S. Bagotsky, V. , M. Skundin, A. Volfkovich, and Y. , Electrochemical Power Sources, 2014.

R. Devanathan, Recent developments in proton exchange membranes for fuel cells

, Energy Environ. Sci, vol.1, p.101, 2008.

S. Giddey, S. P. Badwal, A. Kulkarni, and C. Munnings, A comprehensive review of direct carbon fuel cell technology, Progress in Energy and Combustion Science, vol.38, pp.360-399, 2012.

A. Kulkarni and S. Giddey, Materials issues and recent developments in molten carbonate fuel cells, Journal of Solid State Electrochemistry, vol.16, pp.3123-3146, 2012.
DOI : 10.1007/s10008-012-1771-y

W. T. Grubb and L. W. Niedrach, Batteries with Solid Ion-Exchange Membrane Electrolytes, J. Electrochem. Soc, vol.107, pp.131-135, 1960.
DOI : 10.1149/1.2427622

M. L. Perry and T. F. Fuller, A Historical Perspective of Fuel Cell Technology in the 20th Century, J. Electrochem. Soc, vol.149, p.59, 2002.

L. L. Zhang and X. S. Zhao, Carbon-based materials as supercapacitor electrodes
DOI : 10.1039/b813846j

, Chem. Soc. Rev, vol.38, p.2520, 2009.

C. W. Hamilton, R. T. Baker, and A. Staubitz, & Manners, I. B-N compounds for chemical hydrogenstorage, Chem. Soc. Rev, vol.38, pp.279-293, 2009.

P. Wang, Solid-state thermolysis of ammonia borane and related materials for highcapacity hydrogen storage, Dalt. Trans, vol.41, p.4296, 2012.

Z. Huang and T. Autrey, Boron-nitrogen-hydrogen (BNH) compounds: recent developments in hydrogen storage, applications in hydrogenation and catalysis, and new syntheses, Energy Environ. Sci, vol.5, p.9257, 2012.
DOI : 10.1039/c2ee23039a

URL : https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1320&context=aiimpapers

G. Moussa, R. Moury, U. B. Demirci, T. ?ener, and P. Miele, Boron-based hydrides for chemical hydrogen storage, Int. J. Energy Res, vol.37, pp.825-842, 2013.
DOI : 10.1002/er.3027

URL : https://hal.archives-ouvertes.fr/hal-01688800

F. H. Stephens, V. Pons, and R. Tom-baker, Ammonia-borane: the hydrogen source par excellence?, Dalt. Trans, vol.100, pp.2613-2626, 2007.
DOI : 10.1039/b703053c

B. Peng and J. Chen, Ammonia borane as an efficient and lightweight hydrogen storage medium, Energy Environ. Sci, vol.33, p.608, 2008.
DOI : 10.1039/b809243p

H. V. Diyabalanage, Calcium Aminotrihydroborate: A Hydrogen Storage Material, Angew. Chemie Int. Ed, vol.46, pp.8995-8997, 2007.
DOI : 10.1002/ange.200702240

R. P. Shrestha, H. V. Diyabalanage, T. A. Semelsberger, K. C. Ott, and . Burrell, , p.77

K. , Catalytic dehydrogenation of ammonia borane in non-aqueous medium, Int. J. Hydrogen Energy, vol.34, pp.2616-2621, 2009.

S. Kim,

, Tetraglyme-mediated synthesis of Pd nanoparticles for dehydrogenation of ammonia borane, Chem. Commun, vol.48, p.2021, 2012.

C. A. Jaska, K. Temple, and A. J. Lough, & Manners, I. Transition Metal-Catalyzed Property, J. Nanosci. Nanotechnol, vol.8, pp.6338-6343, 2008.

M. Narisawa, A. Idesaki, S. Kitano, and K. Okamura, Use of Blended Precursors of Poly ( vinylsilane ) in Polycarbosilane for Silicon Carbide Fiber Synthesis with Radiation Curing, J. Am. Cera.Soc, vol.51, pp.1045-1051, 1999.

A. Idesaki, Synthesis of a minute SiC product from polyvinylsilane with radiation curing: Part I radiation curing of polyvinylsilane, J. Mater. Sci, vol.39, pp.5689-5694, 2004.

A. Idesaki, Application of electron beam curing for silicon carbide fiber synthesis from blend polymer of polycarbosilane and polyvinylsilane, Radiation Physics and Chemistry, vol.60, pp.483-487, 2001.

T. A. Pham, P. Kim, M. Kwak, K. Y. Suh, and D. Kim, Inorganic polymer photoresist for direct ceramic patterning by photolithography, Chem. Commun. (Camb), vol.14, pp.4021-4023, 2007.
DOI : 10.1039/b708480c

URL : http://oasis.postech.ac.kr/bitstream/2014.oak/9929/1/OAIR000655.pdf

M. Schulz, Cross linking behavior of preceramic polymers effected by UV-And synchrotron radiation, Adv. Eng. Mater, vol.6, pp.676-680, 2004.

Y. , S. Hayashi, J. Omori, M. Okamura, and K. , Development of a silicon carbide fibre with high tensile strength, Nature, vol.261, pp.683-685, 1976.

S. Yajima, J. Hayashi, M. Omori, . Continuous, . Silicon et al., Chem. Lett, vol.4, pp.931-934, 1975.

J. Lipowitz, J. A. Rabe, A. Zangvil, and Y. Xu, Proceedings of the 21st Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings 147-157, 1997.

K. , M. Nakajima, J. Ishikawa, M. Yamamoto, and Y. , Synthesis and Intramolecular Rearrangements of Chloromethylpenta-methyldisilane and 1Chloromethyl-2-chlorotetramethyldisilane, J. Org. Chem, vol.23, pp.292-295, 1958.

M. Birot, J. Pillot, and J. Dunogues, Comprehensive Chemistry of Polycarbosilanes, Polysilazanes, and Polycarbosilazanes as Precursors of Ceramics, Chem. Rev, vol.95, pp.1443-1477, 1995.

H. , A. T. Birot, M. Pillot, J. P. Dunogues, J. Pailler et al., Synthesis and characterization of new precursors to nearly stoichiometric SiC ceramics: Part 1 The copolymer route, J. Mater. Sci, vol.32, pp.3475-3483, 1997.

C. K. Whitmarsh and L. V. Interrante, Synthesis and Structure of a Highly Branched, p.90

, Polycarbosllane Derived from (Chloromethy) trichiorosilane, Orgnaometallics, vol.10, pp.1336-1344, 1991.

R. Sreeja, B. Swaminathan, A. Painuly, T. V. Sebastian, and S. Packirisamy, Allylhydridopolycarbosilane (AHPCS) as matrix resin for C/SiC ceramic matrix composites, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol, vol.168, pp.204-207, 2010.

I. L. Rushkin, Q. Shen, S. E. Lehman-&-interrante, and L. V. , Modification of a Hyperbranched Hydridopolycarbosilane as a Route to New Polycarbosilanes, Macromolecules, vol.30, pp.3141-3146, 1997.

S. Kaur, R. Riedel, and E. Ionescu, Pressureless fabrication of dense monolithic SiC ceramics from a polycarbosilane, J. Eur. Ceram. Soc, vol.34, pp.3571-3578, 2014.

L. V. Interrante, High yield polycarbosilane precursors to stoichiometric SiC. Synthesis, pyrolysis and application, Mater. Res. Soc. Symp.-Proc, vol.346, pp.593-603, 1994.

T. Konegger, C. Tsai, H. Peterlik, S. E. Creager, and R. K. Bordia, Asymmetric polysilazane-derived ceramic structures with multiscalar porosity for membrane applications, Microporous Mesoporous Mater, vol.232, pp.196-204, 2016.

E. Kroke, Silazane derived ceramics and related materials, Mater. Sci. Eng. R Reports, vol.26, pp.97-199, 2000.

M. N. Persoz and . Title, Ann. Chim. Phys, vol.44, p.315, 1839.

P. Schutzenberger, H. Colsen, and . No-title, C. R. Acad. Sci, vol.92, p.1508, 1885.

D. Seyferth, G. H. Wiseman, and C. Prud'homme, A Liquid Silazane Precursor To Silicon Nitride, J. Am. Ceram. Soc, vol.66, 1983.

W. C. Schumb, L. H. Towle, . The, . Ammonolysis, and . Silicon-tetrachloride, J. Am. Chem. Soc, vol.75, pp.6085-6086, 1953.

K. Niedenzu, P. Fritz, and J. W. Dawson, Boron-Nitrogen Compounds. XVI. Some New Boron-Nitrogen Heterocycles, Inorg. Chem, vol.3, pp.1077-1079, 1964.

G. T. Burns and G. Chandra, Pyrolysis of Preceramic Polymers in Ammonia: Preparation of Silicon Nitride Powders, J. Am. Ceram. Soc, vol.72, pp.333-337, 1989.

D. Seyferth and G. H. Wiseman, Preceramic organosilazane polymers, 1984.

Y. W. Bae, H. Du, B. Gallois, K. E. Gonsalves, and B. J. Wilkens, Structure and Chemistry of Silicon Nitride and Silicon Carbonitride Thin Films Deposited from Ethylsilazane in Ammonia or Hydrogen, Chem. Mater, vol.4, pp.478-483, 1992.

T. Isoda, Perhydropolysilazane precursors to silicon nitride ceramics, J. Inorg, p.91

, Organomet. Polym, vol.2, pp.151-160, 1992.

A. Kamo, T. Isoda, C. Resezfrch, and T. Corporation, Into Silicon Nitride-Based Ceramics, vol.29, pp.4883-4888, 1994.

C. R. Blanchard and S. T. Schwab, X-ray Diffraction Analysis of the Pyrolytic Conversion of Perhydropolysilazane into Silicon Nitride, J. Am. Ceram. Soc, vol.77, pp.1729-1739, 1994.

Y. Iwamoto, Crystallization Behavior of Amorphous Silicon Carbonitride Ceramics Derived from Organometallic Precursors, J. Am. Ceram. Soc, vol.84, pp.2170-2178, 2004.

M. Günthner, Advanced coatings on the basis of Si(C)N precursors for protection of steel against oxidation, J. Eur. Ceram. Soc, vol.29, pp.2061-2068, 2009.

M. , Y. Ueda, T. Kitaoka, S. Sugahara, and Y. , Preparation of Si-Al-N-C Ceramic Composites by Pyrolysis of Blended Precursors, J. Ceram. Soc. Japan, vol.114, pp.497-501, 2006.

D. Seyferth and G. Wiseman, High-Yield Synthesis of Si3N4/SiC Ceramic Materials by Pyrolysis of a Novel Poly organosilazane, Communiactions Am. Ceram. Soc, vol.67, p.132

M. Birot, J. Pillot, and J. Dunogues, Comprehensive Chemistry of Polycarbosilanes, Polysilazanes, and Polycarbosilazanes as Precursors of Ceramics, Chem. Rev, vol.95, pp.1443-1477, 1995.

C. K. Whitmarsh and L. V. Interrante, Synthesis and Structure of a Highly Branched Polycarbosllane Derived from (Chloromethy) trichiorosilane, Orgnaometallics, vol.10, pp.1336-1344, 1991.

S. Bernard and P. Miele, Nanostructured and architectured boron nitride from boron, nitrogen and hydrogen-containing molecular and polymeric precursors, Materials Today, vol.17, pp.443-450, 2014.
DOI : 10.1016/j.mattod.2014.07.006

URL : https://hal.archives-ouvertes.fr/hal-01688625

P. J. Fazen, Synthesis, Properties, and Ceramic Conversion Reactions of Polyborazylene. A High-Yield Polymeric Precursor to Boron Nitride, Chem. Mater, vol.7, pp.1942-1956, 1995.
DOI : 10.1021/cm00058a028

S. M. Sachau, Micro-/Mesoporous Platinum???SiCN Nanocomposite Catalysts (Pt@SiCN): From Design to Catalytic Applications. Chem.-A Eur, J, vol.22, p.15508
DOI : 10.1002/chem.201603266

URL : https://hal.archives-ouvertes.fr/hal-01687158

R. T. Paine and C. K. Narula, Synthetic routes to boron nitride, Chem. Rev, vol.90, pp.73-91, 1990.
DOI : 10.1021/cr00099a004

W. H. Balmain, Bemerkungen über die Bildung von Verbindungen des Bors und Siliciums mit Stickstoff und gewissen Metallen, J. für Prakt. Chemie, vol.27, pp.422-430, 1842.
DOI : 10.1002/prac.18420270164

R. Haubner, M. Wilhelm, R. Weissenbacher, and B. Lux, , pp.1-45, 2002.

S. Bernard, V. Salles, S. Foucaud, and P. Miele, Boron Nitride Nanoparticles: One-Step Synthesis from Single-Source Preceramic Precursors, Adv. Sci. Technol, vol.62, pp.1-7, 2010.
DOI : 10.4028/www.scientific.net/ast.62.1

J. Li, S. Bernard, V. Salles, C. Gervais, and P. Miele, Preparation of Polyborazylene-Derived Bulk Boron Nitride with Tunable Properties by Warm-Pressing and Pressureless Pyrolysis, Chem. Mater, vol.22, pp.2010-2019, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00466020

P. Miele, B. Toury, D. Cornu, and S. Bernard, Borylborazines as new precursors for boron nitride fibres, J. Organomet. Chem, vol.690, pp.2809-2814, 2005.
DOI : 10.1016/j.jorganchem.2005.02.039

S. Bernard, F. Chassagneux, M. Berthet, H. Vincent, and J. Bouix, Structural and mechanical properties of a high-performance BN fibre, J. Eur. Ceram. Soc, vol.22, pp.2047-2059, 2002.
DOI : 10.1016/s0955-2219(01)00524-6

S. Frueh, Pyrolytic Decomposition of Ammonia Borane to Boron Nitride, 2010.
DOI : 10.1021/ic101020k

E. G. Brame, J. L. Margrave, and V. W. Meloche, Infra-red spectra of inorganic solids-II oxides, nitrides, carbides, and borides, J. Inorg. Nucl. Chem, vol.5, pp.48-52, 1957.
DOI : 10.1016/0022-1902(57)80079-7

J. Baumann, F. Baitalow, and G. Wolf, Thermal decomposition of polymeric aminoborane (H2BNH2)x under hydrogen release, Thermochim. Acta, vol.430, pp.9-14, 2005.

R. Komm, R. A. Geanangel, and R. Liepins, Synthesis and studies of poly(aminoborane), (H2NBH2)x, Inorg. Chem, vol.22, pp.1684-1686, 1983.
DOI : 10.1021/ic00153a025

P. J. Fazen, Synthesis, Properties, and Ceramic Conversion Reactions of Polyborazylene. A High-Yield Polymeric Precursor to Boron Nitride, Chem. Mater, vol.7, pp.1942-1956, 1995.
DOI : 10.1021/cm00058a028

R. S. Pease, An X-ray study of boron nitride, Acta Crystallogr, vol.5, pp.356-361, 1952.

N. Ooi, A. Rairkar, L. Lindsley, and J. B. Adams, Electronic structure and bonding in hexagonal boron nitride, J. Phys. Condens. Matter, vol.18, pp.97-115, 2006.

N. L. Coleburn and J. W. Forbes, Irreversible Transformation of Hexagonal Boron Nitride by Shock Compression, J. Chem. Phys, vol.48, pp.555-559, 1968.
DOI : 10.1063/1.1668682

J. Thomas, N. E. Weston, and T. E. Connor, Turbostratic 1 Boron Nitride, Thermal Transformation to Ordered-layer-lattice Boron Nitride, J. Am. Chem. Soc, vol.84, pp.4619-4622, 1962.
DOI : 10.1021/ja00883a001

R. Schaeffer, Preparation of Borazole by the Reduction of Trichloroborazole 1a, J. Am. Chem. Soc, vol.76, pp.3303-3306, 1954.

S. Bernard, Evolution of structural features and mechanical properties during the conversion of poly[(methylamino)borazine] fibers into boron nitride fibers, J. Solid State Chem, vol.177, pp.1803-1810, 2004.

G. Jeschke, W. Hoffbauer, and M. Jansen, A comprehensive NMR study of cubic and hexagonal boron nitride, Solid State Nucl. Magn. Reson, vol.12, pp.1-7, 1998.
DOI : 10.1016/s0926-2040(98)00045-9

J. S. Beck, C. R. Albani, A. R. Mcghie, J. B. Rothman, and L. G. Sneddon, Dibromoborane-dimethyl sulfide: a simple molecular precursor for the formation of bulk powders and fiber coatings of boron nitride, Chem. Mater, vol.1, pp.433-438, 1989.

H. Termoss, Preparation of boron nitride-based coatings on metallic substrates via infrared irradiation of dip-coated polyborazylene, J. Mater. Chem, vol.19, p.2671, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00425225

A. W. Laubengayer, P. C. Moews, and R. F. Porter, The Condensation of Borazine to Polycyclic Boron-Nitrogen Frameworks by Pyrolytic Dehydrogenation 1, J. Am. Chem. Soc, vol.83, pp.1337-1342, 1961.

P. J. Fazen, J. S. Beck, A. T. Lynch, E. E. Remsen, and L. G. Sneddon, Thermally induced borazine dehydropolymerization reactions. Synthesis and ceramic conversion reactions of a new high-yield polymeric precursor to boron nitride, Chem. Mater, vol.2, pp.96-97, 1990.

D. Kim and J. Economy, Occurrence of Liquid Crystallinity in a Borazine Polymer, Chem. Mater, vol.6, pp.395-400, 1994.

M. Diwan, D. Hanna, and A. Varma, Method to release hydrogen from ammonia borane for portable fuel cell applications, Int. J. Hydrogen Energy, vol.35, pp.577-584, 2010.
DOI : 10.1016/j.ijhydene.2009.10.057

D. J. Heldebrant, The Effects of Chemical Additives on the Induction Phase in Solid-State Thermal Decomposition of Ammonia Borane, Chem. Mater, vol.20, pp.5332-5336, 2008.

S. Sepehri, Spectroscopic studies of dehydrogenation of ammonia borane in carbon cryogel, J. Phys. Chem. B, vol.111, pp.14285-14289, 2007.

C. Gervais, Chemically derived BN ceramics: Extensive 11B and 15N solid-state NMR study of a preceramic polyborazilene, Chem. Mater, vol.13, pp.1700-1707, 2001.

B. Toury, High-resolution15N solid-state NMR investigations on borazine-based precursors, Appl. Organomet. Chem, vol.18, pp.227-232, 2004.
DOI : 10.1002/aoc.612

R. J. Nemanich, S. A. Solin, and R. M. Martin, Light scattering study of boron nitride microcrystals, Phys. Rev. B, vol.23, pp.6348-6356, 1981.

W. Spengler, R. Kaiser, and H. Bilz, Resonant Raman scattering in a superconducting transition metal compound TiN, Solid State Commun, vol.17, pp.19-22, 1975.

Z. H. Ding, B. Yao, L. X. Qiu, and T. Q. Lv, Raman scattering investigation of nanocrystalline ?-TiNx synthesized by solid-state reaction, J. Alloys Compd, vol.421, pp.247-251, 2006.

C. Zhou, Synthesis and high-temperature evolution of single-phase amorphous Si?Hf?N ceramics, J. Eur. Ceram. Soc, vol.35, 2007.

M. Yano, Growth of nitride crystals, BN, AlN and GaN by using a Na flux, Diam. Relat. Mater, vol.9, pp.512-515, 2000.

M. Yano, Na: A New Flux for Growing Hexagonal Boron Nitride Crystals at Low Temperature, Jpn. J. Appl. Phys, vol.39, pp.300-302, 2000.

P. C. Yang, J. T. Prater, W. Liu, J. T. Glass, and R. F. Davis, The formation of epitaxial hexagonal boron nitride on nickel substrates, J. Electron. Mater, vol.34, pp.1558-1564, 2005.

Y. Gu, M. Zheng, Y. Liu, and Z. Xu, Low-Temperature Synthesis and Growth of Hexagonal BoronNitride in a Lithium Bromide Melt, J. Am. Ceram. Soc, vol.90, pp.1589-1591, 2007.

V. L. Solozhenko and V. Z. Turkevich, Kinetics of cBN crystallization in the Li3N-BN system at 6

, GPa. Diam. Relat. Mater, vol.7, pp.43-46, 1998.

V. B. Shipilo, O. V. Ignatenko, N. A. Shempel, I. I. Azarko, and S. A. Lebedev, Crystallization of cubic boron nitride in the system Li3N-BN (4-10 wt % Li3N), Inorg. Mater, vol.44, pp.258-262, 2008.

X. Guo, Thermodynamic Analysis about Nucleation and Growth of Cubic Boron Nitride Crystals in the hBN-Li3N System under High Pressure and High Temperature, Entropy, vol.17, pp.755-762, 2015.

J. Von-der-gönna, In-situ investigations of the reversible hBN-cBN-hBN-transformation in the Li3N-BN catalyst system using synchrotron radiation, Mater. Lett, vol.33, pp.321-326, 1998.

Y. Du, Synthesis of black cBN single crystal in hBN-Li3N-B system, Mater. Lett, vol.61, pp.3409-3412, 2007.

H. Nöth and B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, 1978.

S. Duperrier, Design of a Series of Preceramic B-Tri(methylamino)borazine-Based Polymers as Fiber Precursors: Shear Rheology Investigations, Macromolecules, vol.40, pp.1028-1034, 2007.

O. Gunaydin-sen, R. Achey, N. S. Dalal, A. Stowe, and T. Autrey, High resolution 15N NMR of the 225 K phase transition of ammonia borane (NH3BH3): Mixed order-disorder and displacive behavior, J. Phys. Chem. B, vol.111, pp.677-681, 2007.

G. R. Fulmer, NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist, Organometallics, vol.29, pp.2176-2179, 2010.

M. Günthner, Advanced coatings on the basis of Si(C)N precursors for protection of steel against oxidation, J. Eur. Ceram. Soc, vol.29, pp.2061-2068, 2009.

T. Isoda, Perhydropolysilazane precursors to silicon nitride ceramics, J. Inorg. Organomet. Polym, vol.2, pp.151-160, 1992.

C. R. Blanchard and S. T. Schwab, X-ray Diffraction Analysis of the Pyrolytic Conversion of Perhydropolysilazane into Silicon Nitride, J. Am. Ceram. Soc, vol.77, pp.1729-1739, 1994.

M. Günthner, High performance environmental barrier coatings, Part I: Passive filler loaded SiCN system for steel, J. Eur. Ceram. Soc, vol.31, pp.3003-3010, 2011.

J. Lücke, J. Hacker, D. Suttor, and G. Ziegler, Synthesis and Characterization of Silazane-Based Polymers as Precursors for Ceramic Matrix Composites, Appl. Organomet. Chem, vol.11, pp.181-194, 1997.

S. Bazarjani and M. , Nanoporous Silicon Oxycarbonitride Ceramics Derived from Polysilazanes In situ Modified with Nickel Nanoparticles, Chem. Mater, vol.23, pp.4112-4123, 2011.

M. C. Bechelany, Nanocomposites through the Chemistry of Single-Source Precursors: Understanding the Role of Chemistry behind the Design of Monolith-Type Nanostructured Titanium Nitride/Silicon Nitride. Chem.-A Eur, J, vol.23, pp.832-845, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01518200

J. Löffelholz, J. Engering, and M. Jansen, Sol-Gel-Process in the Ammono-System-a Novel Access to Silicon Based Nitrides, Zeitschrift für Anorg. und Allg. Chemie, vol.626, pp.963-968, 2000.

G. Engelhardt, R. Radeglia, H. Jancke, E. Lippmaa, and M. Mägi, Zur Interpretation29Si-NMRchemischer Verschiebungen, Org. Magn. Reson, vol.5, pp.561-566, 1973.
DOI : 10.1002/mrc.1270051203

N. Hering, K. Schreiber, R. Riedel, O. Lichtenberger, and J. Woltersdorf, Synthesis of polymeric precursors for the formation of nanocrystalline Ti-C-N/amorphous Si-C-N composites, Appl. Organomet. Chem, vol.15, pp.879-886, 2001.

O. Lichtenberger, E. Pippel, J. Woltersdorf, and R. Riedel, Formation of nanocrystalline titanium carbonitride by pyrolysis of poly(titanylcarbodiimide), Mater. Chem. Phys, vol.81, pp.195-201, 2003.

J. Seitz, J. Bill, N. Egger, and F. Aldinger, Structural investigations of Si/C/N-ceramics from polysilazane precursors by nuclear magnetic resonance, J. Eur. Ceram. Soc, vol.16, pp.885-891, 1996.

Y. , N. S. Leclercq, D. Mutin, P. H. Vioux, and A. , Polyvinylsilazane: a novel precursor to silicon carbonitride, New J. Chem, vol.15, pp.85-92, 1991.

C. Kwet-yive, N. S. Corriu, R. J. Leclercq, D. Mutin, P. H. Vioux et al., Silicon carbonitride from polymeric precursors: thermal cross-linking and pyrolysis of oligosilazane model compounds, Chem. Mater, vol.4, pp.141-146, 1992.

G. M. Brown and L. Maya, Ammonolysis Products of the Dialkylamides of Titanium, Zirconium, and Niobium as Precursors to Metal Nitrides, J. Am. Ceram. Soc, vol.71, pp.78-82, 1988.

C. Kwet-yive, N. S. Corriu, R. J. Leclercq, D. Mutin, P. H. Vioux et al., Thermogravimetric analysis/mass spectrometry investigation of the thermal conversion of organosilicon precursors into ceramics under argon and ammonia. 2. Poly(silazanes), Chem. Mater, vol.4, pp.1263-1271, 1992.

W. R. Schmidt, Ammonia-induced pyrolytic conversion of a vinylic polysilane to silicon nitride, Chem. Mater, vol.4, pp.937-947, 1992.

P. Duwez and F. Odell, Phase Relationships in the Binary Systems of Nitrides and Carbides of Zirconium, Columbium, Titanium, and Vanadium, J. Electrochem. Soc, vol.97, p.299, 1950.

C. P. Constable, J. Yarwood, and W. Münz, Raman microscopic studies of PVD hard coatings. Surf. Coatings Technol, pp.155-159, 1999.

C. Zhou, Synthesis and high-temperature evolution of single-phase amorphous Si-Hf-N ceramics, J. Eur. Ceram. Soc, vol.35, 2007.

W. Chen and J. Z. Jiang, Elastic properties and electronic structures of 4d-and 5d-transition metal mononitrides, J. Alloys Compd, vol.499, pp.243-254, 2010.
DOI : 10.1016/j.jallcom.2010.03.176

W. Spengler, R. Kaiser, and H. Bilz, Resonant Raman scattering in a superconducting transition metal compound TiN, Solid State Commun, vol.17, pp.19-22, 1975.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-vogt, Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN, Phys. Rev. B, vol.17, pp.1095-1101, 1978.

W. Spengler and R. Kaiser, First and second order Raman scattering in transition metal compounds, Solid State Commun, vol.18, pp.881-884, 1976.
DOI : 10.1016/0038-1098(76)90228-3

S. K. Hodak, T. Seppänen, and S. Tungasmita, Growth of (Zr,Ti)N Thin Films by Ion-Assisted Dual D.C. Reactive Magnetron Sputtering. Solid State Phenom, vol.136, pp.133-138, 2008.

V. V. Uglov, Structural characterization and mechanical properties of Ti-Zr-N coatings, deposited by vacuum arc. Surf. Coatings Technol, pp.519-525, 2004.

K. P. Purushotham, Tribological studies of Zr-implanted PVD TiN coatings deposited on stainless steel substrates, Wear, vol.254, pp.589-596, 2003.

E. Lugscheider, PVD hard coated reamers in lubricant-free cutting, Surf. Coatings Technol, vol.112, pp.146-151, 1999.
DOI : 10.1016/s0257-8972(98)00775-0

H. Nowotny, F. Benesovsky, and E. Rudy, Hochschmelzende Systeme mit Hafniumkarbid undnitrid, Monatshefte f?r Chemie, vol.91, pp.348-356, 1960.
DOI : 10.1007/bf00901755

R. Kieffer, P. Ettmayer, G. Dufek, and H. Nowotny, Recent investigations on the miscibility of transition element nitrides and carbides, Metall, vol.26, pp.701-708, 1972.

R. Kieffer, H. Nowotny, A. Neckel, P. Ettmayer, and L. Usner, Zur Entmischung von kubischen Mehrstoffcarbiden, Monatshefte f?r Chemie, vol.99, pp.1020-1027, 1968.
DOI : 10.1007/bf00913751

Y. Han, X. Yue, Y. Jin, X. Huang, and P. K. Shen, Hydrogen evolution reaction in acidic media on single-crystalline titanium nitride nanowires as an efficient nonnoble metal electrocatalyst, J. Mater. Chem. A, vol.4, pp.3673-3677, 2016.
DOI : 10.1039/c5ta09976e

V. Molinari, C. Giordano, M. Antonietti, and D. Esposito, Titanium Nitride-Nickel Nanocomposite as Heterogeneous Catalyst for the Hydrogenolysis of Aryl Ethers, J. Am. Chem. Soc, vol.136, pp.1758-1761, 2014.

Z. Cui, M. Yang, and F. J. Disalvo, Mesoporous Ti0.5Cr0.5N supported PdAg nanoalloy as highly active and stable catalysts for the electro-oxidation of formic acid and methanol, ACS Nano, vol.8, pp.6106-6113, 2014.

B. G. Kim, Ordered Mesoporous Titanium Nitride as a Promising Carbon-Free Cathode for Aprotic Lithium-Oxygen Batteries, ACS Nano, vol.11, pp.1736-1746, 2017.
DOI : 10.1021/acsnano.6b07635

Y. Shi, Y. Wan, and D. Zhao, Ordered mesoporous non-oxide materials, Chem. Soc. Rev, vol.40, pp.3854-78, 2011.
DOI : 10.1039/c0cs00186d

L. Borchardt, Preparation and application of cellular and nanoporous carbides

, Chem. Soc. Rev, vol.41, pp.5053-67, 2012.

S. Schlienger, Micro-, Mesoporous Boron Nitride-Based Materials Templated from Zeolites, Chem. Mater, vol.24, pp.88-96, 2012.
DOI : 10.1021/cm201938h

URL : https://hal.archives-ouvertes.fr/hal-00660595

O. Majoulet, Silicon-boron-carbon-nitrogen monoliths with high, interconnected and hierarchical porosity, J. Mater. Chem. A, vol.1, p.10991, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01689493

S. Bernard and P. Miele, Ordered mesoporous polymer-derived ceramics and their processing into hierarchically porous boron nitride and silicoboron carbonitride monoliths, New J. Chem, vol.38, p.1923, 2014.
DOI : 10.1039/c3nj01612a

URL : https://hal.archives-ouvertes.fr/hal-01687556

C. K. Whitmarsh and L. V. Interrante, Carbosilane polymer precursors to silicon carbide ceramics, 1992.

M. Günthner, High performance environmental barrier coatings, Part I: Passive filler loaded SiCN system for steel, J. Eur. Ceram. Soc, vol.31, pp.3003-3010, 2011.

C. Salameh, Monodisperse platinum nanoparticles, p.276
URL : https://hal.archives-ouvertes.fr/hal-01684766

, mesoporous silicon nitride nanoblocks: superior catalytic activity for hydrogen generation from sodium borohydride, RSC Adv, vol.5, pp.58943-58951, 2015.

T. Isoda, Perhydropolysilazane precursors to silicon nitride ceramics, J. Inorg. Organomet. Polym, vol.2, pp.151-160, 1992.
DOI : 10.1007/bf00696542

K. S. Sing, Handbook of Heterogeneous Catalysis

&. Gmbh, . Co, and . Kgaa, , 2008.

J. Rouquerol, , vol.1, 1994.

G. Mason, The effect of pore space connectivity on the hysteresis of capillary condensation in adsorption-desorption isotherms, J. Colloid Interface Sci, vol.88, pp.36-46, 1982.

Y. F. Shi, Highly Ordered Mesoporous Silicon Carbide Ceramics with Large Surface Areas and High Stability, Adv. Funct. Mater, vol.16, pp.561-567, 2006.
DOI : 10.1002/adfm.200500643

O. Majoulet, Ordered mesoporous silicoboron carbonitride ceramics from boronmodified polysilazanes: Polymer synthesis, processing and properties, Microporous Mesoporous Mater, vol.140, pp.40-50, 2011.
DOI : 10.1016/j.micromeso.2010.09.008

URL : https://hal.archives-ouvertes.fr/hal-00576389

Y. Shin and Y. Shimogaki, Diffusion barrier property of TiN and TiN/Al/TiN films deposited with FMCVD for Cu interconnection in ULSI, Sci. Technol. Adv. Mater, vol.5, pp.399-405, 2004.

G. Gagnon, J. F. Currie, J. L. Brebner, and T. Darwall, Efficiency of TiN diffusion barrier between Al and Si prepared by reactive evaporation and rapid thermal annealing, J. Appl. Phys, vol.79, p.7612, 1996.

M. Y. Kwak, D. H. Shin, T. W. Kang, and K. N. Kim, Characteristics of TiN barrier layer against Cu diffusion, Thin Solid Films, vol.339, pp.290-293, 1999.

W. Wu, K. Tsai, C. Chao, J. Chen, and K. Ou, Novel multilayered

, Ti/TiN diffusion barrier for Al metallization, J. Electron. Mater, vol.34, pp.1150-1156, 2005.

D. J. Ham and J. S. Lee, Transition metal carbides and nitrides as electrode materials for low temperature fuel cells, vol.2, pp.873-899, 2009.

V. Novák, P. Ko?í, F. ?t?pánek, and M. Marek, Integrated Multiscale Methodology for Virtual Prototyping of Porous Catalysts, Ind. Eng. Chem. Res, vol.50, pp.12904-12914, 2011.

E. Ortel, Supported Mesoporous and Hierarchical Porous Pd/TiO 2 Catalytic Coatings with Controlled Particle Size and Pore Structure, Chem. Mater, vol.24, pp.3828-3838, 2012.
DOI : 10.1021/cm301081w

J. Yan, A. Wang, and D. Kim, Preparation of ordered mesoporous SiCN ceramics with large surface area and high thermal stability, Microporous Mesoporous Mater, vol.100, pp.128-133, 2007.

O. Majoulet, Preparation, characterization, and surface modification of periodic mesoporous silicon-aluminum-carbon-nitrogen frameworks, Chem. Mater, vol.25, pp.3957-3970, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01688757

I. I. El-sharkawy, Experimental investigation on activated carbon-ethanol pair for solar powered adsorption cooling applications, Int. J. Refrig, vol.31, pp.1407-1413, 2008.
DOI : 10.1016/j.ijrefrig.2008.03.012

B. Avasarala, T. Murray, W. Li, and P. Haldar, Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells, J. Mater. Chem, vol.19, p.1803, 2009.
DOI : 10.1039/b819006b

B. Avasarala and P. Haldar, Electrochemical oxidation behavior of titanium nitride based electrocatalysts under {PEM} fuel cell conditions, Electrochim. Acta, vol.55, pp.9024-9034, 2010.

K. Kakinuma, Preparation of titanium nitride-supported platinum catalysts with well controlled morphology and their properties relevant to polymer electrolyte fuel cells, Electrochim. Acta, vol.77, pp.279-284, 2012.

U. B. Demirci and P. Miele, Cobalt-based catalysts for the hydrolysis of NaBH4 and NH3BH3, Phys. Chem. Chem. Phys, vol.16, p.6872, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01688634