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Résumé

La diversité des langues complexifie la tache de communication entre les humains
& travers les différentes cultures. La traduction automatique est un moyen rapide
et peu cofiteux pour simplifier la communication interculturelle. Récemment, la
Traduction Automatique Neuronale (NMT) a atteint des résultats impressionnants.
Cette thése s’intéresse a la Traduction Automatique Neuronale Factorisé (FNMT)
qui repose sur l'idée d’utiliser la morphologie et la décomposition grammaticale des
mots (lemmes et facteurs linguistiques) dans la langue cible. Cette architecture
aborde deux défis bien connus auxquelles les systémes NMT font face. Premiére-
ment, la limitation de la taille du vocabulaire cible, conséquence de la fonction
softmax, qui nécessite un calcul cotiteux & la couche de sortie du réseau neuronale,
conduisant & un taux élevé de mots inconnus. Deuxiémement, le manque de données
adéquates lorsque nous sommes confrontés & un domaine spécifique ou une langue
morphologiquement riche. Avec I'architecture FNMT, toutes les inflexions des mots
sont prises en compte et un vocabulaire plus grand est modélisé tout en gardant un
cotit de calcul similaire. De plus, de nouveaux mots non rencontrés dans les données
d’entrainement peuvent étre générés. Dans ce travail, j’ai développé différentes ar-
chitectures FNMT en utilisant diverses dépendances entre les lemmes et les facteurs.
En outre, j’ai amélioré la représentation de la langue source avec des facteurs. Le
modéle FNMT est évalué sur différentes langues dont les plus riches morphologique-
ment. Les modeles & I'état de l'art, dont certains utilisant le Byte Pair Encoding
(BPE) sont comparés avec le modele FNMT en utilisant des données d’entrainement
de petite et de grande taille. Nous avons constaté que les modéles utilisant les fac-
teurs sont plus robustes aux conditions d’entrainement avec des faibles ressources.
Le FNMT a été combiné avec des unités BPE permettant une amélioration par
rapport au modeéle FNMT entrainer avec des données volumineuses. Nous avons
expérimenté avec différents domaines et nous avons montré des améliorations en
utilisant les modeles FNMT. De plus, la justesse de la morphologie est mesurée a
I’aide d’'un ensemble de tests spéciaux montrant ’avantage de modéliser explicite-
ment la morphologie de la cible. Notre travail montre les bienfaits de 'application
de facteurs linguistiques dans le NMT.



Abstract

Communication between humans across the lands is difficult due to the diversity
of languages. Machine translation is a quick and cheap way to make translation
accessible to everyone. Recently, Neural Machine Translation (NMT) has achieved
impressive results. This thesis is focus on the Factored Neural Machine Translation
(FNMT) approach which is founded on the idea of using the morphological and
grammatical decomposition of the words (lemmas and linguistic factors) in the target
language. This architecture addresses two well-known challenges occurring in NMT.
Firstly, the limitation on the target vocabulary size which is a consequence of the
computationally expensive softmax function at the output layer of the network,
leading to a high rate of unknown words. Secondly, data sparsity which is arising
when we face a specific domain or a morphologically rich language. With FNMT,
all the inflections of the words are supported and larger vocabulary is modelled
with similar computational cost. Moreover, new words not included in the training
dataset can be generated. In this work, I developed different FNMT architectures
using various dependencies between lemmas and factors. In addition, I enhanced
the source language side also with factors. The FNMT model is evaluated on various
languages including morphologically rich ones. State of the art models, some using
Byte Pair Encoding (BPE) are compared to the FNMT model using small and big
training datasets. We found out that factored models are more robust in low resource
conditions. FNMT has been combined with BPE units performing better than pure
FNMT model when trained with big data. We experimented with different domains
obtaining improvements with the FNMT models. Furthermore, the morphology of
the translations is measured using a special test suite showing the importance of
explicitly modeling the target morphology. Our work shows the benefits of applying
linguistic factors in NMT.
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CHAPTER 1

INTRODUCTION
Contents
1.1 Machine Translation . . . . . . . . . . . . i v ... 1
1.2 Thesis Outline . . . . . . . . . @ . @ i it it eeeeen.. 5

"There can never be an
absolutely final translation".
Robert M. Grant

1.1 Machine Translation

History has shown the need for a continuous exchange of culture and products across
the land. Human beings have to communicate with each other in order to trade and
socialise. The main challenge is to be able to easily communicate considering the
diversity of languages and their differences. There are around 7000 languages in the
world!'. Translation breaks language barrier, which separates people.

Nowadays, translation plays an essential role in the economical, cultural and
social development of countries. The necessity of fast, high quality translation ser-
vices are becoming more important. This is motivated by the importation and
exportation of products and knowledge to create stronger relations between coun-
tries. Moreover, translation plays a fundamental role in the increase of international
tourism and the diffusion of media through television and the Internet.

Machine translation (MT) is a quick and cheap way to make translation acces-
sible to everyone. It consists of automatically translating human languages using

'LangScape: The Language of Landscape: Reading the Anglo-Saxon Countryside.
<http://langscape.org.uk>, version 0.9, accessed 1 November, 2008.



2 Chapter 1. Introduction

computers. Knowing the importance of translation, research on machine translation
has a long history since computers were invented and it remains an important and
still unsolved topic.

The first MT systems were rule-based built only using linguistic information
(Nirenburg, 1989). The translation rules were manually created by experts. Al-
though the rules are well defined, this process is very expensive and does not gen-
eralize well to all domains and languages.

Statistical Machine Translation

Afterwards, statistical machine translation (SMT) started to outperfom rule-based
systems. SMT systems automatically create the translation rules using parallel
corpora. Handcrafted rules or linguistic knowledge are not required to build an
SMT system. This fact makes SMT cheaper and quicker to perform but it lacks of
human supervision.

Formally, the goal of SMT is to find the most probable target sequence ( f ) given
a source (e) sequence.

A~

f= argicnaxp(fle) (1.1)

Equation 1.1 defines the SMT decoder.
From the Bayes theorem we obtain Equation 1.2.

plelf)p(f)
p(fle) = 1.2
(1le) = 2E2 (12
Because e is fixed for all f, the maximization over f does not depend on e, thus,

Equation 1.1 is equivalent to Equation 1.3 which is the Bayesian noisy channel.

f= arg;naxp(fle) = argl}naXp(e\f)p(f) (1.3)

The probability p(e|f) defines the translation model and the probability p(f) is
provided by the language model (LM). The LM is an important component in SMT.
It was previously used in speech recognition (Jelinek et al., 1975) and several other
NLP tasks. The LM is trained with a monolingual corpus in the target language.
The probability distribution over a sequence of symbols, often words, is specified by
the LM.

More details about LM calculation are defined in Equation 1.4. The LM decom-

poses the probability of a word sequence f = fi,..., fin as follows:
p(f)=1]»(f1120) (1.4)
i=1

where each of the individual terms p(f;|f_,) are the conditional probability of the
generated current word f; given the previous words or context f_,.
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Having the LM, we can know if a sequence of words is more likely to appear
than another.

The first SMT approach was taking the word as a translation unit (Brown et al.,
1993). Later, phrased-based models were invented (Koehn et al., 2003) translating
several contiguous words which permit more context and a better quality of the au-
tomatic translation. Phrase-based machine translation (PBMT) also incorporates
the alignment ability (Och and Ney, 2004) between words. The alignment in both
directions of language pairs obtains many-to-many correspondences of subparts of
the sentences, which are called phrases. Those phrases are stored in a phrase table
with their corresponding scores. The scores kept in the phrase table contain infor-
mation about the direct and inverse phrase translation probability and direct and
inverse lexical probabilities.

The most popular tool used for SMT is Moses (Koehn et al., 2007). The SMT
approach uses a log linear model determined by features functions (see Equation 1.5).
Those features come from the information about language model, translation model,
reversed translation model, distance-based reordering model, lexicalized reordering
model and length/unknown penalties, principally.

N
logp(fle) = > _ Ailoghi(f,e) (1.5)
=1

where N represents the number of features and A; the feature weight of h; which is
the ¢ — th feature function.

The log-linear model makes possible, the combination of several components to
determine the quality of the translation. Fach component is represented by one
or more features, which are weighted, and summed together. In order to tune the
model for decoding, an additional test set is evaluated to set the weights.

Another approach is the hierarchical phrase-based model (Chiang, 2005) which
extends the phrase-based approach with context-free grammar learning without the
need of linguistic information. This technique is specially used for language pairs
like English-Chinese for which a reordering of the sentences will help to make a
better translation due to the distinct grammar of the two languages. For example, a
hierarchical rule translation can model the negation in French to distinguish it from
the negation in English (see example in Equation 1.6).

(ne X1 pas , do mnot Xi) (1.6)

There are also other works about adding syntax to SMT (Wu, 1997; Yamada
and Knight, 2001; Chiang, 2005). Those approaches are shown to improve the
translation quality, specially in languages with different structure such as Chinese
and English. However, they imply the need of linguistic information.

Despite the improvement reached by using classical SMT models, the context
handled by the LMs models is short and thus its generalization ability is limited.
The possible n-grams are stored on big tables together with their probabilities. Due
to data sparsity, probabilities are not well estimated for big n-gram length because
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they are not frequent in the corpora. Therefore, the context is limited to 4 or 6
n-grams. Neural language models (NLMs) (Bengio et al., 2003) use a continuous
word representation where similar words are close in the projection space. NLMs do
not need to store the n-grams and can work with longer context using feed-forward
or recurrent neural networks. After the development of the NLMs, SMT started
to benefit from them (Schwenk, 2010; Le et al., 2012). This benefit is obtained by
adding the NLM probability to the n-best list generated during decoding. Then,
the n-best list is rescored achieving a better translation quality. More recently,
NLMs have been improved adding the source words jointly with the target context
(Schwenk, 2012; Devlin et al., 2014). This last component makes the SMT full
pipeline very complex. We find two main drawbacks in SMT: (1) the complexity
of the model increases adding more and more features to the loglinear framework
(Green et al., 2013) and (2) as we translate phrase-by-phrase, the context taken
into account is short and consequently, long-distance dependencies are not captured.
Because of that, the machine translation process was re-designed, in order to address
those inconveniences using neural networks.

Neural Machine Translation

Neural Machine Translation (NMT) went from a fringe research activity in 2014 to
the widely-adopted leading way to do MT in 2016. NMT consists of a big neural
network with millions of weights that models all the M'T pipeline. Parallel corpus is
still required to train the NMT model but the preprocessing steps are simpler. NMT
is trained in an end-to-end manner without the need of several components. Unlike
the classical phrase-based translation which handles the translation at phrase level
with a limited context, NMT is able to manage long-range dependencies. An encoder
represents the entire source sentence and a decoder processes this information to
generate the translation. This fact makes the NMT models very powerful since each
decoding step is conditioned by a context vector of the whole source sentence. In the
last years, NMT systems started to outperform SMT systems in the MT evaluation
campaigns and it is becoming to be used by the translation industry. All the work
in this thesis is done in the NMT framework.

In recent years, NMT has developed very quickly. The first machine translation
models using neural networks appeared some decades ago (Chrisman, 1991; Neco
and Forcada, 1997; Castanio and Casacuberta., 1997; Allen, 1987) but the hardware
at that moment was not enough developed to get good results. Nowadays, the
new GPU processors capable of executing many operations in parallel have made it
possible for the neural network power to be a reality in machine translation.

The first work to map the input sentence into a vector and then back to a sen-
tence was done by Kalchbrenner and Blunsom (2013). Afterwards, the sequence to
sequence encoder-decoder NMT model was introduced (Cho et al., 2014b; Sutskever
et al., 2014). The sequence to sequence encoder-decoder NMT model is based on
two recurrent neural networks (RNN), one used for the encoder and the other for
the decoder. A detailed description of RNNs is given in Chapter 2.
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Encoder Decoder Je présente ma thése

VI

Input (source language) Output (target language)

Figure 1.1: Sequence to sequence NMT architecture.

The source language sequence is embedded in the encoder and the decoder maps
the representation back to a target language sequence (see Figure 1.1). The encoder
and the decoder are trained jointly to maximize the conditional probability of the
reference translation. More formally, NMT maximizes the conditional probability
p(fle) where e is the source sequence and f is the target sequence (see Equation 1.7).

T
p(fle) = logp(f,|f.,.e) (1.7)
t=1

The encoder creates the representation of the source e and the decoder generates
the translation sentence, one token at each timestep (t) based on the conditional
probability of the previous generated tokens and the source representation. Each
generated token is selected based on the calculated probability from the output
layer, which has the size of vocabulary.

The relevant information from the source sentence has to be kept by the encoder-
decoder model, this is difficult when dealing with long sentences. One first approach
to resolve the performance drop with long sentences consists of reversing the tokens
of the source sentence starting from the last one and finishing by the first one
(Sutskever et al., 2014). This approach reduces the distance between the first words
of the source sequence and the first words in the target sequence which helps to
improve the translation performance.

Later, Bahdanau et al. (2014) introduced an attention mechanism into the NMT
with huge success. Nowadays, NMT with attention mechanism systems are the state
of the art.

1.2 Thesis Outline

Machine translation is a complex task and there is still a lot of work ahead to
improve it. We can enumerate some current hot topics in NMT.

1. Data sparsity: MT systems often only rely on the training corpora which
are always available in limited quantity and often difficult to find. Bilingual
corpora are expensive to build and not available for some specific language
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pairs or domains. The translation of a highly inflected languages is even more
difficult because not enough samples with all the possible inflected forms are
seen in the training set. This is a challenge which remains open on the SMT
systems.

2. Vocabulary size limitation: due to the computational complexity of the
output layer, the target vocabulary size is often limited. Therefore, it is not
possible to generate all the words seen in the training dataset. This can lead
to the generation of unknown words that are not included in the vocabulary.

NMT systems often do not incorporate any additional linguistic information,
they only rely on the training dataset. Linguistic motivated systems may help to
overcome data sparsity, generalize and disambiguate to finally improve translation
facing the previously described challenges. The integration of linguistics in an NMT
system is not a trivial task. Usually, linguistic tools are not specifically developed
to be integrated with NMT systems. Moreover, they could produce some errors
since they are generally trained with machine learning techniques using annotated
corpora.

Factored NMT systems are introduced in this thesis with the aim of integrating
linguistics in NMT systems. We focus on the inflection morphological phenomena.
In this thesis, I propose a new architecture that provides the possibility of including
linguistic information in order to predict a better translation. This architecture can
also be used for other tasks where additional information is required to train the
network.

This document is organized in two parts. The first part is about the formal
background work and state of the art techniques. Chapter 1 focuses on the history
of machine translation explaining briefly the previous approaches and introducing
the recent research of NMT. In Chapter 2 - Background, the readers find the prin-
ciples of NMT. Section 2.1 is about recurrent neural networks, which are the basic
components of the NMT system used for this thesis, including the backpropagation
algorithm for training and some settings of the network. Section 2.2 describes the
baseline system used for this thesis, it consists of an NMT system with an attention
mechanism.

Chapter 3 - State of the art is a review of previous related works clustered
in three sections: approaches which also deal with large vocabulary (Section 3.1),
factors related approaches (Section 3.2) and other works which also handle multiple
inputs and outputs in a neural network (Section 3.3).

The second part includes my contributions which is composed of 3 chapters.
Chapter 4 - Factored Neural Machine Translation contains the description of the
Factored NMT approach and a set of experiments with it. The three sections con-
tain the set of experiments: (1) Preliminary experiments to test the FNMT sys-
tem in Section 4.3, (2) experiments to design the FNMT architecture options in
Section 4.4 and (3) further experiments including more morphology and the incor-
poration of factors at input side of the network in Section 4.5. Next Chapter 5 -
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Translating Morphologically Rich Languages is about translation of morphologically
rich languages using Factored NMT system. English to Czech and English to Lat-
vian WMT’17 data have been used to performed the experiments in Section 5.1.
Section 5.2 contains a study of the impact of the data for Arabic to French transla-
tion. A qualitative evaluation of the translations has been carried out in Section 5.3.
Lastly, the conclusions and perspectives are presented in Chapter 6.
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"Every language is a world.
Without translation, we would
inhabit parishes bordering on
silence". George Steiner

In this chapter, we will describe first the concept of recurrent neural networks
and we will continue explaining the different methodologies used to build a neural
machine translation model.
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2.1 Recurrent Neural Networks

In machine learning, artificial neural networks are a family of models inspired by
biological neural networks. From this point on, we will refer to the artificial neu-
ral network using only neural networks. Neural networks are used to estimate or
approximate functions that can depend on a large number of inputs. They are gen-
erally presented as systems of interconnected weights that can be tuned on a dataset
with samples. Their structure is based on input layers, hidden layers and output
layers.

A straight-
forward way of doing this consists of using a one-hot representation. This method

In our context, we need to convert words into numeric vectors.

converts the word into a sparse representation with only one element of the vector
set to 1, the rest being zero.
is projected in a hidden layer learning a continuous representation of the words.
The weights connecting this layer are the new word vectors. The weight matrix
essentially becomes a look-up or encoding table of the words. These weight values

By means of this method, the input vocabulary

contain context information. This process is called word embedding.

A recurrent neural network (RNN) is a neural network where some connections
form a directed cycle, giving feedback information to the next state of learning.
RNNs models are specially useful for modeling sequential data like sequences of
words. This is the case of the machine translation or language modeling tasks
where the word sequences have unbounded and different length. The RNN created
by Elman (1990) uses as cycles the context extracted from the weights between
source and target (hidden layer).

Output Y I present my thesis </s>
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a1 (%) Q3 7 Qs
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Figure 2.1: Example of RNN for language modeling task.

Figure 2.1 shows an example of RNN when applying to language modeling task.
The input of an RNN is a sequence of vectors 1, o, . .., T, representing a sentence
or n-gram. The embedding layer F; learns weights to represent a word. Each new
input z; is processed and the memory of the network is updated producing a hidden

state h;. The recurrence of the network consists of the update of each hidden state.
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This update is processed with a function computing the current input x; and the
previous hidden state h;_1. The first state hg is set with an initialization function
(o) which can be a random value or 0.

Equation 2.1 shows more details about the function to update the hidden states
h: at each timestep. This function often consists of a non-linear function (f) such
as logistic (sigmoid) or hyperbolic tangent (tanh).

he = f(Wapxe + Whphe—1) (2.1)

where each W, represents a weights matrix connecting the input sequence and the
hidden layer and Wy, a weights matrix connecting the hidden layers in the network
(see Figure 2.1).

At each timestep ¢, an output symbol y; is generated which is calculated by
multiplying the weights Wy, (hidden to target weights) and hidden values h; (see
Equation 2.2).

Y = Whyhy (2.2)

Another type of RNN is the one created by Jordan (1986) where the cycles are
fed with the previous generated timestep (output layer), this is what we call feedback
of the model. In this thesis, we use both types of RNN.

The output symbol is decided through the calculation of a softmax function
(see Equation 2.3). The softmax function transforms the output scores (y;) to a
probability vector p;. This p; vector has the size of the target vocabulary. In
order to calculate the output value, at each timestep, a softmax function is required
where each value is divided by the sum over all values. The softmax normalization
is computationally expensive. The word with the highest probability is selected as
output.

N
pr=e"/> e forte{l,...,N} (2.3)
r=1

where y; is the output vector at timestep ¢ and p; the softmax normalization over
the total number of outputs V.

In machine translation or language modeling, the vocabulary is often very large.
Therefore, the computation of the softmax function is time consuming. Moreover,
very large vocabularies cannot fit in memory. This is one of the major computational
bottleneck in this field.

2.1.1 Training

Training neural networks requires the optimization of the weights to predict the
corresponding output of the training samples. The training method used in this
thesis is called backpropagation. For more details about backpropagation method, I
address the reader to Li et al. (2012). The samples are fed to the network in batches,
repeatedly, until the model is trained. Using batches instead of one example or the
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full set of examples allows the system to converge faster and compute more efficiently
on GPUs.

During training, the outputs generated by the network are compared to the
correct outputs which allows us to compute a cost in order to measure how good is
the network. Normally, the system does several passes (epochs) over the training
data.

Cost function

In the context of machine translation, the cost function corresponds to the negative
log-likelihood of the sentences seen in the training data (see Equation 2.4).

)= Y —logp(ylz,0) (2.4)
(z,y)eD

where D refers to the bitext (z,y), x is the source sentence, y its corresponding
target sentence and 6 all the parameters of the neural network model.

Ideally, the cost would be 0 when the correct word probability is 1. This is
typically an approximation, hence we have higher cost than 0. The overall sentence
cost is the sum of all word costs.

Stochastic Gradient Descent

The optimal weights are computed by means of stochastic gradient descent (SGD)
algorithm. The SGD is an optimization algorithm for minimizing the cost function.
The algorithm takes steps proportional to the negative of the gradient.

Equation 2.5 defines the chain rule to calculate the derivatives to update the
weight matrices (W).

oC

Wi =W, — oW
¢

(2.5)

The gradient of the cost (C) is calculated with respect to each of the network
weights (W). The learning rate (n) is a value to determine how quickly the weights
are adjusted. A good learning rate value is: (1) low enough to allow the network
converges to generate good outputs, and (2) high enough to avoid spending too
much time for training.

SGD can be slow when the local minimum is near. Momentum technique
accelerates the training towards where SGD is heading. It works by having knowl-
edge from the previous update values vy which is a velocity vector stored for all the
parameters. vy is weighted by a new hyperparameter p (see Equation 2.6) .

oC

Wi =Wy — pvp — oW
¢

(2.6)
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Adagrad (Duchi et al., 2011) is an algorithm for gradient descent optimization
that adapts the learning rate to the parameters according to the history of gradi-
ents. It performs larger updates for infrequent parameters and smaller updates for
frequent parameters. Therefore, it is good to deal with sparse data. Adagrad uses
a different learning rate n for every parameter at every timestep. We then set Gy
which is a diagonal matrix containing the sum of the squares of the past gradients
(see Equation 2.7).

7 oC
V Gt 4+ ¢ 8Wt

where € is a smoothing term that avoids division by zero. Adagrad basically divides

Wt+1 = Wt -

(2.7)

the current gradient by the sum of previous gradients in each update. As a result,
when the gradient is very large, n is reduced and when the gradient is small, n is
increased.

The main advantage of Adagrad is that there is no need of tuning the learning
rate because it is adapted automatically. By contrast, the accumulation of gradients
grows during training and the learning rate can become very small with the risk that
the algorithm cannot learn anymore.

Adadelta (Zeiler, 2012) is an extension of Adagrad which instead of accumulating
all the past gradients, it restricts the number of gradients to a fixed size.

Instead of just storing the previous gradients, the previous gradients are recur-
sively defined as a decaying average of all past gradients. Then, we substitute Gy
by the decaying average over past squared gradients E[¢g?]; (see Equation 2.8).

n oC
VE[g?]; + e OW

where the current gradient is divided by the sum of previous gradients g and an

Wt+1 = Wt - (28)

offset € in each update.

Adam (Kingma and Ba, 2014) also includes the methods incorporated in Adadelta
and in addition it keeps an exponentially decaying average of past gradients, similar
to momentum. The following formulation presents the first and second moment,
respectively.

oC
t
oC
v =povr + (1 — N2)(Tvvt)2 (2.10)

where my is the estimation of the first moment (the mean) of the gradients and v,
is the estimation of the second moment (the uncentered variance) of the gradients.
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The authors realized that m; and v; are biased towards zero during the initial
steps, so they computed a bias correction (see equations 2.11 and 2.12).

myg

my = (2.11)
1—ph
A %
U= ——— (2.12)
1— b
Then, the parameters are updated as described in Equation 2.13.
Wi =W, — — L, (2.13)
VUi + &

According to the authors, Adam algorithm works better than other adaptive
learning rate method algorithms.

For further information about SGD optimization algorithins, we refer the reader
to Ruder (2016).

2.1.2 Solutions for vanishing and exploding gradient

Besides all the advantages of RNN, there exist two problems when dealing with
very long sequences: the vanishing and exploding gradients. The gradient can be
vanishingly small preventing the weight from changing its value. This can cause
completely stop the neural network from training. As an opposite case, the gradient
can be large. This can result in large updates to the network weights provoking an
unstable network and being unable to learn from training data. At an extreme case,
the weights values can become so large as to overflow and result in NaN values.

A solution for the vanishing gradient problem is the long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997). The LSTM incorporates gates to
prevent the backpropagation of errors from vanishing flowing smoothly through
time. The gates control how much an RNN wants to reuse memory (forget gates),
receive input signal (input gates), and extract information (output gates) at each
timestep.

Another type of RNN is the Gated Recurrent Units (GRU) (Cho et al., 2014b).
The GRU is simpler to compute and implement than LSTM, it incorporates only
two types of gates instead of the three types in LSTM. The hidden state is con-
trolled by sophisticated units in order to memorize information or delete it (see
Equation 2.14). The GRU contains reset and update gates. The reset gate (equiva-
lent to the forget gate) allows the network to drop information that is irrelevant in
the future (see Equation 2.15). On the other hand, the update gate (equivalent to
the input gate) controls how much information from the previous hidden state will
carry to the current hidden state (see Equation 2.16).

St = (1 — Zt) © ht—l +2z: © tanh (stt +r: © (USSt_l) + bs) y (214)
r,=0(W,vi+U,s;_1 +b,), (2.15)
Zy = O (Wth + UZSt,1 + bz) s (216)
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where vy is the input vector and s; is the output vector at the timestep ¢. r; and z;
are the reset and update gate activations, respectively. Wy, Uy, W, U, W, U,
are the trained parameters and by, b, and b, are the biases. tanh and o refer to
the hyperbolic tangent and the logistic sigmoid activation functions, respectively.

Cho et al. (2014b) included a GRU and Sutskever et al. (2014) used LSTMs to
implement the first RNN based NMT systems.

Gradient clipping is a technique to avoid exploding gradient (Pascanu et al.,
2012). Gradient clipping limits the magnitude of the gradient. The idea consists of
checking if the norm of the final gradient g of the batch is greater than a threshold
I'. If it is the case, the scaled gradient H\FTHg is used instead of g. This limits the
gradient and retains the direction of training to avoid exploding of the gradient.
Using gradient clipping the learning rate can be up so that the training converges
much faster. The default option is to limit the norm of the gradient to be no more
than the value 1.

2.1.3 Network initialization

Weight initialization of neural networks is an area of active research, it can help
to obtain a better performance. Various methods have been proposed to deal with
that. Uniform random initialization inside an interval is one of the first systematic
method.

The Xavier (Glorot and Bengio, 2010a) algorithm automatically determines the
scale of initialization based on the number of input and output neurons. The Xavier
initialization formula is presented in Equation 2.17.

Var(W) = . (2.17)
Nin + Nout

where n;, specifies the number of input neurons, n.,: is the number of output
neurons and Var(W) is the variance of the weights.

If the weights start too small, the information shrinks as it passes through each
layer until it is too tiny to be useful. In the other extreme case, if the weights
start too large, the information grows as it passes through each layer until it is
too massive to be useful. Using Xawvier initialization ensures that the learning of
the weights starts correctly, keeping the information in a reasonable range of values
through many layers.

2.1.4 Regularization

Deep neural networks usually contain a big number of parameters to successfully
learn a function. However, large networks can overfit the model when adjusting too
much the parameters to the given samples and not being able to generalize with
new samples. Moreover, a large number of parameters makes the process of training
and testing slow and difficult to deal with.
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Regularizers are introduced in neural networks to prevent overfitting. One first
thing to set is an appropriate number of hidden units in the model to learn the task
with the given training dataset. Increasing the training dataset can help as well to
avoid overfitting.

Weight decay

The simplest regularizer is weight decay. There are two types of penalty terms, L1
and L2. The L1 penalty term is proportionnal to the absolute value of the term.
The L1 penalty term is applied to the cost function (see Equation 2.18).

A WY (2.18)

where A refers to the regularization parameter.

L1 regularization causes the weight to decay in proportion to its size.

The L1 penalty term is proportional to the absolute value of the term. The L1
penalty term is applied to the cost function (see Equation 2.18).

L2 regularization is proportional to the squared weights (see Equation 2.19).

A
3 > W; (2.19)
t

L2 regularization prevents the updates to be too large.
Equation 2.20 shows L2 regularization applied to the update rule.

Wt+1 = Wt - T])\Wt (220)

~Tow,
Generally, in order to obtain a good performance using this regularizer, we can
take into account: (1) the more training examples the weaker this term should be
and (2) the more parameters the higher this term should be.
Performing such regularization helps with generalization, especially when train-
ing on small datasets.

Dropout

Dropout (Srivastava et al., 2014) is another regularizer technique to address the
overfitting problem by modifying the network.

It works by randomly dropping units (along with their connections) from the
neural network during training. This means that their contribution to the activation
of downstream neurons is temporally removed on the forward pass and any weight
updates are not applied to these connections on the backward pass. At test time,
the network has all the outgoing weights halved.

If neurons are randomly dropped out, other neurons will have to step in and
handle the representation required to make predictions for the missing neurons.
This is believed to result in multiple independent internal representations being
learned by the network. The effect is that the network becomes less sensitive to
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the specific weights of neurons. This prevents units to overfit and the network can
generalize better.

2.2 Neural Machine Translation

All the systems described in this document are based on the NMT system provided
with attention mechanism (Bahdanau et al., 2014). Tt consists of a sequence to
sequence encoder-decoder model with attention.

________________________________ 1 b |
ENCODER DECODER
| -
\ . Hidden to
: WOI’d‘— LO - output

Bidirectional RNN Annotations
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Mechanism
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Figure 2.2: Attention-based NMT system.

2.2.1 Encoder

The encoder is a bidirectional RNN (see box number 1 of Figure 2.2) equipped
with an attention mechanism. Each input sentence token x; (i € 1... N with N the
source sequence length) is encoded into an annotation a; by concatenating the hidden
states of a forward and a backward RNN (h_;, ﬁj) with GRU (see Section 2.1.2). The
hidden states are defined as follows.

hi = f(hio1, Ea;) (2.21)
hi = f(hiv1, Ei) (2.22)
where E represents the embedding lookup for each input word z;

Each annotation in a = a7 ...ay is a representation of the whole sentence with
a focus on the current token.

%
o — [ % ] (2.23)
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2.2.2 Decoder

The decoder contains a conditional gated recurrent unit (cGRU) (Firat and Cho,
2016) (see Section 2.1.2) consisting of two GRUs interspersed with the attention
mechanism (see box number 3 of the Figure 2.2).

The first GRU (GRU; in Figure 2.2) cell of the decoder is fed by its previous
hidden state and the feedback (i.e. the previous generated symbol) with the following
formulation.

S; = GRU1 (E[yj,ﬂ, ijl) (224)

where E[y;_1] is the embedding of the previous output y;_1 used for feedback.
GRU; is initialized at timestep 0 with the mean of the annotation vector c; (see
Equation 2.25).

1
56 = tanh <Winit (N Z ai) + bim‘t) (2.25)

The second GRU (GRU in Figure 2.2) is fed by s/ (the output of GRU1) and
the context vector c;, with the following formulation.

s; = GRU; (s}, ¢j) (2.26)
The initialization of the GRUjy is done with the first timestep of GRU;7.

sp = 8]

The output layer Lo is connected to the network through a sum operation inside
of an hyperbolic tangent function ®()_) which takes as input and sums the embed-
ding of the previous generated token as well as the context vector and the output of
the decoder from GRUs (both adapted with a linear transformation, respectively,
L¢ and Lg). Then, there is another layer Lo specialized on the output. Finally, the
output probabilities for each token in the target vocabulary are computed with a
softmaz function. The token with the highest probability is the translation output
at each timestep.

2.2.3 Attention mechanism

The attention mechanism (see box number 2 of the Figure 2.2) computes a source
context vector c; as a convex combination of annotation vectors, where the weights
of each annotation are computed locally using a feed-forward network. The context
vector c¢; is defined in Equation 2.27.

N
C; = Zaijai (227)
=1
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where c; is the sum of the annotations multiplied by the corresponding weights,
being j the iteration of the output words.
aj; weights have been normalized across all input words 4 using a softmax.

These weights can be interpreted as the alignment score between target and
source tokens. For each generated token at the target side, the model finds the
relevant source context.

The feed-forward network for the attentional weights has been computed in
Equation 2.28.

€ij = Va tanh(WDh; + Wga;) (2.28)

where Wp, Wpg represent the weight matrices transformations from the decoder
and encoder, respectively and a corresponds to a weight vector.

First NMT models compute the probability of the target sentences conditioned
on a fixed-length vector representing the whole source sentence. This fixed size
representation degrades when sentence length increases.

Instead of encoding the input sequence into a single fixed context vector, atten-
tion mechanism allows the decoder to attend to different parts of the source sentence
at each decoding step. Therewith the model learns how to attend based on the input
sentence and what it has produced so far in order to generate a context vector for
current decoding step.

2.2.4 Beam search

By applying a beam search to find the best translation or n-best translations, we
can predict n-best output words at each timestep.

red H house » </S>

'Y

<S> |--» A }‘ blue |_) house —)| </S>

For <
| big |>-) beautiful |- »| apartment | -»{ </5>

© 66 6 6 o6 O

Figure 2.3: Example of beam search of size 3 generating sentence hypothesis in 6

timesteps.

See Figure 2.3 for an illustration (example with beam size set to 3). The beam
search starts with the beginning of sentence symbol <s> (timestep 1). When predict-
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ing the first word of the output sentence, the words are scored by their probability
and the beam size hypothesis with the highest scores are kept (timestep 2). Then,
we use each of these words in the beam as conditioning context to generate the
next word predictions (timestep 3). Afterwards, we multiply the score of the partial
sentence hypothesis with the probabilities of the word predictions. The number of
sentence hypothesis with the highest accumulated score equal to the beam size are
kept (timesteps 3, 4, 5 and 6). This procedure continues predicting next words until
an end of sentence symbol </s> is predicted with the highest probability (timesteps
5 and 6). At this point, the completed hypothesis are kept as n-best translations and
the beam size is reduced by the number of finished sentence hypothesis. When all
the sentence hypotheses are finished, the search process ends (timestep 6). Finally,
the word prediction probabilities of each sentence hypothesis are multiplied and the
sentence hypothesis with the highest score is selected as the best translation. Nor-
mally, we normalize the score by the output length of a translation to get better
results.

In the example given in Figure 2.3, three hypothesis have been obtained. The
best translation is shown in background color and with the thickest arrows pointing
the path through all the words in the sentence. Two more sentence hypothesis have
been generated as 2nd (blue and thick discontinuous arrows) and 3rd (green and
thin discontinuous arrows) best translations.

The probability distribution in neural machine translation is often spiked having
few hypothesis. In statistical machine translation, the hypothesis can be combined if
they share the same conditioning context for future predictions. This is not possible
for recurrent neural networks since the entire output word sequence is conditioned
from the beginning. As a consequence, the search graph is generally less diverse
than search graphs in statistical machine translation. Therefore, there are less dif-
ferent hypothesis and beam search or rescoring practices do not obtain that much
improvement.

2.2.5 Evaluation and early stopping

NMT model is trained with the backpropagation algorithm using training dataset.
After some updates, the model is evaluated using the development dataset. This
step is called validation. The automatic metric chosen to evaluate the model is
Bilingual Evaluation Understudy (BLEU) (Papineni et al., 2002a). It is a score
which takes values between 0% and 100%. This metric is currently one of the most
popular in the field.

BLEU is an algorithm for evaluating the quality of text which has been machine-
translated from one natural language to another. Quality is considered to be the
correspondence between a machine’s output and that of a human: the closer a
machine translation is to a professional human translation, the better it is.

BLEU measures the n-grams precision with respect to a set of reference trans-
lations, with a penalty for too short sentences. In practise, BLEU implements a
geometrical average of n-gram (n = 1 to 4) precisions. The consequence of this is
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that BLEU is well-defined at corpus level, and not at sentence level.

BLEU can be single or multi-reference. If several references are provided in the
dataset, BLEU has a fairer score for an automatic translation. This is because one
source sentence can have several correct translations. A higher BLEU score does
not mean in all cases an actual improvement in translation quality. There are works
showing some examples where BLEU does not correlate with human judgments
(Callison-Burch et al., 2006).

The validation step is repeated every some updates after typically complete
the first epoch. In every validation we keep the top m-best models. After some
validations without improvement of BLEU score, the training stops, this process is
called early stopping.

In this thesis, attention based NMT system is used to train all the models.
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"Language is a complex beast.
At best, machine translation is a
reasonable alternative to zero
translation". Don DePalma

Despite all the recent success developing neural machine translation (NMT)
systems, there are still remaining challenges to improve the translation performance.
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For example, translating rare words is a difficult task, one of the reasons is because
the vocabulary size is limited due to the complexity of the softmax function. On
the other hand, classical phrase-based systems are not that sensitive to rare words
because they can handle large vocabulary in their phrase tables and their very
defined alignments. We will present in this chapter the state of the art approaches
to handle larger vocabularies in neural networks. We will continue by explaining
the usage of factored models developed in statistical machine translation, neural
language modeling and neural machine translation to mainly overcome the limitation
of the vocabulary size. Finally, we will end up introducing some models that handle
multiple inputs or outputs for different tasks and modalities.

3.1 Dealing with large vocabularies

Several proposals have been put forward to address the problem of large vocabulary
management.

3.1.1 Shortlist

The classical approach to handle the large vocabulary with the softmax layer size
limitation is called shortlist. It consists of selecting only the most frequent words
to create the vocabulary and the rest of the words are mapped to unknown word
(i.e. UNK token). The softmax operation is calculated over the shortlist to extract
the highest probabilities. This approach is simple but it models only a limited part
of the vocabulary, generating many unknown tokens.

3.1.2 Unknown words replacement

Luong et al. (2015b) addressed the problem of rare words in NMT making use of
their alignments. The unknown generated words are substituted in a post-process
step by the translation of their corresponding aligned source words or copying the
source words if no translation is found. The model used in this work is the model
of Sutskever et al. (2014), one of the first ones, which does not contain attention
mechanism. Therefore, they use an unsupervised aligner to produce the alignments.
The translation of the corresponding source words is made using a bilingual dic-
tionary. Their unknown words replacement technique improves 2 BLEU points the
system. Afterwards, Jean et al. (2015b) made use of the attention mechanism of
their model to extract the alignments. Introducing this technique, they obtained
competitive results compared to SMT systems ranking the first in the Workshop of
Machine Translation (WMT) 2015. The drawback of this method is the use of a
postprocessing step that it is not integrated into the training process of the model.
Moreover, the obtained word based translation is not using the context. Therefore,
in many cases, it can return a wrong translation when the word is ambiguous.
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3.1.3 Synthetic data

Recently, in SMT, the unseen morphological variants of words are added as syn-
thetic phrases for decoding (Huck et al., 2017b). Then, the system incorporates the
information of all the inflections of the seen words in the training set.

Another attempt in SMT is the back translation technique (Bojar and Tam-
chyna, 2011). Training a model in the opposite direction to translate lemmas makes
possible to create synthetic parallel data. It might contain unseen word forms of
known lemmas on target side. The drawbacks are that the source side is automatic
translated and it can have some errors. Also, the substitution of words with lemmas
may loose some translation information.

The monolingual backtranslated data has been also incorporated into NMT (Sen-
nrich et al., 2016b) at word level. Monolingual data is automatic translated with
a model trained in the opposite direction creating the synthetic parallel data. This
allows the system to manage more quantity of training data boosting the translation
performance.

3.1.4 Structured output layer

One strategy used in neural language modeling (NLM) is to define a structured
output layer (SOUL)(Le et al., 2011) to handle the words not appearing in the
shortlist. Several softmax layers replace the output layer. The output consists of a
tree structure with a main softmax and a node which contains sub-class layers with
their own softmax. The main softmax contains the most frequent words. The rest
of the words are separated in classes and for each class a smaller softmax is used.
This allows the system to always apply the softmax normalization on a layer with
reduced size. The structured output layer NLM was applied for speech recognition
and some benefits were shown with languages with large vocabularies like highly
inflected ones. Another similar works are about hierarchical language models where
the words are also organized in clusters in a tree structure (Mnih and Hinton, 2008;
Chen et al., 2015).

The pros of this strategy is that the model can manage more vocabulary, facing
the problem of the limited size of the softmax and reducing the number of the
unknown words. On the contrary, the structure output layer has the disadvantage
of dealing with a complex architecture. It requires to prepocess the vocabulary in
classes and training with much deeper architecture.

3.1.5 Sort batches by subsets of vocabulary

Another work around for NMT has been proposed in Jean et al. (2015a). They
carefully organise the batches so that only a subset K of the target vocabulary is
possibly generated at training time. This allows the system to train a model with
much larger target vocabulary without substantially increasing the computational
complexity. On the contrary, this technique faces the problem of mismatching the
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way of training and testing the model because at test mode the batches are not
sorted.

In a similar way, Chen et al. (2015) used the same technique in order to train
large vocabulary for neural language modeling. Additionally, the same work shows
a similar technique which distinguishes between genuine data and noisy samples to
sort the batches in a better way.

3.1.6 Subwords

An alternative approach is to work with representations designed to remove some
variations via source-side or target-side splitting procedures.

The most successful proposal is using subwords (Sennrich et al., 2016¢) which
seems to achieve a right balance between a limited vocabulary size and the ability
to translate a fully open vocabulary. In a nutshell, this approach decomposes source
and target tokens into smaller units of variable length (using what is now termed as
a “Byte Pair Encoding” or BPE in short): this means that (a) all source tokens can
be represented as a sequence of such units, which crucially are all seen in training;
(b) all possible target words can also be generated; (c) the size of the output layer
can be set to remain within tractable limits; (d) most frequent words and subwords
are kept as BPE units, which preserve the locality of many dependencies. The
vocabulary can be shared for both languages (joint or bilingual vocabulary) helping
to generate, for example, proper names that are already in the source language and
they do not change in the target language.

The BPE algorithm has as unique parameter the number of merge operations
and consists of several steps:

1. Read the training and validation datasets at character level.

2. Merge the most frequent tokens and repeat merge process, according to the
number of merge operations given as parameter (as shown in the line below).
aagabcaaaba—aaabcaaaba—aaabcaaaba —aaab c acad a

3. With the resulting text, build a BPE tokens dictionary specifying word end-
ings.

4. As preprocessing of the datasets, split words according to the BPE dictionary
adding a special suffix (@Q) to specify the subwords.

5. Once the preprocess is done, training and test can be performed.

6. As postprocessing of the generated output, the subwords have to be recon-
verted into words (as the example below).

Ez@@ ample of sub@@ words — Example of subwords

This method is simple and it does not require external resources. The alignments
can benefit of those splitting matching main parts of the word and prefixes or suffixes
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of both source and target languages. Furthermore, it can generate words unseen in
the training data, it only needs that the subword appears in the corpus. Also, it
drastically reduces the generation of unknown words. On the other hand, BPE can
generate incorrect when combining different subwords. BPE is the main method
used in recent machine translation evaluation campaigns (WMT, IWSLT).

3.1.7 Character-level Neural Machine Translation

More extremely representation of words is considering translation at character-level
unit. In the character-based NMT proposed by Ling et al. (2015), words are mod-
elled at character-level. As input of the network, they use word vectors represented
by characters. At the output side, the model generates sequences of word vectors
where each word is generated one character at a time. The authors say that the
method can improve over a equivalent word-level model.

Costa-jussa and Fonollosa (2016) still uses word embeddings but instead of being
an independent vector, they are computed from the characters embeddings of the
corresponding word. However, they still have limited word target vocabulary.

For the first time, Chung et al. (2016) answered the question of whether NMT can
be done directly on a sequence of characters without any word segmentation. They
implemented a model using subwords in the input and characters in the output of
the network. Improvements in the translation performance compared to fully BPE
level models are reported.

A hybrid system translating mostly at the word-level and character-level for the
rare words was implemented by Luong and Manning (2016). It is easier and faster to
train than fully character-level and it never generates unknown words but it cannot
benefit of common lexemas between words most of the times.

Another similar method where words and character are mixed has been done
(Wu et al., 2016) arguing that they find a good balance of vocabulary using both
segmentations.

Subsequently, fully character-level NMT without explicit segmentation was im-
plemented (Lee et al., 2016). This method maps a source character sequence to a
target character sequence without specifying the word segmentation. This imple-
mentation is made using convolutional networks with max-pooling at the encoder
to reduce the length of character source representation. In this way, the training
speed will not be increased. They applied the method also in a many-to-one transla-
tion task making profit of the common morphemes between languages and without
increasing the model size. They also argue that without using word boundaries,
the model can learn an internal structure of a sentence to map the symbols in a
continuous representation. They report some improvement when comparing with
BPE units translation.

The advantages of character-level NMT is that all the vocabulary can be covered
with a small size of softmax layer, it can model morphological variants of a word
and it avoids problems in preprocessing/tozenization. Moreover, unseen words can
be generated as with BPE. However, character-level NMT is much more costly to
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train to have a good performance than higher level representation and it makes long
distance dependencies even longer.

The same author who applied the BPE approach (Sennrich, 2016) showed a com-
parative study about the character-level translation quality utilizing a special test
set of contrastive translation pairs. He reports that character-level NMT systems
perform better at transliteration and processing unknown words than models with
BPE segmentation. By contrast, character-level systems perform worse than BPE
units systems when extracting morphosyntactic agreement and translating discon-
tinuous units of meaning.

3.2 Factored models

Several linguistic resources have been used in machine translation in order to improve
the MT quality. They can be used to increase the supported vocabulary, creating
new unseen word forms or adding more context to the translation. In this section,
we explain the state of the art of using factors in statistical machine translation,
language modeling and neural machine translation.

3.2.1 Factors in Statistical Machine Translation

Factored models were first invented by Bilmes and Kirchhoff (2003) where factors are
used as additional information for language modeling. Afterwards, factored transla-
tion models were introduced for statistical machine translation (SMT) (Koehn and
Hoang, 2007). In this work, the authors incorporate additional word level features at
source and target side of the model. These features consist of the linguistic informa-
tion of the words like lemma, Part of Speech (POS) tag, morphological information
and an automatically generated word class. Afterwards, they extended their work
to support the translation of longer phrases composed of factors to act as templates
for the selection and reordering of surface forms (Hoang and Koehn, 2009). The
factored translation models (Koehn and Hoang, 2007) were also applied for Arabic
translation (Youssef et al., 2009) showing a tendency to improve the morphology of
the translation resulting in a better performance. Factored language models were
also applied to SMT taking into account larger bilingual context (Crego and Yvon,
2010).

At the same time, other approaches utilize a set of syntactic and morphological
(stems + factors) knowledge sources from both source and target sentences in a
SMT model (Minkov et al., 2007; Toutanova et al., 2008) to translate into Russian
and Arabic. The surface form of the words is selected from the full paradigms in a
second step using a classifier. They show that the use of morphological and syntactic
features leads to large gains in prediction of the accuracy. Another work used case
markers in addition to words in order to improve the fluency in English to Hindi
translation (Ramanathan et al., 2009).

Another method counsists of improving SMT for morphologically rich languages
using a hybrid morpheme-word representation (Luong et al., 2010). Target words
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may also be represented as lemmas complemented with side information. Bojar
(2007); Bojar and Kos (2010); Bojar et al. (2012) use such representation for two
SMT systems: the first one translates from English into Czech lemmas with source-
side information and the second one performs a monotone translation into fully
inflected Czech. Jawaid and Bojar (2014) use in the first step a hierarchical system
that outputs a lattice presenting different word orders. Then, the second step selects
the word order that allows the system to choose the best morphological predictions.

Haddow and Koehn (2012) introduced backoff methods by combining surface
forms and factored forms of the words. This method showed gains in performance
and improved the accuracy of the rare words translation.

Fraser et al. (2012) proposed a target morphology normalization for German
words represented as lemmas followed by a sequence of morphological tags. They
introduced a linguistically motivated selection of words when translating from a
morphologically poor language as English to a morphologically richer language as
German. The selection step consists of predicting the tags that have been removed
during normalization, using a specific Conditional Random Field (CRF) model for
each morphological attribute to predict. Finally, word forms are produced via look-
up in a morphological dictionary. This approach is extended by Weller et al. (2013),
who takes verbal subcategorization frames into account, thus enabling the CRFs
to make better predictions. Related approaches have been proposed (Burlot et al.,
2016) for Czech and Arabic (El Kholy and Habash, 2012b,a). Weller-Di Marco
et al. (2016) handle the prediction of both prepositions and morphological features
by building synthetic phrase tables.

Linguistics factors have been used as well for Hindi to rerank automatic transla-
tion n-best hypothesis (Gupta et al., 2014). In this system, they produced stemmed
and POS tagged text to train a trigram language model. The results showed that
the ranking performed as human judgement.

Some studies analysed the usefulness of factors in SMT (Durrani et al., 2014).
When morphological information is not available for resource poor language, they
cluster the words automatically. The authors saw an average improvement of +0.8
BLEU points using those factors.

3.2.2 Factors in Neural Language Model

Factors as extra information of the words have been utilized in some works to provide
linguistic grammatical information to the neural networks. Neural language models
have been frequently used to add features to the SMT systems (Schwenk, 2010)
giving more context information for long sentences. Several works have used factors
as additional information for the input words in neural language modeling (NLM)
with good results (Niehues et al., 2016; Alexandrescu, 2006; Wu et al., 2012).
Niehues et al. (2016) used a factored word representation at output side as well
as input side for NLM. Their RNN based network consists of multi-factors input
and output sides that facilitates all available information about the word. They
make use of the surface form, POS-tag and automatic word clusters of 100 and 1000
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sizes based on Och (1999). For each factor, an embedding is learnt by the network.
Then, the concatenation of the embeddings is used to represent the word. In the
last layer, one softmax is used for each output factor. For the target side, also the
source word is kept as additional factor. The NLM is used as additional feature for
rescoring an nbest list in a phrase-based MT system.

Baltescu et al. (2014) present an open source implementation of an NLM toolkit.
This toolkit provides new factored features based on Brown clustering (Brown et al.,
1992) to improve the SMT quality. It facilitates the NLM integration as a feature in
the beam search of the hierarchical phrase-based translation system cdec and Moses
decoders.

3.2.3 Factors in Neural Machine Translation

Recently, factors have also been integrated into a word-level NMT system as addi-
tional linguistic input features (Sennrich and Haddow, 2016). The concatenation of
all the features embeddings is learnt by the encoder.

Syntatic information in the form of Combinatorial Categorial Grammar (CCQG)
supertags was integrated for NMT task (Nadejde et al., 2017). For the source side,
they used the same approach as Sennrich and Haddow (2016). Three different
strategies were experimented for the target side. The first one is called serializing
where the target supertags together with the subwords are interleaved in the same
target sequence increasing the sentence length. The other two strategies are about
multitasking, one, sharing the encoder but using different decoders for each output
(CCG tag and translation) with the disadvantage of having no way to restrict the
number of predicted words and tags to be able to match them. The other multi-
tasking strategy consists of sharing encoder and decoder excepting the softmax to
predict each output. They do not connect the generated CCG supertag to the pre-
dicted translation due to the required modification of the beam search. They showed
improvements in the translation performance with the serialization strategy.

Eriguchi et al. (2016) integrate source-side syntax of the phrases alignments
between English and Japanese. They build a tree-based encoder following the parsed
tree allowing the attention mechanism to align not only words but also phrases with
the output words.

More recently, a neural machine translation system was trained to predict inter-
leaved lemma and morphologically rich POS tag in an output sequence duplicating
the length of the sentence (Tamchyna et al., 2017). In a second step translation,
the surface form of each word is generated from its predicted lemma and POS
tag. The model consists of an encoder-decoder NMT system with attention mech-
anism and using BPE method. The strategy is applied for English—Czech and
English—German language pairs translation. They argue that the presence of lem-
mas allows the system to model inflections and capture lexical correspondence with
the source. Unseen words also can be generated but their improved results are not
mainly because of this reason. They found that the benefit comes from the words
decomposition. They also predict the surface and POS tags, similarly as Nadejde
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et al. (2017) did with CCG supertags but they could not improve the results com-
pared to the baseline. They attribute their results to the trade-off between providing
explicit morpho-syntactic information (weaker than CCG supertags) and increasing
the sequence length.

Furthermore, recent works show alternatives of using BPE segmentation in
NMT. For Turkish, Ataman et al. (2017) used a supervised and unsupervised mor-
phological segmentation. This method splits the words preserving their morpholog-
ical information, which BPE sometimes breaks. As well as BPE method does, they
proposed segmentation also reducing the vocabulary size to fit a given constraint.
The results of this approach showed better performance than BPE method due
consideration of linguistic notion in the segmentation process. This unsupervised
method to extract factors is specially useful if no linguistic resources are available
for a given language. Huck et al. (2017a) present an approach for German segmenta-
tion using compound splitting based on the stems. They conclude that linguistically
motivated target-side word segmentation improves NMT when translating into an
inflected and compounding language. Another approach is the one designed by
Sanchez-Cartagena and Toral (2016) where they use a tool to extract the morphs
instead of using the words to translate Finish. They apply on top of the morphs
the BPE method increasing the length of the sentences. This method was applied
for the WMT evaluation campaign and ranked in the first group.

There are many differences between SMT and NMT, one of them is that NMT
handles larger context than SMT. This makes NMT more capable to capture the
word morphology in the layers of the network. The quality of the representations
in the NMT model for learning sentence morphology has been evaluated in Be-
linkov et al. (2017). They analyse different word representations (character-based
and word-based) concluding that character-based ones are better for morphology
learning, especially with rare unseen words. On the other side, word-based models
are enough to learn the structure of frequent words. They studied different depths
of neural network showing that lower layers in the encoder are better to capture
the morphology, in contrast to deeper layers which are more focused on word se-
mantic improving the translation quality. This study was performed on different
language pairs and they argue that translating into morphologically-poor languages
lead to better source-side word representation than target-side. They also inform
that the decoder does not learn well the morphology, mainly because the attention
mechanism focuses on the relevant parts of the source word representations.

3.3 Multiple inputs and outputs networks

There have been other attempts with dual training objectives and several input
information in NMT.
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3.3.1 Multi-task Neural Networks

A linguistic multitask approach has been developed (Niehues and Cho, 2017) to
generate with the same model the translation, named entities and POS-tags of a
sequence. By jointly training several natural language processing (NLP) tasks in
one model, it is possible to get benefit of common information in order to improve
machine translation performance. The training is done using separated minibatches
per each task. The corpus used is small and different for each task as well. The
authors experimented different options of shared parameters between the tasks: (1)
sharing only the encoder, (2) sharing the encoder and the attention mechanism
and (3) sharing all except the softmax layer. The first option sharing less param-
eters obtained better result. They showed an improvement in the performance of
the translation and the POS tagger using the multitask model under low-resource
conditions.

In Chen et al. (2016), a guided alignment training using topic information of the
sentence as a second objective helps the decoder to improve the translation.

Multi-task cross-lingual sequence models have been developed for tagging pur-
poses (Yang et al., 2016). They built two kinds of models. The first one is a
multi-task model where multiple objectives (Part-Of-Speech tagging, chunking and
named entity recognition) are predicted in the output layers of the network. The
architecture consists of separated layers for each specific task and shared layers for
the rest of the parameters (encoder and GRU). The second model, also incorpo-
rates multilingual learning for named entity recognition task. The architecture of
this second model shares the weights of a character-based GRU and the rest of
the architecture is specific for each language including word embeddings and word-
based GRUs. They could improve performance in several cases when using this joint
training.

3.3.2 Multilingual Neural Machine Translation

Multi-task learning for multilingual purpose has been investigated. First, Dong et al.
(2015) built a model where multiple output languages are translated sharing the
same source language encoder. Each language pair has its own attention mechanism.
Also, basic encoder-decoder networks with single-source attention have been utilized
for multiple input languages to translate them into one target language (Zoph and
Knight, 2016).

Multiple input and output neural networks have been developed recently (Firat
et al., 2017) using scheduled decoders with multiple source and target languages.
This system was designed to interact with data from multiple language pairs creating
a space where common multilingual information is kept in the attention mechanism.
They experimented with five different languages in the source, each one has an
encoder and five languages in the target size which each one has their own decoder.
All the languages share the same attention mechanism and transformers are used
to match the different dimensions of each language. They schedule the training for
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each different language pair, updating only the parameters of a language pair per
batch.

A multi-task strategy has been used for multilingual task purpose (Ngoc-Quan
et al., 2017). They propose several settings: (1) sharing all parameters of the en-
coders, decoders and attention for all the language pairs, (2) encoders and decoders
are shared but attention is separated for each language pair and (3) encoders and
decoders are language specific and attention is separated. The results showed that
the second option sharing encoders and decoders performed better. They also con-
ducted zero-shot translation and having the language as a word feature improved
the scores. Zero-shot translation has been also tried by Surafel et al. (2017). Using
pivoting techniques, they showed the potential and benefits of using a multilingual
setting. Results were better for multilingual model when comparing it with single
language pairs models under low resource conditions.

3.3.3 Multimodal Neural Machine Translation

Other works using multiple output networks are focused on multimodal tasks. Mul-
tilingual image description task systems have been implemented with the NMT
encoder-decoder approach to capture a representation of the image and the source
language words to produce descriptions in the target language (Elliott et al., 2015).

Multi-task models for translation and image captioning also integrated the se-
quence to sequence approach (Luong et al., 2015a). Other related works are able
to produce neural image caption generation using convolutional neural networks to
encode an image and recurrent neural networks to generate the captions. Finally,
in other work, Vinyals et al. (2015) train the model to maximize the likelihood of
the sentence given the image . Moreover, this same model has been extended with
attention mechanism (Xu et al., 2015) showing the correlation with the learned
alignments and the human intuition.
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"Translation is not a matter of
words only: it is a matter of
making intelligible a whole
culture."

Despite all the advantages discovered in NMT systems, we have seen that there
still exist some challenges to face in order to obtain better performance. In this
chapter, we introduce a new approach which faces the NMT challenges like the
limitation of the vocabulary size and the data sparsity. For that, we use factors based
on linguistic features. We first describe the factored approach motivation and its
architecture which incorporates several sequences on one side of the network. Then,
we evaluate the factored approach in several scenarios. The first set of experiments
basically compares factored approach with other state of the art approaches. The
second set of experiments is about the design of some options of the architecture.
Then, the last set of experiments presents a new evaluation with a new preprocessing
of the data including a qualitative analysis of the translation outputs. Finally, the
factored approach is applied at both sides of the network applying different types of
attention mechanism. Moreover, the factored approach is combined with word-level
and BPE-level at input and output sides comparing the translation performance.

4.1 Motivation

Factored Neural Machine Translation (FNMT) approach consists of replac-
ing the plain word representation with its lemma and additional tags (factors). In
morphology, a lemma is the dictionary form or headword of a set of words. For ex-
ample, “are”, “were”, “was”, “being”, “is” are inflections of the same lemma, which is
“be”. Lemmas have special significance in highly inflected languages such as Arabic,
Turkish and Russian. By using the lemmas, we are able to generalize to bigger vo-
cabulary. In this thesis, factors are referring to some linguistic annotations at word
level, e.g. the Part of Speech (POS) tag, number, gender, etc. We include factors
jointly with the lemma to indicate how to inflect the lemma to be able to transform
it to the surface form. We focus on the inflection morphological phenomena. Other
morphological phenomena as agglutination are not target. Linguistic factors applied
to NMT have been introduced for the first time in this work.

In standard NMT, the tokens are not linked with all their morphological varia-
tions and there is no explicit information about morphological features. By contrast,
the use of lemmas directly in the NMT models allows the system to connect all the
inflections of the lemmas and capture lexical correspondence. In addition, factors
may help the translation process providing grammatical information to enrich the
output. We are able to simplify the learning and alignment of the related words
that share the lemma or the factors. We argue that when parallel data is sparse,
taking into account other characteristics of the data as linguistic factors can help
to improve translation performance. FNMT method is specially useful for low and
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medium resource setting to translate into highly inflected languages because of its
generalization data properties.

Another problem in NMT is the generation of unseen surface forms in the train-
ing data. Knowing the lemmas and their factors, the FNMT system can generate
all their inflections without explicitly seeing them in the training data. Moreover,
having the PoS tag can be useful for disambiguation (e.g. book: noun or verb). Hu-
mans also do this for language generation knowing only the base word and how to
inflect it. By integrating directly linguistic information into the NMT models, we
expect to improve the translation performance.

Subword segments produced by the BPE method are able to generate unseen
new words. However, since they are not linguistically informed, they can produce
erroneous surface forms by concatenating several subwords. Furthermore, words can
be only produced by joining subwords from the dictionary produced.

4.2 Description of the approach

FNMT approach differs from preceding works in the sense that it uses only the
linguistic decomposition of the words (no surface form) and predicts simultaneous
outputs at the target side of the network. Additionally, it can be also applied at the
source side.

Figure 4.1 presents the general architecture of the FNMT system where two dif-
ferent outputs are generated simultaneously: the lemma and its factors depending
on the language. Indeed, each word is represented by its lemma and its linguistic
factors (POS tag, tense, gender, number, person, etc). By these means, the target
vocabulary size is reduced because all the derived forms of the verbs, nouns, ad-
jectives, etc. are not kept. We can also apply factored level at input side of the
network to get its advantages in the source language as well.

H Target i
Source ' lemmas;
words NMT H H

Figure 4.1: NMT system pipeline with factored output

For simplicity reasons, only two symbols are generated: the lemma and the
concatenation of the different factors that are considered. We are able to reduce one
big output vocabulary (surface forms) into two vocabularies: one for lemmas and a
very small vocabulary for the factors (see Equation 4.1).

‘Vwords‘ > ’Wemmas’ > |Vfacto7"s| (41)

Given both output sequences (lemma and factors) and linguistic resources, the
final surface form is easily generated with a minimum of ambiguity.
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This approach handles the challenge of the limitation of the output layer size
containing the target language vocabulary using factors as a translation unit. The
low frequency words in the training set can benefit from sharing the same lemma
with other high frequency words, and also from sharing the factors with other words.
The vocabulary of the target language contains only lemmas and PoS tags but the
total number of surface words that can be generated (i.e. virtual vocabulary) is
larger (see Equation 4.2). This allows the system to correctly generate words which
are considered as unknown in word-based NMT system.

|Vwo7"ds| < |‘/lemmas| X ‘Vfactors| (42)

4.2.1 Preprocessing: from words to factors

We make use of a POS-tagger to extract the factors from the words. The lemma
tokens are separated in a first sequence. The rest of the tokens (POS-tag, gender,
number, etc.) are concatenated in a second sequence.

For example, from the French word devient, we obtain the lemma devenir and
the factors VP3#S, meaning that it is a Verb, in Present, 3rd person irrelevant
gender (#) and Singular (see Table 4.1).

word ‘lemma ‘ PoS tag tense person gender number

devient ‘ devenir ‘ verb present 3rd # singular

Table 4.1: Example of extraction of factors from a word.

Morphological analyser

In order to extract the lemmas and factors, a linguistic tool is necessary. In our first
experiments, target language is French and the factors POS-tag, tense, number,
person and gender have been chosen for this language. The morphological and
grammatical analysis is performed with the MACAON toolkit (Nasr et al., 2011).
MACAON POS-tagger outputs the lemma and factors for each word taking into
account its context. The Lefff dataset (Sagot, 2010), a large-coverage morphological
and syntactic lexicon for French, is used by MACAON to build the models.

4.2.2 Main architecture

The FNMT model allows the system to generate several output symbols simultane-
ously as presented in Figure 4.2.

The FNMT architecture is an extension of the standard NMT one. The en-
coder and attention mechanism remain without modifications with respect to the
base model (see Chapter 2, Section 2.2). However, the decoder has been modified
to produce multiple outputs. The synchronicity of the two outputs generation is
possible because the hidden states are shared between the two of them. The hidden
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DECODER

Lemma<—| Softmax |<—| Lo,
[

*(X)

T

Hidden state of
cGRU

Feedback

Attended
source context

_____________________________________________________________

Figure 4.2: Detailed view of the FNMT system decoder.

to output layer (¢(>])) is the sum of three inputs: (1) hidden state, (2) source
context provided by the encoder and the attention mechanism and (3) feedback. In
the NMT approach, the embedding of the previous word is given as feedback for
generating the next word. For the FNMT approach, multiple outputs are available
which can be possibly combined and given as feedback. In the first experiments
(Sections 4.3 and 4.4.1), the feedback of the model contains only the embedding of
the previously generated lemma which contains the main information of the surface
form. Several options for feedback have been explored in Section 4.4.2. Finally, in
the last part of the model, the output is split into two specialized output layers Loy,
and Lo which in turn feed a specialized softmax layer, one to calculate the lemmas
and the other to calculate the factors.

An error or cost is calculated at each output which has to be backpropagated
through the network. The cost from the first output containing lemmas is presented
in Equation 4.3 and the one from the second output containing factors is shown in
Equation 4.4.

c@) = > —logp(y“|z,0) (4.3)
(z.y-)eD

cO) = > —logp(y"|z,0) (4.4)
(z,yF)eD

where D refers to the sentence pairs being x the source sentences, y” the lemma
target sequences and y! the factors target sequences.

The cost produced when training the model is obtained summing both costs,
the one coming from the learning of lemmas output and the one coming from the
learning of factors (see Equation 4.5)

c(6) = cO)r +cor (4.5)

When applying this cost for backward pass (explained in Chapter 2, Section 2.1.1),
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the shared weights between both outputs (from input to ¢(>)) in Figure 4.2) are
updated with the sum of both costs.

By contrast, the specialized weights for lemmas and factors (from ¢(> ) to soft-
max in Figure 4.2) are updated only with their specific cost.

If we apply the sum of both costs and we update the weights depending only on
lemmas, we obtain Equation 4.6.

a(CL 4+ CF)

Wtﬁ-l = WtL —A oWk
t

(4.6)
where W are the weights to be updated and A is the learning rate.
When we derive the sum of the costs, we obtain Equation 4.7.

(4.7)

oct oot
Wtﬁ—l = WtL - A < >

awL T awE

Consequently, the calculation of the derivatives of C¥ and W results into 0, it
does not change the learning of the network (see Equation 4.8).

ock
Wiy =WE -\ <6WVL + o) (4.8)

Finally, the backprogation for the specialized weights depending on lemmas cor-
responds to the Equation 4.9.

oct

L L

Wi, =W — A+ 4.
t+1 t ABWL ( 9)
Similarly, Equation 4.10 shows the weight update formula for the weights de-

pending on factors.

ocrt
owr

Wi, =WE — A (4.10)
This means that each output cost will be applied to its corresponding weights.
The decoder of the FNMT architecture presented in Figure 4.2 may lead to se-

quences with different length since lemmas and factors are simultaneously generated
but in separated outputs. Indeed, each sequence of symbols ends when the end-of-
sequence (<eos>) symbol is generated and nothing prevents the lemma generator
to output the <eos> symbol before or after the factors generator. To avoid this
scenario, the length of the factors sequence is constrained to be equal to the length
of the lemma sequence. This implies to ignore the <eos> symbol for factors (to
avoid shorter factors sequence) and stop the generation of factors when the lemma
sequence has ended (to avoid longer factors sequence). This is motivated by the fact
that the lemmas are closer to the final objective (a sequence of words) and they
are the symbols carrying most of the meaning.
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4.2.3 Handling beam search with factors

The beam search (Jelinek, 1969) procedure has also been extended with respect to
the original approach, since we are actually facing two beams (one for lemmas and
one for factors). We need to deal with the multiple outputs because we do not want
to rely solely on the lemma sequence to decide which are the best sequences. Then,
we merge the two beams as shown in Figure 4.3.

L1+F1|
L1+F2
L1+F3|
L2+F1 best1

L2+F2— [ 7+F?] best2

/ L2+F3 best3
L1F1 L3+F1
L3+F2
L2 F2 L3+F3
L3 F3
L4+F4
L4+F5
L4+F6
previous L4 F4 L5+F4 bestl bestl
ctate | L5F5 —/L5+F5—3 [L7+F7] best2 —P| [L7+F?] best2
L6 F6 L5+F6 best3 best3
L6+F4
L6+F5
L6+F6
L7 F7
L8 F8 L7+F7
L9 F9 L7+F8
\ L7+F9
L8+F7 bestl

L8+F7[—»| [L?+F?] best2
L8+F8 best3
L9+F7
L9+F8
L9+F9

o O © ©

Figure 4.3: Illustration of the Factored NMT system beam search with a beam size
set to 3.

Once the best lemma and factors hypotheses are generated for each partial hy-
pothesis (stage 1), the cross product of those output spaces is performed. By this
mean, each lemma hypothesis is associated with each factors hypothesis (stage 2).
Note that the ideal case would be to associate lemmas with only their possible fac-
tors (this case is addressed in Section 5.1.2 checking a lookup table built with the
training data which maps lemmas with their possible factors). Afterwards, we keep
the k-best combinations for each sample, with k being the beam size (stage 3). Fi-
nally, the number of best hypotheses is reduced again to the beam size for further
processing (stage 4).

This procedure allows our system to have one stream with two synchronized out-
puts. This is in contrast with multitask learning, where the different tasks are gen-
erally asynchronously processed. In our case, a strong relation links both outputs.
This relation has to be taken into account in order to obtain the best performance.
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4.2.4 Postprocessing: from factors to words

Once we obtain the factored representation outputs from the neural network, the
post-process to fall back to the surface form is performed. This step is not trivial.

For that purpose, we built a lookup table to match the lemmas and factors as
keys with the surface forms as values. This knowledge is also extracted from the
MACAON tool for French language, which given a lemma and some factors, provides
the word candidate.

For the sake of simplicity, the first candidate is taken for the very few cases
when there are several proposals of surface forms for the same pair of lemma and
factors. This is not the optimal case, it would be better to output the most frequent
surface form or using a language model which takes into account the context of
the word (these cases are addressed in Section 5.1). In French, in most of the
cases when several words are proposed for the same pair of lemma and factors,
all the proposals are correct and their choice only depends on the situation. For
example, for written or spoken versions or formal or informal situations. In other
cases (e.g. name entities) where the surface form corresponding to the lemma and
factors is not found, the system outputs the lemma itself.

4.3 Preliminary experiments

After describing the FNMT baseline approach, we present a first set of experiments
to evaluate the effectiveness of the FNMT system. We first explain the setup of the
experiments and afterwards the different results.

4.3.1 Data processing and selection

We evaluate our approach on the English to French Spoken Language Translation
task from IWSLT 2015 evaluation campaign'. We use the parallel corpora provided
by the organisers. A preprocessing to change the written text in the source language
to simulate an automatic spoken recognition tool output has been done (e.g. lower-
casing, changing digits into letters, removing punctuation marks, etc.). The target
language text has been lowercased. A data selection method (Rousseau, 2013) has
been applied using the available parallel corpora (news-commentary, united-nations,
europarl, wikipedia, and two crawled corpora) and Technology Entertainment De-
sign (TED?) corpus as in-domain corpus. The tokenization process has been done
according to Moses tokenizer. We also do a preprocessing to convert html entities
and filter out the sentences with more than 50 words for both source and target
languages as done in previous works (Bahdanau et al., 2014). We finally end up
with a selected corpus of 2M sentences which is a small training dataset, 147k
unique words for English side and 266k unique words for French side. A develop-
ment dataset (devl5) composed by three datasets of previous IWSLT evaluation

'https://sites.google.com/site/iwsltevaluation2015
Zhttps://wuw.ted.com
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campaign years (dev10, test10 and test13) has been used for early stopping purpose
in order to chose the best model. In addition, a testing data (testl5) composed
by two testing sets (test1l and test12) has been used to evaluate and compare the
models (see Table 4.2 for more details on the data).

Data Corpus Datasets #Sents #Unique words
name EN FR
Training trainlb data selection 2M 135k 212k
Development  devlb  dev10-+test10+test13 3.6k 6.7k 8.5k
Testing test1l) testll+test12 1.9k 4.1k 5.2k

Table 4.2: TWSLT’15 English—French datasets statistics for preliminary experi-
ments (lowercased).

4.3.2 Impact of factorization process

We have calculated an estimation of the loss of the process transforming words
into factors during preprocess and factors into words in the postprocess. For this
purpose, we have factorized the reference of the training, development and test sets
for this experiment. This process consists of transforming the words into lemmas
and factors. Then, we combine the extracted lemmas and factors to obtain again
the words with the factorization process. Once we get the resulting words file, we
compare it with the original reference file.

We computed the Word Error Rate (WER), defined in Equation 4.11 between
the two files.

WER — Substitutions + Deletions + Insertions (4.11)
#reference words

Table 4.3 shows the results of WER including correct words, substitutions, dele-
tions and insertions. The values correspond to the percentages and number of them
in parenthesis.

Data WER Correct Subs. Del. Ins.

trainls  0.3% (131k) 99.7% (43M) 0.3% (131k) 0% (174) 0% (120)
devls  0.5% (357)  99.5% (77k)  0.5% (357) 0% (0) 0% (0)
testls  1.4% (537)  98.6% (39k)  1.4% (537) 0% (0) 0% (0)

Table 4.3: WER between reference and the factorised reference reconverted in words.

When observing trainl5 results, the value of WER is only 0.3%. Similar results
are observed for dev15 evaluation, where the value of WER is 0.5%. Finally, there
is small increase of error for testls, 1.4% of WER.
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We observed the differences between the two files. For example, we saw that
sometimes the original testing file include the word “ca” and the post processed file
has changed this word to “cela” and the reversed also occurred. Both translations
are correct and they mean exactly the same but “cela” is more formal and less used.
Another example is that the original file contains the word “labo” (lab in English)
which is the informal and shorter form to say “laboratoire” (laboratory in English).
In all these examples, both words share the same lemma and factors. This could be
normalized choosing only a formal or informal way in all cases.

We can conclude that the process going from words to factors produces a small
loss that can be reduced. On the other hand, the benefits of training a model in a
factored level compensate this small loss.

4.3.3 Training details

For the training of all models, we used NMTpy (Caglayan et al., 2017), a Python
toolkit based on Theano (Al-Rfou et al., 2016) and available as open-source soft-
ware?. The NMTpy toolkit is an implementation of attentive Neural Machine Trans-
lation (NMT) (Bahdanau et al., 2014). For FNMT systems, I implemented new
models in NMTpy to be able to train with multiple factors in input and output sides
of the network.

The following hyperparameters have been chosen to train the systems. The
embedding and recurrent layers have the dimensions 620 and 1000, respectively. The
batch size is set to 80 sentences and the parameters are trained using the Adadelta
optimizer (Zeiler, 2012). In order to avoid exploding gradients, we clipped the norm
of the gradient to be no more than 1 (Pascanu et al., 2012). The initialization of
the weights has been done with the Xavier (Glorot and Bengio, 2010b) method.

The validations start at the second epoch and they are performed every 5000
updates. Early stopping is based on BLEU (Papineni et al., 2002b) with a patience
set to 10 (early stopping occurs after 10 evaluations without improvement in BLEU).
Once the models are trained (approximately during 5 days), we set the beam size to
12, as this is the standard value for NMT (Bahdanau et al., 2014), when translating
the development or testing datasets. The development dataset is used for early
stopping and the testing dataset to evaluate the generalization power of the models.

The vocabulary size of the source language is set to 30k for all models. The target
vocabulary size is set also to 30k for NMT models. For the sake of comparability and
consistency, the same value (30k) is used for the lemma output of the FNMT system.
This 30k FNMT lemma vocabulary includes 17k lemmas from the original word level
NMT vocabulary because all the derived forms of the verbs, nouns, adjectives, etc.
are discarded. The lemmas vocabulary is done as the word level including the
most frequent tokens in the training dataset. Then, lemmas from 17k until 30k are
included in the target lemma vocabulary but not in the target word vocabulary.
The factors have 142 different units in their vocabulary.

Shttps://github.com/lium-1st/nmtpy
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4.3.4 Generalization results

The FNMT system aims at integrating linguistic knowledge into the decoder, in
order to obtain better performance when facing the restriction of the number of
outputs in target side. To assess the feasibility and estimate the potential gain of
our approach, we performed a set of experiments when having smaller or bigger
vocabulary output size. We compare the factored level NMT approach with the
standard word level NM'T approach.

We varied the size of the output layer from 5k to 30k in the NMT system and
the lemmas output layer in the FNMT system. The factors output vocabulary size
remains in 142 in all the cases. The results are presented in Table 4.4.

Output Oracle
word (%) # #
Model size voc. Cov. UNK Par. METEOR BLEU METEOR BLEU
NMT 30k 30k 97.89 924 89.7M 61.01 40.53 - -
FNMT 30k+142 172k 99.14 435 89.8M 62.58 (+1.57) 41.26 (+0.73) 63.22 42.67
NMT 20k 20k 96.94 1093 77.3M 61.68 40.80 - -
FNMT 20k+142 139k 98.77 555 77.4M 62.26 (+40.58) 41.09 (+40.29) 62.84 42.40
NMT 10k 10k 94.48 2312 64.9M 59.19 38.50 - -
FNMT 10k+142 85k 97.66 885 64.9M 61.65 (+2.46) 40.39 (+1.89) 62.10 41.56
NMT 5k 5k 91.30 3180 58.7TM 57.76 36.42 - -
FNMT 5k+142 48k 95.70 1616 58.7TM 59.87 (+2.11) 39.05 (+2.63) 60.31 40.03

Table 4.4: Comparison of the NMT and FNMT systems performance in terms
of BLEU and METEOR score evaluating at word level (7 and 8 columns) with
IWSLT’15 dataset. The size of the output layer and the size of the corresponding
word vocabulary are presented in columns 2 and 3. Columns 4, 5 and 6 show
coverage of the testing file, number of generated unknown tokens and number of
parameters, respectively. Last two columns corresponds to the oracle for factors
output.

The FNMT system obtains better performance compared to the NMT system in
terms of word level BLEU and METEOR (Lavie and Agarwal, 2007) score in all the
cases. If we first focus in the first 2 rows using 30k vocabulary size, the difference
in METEOR between the two systems is 1.57 and in terms of BLEU score is 0.73.
METEOR metric supports stem match and paraphrasing for French language and
its evaluation can benefit the FNMT systems. When we observe 20k output layer
size, the difference between the performance of the two systems is reduced (0.58
METEOR points and 0.29 BLEU points). This lower value might means that NMT
system is better trained with 20k target vocabulary size and the data is sparse to use
30k target vocabulary size. When reducing the output layer size (10k and 5k), we
see the power of FNMT system, the performance difference between the two systems
is even higher (2.46 METEOR points and 1.89 BLEU points using 10k setup and
2.63 METEOR points and 2.11 BLEU points using 5k setup). NMT system does
not have enough coverage to obtain good results using 10k or 5k target vocabulary
sizes.

In order to estimate the boundaries of FNMT model, we computed the oracle for
factors output which corresponds to ignore the errors caused by the factors, i.e. if
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we produce the correct lemma (we use the factors reference to correct the factors
output), then the correct word is generated (see last two columns of Table 4.4). We
can see that a potential gain of more than 1.4 BLEU points and 0.64 METEOR
points using 30k output lemma vocabulary size can be achieved with a perfect
modeling of the factors, which is encouraging. If we were able to improve factors
output, the differences between the two models would be even larger.

As Table 4.4 illustrates, the FNMT approach is able to model a bigger word
vocabulary while preserving manageable output layers sizes. This is due to the
fact that the factorization process is able to generate words which are unseen in
the training corpus, augmenting the expressiveness of our model. For the sake of
comparison, we provide the target vocabulary size for the standard NMT and the
FNMT systems. For example, with an output layer size of 30k, the NMT system
can model 30k words against 172k words for the FNMT system. This is an almost
6 times larger word vocabulary. In the smallest output layer size (5k setup), the
FNMT system can still handle 48k words which is still big enough size.

One consequence is that the word coverage is higher for the FNMT than for
the NMT system, as shown in column 4. However, for the first two systems (first
two rows), we see that the difference of the coverage is small. When decreasing
the output layer size, we can observe that the coverage decreases slowly for FNMT
systems compared to the word-based system. The FNMT approach performs better
and better than standard NMT when the coverage difference becomes higher. This
proves that the approach is sound and well performing, when dealing with smaller
vocabulary size. This is of course dependent on the linguistic knowledge available
in the factorization process. This is exactly the sought behavior: by integrating a
priori linguistic knowledge, we reduce the impact of the training conditions (domain,
data availability, etc.) on the performance of the system.

We measured also the number of unknown words (#UNK) generated by the sys-
tems. The #UNK produced by FNMT system are the half of the ones produced
by NMT system, which is a big reduction. In those experiments, we did not use
any specific method to replace them (e.g. put source words aligned to them, use a
dictionary, etc.)

Moreover, the number of parameters to train also decreases according to the
size of the output layer, as shown in column 6, allowing a simpler training because
we have to learn less weights in the model. For example, using a layer size of 10k
instead of 30k (3 times smaller) for factored model, we obtain a small drop of 0.87
points in BLEU. By contrast, in the NMT base model we observe a drop of 2 points
in BLEU comparing the same output sizes 30k and 10k. We see that the FNMT
model can generalize better than the NMT model in low resource conditions. FNMT
system does not require that much parameters as NMT system to obtain the same
performance. For example, FNMT system using 20k or 10k output sizes obtains
better performance than NMT system using 30k output size.

In this experiment, we have seen the utility of FNMT system getting improve-
ments in translation performance. When reducing the output layer size, the gains
are much bigger using FNMT system than NMT system.
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Translation examples of FNMT system performance

FNMT system generates much less unknown words than NMT system because it
can cover more vocabulary. Then, we have observed some examples to confirm that
the translation of the unknown words are correct and show the performance in a
qualitative analysis.

Src set of adaptive choices that our lineage made

1 Ref de choix adaptés établis par notre lignée
NMT/+UR | de choix UNK/adaptif que notre UNK/lignage a fait
FNMT de choix adaptatifs que notre lignée a fait
Src enzymes that repair them and put them together

9 Ref enzymes qui les réparent et les assemblent.
NMT/+UR | enzymes qui les UNK/réparions et les UNK/celui-.
FNMT enzymes qui les réparent et les mettent ensemble.
Src santa marta in north colombia

3 Ref santa marta au nord de la colombie
NMT/+UR | santa UNK/marta dans le nord de la colombie
FNMT santa marta dans le nord de la colombie

Table 4.5: Examples of sentences translated by NMT and FNMT systems using
IWSLT’15 dataset. UR corresponds to the output of the unknown replacement
method.

The translation examples in Table 4.5 show the FNMT system outputs and
the NMT system outputs when using 30k vocabulary size. First example shows
that the FNMT system can generate words when the NMT base system predicts
unknown words. Firstly, the word ‘lineage’ in source sentence is translated as the
reference ‘lignée’ by the FNMT system and mapped to UNK by the NMT base system.
Secondly, the word ‘adaptive’ is translated as ‘adaptatifs’ by the FNMT system, the
reference translation is ‘adaptés’, but we can consider the FNMT choice a better
translation. NMT system also mapped the word ‘adaptive’ to UNK. Consequently,
BLEU score penalizes this example in FNMT system being a correct translation.

In the second example, an NMT system translation has generated two unknown
words. By contrast, FNMT system can generate correctly the two words producing
‘réparent’ and ‘mettent ensemble’. This is due, on one hand, because the word
‘réparent’ appears 439 times in the training dataset at word level being in the
position 34642 of the most frequent words. As a consequence, it is not sufficiently
frequent to include it in the shortlist of the NMT system (the vocabulary size is only
30k). On the other hand, the lemma ‘réparer’ appears 8523 times in the training
dataset at lemma level (tokens represented with their lemma) being in the position
2480 of the most frequent lemmas. Therefore, it is included in the lemmas shortlist
and we are able to generate ‘réparent’ from the lemma and factors outputs (verb
in present tense and third person in plural). Moreover, the verb in English ‘put
together’ is translated to ‘assemblent’ in the reference which is a synonym of the
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FNMT system translation ‘mettent ensemble’.

Example 3 shows an FNMT system translation performing as the reference.
We are able to generate the name entity ‘marta’ that is not in the NMT system
vocabulary. This is due to the fact that FNMT models directly the lemmas in the
softmax and can cover a larger set of lemmas than the NMT model which has the
surface forms in the softmax. These examples show the potential of the FNMT
system generating new words and reducing the number of unknown words.

4.3.5 Comparative results

For the sake of comparison with the state of the art systems, we have trained BPE
models. We applied the subwords units at the output side as the factors are only
applied in target language with FNMT approach. We set the number of merge
operations for BPE algorithm, as explained in Sennrich et al. (2016¢), following
Equation 4.12.

#merge ops = vocab. size — #characters (4.12)

Moreover, we have trained multiway, multilingual NMT models (Firat et al.,
2017). This method can train several encoder and decoders sharing only the atten-
tion mechanism between them. In order to reproduce our experiments using the
multilingual architecture, we used one input encoder (at word-level) for English and
two separate decoders : French lemmas and French factors. The final word is ob-
tained by the factors-to-word postprocessing as done with the FNMT system. BPE
and multilingual models have been compared to NMT and FNMT systems.

The vocabulary size used for this experiment is 30k for source language (English)
and target language (French words and French lemmas). The vocabulary size for
French factors is still 142.

METEOR BLEU
Model word word | lemma | factors | #UNK
NMT 61.01 40.53 | 42.77 51.39 924
BPE 61.31 41.07 | 43.43 51.79 0
Multilingual 57.90 34.35 | 43.31 48.25 472
FNMT 62.58 41.26 42.53 45.26 435

Table 4.6: Comparison of the NMT, BPE, multilingual and FNMT systems per-
formance in terms of METEOR score at word level (column 2) and BLEU score
at word level, and separately, each output lemma and factors (columns 3, 4 and 5,
respectively). Column 6 corresponds to the number of generated unknown words.

The dataset used is IWSLT’15 and the vocabulary size is 30k.

The FNMT system obtains better performance compared to the state of the art
systems in terms of word level BLEU and METEOR score (see Table 4.6).
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We also evaluated each output (lemmas and factors) separately in terms of BLEU
for the FNMT and the multiway, multilingual system. We decomposed the reference
in lemmas and factors as we do in preprocessing of the dataset. Then, we compare
lemmas and factors outputs with lemma and factors reference, respectively. The
translation output of NMT and BPE systems have been decomposed in lemma and
factors as we do in preprocesssing. Then, we compare the extracted lemmas and
factors from the translation outputs with the references at both levels as well.

We already have commented the results at word level for NMT system in previous
experiment. When evaluating at lemma level, we see a slight improvement compared
to the FNMT system. At factors level, NMT system obtained a big improvement
compared to FNMT system. It is worth to mention that the lemmas and factors
from NMT and BPE systems have been artificially extracted directly from the words
output (words—factors), as opposite to FNMT and multilingual lemmas and factors
outputs which are generated by the network.

BPE obtains the best performance at lemma and factors levels in terms of BLEU.
However, we can see that BPE model performs worse in BLEU (-0.19) and METEOR
(-1.27) scores at word level than FNMT system. METEOR metric can capture
better the morphology than BLEU metric, which makes the performance difference
of BPE and FNMT system bigger. The worse performance of BPE system compared
to FNMT system can be because incorrect words can be produced when merging
BPE units. Other reason could be because BPE method is only applied on one side
and the best performance of BPE method is obtained when is applied on both sides.

Multilingual approach performance at word level is the lowest. However, we can
observe that multilingual system gets higher results than FNMT when evaluating the
two outputs independently. This might be due to the desyncronization of the two
outputs which are trained independently. On the other hand, when constructing
the words from the factors, the multilingual system obtains a much lower score
(almost 7 BLEU and 4.5 METEOR points less) than the FNMT system. This is
due to the difficulty of combining both lemmas and factors when they are generated
independently. By contrast, our FNMT system can generate the two outputs with
a strong correlation making it possible to build the words correctly.

Moreover, our FNMT system produces less number of unknown words (#UNK)
than NMT and Multilingual systems. This tends to prove that the FNMT system
effectively succeeds in modeling more words compared to the word-based NMT
system. BPE system does not generate UNK because all are encoded as BPE units.
However, this is not reflected in BLEU and METEOR scores at word level, the lack
of UNK in BPE system does not mean that the translation is always correct.

4.3.6 Evaluating each output

In order to better evaluate the different outputs of our FNMT system, we trained
three different standard NMT models. The three NMT models have the same source
(English words) but each of them has a different output: (1) French words, (2)
French lemmas and (3) French factors. We compare the values of those three NMT
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models with the outputs of the Factored NMT system which models lemmas and
factors at the same time. This allows us to estimate the impact of jointly modeling
lemmas and factors in the same architecture. The results are presented in Table 4.7.

METEOR BLEU

Model | word | lemma | factors | word | lemma | factors
NMT 61.01 61.97 64.93 40.53 42.07 47.67
FNMT | 62.58 | 61.89 62.44 | 41.26 | 42.53 45.26

Table 4.7: Comparison of the performances between standard NMT system and the
Factored NMT system in terms of METEOR and BLEU computed at word, lemma
and factors level. The first line corresponds to 3 standard NMT systems built to
generate, respectively, words, lemmas and factors at its output. The dataset used
is IWSLT’15 and the vocabulary size is 30k.

As already seen in previous presented experiment, the FNMT system obtains
better word level scores compared to standard NMT.

When producing lemmas, the BLEU score is higher (+0.46) for FNMT system
than NMT system and similar in METEOR score. This can be due to the fact that
FNMT model contains also the factors information which may help the lemmas
generation.

However, the opposite case occurs when evaluating factors separately. The NMT
system yields +2.41 BLEU points and +2.49 METEOR points compared to FNMT
system which is a big difference. This tends to suggest that there is room for im-
provement in our architecture, and we could obtain better results by better modeling
the factors.

However, the BLEU scores for factors in both systems are pretty low when
considering that the output layer size is only 142. This can be due to two different
causes. First, the neural network is not able to correctly model this small output.
The lemma output has an increased number of specialized weights, while factors
output has a small number of parameters. Additionally, there is a big difference
between the output sizes, and the gradients coming from lemmas and factors might
be of different scales. Second cause can be that English words to French factors
translation task is complex. A monolingual PoS tagging task from English words
to English factors is easy but our objective is the French PoS tagging. English is
a grammatically poor language. Therefore, some factors like gender in nouns or
person in verbs are missing and those factors are necessary in French language.

Also, we have to take into account the fact that we are giving more priority
to the length of the lemmas sequence than the factors one sequence during beam
search. In addition, the feedback of the model on those experiments is only the
information coming from lemmas. The next set of experiments has been carried out
to improve the factors generation in order to find a better setup of FNMT system.
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4.4 Design of the FNMT architecture

We designed different options in the architecture in order to obtain the best version
of the FNMT system. We observed previously that the factors output performance
can be improved. Therefore, we modified some settings of the architecture in order
to get a better factors output. First of all, some experiments have been performed
modifying the architecture by adding links between the two outputs. Then, we
tested different options for the feedback of the model. The vocabulary size used for
these experiments is 30k as previously.

4.4.1 Dependency models to improve factors prediction

In the previous experiment, we saw that the lemma score performs similarly for
FNMT and NMT systems. Nevertheless, the difference between the two systems is
big when evaluating the factors. We can think that the prediction of factors should
be an easy task considering that the output layer size is only 142. In order to com-
pensate for this loss, we have explored different architectures aiming at improving
the factors output.

Chain of NMT systems

The first experiment we performed to model the dependency consists of a chain of
two standard NMT systems.

EN_words |9 NMT>»| FR_lemmas 4 NMTP> —»| FR_words

Figure 4.4: Chain of NMT systems schema

Figure 4.4 shows a schema of how the chain of NMT systems is trained. The
first NMT system has as input the English source words as usual, and as output the
French target lemmas. Then, the second NMT system translates from the French
target lemmas generated in the first system to the French target factors. Finally, we
obtain the final French target words combining the French target lemmas generated
in the first system and the French target factors generated in the second system.

Table 4.8 shows in the first line the results in BLEU score of the FNMT sys-
tem at word, lemma and factors levels. The second line shows the chain of NMT
systems results at each step. The first NMT system (ENyordgs — FRiemmas) of the
chain which is evaluated at lemma level performs almost 0.5 BLEU points worse
than FNMT system. As expected, the score of the output of the second system
FRiemmas — FR factors evaluated at factors level is much higher (80.67 BLEU points)
than FNMT system due to the easy task of translating from lemma to factors on
the same language. Nevertheless, the factors-to-word process result extracted from
the outputs of the two NMT systems is much worse score than FNMT system. This
can be due to the difficulty of factors-to-word process to handle the asynchronous
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BLEU
Model word lemma factors
FNMT 41.26 42.53 45.26
factors-to-word | ENyords — FRiemmas | FRiemmas — FRfactors
Chain NMT 39.72 42.07 80.67

Table 4.8: Comparison of the performances between the chain of NMT systems and
the FNMT system in terms of BLEU computed at word, lemma and factors level.
The first line corresponds to the results on the FNMT system at the three levels.
The last two columns in the second line corresponds to the evaluation of the outputs
of two standard NMT systems trained with the sequence pair ENyords — FRiemmas
and FRiemmas — FR factors, respectively. The column about words in the second line
is obtained from the combination of the last two columns in the same line (lemmas
and factors). The dataset used is IWSLT’15.

outputs of both systems trained separately, and having different alignments between
the source and target words. This high performance gives us an idea of creating a
dependency from lemmas to factors, in order to help the factors output to produce
better sequences.

Lemma dependency

One observation that can be made is that while generating factors seems easier
due to the small number of the possible outputs (only 142), the BLEU score is
not as high as what we could expect in the FNMT system. However, one could
argue that generating a sequence of factors in French from a sequence of English
words is not an easy task. In order to help the factors prediction, we contextualized
the corresponding factors output with the lemma being generated. This creates a
dependency between the lemma output and the factors output. We built models
where the factors output is directly dependent on the lemma, in order to receive
more information of it as it has the main information of the word. The dependency
has been implemented by including an extra input (see Figure 4.5) which projects
the lemma embeddings into the hidden layer used to generate the factors. We use
as feedback of the model only the previous lemma as in previous experiments.

We have implemented two possibilities for the lemma dependency model:
1. The embedding of the previous lemma to provide recent context.

2. The embedding of the current lemma corresponding to the factors to be gen-
erated. For this option, we have also modified the beam search function. The
lemmas are first generated and the factors are generated in a second step based
on the generated lemmas.
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Figure 4.5: Lemma dependency model decoder detail

Factors dependency

Another architecture has been implemented to improve the factors output perfor-
mance. In order to take advantage of the information of the previous generated
factors, we use the embedding of them as feedback to the factors generation. This
is like including a language model for factors (see Figure 4.6).
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Figure 4.6: Factors dependency model decoder detail

The results applying the dependency models techniques are presented in Ta-
ble 4.9.

We observe that the dependency model using the previous lemma (FNMT2) does
not improve the results in comparison to the FNMT model without dependency
(FNMT1). This can be due to the fact that we have already given the previous
lemma as main feedback for the recurrent hidden state.

Moreover, the dependency model using the current lemma (FNMT3) does not
improve either the performance of the FNMT1 in terms of BLEU and METEOR
scores on words. If we look at the BLEU scores at lemma and factors levels, the
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METEOR BLEU
Model Dependency word word | lemma | factors | #UNK
FNMT1 - 62.58 41.26 | 42.53 45.26 435
FNMT2 | previous lemma 60.64 40.52 | 41.58 44.52 424
FNMT3 | current lemma 60.59 39.96 40.85 44.92 361
FNMT4 | previous factors 62.38 40.68 41.95 45.56 439

Table 4.9: Performance in terms of METEOR computed at word level, BLEU
computed at word, lemma and factors level and the number of generated unknown
words of the FNMT system when using different dependency options. The dataset
used is IWSLT15.

scores are also lower using FNMT3 than FNMT1 model. However, the factors
generation using FNMT3 improved compared to FNMT2. As opposite, FNMT2
generates better lemmas than FNMT3. Therefore, previous lemma dependency
helps to generate lemmas and current lemma dependency helps to generate factors.
FNMT3 scores are worse than FNMT1, the current lemma dependency did not
give an improvement of the performance. Possibly, in other morphologically richer
languages than French which include even more factors, the lemma dependency
would help to predict a better translation. In addition, FNMT3 generates the
lowest number of UNK compared to the rest of the models. UNK is only produced
when a lemma is unknown. The lowest #UNK can be explained by the fact that
the lemma is generated first, before factors and factors generation contains a direct
input of the current lemma embedding. This fact can give more priority to the
lemma generation, avoiding UNK.

The last model using previous factors dependency (FNMT4) to feed the factors
output, decreases the BLEU and METEOR values at word level and BLEU score
at lemma level compared to FNMT1. On the other hand, the score at the factors
level is higher than FNMT1, here we see the usefulness of factors dependency. The
previous factors dependency allows the model to use generated factors for feedback
and to act as a factors language model to improve its output. Unfortunately, this
factors output improvement is not reflected at the word level. FNMT4 differs from
FNMT1 only by having a small extra information due to the small size of factors
output layer. Therefore, the full network is not affected by this.

Current lemma dependency model translation example

Besides the worse results for FNMT model using the current lemma dependency
than simple FNMT model without dependency, we have found some examples where
we can see the benefits of having this dependency in FNMT system to help the
generation of better factors output.

Table 4.10 shows one example where the FNMT without dependency generates a

“n

wrong factors output. Simple FNMT produces the lemma “étre” and its correspond-
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‘Words Src no one knows what the hell we do

‘Words Ref personne ne sait ce que nous faisons

‘Words FNMT personne ne sait ce qu’ étre r enfer

Lemmas personne ne savoir ce qu’ étre r enfer

Factors pro-s advneg v-P-3-s prep prorel cln-3-s det nc-m-s poncts
‘Words FNMT personne ne sait ce que nous faisons

Lemma dependency personne ne savoir ce que nous faire .
Factors nc-f-s advneg v-P-3-s det prorel cln-1-p v-P-1-p poncts

Table 4.10: Examples of translations with FNMT and FNMT with current lemima
dependency. The dataset used is IWSLT’15.

ing factors are “cln-3-s” (clitic nominative, third person of the singular), which are
not correct. On the contrary, FNMT including current lemma dependency produces
correctly the lemmas “nous faire” with their factors “cln-1-p” (clitic nominative, first
person of the plural) and “v-P-1-p” (verb in present tense, first person of the plural),
respectively. This example illustrates the effectiveness of the dependency method.

Translation of different sentence lengths

Translating long sentences is a challenge in machine translation because the context
is long and the possibility to produce errors translating all the words in the sentence
is high. Then, we would like to see the benefits of FNMT system facing this chal-
lenge. In this experiment, we compare the standard NMT system and the FNMT
system providing previous factors dependency when translating different sentence
lengths. For this purpose, we evaluated the translation performance clustering the
sentences with respect to their source sentence length. Figure 4.7 shows the BLEU
score for sentences between 10 and 100 words with intervals of 10.

We can observe that FNMT system performs similar than NMT system in the
intervals smaller than 80. By contrast, we can see that the FNMT system helps
significantly when translating long sentences (between +1.5 and 3 BLEU points).
This improvement may be due to the less sparsity on the lemma and factors space.
The FNMT system is not as sensitive as NMT system to the sentence length because
FNMT system makes easier choices translating directly to lemmas instead of words.
The drop observed at interval 70 is due to the fact that at this many sentences with
this length perform bad.

4.4.2 Feedback of the model

FNMT architecture generates two outputs at the same time, therefore, we need
to redefine what kind of feedback is more suitable according to the double output
information. Several solutions are possible to use either or both embeddings as
feedback.

We have already described the conditional GRU used in the decoder of our
system (see Section 2.2). The conditional GRU is composed of two GRUs, the first
GRU (GRU}1) cell of the decoder is fed by its previous hidden state and the feedback
(i.e. the previous generated symbol). The following formulation redefines the GRU;
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Comparison of the systems according to the maximum length
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Figure 4.7: Comparison in terms of BLEU of the NMT and FNMT with factors
dependency systems according to the maximum source sentence length. The dataset
used is IWSLT15.

for the FNMT system.

S;' = GRUl (fb(yjfl), ijl) (413)

where fb is the function which computes the feedback from the previous output
y;j—1 instead of E in the standard NMT system. The rest of the symbols remain the
same as previous.

The first assumption we made is highly dependent on the design of the considered
factors, i.e. the lemmas are the most informative factors among all. Then, we tried
using only the lemma embedding as feedback (see Equation 4.14).

fb(y,—1) = Ely/ ] (4.14)

where ytL_l is the embedding of the lemma generated at previous timestep.
For the sake of comparison, in the same direction but with the other output
information, we used only the factors embedding as feedback (see Equation 4.15).

tb(y;—1) = E[?JtF—l] (4.15)

where yf_ 1 is the embedding of the factors generated at the previous timestep.

Another straightforward operation is summing the embeddings (technique used
in Mikolov et al. (2013)) of the previous lemma and previous factors, as described
in Equation 4.16.

fo(y—1) = Ely/]+Ey/ ] (4.16)
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While this could seem unnatural, by doing this, we hope to obtain a joint vector
representation of both the lemma and the factors constraint to have the same size
as using only one of them.

We investigated whether the neural network can learn a better combination of
the lemmas and factors embeddings using a linear (Equation 4.17) or non-linear
(Equation 4.18) operation instead of a simple sum.

fb(yi1) = (Bly] +Elii) - Wh (4.17)
fb(y;~1) = tanh ((E[ytL—l] +E[y[ ) - Wip) (4.18)

In this case, Wy, are trained weights.

In addition, we used the concatenation of both target embeddings as feedback
using a linear (Equation 4.19) or non-linear (Equation 4.20) operation instead of the
sum of them. The concatenation of the embeddings allows us to get full benefit of
both outputs for the feedback of the model but increasing model size (# parameters).

tbyi1) = [Ely Byl We (4.19)
fb(y,—1) = tanh ([Ely/ i Ely/ ] W) (4.20)
METEOR BLEU

Model | Feedback word word | lemma | factors
FNMT1 | Lemma 62.58 41.26 42.53 45.26
FNMT?2 | Factors 57.88 36.95 37.94 47.02
FNMT3 | Sum 61.52 40.74 | 41.37 46.48
FNMT4 | Linear Sum 60.97 40.52 41.34 46.84
FNMT5 | Tanh Sum 60.06 40.10 | 40.93 46.20
FNMT6 | Linear Concat 61.15 40.51 41.39 46.86
FNMTY7 | Tanh Concat 61.88 40.60 | 41.45 47.07

Table 4.11: Performance in terms of METEOR on word and BLEU computed on
word, lemma and factors of the FNMT system when using different output embed-
ding combinations as feedback. The dataset used is IWSLT’15.

Table 4.11 presents the results obtained with systems integrating the different
output embedding combinations as feedback.

As expected, when using only lemma as feedback (FNMT1), the system better
estimates the lemmas probabilities. As a consequence, there is a significant reduction
of the performance on factors when comparing with the rest of the models. Lemma
embedding contains the main information of the word. Therefore, the model using
the lemma as feedback gets better scores at word level than the rest of the models.

Then, we trained models to study how we can include the factors embedding
for feedback to improve the performance. Firstly, we explored the possibility of
having only factors embedding as feedback (FNMT2). We observe that using factors
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embedding option, factors level BLEU score is one of the highest of the FNMT
systems. By contrast, lemma BLEU is the lowest (more than 3 points less compared
to FNMT1) and this has a great impact at word level performance (3 BLEU points
less and almost 5 METEOR points less than FNMT1).

Secondly, we performed the sum of the embeddings for feedback of the model.
The simple sum of the embeddings (FNMT3) gives higher scores than using its linear
(FNMT4) and tanh operation (FNMT5) excepting at factors level where FNMT4
obtains higher BLEU.

In addition, we have experimented the concatenation of the two outputs embed-
dings to learn more parameters as feedback with a better combination of them. The
linear transformation of the embeddings concatenation (FNMT6) performs similar
to FNMT3 at all the levels. By contrast, the tanh transformation of the embeddings
concatenation (FNMT7) gets an improvement in terms of METEOR compared to
FNMT3 and FNMT6. When comparing in terms of BLEU, word level and lemma
level perform quite similar to FNMT3. On the other hand, at factors level, FNMT7
gets the highest score compared to the rest of the models but it is not reflected at
word level. This can be due to the fact that we are using a more complete infor-
mation as feedback and the model can learn how to represent the two embeddings.
Despite summing the two embeddings contains the information of both outputs, the
concatenation of the two embeddings better represents them.

4.5 Going further into FNMT system

For a better evaluation of the FNMT system, we use case sensitive data in order
to have a more realistic task and increase the difficulty of the translation process
having more vocabulary. We can study the advantages of the FNMT system in
this environment. In order to make it possible, we have introduced an additional
factor about the case information (lowercase, uppercase or in capitals). Introducing
words with capital letters, standard NMT system has to keep them as different
words in the vocabulary. By contrast, FNMT system can keep those words in the
same lemma representation as their homologous in lowercase by adding only a new
factor. Therefore, FNMT system can incorporate in the vocabulary even more words
than NMT system when translating case sensitive text. We have also improved
the tokenization process taking into account MACAON splitting and not just the
tokenization provided by Moses. Moreover, we applied an unknown words (UNK)
replacement technique using the alignments of the attention mechanism to replace
the generated unknown words in target side. For that, we make use of an unigram
dictionary automatically built with the same training dataset matching the most
frequent unigrams in order to find the translation of the source word corresponding
to the generated UNK.

The feedback embeddings (input to the decoder) and the output embeddings
are tied (Press and Wolf, 2016) to enforce learning a single target representation
and decrease the number of total parameters. For the sake of simplicity, we use the
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concatenation of the lemma and factors embeddings as feedback of the model.

We performed a set of experiments for FNMT system and compared it with the
word-based and BPE-based NMT systems.

Additionally, an analysis has been performed on some examples from NMT and
FNMT systems to observe the behaviour of the alignments produced by the attention
mechanism.

Finally, we applied factors at input side of the network to test if FNMT system
can improve its performance applying factors on both sides.

Data processing

The IWSLT’15 dataset has been used as well for the next set of experiments but
the preprocessing of the data has changed. The data selection, conversion of html
entities and filtering of the data remain the same (only sentences of maximum 50
words are kept). For tokenization, we improved the procedure taking into account
some differences between Moses tokenization and MACAON tokenization in order
to match all the lemmas in the lookup table to the tokenized data. Then, 2M
training sentences remain for training dataset. However, we kept the source language
written text without any spoken text simulation. Therefore, we kept the punctuation
marks, digits and case information. In the target language, we also kept the case
information. As we do the experiments with case sensitive data, the number of
unique words for English and French have increased. Also, the unique words for
lemmas in French are 145k and the factors vocabulary increased to 357 with the
addition of the new factors. The details about training dataset, development and
test sets are shown in Table 4.12.

Data Corpus Datasets #Sents F#Unique words
name EN FR
Training trainlb data selection 2M 213k 233k
Development  devlb  dev10-+test10+test13 3.6k 7.3k 8.9k
Testing testld testll-+test12 1.9k 4.5k 5.4k

Table 4.12: IWSLT’15 English—French datasets statistics for further experiments
(case sensitive).

Training details

Most of the hyperparameters have not changed from the experiments in previous
sections 4.3 and 4.4. The models are trained with NMTpy. The systems are validated
on devl5 dataset. The vocabulary size of the source and target language remains
set to 30k.

For BPE systems, bilingual vocabulary has been built using source and target
language applying the joint vocabulary BPE approach (see Section 3.1.6 for more
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details). In order to create comparable BPE systems, we set the number of merge
operations for the BPE algorithm (the only hyperparameter of the method) as 30k
minus the number of character according to the paper (Sennrich et al., 2016¢). Then,
we apply a total of 29388 merge operations to learn the BPE models on the training
and validation sets. During the decoding process, we use a beam size of 12 as used
in (Bahdanau et al., 2014).

4.5.1 Quantitative results

The Factored NMT system aims at integrating linguistic knowledge into the decoder
in order to overcome the restriction of having a large vocabulary at target side. We
first compare our system with the standard word level NMT system. For the sake
of comparison with state of the art systems, we have built a subword level system
using the BPE method. The results are measured with two automatic metrics, the
most common metric for machine translation BLEU and METEOR. We evaluate on
test15 dataset from the IWSLT 2015 campaign and results are presented in Table
4.13.

METEOR? BLEU?T
Model word word ‘ lemma ‘ factors | #UNK
NMT / +UR 62.21 / 63.38 41.80 / 42.74 45.10 51.80 | 1111 /0
BPE 62.87 42.37 45.96 53.31 0

FNMT / +UR | 64.10 / 64.98 | 43.42 / 44.15 | 47.18 54.24 604 / 0

Table 4.13: Results on IWSLT test15. BLEU at word, lemma and factors levels
and METEOR at word level performance of NMT and FNMT systems with and
without UNK replacement (UR) are presented. BPE system results are also included.
For each system we provide the number of generated UNK tokens in the last column.

As we can see from the Table 4.13, the FNMT system obtains better BLEU
and METEOR scores compared to the state of the art NMT and BPE systems.
An improvement of about 1 BLEU point is achieved compared to the best baseline
system (BPE). This improvement is even bigger (1.4 BLEU point) when UNK re-
placement is applied to both systems. In a quest to better understand the reasons of
this improvement, we also computed the BLEU scores of each output level (lemmas
and factors) for FNMT. The lemma and factors scores of NMT and BPE systems
are obtained through a transformation of their word level output into lemma and
factors. We observe yet again that FNMT systems gives better score at both lemma,
and factors level. Replacement of unknown words has been performed using the
alignments extracted from the attention mechanism. We have replaced the gener-
ated UNK tokens by the translation using a dictionary of the source word which has
the highest probability to be aligned to the UNK token (the alignment information
is extracted from the attention mechanism). We see an improvement of around 1
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BLEU point in both NMT and FNMT systems applying UNK replacement.

The last column of Table 4.13 shows, for each system, the number of generated
UNK tokens. FNMT system produces half of the UNK tokens compared to the word-
based NMT system. This tends to prove that the FNMT system effectively succeed
in modelling more words compared to the word-based NMT system augmenting the
generalization power of our model and preserving manageable output layer sizes.
Though we can see that BPE system does not produce UNK tokens, this is not
reflected in the scores. Indeed, this can be due to the possibility of incorrect words
generation using BPE units in contrast to the FNMT system.

Notice that these results are better for all systems than the ones in Table 4.6 in
Section 4.3.5, mainly because the data used in previous experiments did not contain
punctuation marks in source language. In contrast, the data used in this experiment
contain punctuation marks in both languages and they can be easily aligned helping
to the translation performance. In order to justify this, we deleted the punctuation
marks and lowercased the reference and the translation output of the NMT system
in this section and Section 4.3.5. We computed BLEU comparing the reference and
the translations with the purposed of verifying that punctuation marks help. We
obtained 41.33 BLEU points for the NMT system in this section and 41.30 BLEU
points for the NMT system in Section 4.3.5 which are similar results. This means
that the systems are equivalent and the better results in this section is due to the
better prediction of punctuation marks because they are explicitly in the source
language. Therefore, the results are not comparable because of the differences in
the preprocessing of the data.

4.5.2 Qualitative analysis

The strengths and weaknesses of FNMT are considered under a qualitative anal-
ysis. Translation outputs are observed and few examples are presented in Fig-
ures 4.8, 4.9, 4.10 and 4.11. NMT (top) and FNMT (bottom) outputs are presented

with word level alignments.

NMT la variole , la variole . a tué des milliards de personnes

e

Source  Smallpox smallpox killed billions of people

T~

la variole . la variole tuer des milliards de personnes
la variole B la variole tuer des milliard de personne
det|#|#|#|# nc|#|#|fls ponctw|#|#|#|#  det|#|#|#|# nc|#|#|f|]s ponctw|#|#|#|#  det|#|#|#|# nc|#|#|m|p prep|#|#|#|# nc|#|#|f|lp

FNMT

Reference la variole : elle avoir tuer des milliard de personne sur cette planéte .

Figure 4.8: First example comparing NMT (top) and FNMT (bottom) aligned
against the source sentence (middle). The FNMT system output produces wrong
factors leading to an erroneous word sequence. Reference sentence corresponds to
the last line. The dataset used is IWSLT’15.
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NMT morce\au de\ matériau chimique inerte
piece of inert chemical material
Source j A
morceau de chimique inerte
FNMT morceau de chimique inerte

nc|#|#|m|s prep|#|#|#|# adj|#|#|#|s adj|#|#|#|s poncts|#|#|#|#  poncts|#|#|#|#

Reference  morceau de matériau chimique inerte .

Figure 4.9: Second example comparing NMT (top) and FNMT (bottom) aligned
against the source sentence (middle). The FNMT system output produces wrong
factors leading to an erroneous word sequence. Reference sentence corresponds to
the last line. The dataset used is IWSLT’15.

A typical problem encountered with factored NMT is shown in the Figure 4.8.
The system proposed the correct lemma, but the factors are wrong and nonsense.
Notice that in this case, our strategy is simple and straightforward: if no word can
be generated from the lemma and the factors, then the system outputs the lemma.
This issue may be overcome by improving the decoder, and more particularly the
generation of the factors. One possible approach would be to constrain the factors
to values which can actually be associated with the corresponding lemma. This
aspect will be addressed in Section 5.1.2.

The second example in Figure 4.9 illustrates an example where the FNMT system
alignment of the word “material” matches with the word “chimique” which is wrong
and the translation of this word was missing. This also causes that FNMT system
outputs two final punctuation symbols at the end of the sentence.

NMT nous ! avons UNK depuis presque 20 ans

Source we've been digitizing it néw for almost twenty years

ENMT nous I avons numérisée dep%% ans/
nous avoir numériser depuis prés de 20 an

It
cin|#|1|#|p clo|#|#|#|# V|P|1l|#|p vppart|K|#|f|ls prep|#|#|#|# adv|#|#|#|# prep|#|#|#|# det|#|#|#|# nc|#|#|m|p
Reference  nous la numérisons depuis prés de 20 ans
Figure 4.10: Third example of NMT (top) and FNMT (bottom) outputs aligned

against the source sentence (middle). Reference sentence corresponds to the last
line. The dataset used is IWSLT’15.
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NMT la , c' est intéressant
Source here where interesting
FNMT  Vvoila devient  intéressant
voila cela devenir intéressant

prep|#|#|#|# prorel|#|#|#|p pro|#|#|m|s v|P[3|#|s adj|#|#|m]|s poncts|#|#|#|#

Reference voila ou ¢a devient intéressant

Figure 4.11: Forth example of NMT (top) and FNMT (bottom) outputs aligned
against the source sentence (middle). Reference sentence corresponds to the last
line. The dataset used is IWSLT’15.

Figures 4.10 and 4.11 show the outputs for two sentences which outlines the
strength of the FNMT system. Figure 4.10 example has the following reference
sentence: “nous la numérisons depuis maintenant prés de 20 ans . 7 In the first
sentence, the NMT system translates the word “digitizing” by the unknown (UNK)
token. The restriction of the size of the vocabulary did not include this word in the
NMT system.

On the other hand, the FNMT system can correctly translate the word digitizing
to “numérisée”. This is possible since the lemma “numériser” is known by the
system and the factors (verb in past participle, feminine and singular) are correctly
generated. However, the reference translation shows the present form of the same
verb (“numérisons”) and this is considered erroneous from BLEU point of view
since we are evaluating using a single reference. Moreover, this could explain the
higher improvements when output is evaluated using METEOR score. This example
shows the effectiveness of our FNMT system to increase the coverage and decrease
the number of unknown words.

The reference translation of the source sentence presented in Figure 4.11 is “voila
ol ¢a devient intéressant”. As we can see, contrary to the baseline NMT system,
the FNMT system matches exactly the reference and thus produces the correct
translation. An additional interesting observation is that the alignment provided by
the attention mechanism seems to be better defined and more helpful when using
factors. Also, one can notice the difference between the attention distributions
made by the systems over the source sentence. The NMT system first translated
“here” into “1a”, added a coma, and then was in trouble for translating the rest of
the sentence, which is reflected by the rather fuzzy attention weights. The FNMT
system had better attention distribution over of the source sentence in this case.
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Comparing systems with BPE method

We have compared as well the translation outputs of NMT at word-level and at
BPE-level with the ones of FNMT systems. Table 4.14 presents an example of the
three systems.

Src we in medicine , I think , are baffled

Ref Je pense que en médecine nous sommes dépassés

NMT Nous , en médecine je pense , sont UNK
NMT-+UR,| Nous , en médecine je pense , sont sidérée
BPE nous , en médecine je pense , sommes bafés
Subwords | nous , en meédecine je pense , sommes bQQ af@Q és
FNMT nous , en médecine je pense , sont déconcertés
Lemmas lui , en médecine je penser étre déconcerter
Factors pro-1-p-lpct-lprep-1 nc-f-s-1 pct-lcln-1-s-1v-P-1-s-1 pct-1 v-P-3-p-1 vppart-K-m-p-1

Table 4.14: Examples of translations with NMT, NMT applying unknown replace-
ment (UR) method, BPE and FNMT (without unknown words replacement) sys-
tems. The dataset used is IWSLT’15.

Table 4.14 shows another example comparing NMT, BPE and FNMT systems
and the unknown replacement method proposes “sidérée" with an incorrect number.
The NMT system generated an unknown token (UNK) when translating the English
word “baffled”. We observe that BPE translates “baffied” to “bafés” which does not
exist in French. This error probably comes from the shared vocabulary between the
source and target languages creating an incorrect word very similar to its aligned
source tokens. FNMT translates it to “déconcertés” which is a better translation
than in the reference. One should note that it is not generated by the unknown
word replacement method. However, for this particular example, an error on the
factors leads to the word “sont” instead of “sommes”, resulting in lower automatic
scores for FNMT output.

4.5.3 Factors applied in the source language

Recently, linguistic input features have improved NMT (Sennrich and Haddow,
2016). Extending the approach with input factors could make the target language
factors generation easier having their corresponding lemmas and factors at the source
side as well. Translating from factors to factors seems to be more sensible and nat-
ural.

Furthermore, it can also allow generating unseen words in the training data and
managing more vocabulary including all the derivative forms of the lemmas in the
source language. Therefore, we have extended the architecture shown in Chapter 2,
Section 2.2 to support several input sequences.

The encoder supporting both input sequences is the combination of two en-
coders, the encoding of the lemmas and factors of the source language. The anno-
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tations of the sequences in a forward and backward representation are presented in
Equation 4.21 for lemmas and Equation 4.22 for factors.

%
al’ = [ Z—i ] (4.21)

~
al = [ %i ] (4.22)

We have combined both annotations in different manners to be able to train the
model.

e The first model we have trained (sum model) combines both annotations sum-
ming them to have only one annotation (see Equation 4.23). This is possible
because both sequences always have the same length and they are related to
each other. The rest of the model (attention mechanism and decoder) remains
the same.

a; =al +al’ (4.23)

Inspired by Caglayan et al. (2016), we have trained several other models with
different settings of attention mechanism. Those models allow the model to share or
separate the attention mechanism weights between the two input sequences. These
settings consist of sharing or using different transformation weights for the input
context of the encoder or the hidden state of the decoder in the attention mechanism.
The lemmas and factors at the output side keep sharing the same hidden states.

The morphological agreement between the words in the sentence is a monolingual
task but the information of which factors should be produced in target can be given
from source factors. In the example shown in Table 4.15, we observe the factors in
the source and target languages. In order to be able to choose the correct inflected
form of “soutenir” (“defend” in English) in the target language, we need to know
the person and number in the source language. This information is given in the
first factors of the source sentence (1st person and singular in the example). Target
factors production needs to know source factors but this is not needed for target
lemma production (only second lemma of the source sentence is necessary). This is
the motivation of using different attention mechanism for lemmas and factors.

As we explained in Equation 2.28, the attention weights of each annotation are
computed using a feed-forward network.

e The first setting consists of sharing all the weights in the attention mechanism.
The attentional weights of the lemma input sequence are defined with ele and
those for the factors input sequence with ef;-.
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Source language
word /lemma || [ defend my thesis
pronoun verb pronoun | noun
factors 1st person | present
singular
Target language
word Je soutiens ma theése
lemma Je soutenir ma these
pronoun verb pronoun | noun
1st person | 1lst person | feminine | feminine
factors . . . .
singular singular singular | singular
present

Table 4.15: Example using factors in source and target languages.

ef; = vatanh(Wps) + Wga") (4.24)

ef;- = vy tanh(WDs;- + WEaF) (4.25)

where Wp are the transformation weights of the hidden state of the decoder
and W g the transformation weights of the input context of the encoder. v, is
another transformation of the attention mechanism. s;- is defined previously
in Equation 2.14.

The weights of the attention mechanism are computed as usual. eiLj receives
the lemmas annotations (a”) and ef; receives the factors annotations (a’’). In
this setting, both encoder and decoder weights matrices are shared by the two
input sequences being independent on the input sequence (ind-ind model).

The second option includes distinct encoder weights matrices and same de-
coder transformation weights in the attention mechanism. vv, are also distinct
for lemma and factors input sequence.

eiLj =vk tanh(W ps’; + wkal) (4.26)
e; = v tanh(Wps) + Wral) (4.27)
where eiLj receives a specialized weight matrix W,LE and specialized transforma-

tion vL for lemmas. ef; receives WE and v for factors. The input context

transformation weights of the encoder is dependent on each input sequence
(both are distinct) and Wp is shared by the two input sequences (dep-ind

model).

e The third setting is the opposite as previous one.
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ef; = vatanh(Wps) + Wga") (4.28)

65 =V, tanh(Wgs;- + Wgal) (4.29)

W g is shared and WIL) is a specialized matrix for lemmas input sequence and
WE for factors input sequence. W and v, are independent (shared) and the
hidden state transformation weights of the decoder is dependent (distinct) on
the input sequence (ind-dep model).

e The last setting consists of having both weights matrices distinct. This setting
has two totally separated attention mechanisms.

el-Lj = Vﬁ tanh(W%s;- + W]%;aL) (4.30)

ef; =vr tanh(WLF)s;- + Wkal") (4.31)
The transformation weights of the encoder and the transformation weights of
the decoder are dependent on the input sequences (dep-dep model).

The use of specialized matrices increases the number of parameters.

The decoder has been modified to combine both annotations. For that purpose,
GRU;\ is extended to integrate multiple input sequences. GRUj initialization is done
with the sum of the two annotations.

1
sy = tanh <Wmit (N Z aZL + af) + bz‘m’t) (4.32)
At each timestep, this special attention mechanism generates two specific context
vectors (cf and cf)

N

CJL = ZaiLjalL (4.33)
i=1
N

cf = Z af;af (4.34)
i=1

The global context is then obtained by applying another tanh operation over the
concatenation of two contexts to be able the fusion of them.

L
J
F

C
Cj = tanh (qusion [ cf + bfusioﬂ) (435)

J
Then, GRU> receives the global context c; and the output of GRU;.

S; = GRU2 (S;-, Cj) (436)
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Results

We have performed experiments combining the different word representations (word,
BPE and Factors) at source and target sides. When applying factors at input side,
we have used the models previously presented to combine the two input sequences.
In this experiment, we also applied unknown words replacement when the output

side corresponds to word or factors levels.

METEOR? BLEU?
Model word word lemma | factors
Words-Words / +UR 62.21 / 63.38 41.80 / 42.74 45.10 51.80
BPE-BPE 62.87 42.37 45.96 53.31
Words-Factors / +UR 64.10 / 64.98 | 43.42 / 44.15 47.18 54.24
Factors-Words sum/ +UR 61.83 / 62.97 41.24 / 42.25 44.76 51.53
Words-BPE 63.06 43.34 46.56 54.60
BPE-Factors / +UR 62.58 / 63.43 42.11 / 42.83 45.88 53.07
Factors-Factors sum/ +UR 63.95 / 64.66 42.99 / 43.63 47.00 54.02
Factors-Factors ind-ind/ +UR 63.95 / 64.71 42.84 / 43.48 46.98 54.19
Factors-Factors ind-dep/ +UR 62.29 / 62.97 41.79 / 42.35 45.85 52.33
Factors-Factors dep-ind/ +UR | 62.16 / 62.83 41.56 / 42.13 45.82 52.24
Factors-Factors dep-dep/ +UR | 63.72 / 64.40 43.34 / 43.95 47.30 54.84

Table 4.16: Results on IWSLT test15 comparing factors, words and BPE approach
at input and output side of the network. BLEU and METEOR performance of
NMT and FNMT systems with and without UNK replacement (UR) are presented.

Table 4.16 presents the results. The first three rows have been already presented
in the previous experiment. They correspond to the words-to-words NMT model,
BPE-to-BPE model and Words-to-Factors FNMT model.

We first combine factors at the input side and words at the output side (Factors-
Words model) using the sum of the two annotations. This model obtained the worst
result. The source language is English which is grammatically simple and factors
only on the source side do not give any improvement.

We applied BPE only at the output side ( Words-BPE model). This model does
not improve the BPE-BPE model at word and lemma levels but it obtains a good
score at factors level compared to the rest of the models. BPE at output side helps
the prediction of factors.

In order to create a model with the benefits of BPE and FNMT systems, we
combined both systems applying BPE at input side and factors at output side
(BPE-Factors model). Unfortunately, this model did not improve the others, it
only improves the Words- Words model. Applying BPE only at the source side does
not give the best benefit to the model.

The different combinations of the two input sequences have been experimented
in different models. First, the model with the sum of the two annotations gives a
competitive score approaching the best model score (-0.15 in BLEU points and -0.43
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in METEOR points without UNK replacement). The ind-ind model which shares the
attention mechanism matrices has a similar behaviour. The ind-dep and dep-ind
models get more than one BLEU and METEOR point than ind-ind model and
dep-dep model. The idea of mixing the weights in a shared or separated manner is
not good for the factored approach because lemmas and factors are related to each
other. The last model is dep-dep, which has separated weights matrices for each
input sequence. This model did not improve either the Words-Factors model at
word level, but the scores at lemma and factors levels are the best of all presented
models. This means that separating the lemma and factors weights matrices helps
the generation of lemmas and factors which seems to be coherent. On the contrary,
dep-dep model does not improve at word level. dep-dep model has more specialized
weights for each input sequence and more shared weights are needed in order to find
good surface forms combining the generated lemmas and factors.

The UNK replacement method improves about 1 BLEU and METEOR point
using words at output side. When applying factors at output side the improvement
is smaller, between 0.60 and 0.85 points. This is because the FNMT system does
not generate as much UNK as NMT system using words at output side.

In conclusion, factors applied in the source language do not give any improverment
in the translation in these experiments.

According to the conclusion in Belinkov et al. (2017), the lower layers are better
at capturing morphology, while higher ones are focused on the meaning, improv-
ing the translation performance. Moreover, the results in Dalvi et al. (2017) show
that the decoder learns considerably less amount of morphology than the encoder
and the overall system does not learn as much about target morphology as source
morphology. Therefore, the input side of the network is already good at capturing
morphology so the factored level in the source language does not improve the trans-
lation. On the other hand, the factored level at output side helps to obtain better
translation.

Additionally, the task of this work is English to French translation, English is a
morphologically simpler language than French and factored approach does not help
for its translation. Further experiments can be performed to check if the factors at
input side can benefit morphologically rich languages. In the rest of experiments,
we apply the factors only at the target side.

4.6 Conclusion

In this chapter, a new approach based on linguistic factors has been introduced.
This approach is called Factored Neural Machine Translation (FNMT). The moti-
vation (Section 4.1) and description (Section 4.2) of the FNMT approach have been
explained in the first and second section, respectively.

Section 4.3 presents a set of preliminary experiments in order to test the FNMT
models. We have trained different FNMT models reducing the output layer size
showing the generalization power of the approach. We compared the FNMT system
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to other state of the art systems as a word level NMT system, a BPE system or a
multilingual system which can generate several sequences. Better results have been
obtained with FNMT system than the rest of the systems.

In Section 4.4, several options of FNMT system have been experimented. De-
pendency models introducing additional links to the outputs have been implemented
and evaluated. Improvements of the FNMT system in the automatic metrics have
not been shown using dependency models. Different options of feedback in the
model have been tested using only the previous generated lemma or factors, or a
combination of both of them. We saw that the use of the previous generated lemma
as feedback performs better because the main information of the word is contained
in the lemma. The concatenation of the two previous generated lemmas and factors
usage is a good practice in the FNMT system because more information is included
in the model.

The last set of experiments of this chapter is presented in Section 4.5. Case
sensitive data have been used in order to have a more realistic task and increase
the difficulty of the translation process having more vocabulary. The FNMT system
gain over the rest of the systems is augmented compared to the lowercased data
results. A qualitative analysis has been performed observing the alignments from
the attention mechanism and showing some translation examples of the systems.
The translation outputs show the advantages of the FNMT system producing less
UNK tokens than NMT system and always generating correct words compared to
BPE systems. Factored approach has been also applied at the input side of the
model (Section 4.5.3). We did not observe an improvement using factors in the
source language. This can be due to the grammatically simple language used which
has been English. Further experiments can be performed to check if the factors at
input side can benefit morphologically rich languages. Moreover, we can exchange
the translation direction to verify the usefulness of the factors in source language.

4.7 Related publications

The related publications of this chapter are:

Garcia-Martinez, M., Barrault, L., and Bougares, F. (2016). Factored Neu-
ral Machine Translation Architectures. In Proceedings of the International
Workshop on Spoken Language Translotion, IWSLT’16, Seattle, USA

Garcia-Martinez, M., Barrault, L., and Bougares, F. (2017). "Neural Ma-
chine Translation by Generating Multiple Linguistic Factors". In Camelin,
N., Estéve, Y., and Martin-Vide, C., editors, Statistical Language and Speech
Processing, pages 21-31, Cham. Springer International Publishing

Caglayan, O., Garcia-Martinez, M., Bardet, A., Aransa, W., Bougares, F.,
and Barrault, L. (2017). NMTPY: A Flexible Toolkit for Advanced Neural
Machine Translation Systems. Prague Bull. Math. Linguistics, 109:15-28
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"T just feel so alone, even when
I’'m surrounded by other
people." Charlotte (Lost in
translation)

Translation into a morphologically rich language requires a large output vo-
cabulary to model various morphological phenomena. Open vocabularies remain
a challenge for Neural Machine Translation (NMT) (Cho et al., 2014a; Bahdanau
et al., 2014), both for learnability and computational reasons. Morphological vari-
ation and lexical productivity cause word forms unseen in training. Increasing the
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vocabularies partially mitigates these issues but we face both previously mention
issues (see Section 1.2): (1) data sparsity due to the difficulty of modeling rare seen
or unseen inflected forms and (2) a larger target vocabulary increases the computa-
tional complexity of the output layer. Factored systems could mitigate those issues
because they can cover more vocabulary.

In this chapter, we test the FNMT system translating in other more difficult tasks
to see its advantages. Firstly, we translate from English into two highly inflected
languages: Czech and Latvian. For these two language pairs, the training dataset is
large. Secondly, we translate Arabic which is a morphologically rich language into
French. We experimented with this language pair under low resource conditions and
compare it to a scenario with more resources. Lastly, we provide human evaluation
results and we show an analysis of the translation outputs.

5.1 High resource conditions

The language pairs English-to-Czech and English-to-Latvian are translated using a
Factored NMT (FNMT) system where two symbols are generated at the same time
(see Section 4.2 for more details). The FNMT systems are compared to a baseline
NMT system. This work was performed in the WMT’17! evaluation campaign.

5.1.1 Model architectures

Our baseline NMT system is the same as presented in Chapter 2, Section 2.2 adding
some improvements. Firstly, we use tied embeddings as in Chapter 4, Section 4.5.
Secondly, we equipped the encoder with layer normalization (Ba et al., 2016), a
technique which adaptively normalizes the incoming activations of each hidden unit
with a learnable gain and bias.

We experimented with two types of FNMT systems which have a second output
in contrast to baseline NMT system. Their architectures differ after the generation
of the decoder state. The first one contains a single hidden-to-output layer (h20)
which is defined in Equation 5.1.

6 (D (5515 (Bl Bl - W) ) (5.1

where s;_1 is the hidden state, c; is the context vector, E[y% ;] is the lemma embed-
ding, E[yf ] is the factors embedding and Wiy is a weight matrix of the feedback.

The single h20 layer is then used by two separated softmax layers, this is the
same model as previous experiments (see Section 4.2, Figure 4.2 on page 43).

The second system contains two separated hZ2o layers, each one specialized for a
particular output (see Figure 5.1).

Equation 5.2 defines the specialized hZ20 layer for lemmas and Equation 5.3 de-
fines the specialized h20 layer for factors.

"WMT’17 website: http://wuw.statmt.org/wmt17
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¢ (Do (sj-1.0 Bly 1)) (5:2)
o (X (sj-1.¢;. Bly' 1)) (5.3)

where s;_1 is the hidden state, c; is the context vector, E[yf ;] is the lemma em-
bedding and E[y/” ] is the factors embedding.

The decoder feedback is modified to use information from the multiple outputs.
The concatenation of the embeddings of the pair of generated symbols is used to
feed the decoder’s cGRU at each timestep. This layer uses the context vector, the
decoder’s hidden state and the concatenation of the embeddings of the previous
generated tokens.

DECODER EL — 3
i—1
Lemma<—-| Softmax |<—|LOL 4 Lehrg;na

< Softmaxje]

:Feedback) ' ___GRU

Figure 5.1: Factored NMT system with separated k2o layers.

Both FNMT systems are similar excepting in that the first model (single h20
layer) uses the concatenation of the embeddings of the previously generated factors
(see Equation 5.1), and the second model (separated h20) uses one h20 layer for each
output receiving only the embedding of the symbol is generating (see Equation 5.2
for lemmas and Equation 5.3 for factors). The two separated hZ2o layers allow the
system to have more specialized weights for each output (see Figure 5.1).

5.1.2 Experimental framework

We introduce here the experimental setup for all the reported systems translating
from FEnglish into Czech and Latvian. Our experimental setting follows the guide-
lines of the WMT’17? news translation task.

*http://www.statmt.org/wmt17/translation-task.html
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Data and preprocessing

All datasets are tokenized and truecased using the Moses toolkit (Koehn et al.,
2007). PoS tagging in Czech data is performed with Morphodita toolkit (Strakova
et al., 2014). All the Latvian preprocessing was provided by TILDE?. This prepro-
cessing counsists of using the TILDE’s regular expression-based tokeniser that takes
into account how the languages express abbreviations, contractions, date, time, nu-
merical expressions, etc. and non-translatable entities like phone numbers, e-mail
addresses, URLs, codes, etc. Only the first word in each sentence is truecased.
Latvian PoS-tagging is done with the LU MII Tagger (Paikens et al., 2013). After
preprocessing, we filter out training sentences with a maximum length of 50 or with
a source/target length ratio higher than 3.

The English-to-Czech systems are trained using approximately 20M sentences
from the relevant news domain parallel data: news-commentary, Europarl and spe-
cific categories of the Czeng corpus (news, paraweb, EU, fiction) (see Table 5.1 for
more details). Early stopping is performed using newstest2015, newstest2016 is used
as internal test set and newstest2017 as official test set.

Data Name # Sents # Words EN / CS

Training All bitext 20M 433M / 394M
news-commentary 211k 5.1M / 4.7M

Europarl 642k 17M / 15M

Czeng news 249k 6M / 5M

Czeng paraweb 2M 38M / 34M
Czeng EU 10M 281M / 256M

Czeng fiction 6M 86M / 79M
Training All synthetic 14M 322M / 292M
news-2016 6M 103M / 93M
Czeng EU subset 5M 147M / 133M

Development newstest2015 2.6k 53k / 46k

Test newstest2016 3k 64k / 56k

Official test newstest2017 3K 61k / 55k

Table 5.1: WMT’17 data for English-to-Czech translation.

Synthetic data is generated from news-2016 monolingual corpus provided by Sen-
nrich et al. (2016b). The Czech monolingual corpus news-2016 was backtranslated
to English using the single best system provided by the University of Edinburgh
from WMT’16%.

In order to focus more on the in-domain data, five copies of news-commentary®,

3yww.tilde.com

“http://data.statmt.org/rsennrich/wmt16_systems/
5 Adding multiple copies of the same corpus into the training set can be seen as a coarse way to
weight different corpora and favor in-domain bibtext.
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the news subcorpus from Czeng, as well as 5M sentences from the Czeng EU corpus
randomly selected after running modified Moore-Lewis filtering with XenC (Rousseau,
2013) are added to the backtranslated data. We end up with about 14M sentences
and 322M words for English and 292M for Czech.

The English-to-Latvian systems are trained using all the parallel data available
for the WMT17 evaluation campaign. Using the Microsoft sentence aligner®, sen-
tences which are not aligned one-by-one were filtered out in The Digital Corpus of
the European Parliament (DCEP). Also, modified Moore-Lewis filtering was used
to select sentences in DCEP corpus. We kept the best 1M sentences, which led to
a total of almost 2M parallel sentences. The validation set consists of 2k sentences
extracted from the Latvian information agency (LETA) corpus, newsdev2017 is used
as internal test set and newstest2017 is the official test set.

Training was carried out for a part of these systems on synthetic parallel data.
Monolingual corpora news-2015 and news-2016 were backtranslated with a Moses
system (Koehn et al., 2007). Similarly to Czech, we added ten copies of the LETA
corpus which contains only 14k sentences and two copies of Europarl (637k sen-
tences) and rapid (306k sentences) which are bigger corpora performing corpus
weighting. The final corpus contains 7M sentences and 172M words for English
and 143M words for Latvian. Table 5.2 shows a summary of the quantity of avail-
able data.

Data Name # Sents # Words EN / LV
Training All bitext 2M 50M / 42M
DCEP filtered 1M 26M / 22M
rapid 306k 6M / 5M
farewell 10k 105k / 558k
Europarl 637k 17M / 14M
Training All synthetic ™ 172M / 143M
news-2015 3M 68M / 57TM
news-2016 2M 54M / 45M
LETA 14k 443k / 371k
Development LETA subset 2k 68k / 58k
Test newsdev2017 2k 49k / 41k
Official test  newstest2017 2k 47k / 39k

Table 5.2: WMT’17 data for English-to-Latvian translation.

System setup

For the training of all models, we used NMTpy toolkit. All models use 512-dimensional
embeddings and GRU layers with 1024 hidden units for both the encoder and the

Shttps://www.microsoft.com/en-us/download/details.aspx?id=52608
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decoder. Dropout is enabled on source embeddings, context vector, as well as out-
put layers. When training starts, all parameters are initialized with Xavier (Glorot
and Bengio, 2010a). In order to slightly speed up the training on the actual parallel
data, the learning rate was set to 0.0004, patience to 30 with a validation every 20k
updates.

We also trained systems with synthetic data which are initialized with a previ-
ously trained model on the provided bitext only. For these systems, the learning rate
is set to 0.0001 and the validations are performed every 5k updates in order to avoid
overfitting on synthetic data and forgetting the previously learned weights. These
systems were tuned with Adam optimizer (Kingma and Ba, 2014). Two models with
different seeds are trained for each system for ensembling purposes. Ensembling sev-
eral models with the same architecture during decoding allows the system to use
the scores of all the ensembled models. This method improves the final translation
performance (Sennrich et al., 2016a). The hardware used for training the models is
the GPU Tesla K40c. The memory taken for the process is 11MB. Training each
model takes one month.

The vocabulary size used for source language at word level and target language
at word and lemma level is 90k. For FNM'T models, the vocabulary size of the
second output for factors is only 1.5k for Czech and 376 for Latvian. The number of
parameters in FNMT systems increases around 2.2% for Czech and 1.7% in Latvian.
Bilingual BPE models (BPE dictionary built with source and target language, see
Section 3.1.6 for more details) for each language pair and system setup were learned
on the parallel data. 90k merge operations were performed. The sentences longer
than 50 tokens are filtered out after BPE segmentation. For FNMT systems, BPE
is applied on the lemma sequence and the corresponding factors are repeated when
a split occurs. We call this system FBPE.

In order to compare FNMT and FBPE systems with other existing factored
systems using lemmas and factors, we interleaved the lemmas and factors in a single
sequence, as done in Tamchyna et al. (2017). We called this model Interleaved
FNMT (IFNMT model). In Section 3.2.3, the reader can find more details about
this work. Table 5.3 shows how the outputs are represented in the three systems
using factors.

Model 1st output 2nd output
FNMT ressembler v-C-3-p
FBPE ressembl+ er v-C-3-p v-C-3-p
IFNMT (Tamchyna et al., 2017) | ressembler v-C-3-p -

Table 5.3: Factored representations at target side of the English to Czech/Latvian
translation systems. IFNMT system is only used for English to Czech translation.
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FNMT postprocessing: from factors to words

The factored systems predict at each timestep a lemma and its factors (PoS-tag, gen-
der, number, etc.) which requires a non-trivial additional step producing sentences
in a fully inflected language.

Given the lemma and the factors, word forms are retrieved with a dictionary look-
up. In the context of morphologically rich languages, deterministic mappings from a
lemma, and its factors to a surface form are very rare. Instead, the dictionary often
contains several word forms corresponding to the same lemma and morphological
analysis.

A first way to solve this ambiguity is to simply compute unigram frequencies of
each word form, which was done over all the monolingual data available at WMT’17
for both Czech and Latvian. During a dictionary look-up, ambiguities can then be
solved by taking the most frequent word form.

For Czech reinflection, we used the Morphodita generator (Strakova et al., 2014).
Since there is no tool for Latvian to convert factors to words, all the available
WMT’17 monolingual data has been automatically tagged using the LU MII Tagger
(Paikens et al., 2013) and the result is kept in a look-up table. This look-up table
maps the lemmas and factors to their corresponding word. As one could expect, we
obtained a large table (nearly 2.5M forms) in which we observed a lot of noise.

Reranking

Taking only the most frequent surface form from each {lemma, factors} pair, the
target sequence context is ignored which can be important to generate a correct
translation.

To avoid this, we used two types of hypothesis reranking using the best FNMT
system. For each hypothesis, we generate the surface form with the factors-to-
word postprocessing. Since a single {lemma, factors} pair may lead to multiple
possible words, k possible words are considered for each pair. For Czech, k = 10,
a low value because this language has a specialized tool for reinflection. On the
other hand, the surface forms proposals for the same lemma and factors in Latvian
are many. Therefore, we included 100 hypothesis for k-best reranking in Latvian in
order to mitigate the poor quality of this dictionary by relying more on the reranking.
Additionally to the k-best hypothesis, n-best hypothesis were taken from the beam
search (n=12). Finally, the hypotheses are reranked with the best BPE-based NMT
model to select the 1-best hypothesis.

For English-to-Latvian, we performed n-best reranking for BPE and FBPE sys-
tems using the scores of two Recurrent Neural Network Language Models (RNNLM):

1. A simple RNNLM (Mikolov et al., 2010)
2. A GRU-based RNNLM included in NMTpy.

The RNNLMs are trained on WMT’17 Latvian monolingual corpus and the tar-
get side of the available bitext (175.2M words in total). For FBPE system, the
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log probability obtained by our best BPE model is also used in addition to the
RNNLM scores. The reranking is done using the nbest tool provided by the CSLM
toolkit” (Schwenk, 2010). The score weights were optimized with CONDOR (Van-
den Berghen and Bersini, 2005) to maximize the BLEU score on newsdev2017 set.

Constrained decoding

FNMT system predicts a lemma and its factors at each timestep. In the archi-
tecture, after sharing the same context vector and decoder state, both outputs are
independent. As a consequence, the best lemma hypothesis can be incompatible
with the best factors hypothesis, and it can get worse when n-best hypotheses are
considered in beam search.

The constrained decoding procedure makes sure that the generated factors are
compatible with the generated lemma at each timestep. This procedure consists of
associating each lemma in the target vocabulary with the corresponding possible
factors in a dictionary. For that, we built a lookup table with the lemmas in the
vocabulary as keys and the possible factors for each lemma as values.

The decoding is modified as follows: for each candidate lemma, we only retain
the compatible factors checking the lookup table, and select the n-best hypotheses
to be kept in the beam from this filtered list. This constraint ensures that the
beam search does not evaluate incompatible pairs of factors. (e.g. factors including
adjective with lemma book which is a noun or a verb).

Creating such a mapping is trivial for completed lemmas, but less obvious when
splitting in BPE units. Since a BPE unit can be generated from different lemmas
having different factors, the size of the set of possible factors can grow quickly. Due
to these reasons, we did not apply the constrained decoding in FBPE systems.

5.1.3 Automatic evaluation

The experiments are carried out on the data from the WM'T’17 evaluation campaign
as described previously. Firstly, we experimented with the NMT architecture at
word level and also using interleaved FNMT representation (lemmas and factors in
a single sequence). Secondly, the FNMT architecture (see Figure 5.1) was tested
comparing the usage of a single or separated h20 layers. Each FNMT model is tested
with and without constrained decoding. Additionally, NMT and FNMT models are
processed with BPE units (BPE and FBPE systems). Finally, we report results
adding the synthetic data and using reranking and ensembling techniques.

Results are reported using the following automatic metrics: BLEU (Papineni
et al., 2002b), BEER (Stanojevi¢ and Sima’an, 2014) which tunes a large number of
features (permutation trees (Zhang et al., 2008), adequacy, fluency, F-score, Kendall
(Isozaki et al., 2010) and ordering) to maximize the human ranking correlation at
sentence level and corpus level using a linear interpolation and CharacTER (Wang

"http://github.com/hschwenk/cslm-toolkit
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et al., 2016), a character-level version of Translation Edit Rate (TER) which has
shown a high correlation with human rankings (Bojar et al., 2016).

Experiments without synthetic data

The results using only the bitext provided at the WMT’17 the evaluation campaign
are presented in Table 5.4 for English-to-Czech. At decoding time, Czech systems
performed better with a beam size of 2, which was used to provide these results.
Table 5.5 shows the results for English-to-Latvian. The BLEU scores reported are
computed with multi-bleu.perl which makes them consistently lower than official

evaluation matrix scores®.

newstest2016 newstest2017

Model BLEU 1+ BEER 1T CTER | | BLEU{1 BEER 1T CTER |
NMT 15.74 47.50 74.43 12.54 44.96 78.68
IFNMT 15.47 48.67 71.98 12.99 46.36 74.38
FNMT

single h2o layer 16.73 50.50 65.51 14.09 48.15 69.85
+ constrained dec. 17.42 50.94 64.95 14.93 48.76 69.26
sep. h2o layers 16.54 50.12 66.35 13.89 47.78 70.63
+ constrained dec. 17.56 50.73 65.48 14.66 48.26 69.96
BPE 18.30 52.18 60.55 14.90 49.35 65.68
FBPE

single h20 layer 17.30 51.82 61.19 14.19 48.98 66.28
sep. h2o layers 17.34 52.22 60.62 14.73 49.61 65.34

Table 5.4: Scores for English-to-Czech systems trained on WMT’17 official bitext
data

newsdev2017 newstest2017

Model BLEU 1t BEER 1 CTER | | BLEU{1T BEER 1T CTER |
NMT 14.51 47.47 77.24 9.90 42.64 86.04
FNMT

single h2o0 layer 13.96 49.53 68.36 9.68 45.24 77.07
+ constrained dec. 14.02 49.48 69.97 9.94 45.21 78.11
sep. h2o layers 13.92 49.93 68.45 9.71 45.10 77.51
+ constrained dec. 14.38 49.74 70.04 10.07 45.26 78.08
BPE 15.25 50.61 64.56 10.36 46.23 72.13
FBPE

single h2o0 layer 14.45 50.86 67.14 10.45 46.36 72.25
sep. h2o layers 14.39 50.72 66.05 10.69 46.44 72.96

Table 5.5: Scores for English-to-Latvian systems trained on WMT’17 official bitext.

8MT evaluation matrix: http://matrix.statmt.org
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The English-to-Czech IFNMT system (see Table 5.3 for details) results can be
seen in Table 5.4. IFNMT system performs worse than BPE, FNMT and FBPE
systems and only better than NMT system when translating newstest2017. FNMT
system has only few parameters more than IFNMT system because FNMT system
incorporates the small second output layer. IFNMT system does not have problems
of postprocessing dealing with the interleaved sequence: both predictions contain
the same number of lemmas and factors and there are no lemmas in the positions of
factors or vice versa. Indeed, the lemmas and factors generated by IFNMT system
are worse than FNMT systems. As a consequence, we can confirm that FNMT
architecture can learn better predictions of lemmas and factors. There are two
reasons of this, (1) FNMT system have specialized weights for lemmas and factors
and (2) FNMT generates lemmas and factors synchronously.

We can observe that using the constrained decoding (see Section 5.1.2) con-
sistently improves the results. Constrained decoding has not been used with FBPE
system (last two rows of Table 5.4) because a BPE token may correspond to a large
set of factors. Consequently, it is very unlikely that such a method would provide
improvement, since it would not constrain the factors output much. In the Latvian
setup, we observe a small improvement in terms of BLEU using constrained decod-
ing (see Table 5.5). In some cases, when translating newsdev2017 and newstest2017
for single h20 layer FNMT system, BEER and CTER evaluation obtain even worse
scores using constrained decoding. When translating in Czech, the constrained de-
coding gives a bigger improvement than when applied in Latvian (see Table 5.4).
This is probably due to the poor quality of the look-up table we have created for
the Latvian reinflection (see Section 5.1.2 for more details).

Two FNMT models were tested, one model using a single h20 layer and the
other model using two separated hZ2o0 layers. We observe mixed results, the
single hZ2o layer FNMT system has slightly better scores than separated hZ20 layers
FNMT system, except for English-to-Latvian newstest2017 translation where the
opposite occurs. On the other hand, FBPE system obtains better performance using
separated hZ2o layers with the only exception of English-to-Latvian newsdev2017
evaluation where FNMT system using single h20 layer FNMT obtains better scores
than using separated h2o layers. As a consequence, we decided to only use the
separated hZo layers model for the next set of experiments including synthetic data.

For both language pairs, the systems using BPE tokens significantly outperform
word-level NMT systems. The results show that BPE units applied in factors (FBPE
model) are always better than FNMT model when constrained decoding is not
applied. When adding constrained decoding to FNMT system, FBPE is better than
FNMT in BEER and CTER evaluation metrics. For English-to-Czech translation,
FBPE models BLEU scores are slightly lower than FNMT with constrained decoding
in newstest2016. In newstest2017, single hZ0 layer option obtains better scores
when is applied in the FNMT system with constrained decoding. On the contrary,
separated h2o layers option is better when is applied in FBPE system. For English-
to-Latvian newsdev2017 translation, FBPE model BLEU scores are better than
FNMT when using single h20 layer and similar when using separated h20 layers.
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When evaluating BLEU with newstest2017, FBPE performs better than FNMT even
applying constrained decoding. Globally, when applying BPE method, including
FBPE, the systems perform better.

Finally, we compare BPE and FBPE systems. The system behave different
depending on the automatic metric. BLEU evaluation shows that BPE system
performs better than FBPE system in all test sets except for English-to-Latvian
newstest2017 where FBPE obtains the best result. On the other hand, when look-
ing at the BEER scores, FBPE system always performs better than BPE system.
The last metric (CTER) reflects different behaviour depending on the test dataset,
BPE system performs better in all the test datasets except for English-to-Czech
newstest2017 evaluation where FBPE system obtains the best result.

Due to these results, BPE method is always applied in the next experiments
including synthetic data. Word-level NMT system and FNMT without BPE are
no longer applied for this data. We also chose to only use separated h2o0 layers for
FBPE models.

Experiments with synthetic data

In this set of experiments, we add the synthetic data and apply ensemble of models
and reranking to boost the results. We compare again BPE and FBPE systems in
order to analyse further their performances.

Tables 5.6 and 5.7 show the results of using selected parts of bitext and synthetic
parallel data (see Section 5.1.2) for both language pairs. Each model trained with
the selected bitext and synthetic data was initialized with the parameters of its
counterpart trained on bitext only. The BPE vocabulary used was the same as
in the model used for initialization, which can be led the systems to generate few
unknown words. For example, we found 0.18% of UNK when translating newstest2017
into Czech with BPE system. In order to avoid UNK, we forced the decoder to avoid
unknown token generation. When the UNK token obtains the highest score to be
predicted, the system outputs the symbol with the second highest score, instead of
UNK.

We also include results for setups that address the surface forms ambiguities
issue when the system proposes several options for the same lemma and factors (see
Section 5.1.2). The k-best setup performs the reinflexion of the 1-best sentences
produced by the FNMT system and uses the ambiguities to generate k reinflected
hypotheses out of one sentence (+k-best reranking in the tables). Additionally, the
same procedure can be applied to the n-best hypotheses generated by the beam
search procedure (in our case the beam size is empirically set to 12). The resulting
nk-best hypotheses are in turn reranked with the BPE model in order to choose the
surface form instead of relying on simple unigram frequencies.

Those results are referred to as +n-best reranking in the tables. Additionally,
for English-to-Latvian systems, a reranking has been performed using two RNNLM.

Finally, for all the systems, we provide the results obtained with an ensemble
of two systems with a different seed including the nk-best reranking procedure and
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adding LM reranking for Latvian as final result.

newstest2016 newstest2017

Model BLEU 1+ BEER 1T CTER | | BLEU1t BEER 1 CTER /|
BPE 24.18 57.47 52.42 20.26 54.67 58.15
+ ensemble 24.52 57.64 52.13 20.44 54.77 58.04
FBPE

sep. h2o layers 22.30 56.63 53.46 19.34 54.16 58.76
+ k-best reranking 22.35 56.60 53.49 19.36 54.17 58.71
-+ n-best reranking 23.39 57.25 52.73 19.83 54.57 58.35
+ ensemble 24.05 57.59 52.27 20.22 54.80 57.89

Table 5.6: Scores for English-to-Czech systems trained on WMT’17 selected bitext
and synthetic parallel data.

newsdev2017 newstest2017

Model BLEUt BEER{1 CTER ] | BLEUT BEER{1 CTER|
BPE 21.88 57.61 52.52 15.26 52.10 62.80
+LM reranking 21.98 57.68 53.07 15.59 52.27 63.05
~+ensemble(no LM reranking) 22.34 57.99 52.18 15.46 52.40 62.44
+ensemble LM reranking 22.46 58.02 52.77 16.04 52.66 62.40
FBPE

sep. h2o layers 18.93 56.01 54.36 13.98 51.26 63.90
+k-best reranking 20.56 56.94 53.42 14.80 51.78 63.19
+n-best reranking 21.59 57.62 52.83 15.31 52.34 62.64
+LM reranking 21.79 57.77 52.52 15.51 52.34 62.65
~+ensemble(no LM reranking) 21.90 57.83 52.38 15.35 52.31 62.46
+ensemble LM reranking 21.87 57.74 53.04 15.53 52.40 62.80

Table 5.7: Scores for English-to-Latvian systems trained on WMT’17 selected bitext
and synthetic parallel data.

We observe that including the synthetic parallel data, in addition to the provided
bitext, results in a big improvement (generally +5 BLEU points) in BPE and FBPE
systems for both language pairs (comparing Tables 5.4 and 5.6 for English-to-Czech
and Tables 5.5 and 5.7 for English-to-Latvian).

k-best reranking of FBPE systems shows bigger improvement when translating
into Latvian than into Czech. For Czech, the results are stable, whereas it provides
an improvement of about +1 points for Latvian. This is due to the quality of the
dictionary used for reinflection in each language. The Morphodita tool for Czech
includes only good candidates. Therefore, a unigram model is sufficient to correctly
transform the factors to words in Czech language. On the other hand, a similar tool
is not available for Latvian, leaving more room for improvement.

n-best reranking always brings improvements in both language pairs and obtains
similar performance to BPE systems.
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For translation into Latvian, the reranking using RNNLMs gives an improve-
ment of about +0.2 BLEU points for both BPE and FBPE systems. Applying the
ensemble of several models also gives improvement for all systems. Finally, we ap-
plied RNNLMs reranking to the ensembled output for Latvian and obtained the best
results. The BPE system obtains better scores than FBPE system when translating
English-to-Czech newstest2016. When translating English-to-Czech newstest2017,
BPE system has a small improvement of BLEU compared to the FBPE system.
However, BPE system is similar in BEER and slightly higher in CTER than FBPE
system. BEER and CTER automatic evaluation metrics are more correlated with
human rankings than BLEU. This can give us and intuition that FBPE systems are
more correlated with human translation than BPE systems.

The paper (Burlot*, F. and Garcia-Martinez*, M. et al., 2017) shows additional
experiments using normalised words (simplifying inflections as in English) and clus-
tering of words representation performed by LIMSI research laboratory using FNMT
architecture. The results for these experiments are better for FBPE system com-
pared to BPE system.

We have compared FNMT systems with a very strong baseline including new
state of the art techniques to push the results (BPE, reranking, ensembling and
backtranslation), in order to observe how our systems in competitive conditions.
This may harm showing the benefits of our systems because it is very hard to beat
it.

In any case, FNMT systems explicitly model some grammatical information
leading to different lexical choices, which might not be captured by the automatic
metrics, specially BLEU score. In an attempt to focus on the grammaticality of the
FNMT systems, we conducted a qualitative analysis of the outputs.

5.2 High versus low resource conditions

In the previous experiments, we evaluated our factored NMT system from English
to the highly inflected languages Czech and Latvian. In the following experiments,
we experiment with another language pair to translate from Arabic to French. In
these experiments, we use Arabic in order to translate from a highly inflected lan-
guage. The target language is French which is a moderately inflected language.
The Arabic—French language pair does not include English which is the most used
language to translate and the one with the biggest language resources. Then, trans-
lating a language pair without including English is more difficult. Moreover, French
and Arabic are not related languages, they do not share morphological roots and
either the alphabet. Therefore, it is a challenge to use this language pair. Firstly, we
perform experiments under low resource conditions using a small training dataset.
Secondly, experiments under high resource conditions adding a large corpus for
training are carried out.
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Training details

For the training of the models, we used NMTpy toolkit. We used tied target embed-
dings (as in Sections 4.5 and 5.1) sharing the same weights for feedback and output.
For the sake of simplicity, normalization of the layers and dropout have not been
used. In order to avoid exploding gradients, we clipped the norm of the gradient to
be no more than 1. The optimizer used is Adadelta with an initial learning rate of
1. We use Xavier weights initialization.

The WEB test set has been used as development set in order to apply early
stopping, validating from the 2nd epoch every 1k updates with a patience of 10.
The same vocabulary size has been used for Arabic at input side and French at
output side for words and lemmas, which is 30k. All the factors vocabulary is
covered by the network.

We also applied the BPE method for this experiment using the formula 30k —
#characters to obtain the number of BPE units comparable with the vocabulary
of the rest of the systems. The joint vocabulary (see Section 3.1.6 for more details)
sharing the BPE tokens for source and target language is not beneficial when the
languages use different alphabets. Therefore, we have not applied joint vocabularies
BPE model, instead we have used different BPE units for each language. Note that
we could have been used a method to unify the alphabets using transliteration in
order to avoid the problem. On the other hand, we think that French and Arabic
are languages that do not share the same roots and the benefit is harder to glimpse.
The same procedure is applied for FBPE model, source words and target lemmas
are segmented in subwords. Factors are repeated for each subword to synchronize
lemmas and factors sequences.

Factored representations

Table 5.8 presents the different models used with factorised representation. BPE
algorithm was also applied for FNMT system (FBPE model) as presented previ-
ously, in Section 5.1. Also, interleaved FNMT (IFNMT) model is used in this
experiment. Additionally, we introduced a new representation called “IFNMT-+2nd
output” where the first output predicts lemmas and factors as IFNMT but we add
a new second output generating also factors at the same positions of the factors
in the first output. When lemmas are generated in the first output, the second
output generates null. IFNMT+2nd output pretends to better model the factors
having the advantages of the two factorized architectures: (1) as FNMT model, the
model learns specialized embeddings only for factors in the second output and (2) as
IFNMT model, factors are also included jointly with the lemmas in the embeddings
of the first output and factors output receives as feedback its corresponding lemma
generated in the previous timestep which can help the generation of factors.

The two FNMT models have been tested as well, the one using a single h20 layer
(see Figure 4.2) and the other using separated h2o layers (see Figure 5.1 in page
7).
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Model ‘ 1st output 2nd output
FNMT ressembler v-C-3-p
FBPE ressembl+ er v-C-3-p v-C-3-p
IFNMT (Tamchyna et al., 2017) | ressembler v-C-3-p -
IFNMT+2nd output ressembler v-C-3-p null v-C-3-p

Table 5.8: Factored representations at target side of the Arabic to French translation
systems.

Test sets

We evaluate the models with three test files in order to compare different use cases.
These test sets are provided with multiple references to better evaluate with auto-
matic metrics such as BLEU. Table 5.9 provides information about the different test
sets used to evaluate the models.

Test set #Sent. #Tokens #Unique words #Ref.
(AR/FR) (AR/FR)

WEB* 409 10k /~18k 4.2k /3.7k 4

TEXT 352 10k/~18k 4.1k /3.6k 2

BROADCAST (2h) 466 14k /~23k 4.7k/4.1k 4

Table 5.9: Test sets for Arabic to French translation under low resource conditions.
Information about number of sentences and references in second and last columns,
respectively. Number of tokens and number of unique words for each language are
shown in the third and forth columns. *WEB test set has been used for development
purposes. French unique words and number of tokens are average numbers of the
references.

5.2.1 Low resource conditions

The first experiment consists of translating under low resource conditions using a
small training dataset. We mentioned previously in the motivation of Chapter 4 that
when the dataset is small, the morphological information can help the translation
process (Niehues and Cho, 2017). In addition, the factored system can support larger
vocabulary because it can generate words from the lemmas and factors vocabularies,
which is a good point when data is sparse. The hyperparameters chosen for this
experiment have been adapted to the small size of the dataset. Therefore, we used
reduced dimensions for the layers: 512 for the recurrent layers and 300 for the
embeddings.
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Data and preprocessing

The datasets used for training are News Commentary version 9 and 80 hours of
broadcast news. News corresponds to the domain of the corpora. Arabic data has
been tokenized with the morphological analyser tool MADA (Habash et al., 2013;
Pasha et al., 2014) separating prefixes and suffixes from stems. French data is
tokenized with Moses and the morphological analysis is performed by MACAON, as
for the experiments in Chapter 4. After filtering sentences longer than 100 tokens,
the training dataset only contains 150k sentences, 4.6M words for Arabic and 4.7M
words for French. The full vocabulary is still large which is a challenge in machine
translation, all the unique words in the training vocabulary are 72k for Arabic
MADA tokenized words in stems and affixes in source side, 73k for French words
and 43k for French lemmas in target side. The vocabulary size of French factors is
282. The factored model can possible generates 148k words from the 30k size lemma
vocabulary and the factors vocabulary.

We evaluate the models with in-domain and out-of-domain test sets in order to
compare different scenarios where the difficulty to translate increases. These test
sets are provided with multiple references to better evaluate with automatic metrics
such as BLEU. Table 5.9 provides information about the different test sets used to
evaluate the models. One test set is out-of-domain (WEB) and other two test sets
are in-domain (TEXT and BROADCAST).

Results

The results for the Arabic to French translation under low resource conditions are
presented in Table 5.10.

Out-of-domain In-domain (news)
Model WEB (dev.) TEXT | BROADCAST
NMT 13.52 10.15 19.05
BPE 14.49 9.40 18.27
FNMT single h2o layer 16.99 12.27 25.93
FNMT sep. h2o layers 14.60 11.06 24.07
IFNMT 15.25 11.81 26.00
IFNMT+2nd output 15.89 12.90 24.06
FBPE 17.04 10.39 23.63

Table 5.10: Results for Arabic to French translation under low resource conditions.
Scores are measured in BLEU. The training datasets used are News commentary
and 80 hours of broadcast news.

We observe that factored models obtained the highest values for all the test sets.
This means that factored models are a good option for low resource conditions.
FBPE model reaches the best value for WEB test set followed by FNMT using single
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h20 layer with a similar result. We see that IFINMT models have better performance
for in-domain test sets. The TEXT test set has better score for IFNMT+2nd output
model. The last test set which is BROADCAST obtained better score for the
IFNMT model followed by FNMT using single h20 layer with a similar result.

BPE model does not obtain very high scores due to the different BPE vocab-
ularies for each language which is not benefiting the model. BPE applied into the
factored model (FBPE) does not obtain high scores either for TEXT and BROAD-
CAST. However, FBPE scores for WEB test set are the highest. This can be due
to the fact that WEB test set is the development set and the dictionary of BPE
units has been created using it. The separated hZ2o layers for FNMT model seems
not to help in low resource conditions, the higher number of parameters compared
to the single h20 layer FNMT is not necessary to learn a small dataset. Interleaved
models (IFNMT and IFNMT+2nd output) work better when translating in-domain
data. This fact suggests that the FNMT architecture, where lemmas and factors
are separated in two outputs, generalizes better and it can improve the performance
when translating out-of-domain data sets.

5.2.2 High resource conditions

In this set of experiments, we used the same language pair (Arabic—French) adding
more data in order to change the conditions and observe the behaviour of the
systems. For that purpose, we added the United Nations corpus to the training
data we already used in the previous experiment. Interleaved models (IFNMT and
IFNMT+2nd output) are not included anymore because they did not get the best
results for out-of-domain data.

Data and training options

The dataset added to the previous presented data (news-commentary and broadcast
news) is the United Nations corpus which gives a total of 14M of sentences, 315M
of words in Arabic and 350M of words in French. The full vocabulary is large, all
the unique words in the training vocabulary are 881k for Arabic MADA tokenized
words in stems and affixes in source side, 674k for French words and 511k for French
lemmas in target side. The preprocessing of the data was performed similarly to
previous experiment.

The training options are the same except that the size of the recurrent layer is
increased to 1024 dimensions and the size of the embedding layer to 512 dimensions.
The vocabulary size remains 30k. For BPE systems, we use 30k BPE units not using
joint vocabularies. BPE method is applied as well for FBPE systems.

Results

Table 5.11 presents the results of adding United Nations corpus.
The results show that FBPE system obtains the best performance for all the
test sets: WEB, TEXT and BROADCAST.
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Out-of-domain In-domain (news)
Model WEB (dev.) | TEXT | BROADCAST
NMT 29.33 20.86 35.77
BPE 28.32 20.15 32.47
FNMT single h2o layer 28.99 18.36 34.26
FNMT sep. h2o layers 27.00 18.74 33.70
FBPE 29.53 21.05 36.98

Table 5.11: Results for Arabic to French translation adding United Nations corpus.
Scores are measured in BLEU. The training datasets used are News Commentary
V9, 80 hours of broadcast news and United Nations.

BPE system does not perform better again because joint vocabularies option is
not used (the vocabularies are separated for source and target due to the different
scripts of the languages). On the other hand, FBPE is benefiting from the BPE
units to handle the increase of training data.

FNMT systems without BPE units obtain low scores confirming the hypothesis
that they perform better when they are applied in low resource conditions. Sepa-
rated h2o layers FNMT system performs better than single h20 layer FNMT system
when translating TEXT. This confirms that separated h2o layers FNMT model,
which includes more parameters, is a better option when the training dataset is big.
On the other hand, translations of WEB and BROADCAST test sets still obtained
better scores using single h20 layer FNMT system than separated h2o layers FNMT
system.

5.3 Qualitative evaluation

In this section, we evaluate qualitatively the outputs of the systems. First of all, we
observe the alignments from the attention mechanism comparing BPE and FBPE
systems for English-to-Czech translations. Secondly, we present the results of human
evaluation in WMT 2017 evaluation campaign. Finally, we translate a special test
dataset which takes into account some morphological features.

5.3.1 Attention in factored systems

In a factored NMT setup, the attention mechanism distributes weights across all
positions in the input sentence in order to make two predictions, one for lemmas
and other for factors, as opposite to BPE system which makes only one prediction.
Figure 5.2 is an example showing the alignments from target to source sequence of
BPE and FBPE systems when using the ensembles of two English-to-Czech models.

In this sentence, the BPE system (translation on the top) erroneously generates
the tense in “nevyhybd” (does not avoid) predicting the present. We can see that
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BPE a nevy@ @ hyb@ @ a se jim

and didn't shir@@ k in getting
Source

and didn't shir@@ k in getting

| i A A
/,/‘
/,/
FBPE a vyhybat se ten , aby
[\ SS— VpYS-—-XR-NA P7-X4--mm- PDZS3------- 4 R— [ J—

Reference a nelenil jsem je hubit

Figure 5.2: An example of attention weight distribution in BPE (top) and FBPE
(bottom) output systems aligned to the source sentence (middle) for English-to-
Czech translation. Reference sentence corresponds to the last line.

the subword unit “nevy@@” in BPE system is rather strongly linked to the source
“didn’t”, which allowed the system to correctly predicts negative polarity. On the
other hand, the ending of the verb “¢” is not linked by attention to this same source
word, from which the morphological past tense feature should have been generated.
We observe that FBPE system attention aligns the target “vyhybat” and “VpYS—
XR-NA”to both the source auxiliary “didn’t” and the first subword unit of the lexical
verb “shirk” (“shir@@”), which enables the successful prediction of the right lemma
and factors, i.e. negation polarity (N) and past tense (R).

FBPE system models explicitly the grammar at target side. With this infor-
mation, a source grammatical word (auxiliary, preposition, negative particle, etc.)
can be easier aligned correctly, which allows the system to better predict the factors
output. We assume that this peculiarity ensures a better grammatical translation
adequacy.

5.3.2 Human evaluation

The machine translation systems submitted to the WMT’17 evaluation campaign
were evaluated by humans (Bojar et al., 2017). The output translations of the
systems were scored with a value between (0 and 100, corresponding to 100 a perfect
translation.

The results for human evaluation comparing our submitted BPE and FBPE sys-
tems are presented in Table 5.12 for English-to-Czech translation when using ensem-
ble and in Table 5.13 for English-to-Latvian translation when using LM reranking
but no ensemble.

There are two types of measures: (1) Average % is the mean of the human
annotation scores of the segments for the systems and (2) Average z is as average
% but including the standard deviation.
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Model Average % Average z

BPE 55.2 0.090
FBPE 55.2 0.102

Table 5.12: Official human evaluation results of WM 17 News translation task for
English-to-Czech translation. Systems are ordered by standardized mean DA score.

Model Average % Average z

BPE 43.0 -0.198
FBPE 43.2 -0.157

Table 5.13: Official human evaluation results of WMT’17 News translation task
for English-to-Latvian translation. Systems are ordered by standardized mean DA
score.

Human evaluation shows for English-to-Czech translation task that both systems
obtained 55.2% of mean score and FBPE shows a higher score in Average z than
BPE system. For English-to-Latvian translation task, BPE system obtained 43%
of mean score and FBPE system obtained 43.2% which is a higher score. Also, for
Average z, FBPE shows higher score than BPE.

Nevertheless, those differences are not significant, BPE and FBPE systems for
both language pairs are in the same cluster of performance according to Wilcoxon
rank-sum test at p-level where p < 0.05.

Appendix A includes the WMT’17 human results for English-to-Czech and
English-to-Latvian systems comparing all the submitted systems in the evaluation
campaign.

5.3.3 Evaluating morphology

We provide here a scenario to check the benefits of FNMT systems when predicting
morphological features. The intuition is that dividing the task of translating a
sentence into two easier joint tasks (prediction of lemmas and factors) should help
the system to improve the grammar of the predictions. We compare the FBPE
system with the BPE system in order to verify the confidence of morphology of each
system. Other works previously proposed similar evaluations (Sennrich, 2016).

To this end, we have used the test suite provided by Burlot and Yvon (2017),
who propose an evaluation of the morphological competence of a machine trans-
lation system performed on an automatically produced test suite. The sentences
are all extracted from the English news-2008 corpus provided at WMT removing
sentences longer than 15 tokens to better focus on the part of the sentence with
the phenomena to analyse. For each source test sentence (the base), several vari-
ants are generated, containing only one difference with the base, and focusing on a
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specific morphologically feature on the target, e.g. person, number, tense, case, etc.
Table 5.14 shows an example of the variants of a source test sentence.

Each of her seven children married a Vietnamese, all of them poor.

Fach of her seven children married a Vietnamese, all of them rich.

Each of her seven children married a Vietnamese, all of them inadequate.
Each of her seven children married a Vietnamese, all of them short.

Fach of her seven children married a Vietnamese, all of them miserable.

Table 5.14: Example of variants of synonyms and antonyms from the base in the
test suite.

A translation is correct when the base and the variants generate a different word
and the POS-tag of the morphological feature is correct. This measure is not perfect,
some errors could come from the tagger. The good point is that a reference sentence
is not needed.

This test suite includes three sets: (1) “A-set” contains contrasts in number for
pronouns and nouns, gender for pronouns, tense (future and past) and polarity (if
negative) for verbs and comparative for adjectives; (2) “B-set”: includes agreements
in verbs (number, person and tense), case in nouns and prepositions and lastly,
pronouns changed to noun phrases according to gender, number and case; and (3)
“C-set™ is a selection of nouns, adjectives and verbs replaced by a random hyponym
(a subcategory of a word, e.g. dog is an animal).

The scoring procedure differs for each set and it is done as follows:

e A-set: the base and variant translations are compared. For example, the base
can be the singular number, masculine gender, present tense or affirmative
polarity form and the variants are the plural number, feminine gender, plural
or past tense or negative polarity forms. If the words which are different con-
tain the correct morphological feature, the translation is considered as good.
Accuracy of the morphological features is averaged over all the sentences.
The A-set corresponds to the evaluation of the grammatical adequacy of the
translation towards the source.

e B-set: the base and variant translation are compared in order to check two
facts: (1) if a pronoun is replaced by a noun phrase and (2) the adjective and
the noun in the noun phrase share the same gender number and case. For
the coordinated features, some agreements can differ from the base and the
variant (e.g. gender can be different from the base). For the case of measuring
the preposition feature, the case of the first noun on the right of a preposition
is checked on the base and variant sentences. Then, the accuracy is calcu-
lated per feature. The B-set corresponds to the evaluation of the grammatical
fluency of the generated translations.
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e (-set: the consistency of morphological features with respect to lexical vari-
ations with the same context is evaluated in this set. The average normalised
entropy is measured on the target sentences. The entropy is null (the best
value) when all variants share the same morphological features. By contrast,
when entropy is 1, all the sentences in the cluster contain different morpho-
logical features. 500 buckets for each feature are considered and each bucket
contains 5 sentences.

We first compared the English-to-Czech BPE and FBPE systems single models
with the seed which reached the best performance without ensembling. The FBPE
system includes the nk-reranking (see Table 5.6 for previous results of these models).

Table 5.15 shows the results for the A-set evaluating the adequacy of the trans-
lation outputs with respect to the source. The last column corresponds to the mean
of all scores. The first two systems correspond to the single models. We can note
that BPE system only performs better than FBPE system in the negation of verbs
feature. On the other hand, FBPE performs better than BPE detecting the future,
the number in nouns and the comparative features. The mean of the scores shows
an improvement of +0.5 accuracy in FBPE compared to BPE.

verbs pronouns others mean

Model | past future neg. \ fem. plur. \noun nb. compar.\
Single
BPE 89.2% 85.8% 95.4%
FBPE | 89.4% 87.4% 93.4%

94.2%  91.4%

94.8%  91.2% 75.2% 72.0% | 86.2%

73.0% 71.0% | 85.7%

Ensemble
BPE 92.0% 85.0% 95.4%
FBPE | 93.4% 84.0% 96.2%

92.8% 92.4%

94.6% 91.6% 80.2% 73.4% | 87.6%

78.6% 74.4% | 87.2%

Table 5.15: Morphological prediction adequacy (accuracy) English-to-Czech trans-
lation (A-set). Single models on the top and ensembling of models on the bottom.

Table 5.16 shows the results for the B-set evaluating the morphological fluency
of the translation outputs. The first two systems correspond to the single models.
In this case, FBPE outperforms BPE in all the features (+7.6% in the mean). This
is due to the explicitly modeling of the target morphology in FBPE system.

The results for the C-set about morphological prediction consistency are shown
in Table 5.17. These results are measured in terms of entropy, the scores demonstrate
how confident a system is with a morphological feature when lexical variations as
synonyms or antonyms are translated. The first two systems correspond to the
single models. Again, we see that FBPE system outperforms BPE system in all the
features. The results show that FBPE system predicts good morphology even when
some variations of the lexicon are introduced.

We also evaluated the ensemble of models for English-to-Czech models. These
systems correspond to the last line (the best performance) of each model (BPE and
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coordinated verbs coord.n pronouns to nouns prep. mean
Model | number  person tense [ case [ gender  number case [ case
Single
BPE 65.0% 64.0% 59.2% 81.4% 45.8% 47.0% 46.6% 88.8% 62.2%
FBPE | 69.6% 67.8% 62.0% 89.4% 59.2% 59.6% 59.6% | 91.6% | 69.8%
Ensemble
BPE 82.2% 81.6% 75.8% 91.0% 92.0% 92.8% 93.0% | 96.2% | 88.1%
FBPE 80.8% 79.6% 75.6% 89.6% ‘ 90.6% 90.4% 90.8% 95.8% 86.6%

Table 5.16: Morphological prediction fluency (accuracy) English-to-Czech transla-
tion (B-set). Single models on the top and ensembling of models on the bottom.

nouns adjectives verbs mean
Model case ‘ gender number case ‘ number person tense polarity ‘
Single
BPE .251 437 .404 434 .203 141 .161 132 270
FBPE .208 .401 .363 .389 .152 .104 .120 .090 .228
Ensemble
BPE .208 .295 272 310 125 .070 .086 .061 178
FBPE .206 278 .240 .269 125 .074 .090 .067 .169

Table 5.17: Morphological prediction consistency (entropy) English-to-Czech trans-
lation (C-set). Single models on the top and ensembling of models on the bottom.

FBPE) in Table 5.6. The results of the morphological evaluation applied on the
ensemble of models English-to-Czech translation are shown on the last two systems
of the Table 5.15 for the A-set, Table 5.16 for the B-set and Table 5.17 for the C-set.

The results for ensemble of models evaluating the morphology in the translation
of Czech show that BPE system performed better than FBPE system only in the
B-set. Some features are predicted better with FBPE than BPE in the A-set but the
global mean is higher for FBPE system. In the B-set all the features are predicted
better with BPE system (+1.5% in the mean). The NMT systems are well-known
to produce fluent outputs and when using ensembling the performance improves.
The dataset of English-to-Czech translation is very large and it can be enough to
well learn the grammatical fluency using BPE and ensembling.

On the other hand, the C-set is better predicted for FBPE than BPE. We observe
lower global mean entropy for FBPE than BPE. The features related to verbs and
nouns perform similar in the two systems. However, the performance is better for
FBPE system in the features related to adjectives. This tends to show that the
prediction of the consistency is more confident, disregarding lexical variations,
when factored approach which explicitly models the morphology is applied.

The morphological evaluation has been applied also for the English-to-Latvian
translations on the same manner. For the BPE and FBPE evaluation of the single
systems, the models with the seed which reached the best performance without
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ensembling and either LM reranking (see Table 5.7). The FBPE system for Latvian
also includes the nk-reranking. Table 5.18 shows the results for the A-set, Table 5.19
for the B-set and Table 5.20 for the C-set. The first two systems correspond to single
models and the two last systems to ensemble of models.

verbs pronouns nouns mean
Model past future \ feminine  plural \ number \
Single
BPE 67.6% 86.4% 69.8% 88.6% 69.6% 76.4%
FBPE | 74.0% 83.4% 81.4% 91.0% | 70.8% | 80.1%
Ensemble
BPE 71.2% 84.8% 65.0% 86.8% 72.6% 76.1%
FBPE | 73.0% 81.2% 76.8% 86.6% 73.2% | 78.2%
Table 5.18:  Morphological prediction adequacy (accuracy) English-to-Latvian
translation (A-set). Single models on the top and ensembling of models on the
bottom.
coordinated verbs coord.n pronouns to nouns prep. mean
Model | number person tense [ case [ gender  number case [ case
Single
BPE 71.0% 60.2% 72.8% 31.0% 26.0% 28.2% 26.0% 52.2% 45.9%
FBPE 76.6% 65.2% 77.4% 26.2% 33.0% 33.2% 31.4% | 55.8% | 49.8%
Ensemble
BPE 64.4% 56.6% 65.2% 40.6% 38.8% 37.6% 36.2% 52.8% 49.0%
FBPE 78.0% 67.0% 78.6% 37.0% 38.6% 38.0% 35.6% 56.0% | 53.6%

Table 5.19: Morphological prediction fluency (accuracy) English-to-Latvian trans-
lation (B-set). Single models on the top and ensembling of models on the bottom.

We observe similar results when comparing evaluation of translations in Latvian
and Czech using a single model. The results for the three sets show a global mean
improvement in FBPE system compared to BPE. Only the “future” feature in the
A-set and “case” for coordinated nouns in the B-set are better predicted with BPE
than FBPE. All the rest of the features are better predicted by FBPE system.

The ensemble of models has been also evaluated for Latvian translations. These
systems correspond to the last line (the best performance) of each model (BPE and
FBPE) in Table 5.7 applying LM reranking as well.

As difference with Czech translation, in Latvian translation the mean of the three
sets are better performing for FBPE than BPE (see Tables 5.18, 5.19 and 5.20). We
only see better accuracy for BPE in the case of coordinated nouns feature. We
always observe a lower entropy in the C-set with FBPE over all features. Again,
another difference with Czech is that English-to-Latvian dataset is 10 times smaller
(2M sentences) than English-to-Czech (20M sentences). Therefore, the synchronous
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‘ nouns adjectives verbs mean

Model‘ case ‘gender number case ‘number person tense‘

Single

BPE .279 .648 .646 .685 .149 .241 .152 .400
FBPE | .242 | .600  .599 .638 | .100  .173 .096 | .350
Ensemble

BPE .263 .640 .623 .669 .140 233 142 387
FBPE | .213 .608 .606 .643 .099 .163 .092 .346

Table 5.20:  Morphological prediction consistency (entropy) English-to-Latvian
translation (C-set). Single models on the top and ensembling of models on the
bottom.

learning of lemmas and factors in factored models is helping for the morphology
prediction in Latvian translations.

5.4 Conclusion

In this chapter, FNMT systems have been applied in more challenging language
pairs: English—Czech, English—Latvian and Arabic—French which include highly
inflected languages.

In Section 5.1 about Czech and Latvian translation, we have trained state of
the art models applying BPE units in combination of FNMT models, backtransla-
tion, reranking of the hypothesis and ensemble of models. The English-to-Latvian
training dataset is large (~2M) and the English-to-Czech training dataset is much
larger (~20M). We showed the results of the WMT’17 evaluation campaign par-
ticipation. FNMT models obtained better results in combination with BPE units
(FBPE model) in BEER automatic metric without using synthetic data. The Inter-
leaved FNMT (IFNMT) (Tamchyna et al., 2017) model using lemmas and factors in
a single output sequence has been trained. We compared it with the rest of the mod-
els but it performs only better than word-level NMT model showing that FNMT
models using two synchronized outputs have better architecture to learn lemmas
and factors. Adding synthetic data, all the systems obtained a big improvement.
The reranking method gives more improvement for Latvian translation than Czech
translation due to the absence of a linguistic Latvian tool to transform lemmas
and factors in words. Having a very strong baseline, FBPE model obtained better
results than BPE model in the newstest2017 test set translating Czech when mea-
sured in BEER and CTER automatic metrics. BLEU metric is the most common
machine translation automatic metric but it does not capture well the morphological
advantages of FNMT systems (Ananthakrishnan et al., 2006).

In Section 5.2, Arabic to French translation experiments have been carried out.
We have experimented with different FNMT models including FBPE and IFNMT
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models. In addition, we introduced a new model which combines IFNMT models
with the two synchronized outputs FNMT model. The FNMT systems have been
compared with NMT and BPE systems using a small training dataset in a first
experiment and a bigger one in a second one. The systems have been evaluated with
in-domain and out-of-domain test sets in order to compare different conditions.

We have demonstrated that factored NMT models are a good option for low
resource conditions obtaining better results than the rest of the models when us-
ing small training dataset and translating in-domain and out-of-domain test sets.
IFNMT models obtained better performance with in-domain data than FNMT mod-
els but with no big differences. On the other hand, when using out-of-domain data
FNMT models perform better than IFNMT. Therefore, FNMT models showed a
better architecture than IFNMT models to learn lemmas and factors. FBPE mod-
els performed better than FNMT models when training with bigger data showing
the benefits of factors and BPE combination.

In Section 5.3, we observed the weights distribution of the alignments extracted
from the attention mechanism and showed an example where BPE system could not
predict the right tense and FBPE system successfully predict it. Human evaluation
in WMT’17 did not result in a clear improvement of FBPE systems due to the lack
of annotators in Latvian translation and very similar results in Czech translation.

In a last set of experiments, we measured the morphological features using a
special test suite for Czech and Latvian translation. Three test sets have been
translated measuring the adequacy, fluency and consistency of the translations in
order to prove that FBPE system predicts better morphology than BPE systems.
We compared the best FBPE and BPE single systems and an ensemble of them.
Mixed results are obtained when translating English-to-Czech, in some cases BPE
predict better morphology than FBPE and in other cases the results are the opposite.
On the other hand, when translating English-to-Latvian, in all the cases the mean
of the features scores obtained by the systems is better for FBPE system than BPE
system. These results show that the Latvian morphology is better predicted by
FBPE system. One of the reason is that the training dataset is not very big. This
demonstrates that FNMT system is suitable when facing low resource conditions.

5.5 Related publications

The related publications of this chapter are:

Burlot*, F. and Garcia-Martinez*, M., Barrault, L., Bougares, F., and Yvon,
F. (2017). Word Representations in Factored Neural Machine Translation.
In Proceedings of the Second Conference on Machine Translation, Volume 1:
Research Paper, pages 20-31, Copenhagen, Denmark. Association for Compu-
tational Linguistics. *Equal contribution

Garcia-Martinez, M., Caglayan, O., Aransa, W., Bardet, A., Bougares, F., and
Barrault, L. (2017). LIUM Machine Translation Systems for WMT17 News
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Translation Task. In Proceedings of the Second Conference on Machine Trans-
lation, Volume 2: Shared Task Papers, pages 288-295, Copenhagen, Denmark.
Association for Computational Linguistics
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"Words travel worlds.
Translators do the driving".
Anna Rusconi

6.1 Conclusions

The goal of this research is enhancing neural machine translation (NMT) with ad-
ditional linguistic information. A new NMT architecture operating at factor level
instead of word level has been introduced. In this approach, factors based on linguis-
tic a priori knowledge have been used to decompose the words. Various Factored
NMT systems have been developed to include several related sequences at input
and output sides of the neural network. We have shown that the use of linguistic
factors allows the system to improve the generalization ability using lemmas and
PoS tags in order to have more coverage with only a small increase of the model
complexity. This work is one of the first attempt introducing multiple sequences in
order to include additional linguistic information in NMT.

The proposed Factored NMT (FNMT) approach is designed to face some re-
maining challenges of NMT. Firstly, the limitation on the target vocabulary size
which is a consequence of the computationally expensive softmax function at the
output layer of the network, leading to a high rate of unknown words. Secondly,
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data sparsity which is arising when we face a specific domain or a morphologically
rich language. The main feature of the FNMT system is the handling of vocabulary
at lemma and linguistic factors (including POS-tags) level, instead of words. The
system outputs two symbols synchronously, one for the lemma and the other for
the factors. In a post-process, the word is extracted knowing the lemma and the
factors. Humans also do this for language generation knowing only the base word
and how to inflect it. This feature allows the system to generate new words from a
lemma without explicitly seeing all the inflections in the training dataset and with-
out keeping them in the shortlist. We found out that this is specially useful for
highly inflected languages and small datasets with low coverage.

In the first experiments, we have compared the FNMT model to the word-
level NMT model for English to French translation task. We observed translation
improvements using the FNMT system (+1 BLEU point). Moreover, the FNMT
system is able to halve the number of generated unknown words. Using a simple
UNK replacement procedure involving a bilingual dictionary, we are able to obtain
even better results (+1.8 BLEU points). The FNMT system is able to model an
almost 6 times bigger word vocabulary and increase the coverage of the test file with
only a slight increment of the computational cost. The advantage of this approach
is that the new generated words are controlled by some linguistic knowledge, that
avoids producing incorrect words, as opposed to actual systems using BPE. FNMT
approach outperforms some other state of the art systems including BPE applied
only in the target language.

Different FNMT architectures have been compared using various dependencies
between lemmas and factors and experimenting different kind of feedback to generate
the next timestep of the model. We observed the translation outputs in a qualitative
analysis perceiving the benefits of the FNMT system over word-level and BPE-level
NMT systems. Factors approach is also applied at the input side using English as
source language. No benefits have been seen which can be explained by the fact
that English is a morphologically poor language and factors do not bring additional
information to the word.

More experiments have been performed using morphologically rich languages.
English to Czech and English to Latvian WMT’17 data has been used to compare
FNMT systems to state of the art systems. We applied BPE units at lemma level
and repeating the factors for each subword in a word in the FNMT approach (FBPE
system). It performed the best in terms of BEER metric when no backtranslated
data is used. Recent state of the art techniques have been applied: backtranslation,
n-best reranking and ensembling of models in all the systems pushing the results
to be competitive in the WM'T’17 evaluation campaign. Having a very strong BPE
baseline system, FBPE system outperformed it when translating the WMT’17 offi-
cial test set to Czech in terms of BEER and CTER automatic metrics.

State of the art models, including BPE, are also compared to the FNMT model
using small and big training datasets translating from Arabic to French. We found
out that factored models are more robust in low resource conditions. FBPE models
performed better than pure FNMT models when trained with big dataset showing
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the benefits of combining factors and BPE. Moreover, we experimented with different
domains obtaining improvements when the FNMT models are used.

In the last set of experiments, we measured the adequacy, fluency and consistency
of the Czech and Latvian translations using a special test suite in order to prove that
the FBPE system predicts better morphology than the BPE system. For translation
into Czech, factored systems performed better when using single models without
ensembling. This is due to the explicit modeling of the target morphology in FBPE
system. For translation into Latvian, the results show always a better result for
FBPE system, even when using ensembling. One of the reason is that the Latvian
training dataset is not as big as the Czech training dataset, therefore, factored
system can show its power.

The core finding of this thesis is that linguistic factors in NMT improve the
translation performance in low resource conditions. However, the combination of
BPE units with FNMT system can benefit models trained in high resource condi-
tions. Lastly, the generation of morphologically correct sentences is improved by
adding explicit linguistic information in the target language.

6.2 Perspectives

Factored NMT approach has brought a new field to explore. The additional linguis-
tics in NMT can be applied to any language that incorporates a PoS tagger.

For future work, instead of generating all the factors in the same sequence, the
architecture can be extended to produce each factor, independently, in a different
sequence. Actually, the factors vocabulary is determined by the training set. If we
build the factors vocabulary with each factor separately, the generalization power of
the model will be increased. More unseen word forms will be supported. However,
the complexity of the model increases and more incorrect factors for a lemma can
be generated.

In addition, more types of factors can be included without being necessarily
linguistically motivated like the domain.

Further experiments can be performed to check if the factors at input side can
benefit morphologically rich languages, when translating from other source lan-
guages than English. Including linguistic features at input side is likely to be helpful
for generating correct factors. Moreover, the rate of unknown words can be reduced
in the source sequence if we use only lemma and factors levels.

Finally, FNMT approach can be explored for other tasks where several related
sequences are required. For example, PoS tagging jointly with spoken language
understanding tasks. Additionally, multimodal or multilingual machine translation
models can be extended with the factored approach adding linguistic information
to help the generalization performance.
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6.3 Publications

The list of publications related to this thesis are:

Garcia-Martinez, M., Barrault, L., and Bougares, F. (2016). Factored Neu-
ral Machine Translation Architectures. In Proceedings of the International
Workshop on Spoken Language Translation, IWSLT 16, Seattle, USA

Garcia-Martinez, M., Barrault, L., and Bougares, F. (2017). "Neural Ma-
chine Translation by Generating Multiple Linguistic Factors". In Camelin,
N., Estéve, Y., and Martin-Vide, C., editors, Statistical Language and Speech
Processing, pages 21-31, Cham. Springer International Publishing

Garcia-Martinez, M., Caglayan, O., Aransa, W., Bardet, A., Bougares, F., and
Barrault, L. (2017). LIUM Machine Translation Systems for WMT17 News
Translation Task. In Proceedings of the Second Conference on Machine Trans-
lation, Volume 2: Shared Task Papers, pages 288-295, Copenhagen, Denmark.
Association for Computational Linguistics

Burlot*, F. and Garcia-Martinez*, M., Barrault, L., Bougares, F., and Yvon,
F. (2017). Word Representations in Factored Neural Machine Translation.
In Proceedings of the Second Conference on Machine Translation, Volume 1:
Research Paper, pages 20-31, Copenhagen, Denmark. Association for Compu-
tational Linguistics. *Equal contribution

Caglayan, O., Garcia-Martinez, M., Bardet, A., Aransa, W., Bougares, F.,
and Barrault, L. (2017). NMTPY: A Flexible Toolkit for Advanced Neural
Machine Translation Systems. Prague Bull. Math. Linguistics, 109:15-28



BIBLIOGRAPHY

Al-Rfou, R., Alain, G., Almahairi, A., Angermiiller, C., Bahdanau, D., Ballas,
N., Bastien, F., Bayer, J., Belikov, A., Belopolsky, A., Bengio, Y., Bergeron, A.,
Bergstra, J., Bisson, V., Snyder, J. B., Bouchard, N., Boulanger-Lewandowski, N.,
Bouthillier, X., de Brébisson, A., Breuleux, O., Carrier, P. L., Cho, K., Chorowski,
J., Christiano, P., Cooijmans, T., Coté, M., Coté, M., Courville, A. C., Dauphin,
Y. N., Delalleau, O., Demouth, J., Desjardins, G., Dieleman, S., Dinh, L., Ducoffe,
M., Dumoulin, V., Kahou, S. E., Erhan, D., Fan, Z., Firat, O., Germain, M.,
Glorot, X., Goodfellow, I. J., Graham, M., Gililcehre, C., Hamel, P., Harlouchet,
I., Heng, J., Hidasi, B., Honari, S., Jain, A., Jean, S.; Jia, K., Korobov, M.,
Kulkarni, V., Lamb, A., Lamblin, P., Larsen, E., Laurent, C., Lee, S., Lefrancois,
S., Lemieux, S., Léonard, N., Lin, Z., Livezey, J. A., Lorenz, C., Lowin, J., Ma, Q.,
Manzagol, P.,; Mastropietro, O., McGibbon, R., Memisevic, R., van Merriénboer,
B., Michalski, V., Mirza, M., Orlandi, A., Pal, C. J., Pascanu, R., Pezeshki,
M., Raffel, C., Renshaw, D., Rocklin, M., Romero, A., Roth, M., Sadowski, P.,
Salvatier, J., Savard, F., Schliiter, J., Schulman, J., Schwartz, G., Serban, 1. V.,
Serdyuk, D., Shabanian, S., Simon, E., Spieckermann, S., Subramanyam, S. R.,
Sygnowski, J., Tanguay, J., van Tulder, G., Turian, J. P., Urban, S., Vincent, P.,
Visin, F., de Vries, H., Warde-Farley, D., Webb, D. J., Willson, M., Xu, K., Xue,
L., Yao, L., Zhang, S., and Zhang, Y. (2016). Theano: A python framework for
fast computation of mathematical expressions. CoRR, abs/1605.02688.

Alexandrescu, A. (2006). Factored neural language models. In In HLT-NAACL.

Allen, R. B. (1987). Several studies on natural language and back-propagation. In
In Proceedings of the IEEE First International Conference on Neural Networks
(San Diego, CA), volume n, pages 335-341. IEEE.

Ananthakrishnan, R., Bhattacharyya, P., Sasikumar, M., and Shah, R. (2006). Some
Issues in Automatic Evaluation of English-Hindi MT: More Blues for BLEU. In
Proceeding of 5th International Conference on Natural Language Processing.



108 Bibliography

Ataman, D., Negri, M., Turchi, M., and Federico, M. (2017). Linguistically moti-
vated vocabulary reduction for neural machine translation from Turkish to En-
glish. In In Proceedings of EAMT.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv
preprint arXw:1607.06450.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR, abs/1409.0473.

Baltescu, P., Blunsom, P., and Hoang, H. (2014). OxLM: A Neural Language
Modelling Framework for Machine Translation. Prague Bull. Math. Linguistics,
102:81-92.

Belinkov, Y., Durrani, N., Dalvi, F., Sajjad, H., and Glass, J. R. (2017). What
do Neural Machine Translation Models Learn about Morphology? CoRR,
abs/1704.03471.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A Neural Probabilis-
tic Language Model. J. Mach. Learn. Res., 3:1137-1155.

Bilmes, J. A. and Kirchhoff, K. (2003). Factored Language Models and Generalized
Parallel Backoff. In Proceedings of the 2008 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language
Technology: Companion Volume of the Proceedings of HLT-NAACL 2003-short
Papers - Volume 2, NAACL-Short ’03, pages 4-6, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Bojar, O. (2007). English-to-Czech Factored Machine Translation. In Proc. of the
Ind WMT, pages 232-239, Prague, Czech Republic.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huang, S.,
Huck, M., Koehn, P., Liu, Q., Logacheva, V., Monz, C., Negri, M., Post, M., Ru-
bino, R., Specia, L., and Turchi, M. (2017). Findings of the 2017 Conference on
Machine Translation (WMT17). In Proceedings of the Second Conference on Ma-
chine Translation, Volume 2: Shared Task Papers, pages 169-214, Copenhagen,
Denmark. Association for Computational Linguistics.

Bojar, O., Graham, Y., Kamran, A., and Stanojevi¢, M. (2016). Results of the
WMT16 Metrics Shared Task. In Proc. WMT, pages 199-231, Berlin, Germany.

Bojar, O., Jawaid, B., and Kamran, A. (2012). Probes in a Taxonomy of Factored
Phrase-based Models. In Proceedings of the Seventh Workshop on Statistical Ma-
chine Translation, WM'T 12, pages 253-260, Stroudsburg, PA, USA.

Bojar, O. and Kos, K. (2010). Failures in English-Czech Phrase-based MT. In Proc.
of the 5th WMT, pages 60-66.



Bibliography 109

Bojar, O. and Tamchyna, A. (2011). Improving Translation Model by Monolingual
Data. In Proceedings of the Sizth Workshop on Statistical Machine Translation,
WMT ’11, pages 330-336, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992).
Class-based N-gram Models of Natural Language. Comput. Linguist., 18(4):467—
479.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993). The
Mathematics of Statistical Machine Translation: Parameter Estimation. Comput.
Linguist., 19(2):263-311.

Burlot, F., Knyazeva, E., Lavergne, T., and Yvon, F. (2016). Two-Step MT: Pre-
dicting Target Morphology. In Proc. IWSLT, Seattle, USA.

Burlot, F. and Yvon, F. (2017). Evaluating the morphological competence of Ma-
chine Translation Systems. In Proceedings of the Second Conference on Machine
Translation (WMT’17), Copenhagen, Denmark. Association for Computational
Linguistics.

Burlot*, F. and Garcia-Martinez*, M., Barrault, L., Bougares, F., and Yvon, F.
(2017). Word Representations in Factored Neural Machine Translation. In Pro-
ceedings of the Second Conference on Machine Translation, Volume 1: Research
Paper, pages 20-31, Copenhagen, Denmark. Association for Computational Lin-
guistics. *Equal contribution.

Caglayan, O., Barrault, L., and Bougares, F. (2016). Multimodal Attention for
Neural Machine Translation. CoRR, abs/1609.03976.

Caglayan, O., Garcia-Martinez, M., Bardet, A., Aransa, W., Bougares, F., and
Barrault, L. (2017). NMTPY: A Flexible Toolkit for Advanced Neural Machine
Translation Systems. Prague Bull. Math. Linguistics, 109:15-28.

Callison-Burch, C., Osborne, M., and Koehn, P. (2006). Re-evaluating the Role of
BLEU in Machine Translation Research. In In EACL, pages 249-256.

Castano, M. A. and Casacuberta., F. (1997). A connectionist approach to machine
translation. In In FUROSPEECH.

Chen, W., Grangier, D., and Auli, M. (2015). Strategies for Training Large Vocab-
ulary Neural Language Models. CoRR, abs/1512.04906.

Chen, W., Matusov, E., Khadivi, S., and Peter, J. (2016). Guided Alignment
Training for Topic-Aware Neural Machine Translation. CoRR, abs/1607.01628.

Chiang, D. (2005). A Hierarchical Phrase-based Model for Statistical Machine Trans-
lation. In Proceedings of the 48rd Annual Meeting on Association for Computa-
tional Linguistics, ACL ’05, pages 263-270, Stroudsburg, PA, USA. Association
for Computational Linguistics.



110 Bibliography

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014a). On the
Properties of Neural Machine Translation: Encoder-Decoder Approaches. In Proc.
SSSTQEMNLP, pages 103-111, Doha, Qatar.

Cho, K., van Merrienboer, B., Giilgehre, ., Bougares, F., Schwenk, H., and Bengio,
Y. (2014b). Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. CoRR, abs/1406.1078.

Chrisman, L. (1991). Learning Recursive Distributed Representations for Holistic
Computation. CONNECTION SCIENCE, 3:345-366.

Chung, J., Cho, K., and Bengio, Y. (2016). A Character-level Decoder without
Explicit Segmentation for Neural Machine Translation. CoRR, abs/1603.06147.

Costa-jussa, R. M. and Fonollosa, R. J. A. (2016). Character-based Neural Machine
Translation. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 357-361.

Crego, J. M. and Yvon, F. (2010). Factored Bilingual N-gram Language Models for
Statistical Machine Translation. Machine Translation, 24(2):159-175.

Dalvi, F., Durrani, N., Sajjad, H., Belinkov, Y., and Vogel, S. (2017). Understand-
ing and Improving Morphological Learning in the Neural Machine Translation
Decoder. In IJCNLP.

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R. M., and Makhoul, J.
(2014). Fast and Robust Neural Network Joint Models for Statistical Machine
Translation. In ACL.

Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015). Multi-Task Learning for
Multiple Language Translation. In ACL.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization. J. Mach. Learn. Res., 12:2121—
2159.

Durrani, N., Koehn, P., Schmid, H., and Fraser, A. (2014). Investigating the Use-
fulness of Generalized Word Representations in SMT. In Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics: Technical
Papers, pages 421-432, Dublin, Ireland. Dublin City University and Association
for Computational Linguistics.

El Kholy, A. and Habash, N. (2012a). Rich Morphology Generation Using Statistical
Machine Translation. In Proc. INLG, pages 90-94.

El Kholy, A. and Habash, N. (2012b). Translate, Predict or Generate: Modeling
Rich Morphology in Statistical Machine Translation. In Proc. EAMT, pages 27—
34, Trento, Italy.



Bibliography 111

Elliott, D., Frank, S., and Hasler, E. (2015). Multi-Language Image Description
with Neural Sequence Models. CoRR, abs/1510.04709.

Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2):179-211.

Eriguchi, A., Hashimoto, K., and Tsuruoka, Y. (2016). Tree-to-Sequence Attentional
Neural Machine Translation. CoRR, abs/1603.06075.

Firat, O. and Cho, K. (2016). Conditional Gated Recurrent Unit with At-
tention Mechanism. github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/
cgru.pdf.

Firat, O., Cho, K., Sankaran, B., Yarman Vural, F. T., and Bengio, Y. (2017). Multi-
way, Multilingual Neural Machine Translation. Comput. Speech Lang., 45(C):236—
252.

Fraser, A., Weller, M., Cahill, A., and Cap, F. (2012). Modeling Inflection and
Word-Formation in SMT. In Proc. EACL, pages 664674, Avignon, France.

Garcifa-Martinez, M., Barrault, L., and Bougares, F. (2016). Factored Neural Ma-
chine Translation Architectures. In Proceedings of the International Workshop on
Spoken Language Translation, IWSLT’16, Seattle, USA.

Garcia-Martinez, M., Barrault, L., and Bougares, F. (2017). "Neural Machine Trans-
lation by Generating Multiple Linguistic Factors". In Camelin, N., Estéve, Y.,
and Martin-Vide, C., editors, Statistical Language and Speech Processing, pages
21-31, Cham. Springer International Publishing.

Garcia-Martinez, M., Caglayan, O., Aransa, W., Bardet, A., Bougares, F., and Bar-
rault, L. (2017). LIUM Machine Translation Systems for WMT17 News Trans-
lation Task. In Proceedings of the Second Conference on Machine Translation,
Volume 2: Shared Task Papers, pages 288-295, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Glorot, X. and Bengio, Y. (2010a). Understanding the difficulty of training deep
feedforward neural networks. In In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS’10). Society for Artificial In-
telligence and Statistics.

Glorot, X. and Bengio, Y. (2010b). Understanding the difficulty of training deep
feedforward neural networks. In In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS’10). Society for Artificial In-
telligence and Statistics.

Green, S., Wang, S., Cer, D., and Manning, C. D. (2013). Fast and Adaptive Online
Training of Feature-Rich Translation Models. In ACL.


github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf
github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf

112 Bibliography

Gupta, P., Joshi, N., and Mathur, I. (2014). Automatic Ranking of Machine Trans-
lation Outputs Using Linguistic Factors. International Journal of Advanced Com-
puter Research, 4(2):510.

Habash, N.; Roth, R., Rambow, O., Esk, R., and Tomeh, N. (2013). Morphological
Analysis and Disambiguation for Dialectal Arabic. In In Proceedings of the 2013

Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT.

Haddow, B. and Koehn, P. (2012). "Interpolated backoff for factored translation
models”. Association for Machine Translation in the Americas, AMTA.

Hoang, H. and Koehn, P. (2009). Improving Mid-range Reordering Using Templates
of Factors. In Proceedings of the 12th Conference of the European Chapter of the
Association for Computational Linguistics, EACL ’09, pages 372-379, Strouds-
burg, PA, USA. Association for Computational Linguistics.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Comput., 9(8):1735-1780.

Huck, M., Riess, S., and Fraser, A. (2017a). Target-side word segmentation strategies
for neural machine translation. In In Proceedings of the Second Conference on
Machine Translation (WMT), Copenhagen, Denmark.

Huck, M., Tamchyna, A., Bojar, O., and Fraser, A. (2017b). Producing Unseen
Morphological Variants in Statistical Machine Translation. In FACL.

Isozaki, H., Hirao, T., Duh, K., Sudoh, K., and Tsukada, H. (2010). Automatic
Evaluation of Translation Quality for Distant Language Pairs. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing,
EMNLP ’10, pages 944-952, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Jawaid, B. and Bojar, O. (2014). Two-Step Machine Translation with Lattices. In
Chair), N. C. C., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani,
J., Moreno, A., Odijk, J., and Piperidis, S., editors, Proceedings of the Ninth In-
ternational Conference on Language Resources and Evaluation (LREC’14), Reyk-
javik, Iceland. European Language Resources Association (ELRA).

Jean, S.,; Cho, K., Memisevic, R., and Bengio, Y. (2015a). On Using Very Large
Target Vocabulary for Neural Machine Translation. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 1-10, Beijing, China.

Jean, S.; Firat, O., Cho, K., Memisevic, R., and Bengio, Y. (2015b). Montreal
Neural Machine Translation Systems for WMT’15. In WMT@EMNLP.



Bibliography 113

Jelinek, F. (1969). Fast Sequential Decoding Algorithm Using a Stack. IBM J. Res.
Dev., 13(6):675-685.

Jelinek, F., Bahl, L., and Mercer, R. (1975). Design of a Linguistic Statistical
Decoder for the Recognition of Continuous Speech. [EEE Trans. Inf. Theor.,
21(3):250-256.

Jordan, M. (1986). Serial Order: A Parallel Distributed Processing Approach. 1CS
report. Institute for Cognitive Science, University of California, San Diego.

Kalchbrenner, N. and Blunsom, P. (2013). Recurrent Continuous Translation Mod-
els. In EMNLP.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiw:1412.6980.

Koehn, P. and Hoang, H. (2007). Factored translation models. In In Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL, pages 868-876.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin,
A., and Herbst, E. (2007). Moses: Open Source Toolkit for Statistical Machine
Translation. In Proceedings of the 45th Annual Meeting of the ACL on Interactive
Poster and Demonstration Sessions, ACL ’07, pages 177-180, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical Phrase-based Transla-
tion. In Proceedings of the 2003 Conference of the North American Chapter of
the Association for Computational Linguistics on Human Language Technology
- Volume 1, NAACL ’03, pages 48-54, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Lavie, A. and Agarwal, A. (2007). Meteor: an automatic metric for M'T evaluation
with high levels of correlation with human judgments. In Proceedings of the
Second Workshop on Statistical Machine Translation, StatMT "07, pages 228-231,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Le, H.-S., Allauzen, A., and Yvon, F. (2012). Continuous Space Translation Models
with Neural Networks. In Proceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL HLT ’12, pages 39-48, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Le, H.-S., Oparin, 1., Messaoudi, A., Allauzen, A., Gauvain, J.-L.., and Yvon, F.
(2011). Large Vocabulary SOUL Neural Network Language Models. In INTER-
SPEECH.



114 Bibliography

Lee, J., Cho, K., and Hofmann, T. (2016). Fully Character-Level Neural Machine
Translation without Explicit Segmentation. CoRR, abs/1610.03017.

Li, J., Cheng, J.-h., Shi, J.-y., and Huang, F. (2012). "Brief Introduction of Back
Propagation (BP) Neural Network Algorithm and Its Improvement". In Jin, D.
and Lin, S., editors, Advances in Computer Science and Information Engineering,
pages 553-558, Berlin, Heidelberg. Springer Berlin Heidelberg.

Ling, W., Trancoso, I., Dyer, C., and Black, A. W. (2015). Character-based Neural
Machine Translation. CoRR, abs/1511.04586.

Luong, M., Le, Q. V., Sutskever, L., Vinyals, O.; and Kaiser, L. (2015a). Multi-task
Sequence to Sequence Learning. CoRR, abs/1511.06114.

Luong, M.-T. and Manning, D. C. (2016). Achieving Open Vocabulary Neural
Machine Translation with Hybrid Word-Character Models. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1054-1063.

Luong, M.-T., Nakov, P., and Kan, M.-Y. (2010). A Hybrid Morpheme-word Repre-
sentation for Machine Translation of Morphologically Rich Languages. In Proceed-
ings of the 2010 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP ’10, pages 148-157, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Luong, T., Sutskever, L., Le, Q. V., Vinyals, O., and Zaremba, W. (2015b). Ad-
dressing the Rare Word Problem in Neural Machine Translation. In ACL.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient Estimation of
Word Representations in Vector Space. In Proceedings of Workshop at ICLR.

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., and Khudanpur, S. (2010).
Recurrent neural network based language model. In INTERSPEECH, volume 2,
page 3.

Minkov, E., Toutanova, K., and Suzuki, H. (2007). Generating Complex Morphology
for Machine Translation. In Proc. ACL, pages 128-135, Prague, Czech Republic.

Mnih, A. and Hinton, G. (2008). A Scalable Hierarchical Distributed Language
Model. In Advances in Neural Information Processing Systems 21, volume 21,

pages 1081-1088.

Nadejde, M., Reddy, S., Sennrich, R., Dwojak, T., Junczys-Dowmunt, M., Koehn,
P., and Birch, A. (2017). Syntax-aware Neural Machine Translation Using CCG.
CoRR, abs/1702.01147.

Nasr, A., Béchet, F., Rey, J.-F., Favre, B., and Roux, J. L. (2011). MACAON, An
NLP Tool Suite for Processing Word Lattices. In Proceedings of the ACL-HLT
2011 System Demonstrations, pages 86-91.



Bibliography 115

Neco, R. and Forcada, M. (1997). Asynchronous translations with recurrent neural
nets. In In International Conf. on Neural Networks,, volume 4, page 2535-2540.

Ngoc-Quan, P., Matthias, S., Elizabeth, S., Thanh-Le, H., Jan, N., and Alexander,
W. (2017). KIT’s Multilingual Neural Machine Translation systems for IWSLT

2017. In Proceedings of the International Workshop on Spoken Language Trans-
lation, IWSLT’17, Tokyo, Japan.

Niehues, J. and Cho, E. (2017). Exploiting Linguistic Resources for Neural Machine
Translation Using Multi-task Learning. In Proceedings of the Second Conference
on Machine Translation, Volume 1: Research Papers, pages 80-89, Copenhagen,
Denmark. Association for Computational Linguistics.

Niehues, J., Ha, T.-L., Cho, E., and Waibel, A. (2016). Using Factored Word
Representation in Neural Network Language Models. In Proceedings of the First
Conference on Machine Translation, pages 74-82, Berlin, Germany. Association
for Computational Linguistics.

Nirenburg, S. (1989). "Knowledge-based machine translation". Machine Transla-
tion, 4(1):5-24.

Och, F. J. (1999). An Efficient Method for Determining Bilingual Word Classes.
In Proceedings of the Ninth Conference on European Chapter of the Association
for Computational Linguistics, EACL 99, pages 71-76, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Och, F. J. and Ney, H. (2004). The Alignment Template Approach to Statistical
Machine Translation. Comput. Linguist., 30(4):417-449.

Paikens, P., Rituma, L., and Pretkalnina, L. (2013). Morphological analysis with
limited resources: Latvian example. In Proc. NODALIDA, pages 267-277.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002a). BLEU: A Method for
Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, ACL ’02, pages 311-318,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002b). BLEU: a method for
automatic evaluation of machine translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, ACL 02, pages 311-318,
Stroudsburg, PA, USA.

Pascanu, R., Mikolov, T., and Bengio, Y. (2012). Understanding the exploding
gradient problem. CoRR, abs/1211.5063.

Pasha, A., Elbadrashiny, M., Diab, M., Elkholy, A., Eskandar, R., Habash, N,
Pooleery, M., Rambow, O., and Roth, R. (2014). MADAMIRA: A Fast, Com-
prehensive Tool for Morphological Analysis and Disambiguation of Arabic. pages
1094-1101.



116 Bibliography

Press, O. and Wolf, L. (2016). Using the Output Embedding to Improve Language
Models. CoRR, abs/1608.05859.

Ramanathan, A., Choudhary, H., Ghosh, A., and Bhattacharyya, P. (2009). Case
Markers and Morphology: Addressing the Crux of the Fluency Problem in
English-Hindi SMT. In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 2 - Volume 2, ACL 09, pages 800-808,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Rousseau, A. (2013). XenC: An Open-Source Tool for Data Selection in Natural
Language Processing. The Prague Bulletin of Mathematical Linguistics, 100:73—
82.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747.

Sagot, B. (2010). The Lefff, a freely available and large-coverage morphological
and syntactic lexicon for French. In 7th international conference on Language
Resources and Evaluation (LREC 2010), Valletta, Malta.

Sanchez-Cartagena, V. M. and Toral, A. (2016). Abu-MaTran at WMT 2016 Trans-
lation Task: Deep Learning, Morphological Segmentation and Tuning on Charac-
ter Sequences. In WMT.

Schwenk, H. (2010). Continuous space language models for statistical machine trans-
lation. In The Prague Bulletin of Mathematical Linguistics, (93):137-146.

Schwenk, H. (2012). Continuous Space Translation Models for Phrase-Based Statis-
tical Machine Translation. In COLING (Posters), pages 1071-1080.

Sennrich, R. (2016). How Grammatical is Character-level Neural Machine Trans-
lation?  Assessing MT Quality with Contrastive Translation Pairs. CoRR,
abs/1612.04629.

Sennrich, R. and Haddow, B. (2016). Linguistic Input Features Improve Neural
Machine Translation. CoRR, abs/1606.02892.

Sennrich, R., Haddow, B., and Birch, A. (2016a). Edinburgh Neural Machine Trans-
lation Systems for WMT 16. CoRR, abs/1606.02891.

Sennrich, R., Haddow, B., and Birch, A. (2016b). Improving Neural Machine Trans-
lation Models with Monolingual Data. In Proc. ACL.

Sennrich, R., Haddow, B., and Birch, A. (2016¢). Neural Machine Translation of
Rare Words with Subword Units. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages
1715-1725. Association for Computational Linguistics.



Bibliography 117

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
Journal of Machine Learning Research, 15:1929-1958.

Stanojevi¢, M. and Sima’an, K. (2014). Fitting Sentence Level Translation Evalua-
tion with Many Dense Features. In Proc. EMNLP, pages 202-206, Doha, Qatar.

Strakova, J., Straka, M., and Haji¢, J. (2014). Open-Source Tools for Morphology,
Lemmatization, POS Tagging and Named Entity Recognition. In Proc. ACL:
System Demos, pages 13-18, Baltimore, MA.

Surafel, M. L., Quintino, F. L., Marco, T., Matteo, N., and Marcello, F. (2017).
FBK’s Multilingual Neural Machine Translation System for IWSLT 2017. In
Proceedings of the International Workshop on Spoken Language Translation,
IWSLT’17, Tokyo, Japan.

Sutskever, 1., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learning
with Neural Networks. CoRR, abs/1409.3215.

Tamchyna, A., Marco, M. W.-D., and Fraser, A. (2017). Modeling Target-Side
Inflection in Neural Machine Translation. In Proceedings of the Second Conference
on Machine Translation (WMT), Copenhagen, Denmark.

Toutanova, K., Suzuki, H., and Ruopp, A. (2008). Applying Morphology Gener-
ation Models to Machine Translation. In Proc. ACL-08: HLT, pages 514-522,
Columbus, OH.

Vanden Berghen, F. and Bersini, H. (2005). CONDOR, a New Parallel, Constrained
Extension of Powell’s UOBYQA Algorithm: FExperimental Results and Compar-
ison with the DFO Algorithm. J. Comput. Appl. Math., 181(1):157-175.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and tell: A neural
image caption generator. In Computer Vision and Pattern Recognition.

Wang, W., Peter, J.-T., Rosendahl, H., and Ney, H. (2016). CharacTer: Translation
Edit Rate on Character Level. In Proc. WMT, pages 505-510, Berlin, Germany.

Weller, M., Fraser, A. M., and im Walde, S. S. (2013). Using subcategorization
knowledge to improve case prediction for translation to German. In ACL (1),
pages 593-603. The Association for Computer Linguistics.

Weller-Di Marco, M., Fraser, A., and Schulte im Walde, S. (2016). Modeling Com-
plement Types in Phrase-Based SMT. In Proceedings of the First Conference on
Machine Translation, pages 43-53, Berlin, Germany. Association for Computa-
tional Linguistics.

Wu, D. (1997). Stochastic Inversion Transduction Grammars and Bilingual Parsing
of Parallel Corpora. Comput. Linguist., 23(3):377-403.



118 Bibliography

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu,
X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian,
G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals,
O., Corrado, G., Hughes, M., and Dean, J. (2016). Google’s Neural Machine
Translation System: Bridging the Gap between Human and Machine Translation.
CoRR, abs/1609.08144.

Wu, Y., Yamamoto, H., Lu, X., Matsuda, S., Hori, C., and Kashioka, H. (2012).
Factored recurrent neural network language model in TED lecture transcription.
In ITWSLT.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and
Bengio, Y. (2015). Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention. In Proceedings of The 32nd International Conference on
Machine Learning, pages 2048-2057.

Yamada, K. and Knight, K. (2001). A Syntax-based Statistical Translation Model.
In Proceedings of the 89th Annual Meeting on Association for Computational Lin-
guistics, ACL ’01, pages 523-530, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Yang, Z., Salakhutdinov, R., and Cohen, W. W. (2016). Multi-Task Cross-Lingual
Sequence Tagging from Scratch. CoRR, abs/1603.06270.

Youssef, I., Sakr, M., and Kouta, M. (2009). Linguistic Factors in Statistical Machine
Translation Involving Arabic Language. CoRR, 9(11):154-159.

Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. CoRR,
abs/1212.5701.

Zhang, H., Gildea, D., and Chiang, D. (2008). Extracting Synchronous Grammar
Rules from Word-level Alignments in Linear Time. In Proceedings of the 22Nd
International Conference on Computational Linguistics - Volume 1, COLING 08,
pages 1081-1088, Stroudsburg, PA, USA. Association for Computational Linguis-
tics.

Zoph, B. and Knight, K. (2016). Multi-Source Neural Translation. CoRR,
abs/1601.00710.



APPENDIX A

APPENDIX

A.1 WMT’17 evaluation campaign: human results

The official WMT’17 evaluation campaign was carried out by a human ranking of
the translation outputs of the submitted systems. More details can be found in
Bojar et al. (2017). In this appendix, we compared our submitted systems (named
as LIUM) with the other candidate systems.

# Model Average % Average z
1 uedin-nmt 62.0 0.308
2 online-B 59.7 0.240
3 limsi-factored-norm 55.9 0.111
LIUM-FBPE 55.2 0.102
LIUM-BPE 55.2 0.090
CU-Chimera, 54.1 0.050
online-A 53.3 0.029
8  TT-ufal-8GB 44.9 -0.236
9  TT-afrl-4GB 42.2 -0.315
PJATK 41.9 -0.327
TT-base-8GB 40.7 -0.373
TT-afrl-8GB 40.5 -0.376
13 TT-ufal-4GB 36.5 -0.486
TT-denisov-4GB 36.6 -0.493

Table A.1: Official human evaluation results of WMT’17 News translation task
for English-to-Czech translation. Systems are ordered by standardized mean DA
score. Lines between systems indicate clusters according to Wilcoxon rank-sum test
at p-level p < 0.05. Italics font in the model name indicates unconstrained systems
(use of resources outside the constraints data provided).

For English-to-Czech translation task (see Table A.1), our LIUM systems are
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ranked in the third group. This group contains systems from the 3rd until the 7th
ranked system over a total of 14 systems. If we discard unconstrained data systems,
this group is between the 2nd and 6th systems over 12 constrained data systems.

# Model Average % Average 2

1 tilde-nc-nmt-smt 54.4 0.196
online-B 51.6 0.121
tilde-c-nmt-smt 51.1 0.104
limsi-fact-norm 50.8 0.075
usfd-cons-qt21 50.0 0.058
QT21-Comb 47.1 -0.014
usfd-cons-kit 47.3 -0.027
KIT 45.7 -0.063
uedin-nmt 45.2 -0.072
tilde-nc-smt 44.9 -0.099
LIUM-FBPE 43.2 -0.157
LIUM-BPE 43.0 -0.198
HY-HNMT 40.1 -0.253
online-A 37.5 -0.341
jhu-pbmt 36.1 -0.368
C-3MA 33.3 -0.457

17 PJATK 18.8 -0.947

Table A.2: Official human evaluation results of WMT’17 News translation task
for English-to-Latvian translation. Systems are ordered by standardized mean DA
score. Lines between systems indicate clusters according to Wilcoxon rank-sum test
at p-level p < 0.05. Italics font in the model name indicates unconstrained systems
(use of resources outside the constraints data provided).

For English-to-Latvian translation task (see Table A.2), our LIUM systems are
in the first group. However, this group includes all the English-to-Latvian systems
in the campaign excepting one, because there were not enough annotators to well
evaluate them.
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Résumé

La diversité des langues complexifie la tache de
communication entre les humains a travers les différentes
cultures. La traduction automatique est un moyen rapide et
peu colteux pour simplifier la communication interculturelle.
Récemment, la Traduction Automatique Neuronale (NMT) a
atteint des résultats impressionnants. Cette these
s'intéresse a la Traduction Automatique Neuronale Factorisé
(FNMT) qui repose sur l'idée d'utiliser la morphologie et la
décomposition grammaticale des mots (lemmes et facteurs
linguistiques) dans la langue cible. Cette architecture
aborde deux défis bien connus auxquelles les systémes
NMT font face. Premiérement, la limitation de la taille du
vocabulaire cible, conséquence de la fonction softmax, qui
nécessite un calcul colteux a la couche de sortie du réseau
neuronale, conduisant a un taux élevé de mots inconnus.
Deuxiemement, le manque de données adéquates lorsque
nous sommes confrontés a un domaine spécifique ou une
langue morphologiquement riche. Avec I'architecture FNMT,
toutes les inflexions des mots sont prises en compte et un
vocabulaire plus grand est modélisé tout en gardant un colt
de calcul similaire. De plus, de nouveaux mots non
rencontrés dans les données d'entrainement peuvent étre
générés. Dans ce travail, jai développé différentes
architectures FNMT en utilisant diverses dépendances entre
les lemmes et les facteurs. En outre, j'ai amélioré la
représentation de la langue source avec des facteurs. Le
modele FNMT est évalué sur différentes langues dont les
plus riches morphologiquement. Les modéles a I'état de
I'art, dont certains utilisant le Byte Pair Encoding (BPE) sont
comparés avec le modele FNMT en utilisant des données
d'entrainement de petite et de grande taille. Nous avons
constaté que les modeéles utilisant les facteurs sont plus
robustes aux conditions d'entrainement avec des faibles
ressources. Le FNMT a été combiné avec des unités BPE
permettant une amélioration par rapport au modele FNMT
entrainer avec des données volumineuses. Nous avons
expérimenté avec différents domaines et nous avons montré
des améliorations en utilisant les modéles FNMT. De plus, la
justesse de la morphologie est mesurée a l'aide d'un
ensemble de tests spéciaux montrant I'avantage de
modéliser explicitement la morphologie de la cible. Notre
travail montre les bienfaits de I'application de facteurs
linguistiques dans le NMT.

Mots clés

Traduction Automatique Neuronale, Modéles Factorisés,
Apprendissage Profond, Réseaux de Neurones,
Traduction Automatique

Abstract

Communication between humans across the lands is difficult
due to the diversity of languages. Machine translation is a
quick and cheap way to make translation accessible to
everyone. Recently, Neural Machine Translation (NMT) has
achieved impressive results. This thesis is focus on the
Factored Neural Machine Translation (FNMT) approach
which is founded on the idea of using the morphological and
grammatical decomposition of the words (lemmas and
linguistic factors) in the target language. This architecture
addresses two well-known challenges occurring in NMT.
Firstly, the limitation on the target vocabulary size which is a
consequence of the computationally expensive softmax
function at the output layer of the network, leading to a high
rate of unknown words. Secondly, data sparsity which is
arising when we face a specific domain or a morphologically
rich language. With FNMT, all the inflections of the words
are supported and larger vocabulary is modelled with similar
computational cost. Moreover, new words not included in
the training dataset can be generated. In this work, |
developed different FNMT architectures using various
dependencies between lemmas and factors. In addition, |
enhanced the source language side also with factors. The
FNMT model is evaluated on various languages including
morphologically rich ones. State of the art models, some
using Byte Pair Encoding (BPE) are compared to the FNMT
model using small and big training datasets. We found out
that factored models are more robust in low resource
conditions. FNMT has been combined with BPE units
performing better than pure FNMT model when trained with
big data. We experimented with different domains obtaining
improvements with the FNMT models. Furthermore, the
morphology of the translations is measured using a special
test suite showing the importance of explicity modeling the
target morphology. Our work shows the benefits of applying
linguistic factors in NMT.

Key Words
Neural Machine Translation, Factored models, Deep
Learning, Neural Networks, Machine Translation
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