J. He, H. Lindström, A. Hagfeldt, and S. Lindquist, Dye-Sensitized Nanostructured p-Type Nickel Oxide Film as a Photocathode for a Solar Cell, J. Phys. Chem. B, vol.103, pp.8940-8943, 1999.
DOI : 10.1021/jp991681r

A. Nattestad, Highly efficient photocathodes for dye-sensitized tandem solar cells, Nat. Mater, vol.9, pp.31-35, 2010.

F. Odobel, Recent advances and future directions to optimize the performances of p-type dyesensitized solar cells, Coord. Chem. Rev, vol.256, pp.2414-2423, 2012.

F. Li, Organic Dye-Sensitized Tandem Photoelectrochemical Cell for Light Driven Total Water Splitting, J. Am. Chem. Soc, vol.137, pp.9153-9159, 2015.
DOI : 10.1021/jacs.5b04856

I. R. Perera, Application of the Tris(acetylacetonato)iron(III)/(II) Redox Couple in p-Type DyeSensitized Solar Cells, Angew. Chem. Int. Ed, vol.54, pp.3758-3762, 2015.

M. Yu, T. I. Draskovic, and Y. Wu, Cu(I)-based delafossite compounds as photocathodes in p-type dyesensitized solar cells, Phys. Chem. Chem. Phys, vol.16, pp.5026-5033, 2014.
DOI : 10.1039/c3cp55457k

S. Powar, Highly Efficient p-Type Dye-Sensitized Solar Cells based on Tris(1,2diaminoethane)Cobalt(II)/(III) Electrolytes, Angew. Chem. Int. Ed, vol.52, pp.602-605, 2013.
DOI : 10.1002/ange.201206219

A. Nattestad, Highly efficient photocathodes for dye-sensitized tandem solar cells, Nat. Mater, vol.9, pp.31-35, 2010.

F. Odobel, Recent advances and future directions to optimize the performances of p-type dyesensitized solar cells, Coord. Chem. Rev, vol.256, pp.2414-2423, 2012.

C. J. Wood, G. H. Summers, and E. Gibson, Increased photocurrent in a tandem dye-sensitized solar cell by modifications in push-pull dye-design, Chem. Commun, vol.51, pp.3915-3918, 2015.
DOI : 10.1039/c4cc10230d

Q. Zhang, A push-pull thienoquinoidal chromophore for highly efficient p-type dye-sensitized solar cells, J. Mater. Chem. A, vol.3, pp.7695-7698, 2015.
DOI : 10.1039/c5ta01348h

C. J. Wood, Red-Absorbing Cationic Acceptor Dyes for Photocathodes in Tandem Solar Cells, J. Phys. Chem. C, vol.118, pp.16536-16546, 2014.
DOI : 10.1021/jp4119937

M. Weidelener, Synthesis and characterization of perylene-bithiophen-triphenylamine triads: studies on the effect of alkyl-substitution in p-type NiO based photocathodes, J. Mater. Chem, vol.22, pp.7366-7379, 2012.

P. Qin, Synthesis and Mechanistic Studies of Organic Chromophores with Different Energy Levels for p-Type Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.114, pp.4738-4748, 2010.
DOI : 10.1021/jp911091n

URL : http://sciencesupply.com.au/research/Synthesis+and+Mechanistic+Studies+of+Organic+Chromophores.pdf

M. He, Z. Ji, Z. Huang, and Y. Wu, Molecular Orbital Engineering of a Panchromatic Cyclometalated Ru(II) Dye for p-Type Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.118, pp.16518-16525, 2014.

C. J. Wood, K. C. Robson, P. I. Elliott, C. P. Berlinguette, and E. A. Gibson, Novel triphenylamine-modified ruthenium(II) terpyridine complexes for nickel oxide-based cathodic dyesensitized solar cells, vol.4, pp.5782-5791, 2014.
DOI : 10.1039/c3ra44690e

L. Favereau, Diketopyrrolopyrrole derivatives for efficient NiO-based dye-sensitized solar cells, Chem. Commun, vol.49, pp.8018-8020, 2013.
DOI : 10.1039/c3cc44232b

L. L. Pleux, Synthesis, photophysical and photovoltaic investigations of acceptor-functionalized perylene monoimide dyes for nickel oxide p-type dye-sensitized solar cells, Energy Environ. Sci, vol.4, pp.2075-2084, 2011.

K. A. Click, A double-acceptor as a superior organic dye design for p-type DSSCs: high photocurrents and the observed light soaking effect, Phys. Chem. Chem. Phys, vol.16, pp.26103-26111, 2014.
DOI : 10.1039/c4cp04010d

H. B. Yang, One-Step Fabrication of Unique Mesoporous NiO Hollow Sphere Film on FTO for High-Performance P-Type Dye-Sensitized Solar Cells, Adv. Mater. Interfaces, vol.1, p.1300110, 2014.

X. L. Zhang, Sensitization of nickel oxide: improved carrier lifetime and charge collection by tuning nanoscale crystallinity, Chem. Commun, vol.48, pp.9885-9887, 2012.

J. O. Bockris, A. K. Reddy, and M. E. Gamboa-aldeco, Modern Electrochemistry 2A: Fundamentals of Electrodics, 2001.

E. A. Gibson, Role of the Triiodide/Iodide Redox Couple in Dye Regeneration in p-Type DyeSensitized Solar Cells, Langmuir, vol.28, pp.6485-6493, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02142695

T. Daeneke, Dominating Energy Losses in NiO p-Type Dye-Sensitized Solar Cells, Adv. Energy Mater, vol.5, p.1401387, 2015.

F. Odobel, L. Le-pleux, Y. Pellegrin, and E. Blart, New Photovoltaic Devices Based on the Sensitization of p-type Semiconductors: Challenges and Opportunities, Acc. Chem. Res, vol.43, pp.1063-1071, 2010.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev, vol.110, pp.6595-6663, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02142488

G. Natu, Valence Band-Edge Engineering of Nickel Oxide Nanoparticles via Cobalt Doping for Application in p-Type Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, vol.4, pp.5922-5929, 2012.

D. 'amario, L. Boschloo, G. Hagfeldt, A. Hammarström, and L. , Tuning of Conductivity and Density of States of NiO Mesoporous Films Used in p-Type DSSCs, J. Phys. Chem. C, 2014.

M. Zannotti, Ni Mg mixed metal oxides for p-type dye-sensitized solar cells, ACS Appl. Mater. Interfaces, vol.7, pp.24556-24565, 2015.

E. A. Gibson, Cobalt Polypyridyl-Based Electrolytes for p-Type Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.115, pp.9772-9779, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02143168

H. Zhu, A. Hagfeldt, and G. Boschloo, Photoelectrochemistry of Mesoporous NiO Electrodes in

. Iodide/triiodide and . Electrolytes, J. Phys. Chem. C, vol.111, pp.17455-17458, 2007.

S. Powar, Improved photocurrents for p-type dye-sensitized solar cells using nano-structured nickel(II) oxide microballs, Energy Environ. Sci, vol.5, pp.8896-8900, 2012.

N. Alidoust, M. C. Toroker, and E. A. Carter, Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion, J. Phys. Chem. B, vol.118, pp.7963-7971, 2014.

D. Adler and J. Feinleib, Electrical and Optical Properties of Narrow-Band Materials, Phys. Rev. B, vol.2, pp.3112-3134, 1970.

C. J. Flynn, Hierarchically-Structured NiO Nanoplatelets as Mesoscale p-Type Photocathodes for Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.118, pp.14177-14184, 2014.

A. G. Marrani, V. Novelli, S. Sheehan, D. P. Dowling, and D. Dini, Probing the Redox States at the Surface of Electroactive Nanoporous NiO Thin Films, ACS Appl. Mater. Interfaces, vol.6, pp.143-152, 2014.

D. Dini, Y. Halpin, J. G. Vos, and E. A. Gibson, The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitized solar cells, Coord. Chem. Rev, pp.179-201, 2015.

A. Renaud, Origin of the Black Color of NiO Used as Photocathode in p-Type Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.117, pp.22478-22483, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00980496

S. Mori, Charge-Transfer Processes in Dye-Sensitized NiO Solar Cells, J. Phys. Chem. C, vol.112, pp.16134-16139, 2008.

J. Warnan, Multichromophoric Sensitizers Based on Squaraine for NiO Based Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.118, pp.103-113, 2014.

C. Chang, Y. Chen, C. Hsu, H. Chou, and J. T. Lin, Squaraine-Arylamine Sensitizers for Highly Efficient p-Type Dye-Sensitized Solar Cells, Org. Lett, vol.14, pp.4726-4729, 2012.

S. Feihl, Nickel oxide nanostructured electrodes towards perylenediimide-based dye-sensitized solar cells, RSC Adv, vol.2, pp.11495-11503, 2012.

J. Lefebvre, X. Sun, J. A. Calladine, M. W. George, and E. A. Gibson, Promoting chargeseparation in p-type dye-sensitized solar cells using bodipy, Chem. Commun, vol.50, pp.5258-5260, 2014.

A. Maufroy, Synthesis and properties of push-pull porphyrins as sensitizers for NiO based dyesensitized solar cells, J. Mater. Chem. A, vol.3, pp.3908-3917, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01100935

H. Tian, Enhancement of p-Type Dye-Sensitized Solar Cell Performance by Supramolecular Assembly of Electron Donor and Acceptor, Sci. Rep, vol.4, 2014.

S. Feihl, Integrating metalloporphycenes into p-type NiO-based dye-sensitized solar cells, Chem. Commun, vol.50, pp.11339-11342, 2014.

Y. Pellegrin, Ruthenium polypyridine complexes as sensitizers in NiO based p-type dye-sensitized solar cells: Effects of the anchoring groups, J. Photochem. Photobiol. Chem, vol.219, pp.235-242, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00849670

J. C. Freys, J. M. Gardner, L. Amario, A. M. Brown, and L. Hammarström, Ru-based donor-acceptor photosensitizer that retards charge recombination in a p-type dye-sensitized solar cell, Dalton Trans, vol.41, pp.13105-13111, 2012.

Z. Ji, Synthesis, Photophysics, and Photovoltaic Studies of Ruthenium Cyclometalated Complexes as Sensitizers for p-Type NiO Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.116, pp.16854-16863, 2012.

Z. Ji, G. Natu, and Y. Wu, Cyclometalated Ruthenium Sensitizers Bearing a Triphenylamino Group for p-Type NiO Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, vol.5, pp.8641-8648, 2013.

Y. Yen, Arylamine-Based Dyes for p-Type Dye-Sensitized Solar Cells, Org. Lett, vol.13, pp.4930-4933, 2011.

Z. Ji, G. Natu, Z. Huang, and Y. Wu, Linker effect in organic donor-acceptor dyes for p-type NiO dye sensitized solar cells, Energy Environ. Sci, vol.4, pp.2818-2821, 2011.

F. Wu, L. Zhu, S. Zhao, Q. Song, and C. Yang, Engineering of organic dyes for highly efficient p-type dye-sensitized solar cells, Dyes Pigments, vol.124, pp.93-100, 2016.

M. Weidelener, Synthesis and Characterization of Organic Dyes with Various Electron-Accepting Substituents for p-Type Dye-Sensitized Solar Cells, Chem.-Asian J, vol.9, pp.3251-3263, 2014.

D. Ameline, Isoindigo derivatives for application in p-type dye sensitized solar cells, RSC Adv, vol.5, pp.85530-85539, 2015.

L. Li, Double-Layered NiO Photocathodes for p-Type DSSCs with Record IPCE, Adv. Mater, vol.22, pp.1759-1762, 2010.

J. Cremer, Novel head-to-tail coupled oligo(3-hexylthiophen) derivatives for photovoltaic applications, 2005.

Z. Yu, F. Li, and L. Sun, Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components, Energy Environ. Sci, 2015.

G. Boschloo and A. Hagfeldt, Spectroelectrochemistry of Nanostructured NiO, J. Phys. Chem. B, vol.105, pp.3039-3044, 2001.

S. Powar, Improved Photovoltages for p-Type Dye-Sensitized Solar Cells Using CuCrO2 Nanoparticles, J. Phys. Chem. C, vol.118, pp.16375-16379, 2014.

M. Borgström, Sensitized Hole Injection of Phosphorus Porphyrin into NiO: Toward New Photovoltaic Devices, J. Phys. Chem. B, vol.109, pp.22928-22934, 2005.

Z. Ji and Y. Wu, Photoinduced Electron Transfer Dynamics of Cyclometalated Ruthenium (II)Naphthalenediimide Dyad at NiO Photocathode, J. Phys. Chem. C, vol.117, pp.18315-18324, 2013.

A. Morandeira, G. Boschloo, A. Hagfeldt, and L. Hammarström, Photoinduced Ultrafast Dynamics of Coumarin 343 Sensitized p-Type-Nanostructured NiO Films, J. Phys. Chem. B, vol.109, pp.19403-19410, 2005.

A. Morandeira, Improved Photon-to-Current Conversion Efficiency with a Nanoporous p-Type NiO Electrode by the Use of a Sensitizer-Acceptor Dyad, J. Phys. Chem. C, vol.112, pp.1721-1728, 2008.

M. Bräutigam, J. Kübel, M. Schulz, J. G. Vos, and B. Dietzek, Hole injection dynamics from two structurally related Ru-bipyridine complexes into NiOx is determined by the substitution pattern of the ligands, Phys. Chem. Chem. Phys, vol.17, pp.7823-7830, 2015.

J. Warnan, Acetylacetone anchoring group for NiO-based dye-sensitized solar cell, Dyes Pigments, vol.105, pp.174-179, 2014.

B. Jin, New Pyridine Anchoring Dyes for P-type Dye-Sensitized Solar Cells, Chem. Lett, 2013.

J. Cui, Organic Sensitizers with Pyridine Ring Anchoring Group for p-Type Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.118, pp.16433-16440, 2014.

Z. Huang, Probing the Low Fill Factor of NiO p-Type Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.116, pp.26239-26246, 2012.

D. 'amario, L. Antila, L. J. Pettersson-rimgard, B. Boschloo, G. Hammarström et al., Kinetic Evidence of Two Pathways for Charge Recombination in NiO-Based Dye-Sensitized Solar Cells, J. Phys. Chem

. Lett, , vol.6, pp.779-783, 2015.

T. A. Peiris, J. S. Sagu, K. G. Wijayantha, and J. García-cañadas, Electrochemical Determination of the Density of States of Nanostructured NiO Films, ACS Appl. Mater. Interfaces, vol.6, pp.14988-14993, 2014.

F. Odobel and Y. Pellegrin, Recent Advances in the Sensitization of Wide-Band-Gap Nanostructured pType Semiconductors. Photovoltaic and Photocatalytic Applications, J. Phys. Chem. Lett, vol.4, pp.2551-2564, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02142402

P. Qin, Synthesis and Mechanistic Studies of Organic Chromophores with Different Energy Levels for p-Type Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.114, pp.4738-4748, 2010.

J. Bredas, Mind the gap! Mater. Horiz, vol.1, pp.17-19, 2013.

A. J. Lennox and G. C. Lloyd-jones, Selection of boron reagents for Suzuki-Miyaura coupling, Chem. Soc. Rev, vol.43, pp.412-443, 2013.

M. Weidelener, Synthesis and characterization of perylene-bithiophen-triphenylamine triads: studies on the effect of alkyl-substitution in p-type NiO based photocathodes, J. Mater. Chem, vol.22, pp.7366-7379, 2012.

J. Cremer, Novel head-to-tail coupled oligo(3-hexylthiophen) derivatives for photovoltaic applications, 2005.

C. Chang, Y. Chen, C. Hsu, H. Chou, and J. T. Lin, Squaraine-Arylamine Sensitizers for Highly Efficient p-Type Dye-Sensitized Solar Cells, Org. Lett, vol.14, pp.4726-4729, 2012.

L. Cai, Effects of solvent and base on the palladium-catalyzed amination: PdCl2(Ph3P)2/Ph3Pcatalyzed selective arylation of primary anilines with aryl bromides, Tetrahedron, vol.70, pp.4754-4759, 2014.

C. J. Wood, K. C. Robson, P. I. Elliott, C. P. Berlinguette, and E. A. Gibson, Novel triphenylamine-modified ruthenium(II) terpyridine complexes for nickel oxide-based cathodic dyesensitized solar cells, vol.4, pp.5782-5791, 2014.

K. Ghosh, G. Masanta, and A. P. Chattopadhyay, Triphenylamine-Based Pyridine N-Oxide and Pyridinium Salts for Size-Selective Recognition of Dicarboxylates, Eur. J. Org. Chem, pp.4515-4524, 2009.

B. Liu, Synthesis, crystal structures and two-photon absorption properties of a series of terpyridine-based chromophores, Dyes Pigments, vol.95, pp.149-160, 2012.

Y. Hirai and Y. Uozumi, Clean synthesis of triarylamines: Buchwald-Hartwig reaction in water with amphiphilic resin-supported palladium complexes, Chem. Commun, vol.46, pp.1103-1105, 2010.

G. Zhang, General Synthetic Approach toward Geminal-Substituted Tetraarylethene Fluorophores with Tunable Emission Properties: X-ray Crystallography, Aggregation-Induced Emission and Piezofluorochromism, Chem. Mater, vol.26, pp.4433-4446, 2014.

G. Vaccaro, Direct monitoring of self-assembly of copolymeric micelles by a luminescent molecular rotor, Chem. Commun, vol.49, pp.8474-8476, 2013.

G. C. Fu, The Development of Versatile Methods for Palladium-Catalyzed Coupling Reactions of Aryl Electrophiles through the Use of P(t-Bu)3 and PCy3 as Ligands, Acc. Chem. Res, vol.41, pp.1555-1564, 2008.

M. Weidelener, Synthesis and Characterization of Organic Dyes with Various Electron-Accepting Substituents for p-Type Dye-Sensitized Solar Cells, Chem.-Asian J, vol.9, pp.3251-3263, 2014.

, Microwaves in Organic Synthesis, 2006.

M. J. Gronnow, R. J. White, J. H. Clark, and D. J. Macquarrie, Energy Efficiency in Chemical Reactions: A Comparative Study of Different Reaction Techniques, Org. Process Res. Dev, vol.9, pp.516-518, 2005.

J. D. Moseley and C. O. Kappe, A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis, Green Chem, vol.13, pp.794-806, 2011.

K. A. Click, A double-acceptor as a superior organic dye design for p-type DSSCs: high photocurrents and the observed light soaking effect, Phys. Chem. Chem. Phys, vol.16, pp.26103-26111, 2014.

A. Lafleur-lambert, S. Rondeau-gagné, A. Soldera, and J. Morin, Synthesis and characterization of a new ethynyl-bridged C60 derivative bearing a diketopyrrolopyrrole moiety, Tetrahedron Lett, vol.52, pp.5008-5011, 2011.

Y. Zou, A High-Mobility Low-Bandgap Poly(2,7-carbazole) Derivative for Photovoltaic Applications, Macromolecules, vol.42, pp.2891-2894, 2009.

S. Stas, S. Sergeyev, and Y. Geerts, Synthesis of diketopyrrolopyrrole (DPP) derivatives comprising bithiophen moieties, Tetrahedron, vol.66, pp.1837-1845, 2010.

A. B. Tamayo, M. Tantiwiwat, B. Walker, T. Nguyen, and . Design, Synthesis, and Self-assembly of Oligothiophen Derivatives with a Diketopyrrolopyrrole Core, J. Phys. Chem. C, vol.112, pp.15543-15552, 2008.

?. Frebort, O-and N-alkylated diketopyrrolopyrrole derivatives, Tetrahedron Lett, vol.52, pp.5769-5773, 2011.

O. Wallquist, High Performance Pigments, pp.159-184, 2001.

L. Favereau, Diketopyrrolopyrrole derivatives for efficient NiO-based dye-sensitized solar cells, Chem. Commun, vol.49, pp.8018-8020, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02142474

E. A. Gibson, Dye sensitised solar cells with nickel oxide photocathodes prepared via scalable microwave sintering, Phys. Chem. Chem. Phys, vol.15, pp.2411-2420, 2013.
DOI : 10.1039/c2cp43592f

URL : https://researchrepository.ucd.ie/bitstream/10197/4200/1/PCCP2013_FINAL%20Gibson%20et%20al.pdf

D. Dini, Y. Halpin, J. G. Vos, and E. A. Gibson, The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitized solar cells, Coord. Chem. Rev, pp.179-201, 2015.

A. Nattestad, M. Ferguson, R. Kerr, Y. Cheng, and U. Bach, Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications, Nanotechnology, vol.19, p.295304, 2008.
DOI : 10.1088/0957-4484/19/29/295304

S. Ito, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films, vol.516, pp.4613-4619, 2008.

A. Nattestad, Highly efficient photocathodes for dye-sensitized tandem solar cells, Nat. Mater, vol.9, pp.31-35, 2010.
DOI : 10.1038/nmat2588

I. R. Perera, Application of the Tris(acetylacetonato)iron(III)/(II) Redox Couple in p-Type DyeSensitized Solar Cells, Angew. Chem. Int. Ed, vol.54, pp.3758-3762, 2015.

X. L. Zhang, Sensitization of nickel oxide: improved carrier lifetime and charge collection by tuning nanoscale crystallinity, Chem. Commun, vol.48, pp.9885-9887, 2012.

A. Nattestad, Development of photocathodes for incorporation into tandem dye sensitised solar cells, p.63141, 2010.

A. Nattestad, M. Ferguson, R. Kerr, Y. Cheng, and U. Bach, Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications, Nanotechnology, vol.19, p.295304, 2008.
DOI : 10.1088/0957-4484/19/29/295304

C. J. Flynn, Hierarchically-Structured NiO Nanoplatelets as Mesoscale p-Type Photocathodes for Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.118, pp.14177-14184, 2014.
DOI : 10.1021/jp5027916

URL : https://doi.org/10.1021/jp5027916

X. L. Zhang, Charge transport in photocathodes based on the sensitization of NiO nanorods, J. Mater. Chem, vol.22, pp.7005-7009, 2012.

S. Powar, Improved photocurrents for p-type dye-sensitized solar cells using nano-structured nickel(II) oxide microballs, Energy Environ. Sci, vol.5, pp.8896-8900, 2012.
DOI : 10.1039/c2ee22127f

J. He, H. Lindström, A. Hagfeldt, and S. Lindquist, Dye-Sensitized Nanostructured p-Type Nickel Oxide Film as a Photocathode for a Solar Cell, J. Phys. Chem. B, vol.103, pp.8940-8943, 1999.
DOI : 10.1021/jp991681r

J. He, H. Lindström, A. Hagfeldt, and S. Lindquist, Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode, Sol. Energy Mater. Sol. Cells, vol.62, pp.265-273, 2000.
DOI : 10.1016/s0927-0248(99)00168-3

K. Liu and M. A. Anderson, Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors, J. Electrochem. Soc, vol.143, pp.124-130, 1996.
DOI : 10.1149/1.1836396

G. Boschloo and A. Hagfeldt, Spectroelectrochemistry of Nanostructured NiO, J. Phys. Chem. B, vol.105, pp.3039-3044, 2001.
DOI : 10.1021/jp003499s

H. Zhu, A. Hagfeldt, and G. Boschloo, Photoelectrochemistry of Mesoporous NiO Electrodes in

. Iodide/triiodide and . Electrolytes, J. Phys. Chem. C, vol.111, pp.17455-17458, 2007.

P. Qin, High Incident Photon-to-Current Conversion Efficiency of p-Type Dye-Sensitized Solar Cells Based on NiO and Organic Chromophores, Adv. Mater, vol.21, pp.2993-2996, 2009.

P. Qin, Design of an Organic Chromophore for P-Type Dye-Sensitized Solar Cells, J. Am. Chem. Soc, vol.130, pp.8570-8571, 2008.

G. J. Soler-illia, A. A. De, E. L. Crepaldi, D. Grosso, and C. Sanchez, Block copolymer-templated mesoporous oxides, Curr. Opin. Colloid Interface Sci, vol.8, pp.109-126, 2003.

A. Nakasa, A High Voltage Dye-sensitized Solar Cell using a Nanoporous NiO Photocathode, Chem. Lett, vol.34, pp.500-501, 2005.

M. Zukalová, Organized Mesoporous TiO2 Films Exhibiting Greatly Enhanced Performance in Dye-Sensitized Solar Cells, Nano Lett, vol.5, pp.1789-1792, 2005.

S. Sumikura, S. Mori, S. Shimizu, H. Usami, and E. Suzuki, Syntheses of NiO nanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells, J. Photochem. Photobiol. Chem, vol.199, pp.1-7, 2008.

L. Li, Double-Layered NiO Photocathodes for p-Type DSSCs with Record IPCE, Adv. Mater, vol.22, pp.1759-1762, 2010.

E. A. Gibson, A p-Type NiO-Based Dye-Sensitized Solar Cell with an Open-Circuit Voltage of 0.35 V, Angew. Chem. Int. Ed, vol.48, pp.4402-4405, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02143944

M. He, Z. Ji, Z. Huang, and Y. Wu, Molecular Orbital Engineering of a Panchromatic Cyclometalated Ru(II) Dye for p-Type Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.118, pp.16518-16525, 2014.

K. A. Click, A double-acceptor as a superior organic dye design for p-type DSSCs: high photocurrents and the observed light soaking effect, Phys. Chem. Chem. Phys, vol.16, pp.26103-26111, 2014.

Q. Zhang, A push-pull thienoquinoidal chromophore for highly efficient p-type dye-sensitized solar cells, J. Mater. Chem. A, vol.3, pp.7695-7698, 2015.

C. J. Wood, G. H. Summers, and E. Gibson, Increased photocurrent in a tandem dye-sensitized solar cell by modifications in push-pull dye-design, Chem. Commun, vol.51, pp.3915-3918, 2015.

C. J. Wood, Red-Absorbing Cationic Acceptor Dyes for Photocathodes in Tandem Solar Cells, J. Phys. Chem. C, vol.118, pp.16536-16546, 2014.

Z. Liu, Fine Tuning of Fluorene-Based Dye Structures for High-Efficiency p-Type Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, vol.6, pp.10614-10622, 2014.

H. B. Yang, One-Step Fabrication of Unique Mesoporous NiO Hollow Sphere Film on FTO for High-Performance P-Type Dye-Sensitized Solar Cells, Adv. Mater. Interfaces, vol.1, 2014.

A. V. Kabanov, E. V. Batrakova, and V. Y. Alakhov, Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery, J. Controlled Release, vol.82, pp.189-212, 2002.

G. J. Soler-illia, A. A. De, E. L. Crepaldi, D. Grosso, and C. Sanchez, Block copolymer-templated mesoporous oxides, Curr. Opin. Colloid Interface Sci, vol.8, pp.109-126, 2003.

R. Ivanova, P. Alexandridis, and B. Lindman, Interaction of poloxamer block copolymers with cosolvents and surfactants, Colloids Surf. Physicochem. Eng. Asp, pp.41-53, 2001.

L. Lepleux, Simple and Reproducible Procedure to Prepare Self-Nanostructured NiO Films for the Fabrication of P-Type Dye-Sensitized Solar Cells, Inorg. Chem, vol.48, pp.8245-8250, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00432833

G. Natu, Valence Band-Edge Engineering of Nickel Oxide Nanoparticles via Cobalt Doping for Application in p-Type Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, vol.4, pp.5922-5929, 2012.

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, Inkjet Printing-Process and Its Applications, Adv. Mater, vol.22, pp.673-685, 2010.

A. Kamyshny, J. Steinke, and S. Magdassi, Metal-based inkjet inks for printed electronics, Open Appl. Phys. J, vol.4, pp.19-36, 2011.

R. D. Deegan, Pattern formation in drying drops, Phys. Rev. E, vol.61, pp.475-485, 2000.

H. Wijshoff, The dynamics of the piezo inkjet printhead operation, Phys. Rep, vol.491, pp.77-177, 2010.

M. Mougenot, Réalisation par un procédé d'impression jet d'encre de réseaux de microplots de silice mesoporeuse fonctionnalisée, 2007.

X. Liu, T. Tarn, F. Huang, and J. Fan, Recent advances in inkjet printing synthesis of functional metal oxides, Particuology, vol.19, pp.1-13, 2015.

A. Atkinson, J. Doorbar, A. Hudd, D. L. Segal, and P. J. White, Continuous ink-jet printing using solgel 'Ceramic' inks, J. Sol-Gel Sci. Technol, vol.8, pp.1093-1097, 1997.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, Refractive Microlens Fabrication by Ink-Jet Process, J. Sol-Gel Sci. Technol, vol.13, pp.177-182, 1998.

R. Danzebrink and M. A. Aegerter, Deposition of micropatterned coating using an ink-jet technique, Thin Solid Films, vol.351, pp.115-118, 1999.

H. Fan, Rapid prototyping of patterned functional nanostructures, Nature, vol.405, pp.56-60, 2000.

H. Fan, Hierarchically structured functional porous silica and composite produced by evaporationinduced self-assembly, Microporous Mesoporous Mater. 44, vol.45, pp.625-637, 2001.

M. Mougenot, Ink Jet Printing of Microdot Arrays of Mesostructured Silica, J. Am. Ceram. Soc, vol.89, pp.1876-1882, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00366376

B. Fousseret, Inkjet-Printing-Engineered Functional Microdot Arrays Made of Mesoporous Hybrid Organosilicas, Chem. Mater, vol.22, pp.3875-3883, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00559031

O. De-los-cobos, Tunable Multifunctional Mesoporous Silica Microdots Arrays by Combination of Inkjet Printing, EISA, and Click Chemistry, Chem. Mater, vol.24, pp.4337-4342, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00749574

M. ?erná, M. Veselý, and P. Dzik, Physical and chemical properties of titanium dioxide printed layers, Catal. Today, vol.161, pp.97-104, 2011.

M. Arin, Inkjet printing of photocatalytically active TiO2 thin films from water based precursor solutions, J. Eur. Ceram. Soc, vol.31, pp.1067-1074, 2011.

M. Chouiki and R. Schoeftner, Inkjet printing of inorganic sol-gel ink and control of the geometrical characteristics, J. Sol-Gel Sci. Technol, vol.58, pp.91-95, 2010.

Q. Xu, J. Smått, J. Peltonen, and P. Ihalainen, Fabrication of nanoperforated ultrathin TiO2 films by inkjet printing, J. Mater. Res, pp.1-10, 2015.

M. Morozova, Thin TiO2 films prepared by inkjet printing of the reverse micelles sol-gel composition, Sens. Actuators B Chem, vol.160, pp.371-378, 2011.

M. Yoshimura and R. Gallage, Direct patterning of nanostructured ceramics from solution-differences from conventional printing and lithographic methods, J. Solid State Electrochem, vol.12, pp.775-782, 2008.

T. Vidmar, M. Topi?, P. Dzik, and U. Opara-kra?ovec, Inkjet printing of sol-gel derived tungsten oxide inks, Sol. Energy Mater. Sol. Cells, vol.125, pp.87-95, 2014.

T. Mouganie and B. A. Glowacki, Chemical synthesis and microstructural analysis of superconducting YBa2Cu3O7-? ink deposited by drop-on-demand ink-jet printing on silver substrates, J. Mater. Sci, vol.41, pp.8257-8264, 2006.

J. Feys, Ink-jet printing of YBa2Cu3O7 superconducting coatings and patterns from aqueous solutions, J. Mater. Chem, vol.22, pp.3717-3726, 2012.

X. Obradors, Chemical solution deposition: a path towards low cost coated conductors, Supercond. Sci. Technol, vol.17, p.1055, 2004.

I. V. Driessche, Chemical solution deposition using ink-jet printing for YBCO coated conductors, Supercond. Sci. Technol, vol.25, p.65017, 2012.

D. Lee, Y. Chang, G. S. Herman, and C. Chang, A General Route to Printable High-Mobility Transparent Amorphous Oxide Semiconductors, Adv. Mater, vol.19, pp.843-847, 2007.

Y. Sakai, T. Futakuchi, and M. Adachi, Preparation of Inkjet-Printed NiO Films for Ba (Ti, Zr) O3-Based Ceramics and Application to Multilayer Ceramics with Ni Electrodes, Jpn. J. Appl. Phys, vol.47, p.7630, 2008.

M. Woodhouse, G. S. Herman, and B. A. Parkinson, Combinatorial Approach to Identification of Catalysts for the Photoelectrolysis of Water, Chem. Mater, vol.17, pp.4318-4324, 2005.

M. Woodhouse and B. A. Parkinson, Combinatorial Discovery and Optimization of a Complex Oxide with Water Photoelectrolysis Activity, Chem. Mater, vol.20, pp.2495-2502, 2008.

C. Jiang, R. Wang, and B. A. Parkinson, Combinatorial Approach to Improve Photoelectrodes Based on BiVO4, ACS Comb. Sci, vol.15, pp.639-645, 2013.

J. He and B. A. Parkinson, Combinatorial Investigation of the Effects of the Incorporation of Ti, Si, and Al on the Performance of ?-Fe2O3 Photoanodes, ACS Comb. Sci, vol.13, pp.399-404, 2011.

D. Seley, K. Ayers, and B. A. Parkinson, Combinatorial Search for Improved Metal Oxide Oxygen Evolution Electrocatalysts in Acidic Electrolytes, ACS Comb. Sci, vol.15, pp.82-89, 2013.

J. E. Katz, T. R. Gingrich, E. A. Santori, and N. S. Lewis, Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting, Energy Environ. Sci, vol.2, pp.103-112, 2008.

X. Liu, Inkjet Printing Assisted Synthesis of Multicomponent Mesoporous Metal Oxides for Ultrafast Catalyst Exploration, Nano Lett, vol.12, pp.5733-5739, 2012.

K. Liu and M. A. Anderson, Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors, J. Electrochem. Soc, vol.143, pp.124-130, 1996.

G. Boschloo and A. Hagfeldt, Spectroelectrochemistry of Nanostructured NiO, J. Phys. Chem. B, vol.105, pp.3039-3044, 2001.

H. W. Choi, T. Zhou, M. Singh, and G. E. Jabbour, Recent developments and directions in printed nanomaterials, Nanoscale, vol.7, pp.3338-3355, 2015.

B. Derby, Inkjet printing ceramics: From drops to solid, J. Eur. Ceram. Soc, vol.31, pp.2543-2550, 2011.

M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. Smart, The role of the Auger parameter in XPS studies of nickel metal, halides and oxides, Phys. Chem. Chem. Phys, vol.14, pp.2434-2442, 2012.

S. Uhlenbrock, C. Scharfschwerdt, M. Neumann, G. Illing, and H. Freund, The influence of defects on the Ni 2p and O 1s XPS of NiO, J. Phys. Condens. Matter, vol.4, p.7973, 1992.

A. G. Marrani, V. Novelli, S. Sheehan, D. P. Dowling, and D. Dini, Probing the Redox States at the Surface of Electroactive Nanoporous NiO Thin Films, ACS Appl. Mater. Interfaces, vol.6, pp.143-152, 2014.

D. L. Legrand, H. W. Nesbitt, and G. M. Bancroft, X-ray photoelectron spectroscopic study of a pristine millerite (NiS) surface and the effect of air and water oxidation, Am. Mineral, vol.83, pp.1256-1265, 1998.

S. Chen, J. R. Manders, S. Tsang, and F. So, Metal oxides for interface engineering in polymer solar cells, J. Mater. Chem, vol.22, pp.24202-24212, 2012.

F. Wu, L. Zhu, S. Zhao, Q. Song, and C. Yang, Engineering of organic dyes for highly efficient p-type dye-sensitized solar cells, Dyes Pigments, vol.124, pp.93-100, 2016.

S. Powar, Improved photocurrents for p-type dye-sensitized solar cells using nano-structured nickel(II) oxide microballs, Energy Environ. Sci, vol.5, pp.8896-8900, 2012.

L. Li, Double-Layered NiO Photocathodes for p-Type DSSCs with Record IPCE, Adv. Mater, vol.22, pp.1759-1762, 2010.

Z. Ji, G. Natu, Z. Huang, and Y. Wu, Linker effect in organic donor-acceptor dyes for p-type NiO dye sensitized solar cells, Energy Environ. Sci, vol.4, pp.2818-2821, 2011.

C. J. Wood, G. H. Summers, and E. Gibson, Increased photocurrent in a tandem dye-sensitized solar cell by modifications in push-pull dye-design, Chem. Commun, vol.51, pp.3915-3918, 2015.

A. G. Marrani, V. Novelli, S. Sheehan, D. P. Dowling, and D. Dini, Probing the Redox States at the Surface of Electroactive Nanoporous NiO Thin Films, ACS Appl. Mater. Interfaces, vol.6, pp.143-152, 2014.

S. Powar, Highly Efficient p-Type Dye-Sensitized Solar Cells based on Tris(1,2diaminoethane)Cobalt(II)/(III) Electrolytes, Angew. Chem. Int. Ed, vol.52, pp.602-605, 2013.

J. R. Manders, Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells, Adv. Funct. Mater, vol.23, pp.2993-3001, 2013.

M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. Chang, and T. J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.2783-2787, 2008.

E. L. Ratcliff, Evidence for near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics, Chem. Mater, vol.23, pp.4988-5000, 2011.

K. Wang, p-Type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells, Sci. Rep, vol.4, 2014.

W. Chen, Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells, Energy Environ. Sci, vol.8, pp.629-640, 2015.

A. Garcia, Improvement of Interfacial Contacts for New Small-Molecule Bulk-Heterojunction Organic Photovoltaics, Adv. Mater, vol.24, pp.5368-5373, 2012.

J. Jeng, Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM PlanarHeterojunction Hybrid Solar Cells, Adv. Mater, vol.26, pp.4107-4113, 2014.

E. A. Gibson, A p-Type NiO-Based Dye-Sensitized Solar Cell with an Open-Circuit Voltage of 0.35 V, Angew. Chem. Int. Ed, vol.48, pp.4402-4405, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02143944

X. L. Zhang, Enhanced open-circuit voltage of p-type DSC with highly crystalline NiO nanoparticles, Chem. Commun, vol.47, pp.4808-4810, 2011.

X. L. Zhang, Charge transport in photocathodes based on the sensitization of NiO nanorods, J. Mater. Chem, vol.22, pp.7005-7009, 2012.

X. L. Zhang, Sensitization of nickel oxide: improved carrier lifetime and charge collection by tuning nanoscale crystallinity, Chem. Commun, vol.48, pp.9885-9887, 2012.

I. R. Perera, Application of the Tris(acetylacetonato)iron(III)/(II) Redox Couple in p-Type DyeSensitized Solar Cells, Angew. Chem. Int. Ed, vol.54, pp.3758-3762, 2015.

H. B. Yang, One-Step Fabrication of Unique Mesoporous NiO Hollow Sphere Film on FTO for High-Performance P-Type Dye-Sensitized Solar Cells, Adv. Mater. Interfaces, vol.1, 2014.
DOI : 10.1002/admi.201300110

L. Zhu, H. B. Yang, C. Zhong, and C. M. Li, Rational design of triphenylamine dyes for highly efficient p-type dye sensitized solar cells, Dyes Pigments, vol.105, pp.97-104, 2014.
DOI : 10.1016/j.dyepig.2014.01.024

K. , X. Steirer, J. J. Berry, J. P. Chesin, M. T. Lloyd et al., Solution processed metal oxide thin film hole transport layers for high performance organic solar cells, 2012.

K. X. Steirer, Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers, Adv. Energy Mater, vol.1, pp.813-820, 2011.
DOI : 10.1002/aenm.201100234

E. L. Ratcliff, Energy level alignment in PCDTBT:PC70BM solar cells: Solution processed NiOx for improved hole collection and efficiency, Org. Electron, vol.13, pp.744-749, 2012.
DOI : 10.1016/j.orgel.2012.01.022

K. X. Steirer, Optimization of organic photovoltaic devices using tuned mixed metal oxide contact layers, 35th IEEE Photovoltaic Specialists Conference (PVSC), pp.102-000104, 2010.
DOI : 10.1109/pvsc.2010.5614501

K. X. Steirer, Solution deposited NiO thin-films as hole transport layers in organic photovoltaics, Org. Electron, vol.11, pp.1414-1418, 2010.
DOI : 10.1016/j.orgel.2010.05.008

B. Mustafa, J. Griffin, A. S. Alsulami, D. G. Lidzey, and A. R. Buckley, Solution processed nickel oxide anodes for organic photovoltaic devices, Appl. Phys. Lett, vol.104, p.63302, 2014.
DOI : 10.1063/1.4865090

URL : http://aip.scitation.org/doi/pdf/10.1063/1.4865090

D. Ameline, Isoindigo derivatives for application in p-type dye sensitized solar cells, RSC Adv, vol.5, pp.85530-85539, 2015.

P. Qin, Synthesis and Mechanistic Studies of Organic Chromophores with Different Energy Levels for p-Type Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.114, pp.4738-4748, 2010.
DOI : 10.1021/jp911091n

URL : http://sciencesupply.com.au/research/Synthesis+and+Mechanistic+Studies+of+Organic+Chromophores.pdf

S. Rühle, Molecular Adjustment of the Electronic Properties of Nanoporous Electrodes in DyeSensitized Solar Cells, J. Phys. Chem. B, vol.109, pp.18907-18913, 2005.

A. L. Smeigh, ) In a 50 mL three necked flask, containing (5) (700 mg, 1.34 mmol, 1.00 eq.) and 10 mL of DMF, NBS (286.6 mg, 1.61 mmol, 1.2 eq., diluted into 4 mL of DMF) was added slowly, in the dark, at room temperature. The mixture was stirred overnight in these conditions. After concentration under vacuum, water was added and the precipitate was filtered over a short silica-gel pad (dichloromethane as the eluent), Chem. Commun, vol.48, issue.6, pp.678-680, 2011.

M. W. , , p.601

H. Nmr-;-hz and 1. , , vol.3

, 1662 (C=O). and strongly fluorescent at ambient light. After solvent removal and drying, a pure wine color powder was obtained (420 mg, p.1701

M. W. , , p.497

F. P. , , pp.143-146

H. Nmr, , vol.3

1. Hz-;-hz and H. Thiophen, , vol.7

, 381 mg, 0.77 mmol, 1.00 eq.) and 31 mL of chloroform were introduced. The mixture was degassed with argon during 4 hours. Then, NBS (283 mg, 1.59 mmol, 2.06 eq.) was rapidly introduced in the dark and at 0°C. After 18 hours, 20 ml of degassed methanol was added to the reaction, in the dark. Then, this mixture was plunged into 400 mL of MeOH and stirred during 30 minutes. After filtration, a purple precipitate was obtained (the filtrate was yellow). Hence, the solid was first washed with hot water and finally with hot methanol

M. W. , , p.655

F. P. , , p.208

H. Nmr, , vol.3

, To ensure a true energy minimum was reached, the vibration frequencies were calculated and it was ensured there was no imaginary frequency. The molecular orbitals were also allowed to be plotted, with an isodensity value of 0.02 a.u. Finally, TDDFT permitted to calculate the 7 first vertical transitions energy. All the calculations were performed in vacuum. The signal of a nude the FTO electrode was first acquired. Then, NiO-1L and NiO-4L substrates absorption were measured bare. After sensitization and drying with the various dye (vide supra) the spectrum was acquired. For dye (8), NiO-1L and NiO-4L sensitized electrodes were analysed

I. F. , NiO formation mechanism study with IJP film

, Air steam, 100 mL.min-1 ). For the XPS analysis. five NiO-1L samples were used, The TGA analysis was performed on Ink-1 apparatus was: TGA Q-50 de TA-Instruments

, The sample were sintered at 200°C for 10 min. The second sample was taken out of the hoven. The operation was repeated for the following temperatures: 340°C, 450°C and 500°C. XPS analysis was performed onto these substrates. XPS measurements are acquired using a Kratos Axis Ultra DLD spectrometer with a monochromatic Al K? excitation (1486.7eV) and a charge compensation system. Photoelectron data are collected at take-off angle of 90° (normal emission). Survey spectra are taken at analyzer pass energy of 160 eV and high resolution spectra at pass energy of 40 eV

M. Weidelener, Synthesis and characterization of perylene-bithiophen-triphenylamine triads: studies on the effect of alkyl-substitution in p-type NiO based photocathodes, J. Mater

, Chem, vol.22, pp.7366-7379, 2012.

J. Cremer, Novel head-to-tail coupled oligo(3-hexylthiophen) derivatives for photovoltaic applications, 2005.

G. Zhang, General Synthetic Approach toward Geminal-Substituted Tetraarylethene Fluorophores with Tunable Emission Properties: X-ray Crystallography, Aggregation-Induced Emission and Piezofluorochromism, Chem. Mater, vol.26, pp.4433-4446, 2014.

H. Marom, Y. Popowski, S. Antonov, and M. Gozin, Toward the Development of the Direct and Selective Detection of Nitrates by a Bioinspired Mo-Cu System, Org. Lett, vol.13, pp.5532-5535, 2011.

T. Choppawa, M. Sukwattanasinitt, S. Sahasithiwat, V. Ruangpornvisuti, and P. Rashatasakhon, Substituent effect on quantum efficiency in 4-aryloxy-N-(2?,6?-diisopropylphenyl)-1,8naphthalimides: Experimental and computational investigations, Dyes Pigments, vol.109, pp.175-180, 2014.

N. G. Connelly and W. E. Geiger, Chemical Redox Agents for Organometallic Chemistry, Chem. Rev, vol.96, pp.877-910, 1996.

V. V. Pavlishchuk and A. W. Addison, Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C, Inorganica Chim. Acta, vol.298, pp.97-102, 2000.

J. R. Manders, Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells, Adv. Funct. Mater, vol.23, pp.2993-3001, 2013.

S. Powar, Highly Efficient p-Type Dye-Sensitized Solar Cells based on Tris(1,2diaminoethane)Cobalt(II)/(III) Electrolytes, Angew. Chem. Int. Ed, vol.52, pp.602-605, 2013.

O. Langmar, Combining Electron-Accepting Phthalocyanines and Nanorod-like CuO Electrodes for p-Type Dye-Sensitized Solar Cells, Angew. Chem, vol.127, pp.7798-7802, 2015.

S. Sumikura, S. Mori, S. Shimizu, H. Usami, and E. Suzuki, Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes, J. Photochem. Photobiol. Chem, vol.194, pp.143-147, 2008.

A. Renaud, CuGaO2: a promising alternative for NiO in p-type dye solar cells, J. Mater. Chem, vol.22, pp.14353-14356, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00864784

H. Kawazoe, p-Type electrical conduction in transparent thin films of CuAlO2, Nature, vol.389, pp.939-942, 1997.

M. Yu, T. I. Draskovic, and Y. Wu, Cu(I)-based delafossite compounds as photocathodes in p-type dyesensitized solar cells, Phys. Chem. Chem. Phys, vol.16, pp.5026-5033, 2014.

A. Nattestad, X. Zhang, U. Bach, and Y. Cheng, Dye-sensitized CuAlO2 photocathodes for tandem solar cell applications, J. Photonics Energy, vol.1, pp.11103-011103, 2011.

J. Ahmed, Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications, J. Alloys Compd, vol.591, pp.275-279, 2014.
DOI : 10.1016/j.jallcom.2013.12.199

Z. Xu, Remarkable photocurrent of p-type dye-sensitized solar cell achieved by size controlled CuGaO2 nanoplates, J. Mater. Chem. A, vol.2, pp.2968-2976, 2014.

D. Ursu, M. Miclau, R. Banica, and N. Vaszilcsin, Impact of Fe doping on performances of CuGaO2 ptype dye-sensitized solar cells, Mater. Lett, vol.143, pp.91-93, 2015.

A. Renaud, Impact of Mg Doping on Performances of CuGaO2 Based p-Type Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.118, pp.54-59, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988063

D. Xiong, Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells, J. Mater. Chem, vol.22, pp.24760-24768, 2012.

S. Powar, Improved Photovoltages for p-Type Dye-Sensitized Solar Cells Using CuCrO2 Nanoparticles, J. Phys. Chem. C, vol.118, pp.16375-16379, 2014.
DOI : 10.1021/jp409363u

D. Xiong, Enhanced Performance of p-Type Dye-Sensitized Solar Cells Based on Ultrasmall MgDoped CuCrO2 Nanocrystals, ChemSusChem, vol.6, pp.1432-1437, 2013.

Z. Huang, Dye-Controlled Interfacial Electron Transfer for High-Current Indium Tin Oxide Photocathodes, Angew. Chem, vol.127, pp.6961-6965, 2015.
DOI : 10.1002/ange.201500274

J. Bai, Potassium-Doped Zinc Oxide as Photocathode Material in Dye-Sensitized Solar Cells, ChemSusChem, vol.6, pp.622-629, 2013.
DOI : 10.1002/cssc.201200935

I. Sullivan, Photoinjection of High Potential Holes into Cu5Ta11O30 Nanoparticles by Porphyrin Dyes, J. Phys. Chem. C, vol.119, pp.21294-21303, 2015.

A. Renaud, The first dye-sensitized solar cell with p-type LaOCuS nanoparticles as a photocathode, RSC Adv, vol.5, pp.60148-60151, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02142149

Z. Shi, NiCo2O4 Nanostructures as a Promising Alternative for NiO Photocathodes in p-Type Dye-Sensitized Solar Cells with High Efficiency, Energy Technol, vol.2, pp.517-521, 2014.

M. Weidelener, Synthesis and Characterization of Organic Dyes with Various Electron-Accepting Substituents for p-Type Dye-Sensitized Solar Cells, Chem.-Asian J, vol.9, pp.3251-3263, 2014.

J. Cremer, Novel head-to-tail coupled oligo(3-hexylthiophen) derivatives for photovoltaic applications, 2005.
DOI : 10.1039/b414817g

M. R. Netherton and G. C. Fu, Air-Stable Trialkylphosphonium Salts: Simple, Practical, and Versatile Replacements for Air-Sensitive Trialkylphosphines. Applications in Stoichiometric and Catalytic Processes, Org. Lett, vol.3, pp.4295-4298, 2001.
DOI : 10.1021/ol016971g

C. A. Fleckenstein and H. Plenio, Sterically demanding trialkylphosphines for palladium-catalyzed cross coupling reactions-alternatives to PtBu3, Chem. Soc. Rev, vol.39, pp.694-711, 2010.

U. Christmann and R. Vilar, Monoligated Palladium Species as Catalysts in Cross-Coupling Reactions, Angew. Chem. Int. Ed, vol.44, pp.366-374, 2005.

G. C. Fu, The Development of Versatile Methods for Palladium-Catalyzed Coupling Reactions of Aryl Electrophiles through the Use of P(t-Bu)3 and PCy3 as Ligands, Acc. Chem. Res, vol.41, pp.1555-1564, 2008.

A. F. Littke and G. C. Fu, A Convenient and General Method for Pd-Catalyzed Suzuki Cross-Couplings of Aryl Chlorides and Arylboronic Acids, Angew. Chem. Int. Ed, vol.37, pp.3387-3388, 1998.

F. Barrios-landeros, B. P. Carrow, and J. F. Hartwig, Effect of Ligand Steric Properties and Halide Identity on the Mechanism for Oxidative Addition of Haloarenes to Trialkylphosphine Pd

, Complexes. J. Am. Chem. Soc, vol.131, pp.8141-8154, 2009.

. Fig, 122-Computed optical transitions for (14) in vacuum and the experimental spectrum in DCM for (13) Fig. 121-Optimized geometry for (14) in vacuum

. Fig, 125-Computed optical transitions for (17) in vacuum and the experimental spectrum in DCM for

C. J. Wood, Red-Absorbing Cationic Acceptor Dyes for Photocathodes in Tandem Solar Cells, J. Phys. Chem. C, vol.118, pp.16536-16546, 2014.

P. J. Homnick and P. M. Lahti, Modular electron donor group tuning of frontier energy levels in diarylaminofluorenone push-pull molecules, Phys. Chem. Chem. Phys, vol.14, pp.11961-11968, 2012.

P. J. Homnick, J. S. Tinkham, R. Devaughn, and P. M. Lahti, Engineering Frontier Energy Levels in Donor-Acceptor Fluoren-9-ylidene Malononitriles versus Fluorenones, J. Phys. Chem. A, vol.118, pp.475-486, 2014.

M. M. Oliva, Structure?Property Relationships in Push?Pull Amino/Cyanovinyl End-Capped Oligothiophens: Quantum Chemical and Experimental Studies, J. Org. Chem, vol.71, pp.7509-7520, 2006.

C. Chang, Y. Chen, C. Hsu, H. Chou, and J. T. Lin, Squaraine-Arylamine Sensitizers for Highly Efficient p-Type Dye-Sensitized Solar Cells, Org. Lett, vol.14, pp.4726-4729, 2012.

M. He, Z. Ji, Z. Huang, and Y. Wu, Molecular Orbital Engineering of a Panchromatic Cyclometalated Ru(II) Dye for p-Type Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.118, pp.16518-16525, 2014.

C. J. Wood, G. H. Summers, and E. Gibson, Increased photocurrent in a tandem dye-sensitized solar cell by modifications in push-pull dye-design, Chem. Commun, 2015.

F. Wu, L. Zhu, S. Zhao, Q. Song, and C. Yang, Engineering of organic dyes for highly efficient p-type dye-sensitized solar cells, Dyes Pigments, vol.124, pp.93-100, 2016.