L. Xu, E. Oja, and C. Suen, Modified hebbian learning for curve and surface fitting, Neural Networks, vol.5, issue.3, p.70, 1992.
DOI : 10.1016/0893-6080(92)90006-5

W. Bradford, S. Parkinson, and . Gilbert, Navstar : global positioning system-ten years later, Proceedings of the IEEE, vol.71, issue.10, p.7, 1983.

. Bradford-w-parkinson, Progress in Astronautics and Aeronautics : Global Positioning System : Theory and Applications, vol.2, 1996.

E. Kaplan and C. Hegarty, Understanding GPS : principles and applications. Artech house, vol.6, p.9, 2005.

R. Gold, Optimal binary sequences for spread spectrum multiplexing (corresp.). Information Theory, IEEE Transactions on, vol.13, issue.4, pp.619-621, 1967.
DOI : 10.1109/tit.1967.1054048

C. Brian, J. W. Barker, J. E. Betz, J. T. Clark, J. T. Correia et al., Overview of the gps m code signal, DTIC Document, issue.9, 2006.

Y. Xue-fen-zhu, D. R. Yang, F. Yang, X. Shen, and . Chen, Acquisition algorithm based on circular correlation for gps l2c cm code signal and the software implementation, Applied Mechanics and Materials, vol.543, issue.9, pp.2341-2344, 2014.

V. Patel and N. Desai, Implementation of gps l5 signal using model based design tool, Green Computing Communication and Electrical Engineering (ICGCCEE), 2014 International Conference on, pp.1-4, 2014.
DOI : 10.1109/icgccee.2014.6922255

H. Tung, M. Ta, L. Pini, and . Presti, Combined gps l1c/a and l2c signal acquisition architectures leveraging differential combination. Aerospace and Electronic Systems, IEEE Transactions on, vol.50, issue.4, pp.3212-3229, 2014.

J. G. Walker, Satellite constellations, Journal of the British Interplanetary Society, vol.37, issue.10, pp.559-572, 1984.

Y. Urlichich, V. Subbotin, G. Stupak, V. Dvorkin, A. Povalyaev et al., Glonass modernization. GPS World, vol.22, issue.11, pp.34-39, 2011.

I. F. Hernández, Galileo receiver research in europe, GALILEO Positioning Technology, p.12, 2015.

J. Beechener, Galileo meo offers enhanced flight tracking : a new constellation of medium-altitude earth orbit (meo) european satellites is poised to improve services for aircraft in areas such as search and rescue. IHS Jane's airport review, vol.26, p.12, 2014.

R. Zandbergen, . Dinwiddy, . Hahn, D. Breeuwer, and . Blonski, Galileo orbit selection, Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), p.12, 2001.

E. Simona-lohan, H. Hurskainen, and J. Nurmi, Galileo signals, GALILEO Positioning Technology, pp.35-56, 2015.

S. Zhao, C. Huang, X. Qi, and M. Lu, Application of beidou navigation satellite system on attitude determination for chinese space station, China Satellite Navigation Conference (CSNC) 2015 Proceedings : Volume I, pp.13-25, 2015.

L. Wang, Q. Zhang, G. Huang, R. Zhang, and X. Yan, Beidou satellite navigation system (bds) real-time orbit determination and accuracy analysis, China Satellite Navigation Conference (CSNC) 2015 Proceedings, vol.II, pp.523-532, 2015.

M. Guo, H. Lu, Y. Xiao, Y. Mo, and X. Liu, Analysis of beidou signals on the accuracy of common-view time transfer, China Satellite Navigation Conference (CSNC) 2015 Proceedings : Volume I, pp.425-436

. Springer, , 2015.

M. Kishimoto, H. Hase, A. Matsumoto, T. Tsuruta, S. Kogure et al., Qzss system design and its performance, Proceedings of the 2007 National Technical Meeting of The Institute of Navigation, p.15, 2001.

S. Choy, K. Harima, Y. Li, M. Choudhury, C. Rizos et al., Gps precise point positioning with the japanese quasi-zenith satellite system lex augmentation corrections, Journal of Navigation, vol.68, issue.04, p.15, 2015.
DOI : 10.1017/s0373463314000915

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/0CFB6480F983E0530C5E90C8D4761F2A/S0373463314000915a.pdf/div-class-title-gps-precise-point-positioning-with-the-japanese-quasi-zenith-satellite-system-lex-augmentation-corrections-div.pdf

. Anon, Quasi zenith satellite system navigation service : Interface specification for qzss (is-qzss). In Version 1.6, Japan Aerospace Exploration Agency, p.15, 2014.

V. Kumar, H. B. Hablani, and R. Pandiyan, Kinematic navigation of geostationary satellites formation using indian regional navigation satellites observables, Journal of Guidance, Control, and Dynamics, p.15, 2015.
DOI : 10.2514/1.g000864

V. Kumar, H. B. Hablani, and R. Pandiyan, Real-time kinematic absolute and relative velocity estimation of geostationary satellites in formation using irnss observables, Advances in Control and Optimization of Dynamical Systems, vol.3, p.15, 2014.

D. Brickley, Basic geo (wgs84 lat/long) vocabulary. Documento informal escrito en colaboración, p.16, 2006.

N. Pratap, R. I. Misra, E. M. Abbot, and . Gaposcbkin, Integrated use of gps and glonass : Transformation between wgs 84 and pz-90, Proceedings of the 9th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1996), p.16, 1996.

. Xiong-zhongzhao, Establishment of independent coordinate systems on the utm projection

, Geospatial Information, vol.2, p.16, 2010.

F. Casals, M. Cáceres, M. H. Manfrin, J. González, and A. Ruiz, Molecular characterization and chromosomal distribution of galileo, kepler and newton, three foldback transposable elements of the drosophila buzzatii species complex, Genetics, vol.169, issue.4, p.16, 2005.

C. A. Wagner and . Douglas, Resonant satellite geodesy by high speed analysis of mean kepler elements, Dynamics of Satellites, p.16, 1969.

P. Misra and P. Enge, Global Positioning System : Signals, Measurements and Performance Second Edition, p.18, 2006.

L. M. David, J. Warren, and . Raquet, Broadcast vs. precise gps ephemerides : a historical perspective, GPS Solutions, vol.7, issue.3, p.19, 2003.

O. Montenbruck, P. Steigenberger, and A. Hauschild, Broadcast versus precise ephemerides : a multi-gnss perspective, GPS Solutions, vol.19, issue.2, p.19, 2014.

S. Bancroft, An algebraic solution of the gps equations, IEEE Transactions on, issue.1, p.20, 1985.

J. Hans-, C. C. Eueler, and . Goad, On optimal filtering of gps dual frequency observations without using orbit information, Bulletin Geodesique, vol.65, issue.2, p.20, 1991.

C. C. Goad and . Yang, On automatic precision airborne gps positioning, Proc KIS94, vol.35, p.112, 1921.

A. Kleusberg, Analytical gps navigation solution, Geodesy-The Challenge of the 3rd Millennium, vol.21, pp.93-96, 2003.

J. Dah-, K. Jwo, and . Chin, Applying back-propagation neural networks to gdop approximation, Journal of navigation, vol.55, issue.1, p.21, 2002.

D. Simon and H. El-sherief, Navigation satellite selection using neural networks, Neurocomputing, vol.7, issue.3, pp.247-258, 1921.

C. Wu, W. Su, and Y. Ho, A study on gps gdop approximation using support-vector machines. Instrumentation and Measurement, IEEE Transactions on, vol.60, issue.1, p.21, 2011.

J. Zhu, Calculation of geometric dilution of precision, IEEE Transactions on Aerospace Electronic Systems, vol.28, pp.893-895, 1921.

J. Zhu, Conversion of earth-centered earth-fixed coordinates to geodetic coordinates. Aerospace and Electronic Systems, IEEE Transactions on, vol.30, issue.3, pp.957-961, 1994.
DOI : 10.1109/7.303772

C. Goad and . Goodman, Modified hopfield tropospheric refraction correction model, TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, vol.55, p.41, 1974.

H. Zhang, J. Ping, W. Zhu, and C. Huang, Brief review of the ionospheric delay models, Progress in Astronomy, vol.24, issue.23, pp.16-26, 2006.

D. Conus, C. Robert, and . Dalang, The non-linear stochastic wave equation in high dimensions : Existence, hölder-continuity and itô-taylor expansion. ´ ecole polytechnique fédéderale de lausanne, p.24, 2008.
DOI : 10.1214/ejp.v13-500

URL : https://doi.org/10.1214/ejp.v13-500

K. Borre, The gps easy suite-matlab code for the gps newcomer, GPS Solutions, vol.7, issue.1, p.75, 2003.
DOI : 10.1007/s10291-003-0049-3

W. Gurtner and L. Estey, Rinex-the receiver independent exchange formatversion 3.00. Astronomical Institute, vol.25, p.75, 2007.

Y. Jiang, Architecture and character of satellite navigation wide area augmentation system(waas), Dianxun Jishu/ Telecommunications Engineering, vol.50, issue.7, p.26, 2010.

J. Ventura-traveset, C. López-de-echazarreta, J. Lam, and D. Flament, An introduction to egnos : The european geostationary navigation overlay system, GALILEO Positioning Technology, p.26, 2015.
DOI : 10.1007/978-94-007-1830-2_14

A. Shimamura, Msas (mtsat satellite-based augmentation system) project status, Air & Space Europe, vol.1, issue.2, p.26, 1999.
DOI : 10.1016/s1290-0958(99)80016-1

. Kn-suryanarayana-rao, Gagan-the indian satellite based augmentation system, Indian Journal of Radio and Space Physics, vol.36, issue.4, p.26, 2007.

Y. Urlichich, V. Subbotin, G. Stupak, V. Dvorkin, A. Povalyaev et al., Innovation-glonass-developing strategies for the future-a team of authors from russian space systems, a key developer of navigation and geospatial technologies in the russian aerospace industry, describes the new l3 cdma signal to be broadcast by glonass-k satellites and the progress to date in developing the sdcm augmentation system, GPS World, vol.22, issue.4, p.26, 2011.

D. Mishra and S. Bhardwaj, Alak Banik, TVS Ram, and Parimal Majithiya. Navigation signal simulator for performance analysis of gnss signals, p.1

M. Ouassou, B. O. Anna, J. Jensen, O. Go-gjevestad, and . Kristiansen, Next generation network real-time kinematic interpolation segment to improve the user accuracy, International Journal of Navigation and Observation, p.31, 2015.
DOI : 10.1155/2015/346498

URL : https://doi.org/10.1155/2015/346498

. Pjg-teunissen, C. Pj-jonge, and . Tiberius, Performance of the lambda method for fast gps ambiguity resolution. Navigation, vol.44, p.31, 1997.

M. Yang, C. Goad, and B. Schaffrin, Real-time on-the-fly ambiguity resolution over short baselines in the presence of anti-spoofing, Proceedings of the 7th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1994), vol.33, p.34, 1994.

J. G. Peter and . Teunissen, The least-squares ambiguity decorrelation adjustment : a method for fast gps integer ambiguity estimation, Journal of Geodesy, vol.70, issue.1-2, p.112, 1995.

N. Nmea, 0183 version 4.00 : Standard for interfacing marine electronic devices, vol.39, p.75, 2008.

C. L. Liu, . Kirchengast, . Zhang, Y. Norman, . Li et al., Quantifying residual ionospheric errors in gnss radio occultation bending angles based on ensembles of profiles from endto-end simulations, Atmospheric Measurement Techniques Discussions, vol.8, issue.1, p.40, 2015.
DOI : 10.5194/amtd-8-759-2015

URL : https://doi.org/10.5194/amtd-8-759-2015

J. Klobuchar, Ionospheric effects on gps, Global Positioning System : Theory and applications, vol.1, p.41, 1996.

G. Pugliano, U. Robustelli, F. Rossi, and R. Santamaria, A new method for specular and diffuse pseudorange multipath error extraction using wavelet analysis, GPS Solutions, p.41, 2015.
DOI : 10.1007/s10291-015-0458-0

J. Rui-xi, L. Xiao-yu, X. Chang-feng, and J. Dong-yang, Broadcast ephemeris accuracy analysis for gps based on precise ephemeris, Applied Mechanics & Materials, p.43, 2014.

J. Shi, C. Xu, Y. Li, and Y. Gao, Impacts of real-time satellite clock errors on gps precise point positioning-based troposphere zenith delay estimation, Journal of Geodesy, p.43, 2015.
DOI : 10.1007/s00190-015-0811-7

M. Fang-cheng-chan, B. Joerger, and . Pervan, Stochastic modeling of atomic receiver clock for high integrity gps navigation. Aerospace and Electronic Systems, IEEE Transactions on, vol.50, issue.3, p.44, 2014.

A. Björck, Numerical methods for least squares problems, vol.48, p.60, 1996.

R. Penrose, A generalized inverse for matrices, Mathematical proceedings of the Cambridge philosophical society, vol.51, p.48, 1955.
DOI : 10.1017/s0305004100030401

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/5F4516D6B9989BB6563A4B267CC7D615/S0305004100030401a.pdf/div-class-title-a-generalized-inverse-for-matrices-div.pdf

J. E. , D. , and R. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, vol.16, p.49, 1996.

A. M. Legendre, Nouvelles méthodes pour la détermination des orbites des cometes, Number 1. F. Didot

J. Nocedal, . Stephen, and . Wright, , p.51, 2006.

P. C. Jack, R. Kleijnen, and . Sargent, A methodology for fitting and validating metamodels in simulation, European Journal of Operational Research, vol.120, issue.1, p.51, 2000.

. Donald-w-marquardt, An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society for Industrial & Applied Mathematics, vol.11, issue.2, p.53, 1963.

. Craig-b-markwardt, Non-linear least squares fitting in idl with mpfit, p.53, 2009.

. Robert-i-jennrich, Asymptotic properties of non-linear least squares estimators, The Annals of Mathematical Statistics, p.53, 1969.

S. Yoon and A. Jameson, Lower-upper symmetric-gauss-seidel method for the euler and navier-stokes equations, AIAA journal, vol.26, issue.9, p.53, 1988.

N. R. Draper, H. Smith, and E. Pownell, Applied regression analysis, vol.3, p.53, 1966.

V. Srinivasan and C. Mason, Technical note-nonlinear least squares estimation of new product diffusion models. Marketing science, vol.5, p.53, 1986.

U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, vol.44, p.53, 1985.

W. James, W. B. Daniel, L. Gragg, G. W. Kaufman, and . Stewart, Reorthogonalization and stable algorithms for updating the gram-schmidt qr factorization, Mathematics of Computation, vol.30, issue.136, p.55, 1976.

S. Alston and . Householder, The theory of matrices in numerical analysis, Courier Corporation, p.55, 2013.

N. Lloyd, D. Trefethen, and I. Bau, , vol.50, p.59, 1997.

. John-s-chipman, Gauss-markov theorem, International Encyclopedia of Statistical Science, p.59, 2011.

J. Brian, A. E. Aitken, and . Harrison, Do domestic firms benefit from direct foreign investment ? evidence from venezuela, American economic review, p.60, 1999.

A. Craig-aitken and . Vi, on the graduation of data by the orthogonal polynomials of least squares, Proceedings of the Royal Society of Edinburgh, vol.53, p.60, 1934.

H. Gene and . Golub, Some modified matrix eigenvalue problems, Siam Review, vol.15, issue.2, p.61, 1973.

D. Ronald, E. M. Degroat, and . Dowling, The data least squares problem and channel equalization, IEEE Transactions on, vol.41, issue.1, p.61, 1993.

S. Van-huffel and J. Vandewalle, Analysis and properties of the generalized total least squares problem ax=b when some or all columns in a are subject to error, SIAM Journal on Matrix Analysis and Applications, vol.10, issue.3, p.61, 1989.

S. Van-huffel and H. Zha, The restricted total least squares problem : Formulation, algorithm, and properties, SIAM journal on matrix analysis and applications, vol.12, issue.2, p.62, 1991.

G. H. Ricardo-d-fierro, . Golub, D. Per-christian-hansen, and . Leary, Regularization by truncated total least squares, SIAM Journal on Scientific Computing, vol.18, issue.4, p.62, 1997.

H. Gene, . Golub, D. Per-christian-hansen, and . Leary, Tikhonov regularization and total least squares, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.1, p.62, 1999.

M. Diana, S. Sima, G. H. Van-huffel, and . Golub, Regularized total least squares based on quadratic eigenvalue problem solvers, BIT Numerical Mathematics, vol.44, issue.4, p.62, 2004.

A. Beck and A. Ben-tal, On the solution of the tikhonov regularization of the total least squares problem, SIAM Journal on Optimization, vol.17, issue.1, p.62, 2006.

A. Kukush and S. Van-huffel, Consistency of elementwise-weighted total least squares estimator in a multivariate errors-in-variables model ax= b, Metrika, vol.59, issue.1, p.62, 2004.

. Ks-arun, A unitarily constrained total least squares problem in signal processing, SIAM Journal on Matrix Analysis and Applications, vol.13, issue.3, p.62, 1992.

J. Theagenis, J. M. Abatzoglou, G. A. Mendel, and . Harada, The constrained total least squares technique and its applications to harmonic superresolution, IEEE Transactions on, vol.39, issue.5, p.62, 1991.

A. Beck and A. Ben-tal, A global solution for the structured total least squares problem with block circulant matrices, SIAM Journal on Matrix Analysis and Applications, vol.27, issue.1, p.62, 2005.
DOI : 10.1137/040612233

URL : http://ie.technion.ac.il/%7Ebecka/papers/61223.pdf

N. Mastronardi, P. Lemmerling, A. Kalsi, D. P. O'leary, and S. V. Huffel, Implementation of the regularized structured total least squares algorithms for blind image deblurring, Linear algebra and its applications, vol.391, p.62, 2004.
DOI : 10.1016/j.laa.2004.07.006

URL : https://doi.org/10.1016/j.laa.2004.07.006

G. Cirrincione, Tls and constrained tls neural networks for computer vision, Total Least Squares and Errors-in-Variables Modeling, pp.385-395
DOI : 10.1007/978-94-017-3552-0_34

. Springer, , p.62, 2002.

S. Van-huffel and J. Vandewalle, Analysis and solution of the nongeneric total least squares problem, SIAM journal on matrix analysis and applications, vol.9, issue.3, p.62, 1988.

A. Pruessner, P. Dianne, and . Leary, Blind deconvolution using a regularized structured total least norm algorithm, SIAM journal on matrix analysis and applications, vol.24, issue.4, p.62, 2003.

H. Fu and J. Barlow, A regularized structured total least squares algorithm for high-resolution image reconstruction. Linear algebra and its applications, vol.391, p.62, 2004.

. Vladimir-z-mesarovic, P. Nikolas, A. Galatsanos, and . Katsaggelos, Regularized constrained total least squares image restoration. Image Processing, IEEE Transactions on, vol.4, issue.8, p.62, 1995.

P. Lemmerling, N. Mastronardi, and S. V. Huffel, Efficient implementation of a structured total least squares based speech compression method. Linear algebra and its applications, vol.366, p.62, 2003.

K. Hermus, W. Verhelst, P. Lemmerling, P. Wambacq, and S. V. Huffel, Perceptual audio modeling with exponentially damped sinusoids, Signal processing, vol.85, issue.1, p.62, 2005.

P. Verboven, . Guillaume, . Cauberghe, S. Parloo, and . Vanlanduit, Frequencydomain generalized total least-squares identification for modal analysis, Journal of Sound and Vibration, vol.278, issue.1, p.62, 2004.

A. Yeredor, Multiple delays estimation for chirp signals using structured total least squares, Linear Algebra and its applications, vol.391, p.62, 2004.

B. De-moor and J. David, Total linear least squares and the algebraic riccati equation, Systems & control letters, vol.18, issue.5, p.62, 1992.

R. Kumaresan and . Donald-w-tufts, Estimating the angles of arrival of multiple plane waves. Aerospace and Electronic Systems, IEEE Transactions on, issue.1, p.62, 1983.

M. Eric, R. Dowling, and . Degroat, The equivalence of the total least squares and minimum norm methods [signal processing, Signal Processing, vol.39, p.62, 1991.

. Morris-j-levin, Estimation of a system pulse transfer function in the presence of noise. Automatic Control, IEEE Transactions on, vol.9, issue.3, p.62, 1964.

V. Fernando and H. Nicholson, Identification of linear systems with input and output noise : the koopmans-levin method, IEE Proceedings D (Control Theory and Applications), vol.132, p.62, 1985.

T. Söderström, Errors-in-variables methods in system identification, Automatica, vol.43, issue.6, p.62, 2007.

P. Lemmerling and B. D. Moor, Misfit versus latency, Automatica, vol.37, issue.12, p.62, 2001.

R. Pintelon, P. Guillaume, G. Vandersteen, and Y. Rolain, Analyses, development, and applications of tls algorithms in frequency domain system identification, SIAM journal on matrix analysis and applications, vol.19, issue.4, p.62, 1998.

. Richard-l-branham, Multivariate orthogonal regression in astronomy, Celestial Mechanics and Dynamical Astronomy, vol.61, issue.3, p.62, 1995.

D. Ricardo, E. P. Fierro, and . Jiang, Lanczos and the riemannian svd in information retrieval applications. Numerical linear algebra with applications, vol.12, p.62, 2005.

M. Schuermans, P. Lemmerling, L. De-lathauwer, and S. V. Huffel, The use of total least squares data fitting in the shape-from-moments problem, Signal Processing, vol.86, issue.5, p.62, 2006.

I. Markovsky and S. Van-huffel, An algorithm for approximate common divisor computation, Proceedings of the 17th Symposium on Mathematical Theory of Networks and Systems, p.63, 2006.

I. Markovsky and S. Van-huffel, Overview of total least-squares methods, Signal processing, vol.87, issue.10, p.64, 2007.

F. Chatelin, Eigenvalues of Matrices : Revised Edition, SIAM, vol.71, p.68, 2012.

H. Gene, C. Golub, and . Loan, Matrix computations, vol.3, p.69, 2012.

B. De-moor and J. Vandewalle, An adaptive singular value decomposition algorithm based on generalized chebyshev recursions, p.69, 1987.

N. Beresford and . Parlett, The rayleigh quotient iteration and some generalizations for nonnormal matrices, Mathematics of Computation, vol.28, issue.127, p.69, 1974.

S. Van-huffel and J. Vandewalle, The total least squares problem : computational aspects and analysis, vol.9, p.69, 1991.

E. Oja, Principal components, minor components, and linear neural networks, Neural Networks, vol.5, issue.6, pp.927-935

G. Cirrincione, A neural approach to the structure from motion problem, p.70, 1998.

L. Fa-, R. Luo, and . Unbehauen, Applied neural networks for signal processing, p.70, 1998.

K. Gao, M. Ahmad, and . Swamy, A constrained anti-hebbian learning algorithm for total least-squares estimation with applications to adaptive fir and iir filtering. Circuits and Systems II : Analog and Digital Signal Processing, IEEE Transactions on, vol.41, issue.11, p.70, 1994.

A. Cichocki and R. Unbehauen, Simplified neural networks for solving linear least squares and total least squares problems in real time, IEEE Transactions on, vol.5, issue.6, p.70, 1994.

G. Cirrincione, M. Cirrincione, J. Hérault, and S. V. Huffel, The mca exin neuron for the minor component analysis, IEEE Transactions on, vol.13, issue.1, p.70, 2002.

G. Cirrincione and M. Cirrincione, Linear system identification using the tls exin neuron, Neurocomputing, vol.28, issue.1, p.70, 1999.

E. Oja and J. Karhunen, On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix, Journal of mathematical analysis and applications, vol.106, issue.1, p.71, 1985.

H. Gene, C. Golub, and . Loan, An analysis of the total least squares problem, SIAM Journal on Numerical Analysis, vol.17, issue.6, p.72, 1980.

. Navilock, , vol.76, p.77

Y. Heo, T. Yan, S. Lim, and C. Rizos, International standard gnss real-time data formats and protocols, IGNSS Symp, p.75, 2009.

R. Paul, . Spofford, and . Benjamin-w-remondi, The national geodetic survey standard gps format sp3, SP3-a format) available from the IGS website, p.75, 1994.

C. Fenger, u-blox 6 gps receivers enhanced with many new features, vol.75, p.77, 2011.

, Infrastructure Receiver. Trimble® netr5? gnss infrastructure receiver, p.76

H. Louis, C. Estey, and . Meertens, Teqc : the multi-purpose toolkit for gps/glonass data, GPS solutions, vol.3, p.76, 1999.

J. Saczuk, Achievement of decimeter level positioning accuracy with sirfstariii gps receivers, 14th SGEM GeoConference on Informatics, Geoinformatics and Remote Sensing, 2(SGEM2014 Conference Proceedings, vol.2, p.76, 2014.

S. Igor-aleshin, K. Burguchev, V. Kholodkov, A. Alpatov, and . Vasiliev, Data handling in gnss receiver network and ionosphere monitoring service solution, Engineering and Telecommunication (EnT), 2014 International Conference on, p.76, 2014.

. Ign,

T. Takasu, Rtklib : An open source program package for gnss positioning, p.77, 2011.

H. , J. Kushner, . Dean, and . Clark, Stochastic approximation methods for constrained and unconstrained systems, vol.26, p.93, 2012.

G. Cirrincione and M. Cirrincione, Neural-Based Orthogonal Data Fitting : The EXIN Neural Networks, vol.66, p.109, 2011.
DOI : 10.1002/9780470638286

K. Borre and G. Strang, Algorithms for global positioning, p.109, 2012.

. , Liste Des Figures 1.1 Modulation du signal par la technique DSSS

. Lesélémentsleséléments-orbitaux-de-kepler, inclinaison de l'orbite i, l'ascension droit ? du noeud ascendant K, l'argument du périgée ?, et l'anomalie vraie f , le périgée est noté P et le centre de la terre est noté C

, L'orbite elliptique avec (?, ?) coordonné. L'anomalie vraie f ` a C, p.17

. , Position du récepteur r i dans une inertie Centré terre système et la position du satellite R 3 (w e ? k i )r k coordonné dans une terre centrée et la terre fixe système de coordonnées

). .. , , p.23

. .. Le-principe-de-la-technique-pseudorange-alone, , p.25

. , L'erreur moyenne de l'estimation de la position en appliquant pseudorange alone

. , Positions

S. .. Le-principe-de-la-technique, , p.30

, L'erreur moyenne de l'estimation de la position en appliquant SBAS, p.30

. , Deux récepteurs observent les pseudorangesàpseudoranges`pseudorangesà partir de deux satellites en même temps

D. Le-principe-de-la-technique and . .. Ss, , p.37

. , L'erreur moyenne de l'estimation de la position en appliquant la méthode DGN SS

, Les matériaux qui ontétéontété utilisés pour réaliser le test réel, p.39

, Comparaison entre les techniques pseudorange alone

. , OLS et TLS ajustent d'un ensemble de m=11 de points de données dans le

, Cartographie des stations de base sélectionnéessélectionnées`sélectionnéesà partir de réseau TERIA, p.76

N. .. Ublox,

, LeséphéméridesLeséphémérides qui sont captées par un récepteur Ublox, p.79

. .. Leséphéméridesleséphémérides-qui-sont-utilisées-dans-le-test, , p.80

, Comparaison entre le nombre de conditionnement aux trois méthodes Cholesky, Householder et SVD après chaque sous-´ epoque de calcul, p.82

. , 14 1.5 ´ Eléments orbitaux de Kepler : position de satellite, p.19

.. .. Erreurs-standards,

, La signification les couleurs qui sont captées par le récepteur, p.79

. , Comparaison entre les trois méthodes Cholesky, Householder et SVD pour 5 stations différentes

. , Comparaison entre les trois méthodes Cholesky, Householder et SVD pour des autres 5 stations

, Test de conditionnement et stabilité entre les trois méthodes Cholesky, Householder et SVD pour 5 stations différentes en France, p.81

, Test de conditionnement et stabilité entre les trois méthodes Cholesky, Householder et SVD pour des autres 5 stations en France, p.82

, Comparaison entre les trois méthodes Cholesky, Householder et SVD avec des données de lapremì ere ligne de la matrice A moins fiable, p.85

. , Householder et SVD avec des données de lapremì ere ligne de la matrice A moins fiable, Test de conditionnement et stabilité entre les trois méthodes Cholesky

, Comparaison entre les trois méthodes Cholesky, Householder et SVD avec des données despremì eres trois lignes de la matrice A moins fiables 88

. , Householder et SVD avec des données despremì eres trois lignes de la matrice A moins fiables, Test de conditionnement et stabilité entre les trois méthodes Cholesky

. , Comparaison entre les deux méthodes Householder et SVD avec des données despremì eres trois lignes de la matrice A moins fiables et 10 sous-´ epoques de calcul

. , Test de conditionnement et stabilité entre les deux méthodes Householder et SVD avec des données despremì eres trois lignes de la matrice A moins fiables

. , Comparaison entre le pourcentage d'erreur relative pour les différents méthodes LS pendant une heure pour 10 stations avec un nombre de conditionnement petit

. , Comparaison entre le pourcentage d'erreur relative pour les différents méthodes LS pendant 20 minutes, pour 10 stations avec un nombre de conditionnementélevéconditionnementélevé 10 6

F. .. Belfort, Comparaison entre les cinq méthodes LS avec un nombre de conditionnement basàbas`basà Aldi1 et Aldi2, p.102

F. .. Belfort, Comparaison entre les cinq méthodes LS avec un nombre de conditionnement basàbas`basà Aldi3 et Morts1, p.102

F. .. Belfort, Comparaison entre les cinq méthodes LS avec un nombre de conditionnement basàbas`basà Morts2 et Morts3, p.103

F. .. Belfort, Comparaison entre les cinq méthodes LS avec un nombre de conditionnement basàbas`basàCimitì ere1 etCimitì ere3, p.103

F. .. Belfort, Comparaison entre les cinq méthodes LS avec un nombre de conditionnement basàbas`basà Rail1 et Rail2, p.103

F. .. Belfort, Comparaison entre les cinq méthodes LS avec un nombre de conditionnementélevéànementélevénementélevéà Aldi1 et Aldi2, p.106

F. .. Belfort, Comparaison entre les cinq méthodes LS avec un nombre de conditionnementélevéànementélevénementélevéà Aldi3 et Morts1, p.106

F. .. Belfort, Comparaison entre les cinq méthodes LS avec un nombre de conditionnementélevéànementélevénementélevéà Morts2 et Morts3, p.107

F. .. Belfort, Comparaison entre les cinq méthodes LS avec un nombre de conditionnementélevéànementélevénementélevéà Rail1 et Rail2, p.107

F. .. Belfort, Comparaison entre les cinq méthodes LS avec un nombre de conditionnementélevéànementélevénementélevéà Rail3 etCimitì ere1, p.107