N. Adam, L. Vergauwen, R. Blust, and D. Knapen, Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles, Environ. Res, vol.138, pp.82-92, 2015.

D. Ali, P. G. Yadav, S. Kumar, H. Ali, S. Alarifi et al., Sensitivity of freshwater pulmonate snail Lymnaea luteola L., to silver nanoparticles, Chemosphere, 2014.

J. Arce-funck, M. Danger, E. Gismondi, C. Cossu-leguille, F. Guérold et al., Behavioural and physiological responses of Gammarus fossarum (Crustacea Amphipoda) exposed to silver, Aquat. Toxicol, pp.73-84, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01115111

P. Asharani, M. P. Hande, and S. Valiyaveettil, Anti-proliferative activity of silver nanoparticles, BMC Cell Biol, vol.10, p.65, 2009.

P. V. Asharani, G. Low-kah-mun, M. P. Hande, and S. Valiyaveettil, Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells, ACS Nano, vol.3, pp.279-290, 2009.

D. M. Auffan, D. C. Santaella, P. A. Thiéry, C. Paillès, J. Rose et al., Ecotoxicity of Inorganic Nanoparticles: From Unicellular Organisms to Invertebrates, Encyclopedia of Nanotechnology, pp.623-636, 2012.

M. Auffan, J. Rose, M. Wiesner, and J. Bottero, Chemical stability of metallic nanoparticles : a parameter controlling their potential cellular toxicity in vitro, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01793984

C. Bacchetta, A. Ale, M. F. Simoniello, S. Gervasio, C. Davico et al., Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles, Ecol. Indic, vol.76, pp.230-239, 2017.

C. Barata, I. Varo, J. C. Navarro, S. Arun, and C. Porte, Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, vol.140, pp.175-186, 2005.

M. Baudrimont, J. Andrei, S. Mornet, P. Gonzalez, N. Mesmer-dudons et al., Trophic transfer and effects of gold nanoparticles (AuNPs) in Gammarus fossarum from contaminated periphytic biofilm, Environ. Sci. Pollut. Res, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01797345

S. A. Blaser, M. Scheringer, M. Macleod, and K. Hungerbühler, Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles, Sci. Total Environ, vol.390, pp.396-409, 2008.

S. Böhme, M. Baccaro, M. Schmidt, A. Potthoff, H. Stärk et al., Metal uptake and distribution in the zebrafish (Danio rerio) embryo: differences between nanoparticles and metal ions, Environ. Sci. Nano, vol.4, pp.1005-1015, 2017.

T. L. Botha, K. Boodhia, and V. Wepener, Adsorption, uptake and distribution of gold nanoparticles in Daphnia magna following long term exposure, Aquat. Toxicol, vol.170, pp.104-111, 2016.

A. Bour, F. Mouchet, J. Silvestre, L. Gauthier, and E. Pinelli, Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review, J. Hazard. Mater, vol.283, pp.764-777, 2015.

C. R. Bowman, F. C. Bailey, M. Elrod-erickson, A. M. Neigh, and R. R. Otter, Effects of silver nanoparticles on zebrafish (Danio rerio) and Escherichia coli (ATCC 25922): a comparison of toxicity based on total surface area versus mass concentration of particles in a model eukaryotic and prokaryotic system, Environ. Toxicol. Chem, vol.31, pp.1793-1800, 2012.

J. S. Bozich, S. E. Lohse, M. D. Torelli, C. J. Murphy, R. J. Hamers et al., Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna, Environ. Sci. Nano, vol.1, pp.260-270, 2014.

R. Brigelius-flohé and M. Maiorino, Cellular functions of glutathione 1830, Biochim. Biophys. Acta BBA-Gen. Subj, pp.3289-3303, 2013.

A. Bruneau, P. Turcotte, M. Pilote, F. Gagné, and C. Gagnon, Fate of silver nanoparticles in wastewater and immunotoxic effects on rainbow trout, Aquat. Toxicol, vol.174, pp.70-81, 2016.

P. Buri?, ?. Jak?i?, L. ?tajner, M. Dutour-sikiri?, D. Jura?in et al., Effect of silver nanoparticles on Mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure, Mar. Environ. Res, pp.50-59, 2015.

L. Canesi, T. Balbi, R. Fabbri, A. Salis, G. Damonte et al., Biomolecular coronas in invertebrate species: Implications in the environmental impact of nanoparticles, 2017.

J. E. Choi, S. Kim, J. H. Ahn, P. Youn, J. S. Kang et al., Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish, Aquat. Toxicol, vol.100, pp.151-159, 2010.

Z. Clemente, V. L. Castro, M. A. Moura, C. M. Jonsson, and L. F. Fraceto, Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions, Aquat. Toxicol, vol.147, pp.129-139, 2014.

A. L. Dale, G. V. Lowry, and E. A. Casman, Modeling Nanosilver Transformations in Freshwater Sediments, Environ. Sci. Technol, vol.47, pp.12920-12928, 2013.

N. Dayal, M. Thakur, P. Patil, D. Singh, G. Vanage et al., , 2016.

. Part1, NPs in the aquatic environment 50 nanoparticles in ovarian cells of zebrafish (Danio rerio), J. Nanoparticle Res, vol.18, p.291

A. Dedeh, A. Ciutat, M. Treguer-delapierre, and J. Bourdineaud, Impact of gold nanoparticles on zebrafish exposed to a spiked sediment, Nanotoxicology, vol.9, pp.71-80, 2015.

M. Deponte, Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes, 2013.

, Cellular functions of glutathione 1830, Biochim. Biophys. Acta BBA-Gen. Subj, pp.3217-3266

R. F. Domingos, M. A. Baalousha, Y. Ju-nam, M. M. Reid, N. Tufenkji et al., Characterizing Manufactured Nanoparticles in the Environment: Multimethod Determination of Particle Sizes, Environ. Sci. Technol, vol.43, pp.7277-7284, 2009.

R. F. Domingos, C. Franco, and J. P. Pinheiro, The role of charged polymer coatings of nanoparticles on the speciation and fate of metal ions in the environment, Environ. Sci. Pollut. Res. Int, vol.22, pp.2900-2906, 2015.

R. F. Domingos, A. Gélabert, S. Carreira, A. Cordeiro, Y. Sivry et al., Metals in the Aquatic Environment-Interactions and Implications for the Speciation and Bioavailability: A Critical Overview, Aquat. Geochem, vol.21, pp.231-257, 2015.

R. F. Domingos, C. Peyrot, and K. J. Wilkinson, Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate, Environ. Chem, 2010.

R. F. Domingos, Z. Rafiei, C. E. Monteiro, M. A. Khan, and K. J. Wilkinson, Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid, Environ. Chem, vol.10, pp.306-312, 2013.

S. N. Fabrega, C. R. Luoma, T. S. Tyler, J. R. Galloway, and . Lead, Silver nanoparticles: Behaviour and effects in the aquatic environment, Environ. Int, vol.37, pp.517-531, 2011.
DOI : 10.1016/j.envint.2010.10.012

P. P. Fu, Q. Xia, H. Hwang, P. C. Ray, and H. Yu, Mechanisms of nanotoxicity: Generation of reactive oxygen species, J. Food Drug Anal., Nanomaterials-Toxicology and Medical Applications, vol.22, pp.64-75, 2014.

F. Gagné, C. André, R. Skirrow, M. Gélinas, J. Auclair et al., Toxicity of silver nanoparticles to rainbow trout: A toxicogenomic approach, Chemosphere, vol.89, pp.615-622, 2012.

A. Georgantzopoulou, Y. L. Balachandran, P. Rosenkranz, M. Dusinska, A. Lankoff et al., Ag nanoparticles: size-and surfacedependent effects on model aquatic organisms and uptake evaluation with NanoSIMS, Nanotoxicology, 2013.
DOI : 10.3109/17435390.2012.715312

E. Gismondi, C. Cossu-leguille, and J. Beisel, Acanthocephalan parasites: help or burden in gammarid amphipods exposed to cadmium?, Ecotoxicology, vol.21, pp.1188-1193, 2012.
DOI : 10.1007/s10646-012-0873-8

URL : https://orbi.uliege.be/bitstream/2268/158222/1/Gismondi%20et%20al.PDF

E. Gismondi, T. Rigaud, J. Beisel, and C. Cossu-leguille, Microsporidia parasites disrupt the responses to cadmium exposure in a gammarid, Environ. Pollut, vol.160, pp.17-23, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00632896

T. Gomes, O. Araújo, R. Pereira, A. C. Almeida, A. Cravo et al., Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis, Mar. Environ. Res, vol.84, pp.51-59, 2013.

, Fate and transformation of silver nanoparticles in urban wastewater systems, Water Res, vol.47, pp.3866-3877

A. A. Keller, S. Mcferran, A. Lazareva, and S. Suh, Global life cycle releases of engineered nanomaterials, J. Nanoparticle Res, vol.15, p.1692, 2013.
DOI : 10.1007/s11051-013-1692-4

A. A. Keller, H. Wang, D. Zhou, H. S. Lenihan, G. Cherr et al., Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices, Environ. Sci. Technol, vol.44, pp.1962-1967, 2010.

S. J. Klaine, P. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy et al., Nanomaterials in the environment: Behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem, vol.27, pp.1825-1851, 2008.
DOI : 10.1897/08-090.1

URL : https://setac.onlinelibrary.wiley.com/doi/pdf/10.1897/08-090.1

D. Kumar, J. Kumari, S. Pakrashi, S. Dalai, A. M. Raichur et al., Qualitative toxicity assessment of silver nanoparticles on the fresh water bacterial isolates and consortium at low level of exposure concentration, Ecotoxicol. Environ. Saf, vol.108, pp.152-160, 2014.

G. P. Kuznetsova, O. V. Larina, N. A. Petushkova, Y. S. Kisrieva, N. F. Samenkova et al., Effects of Fullerene C60 on Proteomic Profile of Danio Rerio Fish Embryos, Bull. Exp. Biol. Med, vol.156, pp.694-698, 2014.

J. M. Lacave, Á. Fanjul, E. Bilbao, N. Gutierrez, I. Barrio et al., Acute toxicity, bioaccumulation and effects of dietary transfer of silver from brine shrimp exposed to PVP/PEI-coated silver nanoparticles to zebrafish, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, 2017.

P. Larkin, L. C. Folmar, M. J. Hemmer, A. J. Poston, and N. D. Denslow, Expression profiling of estrogenic compounds using a sheepshead minnow cDNA macroarray, EHP Toxicogenomics J. Natl. Inst. Environ. Health Sci, vol.111, pp.29-36, 2003.

B. Lee, C. N. Duong, J. Cho, J. Lee, K. Kim et al., Toxicity of Citrate-Capped Silver Nanoparticles in Common Carp (Cyprinus carpio), J. Biomed. Biotechnol, 2012.

C. Levard, E. M. Hotze, G. V. Lowry, and G. E. Brown, Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity, Environ. Sci. Technol, vol.46, pp.6900-6914, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01519292

G. Libralato, The case of Artemia spp. in nanoecotoxicology, Mar. Environ. Res, vol.101, pp.38-43, 2014.

B. Lipinski, Hydroxyl Radical and Its Scavengers in Health and Disease, 2011.

, Oxid. Med. Cell. Longev

S. B. Lovern, H. A. Owen, and R. Klaper, Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna, Nanotoxicology, vol.2, pp.43-48, 2008.

G. V. Lowry, K. B. Gregory, S. C. Apte, and J. R. Lead, Transformations of Nanomaterials in the Environment, Environ. Sci. Technol, vol.46, pp.6893-6899, 2012.

S. N. Luoma, F. R. Khan, and M. Croteau, Bioavailability and Bioaccumulation of Metal-Based Engineered Nanomaterials in Aquatic Environments: Concepts and Processes, pp.157-193, 2014.

H. Ma, P. L. Williams, and S. A. Diamond, Ecotoxicity of manufactured ZnO nanoparticles-A review, Environ. Chapter, vol.53, 2013.

. Pollut, , vol.172, pp.76-85

A. Manke, L. Wang, and Y. Rojanasakul, Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity, 2013.

, BioMed Res. Int

S. Manzo, M. L. Miglietta, G. Rametta, S. Buono, and G. Di-francia, Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta, Sci. Total Environ, pp.371-376, 2013.

E. Mcgillicuddy, I. Murray, S. Kavanagh, L. Morrison, A. Fogarty et al., Silver nanoparticles in the environment: Sources, detection and ecotoxicology, Sci. Total Environ, vol.575, pp.231-246, 2017.

F. Michalec, M. Holzner, A. Barras, A. Lacoste, L. Brunet et al., Short-term exposure to gold nanoparticle suspension impairs swimming behavior in a widespread calanoid copepod, Environ. Pollut, vol.228, pp.102-110, 2017.

M. N. Moore, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?, Environ. Int, vol.32, pp.967-976, 2006.

I. J. Morgan, R. P. Henry, and C. M. Wood, The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na+ and Cl?1 transport, Aquat. Toxicol, vol.38, pp.145-163, 1997.

N. C. Mueller and B. Nowack, Exposure Modeling of Engineered Nanoparticles in the Environment, Environ. Sci, 2008.

. Technol, , vol.42, pp.4447-4453

F. Nasser and I. Lynch, Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna, J. Proteomics, 2016.
DOI : 10.1016/j.jprot.2015.09.005

URL : https://doi.org/10.1016/j.jprot.2015.09.005

B. Nowack, J. F. Ranville, S. Diamond, J. A. Gallego-urrea, C. Metcalfe et al., Potential scenarios for nanomaterial release and subsequent alteration in the environment, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01426190

, Toxicol. Chem, vol.31, pp.50-59

A. Oukarroum, S. Bras, F. Perreault, and R. Popovic, Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta, Ecotoxicol. Environ. Saf, vol.78, pp.80-85, 2012.

W. Park, J. Ma, G. Veinot, J. G. Boxall, and A. B. , Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates?, Environ. Toxicol. Chem, vol.34, pp.850-859, 2015.
DOI : 10.1002/etc.2868

C. H. Pham, J. Yi, and M. B. Gu, Biomarker gene response in male Medaka (Oryzias latipes) chronically exposed to silver nanoparticle, Ecotoxicol. Environ. Saf, vol.78, pp.239-245, 2012.
DOI : 10.1016/j.ecoenv.2011.11.034

F. Piccinno, F. Gottschalk, S. Seeger, and B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, J. Nanoparticle Res, vol.14, pp.1-11, 2012.

H. C. Poynton, J. M. Lazorchak, C. A. Impellitteri, B. J. Blalock, K. Rogers et al., Toxicogenomic Responses of Nanotoxicity in Daphnia magna Exposed to Silver Nitrate and Coated Silver Nanoparticles, Environ. Sci. Technol, vol.46, pp.6288-6296, 2012.

L. Rainville, D. Carolan, A. C. Varela, H. Doyle, and D. Sheehan, Proteomic evaluation of citrate-coated silver nanoparticles toxicity in Daphnia magna, Analyst, vol.139, pp.1678-1686, 2014.

H. Rauscher, G. Roebben, A. Boix-sanfeliu, H. Emmons, N. Gibson et al., Towards a review of the EC Recommendation for a definition of the term "nanomaterial" Part 3 Scientific-technical evaluation of options to clarify the definition and to facilitate its implementation, 2015.

F. Regoli, S. Gorbi, G. Frenzilli, M. Nigro, I. Corsi et al., Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach, Mar. Environ. Res, vol.54, pp.419-423, 2002.

S. Renault, M. Baudrimont, N. Mesmer-dudons, P. Gonzalez, S. Mornet et al., Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea), Gold Bull, vol.41, pp.116-126, 2008.

M. Revel, A. Châtel, and C. Mouneyrac, Omics tools: New challenges in aquatic nanotoxicology?, Aquat. Toxicol, 2017.
DOI : 10.1016/j.aquatox.2017.10.005

K. Savolainen, U. Backman, D. Brouwer, B. Fadeel, T. Fernandes et al., Nanosafety in Europe 2015-2025: Towards Safe and Sustainable Nanomaterials and Nanotechnology Innovations, 2013.

A. G. Schultz, D. Boyle, D. Chamot, K. J. Ong, K. J. Wilkinson et al., Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing, Environ. Chem, vol.11, pp.207-226, 2014.

A. G. Schultz, K. J. Ong, T. Maccormack, G. Ma, J. G. Veinot et al., Silver Nanoparticles Inhibit Sodium Uptake in Juvenile Rainbow Trout (Oncorhynchus mykiss), Environ. Sci. Technol, vol.46, pp.10295-10301, 2012.
DOI : 10.1021/es3017717

T. M. Scown, E. M. Santos, B. D. Johnston, B. Gaiser, M. Baalousha et al., Effects of Aqueous Exposure to Silver Nanoparticles of Different Sizes in Rainbow Trout, Toxicol. Sci, vol.115, pp.521-534, 2010.

N. Sharma, M. A. Rather, M. N. Ajima, P. Gireesh-babu, K. Kumar et al., Assessment of DNA damage and molecular responses in Labeo rohita (Hamilton, 1822) following short-term exposure to silver nanoparticles, Food Chem. Toxicol, vol.96, pp.122-132, 2016.

D. Bickford, D. J. Lohman, N. S. Sodhi, P. K. Ng, R. Meier et al., Cryptic species as a window on diversity and conservation, Trends Ecol. Evol, vol.22, pp.148-155, 2007.

B. Borowsky, The Use of the Males&apos, 1984.

, Gnathopods During Precopulation in Some Gammaridean Amphipods, vol.47, pp.245-250

E. L. Bousfield, shallow-water-gammaridean-amphipoda-of-new-england-handbooks-of-american, 1973.

J. K. Brown, D. R. Frohlich, and R. C. Rosell, The Sweetpotato or Silverleaf Whiteflies: Biotypes of Bemisia tabaci or a Species Complex?, Annu. Rev. Entomol, vol.40, pp.511-534, 1995.

A. Chamier and L. G. Willoughby, The role of fungi in the diet of the amphipod Gammarus pulex (L.): an enzymatic study, Freshw. Biol, vol.16, pp.197-208, 1986.

É. Chevreux, L. Fage, and F. Faunistique, , 1970.

D. Copila?-ciocianu, T. Rutová, P. Pa?il, and A. Petrusek, Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians, Mol. Phylogenet. Evol, vol.112, pp.218-229, 2017.

A. D. Correia, A. L. Pereira, M. H. Costa, and F. Carrapi??o, Functional anatomy of the midgut gland of Gammarus locusta (Crustacea: Amphipoda), J. Mar. Biol. Assoc. UK, vol.82, pp.201-204, 2002.

R. Coulaud, O. Geffard, B. Xuereb, E. Lacaze, H. Quéau et al., situ feeding assay with Gammarus fossarum (Crustacea): Modelling the influence of confounding factors to improve water, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01920247

A. P. Lockwood and C. B. Inman, The blood volume of some amphipod crustaceans in relation to the salinity of the environment they inhabit, Comp. Biochem. Physiol. A Physiol, vol.44, issue.73, pp.90158-90166, 1973.

C. Macneil, J. T. Dick, and R. W. Elwood, The Trophic Ecology of Freshwater Gammarus Spp. (crustacea:amphipoda): Problems and Perspectives Concerning the Functional Feeding Group Concept, Biol. Rev, vol.72, pp.349-364, 1997.

L. H. Mantel and L. L. Farmer, 2-Osmotic and Ionic Regulation, Internal Anatomy and Physiological Regulation, pp.53-161, 1983.

A. Martinez, G. Charmantier, P. Compère, and M. Charmantier-daures, Branchial chamber tissues in two caridean shrimps: the epibenthic Palaemon adspersus and the deep-sea hydrothermal Rimicaris exoculata, Tissue Cell, vol.37, pp.153-165, 2005.

C. P. Mccahon and D. Pascoe, Use of Gammarus pulex (L.) in safety evaluation tests: Culture and selection of a sensitive life stage, Ecotoxicol. Environ. Saf, vol.15, pp.245-252, 1988.

M. P. Meijering, Lack of oxygen and low pH as limiting factors for Gammarus in Hessian brooks and rivers, Hydrobiologia, vol.223, pp.159-169, 1991.

J. Müller, Mitochondrial DNA Variation and the Evolutionary History of Cryptic Gammarus fossarum Types, 2000.

, Mol. Phylogenet. Evol, vol.15, pp.260-268

J. Müller, Genetic population structure of two cryptic Gammarus fossarum types across a contact zone, J. Evol. Biol, vol.11, pp.79-101, 1998.

A. V. Nebeker, S. E. Dominguez, G. A. Chapman, S. T. Onjukka, and D. G. Stevens, Effects of low dissolved oxygen on survival, growth and reproduction of Daphnia, Hyalella and Gammarus, Environ. Toxicol. Chem, vol.11, pp.373-379, 1992.

A. Pequeux, OSMOTIC REGULATION IN CRUSTACEANS, J. Crustac. Biol, vol.15, pp.1-60, 1995.

C. Piscart and L. Bollache, Crustacés amphipodes de surface : gammares d'eau douce., Introduction pratique à la systématique des organismes des eaux continentales de France, 2012.

M. Pöckl, B. W. Webb, and D. W. Sutcliffe, Life history and reproductive capacity of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda) under naturally fluctuating water temperatures: a simulation study, Estuar. Coast. Shelf Sci, vol.48, pp.169-175, 1997.

P. S. Rainbow, Physiology, physicochemistry and metal uptake-A crustacean perspective, Mar. Pollut. Bull, vol.31, pp.55-59, 1995.

T. Sattler, F. Bontadina, A. H. Hirzel, and R. Arlettaz, Ecological niche modelling of two cryptic bat species calls for a reassessment of their conservation status, J. Appl. Ecol, vol.44, pp.1188-1199, 2007.

M. Scheepmaker and . Van-dalfsen, Genetic differentiation in Gammarus fossarum and G. caparti (Crustacea, Amphipoda) with reference to G. pulex pulex in northwestern, Europe. Bijdr. Tot Dierkd, vol.59, pp.127-139, 1989.

E. H. Schmitz and P. M. Scherrey, Digestive anatomy of Halella azteca (Crustacea, Amphipoda), J. Morphol, vol.175, pp.91-100, 1983.

R. L. Shimek, Amphipods [WWW Document, 2008.

P. Sornom, V. Felten, V. Médoc, S. Sroda, P. Rousselle et al., Effect of gender on physiological and behavioural responses of Gammarus roeseli (Crustacea Amphipoda) to salinity and temperature, Environ. Pollut, vol.158, pp.1288-1295, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00474338

D. W. Sutcliffe, Reproduction in Gammarus (Crustacea, Amphipoda): basic processes, Freshw. Forum, vol.2, pp.102-128, 1992.

D. W. Sutcliffe, Quantitative aspects of oxygen uptake by Gammarus (Crustacea, Amphipoda): a critical review, Freshw. Biol, vol.14, pp.443-489, 1984.

H. Tachet, , 2000.

R. Väinölä, J. D. Witt, M. Grabowski, J. H. Bradbury, K. Jazdzewski et al., Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. SpringerLink 241-255, 2008.

C. Vellinger, V. Felten, P. Sornom, P. Rousselle, J. Beisel et al., Behavioural and Physiological Responses of Gammarus pulex Exposed to Cadmium and Arsenate at Three Temperatures: Individual and Combined Effects, PLoS ONE, vol.7, 2012.

C. Vellinger, E. Gismondi, V. Felten, P. Rousselle, K. Mehennaoui et al., Single and combined effects of cadmium and arsenate in Gammarus pulex (Crustacea, Amphipoda): Understanding the links between physiological and behavioural responses, Aquat. Toxicol, pp.106-116, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01119758

B. Webb and P. J. , Global Changes During the Last 3 Million Years: Climatic Controls and Biotic Responses, Annu. Rev. Ecol. Syst, vol.23, pp.141-173, 1992.

M. Weiss, J. N. Macher, M. A. Seefeldt, and F. Leese, Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda), Hydrobiologia, vol.721, pp.165-184, 2014.

A. M. Westram, J. Jokela, C. Baumgartner, and I. Keller, Spatial Distribution of Cryptic Species Diversity in European Freshwater Amphipods (Gammarus fossarum) as Revealed by Pyrosequencing, PLoS ONE, vol.6, 2011.

A. M. Westram, J. Jokela, and I. Keller, Isolation and characterization of ten polymorphic microsatellite markers for three cryptic Gammarus fossarum (Amphipoda) species, Conserv. Genet. Resour, vol.2, pp.401-404, 2010.

I. T. Whitehurst and B. I. Lindsey, The impact of organic enrichment on the benthic macroinvertebrate communities of a lowland river, Water Res, vol.24, pp.625-630, 1990.

I. ?ivi? and Z. Markovi?, Distribution of the Species Gammarus balcanicus and Gammarus fossarum on the Territory of Serbia (Central Part of the Balkan Peninsula), Crustaceana, vol.80, pp.67-76, 2007.

D. References-ali, Oxidative stress-mediated apoptosis and genotoxicity induced by silver nanoparticles in freshwater snail Lymnea luteola L, Biol. Trace Elem. Res, vol.162, pp.333-341, 2014.

H. J. Allen, C. A. Impellitteri, D. A. Macke, J. L. Heckman, H. C. Poynton et al., Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna, Environ. Toxicol. Chem, vol.29, pp.2742-2750, 2010.

Á. Alonso, H. J. Lange, and E. T. Peeters, Contrasting sensitivities to toxicants of the freshwater amphipods Gammarus pulex and G. fossarum, Ecotoxicology, vol.19, pp.133-140, 2010.
DOI : 10.1007/s10646-009-0398-y

URL : http://edepot.wur.nl/143326

J. Andreï, S. Pain-devin, V. Felten, S. Devin, L. Giambérini et al., Silver nanoparticles impact the functional role of Gammarus roeseli (Crustacea Amphipoda), Environ. Pollut, vol.208, pp.608-618, 2016.

J. Arce-funck, M. Danger, E. Gismondi, C. Cossu-leguille, F. Guérold et al., Behavioural and physiological responses of Gammarus fossarum (Crustacea Amphipoda) exposed to silver, Aquat. Toxicol, pp.73-84, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01115111

S. Asghari, S. A. Johari, J. H. Lee, Y. S. Kim, Y. B. Jeon et al., Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna, 2012.
DOI : 10.1186/1477-3155-10-14

URL : http://doi.org/10.1186/1477-3155-10-14

, J. Nanobiotechnology, vol.10, pp.1-11

G. A?monaite, S. Boyer, S. De, B. Wassmur, and J. Sturve, Behaviouraltoxicityassessment of silver ions and nanoparticles on zebrafish using a locomotion profiling approach, 2016.

, Aquat. Toxicol, vol.173, pp.143-153

Y. L. Balachandran, S. Girija, R. Selvakumar, S. Tongpim, A. C. Gutleb et al., Differently environment stable bio-silver nanoparticles: study on their optical enhancing and antibacterial properties, PLoS ONE, vol.8, 2013.

Y. L. Balachandran, P. Peranantham, R. Selvakumar, A. C. Gutleb, and S. Girija, Size-controlled green synthesis of silver nanoparticles using dual functional plant leaf extract at room temperature, Int. J. Green Nanotechnol, vol.4, pp.310-325, 2012.

J. Barnard and C. Barnard, Freshwater amphipoda of the world, Version details, 1983.

M. Vernon-va-hayfield and . Assoc,

G. E. Batley, J. K. Kirby, and M. J. Mclaughlin, Fate and risks of nanomaterials in aquatic and terrestrial environments, Acc. Chem. Res, vol.46, pp.854-862, 2013.

J. Besse, M. Coquery, C. Lopes, A. Chaumot, H. Budzinski et al., Caged Gammarus fossarum (Crustacea) as a robust tool for the characterization of bioavailable contamination levels in continental waters: towards the determination of threshold values, Water Res, vol.47, pp.650-660, 2013.

I. Bhatt and B. N. Tripathi, Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment, Chemosphere, vol.82, pp.308-317, 2011.

A. Bianchini and C. M. Wood, Mechanism of acute silver toxicity in Daphnia magna.Environ, Toxicol. Chem, vol.22, pp.1361-1367, 2003.

S. A. Blaser, M. Scheringer, M. Macleod, and K. Hungerbühler, Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles, Sci. Total Environ, vol.390, pp.396-409, 2008.

A. Boscher, S. Gobert, C. Guignard, J. Ziebel, L. L'hoste et al., Chemical contaminants in fish species from rivers in the North of Luxembourg, 2010.

, Chemosphere, vol.78, pp.785-792

P. Buffet, J. Pan, L. Poirier, C. Amiard-triquet, J. Amiard et al., Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food, Ecotoxicol. Environ. Saf, vol.89, pp.117-124, 2013.

M. Bundschuh, J. P. Zubrod, P. Klemm, D. Elsaesser, C. Stang et al., Derivation of a toxicity-based model to predict how water chemistry influences silver toxicity to invertebrates, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, vol.95, issue.02, pp.96-96, 2002.

L. Canesi, C. Ciacci, R. Fabbri, A. Marcomini, G. Pojana et al., Emerging and persistent impacts on Marine Organisms: Detection methods and action mechanisms), Mar. Environ. Res, vol.76, pp.16-21, 2012.

V. Castranova, Overview of current toxicological knowledge of engineered nanoparticles, J. Occup. Environ. Med, vol.53, pp.14-17, 2011.

R. Coulaud, O. Geffard, A. Coquillat, H. Quéau, S. Charles et al., Ecological modeling for the extrapolation of ecotoxicological effects measured during in situ assays in gammarus, Environ. Sci. Technol, vol.48, pp.6428-6436, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01191544

R. Coulaud, O. Geffard, B. Xuereb, E. Lacaze, H. Quéau et al., situ feeding assay with Gammarus fossarum (Crustacea): modelling the influence of confounding factors to improve water quality biomonitoring, vol.45, pp.6417-6429, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01920247

A. Dohet, L. Ector, H. Cauchie, and L. Hoffmann, Identification of benthic invertebrate and diatom indicator taxa that distinguish different stream types as well as degraded from reference conditions in Luxembourg, Anim. Biol, vol.58, pp.419-472, 2008.

T. Eybe, T. Bohn, J. N. Audinot, T. Udelhoven, H. M. Cauchie et al., Uptake visualization of deltamethrin by NanoSIMS and acute toxicity to the water flea Daphnia magna, Chemosphere, vol.76, pp.134-140, 2009.

. Fabrega, S. N. Luoma, C. R. Tyler, T. S. Galloway, and J. R. Lead, Silver nanoparticles: Behaviour and effects in the aquatic environment, Environ. Int, vol.37, pp.517-531, 2011.

A. Feckler, J. P. Zubrod, A. Thielsch, K. Schwenk, R. Schulz et al., Cryptic species diversity: an overlooked factor in environmental management?, J. Appl. Ecol, vol.51, pp.958-967, 2014.

V. Felten, G. Charmantier, M. Charmantier-daures, F. Aujoulat, J. Garric et al., Physiological and behavioural responses of Gammarus pulex exposed to acid stress, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, vol.147, pp.189-197, 2008.

V. Felten, G. Charmantier, R. Mons, A. Geffard, P. Rousselle et al., Physiological and behavioural responses of Gammarus pulex (Crustacea: Amphipoda) exposed to cadmium, Aquat. Toxicol, vol.86, pp.413-425, 2008.

R. Foldbjerg, X. Jiang, T. Micl?u?, C. Chen, H. Autrup et al., Silver nanoparticles-wolves in sheep's clothing?, Toxicol. Res, vol.4, pp.563-575, 2015.
DOI : 10.1039/c4tx00110a

D. M. Forrow and L. Maltby, Toward a mechanistic understanding of contaminant-induced changes in detritus processing in streams: Direct and indirect effects on detritivore feeding, Environ. Toxicol. Chem, vol.19, pp.2100-2106, 2000.

M. Garaud, M. Auffan, S. Devin, V. Felten, C. Pagnout et al., Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha, Nanotoxicology, vol.10, pp.935-944, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01726553

M. Garaud, J. Trapp, S. Devin, C. Cossu-leguille, S. Pain-devin et al., Multibiomarker assessment of cerium dioxide nanoparticle (nCeO2) sublethal effects on two freshwater invertebrates, Dreissena polymorpha and Gammarus roeseli, Aquat. Toxicol, vol.158, pp.63-74, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01159543

A. Georgantzopoulou, Effects of silver nanoparticles and ions and interaction with first line of defense, 2015.

A. Georgantzopoulou, Y. L. Balachandran, P. Rosenkranz, M. Dusinska, A. Lankoff et al., Ag nanoparticles: size-and surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS, Nanotoxicology, 2013.

A. Georgantzopoulou, T. Serchi, S. Cambier, C. C. Leclercq, J. Renaut et al., Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium, Part. Fibre Toxicol, vol.13, 2016.

E. Gismondi, J. Beisel, and C. Cossu-leguille, Influence of gender and season on reduced glutathione concentration and energy reserves of Gammarus roeseli, Environ. Res, vol.118, pp.47-52, 2012.

E. Gismondi, C. Cossu-leguille, and J. Beisel, Acanthocephalan parasites: help or burden in gammarid amphipods exposed to cadmium?, Ecotoxicology, vol.21, pp.1188-1193, 2012.
DOI : 10.1007/s10646-012-0873-8

URL : http://orbi.ulg.ac.be/bitstream/2268/158222/1/Gismondi%20et%20al.PDF

E. Gismondi, T. Rigaud, J. Beisel, C. Cossu-leguille, F. Gottschalk et al., Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies, Environ. Pollut, vol.160, pp.287-300, 2012.

R. J. Griffitt, C. M. Lavelle, A. S. Kane, N. D. Denslow, and D. S. Barber, Chronic nanoparticulate silver exposure results in tissue accumulation and transcriptomic changes in zebrafish, Aquat. Toxicol, pp.192-200, 2013.
DOI : 10.1016/j.aquatox.2013.01.010

M. Grosell, C. Nielsen, and A. Bianchini, Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwate ra n i m a l s .C o m p, C Toxicol. Pharmacol, vol.133, pp.85-91, 2002.
DOI : 10.1016/s1532-0456(02)00085-6

R. P. Henry and M. G. Wheatly, Interaction of respiration, ion regulation, and acid-base balance in the everyday life of aquatic crustaceans, Integr. Comp. Biol, vol.32, pp.407-416, 1992.

E. H. Heugens, L. T. Tokkie, M. H. Kraak, A. J. Hendriks, N. M. Van-straalen et al., Population growth of Daphnia magna under multiple stress conditions: joint effects of temperature, food, and cadmium, Environ. Toxicol. Chem, vol.25, pp.1399-1407, 2006.

P. Isnard, P. Flammarion, G. Roman, M. Babut, P. Bastien et al., Statistical analysis of regulatory ecotoxicity tests, Chemosphere, vol.45, pp.600-607, 2001.
DOI : 10.1016/s0045-6535(00)00600-7

URL : https://hal.archives-ouvertes.fr/ineris-00962802

J. Issartel, V. Boulo, S. Wallon, O. Geffard, and G. Charmantier, Cellular and molecular osmoregulatory responses to cadmium exposure in Gammarus fossarum (Crustacea, Amphipoda), Chemosphere, vol.81, pp.701-710, 2010.
DOI : 10.1016/j.chemosphere.2010.07.063

J. Issartel, F. Hervant, Y. Voituron, D. Renault, and P. Vernon, Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures, Comp. Biochem. Physiol. A Mol. Integr. Physiol, vol.141, pp.1-7, 2005.
DOI : 10.1016/j.cbpb.2005.02.013

URL : https://hal.archives-ouvertes.fr/hal-00021527

A. Jemec, T. Ti?ler, D. Drobne, K. Sep?i?, P. Jamnik et al., Biochemical biomarkers in chronically metal-stressed daphnids, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, vol.147, pp.61-68, 2008.
DOI : 10.1016/j.cbpc.2007.07.006

Y. Jung, K. Kim, J. Y. Kim, S. Yang, B. Lee et al., Bioconcentration and distribution of silver nanoparticles in Japanese medaka (Oryzias latipes), J. Hazard. Mater, vol.267, pp.206-213, 2014.

D. W. Kelly, J. T. Dick, and W. I. Montgomery, The functional role of Gammarus(Crustacea, Amphipoda): shredders, predators, or both?, Hydrobiologia, vol.485, pp.199-203, 2002.

S. J. Klaine, P. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy et al., Nanomaterials in the environment: behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem, vol.27, pp.1825-1851, 2008.
DOI : 10.1897/08-090.1

URL : http://onlinelibrary.wiley.com/doi/10.1897/08-090.1/pdf

A. Kroll, R. Behra, R. Kaegi, and L. Sigg, Extracellular Polymeric Substances (EPS) of Freshwater Biofilms Stabilize and Modify CeO 2 and Ag Nanoparticles, PLoS ONE, vol.9, 2014.

P. Y. Kunz, C. Kienle, and A. Gerhardt, Gammarus spp. in Aquatic Ecotoxicology and Water Quality Assessment: Toward Integrated Multilevel Tests, Reviews of Environmental Contamination and Toxicology, vol.205, pp.1-76, 2010.

K. W. Kwok, M. Auffan, A. R. Badireddy, C. M. Nelson, M. R. Wiesner et al., Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka, Effect of coating materials, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01426194

, Aquat. Toxicol, vol.120, issue.121, pp.59-66

L. Lagadic, Biomarkers: Useful tools for the monitoring of aquatic environments, Rev. Med. Vet, vol.153, pp.581-588, 2002.

M. M. Lambrechts, J. Blondel, S. Hurtrez-bousses, M. Maistre, and P. Perret, Adaptive inter-population differences in blue tit life-history traits on Corsica, Evol. Ecol, vol.11, pp.599-612, 1997.

A. Lankoff, W. J. Sandberg, A. Wegierek-ciuk, H. Lisowska, M. Refsnes et al., The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells, Toxicol. Lett, vol.208, pp.197-213, 2012.

J. Lignot, C. Spanings-pierrot, and G. Charmantier, Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans, Aquaculture, vol.191, pp.429-433, 2000.

C. Macneil, J. T. Dick, and R. W. Elwood, The trophic ecology of freshwater Gammarus Spp. (crustacea:amphipoda): problems and perspectives concerning the functional feeding group concept, Biol. Rev, vol.72, pp.349-364, 1997.

C. P. Mccahon and D. Pascoe, Increased sensitivity to cadmium of the freshwater amphipod Gammarus pulex (L.) during the reproductive period, Aquat. Toxicol, vol.13, pp.90051-90054, 1988.

M. N. Moore, M. H. Depledge, J. W. Readman, P. Leonard, and D. R. , An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management, Genotoxicological Studies in Aquatic Organisms), vol.552, pp.247-268, 2004.

I. J. Morgan, R. P. Henry, and C. M. Wood, The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na + and Cl ?1 transport, Aquat. Toxicol, vol.38, pp.835-836, 1997.

F. Nasser and I. Lynch, Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna, 2016.

A. Pequeux, Osmotic regulation in crustaceans, J. Crustac. Biol, vol.15, pp.1-60, 1995.

A. H. Ringwood, M. Mccarthy, T. C. Bates, and D. L. Carroll, The effects of silver nanoparticles on oyster embryos, PRIMO 15 Fifteenth International Symposium on Pollutant Responses in Marine Organisms (PRIMO15) 69), vol.1, pp.49-51, 2010.

C. Rosas, A. Sanchez, E. Escobar, L. Soto, and A. Bolongaro-crevenna, Daily variations of oxygen consumption and glucose hemolymph level related to morphophysiological and ecological adaptations of crustacea, Comp. Biochem. Physiol. A Physiol, vol.101, pp.90540-90547, 1992.

G. R. Scott and K. A. Sloman, The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity, Aquat. Toxicol, vol.68, pp.369-392, 2004.

V. K. Sharma, K. M. Siskova, R. Zboril, and J. L. Gardea-torresdey, Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity, 2014.

, Adv. Colloid Interf. Sci, vol.204, pp.15-34

P. Sornom, V. Felten, V. Médoc, S. Sroda, P. Rousselle et al., Effect of gender on physiological and behavioural responses of Gammarus roeseli (Crustacea Amphipoda) to salinity and temperature, Environ. Pollut, vol.158, pp.1288-1295, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00474338

S. Sroda and C. Cossu-leguille, Effects of sublethal copper exposure on two gammarid species: which is the best competitor?, Ecotoxicology, vol.20, pp.264-273, 2011.

T. Y. Sun, F. Gottschalk, K. Hungerbühler, and B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut, vol.185, pp.69-76, 2014.

L. Ulm, A. Krivohlavek, D. Jura?in, M. Ljubojevi?, G. ?inko et al., Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles, Environ. Sci. Pollut. Res. 1-10, 2015.

, Mineral Commodity Summaries 2016-mcs-2016-silve, 2016.

P. Usseglio-polatera, M. Bournaud, P. Richoux, and H. Tachet, Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits, Freshw. Biol, vol.43, pp.175-205, 2000.

G. Vale, K. Mehennaoui, S. Cambier, G. Libralato, S. Jomini et al., Manufactured nanoparticles in the aquatic environment-Biochemical responses on freshwater organisms: a critical overview, Aquat. Toxicol, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01780205

M. E. Vance, T. Kuiken, E. P. Vejerano, S. P. Mcginnis, M. F. Hochella et al., Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol, vol.6, pp.1769-1780, 2015.
DOI : 10.1515/nano.bjneah.6.181

URL : https://www.degruyter.com/printpdf/view/NANO/nano.bjneah.6.181

P. Vasseur and C. Leguille, Defense systems of benthic invertebrates in response to environmental stressors, Environ. Toxicol, vol.19, pp.433-436, 2004.

C. Vellinger, E. Gismondi, V. Felten, P. Rousselle, K. Mehennaoui et al., Single and combined effects of cadmium and arsenate in Gammarus pulex (Crustacea, Amphipoda): understanding the links between physiological and behavioural responses, Aquat. Toxicol, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01119758

C. Vellinger, M. Parant, P. Rousselle, F. Immel, P. Wagner et al., Comparison of arsenate and cadmium toxicity in a freshwater amphipod (Gammarus pulex), Environ. Pollut, vol.160, pp.66-73, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01110244

É. Vindimian, J. Garric, P. Flammarion, É. Thybaud, and M. Babut, An index of effluent aquatic toxicity designed by partial least squares regression, using acute and chronic tests and expert judgements, Environ. Toxicol. Chem, vol.18, pp.2386-2391, 1999.
DOI : 10.1002/etc.5620181037

URL : https://hal.archives-ouvertes.fr/ineris-00962750

E. Vindimian, C. Robaut, and G. Fillion, A method for cooperative or noncooperative binding studies using nonlinear regression analysis on a microcomputer, J. Appl. Biochem, vol.5, pp.261-268, 1983.

C. Völker, M. Oetken, and J. Oehlmann, The biological effects and possible modes of action of nanosilver, Reviews of Environmental Contamination and Toxicology, vol.223, pp.81-106, 2013.

M. Weiss, J. N. Macher, M. A. Seefeldt, and F. Leese, Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda), 2014.
DOI : 10.1007/s10750-013-1658-7

, Hydrobiologia, vol.721, pp.165-184

B. Xuereb, L. Bezin, A. Chaumot, H. Budzinski, S. Augagneur et al., Vitellogenin-like gene expression in freshwater amphipod Gammarus fossarum (Koch, 1835): functional characterization in females and potential for use as an endocrine disruption biomarker in males, Ecotoxicology, vol.20, pp.1286-1299, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01918567

K. Arab and J. Steghens, Plasma lipid hydroperoxides measurement by an automated xylenol orange method, Anal. Biochem, vol.325, pp.158-163, 2004.
DOI : 10.1016/j.ab.2003.10.022

R. F. Beers and I. W. Sizer, A Spectrophotometric Method for Measuring the Breakdown of Hydrogen Peroxide by Catalase, J. Biol. Chem, vol.195, pp.133-140, 1951.

W. M. De-coen and C. R. Janssen, The use of biomarkers in Daphnia magna toxicity testing. IV. Cellular Energy Allocation: a new methodology to assess the energy budget of toxicant-stressed Daphnia populations, J. Aquat. Ecosyst. Stress Recovery, vol.6, pp.43-55, 1997.

O. Erel, A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation, Clin. Biochem, vol.37, pp.277-285, 2004.
DOI : 10.1016/j.clinbiochem.2003.11.015

A. Garaud, M. Devin, S. Felten, V. Pagnout, C. Pain-devin et al., Fate and integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha: a mesocosm approach, Nanotoxicology, 2015.

T. G. Owens and F. D. King, The measurement of respiratory electron-transport-system activity in marine zooplankton, Mar. Biol, vol.30, pp.27-36, 1975.

D. E. Paglia, W. N. Valentine, G. Guerriero, S. Legay, and J. Hausman, Alfalfa Cellulose Synthase Gene Expression under Abiotic Stress: A Hitchhiker's Guide to RT-qPCR Normalization, J. Lab. Clin. Med, vol.70, p.103808, 1967.

F. Brulle, F. Bernard, F. Vandenbulcke, D. Cuny, and S. Dumez, Identification of suitable qPCR reference genes in leaves of Brassica oleracea under abiotic stresses, Ecotoxicology, vol.23, pp.459-471, 2014.

J. R. Shaw, J. K. Colbourne, J. C. Davey, S. P. Glaholt, T. H. Hampton et al., Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins, BMC Genomics, vol.8, pp.1-20, 2007.
DOI : 10.1186/1471-2164-8-477

URL : https://doi.org/10.1186/1471-2164-8-477

S. Y. Lee and Y. K. Nam, Evaluation of reference genes for RT-qPCR study in abalone Haliotis discus hannai during heavy metal overload stress. Fish, Aquat. Sci, vol.19, 2016.

S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett et al., The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments, Clin. Chem, vol.55, pp.611-622, 2009.
DOI : 10.1373/clinchem.2008.112797

URL : http://clinchem.aaccjnls.org/content/55/4/611.full.pdf

J. Ahn, H. Eom, X. Yang, J. N. Meyer, and J. Choi, Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans, Chemosphere, vol.108, pp.343-352, 2014.

D. Ali, Oxidative Stress-Mediated Apoptosis and Genotoxicity Induced by Silver Nanoparticles in Freshwater Snail Lymnea luteola L, Biol. Trace Elem. Res, vol.162, pp.333-341, 2014.
DOI : 10.1007/s12011-014-0158-6

J. Andreï, S. Pain-devin, V. Felten, S. Devin, L. Giambérini et al., Silver nanoparticles impact the functional role of Gammarus roeseli (Crustacea Amphipoda), Environ. Pollut, vol.208, pp.608-618, 2016.

B. M. Angel, G. E. Batley, C. V. Jarolimek, and N. J. Rogers, The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems, Chemosphere, 2013.

J. Arce-funck, M. Danger, E. Gismondi, C. Cossu-leguille, F. Guérold et al., Behavioural and physiological responses of Gammarus fossarum (Crustacea Amphipoda) exposed to silver, Aquat. Toxicol, pp.73-84, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01115111

S. Asghari, S. A. Johari, J. H. Lee, Y. S. Kim, Y. B. Jeon et al., Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna, J. Nanobiotechnology, vol.10, pp.1-11, 2012.

M. Baalousha, Y. Nur, I. Römer, M. Tejamaya, and J. R. Lead, Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles, Sci. Total Environ, pp.119-131, 2013.

C. Bacchetta, A. Ale, M. F. Simoniello, S. Gervasio, C. Davico et al., Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles, Ecol. Indic, vol.76, pp.230-239, 2017.
DOI : 10.1016/j.ecolind.2017.01.018

M. Baudrimont, J. Andrei, S. Mornet, P. Gonzalez, N. Mesmer-dudons et al., Trophic transfer and effects of gold nanoparticles (AuNPs) in Gammarus fossarum from contaminated periphytic biofilm, Environ. Sci. Pollut. Res, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01797345

J. Baumann, J. Köser, D. Arndt, and J. Filser, The coating makes the difference: Acute effects of iron oxide nanoparticles on Daphnia magna, Sci. Total Environ, vol.484, pp.176-184, 2014.

M. J. Bebianno, M. Gonzalez-rey, T. Gomes, J. J. Mattos, F. Flores-nunes et al., Environ. Sci. Pollut. Res, vol.1, issue.9, 2015.

M. Behr, S. Legay, J. Hausman, and G. Guerriero, Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses, Int. J. Mol. Sci, vol.16, pp.16104-16124, 2015.

A. Bianchini and C. M. Wood, Mechanism of acute silver toxicity in Daphnia magna, Environ. Toxicol. Chem, vol.22, pp.1361-1367, 2003.

K. Bilberg, H. Malte, T. Wang, and E. Baatrup, Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis), Aquat. Toxicol, vol.96, pp.159-165, 2010.

A. J. Bone, B. P. Colman, A. P. Gondikas, K. M. Newton, K. H. Harrold et al., Biotic and Abiotic Interactions in Aquatic Microcosms Determine Fate and Toxicity of Ag Nanoparticles: Part 2-Toxicity and Ag Speciation, Environ. Sci. Technol, vol.46, pp.6925-6933, 2012.

T. L. Botha, K. Boodhia, and V. Wepener, Adsorption, uptake and distribution of gold nanoparticles in Daphnia magna following long term exposure, Aquat. Toxicol, vol.170, pp.104-111, 2016.

A. Bruneau, P. Turcotte, M. Pilote, F. Gagné, and C. Gagnon, Fate of silver nanoparticles in wastewater and immunotoxic effects on rainbow trout, Aquat. Toxicol, vol.174, pp.70-81, 2016.

S. Cambier, M. Røgeberg, A. Georgantzopoulou, T. Serchi, C. Karlsson et al., Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate, Sci. Total Environ, vol.610, pp.972-982, 2018.

L. Canesi, C. Ciacci, R. Fabbri, A. Marcomini, G. Pojana et al., Emerging and persistent impacts on Marine Organisms: Detection methods and action mechanisms 76, Mar. Environ. Res, pp.16-21, 2012.

Y. Chen, Y. Si, D. Zhou, and F. Dang, Differential bioaccumulation patterns of nanosized and dissolved silver in a land snail Achatina fulica, Environ. Pollut, vol.222, pp.50-57, 2017.

J. E. Choi, S. Kim, J. H. Ahn, P. Youn, J. S. Kang et al., Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish, Aquat. Toxicol, vol.100, pp.151-159, 2010.

D. Cleveland, S. E. Long, P. L. Pennington, E. Cooper, M. H. Fulton et al., Pilot estuarine mesocosm study on the environmental fate of Silver nanomaterials leached from consumer products, Sci. Total Environ, 2012.

M. Connolly, M. Fernandez-cruz, A. Quesada-garcia, L. Alte, H. Segner et al., Comparative Cytotoxicity Study of Silver Nanoparticles (AgNPs) in a Variety of Rainbow Trout Cell Lines, 2015.

P. Hepatocytes, Int. J. Environ. Res. Public. Health, vol.12, pp.5386-5405

M. E. Cristescu and P. D. Hebert, The "Crustacean Seas"-an evolutionary perspective on the Ponto-Caspian peracarids, Can. J. Fish. Aquat. Sci, vol.62, pp.505-517, 2005.

M. Croteau, S. K. Misra, S. N. Luoma, and E. Valsami-jones, Silver Bioaccumulation Dynamics in a Freshwater Invertebrate after Aqueous and Dietary Exposures to Nanosized and Ionic Ag, Environ. Sci. Technol, vol.45, pp.6600-6607, 2011.

A. Georgantzopoulou, Y. L. Balachandran, P. Rosenkranz, M. Dusinska, A. Lankoff et al., Ag nanoparticles: size-and surfacedependent effects on model aquatic organisms and uptake evaluation with NanoSIMS, Nanotoxicology, 2013.

A. Georgantzopoulou, S. Cambier, T. Serchi, M. Kruszewski, Y. L. Balachandran et al., Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna, Sci. Total Environ. 569, vol.570, pp.681-689, 2016.

E. Gismondi, J. Beisel, and C. Cossu-leguille, Influence of gender and season on reduced glutathione concentration and energy reserves of Gammarus roeseli, Environ. Res, vol.118, pp.47-52, 2012.

S. I. Gomes, A. M. Soares, J. J. Scott-fordsmand, and M. J. Amorim, Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): Survival, reproduction and gene expression profile, J. Hazard. Mater, vol.254, issue.255, pp.336-344, 2013.

T. Gomes, C. G. Pereira, C. Cardoso, V. S. Sousa, M. R. Teixeira et al., Effects of silver nanoparticles exposure in the mussel Mytilus galloprovincialis, Mar. Environ. Res, 2014.

F. Gottschalk, T. Sun, and B. Nowack, Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies, Environ. Pollut, vol.181, pp.287-300, 2013.

R. J. Griffitt, K. Hyndman, N. D. Denslow, and D. S. Barber, Comparison of Molecular and Histological Changes in Zebrafish Gills Exposed to Metallic Nanoparticles, Toxicol. Sci, vol.107, pp.404-415, 2009.

G. Guerriero, S. Legay, and J. Hausman, Alfalfa Cellulose Synthase Gene Expression under Abiotic Stress: A Hitchhiker's Guide to RT-qPCR Normalization, PLOS ONE, vol.9, 2014.

R. P. Henry, ?. Lucu, H. Onken, and D. Weihrauch, Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals, Front. Physiol, vol.3, 2012.

P. Hole, K. Sillence, C. Hannell, C. M. Maguire, M. Roesslein et al., Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA), J. Nanoparticle Res, vol.15, pp.1-12, 2013.

P. Isnard, P. Flammarion, G. Roman, M. Babut, P. Bastien et al., Statistical analysis of regulatory ecotoxicity tests, Chemosphere, vol.45, pp.659-669, 2001.
URL : https://hal.archives-ouvertes.fr/ineris-00962802

W. Janetzky, Distribution of the genus Gammarus (Amphipoda: Gammaridae) in the River Hunte and its tributaries, Hydrobiologia, vol.294, pp.23-34, 1994.

L. H. Jensen, L. M. Skjolding, A. Thit, S. N. Sørensen, C. Købler et al., Not all that glitters is gold-Electron microscopy study on uptake of gold nanoparticles in Daphnia magna and related artifacts, Environ. Toxicol. Chem, vol.36, pp.1503-1509, 2017.

, AgNPs and AuNPs acute toxicity 153

Y. Ju-nam and J. R. Lead, Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications, Sci. Total Environ, vol.400, pp.396-414, 2008.

D. W. Kelly, J. T. Dick, and W. I. Montgomery, The functional role of Gammarus(Crustacea, Amphipoda): shredders, predators, or both?, Hydrobiologia, vol.485, pp.199-203, 2002.

F. R. Khan, S. K. Misra, N. R. Bury, B. D. Smith, P. S. Rainbow et al., Inhibition of potential uptake pathways for silver nanoparticles in the estuarine snail Peringia ulvae, Nanotoxicology, vol.9, pp.493-501, 2015.

S. J. Klaine, P. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy et al., Nanomaterials in the environment: Behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem, vol.27, pp.1825-1851, 2008.

P. Y. Kunz, C. Kienle, and A. Gerhardt, Gammarus spp, Aquatic Ecotoxicology and Water Quality Assessment: Toward Integrated Multilevel Tests, vol.205, pp.1-76, 2010.

L. Kvítek, A. Paná?ek, J. Soukupová, M. Kolá?, R. Ve?e?ová et al., Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs), J. Phys. Chem. C, vol.112, pp.5825-5834, 2008.

K. W. Kwok, M. Auffan, A. R. Badireddy, C. M. Nelson, M. R. Wiesner et al., Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): Effect of coating materials, Aquat. Toxicol, pp.59-66, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01426194

E. Lacaze, O. Geffard, S. Bony, and A. Devaux, Genotoxicity assessment in the amphipod Gammarus fossarum by use of the alkaline Comet assay, Mutat. Res. Toxicol. Environ. Mutagen, vol.700, pp.32-38, 2010.

V. Ladewig, D. Jungmann, H. Köhler, M. Schirling, R. Triebskorn et al., Population Structure and Dynamics of Gammarus fossarum (Amphipoda) Upstream and Downstream from Effluents of Sewage Treatment Plants, Arch. Environ. Contam. Toxicol, vol.50, pp.370-383, 2006.

A. Lapresta-fernández, A. Fernández, and J. Blasco, Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms, TrAC Trends Anal. Chem, vol.32, pp.40-59, 2012.

J. D. Lebrun, O. Geffard, N. Urien, A. François, E. Uher et al., Seasonal variability and inter-species comparison of metal bioaccumulation in caged gammarids under urban diffuse contamination gradient: Implications for biomonitoring investigations, Sci. Total Environ, vol.511, pp.501-508, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01569648

B. Lee and J. F. Ranville, The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna, J. Hazard. Mater. 213, vol.214, pp.434-439, 2012.

S. Legay, G. Guerriero, A. Deleruelle, M. Lateur, D. Evers et al., Apple russeting as seen through the RNA-seq lens: strong alterations in the exocarp cell wall, Plant Mol. Biol, vol.88, 2015.

C. Levard, E. M. Hotze, G. V. Lowry, and G. E. Brown, Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity, Environ. Sci. Technol, vol.46, pp.6900-6914, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01519292

S. B. Lovern, H. A. Owen, and R. Klaper, Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna, Nanotoxicology, vol.2, pp.43-48, 2008.

I. Lynch and K. A. Dawson, Protein-nanoparticle interactions, Nano Today, vol.3, pp.70014-70022, 2008.

C. Macneil, J. T. Dick, and R. W. Elwood, The Trophic Ecology of Freshwater Gammarus Spp. (crustacea:amphipoda): Problems and Perspectives Concerning the Functional Feeding Group Concept, Biol. Rev, vol.72, pp.349-364, 1997.

S. Makama, J. Piella, A. Undas, W. J. Dimmers, R. Peters et al., Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil, Environ. Pollut, 2016.

E. Mcgillicuddy, I. Murray, S. Kavanagh, L. Morrison, A. Fogarty et al., Silver nanoparticles in the environment: Sources, detection and ecotoxicology, Sci. Total Environ, vol.575, pp.231-246, 2017.

K. Mehennaoui, A. Georgantzopoulou, V. Felten, J. Andreï, M. Garaud et al., Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles, Sci. Total Environ, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01779978

I. Moreno-garrido, S. Pérez, and J. Blasco, Particles in the Oceans: Implication for a safe marine environment 111, Mar. Environ. Res, pp.60-73, 2015.

F. Nasser and I. Lynch, Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna, J. Proteomics, 2016.

K. M. Newton, H. L. Puppala, C. L. Kitchens, V. L. Colvin, and S. J. Klaine, Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration, Environ. Toxicol. Chem, vol.32, pp.2356-2364, 2013.

A. L. Oliver, M. Croteau, T. L. Stoiber, M. Tejamaya, I. Römer et al., Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?, Environ. Pollut, vol.189, pp.87-91, 2014.

C. Park, J. Colman, B. P. Matson, C. W. Kim, Y. Lee et al., Ecotoxicity of bare and coated silver nanoparticles in the aquatic midge, Chironomus riparius, Environ. Toxicol. Chem, vol.34, pp.2023-2032, 2015.

W. Park, J. Ma, G. Veinot, J. G. Boxall, and A. B. , Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates?, Environ. Toxicol. Chem, vol.34, pp.850-859, 2015.

S. Renault, M. Baudrimont, N. Mesmer-dudons, P. Gonzalez, S. Mornet et al., Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea), Gold Bull, vol.41, pp.116-126, 2008.

F. Ribeiro, C. A. Van-gestel, M. D. Pavlaki, S. Azevedo, A. M. Soares et al., Bioaccumulation of silver in Daphnia magna: Waterborne and dietary exposure to nanoparticles and dissolved silver, Sci. Total Environ, vol.574, pp.1633-1639, 2017.

I. Römer, T. A. White, M. Baalousha, K. Chipman, M. R. Viant et al., Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests, J. Chromatogr. A, vol.1218, pp.4226-4233, 2011.

H. J. Allen, C. A. Impellitteri, D. A. Macke, J. L. Heckman, H. C. Poynton et al., Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna, Environ. Toxicol. Chem, vol.29, pp.2742-2750, 2010.

Á. Alonso, H. J. Lange, and E. T. Peeters, Contrasting sensitivities to toxicants of the freshwater amphipods Gammarus pulex and G. fossarum, Ecotoxicology, vol.19, pp.133-140, 2010.

J. Andreï, S. Pain-devin, V. Felten, S. Devin, L. Giambérini et al., Silver nanoparticles impact the functional role of Gammarus roeseli (Crustacea Amphipoda), Environ. Pollut, vol.208, pp.608-618, 2016.

J. Arce-funck, M. Danger, E. Gismondi, C. Cossu-leguille, F. Guérold et al., Behavioural and physiological responses of Gammarus fossarum (Crustacea Amphipoda) exposed to silver, Aquat. Toxicol, pp.73-84, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01115111

D. Batista, C. Pascoal, and F. Cássio, How do physicochemical properties influence the toxicity of silver nanoparticles on freshwater decomposers of plant litter in streams?, Ecotoxicol. Environ. Saf, vol.140, pp.148-155, 2017.

M. Baudrimont, J. Andrei, S. Mornet, P. Gonzalez, N. Mesmer-dudons et al., Trophic transfer and effects of gold nanoparticles (AuNPs) in Gammarus fossarum from contaminated periphytic biofilm, Environ. Sci. Pollut. Res, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01797345

P. Buffet, J. Pan, L. Poirier, C. Amiard-triquet, J. Amiard et al., Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food, Ecotoxicol. Environ. Saf, vol.89, pp.117-124, 2013.

N. R. Bury, J. Shaw, C. Glover, and C. Hogstrand, Derivation of a toxicity-based model to predict how water chemistry influences silver toxicity to invertebrates, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, vol.133, pp.259-270, 2002.

S. Cambier, M. Røgeberg, A. Georgantzopoulou, T. Serchi, C. Karlsson et al., Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate, Sci. Total Environ, vol.610, pp.972-982, 2018.

M. Croteau, S. K. Misra, S. N. Luoma, and E. Valsami-jones, Silver Bioaccumulation Dynamics in a Freshwater Invertebrate after Aqueous and Dietary Exposures to Nanosized and Ionic Ag, Environ. Sci, 2011.

. Technol, , vol.45, pp.6600-6607

O. Dedourge-geffard, F. Palais, S. Biagianti-risbourg, O. Geffard, and A. Geffard, Effects of metals on feeding rate and digestive enzymes in Gammarus fossarum: An in situ experiment, Chemosphere, vol.77, pp.1569-1576, 2009.

A. Dohet, L. Ector, H. Cauchie, and L. Hoffmann, Identification of benthic invertebrate and diatom indicator taxa that distinguish different stream types as well as degraded from reference conditions in Luxembourg, Anim. Biol, vol.58, pp.419-472, 2008.

D. Dowsett, J. Audinot, F. Vollnhals, S. Eswara, and T. Wirtz, High Resolution Chemical Imaging on the Helium Ion Microscope, 2016.

J. Farkas, P. Christian, J. A. Gallego-urrea, N. Roos, M. Hassellöv et al., Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells, 2011.

. Toxicol, , vol.101, pp.117-125

, AgNPs and AuNPs chronic toxicity 192

M. Farré, K. Gajda-schrantz, L. Kantiani, and D. Barceló, Ecotoxicity and analysis of nanomaterials in the aquatic environment, Anal. Bioanal. Chem, vol.393, pp.81-95, 2008.

V. Felten, G. Charmantier, R. Mons, A. Geffard, P. Rousselle et al., Physiological and behavioural responses of Gammarus pulex (Crustacea: Amphipoda) exposed to cadmium, 2008.

, Aquat. Toxicol, vol.86, pp.413-425

D. M. Forrow and L. Maltby, Toward a mechanistic understanding of contaminant-induced changes in detritus processing in streams: Direct and indirect effects on detritivore feeding, Environ. Toxicol. Chem, vol.19, pp.2100-2106, 2000.

B. K. Gaiser, A. Biswas, P. Rosenkranz, M. A. Jepson, J. R. Lead et al., Effects of silver and cerium dioxide micro-and nano-sized particles on Daphnia magna, J. Environ. Monit, vol.13, pp.1227-1235, 2011.

J. A. Gallego-urrea, J. Tuoriniemi, and M. Hassellöv, Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples, TrAC Trends Anal. Chem, pp.473-483, 2011.

J. García-alonso, N. Rodriguez-sanchez, S. K. Misra, E. Valsami-jones, M. Croteau et al., Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii, Sci. Total Environ, pp.476-477, 2014.

J. P. García-cambero, M. Núñez-garcía, G. D. López, A. L. Herranz, L. Cuevas et al., Converging hazard assessment of gold nanoparticles to aquatic organisms, Chemosphere, vol.93, pp.1194-1200, 2013.

A. Georgantzopoulou, Y. L. Balachandran, P. Rosenkranz, M. Dusinska, A. Lankoff et al., Ag nanoparticles: sizeand surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS, Nanotoxicology, 2013.

F. Gottschalk, T. Sun, and B. Nowack, Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies, Environ. Pollut, vol.181, pp.287-300, 2013.

M. Grosell, C. Nielsen, and A. Bianchini, Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, vol.133, pp.85-91, 2002.

P. Hole, K. Sillence, C. Hannell, C. M. Maguire, M. Roesslein et al., Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA), J. Nanoparticle Res, vol.15, pp.1-12, 2013.

W. Janetzky, Distribution of the genus Gammarus (Amphipoda: Gammaridae) in the River Hunte and its tributaries, Hydrobiologia, vol.294, pp.23-34, 1994.

Y. Ju-nam and J. R. Lead, Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications, Sci. Total Environ, vol.400, pp.396-414, 2008.

, AgNPs and AuNPs chronic toxicity 193

R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller et al., Release of silver nanoparticles from outdoor facades, Environ. Pollut, vol.158, pp.2900-2905, 2010.

D. W. Kelly, J. T. Dick, and W. I. Montgomery, The functional role of Gammarus(Crustacea, Amphipoda): shredders, predators, or both?, Hydrobiologia, vol.485, pp.199-203, 2002.

F. R. Khan, G. M. Kennaway, M. Croteau, A. Dybowska, B. D. Smith et al., In vivo retention of ingested Au NPs by Daphnia magna: No evidence for trans-epithelial alimentary uptake, 2014.

S. J. Klaine, P. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy et al., , 2008.

. Toxicol and . Chem, , vol.27, pp.1825-1851

E. Lacaze, O. Geffard, S. Bony, and A. Devaux, Genotoxicity assessment in the amphipod Gammarus fossarum by use of the alkaline Comet assay, Mutat. Res. Toxicol. Environ. Mutagen, vol.700, pp.32-38, 2010.

V. Ladewig, D. Jungmann, H. Köhler, M. Schirling, R. Triebskorn et al., Population Structure and Dynamics of Gammarus fossarum (Amphipoda) Upstream and Downstream from Effluents of Sewage Treatment Plants, Arch. Environ. Contam. Toxicol, vol.50, pp.370-383, 2006.

I. K. Lam and W. Wang, Accumulation and elimination of aqueous and dietary silver in Daphnia magna, Chemosphere, vol.64, pp.26-35, 2006.

A. Lapresta-fernández, A. Fernández, and J. Blasco, Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms, TrAC Trends Anal. Chem, vol.32, pp.40-59, 2012.

S. Legay, G. Guerriero, A. Deleruelle, M. Lateur, D. Evers et al., Apple russeting as seen through the RNA-seq lens: strong alterations in the exocarp cell wall, Plant Mol. Biol, vol.88, 2015.

C. Levard, E. M. Hotze, G. V. Lowry, and G. E. Brown, Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity, Environ. Sci. Technol, vol.46, pp.6900-6914, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01519292

J. Lignot, C. Spanings-pierrot, and G. Charmantier, Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans, Aquaculture, vol.191, pp.209-245, 2000.

S. N. Luoma, F. R. Khan, and M. Croteau, Bioavailability and Bioaccumulation of Metal-Based Engineered Nanomaterials in Aquatic Environments: Concepts and Processes, pp.157-193, 2014.

S. N. Luoma and P. S. Rainbow, Why Is Metal Bioaccumulation So Variable? Biodynamics as a Unifying Concept, Environ. Sci. Technol, vol.39, pp.1921-1931, 2005.

A. Mackevica, L. M. Skjolding, A. Gergs, A. Palmqvist, and A. Baun, Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions, Aquat. Toxicol, vol.161, pp.10-16, 2015.

C. Macneil, J. T. Dick, and R. W. Elwood, The Trophic Ecology of Freshwater Gammarus Spp, 1997.

, AgNPs and AuNPs chronic toxicity 194 (crustacea:amphipoda): Problems and Perspectives Concerning the Functional Feeding Group Concept, Biol. Rev, vol.72, pp.349-364

R. M. Mann, M. Grosell, A. Bianchini, and C. M. Wood, Biologically incorporated dietary silver has no ionoregulatory effects in American red crayfish (Procambarus clarkii), Environ. Toxicol. Chem, vol.23, pp.388-395, 2004.

L. H. Mantel and L. L. Farmer, 2-Osmotic and Ionic Regulation, Internal Anatomy and Physiological Regulation, pp.53-161, 1983.

E. Mcgillicuddy, I. Murray, S. Kavanagh, L. Morrison, A. Fogarty et al., Silver nanoparticles in the environment: Sources, detection and ecotoxicology, Sci. Total Environ, vol.575, pp.231-246, 2017.

K. Mehennaoui, A. Georgantzopoulou, V. Felten, J. Andreï, M. Garaud et al., Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles, Sci. Total Environ, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01779978

R. B. Naddy, G. R. Mcnerney, J. W. Gorsuch, R. A. Bell, J. R. Kramer et al., The effect of food on the acute toxicity of silver nitrate to four freshwater test species and acute-to-chronic ratios, Ecotoxicology, vol.20, 2011.

P. M. Nair, S. Y. Park, and J. Choi, Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius, Chemosphere, vol.92, pp.592-599, 2013.

A. Nel, T. Xia, L. Mädler, and N. Li, Toxic Potential of Materials at the Nanolevel, Science, vol.311, pp.622-627, 2006.

E. Oberdörster, S. Zhu, T. M. Blickley, P. Mcclellan-green, and M. L. Haasch, Ecotoxicology of carbonbased engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms, Carbon, vol.44, pp.1112-1120, 2006.

J. Pan, P. Buffet, L. Poirier, C. Amiard-triquet, D. Gilliland et al., Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: The Tellinid clam Scrobicularia plana, Environ. Pollut, vol.168, pp.37-43, 2012.

E. J. Petersen, T. B. Henry, J. Zhao, R. I. Maccuspie, T. L. Kirschling et al., Identification and Avoidance of Potential Artifacts and Misinterpretations in Nanomaterial Ecotoxicity Measurements, Environ. Sci. Technol, vol.48, pp.4226-4246, 2014.

S. Renault, M. Baudrimont, N. Mesmer-dudons, P. Gonzalez, S. Mornet et al., Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea), Gold Bull, vol.41, pp.116-126, 2008.

C. Rosas, A. Sanchez, E. Escobar, L. Soto, and A. Bolongaro-crevenna, Daily variations of oxygen consumption and glucose hemolymph level related to morphophysiological and ecological adaptations of crustacea, Comp. Biochem. Physiol. A Physiol, vol.101, pp.323-328, 1992.

, AgNPs and AuNPs chronic toxicity 195

G. R. Scott and K. A. Sloman, The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity, Aquat. Toxicol, vol.68, pp.369-392, 2004.

S. N. Sørensen, H. Holten-lützhøft, R. Rasmussen, and A. Baun, Acute and chronic effects from pulse exposure of D. magna to silver and copper oxide nanoparticles, Aquat. Toxicol, vol.180, pp.209-217, 2016.

P. Sornom, V. Felten, V. Médoc, S. Sroda, P. Rousselle et al., Effect of gender on physiological and behavioural responses of Gammarus roeseli (Crustacea Amphipoda) to salinity and temperature, Environ. Pollut, vol.158, pp.1288-1295, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00474338

L. M. Stevenson, H. Dickson, T. Klanjscek, A. A. Keller, E. Mccauley et al., Environmental Feedbacks and Engineered Nanoparticles: Mitigation of Silver Nanoparticle Toxicity to Chlamydomonas reinhardtii by Algal-Produced Organic Compounds, PLoS ONE, vol.8, 2013.

L. M. Stevenson, K. E. Krattenmaker, E. Johnson, A. J. Bowers, A. S. Adeleye et al., Standardized toxicity testing may underestimate ecotoxicity: Environmentally relevant food rations increase the toxicity of silver nanoparticles to Daphnia, Environ. Toxicol. Chem, 2017.

K. Tiede, M. Hassellöv, E. Breitbarth, Q. Chaudhry, and A. B. Boxall, Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles, J. Chromatogr. A, pp.503-509, 2009.

G. Vale, K. Mehennaoui, S. Cambier, G. Libralato, S. Jomini et al., Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: A critical overview, Aquat. Toxicol, vol.170, pp.162-174, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01780205

M. E. Vance, T. Kuiken, E. P. Vejerano, S. P. Mcginnis, M. F. Hochella et al., Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol, vol.6, pp.1769-1780, 2015.

C. Vellinger, E. Gismondi, V. Felten, P. Rousselle, K. Mehennaoui et al., Single and combined effects of cadmium and arsenate in Gammarus pulex (Crustacea, Amphipoda): Understanding the links between physiological and behavioural responses, Aquat. Toxicol, pp.106-116, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01119758

M. Volland, M. Hampel, J. A. Martos-sitcha, C. Trombini, G. Martínez-rodríguez et al., Citrate gold nanoparticle exposure in the marine bivalve Ruditapes philippinarum: uptake, elimination and oxidative stress response, Environ. Sci. Pollut. Res, vol.22, pp.17414-17424, 2015.

N. A. Webb and C. M. Wood, Physiological analysis of the stress response associated with acute silver nitrate exposure in freshwater rainbow trout (Oncorhynchus mykiss), Environ. Toxicol. Chem, vol.17, pp.579-588, 1998.

A. T. Wray and S. J. Klaine, Modeling the influence of physicochemical properties on gold nanoparticle uptake and elimination by Daphnia magna, Environ. Toxicol. Chem, vol.34, pp.860-872, 2015.

Y. Yang, C. Long, H. Li, Q. Wang, Z. Yang et al., Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry, Sci. Total Environ. References Andreï, J., Pain, 2016.

, Environ. Pollut, vol.208, pp.608-618

Y. L. Balachandran, S. Girija, R. Selvakumar, S. Tongpim, A. C. Gutleb et al., Differently Environment Stable Bio-Silver Nanoparticles: Study on Their Optical Enhancing and Antibacterial Properties, PLoS ONE, vol.8, 2013.

Y. L. Balachandran, P. Peranantham, R. Selvakumar, A. C. Gutleb, and S. Girija, Size-Controlled Green Synthesis of Silver Nanoparticles using Dual Functional Plant Leaf Extract at Room Temperature, Int. J. Green Nanotechnol, vol.4, pp.310-325, 2012.

J. Baumann, J. Köser, D. Arndt, and J. Filser, The coating makes the difference: Acute effects of iron oxide nanoparticles on Daphnia magna, Sci. Total Environ, vol.484, pp.176-184, 2014.

I. Blinova, J. Niskanen, P. Kajankari, L. Kanarbik, A. Käkinen et al., Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus, Environ. Sci. Pollut. Res, vol.20, pp.3456-3463, 2013.

A. J. Bone, B. P. Colman, A. P. Gondikas, K. M. Newton, K. H. Harrold et al., Biotic and Abiotic Interactions in Aquatic Microcosms Determine Fate and Toxicity of Ag Nanoparticles: Part 2-Toxicity and Ag Speciation, Environ. Sci. Technol, vol.46, pp.6925-6933, 2012.

D. Cleveland, S. E. Long, P. L. Pennington, E. Cooper, M. H. Fulton et al., Pilot estuarine mesocosm study on the environmental fate of Silver nanomaterials leached from consumer products, Sci. Total Environ, 2012.

A. Farkas, J. Salánki, and I. Varanka, Crustaceans as biological indicators of heavy metal pollution in Lake Balaton (Hungary). Hydrobiologia 506-509, pp.359-364, 2003.

A. Gandar, P. Laffaille, C. Canlet, M. Tremblay, R. Gautier et al., Adaptive response under multiple stress exposure in fish: From the molecular to individual level, Chemosphere, vol.188, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01613631

M. Garaud, M. Auffan, S. Devin, V. Felten, C. Pagnout et al., Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha, Nanotoxicology, vol.10, pp.935-944, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01726553

M. Garaud, M. Auffan, S. Devin, V. Felten, C. Pagnout et al., Fate and integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha: a mesocosm approach, Nanotoxicology, 2015.

T. Garaud, J. Devin, S. Cossu-leguille, C. Pain-devin, S. Felten et al., Multibiomarker assessment of cerium dioxide nanoparticle (nCeO2) sublethal effects on two freshwater invertebrates, Dreissena polymorpha and Gammarus roeseli, Aquat. Toxicol, vol.158, pp.63-74, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01159543

J. García-alonso, N. Rodriguez-sanchez, S. K. Misra, E. Valsami-jones, M. Croteau et al., Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii, Sci. Total Environ, pp.476-477, 2014.

J. P. García-cambero, M. Núñez-garcía, G. D. López, A. L. Herranz, L. Cuevas et al., Converging hazard assessment of gold nanoparticles to aquatic organisms, Chemosphere, vol.93, pp.1194-1200, 2013.

A. Georgantzopoulou, Effects of silver nanoparticles and ions and interaction with first line of defense, 2015.

A. Georgantzopoulou, Y. L. Balachandran, P. Rosenkranz, M. Dusinska, A. Lankoff et al., Ag nanoparticles: size-and surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS, Nanotoxicology, 2013.

A. Georgantzopoulou, S. Cambier, T. Serchi, M. Kruszewski, Y. L. Balachandran et al., Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna, Sci. Total Environ. 569, vol.570, pp.681-689, 2016.

G. Guerriero, S. Legay, and J. Hausman, Alfalfa Cellulose Synthase Gene Expression under Abiotic Stress: A Hitchhiker's Guide to RT-qPCR Normalization, PLOS ONE, vol.9, 2014.

M. Heinlaan, A. Ivask, I. Blinova, H. Dubourguier, and A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, vol.71, pp.1308-1316, 2008.

A. Ivask, A. Elbadawy, C. Kaweeteerawat, D. Boren, H. Fischer et al., Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver, ACS Nano, vol.8, pp.374-386, 2014.

S. J. Klaine, P. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy et al., Nanomaterials in the environment: Behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem, vol.27, pp.1825-1851, 2008.

P. Y. Kunz, C. Kienle, and A. Gerhardt, Gammarus spp, Aquatic Ecotoxicology and Water Quality Assessment: Toward Integrated Multilevel Tests, vol.205, pp.1-76, 2010.

C. Lacroix, V. Coquillé, J. Guyomarch, M. Auffret, and D. Moraga, A selection of reference genes and earlywarning mRNA biomarkers for environmental monitoring using Mytilus spp. as sentinel species, Mar. Pollut. Bull, vol.86, pp.304-313, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01104708

L. Lagadic, Biomarkers: Useful tools for the monitoring of aquatic environments, Rev. Med. Veterinaire, vol.153, pp.581-588, 2002.

A. Lapresta-fernández, A. Fernández, and J. Blasco, Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms, TrAC Trends Anal. Chem, vol.32, pp.40-59, 2012.

S. B. Lovern, H. A. Owen, and R. Klaper, Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna, Nanotoxicology, vol.2, pp.43-48, 2008.

K. Mehennaoui, A. Georgantzopoulou, V. Felten, J. Andreï, M. Garaud et al., Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles, Sci. Total Environ, pp.1649-1659, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01779978

I. Moreno-garrido, S. Pérez, and J. Blasco, Particles in the Oceans: Implication for a safe marine environment 111, Mar. Environ. Res, pp.60-73, 2015.

A. Nel, T. Xia, L. Mädler, and N. Li, Toxic Potential of Materials at the Nanolevel, Science, vol.311, pp.622-627, 2006.

A. L. Oliver, M. Croteau, T. L. Stoiber, M. Tejamaya, I. Römer et al., Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?, Environ. Pollut, vol.189, pp.87-91, 2014.

W. Park, J. Ma, G. Veinot, J. G. Boxall, and A. B. , Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates?, Environ. Toxicol. Chem, vol.34, pp.850-859, 2015.

M. Plusquin, O. Degheselle, A. Cuypers, E. Geerdens, A. V. Roten et al., Reference genes for qPCR assays in toxic metal and salinity stress in two flatworm model organisms, Ecotoxicology, vol.21, pp.475-484, 2012.

H. C. Poynton, J. M. Lazorchak, C. A. Impellitteri, B. J. Blalock, K. Rogers et al., Toxicogenomic Responses of Nanotoxicity in Daphnia magna Exposed to Silver Nitrate and Coated Silver Nanoparticles, Environ. Sci. Technol, vol.46, pp.6288-6296, 2012.

Y. Sakka, L. M. Skjolding, A. Mackevica, J. Filser, and A. Baun, Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna, Aquat. Toxicol, vol.177, pp.526-535, 2016.

T. Silva, L. R. Pokhrel, B. Dubey, T. M. Tolaymat, K. J. Maier et al., Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity, Sci. Total Environ, pp.968-976, 2014.

G. Vale, K. Mehennaoui, S. Cambier, G. Libralato, S. Jomini et al., Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: A critical overview, Aquat. Toxicol, vol.170, pp.162-174, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01780205

M. E. Vance, T. Kuiken, E. P. Vejerano, S. P. Mcginnis, M. F. Hochella et al., Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol, vol.6, pp.1769-1780, 2015.

P. Vasseur and C. Leguille, Defense systems of benthic invertebrates in response to environmental stressors, Environ. Toxicol, vol.19, pp.433-436, 2004.

M. Volland, M. Hampel, J. A. Martos-sitcha, C. Trombini, G. Martínez-rodríguez et al., Citrate gold nanoparticle exposure in the marine bivalve Ruditapes philippinarum: uptake, elimination and oxidative stress response, Environ. Sci. Pollut. Res, vol.22, pp.17414-17424, 2015.
DOI : 10.1007/s11356-015-4718-x

R. Adam, N. Vergauwen, L. Blust, R. Knapen, and D. , Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles, Environ. Res, vol.138, pp.82-92, 2015.
DOI : 10.1016/j.envres.2015.02.014

O. Adam, P. Badot, F. Degiorgi, and G. Crini, Mixture toxicity assessment of wood preservative pesticides in the freshwater amphipod Gammarus pulex (L.), Ecotoxicol. Environ. Saf, vol.72, pp.441-449, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00355297

J. Ahn, H. Eom, X. Yang, J. N. Meyer, and J. Choi, Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans, Chemosphere, vol.108, pp.343-352, 2014.

D. Ali, Oxidative Stress-Mediated Apoptosis and Genotoxicity Induced by Silver Nanoparticles in Freshwater Snail Lymnea luteola L, Biol. Trace Elem. Res, vol.162, pp.333-341, 2014.

D. Ali, P. G. Yadav, S. Kumar, H. Ali, S. Alarifi et al., Sensitivity of freshwater pulmonate snail Lymnaea luteola L., to silver nanoparticles, Chemosphere, 2014.

Á. Alonso, H. J. Lange, and E. T. Peeters, Contrasting sensitivities to toxicants of the freshwater amphipods Gammarus pulex and G. fossarum, Ecotoxicology, vol.19, pp.133-140, 2010.

C. L. Andersen, J. L. Jensen, and T. F. Ørntoft, Normalization of Real-Time Quantitative Reverse TranscriptionPCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets, Cancer Res, vol.64, pp.5245-5250, 2004.

J. Andreï, S. Pain-devin, V. Felten, S. Devin, L. Giambérini et al., Silver nanoparticles impact the functional role of Gammarus roeseli (Crustacea Amphipoda), Environ. Pollut, vol.208, pp.608-618, 2016.

B. M. Angel, G. E. Batley, C. V. Jarolimek, and N. J. Rogers, The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems, Chemosphere, 2013.

K. Arab and J. Steghens, Plasma lipid hydroperoxides measurement by an automated xylenol orange method, Anal. Biochem, vol.325, pp.158-163, 2004.
DOI : 10.1016/j.ab.2003.10.022

J. Arce-funck, M. Danger, E. Gismondi, C. Cossu-leguille, F. Guérold et al., Behavioural and physiological responses of Gammarus fossarum (Crustacea Amphipoda) exposed to silver, Aquat. Toxicol, pp.73-84, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01115111

S. Asghari, S. A. Johari, J. H. Lee, Y. S. Kim, Y. B. Jeon et al., Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna, J. Nanobiotechnology, vol.10, pp.1-11, 2012.

P. Asharani, M. P. Hande, and S. Valiyaveettil, Anti-proliferative activity of silver nanoparticles, BMC Cell Biol, vol.10, p.65, 2009.

P. V. Asharani, G. Low-kah-mun, M. P. Hande, and S. Valiyaveettil, Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells, ACS Nano, vol.3, pp.279-290, 2009.

D. M. Auffan, D. C. Santaella, P. A. Thiéry, C. Paillès, J. Rose et al., Ecotoxicity of Inorganic Nanoparticles: From Unicellular Organisms to Invertebrates, p.214, 2012.
DOI : 10.1007/978-90-481-9751-4_332

P. B. Bhushan, Encyclopedia of Nanotechnology, pp.623-636

M. Auffan, J. Rose, M. Wiesner, and J. Bottero, Chemical stability of metallic nanoparticles : a parameter controlling their potential cellular toxicity in vitro, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01793984

M. Baalousha, Y. Nur, I. Römer, M. Tejamaya, and J. R. Lead, Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles, Sci. Total Environ, pp.119-131, 2013.

C. Bacchetta, A. Ale, M. F. Simoniello, S. Gervasio, C. Davico et al., Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles, Ecol. Indic, vol.76, pp.230-239, 2017.
DOI : 10.1016/j.ecolind.2017.01.018

Y. L. Balachandran, S. Girija, R. Selvakumar, S. Tongpim, A. C. Gutleb et al., Differently Environment Stable Bio-Silver Nanoparticles: Study on Their Optical Enhancing and Antibacterial Properties, PLoS ONE, vol.8, 2013.
DOI : 10.1371/journal.pone.0077043

URL : https://doi.org/10.1371/journal.pone.0077043

Y. L. Balachandran, P. Peranantham, R. Selvakumar, A. C. Gutleb, and S. Girija, Size-Controlled Green Synthesis of Silver Nanoparticles using Dual Functional Plant Leaf Extract at Room Temperature, Int. J. Green Nanotechnol, vol.4, pp.310-325, 2012.
DOI : 10.1080/19430892.2012.706183

C. Barata, I. Varo, J. C. Navarro, S. Arun, and C. Porte, Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, vol.140, pp.175-186, 2005.

J. L. Barnard and C. M. Barnard, Freshwater amphipoda of the world, 1983.

M. Vernon-va-hayfield and . Assoc,

D. Batista, C. Pascoal, and F. Cássio, How do physicochemical properties influence the toxicity of silver nanoparticles on freshwater decomposers of plant litter in streams?, Ecotoxicol. Environ. Saf, vol.140, pp.148-155, 2017.

M. Baudrimont, J. Andrei, S. Mornet, P. Gonzalez, N. Mesmer-dudons et al., Trophic transfer and effects of gold nanoparticles (AuNPs) in Gammarus fossarum from contaminated periphytic biofilm, Environ. Sci. Pollut. Res, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01797345

J. Baumann, J. Köser, D. Arndt, and J. Filser, The coating makes the difference: Acute effects of iron oxide nanoparticles on Daphnia magna, Sci. Total Environ, vol.484, pp.176-184, 2014.

, t=1 507039495677&utm_campaign=NAN021G&utm_source=hs_automation&utm_medium=email&utm_content=3 9598398&_hsenc=p2ANqtz-8aMzzG8s1ejWU5vfx62L2v9e7nraO2Zo5IxMvgn1QGf168euhj5LTcihQ1hQNtJhW680aqJqccZGQGLNnRuMjC9fE2g&_hsmi=39598398

M. J. Bebianno, M. Gonzalez-rey, T. Gomes, J. J. Mattos, F. Flores-nunes et al., Is gene transcription in mussel gills altered after exposure to Ag nanoparticles?, Environ. Sci. Pollut. Res. 1-9, 2015.

R. F. Beers and I. W. Sizer, A Spectrophotometric Method for Measuring the Breakdown of Hydrogen Peroxide by Catalase, J. Biol. Chem, vol.195, pp.133-140, 1951.

A. Bianchini and C. M. Wood, Mechanism of acute silver toxicity in Daphnia magna, Environ. Toxicol. Chem, vol.22, pp.1361-1367, 2003.

A. Bianchini and C. M. Wood, Physiological effects of chronic silver exposure in Daphnia magna, Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP, vol.133, pp.137-145, 2002.

D. Bickford, D. J. Lohman, N. S. Sodhi, P. K. Ng, R. Meier et al., Cryptic species as a window on diversity and conservation, Trends Ecol. Evol, vol.22, pp.148-155, 2007.

K. Bilberg, H. Malte, T. Wang, and E. Baatrup, Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis), Aquat. Toxicol, vol.96, pp.159-165, 2010.

S. A. Blaser, M. Scheringer, M. Macleod, and K. Hungerbühler, Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles, Sci. Total Environ, vol.390, pp.396-409, 2008.

I. Blinova, J. Niskanen, P. Kajankari, L. Kanarbik, A. Käkinen et al., Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus, Environ. Sci. Pollut. Res. 1-8, 2012.

S. Böhme, M. Baccaro, M. Schmidt, A. Potthoff, H. Stärk et al., Metal uptake and distribution in the zebrafish (Danio rerio) embryo: differences between nanoparticles and metal ions, Environ. Sci. Nano, vol.4, pp.1005-1015, 2017.

A. J. Bone, B. P. Colman, A. P. Gondikas, K. M. Newton, K. H. Harrold et al., Biotic and Abiotic Interactions in Aquatic Microcosms Determine Fate and Toxicity of Ag Nanoparticles: Part 2-Toxicity and Ag Speciation, Environ. Sci. Technol, vol.46, pp.6925-6933, 2012.

B. Borowsky, The Use of the Males&apos, 1984.

, Gnathopods During Precopulation in Some Gammaridean Amphipods, vol.47, pp.245-250

T. L. Botha, K. Boodhia, and V. Wepener, Adsorption, uptake and distribution of gold nanoparticles in Daphnia magna following long term exposure, Aquat. Toxicol, vol.170, pp.104-111, 2016.

A. Bour, F. Mouchet, J. Silvestre, L. Gauthier, and E. Pinelli, Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review, J. Hazard. Mater, vol.283, pp.764-777, 2015.

E. L. Bousfield, shallow-water-gammaridean-amphipoda-of-new-england-handbooks-of-american, 1973.

C. R. Bowman, F. C. Bailey, M. Elrod-erickson, A. M. Neigh, and R. R. Otter, Effects of silver nanoparticles on zebrafish (Danio rerio) and Escherichia coli (ATCC 25922): a comparison of toxicity based on total surface area versus mass concentration of particles in a model eukaryotic and prokaryotic system, Environ. Toxicol. Chem, vol.31, pp.1793-1800, 2012.

J. S. Bozich, S. E. Lohse, M. D. Torelli, C. J. Murphy, R. J. Hamers et al., Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna, Environ. Sci. Nano, vol.1, pp.260-270, 2014.

R. Brigelius-flohé and M. Maiorino, Cellular functions of glutathione 1830, Biochim. Biophys. Acta BBA-Gen. Subj, pp.3289-3303, 2013.

J. K. Brown, D. R. Frohlich, and R. C. Rosell, The Sweetpotato or Silverleaf Whiteflies: Biotypes of Bemisia tabaci or a Species Complex?, Annu. Rev. Entomol, vol.40, pp.511-534, 1995.

F. Brulle, F. Bernard, F. Vandenbulcke, D. Cuny, and S. Dumez, Identification of suitable qPCR reference genes in leaves of Brassica oleracea under abiotic stresses, Ecotoxicology, vol.23, pp.459-471, 2014.

A. Bruneau, P. Turcotte, M. Pilote, F. Gagné, and C. Gagnon, Fate of silver nanoparticles in wastewater and immunotoxic effects on rainbow trout, Aquat. Toxicol, vol.174, pp.70-81, 2016.

P. Buffet, J. Pan, L. Poirier, C. Amiard-triquet, J. Amiard et al., Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food, Ecotoxicol. Environ. Saf, vol.89, pp.117-124, 2013.

P. Buri?, ?. Jak?i?, L. ?tajner, M. Dutour-sikiri?, D. Jura?in et al., Effect of silver nanoparticles on Mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure, Mar. Environ. Res, pp.50-59, 2015.

N. R. Bury, J. Shaw, C. Glover, and C. Hogstrand, Derivation of a toxicity-based model to predict how water chemistry influences silver toxicity to invertebrates, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, vol.133, pp.259-270, 2002.

S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett et al., The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments, Clin. Chem, vol.55, pp.611-622, 2009.

S. Cambier, M. Røgeberg, A. Georgantzopoulou, T. Serchi, C. Karlsson et al., Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate, Sci. Total Environ, vol.610, pp.972-982, 2018.

L. Canesi, T. Balbi, R. Fabbri, A. Salis, G. Damonte et al., Biomolecular coronas in invertebrate species: Implications in the environmental impact of nanoparticles, 2017.

L. Canesi, C. Ciacci, R. Fabbri, A. Marcomini, G. Pojana et al., Emerging and persistent impacts on Marine Organisms: Detection methods and action mechanisms 76, Mar. Environ. Res, pp.16-21, 2012.

A. Chamier and L. G. Willoughby, The role of fungi in the diet of the amphipod Gammarus pulex (L.): an enzymatic study, Freshw. Biol, vol.16, pp.197-208, 1986.

L. Charron, Biomarqueurs énergétiques chez u amphipode d'eau douce Gammarus fossarum" Développement, lien avec le succés reproducteur et application in situ, 2014.

Y. Chen, Y. Si, D. Zhou, and F. Dang, Differential bioaccumulation patterns of nanosized and dissolved silver in a land snail Achatina fulica, Environ. Pollut, vol.222, pp.50-57, 2017.

É. Chevreux, L. Fage, and F. Faunistique, , 1970.

J. E. Choi, S. Kim, J. H. Ahn, P. Youn, J. S. Kang et al., Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish, Aquat. Toxicol, vol.100, pp.151-159, 2010.

Z. Clemente, V. L. Castro, M. A. Moura, C. M. Jonsson, and L. F. Fraceto, Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions, Aquat. Toxicol, vol.147, pp.129-139, 2014.

D. Cleveland, S. E. Long, P. L. Pennington, E. Cooper, M. H. Fulton et al., Pilot estuarine mesocosm study on the environmental fate of Silver nanomaterials leached from consumer products, Sci. Total Environ, 2012.

M. Connolly, M. Fernandez-cruz, A. Quesada-garcia, L. Alte, H. Segner et al., Comparative Cytotoxicity Study of Silver Nanoparticles (AgNPs) in a Variety of Rainbow Trout Cell Lines, 2015.

P. Hepatocytes, Int. J. Environ. Res. Public. Health, vol.12, pp.5386-5405

D. Copila?-ciocianu, T. Rutová, P. Pa?il, and A. Petrusek, Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians, Mol. Phylogenet. Evol, vol.112, pp.218-229, 2017.

A. D. Correia, A. L. Pereira, M. H. Costa, and F. Carrapi??o, Functional anatomy of the midgut gland of Gammarus locusta (Crustacea: Amphipoda), J. Mar. Biol. Assoc. UK, vol.82, pp.201-204, 2002.

R. Coulaud, O. Geffard, B. Xuereb, E. Lacaze, H. Quéau et al., situ feeding assay with Gammarus fossarum (Crustacea): Modelling the influence of confounding factors to improve water quality biomonitoring, vol.45, pp.6417-6429, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01920247

M. E. Cristescu and P. D. Hebert, The "Crustacean Seas"-an evolutionary perspective on the Ponto-Caspian peracarids, Can. J. Fish. Aquat. Sci, vol.62, pp.505-517, 2005.

M. Croteau, S. K. Misra, S. N. Luoma, and E. Valsami-jones, Silver Bioaccumulation Dynamics in a Freshwater Invertebrate after Aqueous and Dietary Exposures to Nanosized and Ionic Ag, Environ. Sci. Technol, vol.45, pp.6600-6607, 2011.

S. A. Cumberland and J. R. Lead, Particle size distributions of silver nanoparticles at environmentally relevant conditions, J. Chromatogr. A, vol.1216, pp.9099-9105, 2009.

D. Cupi, N. B. Hartmann, and A. Baun, The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna, 2015.

, Toxicol. Chem, vol.34, pp.497-506

A. L. Dale, G. V. Lowry, and E. A. Casman, Modeling Nanosilver Transformations in Freshwater Sediments, Environ. Sci. Technol, vol.47, pp.12920-12928, 2013.

O. Dangles and F. Guérold, Linking Shredders and Leaf Litter Processing: Insights from an Acidic Stream Study, Int. Rev. Hydrobiol, vol.86, pp.395-406, 2001.

N. Dayal, M. Thakur, P. Patil, D. Singh, G. Vanage et al., Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish (Danio rerio), J. Nanoparticle Res, vol.18, p.291, 2016.

W. M. De-coen and C. R. Janssen, The use of biomarkers in Daphnia magna toxicity testing. IV. Cellular Energy Allocation: a new methodology to assess the energy budget of toxicant-stressed Daphnia populations, J. Aquat. Ecosyst. Stress Recovery, vol.6, pp.43-55, 1997.

W. De-spiegelaere, J. Dern-wieloch, R. Weigel, V. Schumacher, H. Schorle et al., Reference Gene Validation for RT-qPCR, a Note on Different Available Software Packages, PLoS ONE, vol.10, 2015.

A. Dedeh, A. Ciutat, M. Treguer-delapierre, and J. Bourdineaud, Impact of gold nanoparticles on zebrafish exposed to a spiked sediment, Nanotoxicology, vol.9, pp.71-80, 2015.

O. Dedourge-geffard, L. Charron, C. Hofbauer, V. Gaillet, F. Palais et al., Temporal patterns of digestive enzyme activities and feeding rate in gammarids (Gammarus fossarum) exposed to inland polluted waters, Ecotoxicol. Environ. Saf, vol.97, pp.139-146, 2013.

O. Dedourge-geffard, F. Palais, S. Biagianti-risbourg, O. Geffard, and A. Geffard, Effects of metals on feeding rate and digestive enzymes in Gammarus fossarum: An in situ experiment, Chemosphere, vol.77, pp.1569-1576, 2009.

M. Deponte, Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes, 2013.

, Cellular functions of glutathione 1830, Biochim. Biophys. Acta BBA-Gen. Subj, pp.3217-3266

A. Dohet, L. Ector, H. Cauchie, and L. Hoffmann, Identification of benthic invertebrate and diatom indicator taxa that distinguish different stream types as well as degraded from reference conditions in Luxembourg, Anim. Biol, vol.58, pp.419-472, 2008.

R. F. Domingos, M. A. Baalousha, Y. Ju-nam, M. M. Reid, N. Tufenkji et al., Characterizing Manufactured Nanoparticles in the Environment: Multimethod Determination of Particle Sizes, Environ. Sci. Technol, vol.43, pp.7277-7284, 2009.

R. F. Domingos, C. Franco, and J. P. Pinheiro, The role of charged polymer coatings of nanoparticles on the speciation and fate of metal ions in the environment, Environ. Sci. Pollut. Res. Int, vol.22, pp.2900-2906, 2015.

R. F. Domingos, A. Gélabert, S. Carreira, A. Cordeiro, Y. Sivry et al., Metals in the Aquatic Environment-Interactions and Implications for the Speciation and Bioavailability: A Critical Overview, Aquat. Geochem, vol.21, pp.231-257, 2015.

R. F. Domingos, C. Peyrot, and K. J. Wilkinson, Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate, Environ. Chem, 2010.

R. F. Domingos, Z. Rafiei, C. E. Monteiro, M. A. Khan, and K. J. Wilkinson, Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid, Environ. Chem, vol.10, pp.306-312, 2013.

M. Dong, X. Zhang, X. Chi, S. Mou, J. Xu et al., The validity of a reference gene is highly dependent on the experimental conditions in green alga Ulva linza, Curr. Genet, vol.58, pp.13-20, 2012.

D. Dowsett, J. Audinot, F. Vollnhals, S. Eswara, and T. Wirtz, High Resolution Chemical Imaging on the Helium Ion Microscope, 2016.

. Kgaa,

S. Dunel-erb, C. Barradas, and J. Lignon, Morphological Evidence for the Existence of Two Distinct Types of Mitochondria Rich Cells in the Gill of the Crayfish Astacus leptodactylusEschscholtz, Acta Zool, vol.78, pp.195-203, 1997.

L. A. Ellis, E. Valsami-jones, J. R. Lead, and M. Baalousha, Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment, Sci. Total Environ, vol.568, pp.95-106, 2016.

O. Erel, A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation, Clin. Biochem, vol.37, pp.277-285, 2004.

T. Eybe, T. Bohn, J. N. Audinot, T. Udelhoven, H. M. Cauchie et al., Uptake visualization of deltamethrin by NanoSIMS and acute toxicity to the water flea Daphnia magna, Chemosphere, vol.76, pp.134-140, 2009.

S. N. Fabrega, C. R. Luoma, T. S. Tyler, J. R. Galloway, and . Lead, Silver nanoparticles: Behaviour and effects in the aquatic environment, Environ. Int, vol.37, pp.517-531, 2011.

A. Farkas, J. Salánki, and I. Varanka, Crustaceans as biological indicators of heavy metal pollution in Lake Balaton (Hungary). Hydrobiologia 506-509, pp.359-364, 2003.

J. Farkas, P. Christian, J. A. Gallego-urrea, N. Roos, M. Hassellöv et al., Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells, Aquat. Toxicol, vol.101, pp.117-125, 2011.

E. Farmen, H. N. Mikkelsen, Ø. Evensen, J. Einset, L. S. Heier et al., Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low ?g/L concentrations of Ag nanoparticles, Proceedings from the 16th International Symposium on Pollutant Responses in Marine Organisms (PRIMO16), vol.108, pp.78-84, 2012.

M. Farré, K. Gajda-schrantz, L. Kantiani, and D. Barceló, Ecotoxicity and analysis of nanomaterials in the aquatic environment, Anal. Bioanal. Chem, vol.393, pp.1427-1435, 2008.

N. J. Fielding, C. Macneil, J. T. Dick, R. W. Elwood, G. E. Riddell et al., Effects of the acanthocephalan parasite Echinorhynchus truttae on the feeding ecology of Gammarus pulex (Crustacea: Amphipoda), J. Zool, vol.261, pp.321-325, 2003.

D. M. Forrow and L. Maltby, Toward a mechanistic understanding of contaminant-induced changes in detritus processing in streams: Direct and indirect effects on detritivore feeding, Environ. Toxicol. Chem, vol.19, pp.2100-2106, 2000.

P. P. Fu, Q. Xia, H. Hwang, P. C. Ray, and H. Yu, Mechanisms of nanotoxicity: Generation of reactive oxygen species, J. Food Drug Anal., Nanomaterials-Toxicology and Medical Applications, vol.22, pp.64-75, 2014.

F. Gagné, C. André, R. Skirrow, M. Gélinas, J. Auclair et al., Toxicity of silver nanoparticles to rainbow trout: A toxicogenomic approach, Chemosphere, vol.89, pp.615-622, 2012.

F. Gagné, C. Blaise, and J. Pellerin, Altered exoskeleton composition and vitellogenesis in the crustacean Gammarus sp. collected at polluted sites in the Saguenay Fjord, Canada. Environ. Res, vol.98, pp.89-99, 2005.

B. K. Gaiser, A. Biswas, P. Rosenkranz, M. A. Jepson, J. R. Lead et al., Effects of silver and cerium dioxide micro-and nano-sized particles on Daphnia magna, J. Environ. Monit, vol.13, pp.1227-1235, 2011.

J. A. Gallego-urrea, J. Tuoriniemi, and M. Hassellöv, Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples, TrAC Trends Anal. Chem, pp.473-483, 2011.

A. Gandar, P. Laffaille, C. Canlet, M. Tremblay, R. Gautier et al., Adaptive response under multiple stress exposure in fish: From the molecular to individual level, Chemosphere, vol.188, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01613631

J. Gao, K. Powers, Y. Wang, H. Zhou, S. M. Roberts et al., Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles, Chemosphere, vol.89, pp.96-101, 2012.

M. Garaud, M. Auffan, S. Devin, V. Felten, C. Pagnout et al., Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha, Nanotoxicology, vol.10, pp.935-944, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01726553

M. Garaud, M. Auffan, S. Devin, V. Felten, C. Pagnout et al., Fate and integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha: a mesocosm approach, Nanotoxicology, 2015.

T. Garaud, J. Devin, S. Cossu-leguille, C. Pain-devin, S. Felten et al., Multibiomarker assessment of cerium dioxide nanoparticle (nCeO2) sublethal effects on two freshwater invertebrates, Dreissena polymorpha and Gammarus roeseli, Aquat. Toxicol, vol.158, pp.63-74, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01159543

J. García-alonso, N. Rodriguez-sanchez, S. K. Misra, E. Valsami-jones, M. Croteau et al., Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii, Sci. Total Environ, pp.476-477, 2014.

J. P. García-cambero, M. Núñez-garcía, G. D. López, A. L. Herranz, L. Cuevas et al., Converging hazard assessment of gold nanoparticles to aquatic organisms, Chemosphere, vol.93, pp.1194-1200, 2013.

C. A. García-negrete, J. Blasco, M. Volland, T. C. Rojas, M. Hampel et al., Behaviour of Au-citrate nanoparticles in seawater and accumulation in bivalves at environmentally relevant concentrations, Environ. Pollut, vol.174, pp.134-141, 2013.

A. Georgantzopoulou, Effects of silver nanoparticles and ions and interaction with first line of defense, 2015.

A. Georgantzopoulou, Y. L. Balachandran, P. Rosenkranz, M. Dusinska, A. Lankoff et al., Ag nanoparticles: size-and surfacedependent effects on model aquatic organisms and uptake evaluation with NanoSIMS, Nanotoxicology, 2013.
DOI : 10.3109/17435390.2012.715312

A. Georgantzopoulou, S. Cambier, T. Serchi, M. Kruszewski, Y. L. Balachandran et al., Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna, Sci. Total Environ. 569, vol.570, pp.681-689, 2016.

E. Gismondi, J. Beisel, and C. Cossu-leguille, Influence of gender and season on reduced glutathione concentration and energy reserves of Gammarus roeseli, Environ. Res, vol.118, pp.47-52, 2012.

E. Gismondi, C. Cossu-leguille, and J. Beisel, Acanthocephalan parasites: help or burden in gammarid amphipods exposed to cadmium?, Ecotoxicology, vol.21, pp.1188-1193, 2012.

E. Gismondi, T. Rigaud, J. Beisel, and C. Cossu-leguille, Microsporidia parasites disrupt the responses to cadmium exposure in a gammarid, Environ. Pollut, vol.160, pp.17-23, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00632896

S. I. Gomes, A. M. Soares, J. J. Scott-fordsmand, and M. J. Amorim, Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): Survival, reproduction and gene expression profile, J. Hazard. Mater, vol.254, issue.255, pp.336-344, 2013.
DOI : 10.1016/j.jhazmat.2013.04.005

T. Gomes, O. Araújo, R. Pereira, A. C. Almeida, A. Cravo et al., Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis, Mar. Environ. Res, vol.84, pp.51-59, 2013.

F. Gottschalk, T. Sonderer, R. W. Scholz, and B. Nowack, Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions, Environ. Sci. Technol, vol.43, pp.9216-9222, 2009.

F. Gottschalk, T. Sun, and B. Nowack, Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies, Environ. Pollut, vol.181, pp.287-300, 2013.
DOI : 10.1016/j.envpol.2013.06.003

M. A. Graça, L. Maltby, and P. Calow, Comparative ecology of Gammarus pulex (L.) and Asellus aquaticus (L.) I: population dynamics and microdistribution, Hydrobiologia, vol.281, pp.155-162, 1994.

P. Grassé, Traité de zoologie: anatomie, systématique, biologie, 1961.

R. J. Griffitt, K. Hyndman, N. D. Denslow, and D. S. Barber, Comparison of Molecular and Histological Changes in Zebrafish Gills Exposed to Metallic Nanoparticles, Toxicol. Sci, vol.107, pp.404-415, 2009.

M. Grosell, C. Nielsen, and A. Bianchini, Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, vol.133, pp.85-91, 2002.
DOI : 10.1016/s1532-0456(02)00085-6

M. Y. Gross, D. S. Maycock, M. C. Thorndyke, D. Morritt, and M. Crane, Abnormalities in sexual development of the amphipod Gammarus pulex (L.) found below sewage treatment works, Environ. Toxicol. Chem, vol.20, pp.1792-1797, 2001.

G. Guerriero, S. Legay, and J. Hausman, Alfalfa Cellulose Synthase Gene Expression under Abiotic Stress: A Hitchhiker's Guide to RT-qPCR Normalization, PLOS ONE, vol.9, 2014.
DOI : 10.1371/journal.pone.0103808

URL : https://doi.org/10.1371/journal.pone.0103808

U. Gündel, D. Benndorf, M. Von-bergen, R. Altenburger, and E. Küster, Vitellogenin cleavage products as indicators for toxic stress in zebra fish embryos: A proteomic approach, PROTEOMICS, vol.7, pp.4541-4554, 2007.

S. F. Hansen, L. Roverskov-heggelund, P. R. Besora, A. Mackevica, A. Boldrin et al., Nanoproductswhat is actually available to European consumers?, Environ. Sci. Nano, vol.3, pp.169-180, 2016.

L. Heckmann, R. Connon, T. H. Hutchinson, S. J. Maund, R. M. Sibly et al., Expression of target and reference genes in Daphnia magna exposed to ibuprofen, BMC Genomics, vol.7, pp.1-8, 2006.

M. Heinlaan, A. Ivask, I. Blinova, H. Dubourguier, and A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, vol.71, pp.1308-1316, 2008.
DOI : 10.1016/j.chemosphere.2007.11.047

M. Heinlaan, A. Kahru, K. Kasemets, B. Arbeille, G. Prensier et al., Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study, Water Res, vol.45, pp.179-190, 2011.

R. P. Henry, ?. Lucu, H. Onken, and D. Weihrauch, Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals, Front. Physiol, vol.3, 2012.

Y. Henry, C. Piscart, S. Charles, and H. Colinet, Combined effect of temperature and ammonia on molecular response and survival of the freshwater crustacean Gammarus pulex, Ecotoxicol. Environ. Saf, vol.137, pp.42-48, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01481168

P. Hole, K. Sillence, C. Hannell, C. M. Maguire, M. Roesslein et al., Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA), J. Nanoparticle Res, vol.15, pp.1-12, 2013.
DOI : 10.1007/s11051-013-2101-8

URL : https://link.springer.com/content/pdf/10.1007%2Fs11051-013-2101-8.pdf

E. Hood, Nanotechnology: Looking As We Leap. Environ. Health Perspect, vol.112, pp.740-749, 2004.

E. M. Hotze, J. Bottero, and M. R. Wiesner, Theoretical framework for nanoparticle reactivity as a function of aggregation state, Langmuir, vol.26, pp.11170-11175, 2010.

W. Hu, S. Culloty, G. Darmody, S. Lynch, J. Davenport et al., Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: A redox proteomic investigation, Chemosphere, vol.108, pp.289-299, 2014.

P. Isnard, P. Flammarion, G. Roman, M. Babut, P. Bastien et al., Statistical analysis of regulatory ecotoxicity tests, Chemosphere, vol.45, pp.659-669, 2001.
URL : https://hal.archives-ouvertes.fr/ineris-00962802

A. Ivask, A. Elbadawy, C. Kaweeteerawat, D. Boren, H. Fischer et al., Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver, ACS Nano, vol.8, pp.374-386, 2014.

W. Janetzky, Distribution of the genus Gammarus (Amphipoda: Gammaridae) in the River Hunte and its tributaries, Hydrobiologia, vol.294, pp.23-34, 1994.

L. H. Jensen, L. M. Skjolding, A. Thit, S. N. Sørensen, C. Købler et al., Not all that glitters is gold-Electron microscopy study on uptake of gold nanoparticles in Daphnia magna and related artifacts, Environ. Toxicol. Chem, vol.36, pp.1503-1509, 2017.

B. Jovanovi?, T. Ji, and D. Pali?, Gene expression of zebrafish embryos exposed to titanium dioxide nanoparticles and hydroxylated fullerenes, Ecotoxicol. Environ. Saf, vol.74, pp.1518-1525, 2011.

Y. Ju-nam and J. R. Lead, Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications, Sci. Total Environ, vol.400, pp.396-414, 2008.

R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller et al., Release of silver nanoparticles from outdoor facades, Environ. Pollut, vol.158, pp.2900-2905, 2010.

R. Kaegi, A. Voegelin, C. Ort, B. Sinnet, B. Thalmann et al., Fate and transformation of silver nanoparticles in urban wastewater systems, Water Res, vol.47, pp.3866-3877, 2013.

G. Karaman, freshwater Gammarus species from europe, North Africa and adjacent regions of Asia. Gammarus pulex group and related species, 1977.

A. A. Keller, S. Mcferran, A. Lazareva, and S. Suh, Global life cycle releases of engineered nanomaterials, J. Nanoparticle Res, vol.15, p.1692, 2013.

A. A. Keller, H. Wang, D. Zhou, H. S. Lenihan, G. Cherr et al., Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices, Environ. Sci. Technol, vol.44, pp.1962-1967, 2010.

D. W. Kelly, J. T. Dick, and W. I. Montgomery, The functional role of Gammarus(Crustacea, Amphipoda): shredders, predators, or both?, Hydrobiologia, vol.485, pp.199-203, 2002.

F. R. Khan, G. M. Kennaway, M. Croteau, A. Dybowska, B. D. Smith et al., In vivo retention of ingested Au NPs by Daphnia magna: No evidence for transepithelial alimentary uptake, 2014.

F. R. Khan, S. K. Misra, N. R. Bury, B. D. Smith, P. S. Rainbow et al., Inhibition of potential uptake pathways for silver nanoparticles in the estuarine snail Peringia ulvae, Nanotoxicology, vol.9, pp.493-501, 2015.

S. J. Klaine, P. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy et al., Nanomaterials in the environment: Behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem, vol.27, pp.1825-1851, 2008.
DOI : 10.1897/08-090.1

URL : http://onlinelibrary.wiley.com/doi/10.1897/08-090.1/pdf

B. Kozera and M. Rapacz, Reference genes in real-time PCR, J. Appl. Genet, vol.54, pp.391-406, 2013.

D. Kumar, J. Kumari, S. Pakrashi, S. Dalai, A. M. Raichur et al., Qualitative toxicity assessment of silver nanoparticles on the fresh water bacterial isolates and consortium at low level of exposure concentration, Ecotoxicol. Environ. Saf, vol.108, pp.152-160, 2014.

P. Y. Kunz, C. Kienle, and A. Gerhardt, Gammarus spp, Aquatic Ecotoxicology and Water Quality Assessment: Toward Integrated Multilevel Tests, vol.205, pp.1-76, 2010.

M. Kutlu, A. Düzen, C. Bayçu, and A. Özata, A transmission electron microscope investigation of the effect of lead acetate on the hepatopancreatic ceca of Gammarus pulex, Environ. Toxicol. Pharmacol, vol.12, pp.181-187, 2002.

G. P. Kuznetsova, O. V. Larina, N. A. Petushkova, Y. S. Kisrieva, N. F. Samenkova et al., Effects of Fullerene C60 on Proteomic Profile of Danio Rerio Fish Embryos, Bull. Exp. Biol. Med, vol.156, pp.694-698, 2014.

L. Kvítek, A. Paná?ek, J. Soukupová, M. Kolá?, R. Ve?e?ová et al., Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs), J. Phys. Chem. C, vol.112, pp.5825-5834, 2008.

K. W. Kwok, M. Auffan, A. R. Badireddy, C. M. Nelson, M. R. Wiesner et al., Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): Effect of coating materials, Aquat. Toxicol, pp.59-66, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01426194

J. M. Lacave, Á. Fanjul, E. Bilbao, N. Gutierrez, I. Barrio et al., Acute toxicity, bioaccumulation and effects of dietary transfer of silver from brine shrimp exposed to PVP/PEI-coated silver nanoparticles to zebrafish, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, 2017.

E. Lacaze, O. Geffard, S. Bony, and A. Devaux, Genotoxicity assessment in the amphipod Gammarus fossarum by use of the alkaline Comet assay, Mutat. Res. Toxicol. Environ. Mutagen, vol.700, pp.32-38, 2010.

C. Lacroix, V. Coquillé, J. Guyomarch, M. Auffret, and D. Moraga, A selection of reference genes and earlywarning mRNA biomarkers for environmental monitoring using Mytilus spp. as sentinel species, Mar. Pollut. Bull, vol.86, pp.304-313, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01104708

V. Ladewig, D. Jungmann, H. Köhler, M. Schirling, R. Triebskorn et al., Population Structure and Dynamics of Gammarus fossarum (Amphipoda) Upstream and Downstream from Effluents of Sewage Treatment Plants, Arch. Environ. Contam. Toxicol, vol.50, pp.370-383, 2006.

L. Lagadic, Biomarkers: Useful tools for the monitoring of aquatic environments, Rev. Med. Veterinaire, vol.153, pp.581-588, 2002.

L. Lagadic, T. Caquet, and F. Ramade, The role of biomarkers in environmental assessment (5). Invertebrate populations and communities, Ecotoxicology, vol.3, pp.193-208, 1994.

C. Lagrue, R. Wattier, M. Galipaud, Z. Gauthey, J. Rullmann et al., Confrontation of cryptic diversity and mate discrimination within Gammarus pulex and Gammarus fossarum species complexes, Freshw. Biol, vol.59, pp.2555-2570, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01083708

A. Lapresta-fernández, A. Fernández, and J. Blasco, Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms, TrAC Trends Anal. Chem, vol.32, pp.40-59, 2012.

P. Larkin, L. C. Folmar, M. J. Hemmer, A. J. Poston, and N. D. Denslow, Expression profiling of estrogenic compounds using a sheepshead minnow cDNA macroarray, EHP Toxicogenomics J. Natl. Inst. Environ. Health Sci, vol.111, pp.29-36, 2003.

J. D. Lebrun, O. Geffard, N. Urien, A. François, E. Uher et al., Seasonal variability and inter-species comparison of metal bioaccumulation in caged gammarids under urban diffuse contamination gradient: Implications for biomonitoring investigations, Sci. Total Environ, vol.511, pp.501-508, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01569648

J. D. Lebrun, M. Perret, A. Geffard, and C. Gourlay-francé, Modelling copper bioaccumulation in Gammarus pulex and alterations of digestive metabolism, Ecotoxicology, vol.21, pp.2022-2030, 2012.
DOI : 10.1007/s10646-012-0955-7

B. Lee, C. N. Duong, J. Cho, J. Lee, K. Kim et al., Toxicity of Citrate-Capped Silver Nanoparticles in Common Carp (Cyprinus carpio), J. Biomed. Biotechnol, 2012.

B. Lee and J. F. Ranville, The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna, J. Hazard. Mater. 213, vol.214, pp.434-439, 2012.

S. Y. Lee and Y. K. Nam, Evaluation of reference genes for RT-qPCR study in abalone Haliotis discus hannai during heavy metal overload stress, Fish. Aquat. Sci, vol.19, 2016.

S. Legay, G. Guerriero, C. André, C. Guignard, E. Cocco et al., MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins, New Phytol, vol.212, pp.977-991, 2016.

S. Legay, G. Guerriero, A. Deleruelle, M. Lateur, D. Evers et al., Apple russeting as seen through the RNA-seq lens: strong alterations in the exocarp cell wall, Plant Mol. Biol, vol.88, 2015.

D. Leroy, E. Haubruge, E. De-pauw, J. P. Thomé, and F. Francis, Development of ecotoxicoproteomics on the freshwater amphipod Gammarus pulex: identification of PCB biomarkers in glycolysis and glutamate pathways, 2010.

, Ecotoxicol. Environ. Saf, vol.73, pp.343-352

C. Levard, E. M. Hotze, G. V. Lowry, and G. E. Brown, Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity, Environ. Sci. Technol, vol.46, pp.6900-6914, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01519292

G. Libralato, The case of Artemia spp. in nanoecotoxicology, Mar. Environ. Res, vol.101, pp.38-43, 2014.

J. Lignot, C. Spanings-pierrot, and G. Charmantier, Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans, Aquaculture, vol.191, pp.429-433, 2000.

R. J. Lincoln, British Marine Amphipoda: Gammaridea.-With 290 figs, Int. Rev. Gesamten Hydrobiol. Hydrogr, vol.658, pp.446-447, 1979.

B. Lipinski, Hydroxyl Radical and Its Scavengers in Health and Disease, 2011.

, Oxid. Med. Cell. Longev

A. P. Lockwood and C. B. Inman, The blood volume of some amphipod crustaceans in relation to the salinity of the environment they inhabit, Comp. Biochem. Physiol. A Physiol, vol.44, issue.73, pp.90158-90166, 1973.

E. A. López-landavery, A. Portillo-lópez, C. Gallardo-escárate, and M. A. Del-río-portilla, Selection of reference genes as internal controls for gene expression in tissues of red abalone Haliotis rufescens (Mollusca, Vetigastropoda; Swainson, 1822), Gene, vol.549, pp.258-265, 2014.

S. B. Lovern, H. A. Owen, and R. Klaper, Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna, Nanotoxicology, vol.2, pp.43-48, 2008.

G. V. Lowry, K. B. Gregory, S. C. Apte, and J. R. Lead, Transformations of Nanomaterials in the Environment, Environ. Sci. Technol, vol.46, pp.6893-6899, 2012.

S. N. Luoma, F. R. Khan, and M. Croteau, Bioavailability and Bioaccumulation of Metal-Based Engineered Nanomaterials in Aquatic Environments: Concepts and Processes, pp.157-193, 2014.

S. N. Luoma and P. S. Rainbow, Why Is Metal Bioaccumulation So Variable? Biodynamics as a Unifying Concept, Environ. Sci. Technol, vol.39, pp.1921-1931, 2005.

I. Lynch and K. A. Dawson, Protein-nanoparticle interactions, Nano Today, vol.3, pp.70014-70022, 2008.

H. Ma, P. L. Williams, and S. A. Diamond, Ecotoxicity of manufactured ZnO nanoparticles-A review, Environ. Pollut, vol.172, pp.76-85, 2013.

A. Mackevica, L. M. Skjolding, A. Gergs, A. Palmqvist, and A. Baun, Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions, Aquat. Toxicol, vol.161, pp.10-16, 2015.
DOI : 10.1016/j.aquatox.2015.01.023

URL : http://orbit.dtu.dk/files/138706419/Aiga_AgNP_chronic_AqTox_revised_final1.pdf

C. Macneil, J. T. Dick, and R. W. Elwood, The Trophic Ecology of Freshwater Gammarus Spp. (crustacea:amphipoda): Problems and Perspectives Concerning the Functional Feeding Group Concept, Biol. Rev, vol.72, pp.349-364, 1997.

S. Makama, J. Piella, A. Undas, W. J. Dimmers, R. Peters et al., Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil, Environ. Pollut, 2016.

L. Mangeot-peter, S. Legay, J. Hausman, S. Esposito, and G. Guerriero, Identification of Reference Genes for RT-qPCR Data Normalization in Cannabis sativa Stem Tissues, Int. J. Mol. Sci, vol.17, p.1556, 2016.

A. Manke, L. Wang, and Y. Rojanasakul, Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity, 2013.

, BioMed Res. Int

R. M. Mann, M. Grosell, A. Bianchini, and C. M. Wood, Biologically incorporated dietary silver has no ionoregulatory effects in American red crayfish (Procambarus clarkii), Environ. Toxicol. Chem, vol.23, pp.388-395, 2004.
DOI : 10.1897/02-572

L. H. Mantel and L. L. Farmer, 2-Osmotic and Ionic Regulation, Internal Anatomy and Physiological Regulation, pp.53-161, 1983.

S. Manzo, M. L. Miglietta, G. Rametta, S. Buono, and G. Di-francia, Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta, Sci. Total Environ, pp.371-376, 2013.
DOI : 10.1016/j.scitotenv.2012.12.051

A. Martinez, G. Charmantier, P. Compère, and M. Charmantier-daures, Branchial chamber tissues in two caridean shrimps: the epibenthic Palaemon adspersus and the deep-sea hydrothermal Rimicaris exoculata, Tissue Cell, vol.37, pp.153-165, 2005.

C. P. Mccahon and D. Pascoe, Use of Gammarus pulex (L.) in safety evaluation tests: Culture and selection of a sensitive life stage, Ecotoxicol. Environ. Saf, vol.15, pp.245-252, 1988.

E. Mcgillicuddy, I. Murray, S. Kavanagh, L. Morrison, A. Fogarty et al., Silver nanoparticles in the environment: Sources, detection and ecotoxicology, Sci. Total Environ, vol.575, pp.231-246, 2017.

K. Mehennaoui, A. Georgantzopoulou, V. Felten, J. Andreï, M. Garaud et al., Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles, Sci. Total Environ, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01779978

K. Mehennaoui, A. Georgantzopoulou, V. Felten, J. Andreï, M. Garaud et al., Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles, Sci. Total Environ, pp.1649-1659, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01779978

M. P. Meijering, Lack of oxygen and low pH as limiting factors for Gammarus in Hessian brooks and rivers, Hydrobiologia, vol.223, pp.159-169, 1991.

F. Michalec, M. Holzner, A. Barras, A. Lacoste, L. Brunet et al., Short-term exposure to gold nanoparticle suspension impairs swimming behavior in a widespread calanoid copepod, Environ. Pollut, vol.228, pp.102-110, 2017.
DOI : 10.1016/j.envpol.2017.04.084

M. N. Moore, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?, Environ. Int, vol.32, pp.967-976, 2006.

I. Moreno-garrido, S. Pérez, and J. Blasco, Particles in the Oceans: Implication for a safe marine environment 111, Mar. Environ. Res, pp.60-73, 2015.

I. J. Morgan, R. P. Henry, and C. M. Wood, The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na+ and Cl?1 transport, Aquat. Toxicol, vol.38, pp.145-163, 1997.

N. C. Mueller and B. Nowack, Exposure Modeling of Engineered Nanoparticles in the Environment, Environ. Sci, vol.228, 2008.

. Technol, , vol.42, pp.4447-4453

J. Müller, Mitochondrial DNA Variation and the Evolutionary History of Cryptic Gammarus fossarum Types, 2000.

, Mol. Phylogenet. Evol, vol.15, pp.260-268

J. Müller, Genetic population structure of two cryptic Gammarus fossarum types across a contact zone, J. Evol. Biol, vol.11, pp.79-101, 1998.

P. M. Nair, S. Y. Park, and J. Choi, Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius, Chemosphere, vol.92, pp.592-599, 2013.

F. Nasser and I. Lynch, Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna, J. Proteomics, 2016.

A. V. Nebeker, S. E. Dominguez, G. A. Chapman, S. T. Onjukka, and D. G. Stevens, Effects of low dissolved oxygen on survival, growth and reproduction of Daphnia, Hyalella and Gammarus, Environ. Toxicol. Chem, vol.11, pp.373-379, 1992.

A. Nel, T. Xia, L. Mädler, and N. Li, Toxic Potential of Materials at the Nanolevel, Science, vol.311, pp.622-627, 2006.

K. M. Newton, H. L. Puppala, C. L. Kitchens, V. L. Colvin, and S. J. Klaine, Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration, Environ. Toxicol. Chem, vol.32, pp.2356-2364, 2013.

B. Nowack, J. F. Ranville, S. Diamond, J. A. Gallego-urrea, C. Metcalfe et al., Potential scenarios for nanomaterial release and subsequent alteration in the environment, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01426190

, Toxicol. Chem, vol.31, pp.50-59

E. Oberdörster, S. Zhu, T. M. Blickley, P. Mcclellan-green, and M. L. Haasch, Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms, Carbon, vol.44, pp.1112-1120, 2006.

A. L. Oliver, M. Croteau, T. L. Stoiber, M. Tejamaya, I. Römer et al., Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?, Environ. Pollut, vol.189, pp.87-91, 2014.

B. A. Omondi, J. M. Latorre-estivalis, I. H. Rocha-oliveira, R. Ignell, and M. G. Lorenzo, Evaluation of reference genes for insect olfaction studies, Parasit. Vectors, vol.8, p.243, 2015.

A. Oukarroum, S. Bras, F. Perreault, and R. Popovic, Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta, Ecotoxicol. Environ. Saf, vol.78, pp.80-85, 2012.

T. G. Owens and F. D. King, The measurement of respiratory electron-transport-system activity in marine zooplankton, Mar. Biol, vol.30, pp.27-36, 1975.

D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med, vol.70, pp.158-169, 1967.

J. Pan, P. Buffet, L. Poirier, C. Amiard-triquet, D. Gilliland et al., Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: The Tellinid clam Scrobicularia plana, Environ. Pollut, vol.168, pp.37-43, 2012.

C. Park, J. Colman, B. P. Matson, C. W. Kim, Y. Lee et al., Ecotoxicity of bare and coated silver nanoparticles in the aquatic midge, Chironomus riparius, Environ. Toxicol. Chem, vol.34, pp.2023-2032, 2015.

W. Park, J. Ma, G. Veinot, J. G. Boxall, and A. B. , Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates?, Environ. Toxicol. Chem, vol.34, pp.850-859, 2015.

A. Pequeux, OSMOTIC REGULATION IN CRUSTACEANS, J. Crustac. Biol, vol.15, pp.1-60, 1995.
DOI : 10.2307/1549010

E. J. Petersen, T. B. Henry, J. Zhao, R. I. Maccuspie, T. L. Kirschling et al., Identification and Avoidance of Potential Artifacts and Misinterpretations in Nanomaterial Ecotoxicity Measurements, Environ. Sci. Technol, vol.48, pp.4226-4246, 2014.

M. W. Pfaffl, A. Tichopad, C. Prgomet, and T. P. Neuvians, Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations, Biotechnol. Lett, vol.26, pp.509-515, 2004.

C. H. Pham, J. Yi, and M. B. Gu, Biomarker gene response in male Medaka (Oryzias latipes) chronically exposed to silver nanoparticle, Ecotoxicol. Environ. Saf, vol.78, pp.239-245, 2012.
DOI : 10.1016/j.ecoenv.2011.11.034

F. Piccinno, F. Gottschalk, S. Seeger, and B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, J. Nanoparticle Res, vol.14, pp.1-11, 2012.

C. Piscart and L. Bollache, Crustacés amphipodes de surface : gammares d'eau douce., Introduction pratique à la systématique des organismes des eaux continentales de France, 2012.

M. Plusquin, O. Degheselle, A. Cuypers, E. Geerdens, A. V. Roten et al., Reference genes for qPCR assays in toxic metal and salinity stress in two flatworm model organisms, Ecotoxicology, vol.21, pp.475-484, 2012.
DOI : 10.1007/s10646-011-0809-8

M. Pöckl, B. W. Webb, and D. W. Sutcliffe, Life history and reproductive capacity of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda) under naturally fluctuating water temperatures: a simulation study, Freshw. Biol, vol.48, pp.53-66, 2003.

H. C. Poynton, J. M. Lazorchak, C. A. Impellitteri, B. J. Blalock, K. Rogers et al., Toxicogenomic Responses of Nanotoxicity in Daphnia magna Exposed to Silver Nitrate and Coated Silver Nanoparticles, Environ. Sci. Technol, vol.46, pp.6288-6296, 2012.
DOI : 10.1021/es3001618

P. S. Rainbow, Ecophysiology of Trace Metal Uptake in Crustaceans, Estuar. Coast. Shelf Sci, vol.44, pp.169-175, 1997.

P. S. Rainbow, Physiology, physicochemistry and metal uptake-A crustacean perspective, Mar. Pollut. Bull, vol.31, pp.55-59, 1995.
DOI : 10.1016/0025-326x(95)00005-8

L. Rainville, D. Carolan, A. C. Varela, H. Doyle, and D. Sheehan, Proteomic evaluation of citrate-coated silver nanoparticles toxicity in Daphnia magna, Analyst, vol.139, pp.1678-1686, 2014.

H. Rauscher, G. Roebben, A. Boix-sanfeliu, H. Emmons, N. Gibson et al., Towards a review of the EC Recommendation for a definition of the term "nanomaterial" Part 3 Scientific-technical evaluation of options to clarify the definition and to facilitate its implementation, 2015.

F. Regoli, S. Gorbi, G. Frenzilli, M. Nigro, I. Corsi et al., Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach, Mar. Environ. Res, vol.54, pp.419-423, 2002.

S. Renault, M. Baudrimont, N. Mesmer-dudons, P. Gonzalez, S. Mornet et al., Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea), Gold Bull, vol.41, pp.116-126, 2008.

M. Revel, A. Châtel, and C. Mouneyrac, Omics tools: New challenges in aquatic nanotoxicology?, Aquat. Toxicol, 2017.
DOI : 10.1016/j.aquatox.2017.10.005

F. Ribeiro, C. A. Van-gestel, M. D. Pavlaki, S. Azevedo, A. M. Soares et al., Bioaccumulation of silver in Daphnia magna: Waterborne and dietary exposure to nanoparticles and dissolved silver, Sci. Total Environ, vol.574, pp.1633-1639, 2017.

I. Römer, T. A. White, M. Baalousha, K. Chipman, M. R. Viant et al., Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests, J. Chromatogr. A, vol.1218, pp.4226-4233, 2011.

C. Rosas, A. Sanchez, E. Escobar, L. Soto, and A. Bolongaro-crevenna, Daily variations of oxygen consumption and glucose hemolymph level related to morphophysiological and ecological adaptations of crustacea, Comp. Biochem. Physiol. A Physiol, vol.101, pp.323-328, 1992.

Y. Sakka, L. M. Skjolding, A. Mackevica, J. Filser, and A. Baun, Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna, Aquat. Toxicol, vol.177, pp.526-535, 2016.
DOI : 10.1016/j.aquatox.2016.06.025

URL : http://orbit.dtu.dk/files/124914305/1_s2.0_S0166445X16301886_main.pdf

A. Sasidharan, J. E. Riviere, and N. A. Monteiro-riviere, Gold and silver nanoparticle interactions with human proteins: impact and implications in biocorona formation, J. Mater. Chem. B, vol.3, pp.2075-2082, 2015.

T. Sattler, F. Bontadina, A. H. Hirzel, and R. Arlettaz, Ecological niche modelling of two cryptic bat species calls for a reassessment of their conservation status, J. Appl. Ecol, vol.44, pp.1188-1199, 2007.

K. Savolainen, U. Backman, D. Brouwer, B. Fadeel, T. Fernandes et al., Nanosafety in Europe 2015-2025: Towards Safe and Sustainable Nanomaterials and Nanotechnology Innovations, 2013.

M. Scheepmaker and . Van-dalfsen, Genetic differentiation in Gammarus fossarum and G. caparti (Crustacea, Amphipoda) with reference to G. pulex pulex in northwestern, Europe. Bijdr. Tot Dierkd, vol.59, pp.127-139, 1989.

E. H. Schmitz and P. M. Scherrey, Digestive anatomy of Halella azteca (Crustacea, Amphipoda), J. Morphol, vol.175, pp.91-100, 1983.
DOI : 10.1002/jmor.1051750109

F. H. Schopf, M. M. Biebl, and J. Buchner, The HSP90 chaperone machinery, Nat. Rev. Mol. Cell Biol, vol.18, pp.345-360, 2017.

A. G. Schultz, D. Boyle, D. Chamot, K. J. Ong, K. J. Wilkinson et al., Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing, Environ. Chem, vol.11, pp.207-226, 2014.

A. G. Schultz, K. J. Ong, T. Maccormack, G. Ma, J. G. Veinot et al., Seasonal variability of antioxidant biomarkers and energy reserves in the freshwater gammarid Gammarus roeseli, Chemosphere, vol.83, pp.538-544, 2011.

D. W. Sutcliffe, Reproduction in Gammarus (Crustacea, Amphipoda): basic processes, Freshw. Forum, vol.2, pp.102-128, 1992.

D. W. Sutcliffe, Quantitative aspects of oxygen uptake by Gammarus (Crustacea, Amphipoda): a critical review, Freshw. Biol, vol.14, pp.443-489, 1984.

H. Tachet, , 2000.

S. Tedesco, H. Doyle, J. Blasco, G. Redmond, and D. Sheehan, Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis, Aquat. Toxicol, vol.100, pp.178-186, 2010.
DOI : 10.1016/j.aquatox.2010.03.001

M. Tejamaya, I. Römer, R. C. Merrifield, and J. R. Lead, Stability of Citrate, PVP, and PEG Coated Silver Nanoparticles in Ecotoxicology Media, Environ. Sci. Technol, vol.46, pp.7011-7017, 2012.
DOI : 10.1021/es2038596

, Commission Recommendation of 18 October 2011 on the definition of nanomaterialText with EEA relevance-commission-recommendation-on-the-definition-of-nanomater18102011_en, 2011.

L. B. Thompson, G. L. Carfagno, K. Andresen, A. J. Sitton, T. Bury et al., Differential uptake of gold nanoparticles by 2 species of tadpole, the wood frog (Lithobates sylvaticus) and the bullfrog (Lithobates catesbeianus), Environ. Toxicol. Chem, 2017.

K. Tiede, M. Hassellöv, E. Breitbarth, Q. Chaudhry, and A. B. Boxall, Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles, J. Chromatogr. A, pp.503-509, 2009.
DOI : 10.1016/j.chroma.2008.09.008

T. M. Tolaymat, A. M. El-badawy, A. Genaidy, K. G. Scheckel, T. P. Luxton et al., An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers, Sci. Total Environ, vol.408, pp.999-1006, 2010.

J. Trapp, J. Armengaud, O. Pible, J. Gaillard, K. Abbaci et al., Proteomic Investigation of Male Gammarus fossarum, a Freshwater Crustacean, in Response to Endocrine Disruptors, J. Proteome Res, 2014.

J. Trapp, Approche protéomiques pour le développement de biomarqurs chez l'amphipode d'eau douce Gammarus fossarum: découverte et caractérisation de protéines impliquées dans la fonction reproductrice, 2015.

R. Väinölä, J. D. Witt, M. Grabowski, J. H. Bradbury, K. Jazdzewski et al., Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. SpringerLink 241-255, 2008.

G. Vale, C. Franco, M. S. Diniz, M. M. Santos, . Dos et al., Bioavailability of cadmium and biochemical responses on the freshwater bivalve Corbicula fluminea-the role of TiO2 nanoparticles, 2014.

. Environ and . Saf, , vol.109, pp.161-168

G. Vale, K. Mehennaoui, S. Cambier, G. Libralato, S. Jomini et al., Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: A critical overview, Aquat. Toxicol, vol.170, pp.162-174, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01780205

M. E. Vance, T. Kuiken, E. P. Vejerano, S. P. Mcginnis, M. F. Hochella et al., Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol, vol.6, pp.1769-1780, 2015.

J. Vandesompele, K. De-preter, F. Pattyn, B. Poppe, N. Van-roy et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, 2002.

, Genome Biol, vol.3, p.34

P. Vasseur and C. Leguille, Defense systems of benthic invertebrates in response to environmental stressors, 2004.

, Environ. Toxicol, vol.19, pp.433-436

C. Vellinger, V. Felten, P. Sornom, P. Rousselle, J. Beisel et al., Behavioural and Physiological Responses of Gammarus pulex Exposed to Cadmium and Arsenate at Three Temperatures: Individual and Combined Effects, PLoS ONE, vol.7, 2012.

C. Vellinger, E. Gismondi, V. Felten, P. Rousselle, K. Mehennaoui et al., Single and combined effects of cadmium and arsenate in Gammarus pulex (Crustacea, Amphipoda): Understanding the links between physiological and behavioural responses, Aquat. Toxicol, pp.106-116, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01119758

C. Vellinger, M. Parant, P. Rousselle, F. Immel, P. Wagner et al., Comparison of arsenate and cadmium toxicity in a freshwater amphipod (Gammarus pulex), Environ. Pollut, vol.160, pp.66-73, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01110244

É. Vindimian, J. Garric, P. Flammarion, É. Thybaud, and M. Babut, An index of effluent aquatic toxicity designed by partial least squares regression, using acute and chronic tests and expert judgements, Environ. Toxicol. Chem, vol.18, pp.2386-2391, 1999.
URL : https://hal.archives-ouvertes.fr/ineris-00962750

E. Vindimian, C. Robaut, and G. Fillion, A method for cooperative or noncooperative binding studies using nonlinear regression analysis on a microcomputer, J. Appl. Biochem, vol.5, pp.261-268, 1983.

A. Vioque-fernández, E. Alves-de-almeida, and J. López-barea, Assessment of Doñana National Park contamination in Procambarus clarkii: Integration of conventional biomarkers and proteomic approaches, Sci. Total Environ, vol.407, pp.1784-1797, 2009.

R. Voellmy and F. Boellmann, Chaperone Regulation of the Heat Shock Protein Response 89-99, 2007.

C. Völker, I. Kämpken, C. Boedicker, J. Oehlmann, and M. Oetken, Toxicity of silver nanoparticles and ionic silver: Comparison of adverse effects and potential toxicity mechanisms in the freshwater clam Sphaerium corneum, Nanotoxicology, vol.9, pp.677-685, 2015.

M. Volland, J. Blasco, and M. Hampel, Validation of reference genes for RT-qPCR in marine bivalve ecotoxicology: Systematic review and case study using copper treated primary Ruditapes philippinarum hemocytes, Aquat. Toxicol, vol.185, pp.86-94, 2017.

M. Volland, M. Hampel, J. A. Martos-sitcha, C. Trombini, G. Martínez-rodríguez et al., Citrate gold nanoparticle exposure in the marine bivalve Ruditapes philippinarum: uptake, elimination and oxidative stress 234 response, Environ. Sci. Pollut. Res, vol.22, pp.17414-17424, 2015.

L. Wang, N. Habibul, D. He, W. Li, X. Zhang et al., Copper release from copper nanoparticles in the presence of natural organic matter, Water Res, vol.68, pp.12-23, 2015.

Z. Wang, A. Von-dem-bussche, P. K. Kabadi, A. B. Kane, and R. H. Hurt, Biological and environmental transformations of copper-based nanomaterials, ACS Nano, vol.7, pp.8715-8727, 2013.

B. Webb and P. J. , Global Changes During the Last 3 Million Years: Climatic Controls and Biotic Responses, Annu. Rev. Ecol. Syst, vol.23, pp.141-173, 1992.

N. A. Webb and C. M. Wood, Physiological analysis of the stress response associated with acute silver nitrate exposure in freshwater rainbow trout (Oncorhynchus mykiss), Environ. Toxicol. Chem, vol.17, pp.579-588, 1998.

M. Weiss, J. N. Macher, M. A. Seefeldt, and F. Leese, Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda), Hydrobiologia, vol.721, pp.165-184, 2014.

V. Wepener, C. Van-dyk, L. Bervoets, G. O'brien, A. Covaci et al., An assessment of the influence of multiple stressors on the Vaal River, 11th WaterNet/WARFSA/GWP-SA Symposium: IWRM for National and Regional Integration through Science, vol.36, pp.949-962, 2011.

A. M. Westram, J. Jokela, C. Baumgartner, and I. Keller, Spatial Distribution of Cryptic Species Diversity in European Freshwater Amphipods (Gammarus fossarum) as Revealed by Pyrosequencing, PLoS ONE, vol.6, 2011.

A. M. Westram, J. Jokela, and I. Keller, Isolation and characterization of ten polymorphic microsatellite markers for three cryptic Gammarus fossarum (Amphipoda) species, Conserv. Genet. Resour, vol.2, pp.401-404, 2010.

I. T. Whitehurst and B. I. Lindsey, The impact of organic enrichment on the benthic macroinvertebrate communities of a lowland river, Water Res, vol.24, pp.625-630, 1990.

A. T. Wray and S. J. Klaine, Modeling the influence of physicochemical properties on gold nanoparticle uptake and elimination by Daphnia magna, Environ. Toxicol. Chem, vol.34, pp.860-872, 2015.

F. Xie, P. Xiao, D. Chen, L. Xu, and B. Zhang, miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs, Plant Mol. Biol, 2012.

B. Xuereb, L. Bezin, A. Chaumot, H. Budzinski, S. Augagneur et al., Vitellogenin-like gene expression in freshwater amphipod Gammarus fossarum (Koch, 1835): functional characterization in females and potential for use as an endocrine disruption biomarker in males, Ecotoxicology, vol.20, pp.1286-1299, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01918567

Y. Yang, C. Long, H. Li, Q. Wang, and Z. Yang, Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry, Sci. Total Environ, 2016.

E. Zavala, D. Reyes, R. Deerenberg, and R. Vidal, Selection of reference genes for microRNA analysis associated to early stress response to handling and confinement in Salmo salar, Sci. Rep, vol.7, p.1756, 2017.

C. Zhang, Z. Hu, and B. Deng, Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms, Water Res, vol.88, pp.403-427, 2016.

M. F. Zhang, Q. Liu, and G. X. Jia, Reference gene selection for gene expression studies in lily using quantitative real-time PCR, Genet. Mol. Res, vol.15, 2016.

P. Zhang, H. Selck, S. R. Tangaa, C. Pang, and B. Zhao, Bioaccumulation and effects of sediment-associated gold-and graphene oxide nanoparticles on Tubifex tubifex, J. Environ. Sci, vol.51, pp.138-145, 2017.

C. Zhao and W. Wang, Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna, Nanotoxicology, vol.6, pp.361-370, 2012.

C. Zhao and W. Wang, Biokinetic Uptake and Efflux of Silver Nanoparticles in Daphnia magna, Environ. Sci. Technol, vol.44, pp.7699-7704, 2010.

S. Zimmermann, N. Ruchter, K. Loza, M. Epple, and B. Sures, Nanoparticulate versus ionic silver: Behavior in the tank water, bioaccumulation, elimination and subcellular distribution in the freshwater mussel Dreissena polymorpha, Environ. Pollut, vol.222, pp.251-260, 2017.

I. ?ivi? and Z. Markovi?, Distribution of the Species Gammarus balcanicus and Gammarus fossarum on the Territory of Serbia (Central Part of the Balkan Peninsula), Crustaceana, vol.80, pp.67-76, 2007.

. , Titanium dioxide NPs (nTiO 2 )

. .. Acknowledgments,

, Lymnaea luteola L. TW c After, vol.24

A. Dna-damage, , 2014.

, DLS) a ; 1; BG-11 d 50 (TEM) b BG-11 d Chlorella vulgaris BG-11 d ?ROS (1 and 10); ?LPO (1 and 10) Oukarroum et al. (2012) ABC Nanotech citrate-capped 70 (DLS) a ; 5, MTI Corporation uncoated, vol.307

N. Adam, L. Vergauwen, R. Blust, and D. Knapen, Environ. Res, vol.138, pp.82-92, 2015.

L. K. Adams, D. Y. Lyon, and P. J. Alvarez, Water Res, vol.40, pp.3527-3532, 2006.

M. Ahamed, M. A. Siddiqui, M. J. Akhtar, I. Ahmad, A. B. Pant et al., Biochem. Biophys. Res. Commun, vol.396, pp.578-583, 2010.

D. Ali, S. Alarifi, S. Kumar, M. Ahamed, and M. A. Siddiqui, Aquat. Toxicol, pp.83-90, 2012.

D. Ali, P. G. Yadav, S. Kumar, H. Ali, S. Alarifi et al., Chemosphere, vol.104, pp.134-140, 2014.

V. Aruoja, H. Dubourguier, K. Kasemets, and A. Kahru, Sci. Total Environ, vol.407, pp.1461-1468, 2009.

V. Aruoja, H. C. Dubourguier, K. Kasemets, and A. Kahru, Sci. Total Environ, vol.407, pp.1461-1468, 2009.

R. Bacchetta, N. Santo, U. Fascio, E. Moschini, S. Freddi et al., Nanotoxicology, vol.6, pp.381-398, 2012.

R. Bacchetta, E. Moschini, N. Santo, U. Fascio, L. Del-giacco et al., Nanotoxicology, vol.8, pp.728-744, 2013.

W. Bai, Z. Zhang, W. Tian, X. He, Y. Ma et al., J. Nanopart. Res, vol.12, pp.1645-1654, 2010.

O. Bar-ilan, C. C. Chuang, D. J. Schwahn, S. Yang, S. Joshi et al., Environ. Sci. Technol, vol.47, pp.4726-4733, 2013.

R. Barnes, R. Molina, J. Xu, P. Dobson, and I. Thompson, J. Nanopart. Res, vol.15, pp.1-11, 2013.

I. Blinova, A. Ivask, M. Heinlaan, M. Mortimer, and A. Kahru, Environ. Pollut, vol.158, pp.41-47, 2010.

O. Bondarenko, A. Ivask, A. Käkinen, and A. Kahru, Environ. Pollut, vol.169, pp.81-89, 2012.

O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer et al., Arch. Toxicol, vol.87, pp.1181-1200, 2013.

A. Bour, F. Mouchet, J. Silvestre, L. Gauthier, and E. Pinelli, J. Hazard. Mater, vol.283, pp.764-777, 2015.

C. R. Bowman, F. C. Bailey, M. Elrod-erickson, A. M. Neigh, and R. R. Otter, Environ. Toxicol. Chem, vol.31, pp.1793-1800, 2012.

D. Boyle, G. A. Al-bairuty, C. S. Ramsden, K. A. Sloman, T. B. Henry et al., Aquat. Toxicol, vol.126, pp.116-127, 2013.

R. Brigelius-flohe and M. Maiorino, Biochim. Biophys. Acta, vol.1830, pp.3289-3303, 2013.

N. R. Brun, M. Lenz, B. Wehrli, and K. Fent, Sci. Total Environ, pp.657-666, 2014.

P. Buric, Z. Jaksic, L. Stajner, M. Dutour-sikiric, D. Jurasin et al., Mar. Environ. Res, vol.111, pp.50-59, 2015.

C. Buzea, I. I. Blandino, and K. Robbie, , vol.2, pp.17-172, 2007.

E. Cabiscol, J. Tamarit, and J. Ros, Int. Microbiol, vol.3, pp.3-8, 2000.

K. L. Chen and G. D. Bothun, Environ. Sci. Technol, vol.48, pp.873-880, 2014.

X. Chen, J. Chen, X. Qiao, D. Wang, and X. Cai, Appl. Catal. B: Environ, vol.80, pp.116-121, 2008.

J. E. Choi, S. Kim, J. H. Ahn, P. Youn, J. S. Kang et al., Aquat. Toxicol, vol.100, pp.151-159, 2010.

Z. Clemente, V. L. Castro, M. A. Moura, C. M. Jonsson, and L. F. Fraceto, Aquat. Toxicol, vol.147, pp.129-139, 2014.

S. Dalai, S. Pakrashi, N. Chandrasekaran, A. Mukherjee, A. L. Dale et al., PLoS One 8, e62970, Environ. Sci. Technol, vol.47, pp.12920-12928, 2013.

M. Deponte, Biochim. Biophys. Acta, vol.1830, pp.3217-3266, 2013.

A. M. Derfus, W. C. Chan, and S. N. Bhatia, Nano Lett, vol.4, pp.11-18, 2004.

R. F. Domingos, N. Tufenkji, and K. J. Wilkinson, Environ. Sci. Technol, vol.43, pp.1282-1286, 2009.

R. F. Domingos, M. A. Baalousha, Y. Ju-nam, M. M. Reid, N. Tufenkji et al., Environ. Sci. Technol, vol.43, pp.7277-7284, 2009.

R. F. Domingos, C. Peyrot, K. J. Wilkinson, R. F. Domingos, Z. Rafiei et al., Environ. Chem, vol.7, pp.306-312, 2010.

R. F. Domingos, C. Franco, and J. P. Pinheiro, Environ. Sci. Pollut. Res, vol.20, pp.4872-4880, 2013.

R. F. Domingos, C. Franco, and J. P. Pinheiro, Environ. Sci. Pollut. Res, vol.22, pp.2900-2906, 2014.

R. F. Domingos, A. Gélabert, S. Carreira, A. Cordeiro, Y. Sivry et al., Aquat. Geochem, 2015.

K. E. Engates and H. J. Shipley, Environ. Sci. Pollut. Res. Int, vol.18, pp.386-395, 2011.

U. S. Epa, J. Fabrega, S. N. Luoma, C. R. Tyler, T. S. Galloway et al., Laser detection of nanoparticles in the environment, Environ. Int, vol.37, pp.517-531, 2011.

S. Fahmy, F. Abdel-ghaffar, F. Bakry, and D. Sayed, Arch. Environ. Contam. Toxicol, vol.67, pp.192-202, 2014.

G. Federici, B. J. Shaw, and R. D. Handy, Aquat. Toxicol, vol.84, pp.415-430, 2007.

C. Frankart, P. Eullaffroy, and G. Vernet, Ecotoxicol. Environ. Saf, vol.53, pp.439-445, 2002.

N. M. Franklin, N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd et al., Environ. Sci. Technol, vol.41, pp.8484-8490, 2007.

P. P. Fu, Q. Xia, H. Hwang, P. C. Ray, and H. Yu, J. Food Drug Anal, vol.22, pp.64-75, 2014.

F. Gagné, P. Turcotte, J. Auclair, and C. Gagnon, Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol, vol.158, pp.22-28, 2013.

F. Gagne, C. Andre, R. Skirrow, M. Gelinas, J. Auclair et al., Chemosphere, vol.89, pp.615-622, 2012.

Y. Gao, R. Wahi, A. T. Kan, J. C. Falkner, V. L. Colvin et al., Langmuir, vol.20, pp.9585-9593, 2004.

I. Ghiloufi, Recent Advances in Circuits Communications and Signal Processing, pp.321-326, 2013.

F. Gottschalk, T. Sonderer, R. W. Scholz, and B. Nowack, Environ. Sci. Technol, vol.43, pp.9216-9222, 2009.

F. Gottschalk, C. Ort, R. W. Scholz, and B. Nowack, Environ. Pollut, vol.159, pp.3439-3445, 2011.

F. Gottschalk, T. Sun, and B. Nowack, Environ. Pollut, vol.181, pp.287-300, 2013.

R. J. Griffitt, K. Hyndman, N. D. Denslow, and D. S. Barber, Toxicol. Sci, vol.107, pp.404-415, 2009.

C. Gunawan, W. Y. Teoh, C. P. Marquis, and R. Amal, ACS Nano, vol.5, pp.7214-7225, 2011.

C. Gunawan, W. Y. Teoh, . Ricardo, C. P. Marquis, and R. Amal, Part. Part. Syst. Charact, vol.30, pp.375-380, 2013.

U. Gundel, D. Benndorf, M. Von-bergen, R. Altenburger, and E. Kuster, Proteomics, vol.7, pp.4541-4554, 2007.

L. Hao and L. Chen, Ecotoxicol. Environ. Saf, vol.80, pp.103-110, 2012.

L. Hao, Z. Wang, and B. Xing, J. Environ. Sci, vol.21, pp.1459-1466, 2009.

C. Hariharan, Appl. Cata. A: Gen, vol.304, pp.55-61, 2006.

W. He, Y. T. Zhou, W. G. Wamer, M. D. Boudreau, and J. J. Yin, Biomaterials, vol.33, pp.7547-7555, 2012.

M. Heinlaan, A. Ivask, I. Blinova, H. Dubourguier, and A. Kahru, Chemosphere, vol.71, pp.1308-1316, 2008.

M. Heinlaan, A. Kahru, K. Kasemets, B. Arbeille, G. Prensier et al., Water Res, vol.45, pp.179-190, 2011.

E. M. Hotze, J. Y. Bottero, and M. R. Wiesner, Langmuir, vol.26, pp.11170-11175, 2010.

X. Hu, S. Cook, P. Wang, and H. M. Hwang, Sci. Total Environ, vol.407, pp.3070-3072, 2009.

M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv et al., J. Hazard. Mater, pp.317-331, 2012.

K. Hund-rinke and M. Simon, Environ. Sci. Pollut. Res. Int, vol.13, pp.225-232, 2006.

A. Ivask, O. Bondarenko, N. Jepihhina, and A. Kahru, Anal. Bioanal. Chem, vol.398, pp.701-716, 2010.

A. Ivask, I. Kurvet, K. Kasemets, I. Blinova, V. Aruoja et al., PLoS One, vol.9, pp.18071-18077, 2010.

S. Jomini, J. Labille, P. Bauda, and C. Pagnout, Toxicol. Lett, vol.215, pp.54-61, 2012.

A. Kahru and H. C. Dubourguier, Toxicology, vol.269, pp.105-119, 2010.

K. Kasemets, A. Ivask, H. C. Dubourguier, and A. Kahru, Toxicol. In Vitro, vol.23, pp.1116-1122, 2009.

K. Kasemets, A. Ivask, H. Dubourguier, and A. Kahru, Toxicol. In Vitro, vol.23, pp.1116-1122, 2009.

K. Kasemets, S. Suppi, K. Künnis-beres, and A. Kahru, Chem. Res. Toxicol, vol.26, pp.356-367, 2013.

A. A. Keller, S. Mcferran, A. Lazareva, and S. Suh, J. Nanopart. Res, vol.15, 2013.

K. T. Kim, S. J. Klaine, J. Cho, S. H. Kim, and S. D. Kim, Sci. Total Environ, vol.408, pp.2268-2272, 2010.

A. Kumar, A. K. Pandey, S. S. Singh, R. Shanker, and A. Dhawan, Free Radic, Biol. Med, vol.51, pp.1872-1881, 2011.

D. Kumar, J. Kumari, S. Pakrashi, S. Dalai, A. M. Raichur et al., Ecotoxicol. Environ. Saf, vol.108, pp.152-160, 2014.

G. P. Kuznetsova, O. V. Larina, N. A. Petushkova, Y. S. Kisrieva, N. F. Samenkova et al., Bull. Exp. Biol. Med, vol.156, pp.694-698, 2014.

B. Lee, C. N. Duong, J. Cho, J. Lee, K. Kim et al., J. Biomed. Biotechnol, vol.92, pp.71-78, 2012.

B. Lipinski, C. N. Lok, C. M. Ho, R. Chen, Q. Y. He et al., J. Biol. Inorg. Chem, vol.12, pp.527-534, 2007.

S. N. Luoma, Silver Nanotechnologies and the Environment: Old Problems or New Chalenges? Woodrow Wilson international center for scholars or the PEW charitable trusts, 2008.

D. Y. Lyon, A. Thill, J. Rose, and P. J. Alvarez, Environmental Nanotechnology: Applications and Impacts of Nanomaterials, pp.445-480, 2007.

R. Ma, J. Stegemeier, C. Levard, J. G. Dale, C. W. Noack et al., Environ. Sci. : Nano, vol.1, pp.347-357, 2014.

S. Mahdavi, M. Jalali, and A. Afkhami, J. Nanopart. Res, vol.14, pp.1-18, 2012.

A. Manke, L. Wang, and Y. Rojanasakul, BioMed Res. Int, p.942916, 2013.

. Markets, The world market for nanoparticle titanium dioxide (TiO2

J. S. Mcquillan and A. M. Shaw, Biosens. Bioelectron, vol.51, pp.274-279, 2014.

V. Merdzan, R. F. Domingos, C. E. Monteiro, M. Hadioui, and K. J. Wilkinson, Sci. Total Environ, pp.316-324, 2014.

K. Midander, P. Cronholm, H. L. Karlsson, K. Elihn, L. Möller et al., Small, vol.5, pp.389-399, 2009.

M. Baalousha, . Manciulea, . Adriana, . Cumberland, . Susan et al., Environ. Toxicol. Chem, vol.27, pp.1875-1882, 2008.

I. J. Morgan, R. P. Henry, and C. M. Wood, Aquat. Toxicol, vol.38, pp.147-163, 1997.

M. Mortimer, K. Kasemets, and A. Kahru, Toxicology, vol.269, pp.182-189, 2010.

M. Mortimer, K. Kasemets, and A. Kahru, Toxicology, vol.269, pp.182-189, 2010.

M. Mortimer, K. Kasemets, M. Vodovnik, R. Marin?ek-logar, and A. Kahru, Environ. Sci. Technol, vol.45, pp.6617-6624, 2011.

E. Moschini, M. Gualtieri, M. Colombo, U. Fascio, M. Camatini et al., Toxicol. Lett, vol.222, pp.102-116, 2013.

P. Mwaanga, E. R. Carraway, and P. Van-den-hurk, Aquat. Toxicol, vol.150, pp.201-209, 2014.

S. Nations, M. Long, M. Wages, J. Canas, J. D. Maul et al., SECOTOX Conference & Second International Conference on Environmental Management, Engineering, Planning and Economics (CEMPE 09) Pollutant effects on aquatic and terrestrial organisms SECOTOX Conference & Second International Conference on Environmental Management, Engineering, Planning and Economics, vol.74, pp.203-210, 2011.

P. A. Neale, A. K. Jamting, E. O'malley, J. Herrmann, and B. I. Escher, Environ. Sci, vol.2, pp.86-93, 2015.

A. Nel, T. Xia, L. Mädler, and N. Li, Science, vol.311, pp.622-627, 2006.

A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. Hoek et al., Nat. Mater, vol.8, pp.543-557, 2009.

A. Oukarroum, S. Bras, F. Perreault, and R. Popovic, Ecotoxicol. Environ. Saf, vol.78, pp.80-85, 2012.

X. Pan, J. E. Redding, P. A. Wiley, L. Wen, J. S. Mcconnell et al., Chemosphere, vol.79, pp.113-116, 2010.

F. Perreault, A. Oukarroum, S. P. Melegari, W. G. Matias, and R. Popovic, Chemosphere, vol.87, pp.1388-1394, 2012.

F. Perreault, R. Popovic, and D. Dewez, Environ. Pollut, vol.185, pp.219-227, 2014.

C. H. Pham, J. Yi, and M. B. Gu, Ecotoxicol. Environ. Saf, vol.78, pp.239-245, 2012.

F. Piccinno, F. Gottschalk, S. Seeger, B. Nowack, and R. F. Domingos, Nanomaterials for Environmental Protection, J. Nanopart. Res. 14. Pinheiro, J.P, 2012.

H. C. Poynton, J. M. Lazorchak, C. A. Impellitteri, M. E. Smith, K. Rogers et al., Environ. Sci. Technol, vol.45, pp.762-768, 2011.

H. C. Poynton, J. M. Lazorchak, C. A. Impellitteri, B. J. Blalock, K. Rogers et al., Environ. Sci. Technol, vol.46, pp.6288-6296, 2012.

L. C. Rainville, D. Carolan, A. C. Varela, H. Doyle, and D. Sheehan, Analyst, vol.139, pp.1678-1686, 2014.

H. Rauscher, G. Roebben, V. Amenta, A. B. Sanfeliu, L. Calzolai et al., Towards a review of the EC recommendation for a definition of the term nanomaterial, 2014.

R. B. Reed, D. A. Ladner, C. P. Higgins, P. Westerhoff, and J. F. Ranville, Environ. Toxicol. Chem, vol.31, pp.93-99, 2012.

B. Reidy, A. Haase, A. Luch, K. Dawson, and I. Lynch, Research B. Global Markets for Nanocomposites, vol.6, pp.2295-2350, 2013.

R. Rippka, J. B. Deruelles, M. Herdman, B. Waterbury, and R. Y. Stanier, J. Gen. Microbiol, vol.111, pp.1-61, 1979.

C. Saison, F. Perreault, J. C. Daigle, C. Fortin, J. Claverie et al., Aquat. Toxicol, vol.96, pp.109-114, 2010.

N. Sakai, Y. Matsui, A. Nakayama, A. Tsuda, M. Yoneda et al., J. Phys.: Conf. Ser, vol.304, p.12049, 2011.

, Towards Safe and Sustainable Nanomaterials and Nanotechnology Innovations. Finnish Institute of Occupational Health

A. G. Schultz, K. J. Ong, T. Maccormack, G. Ma, J. G. Veinot et al., Environ. Sci. Technol, vol.46, pp.5-10301, 2012.

A. G. Schultz, D. Boyle, D. Chamot, K. J. Ong, K. J. Wilkinson et al., J. Nanobiotechnol, vol.11, pp.1-12, 2014.

T. Sheela, Y. A. Nayaka, R. Viswanatha, S. Basavanna, and T. G. Venkatesha, Powder Technol, vol.217, pp.163-170, 2012.

J. L. Shepard, B. Olsson, M. Tedengren, and B. P. Bradley, Mar. Environ. Res, vol.50, pp.337-340, 2000.

J. Shi, A. D. Abid, I. M. Kennedy, K. R. Hristova, and W. K. Silk, Environ. Pollut, vol.159, pp.1277-1282, 2011.

J. Shi, B. Xu, X. Sun, C. Ma, C. Yu et al., Aquat. Toxicol, pp.53-60, 2013.

D. F. Simon, R. F. Domingos, C. Hauser, C. M. Hutchins, W. Zerges et al., Appl. Environ. Microbiol, vol.79, pp.4774-4785, 2013.

H. Sun, X. Zhang, Q. Niu, Y. Chen, and J. C. Crittenden, Water Air Soil Pollut, vol.178, pp.245-254, 2006.

P. Suresh, J. J. Vijaya, and L. J. Kennedy, React. Kinet. Mech. Catal, vol.114, pp.767-780, 2015.

C. Tan and W. X. Wang, Environ. Pollut, vol.186, pp.36-42, 2014.

B. Thalmann, A. Voegelin, B. Sinnet, R. Morgenroth, and E. Kaegi, Environ. Sci, vol.48, pp.4885-4892, 2014.

K. Tiede, A. B. Boxall, S. P. Tear, J. Lewis, H. David et al., J. Hazard. Mater, vol.25, pp.795-821, 2008.

G. Vale, C. Franco, M. S. Diniz, M. M. Santos, and R. F. Domingos, Ecotoxicol. Environ. Saf, vol.109, pp.161-168, 2014.

Z. Wang, A. V. Bussche, P. K. Kabadi, A. B. Kane, and R. H. Hurt, ACS Nano, vol.7, pp.8715-8727, 2013.

Z. Wang, A. V. Bussche, P. K. Kabadi, A. B. Kane, and R. H. Hurt, ACS Nano, vol.10, pp.8715-8727, 2013.

B. Wang, J. Yin, X. Zhou, I. Kurash, Z. Chai et al., J. Phys. Chem. C, vol.117, pp.383-392, 2013.

L. Wang, N. Habibul, D. He, W. Li, X. Zhang et al., Water Res, vol.68, pp.12-23, 2015.

T. Xia, Y. Zhao, T. Sager, S. George, S. Pokhrel et al., ACS Nano, vol.5, pp.1223-1235, 2011.

D. Xiong, T. Fang, L. Yu, X. Sima, and W. Zhu, Sci. Total Environ, vol.409, pp.1444-1452, 2011.

L. Yu, T. Fang, D. Xiong, W. Zhu, and X. Sima, J. Environ. Monit, vol.13, pp.1975-1982, 2011.

L. Zhang, Y. Jiang, Y. Povery, and D. York, J. Nanopart. Res, vol.9, pp.479-489, 2007.

X. Zhang, H. Sun, Z. Zhang, Q. Niu, Y. Chen et al., Chemosphere, vol.67, pp.160-166, 2007.

Y. Zhang, X. Gao, L. Zhi, X. Liu, W. Jiang et al., J. Inorg. Biochem, vol.130, pp.74-83, 2014.

X. Zhao, S. Wang, Y. Wu, H. You, and L. Lv, Aquat. Toxicol, pp.49-59, 2013.

X. Zhu, L. Zhu, Z. Duan, R. Qi, Y. Li et al., J. Environ. Sci. Health Part A, vol.43, pp.278-284, 2008.

X. Zhu, J. Wang, X. Zhang, Y. Chang, Y. Chen et al., Aquat. Toxicol, vol.20, pp.267-275, 2009.

, Annexe 2: Identification of Gammarus sp, Luxembourg streams

. Hou, following manufacturer's instructions. The extracted DNA was quantified using Nanodrop. Primers for Gammarus sp. were designed based on a set of six pairs of universal primers: COI, 12S, 16S, 18S and 28S (Berschick, Genomic DNA (gDNA) was extracted using QIAmp DNA mini kit ® (QIAgen), 1997.

P. Berschick, One primer pair amplifies small subunit ribosomal DNA from mitochondria, plastids and bacteria. Mitochondria, plastids and bacteria, BioTechniques, vol.23, pp.494-498, 1997.

S. Cambier, P. Gonzalez, G. Durrieu, and J. Bourdineaud, Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses, Ecotoxicol. Environ. Saf, vol.73, pp.312-319, 2010.

U. Englisch, C. O. Coleman, and J. W. Wägele, First observations on the phylogeny of the families Gammaridae, Crangonyctidae, Melitidae, Niphargidae, Megaluropidae and Oedicerotidae (Amphipoda, Crustacea), using small subunit rDNA gene sequences, J. Nat. Hist, vol.37, pp.2461-2486, 2003.

O. Folmer, M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek, DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol, Mar. Biol. Biotechnol, vol.3, pp.294-299, 1994.

Z. Hou, J. Fu, L. , and S. , A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences, Mol. Phylogenet. Evol, vol.45, pp.596-611, 2007.

K. S. Macdonald, L. Yampolsky, D. , and J. E. , Molecular and morphological evolution of the amphipod radiation of Lake Baikal, Mol. Phylogenet. Evol, vol.35, pp.323-343, 2005.

S. R. Palumbi, Nucleic acids II: The polymerase chain reaction, 1996.