the neighborhood e.
Suppose that |s| > g at the beginning,
§ss=s(®+Tw
= 5[0 —T (ki £ + ko ®°) satz (s)] (4.11)
<|s| (@Mé) — Tk @ ’satg (s)) -T,.k t‘satg (s) D

€ .
for |s| > > we have sat% (s) = sign(s)

$$ < 5| (@p®@ — Ty ko ®* — Ty ky £)

_ (I)Mci) k1 )
= —[sIT ko | D - +—t
sl mic2 kaZ k2

(. @y V2 Dy k (4.12)

=~ |sIT ks ( - ) -+t
2T k2 AT % ko* ke

(. @y V2 Kk D2
TSNS P Y (R Yl |

| 2T ko ko AT e ko ko

o 2

€
Thus, after a finite time, tr = ———, we get $§§<0. |s| is decreasing to reach [s] < = in
AT % ko ky 2

finite time. Then u, begins to work for forcing the sliding variable inside the neighborhood

|s| <E.

Then, suppose that once [s| < g,
s§=s(@®+T'w
=s[®-T ks ko ®? | sate (s)]
1— lgil 2 (4.13)

) _ Tk
@y ®—T,, ky®? (sat% (s)| -2
1__

&

<|s|

satg (s) |)
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H
o

€
The worst case is to take consideration of [s| > 7 We have satz (s) = sign(s)

- - Tk
s$<|s| CDMQ)—kazfl)z’satg (s)‘— m=3 \sate (s)’)
2 1 1sl 2
£
. I
=~ Isl| T inka®® - Db+~
-1
4.14)
., Dy - k (
== ISPk | &7~ - ’Z o+ —— ¥ )
TR )
Dy (2 @y k
= IStk (q)_zr Mk ) ST Al s
| mA2 4Ty, k> kg(l—?)
As a result, the upper bound of the sliding variable is given that
limsup|s] smax(g,é) <e
4T 2
where, EZE(I—M)<£
@2
This proves item (4.10 (i)).
O

Then we provide the proof of (4.10 (ii)). The upper bound of the controller has been

ensured.

Proof. For |s| € (0,&), the adaptive gain is monotonous. We estimate a bound of u,

k -
luy| = ‘—(1 3|s| +k2<1>2 |sat§ (s)|
) (4.15)
TP R B
ap-9
2 €
When |s| <&, (4.15) becomes
luy| < ko k3 > + p?
g(l—”’” k22k3)
ko|1- + (4.16)

@2 _
=k2(L+q>2)
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From (4.15) with |s| =0, we get

luz| = ks + kp ®° (4.17)

As a result, the upper bound of u, is

®)2

_OM” g2
4Fm2k22

limsup |u,| < max(kz ( ks + kzd_Dz)

This proves item (4.10 (ii)). O

4.3.2 Stabilization of the (r —1)-th integral chain

Consider the following system which is represented by the pure integrator chain as

21222

Zg =23
$ (4.18)

Zr—1=Wnom

We recall a linear controller w0, to stabilize the (r—1)—th order integral chain, interested
reader could refer to Khalil‘'s book [41].

Theorem 3. Let ay,az,---,a,-1 >0 be such that the polynomial Wnom = 121+ azzp + -+ +
ar—12zr—1 is Hurwitz. For the system (4.18), the origin is an exponential stable equilibrium
under the feedback wnom [41].

There exists a positive definite matrix P for all positive definite matrix Q, such that,
PA+ATP=—Q. (4.19)

Let z = [zl,ZZ,---,zr_l]T. A Lyapunov function is selected as V = zTPz, then its time

derivative can be given as follows

V=2"Pz+z"Pz

=z'ATPz+2z ' PAz

=z (ATP+PA)z (4.20)
= —zTQz

2
< —Aminll zll
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0 1
0 1
where, A= o . ,
1
| a1 ax - a2 ar- |

Amin 1S the minimum eigenvalue of P.

Then consider the system with perturbation g, which is represented as

z=Az+g (4.21)
0 1
0 1
where, A= o . ,
1
| a1 ax - a2 ar- |

and g=10,---,0, w17, ¥ is unknown and bounded perturbation, |¥| < & with € predefined.
The same Lyapunov function is selected as V = z! Pz, then its time derivative can be given
as follows

V=z:"Pz+2z"Pz

=(zTAT +gT)Pz+2"P(Az+g)

=zTATpPz+ gTPz +2TPAzZ+ zTPg

=z' (ATP+PA)z+g"Pz+2z"Pg (4.22)

=—z'Qz+ gTPz + zTPg

< —Aminllzl1* +2 | g[| Amax 1 21
2e
s—Aminnzn(nzn— 3 f“a")
min

A
limsup | z]| < Z57max (4.23)
z—00 /1min
Finally we get
limsup z; < A; with
Z—00
e (4.24)
Aps ZEEmE o -1

min
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4.3.3 Main Controller

Consider the sliding surface

S=2r—Wnom (4.25)
The first time derivative of s is
§ = Z—nom
= Q+YU=Dpom (4.26)
The system is represented as
§ = O©+Tu (4.27)

with ® =@ —@pom, and T'=1y.

For @) is the maximum parameter of the polynomial controller, ® (x,?) is a function of

the states, the bound of @ is

P =@ —Wnom
:—alzg—a223—---—ar_1zr+d3 (4 28)

=max(l,ay, a,---,ar-1) 1+ 25| + 23| +--- + 2, 1),

~~ e

Dy d(x,1)

The bound of T' is 0<y,, <y <YM, where y,, and yp; are unknown.

Replacing the control law (4.9) to system (4.27), the sliding variable s is forced to converge

to the predefined neighborhood of zero with [s| < €, which implies |z, — @nom! < €. Then we
have

Zr-1 = Wpom+Y, (4.29)

with|¥] < € (4.30)

From (4.22) (4.23) (4.24), we know that

limsup z; < A; with (4.31)
Z—00
2eA
Aps ZEAmE -1, (4.32)
Amin
Amin

It is easy to get the parameter ¢ from (4.32) € < A, if we want to force the sliding
max

variable z; in the range of A.
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4.3.4 Acadamic Example

In order to illustrate the theory, the proposed controller is applied to a triple integrator

uncertain system as the acadamic example. Consider a three integral chains system that

Zl =22
22 = Z3 (433)
B=@+yu

where ¢ = sin(t),y =3+ sin(2t).

Using the nominal controller w;om = —421 — 222, we have
Zo =Wnom +¥ with || <e (4.34)

Then, a sliding surface can be defined as

= 4z1+422+ 23 (436)
First time derivative of s is
$§=2¢0+2yu+4z; (4.37)

Using the proposed ASM control law in (4.9), where k;, k, and k3 are given to be 1, 0.2,

and 1. For system (4.33), we have z = [z1,22]7, A= 0 , 8= [0,e]7. Consider a
3 1
Lyapunov function V = z'pz,P= % g , we have
8 16
V = 2T ATP+PAz+g Pz+2"Pg (4.38)
= —z'Qz+g"Pz+2z"Pg (4.39)
< —lzl*+2Amax(P)e 2l (4.40)

where Q= ATP+PA=
0 1

We fix the control objective that |z;| < 0.2, |z2| < 0.3 as the converge region predefined.

min(0.2,0.3)-1 P
Solving the inequality € < ( 2) max (P) =0.1513, finally, we choose € =0.15.
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Simulation has been made by MATLAB SIMULINK. Choose that z;(0) =2, z2(0) =1,
z3(0) = —3. The results are shown from Fig. 4.3 to Fig. 4.6.

15
1.3
=
‘&10
o 1.2
=
2
<
S 97 1.1
10 20 30
0 1 1 |
0 10 20 30

Time (s)

Figure 4.3. Adaptive gain K

The adaptive gain K(f) is shown in Fig. 4.3. The adaptive gain K is increasing at the
beginning to eliminate the perturbation, and decreasing rapidly when the gain is too high.
After the sliding surface is reached, the adaptive gain is varying during a small region to

compensate the perturbation and never overestimated.

Controller u

0 5 10 15 20 25 30
Time (s)

Figure 4.4. Controller u

The behavior of proposed controller is given in Fig. 4.4. Attribute to the sat(-) function,
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the controller is continuous to avoid the chattering phenomenon. In the adaptive first
order SM controller, we use a discontinuous controller. However, the chattering happens

when the sliding variable is approximately equal to zero.

8,
o 6 0.04
= 0.02
e :
g
%02 -0.02
= -0.04
2 5 10 15 20 25 30
0Lt—
0 10 20 30
Time (s)

Figure 4.5. Sliding variable s

To illustrate the theory, the sliding variable s is pictured in Fig. 4.5. The zoom of Fig.
4.5 shows that the sliding variable s never escapes from the predefined value € <0.15 after

the sliding surface reached.

i 0.02;

&

E -0.02

f 10 20 30

N

3

§ z1

[ N L N [PPSR 72

-3 ‘ ‘ |
0 10 20 30

Time (s)

Figure 4.6. States z; and z,

Additionally, the state z; and zp are zoomed in Fig. 4.6. For the control objective, we
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predefine a neighborhood of zero to converge |z1] < 0.2, |zp| <0.3. It is clearly depicted that

the blue line z; and the red line z, are less than 0.2. The integral chains z; and z, are

limited in the predefined region.

4.4 Adaptive HOSM controller for WECS

The system of variable speed wind generator with the back-to-back power converters is a
high order, high nonlinear system [22] [78] [24]. The variable speed structure can operate at
its optimal working point according to the various wind speed, which is so-called maximum
power point tracking (MPPT) technique allowing the power generation maximize [26] [91]
[89] [92]. The main control objective is to control the turbine torque to follow the optimal
value, and to regulate the reactive power as command at the meanwhile with predefined
errors. The proposed controller has been applied to the system to realize the control

objective with the goodness of mechanical stress alleviation.

4.4.1 System Configuration

A Grid-connected variable speed wind system based on a double fed induction machine is

considered in Fig. 4.7, consisting of the following parts [93] [13] [75] [94]:

e Turbine is the most important device to capture wind energy by its blades, and

converting the wind kinetic power to mechanical torque.

e Gearbox and shaft increase the rotation speed given by the turbine, to suit the

generator speed, assumed to be perfectly stiff in our study.

e Double fed induction generator (DFIG), which converts the power from mechanical
form into electricity form. The stator of DFIG is connected to the grid directly, and

the rotor is connected to the power converters.

e Converters are connected with the rotor of DFIG and the grid, adopting the famous

back-to-back configuration.
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‘ Turbine Grid
blades ==:
Generator
1
]] b Power Converters
Gearbox Machine side  Grid side
and converter converter
shaft | {;ﬂ— —j_g {)l- |

Figure 4.7. System configuration

4.4.2 Model of WECS
4.4.2.1 Aerodynamics
The aerodynamic power P, in watt can be extracted from the wind turbine is
Py =0.5mpr*Cp(A, f)v° (4.41)

where, r is the blade radium of turbine blades (m), v is the wind velocity (m/s), p is
the air density of the area (kg/m?®). mr? is the area swept by the turbine blades. As a
result, 772 vp is the mass of the air passing through the turbine swept area in a unit time.

Consequently, 0.577%13p is the kinetic energy of the wind at the velocity v in a unit time.

As a matter of fact, it is impossible to obtain all the kinetic energy from the wind. There-

fore a power coefficient C, can be represented to describe the percentage of the wind power

utilizing
C %
Cp(A, B) = 01(1—2.—63,3—04)6 T+ g (4.42)
l
o
A=tp O (4.43)
v v
1 1 0.035 (4.44)

Ai A+0.088 BP+1
where, ¢; to cg are parameters designed by the turbine installation, w; is the angular
speed of the turbine blades (rad/s), A is the tip-speed ratio defined as the ratio between
the turbine blades tip speed v;ip = w,;r and wind speed v in (4.43). B is the pitch angle
(deg).
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4.4.2.2 Gearbox and Shaft

The torque produced by the turbine and the mechanic torque delivered by the gearbox is

p, npr’C,(A,p)v3
_Pa_mpr G, v (4.45)
Wy 20W¢

Tt =KgpTm, Wmr = kgp (4.46)

Tt

where, kgp is the gearbox ratio. 7, represents the aerodynamic torque in the turbine side.
Tm and wy,r are the mechanic torque and mechanical speed of the generator in the machine

side, respectively.

4.4.2.3 Double Fed Induction Generator

The dynamic and steady-state models of the double fed induction generator (DFIG) is
introduced, which consists of the differential equations to describe the electromagnetic

dynamic of the stator and rotor in synchronous frame as follows:

Wsa = —Rsira+0rPsq+ Usq (4.47)
Vsqg = —Rsirg—01¥sa+Vsq (4.48)
Vg = —Rria+@r—0)Wrg+ 04 (4.49)
Wrg = —Reirg—@L—0Wra+ vrg (4.50)
Wsqg = Lsisa+Lmira (4.51)
Vsqg = Lsisg+Lmirg (4.52)
Wrg = Lrirg+Lpisg (4.53)
Vg = Lrirg+Lpisg (4.54)

where the variables, the direct components and quadrature components are represented as
d and q for short. The isq and iy, are stator current viewed from rotating reference of d-q
parts. Similarly, i,4 and ir; are rotor currents. ¥,q and yg4 are stator flux linkages. ¥4
and v, are rotor flux linkages. Ls, L, and L, are the stator, the rotor and the mutual
inductance. Rs and R, are the resistance of the stator and rotor. wy is the frequency of
the grid. The generator rotor electrical angular speed w, equals w, = p;w;m, pr is the

number of the pole pairs of the generator. Liq = LrLS—L?n.
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4.4.2.4 Reduced Order Model

As it is shown in Fig. 4.7, both the stator and rotor of DFIG provide electricity to the power

grid. However the former is directly connected to the grid, while the latter is partially

through a back-to-back converter. As a result, the flux of the stator is synchronous with

the grid flux, and the voltage is fixed by the grid as well. The dynamic equations of the

WECS are given below, with x=1| i,; i,y o, ], u= [ Urq Urqg ],

. LR, Ls

X ——— X1+ (W= X3) X+ ——U1
L3 Ly

. L,Vi L¢R L

Xy = —(—x) (WL X3) — =5 Xp Uy
wi L2, 2, "I,

] pnr3Cp vzkgbpf 3Ly VLp?

X3 = +

2] 2JLsw;
4.4.3 Control Objective and Controller Design

There are two main control objectives:

(4.55)

(4.56)

(4.57)

e Reactive power control: The real reactive power Q tracks a given signal Q*, with

a predefined and acceptable error. The reference value Q* is given by a superior

command.

e Torque control: The real turbine torque T tracks an optimal signal T*, with a

predefined and acceptable error. The torque should be regulated by the controller

with a small error of T*. It would help to protect the actuator of controller from

mechanic worn-off.

The tracking errors of the torque and the reactive power are:

eq = Q-Q° (1
er = T—-T(D
Our control objective is defined as
|€Q| <Ag4
ler| <Aq

(4.58)

(4.59)

where, Az and A, are chosen to be a predefined region of the errors, which are tolerable

for the system.
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The reactive power Q injected by the system into the grid and the torque T developed by

the turbine and can be written as

3. Lnm Vi
= =Vi(—x— 4.60
Q 3 L(LS X1 stL) (4.60)
3L,V;
= _2 4.61
2 L, 7 (4.61)
With the MPPT control technique, the optimal torque T could be rewritten as:
k 2
T* (1) = &’jxg (4.62)
kgp

Define two sliding variables [04,04] equal to the tracking errors of the control variables

leg, er], we have two sliding surfaces that

3. Ln, 13 .

= VU (Zx- —Q*(t 4.63

o4 (%) 5 L(Lsxl stL) Q* (1) (4.63)
3L, V. kopt 5

o,(x) = —— —X 4.64

“ 2 Lo TR k3, (4.64)

The first order derivative of sliding variables ¢4 and ¢, are:

4= X1+ (wp—x3)x
d="5 L%q 143 L, L—X3) X2
Pa
OQ +3LmVLu (4.65)
ox "z,
©a —
Yd
. 3 L%nVszr Ly, VLpr
Og=7 53 x1 | (@r = x3)
2 LSwLLeq Liwy
Pq
Kopt pnr3va2kgb+3LmVLx N
2, JA JLewy, 2|7 (4.66)
Pq
3L, VIR 3L,V
42 mzL rprxz__ rr; LPr iy
2 Leqa)L 2 Lequ

Pq Yq
where, @4, ¢4, Ya, and vy, are systematic uncertainties. Then rewrite the o4 and o4 as

o1 and o4, we have two second order integral chains

0d1 = 0Og2

. . . . (4.67)
Od2 = @Pq+Yqur+yq
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and

dql - qu

. o . (4.68)
Og2 = (pq+yqu2 +yqu2

To apply ASM control law in (4.9), we define two new second order integral chain such as

Zd1 = Za2 (4.69)
Zgp = Pg+T4Uy

and
= A (4.70)

where, @4 = ¢4+7aqu1, I'q =7yq, and the parallel definition, @, = ¢4 +yqu2, I'y=7y4 and
the new controller Uy =iy U, = t1p. Finally, the control objective is represented as
lza1l < Ag

(4.71)
lzq1] < Aq

4.4.4 Simulation Results

To demonstrate the promised behavior of the controller, simulation has been carried out
using MATLAB. To show the robustness of the motion with unknown parameter variations,
unmodeled dynamics, and external disturbances in the sliding mode, perturbations are

introduced to the nominal systems with a variation amplitude of 10%.

S 50 3
100 0 50 100 150
0 100 200 300
10
= 0
-10 ‘ ‘
0 100 200 300
Time (s)

Figure 4.8. The controller Uy and Uy
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And two external variables wind speed and superior reactive power command are simu-

lated by test functions. The wind emulator generates wind speed v using an approximate
function v(t) = v4y(1 —0.18cosrt) —0.18cos(2mt/60)), where vy, = 10m/s is the average
wind speed. The superior reactive power command signal Q*(#) is given as a step signal

after a low pass filter.

To assess the ability of the controller which is able to force the error inside a predefined
region, great but acceptable errors Ay = 10var and A; =5Nm have been chosen. As we
have two cascaded control loops of the direct axis and quadrature axis, the label d and g
are related to the parameters of Uy and U,. Consequently, the parameters of the controller

£q=10, £5=5, ky = k3 =5, k» =0.1 are chosen.
Adaptive gain of Uy
vt

50 100 150 200 250 300

Adaptive gain of U,

o

10
50 100 150 200 250 300
Time (s)

Figure 4.9. The adaptive gain of Uy and Uy

The controllers Uz and Uy are designed in (4.69) (4.70) with an adapted algorithm ac-
cording to (4.9).

Fig. 4.8 to Fig. 4.13 show the good characters of the proposed controller. The two
continuous controllers Uy and U, are shown in Fig. 4.8. Uy and U, have a transient
vibration at the beginning seconds, which is largely due to the start-up procedure of the
system. Uy and Uy are increased fast by the first part of the adaptation algorithm. After
the control large enough to force the system to converge, Uy and Uy, begin to fall down

during a very short period of time. Fig. 4.9 shows the adaptive gains of the controllers Uy
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Figure 4.10. The controller ug and uq
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Figure 4.11. Sliding variable sq and s

and Uy. The gains are estimated effectively by the adaptation law without prior knowledge

of the uncertainties bounds. It should be noted that the proposed controller can adapt

to a proper value very quickly, because the gain can decrease very fast according to the

unknown perturbance of the system without any over estimation. And u; and u, are

given in Fig. 4.10 as the output of ASMC module. Continuous control input do not have

harmful chattering on the actuators.

Two sliding variables s; and s; are shown in Fig. 4.11. In order to converge the sliding

variables to a predefined neighborhood of zero, Fig. 4.12 and Fig. 4.13 shows the integral



CHAPTER 4. ADAPTIVE HOSM CONTROL FOR UNCERTAIN SYSTEM AND APPLICATION ON
WECS

o

Integral chains z;; and zg
n
o
o

o
o
o
1
1
N
[oN
N

0 50 100 150 200 250 300
Time (s)

Figure 4.12. Integral chains of direct axis zg1 and zgo

100 1

o
)

Integral chains z;; and zgp
o N
o o
') o
|
o

50 100 150 200 250 300

0 50 100 150 200 250 300
Time (s)

Figure 4.13. Integral chains of quadrature azis zq1 and zq2

chains of the direct control loop z41, 242, and the integral chains of the quadrature control
loop z41, z42. Phsically, z4 is the tracking error of the reactive power, and z4; represents
the tracking error of the torque in blue solid line. Their first derivatives are depicted in red
dash lines. As the control objective is forcing z41, z41, and their first derivative zgs, z42
to converge to the predefined neighborhood A;z =10var and Ay =5Nm, it is clearly from
Fig. 4.12 and Fig. 4.13 that |z4;| and |zq1| are restricted in the predefined neighborhood
|z41] < 10 and |zq1| < 5. Moreover, these states never exceed the predefined neighborhood
after their first convergence to the neighborhood. The curves are smooth and continuous,
without any overshooting the restricted region in the zoom pictures of Fig. 4.12 and Fig.

4.13. This result is quite different with other ASM controllers.
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Figure 4.15. Rotor currents i;q and irq and rotor speed wy

Fig. 4.14 to Fig. 4.17 show the performance of the controlled WECS. Fig. 4.14 shows
the final input voltages u,4 and u,4 of the DFIG rotor. It is clearly that input voltage is
smooth and continuous. This chattering-free character is attractive because it will alleviate
the mechanical stress of the WECS actuators. The states of WECS, such as rotor currents
ird, irq and rotor speed w;, are shown in Fig. 4.15. It can be observed that the curves
of the states are very smooth. Fig. 4.16 and Fig. 4.17 show the tracking performance
of the reactive power Q and torque T,. The real value in blue solid line responds to the

variation of the reference value in red dash line very fast. The WECS, initially working in
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turn-off state, has been given at time 0 s a step Q* variation from 0 to 40 var. And in the

consequent simulation, Q tracks the reference signal composed of a set of transitions from
high to low Q" vice and versa. As expected, the error of Q is limited in a predefined region
shown in the zoom of Fig. 4.16 and never exceeds after its first convergence. Meanwhile,

T converges properly to T* too.
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Figure 4.16. Tracking performance of Q
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Figure 4.17. Tracking performance of T
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4.5 Conclusion

A new adaptive HOSM controller for uncertain systems has been presented in this chapter.
The controller has been designed in the control scheme to deal with the unknown bounded
uncertainty of the arbitrary order integral chains system. The proposed controller promises
that once the sliding variable is forced into a predefined neighborhood, its trajectory would
never get out of the neighborhood. The proposed control law is continuous, and can reduce
the chattering phenomenon of sliding mode, for which is suitable for practical application.
The stability is proved by Lyapunov analysis. Academic simulation result is given to
show the controller performance. Additionally, the proposed controller is applied to a
WECS for practical applications. The simulation result shows that the error of the torque
and the error of the reactive power converge to a predefined value, which could help
reducing mechanic worn out of the practical system. It can be expected for a wide range

of application on arbitrary high-order complex nonlinear model in practice.






Chapter 5

Fault Tolerant Control with On-line
Allocation for Linear Time Varying
Systems

In the previous chapter, we have designed adaptive HOSM control for wind energy con-
version system. We now turn attention towards the fault tolerant control with online
allocation. A FTC with a fixed control allocation for LTV systems using only output
information is going to be proposed. The designed controller compensates theoretically
exactly just after the initial time the fault effects in the critical input channels while min-
umize the effects in the non-critical ones. A hierarchical observer using only the fault-free
outputs is given assuring theoretical exact reconstruction of the state vector right after

the initial time.

This chapter is organized as follows. Section 5.2 presents the problem formulation and the
necessary assumptions. Section 5.3 gives the design procedure for the OISM controller.
The hierarchical observer methodology is explained in Section 5.4. While Section 5.5
discusses the issues of a bad reconstruction of the control input and states. Moreover,
sufficient stability conditions are developed. In Section 5.6 the wind turbine case of study
is presented, together with a brief discussion of the issues that can arise in the application

of the methodology. Finally, Section 5.7 summaries the chapter.
93
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5.1 Introduction

Several control allocation schemes have been developed. [95] design a family of controllers
for control allocation identifying the faults by solving a minimization problem. [96] gives
a control allocation approach based on the solution of a system of linear equations subject
to constraints. [97] proposes a real time adaptive scheme for a high performance aircraft
based on a linear control allocation problem and a weighted pseudo-inverse for fault re-
construction, while [98] uses a sequential quadratic programming approach. In [99] a fault
tolerant sliding mode for systems with actuator faults is proposed. The fault identification

is made by using a test control input.

In [100] an on-line control allocation is proposed based on an optimization procedure. This
methodology allows that once the fault has been identified, the controller can be reconfig-
ured automatically assuring the control objective is fulfilled. Based on this idea [101] uses
a sliding mode controller for fault tolerant control and on-line allocation by seeing the ad-
ditive faults as perturbations of a linear time invariant system, allowing the identification
of the faults, and to redistribute the control in the available actuators without external
information. Following this same idea, [102] uses an integral sliding mode controller for
on-line control allocation. However, this techniques were developed for linear time invari-

ant systems and require the knowledge of the system’s states.

To avoid the necessity of the states, it is possible to use observers based on sliding modes.
In specific in [103] an output integral sliding mode (OISM) technique is proposed for linear
time invariant systems. This technique allows to make the system insensitive to matched
uncertainties/perturbations and to reconstruct its states theoretically exactly just after

the initial time. Recently, [104] broaden this result to linear time varying systems (LTV).

The objective of the chapter is to design a fault tolerant controller with on-line control
allocation for LTV systems using an OISM methodology and a control allocation scheme
similar to the one proposed in [100, 101]. This algorithm will allow on-line identification
of the faults by using any fault detection and identification (FDI) schemes available in the
literature [4, 19, 105, 101]. Moreover, sufficient conditions to assure the stability remains

even when the states or the faults are not well reconstructed will be presented.



5.2. PROBLEM FORMULATION 95

Wind energy is the fastest growing renewable power source around the world, but the in-
creasing number and size of turbines have raised the necessity of compensate the effects of
the faults to reduce the damage and to increase the efficiency[106, 107, 108]. In [108, 109]
different kind of faults and its relevance for wind turbine are presented. In this benchmark
papers the actuators are subject to abrupt or slow changes in its dynamics, besides torque
offsets and stuck actuators. In [110, 106, 111, 107, 109, 112, 113] different approaches to
deal with actuator faults have been presented, from fault tolerant architectures, compen-
sation of identified faults, reconfiguration of controllers and control allocation schemes.
But at the best of our knowledge, there is not any control scheme based in a sliding mode

technique applied for fault tolerant control and on-line allocation of the wind turbine.

The proposed FTC and control allocation scheme will be applied to a linear parameter
varying model of a wind turbine subject to partial and total faults in the actuators. Re-
dundancy will be assumed as well as controllability restrictions. The system will be studied
in two different scenarios, when the faults are completely reconstructed by a suitable FDI

scheme and when the reconstruction is deficient.

5.2 Problem Formulation

Assume a LTV system subject to actuator faults,

x(t) = A()x(2) + B, () (I - K(1) u(?),
y(®) =C0)x(1),

(5.1)

where x(1) e R", u(t) eR™, y(t) € RP represent the states, inputs and outputs respectively.
A() € R™"™ B, (1) e R™™, C(t) € RP*" are known matrices. K(t) = diag(ky, ko, ..., km (1)),
denotes the possible actuators faults, where 0 < kj(t) <1, if kj(¢) = 0 there is no fault in the

i-actuator, and k;(f) =1 denotes a complete one.

Assumption 1. The matrices A(t), By(t),C(t) are in—2,i—1,i—1 times continuously dif-

ferentiable. This matrices and its derivatives are bounded and known.
Assumption 2. Assume the redundancy in actuators is such that rank(By(t)) =1< m.

Using rank factorization it is always possible to represent the control matrix as B, (f) =
B,(1)B(1), where B, (1) € R"*! and B(r) e R™*™ (see [114, Section 5.4,pp 144]). Let o (1) =
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B(Hu(t) then u(t) = B*(t)v(t), where

B* (=W ®B (1) (BOW®B (1),
with W = (I-K) [100, 101]. Then the system takes the form
x(t) = A()x(1) + B, () BLOOW (D BT (1) #(1). (5.2)
Considering (1) = (B(OW (£)BT(£)) ™' #(1) the system can be rewritten as
() = A(H)x(1) + B, (O BOW (6)?>BT (1) #(p). (5.3)
Finally, defining a "virtual control” v(f) such that #(f) = (B(H)BT(£) v(1),
o = (BOW®?*BT(OBOBT () 1) v(®)

as the unknown input, and adding and subtracting B,(f)v(t) the system (5.1) can be

rewritten as
x(8) = A(D)x(8) + By () v(t) — By (D) (1),
y() =C()x(8).

(5.4)

It is logic to assume the control effort v(f) is bounded. Hence, since k; € [0,1], and the

matrices B(f) are assumed bounded, it is possible to assure (D)l < Pmax-

OUR AIM IS TO ASSURE ON-LINE CONTROL ALLOCATION AND FAULT TOLERANT CONTROL
FOR LTV SYSTEMS USING AN OUTPUT INTEGRAL SLIDING MODE CONTROLLER ALLOW-

ING ON-LINE DETECTION AND ISOLATION OF THE CONSIDERED FAULTS
In order to achieve the above objectives the matrices A(t), B, (), C(¢) must fulfil the follow-
ing usual conditions.

Assumption 3. The pair (A(t), B, (1)) is uniformly completely controllable with controlla-

bility index nc.

Assumption 4. The pair (A(t),C(8) is uniformly completely observable with observability

ndex n,.
Assumption 5. The pair (A(t), B, (1), C(1)) is strongly observable.

Assumption 6. 72 =max{ng, ne}.
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Since we want to construct and output based fault tolerant control consider:
Assumption 7. The value of x(t) and K(t) for all t =ty are unknown.
Assumption 8. The initial condition is unknown but bounded.

[x(O)II = .

Assumption 9. Assume rank(C(£)B,(£)) =1 and p> 1.

5.2.1 Nominal System

Assuming the system do not have actuator faults, i.e. W(f) = I, a nominal systems is

proposed

in(8) = A(DxN(8) + By (D un (D), 655
yn (D) = C(BxN (D). '

Without loss of generality assume vy(f) = —Z (£)xy(f), where £ (f) is a bounded matrix
designed such that the closed loop system

in (1) = (A(t) = By (DA () xn (D)

M and positive

is exponentially stable. Then, for all ¢ = fy there exist a matrix P(f) e R
constants cj, ¢z, c3 such that

cl<P(t)<cpl
satisfies
= P(1) = P(1))(A(t) - By () H (1)) + (A(1) = By (1)) & (1)) " P(£) + Q(1), (5.6)
with
Q(t) =z csl.

5.3 Output Integral Sliding Mode Controller

In order to assure the effects of the additive faults do not affect the behaviour of the system
an OISM 7virtual controller” is proposed. First, assume v(t) = vy (f) + v;(t), where v(t) is
a sliding mode controller assuring the compensation of the additive faults. To design v;

define a sliding surface

t
s(y, 1) = G(0) (y(0) - y(10)) —/(%(T)fc(r) +D(T)vN (7)) dT, (5.7)
fo
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where the vector %(#) is the observed state given by a hierarchical observer [104],

G =GCH+GHCH)+GHCHA®,

D(t) = G(H)C(1)B(t) and G(t) is a design projection matrix, such that

det(D(?)) #0 and % #0.

Sufficient conditions assuring the existence of a first order sliding mode are given in the

next theorem.

Theorem 4. If det(D(t)) #0 and vi(t) is designed as a first order sliding mode controller

of the form
D) sy, 1)

»b 5.8
ID(OTs(y, Ol (5:8)

vi(t)=-p

where

B> Pmax+ IDO LD x(8) - XD

The trajectory of (5.4) converges right after the initial time to the surface s(y,t) and the
control vi(t) is capable to compensate theoretically exactly the additive fault ¢(t) for all

te(to, ts], i=1,2,...,r.
Proof. The proof of this statement comes directly from [104, Theorem 5] O

Without loss of generality, assume G(#) is designed such that D(f) = I. During the sliding
phase the equivalent control [1