T. Durant-cette, Nous avons également produit quelques contributions notables pour la librairie. Plan de la thèse La thèse se compose de 10 chapitres, toutes les applications furent développées en utilisant Feel++

, Chapitre 1 : ? Notions d'analyse numérique, notamment sur les espaces de fonctions, ? Description de la méthode des éléments finis, La première partie est consacrée à la modélisation d'un problème aérothermie

, Chapitre 2 : ? Introduction des équation du problème ? Discrétisation utilisant la méthode des éléments finis 4. DETAILED AFFINE DECOMPOSITION FOR RB WITH STOKES FLOW 225

, ? Résolution non-linéaire et continuations

, Chapitre 3 : ? Méthode de Stabilisation de type Streamline Diffusion (SDM)

, Discussion sur le coefficient de stabilisation et l'évaluation de la longueur caractéristique d'une maille

, ? La méthode Reynolds Average Navier-Stokes (RANS)

?. Le-modèle-de-spalart, Allmaras ? Le modèle l ? ? SST La deuxième partie est consacré la réduction d'ordre

, Chapitre 5 : ? La méthode des bases réduites (RBM) pour les problèmes coercifs ? La méthode des bases réduites pour les problèmes de type point-selle Chapitre 6 : ? La méthode d

, ? EIM pour les opérateurs discrets d'ordre r ? Méthode de coconstruction EIM et RB (SER)

, Réduction d'un problème d'aerothermie ? Application OPUS : refroidissement de composants électroniques ? Application CHORUS : climatisation dans une cabine d'avion Bibliography, Chapitre

C. Regina, R. Almeida, and . Silva, A stable petrov-galerkin method for convection-dominated problems, Computer methods in applied mechanics and engineering, vol.140, issue.3-4, pp.291-304, 1997.

E. Balmès, Parametric families of reduced finite element models. theory and applications, Mechanical Systems and Signal Processing, vol.10, pp.381-394, 1996.

M. Barrault, Y. Maday, N. C. Nguyen, and A. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, vol.339, issue.9, pp.667-672, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00021702

G. Batchelor, An introduction to fluid dynamics, 2000.

F. Brezzi, On the existence, uniqueness and approximation of saddlepoint problems arising from lagrangian multipliers. Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, vol.8, pp.129-151, 1974.

F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, vol.15, 2012.

A. Brooks, T. , and J. Hughes, Streamline-upwind/petrov-galerkin methods for advection dominated flows, 1980.

A. N. Brooks, J. R. Thomas, and . Hughes, Streamline upwind/petrovgalerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.32, issue.1, pp.199-259, 1982.

A. Buffa, Y. Maday, A. T. Patera, C. Prud'homme, and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis, M2AN Math. Model. Numer. Anal, vol.46, pp.595-605, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00659314

P. Burda, J. Novotny, and J. Sistek, On a modification of gls stabilized fem for solving incompressible viscous flows, International Journal for Numerical Methods in Fluids, vol.51, pp.1001-1016, 2005.

E. Burman, M. A. Fernandez, and P. Hansbo, Continuous interior penalty finite element method for oseen's equations, SIAM Journal of Numerical Analysis, vol.44, pp.1248-1274, 2006.

E. Burman and A. Ern, Nonlinear diffusion and discrete maximum principle for stabilized galerkin approximations of the convection-diffusionreaction equation, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.35, pp.3833-3855, 2002.

E. Burman and A. Ern, Stabilized galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence, Mathematics of computation, vol.74, issue.252, pp.1637-1652, 2005.

N. Cardoso and . Bicudo, Time dependent simulation of the driven lid cavity at high reynolds number, 2008.

V. Chabannes, Vers la simulation numérique des écoulements sanguins. Theses, 2013.

S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM Journal on Scientific Computing, vol.32, issue.5, pp.2737-2764, 2010.

G. Philippe and . Ciarlet, The finite element method for elliptic problems, 2002.

R. Codina, A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Computer Methods in Applied Mechanics and Engineering, vol.110, issue.3-4, pp.325-342, 1993.

C. T. Todd-s-coffey, D. E. Kelley, and . Keyes, Pseudotransient continuation and differential-algebraic equations, SIAM Journal on Scientific Computing, vol.25, issue.2, pp.553-569, 2003.

T. Coupez and E. Hachem, Solution of high-reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing, Computer Methods in Applied Mechanics and Engineering, vol.267, pp.65-85, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00866734

K. Nguyen-ngoc-cuong, A. Veroy, and . Patera, Certified realtime solution of parametrized partial differential equations, Handbook of materials modeling, pp.1529-1564, 2005.

C. Daversin and C. Prud'homme, Simultaneous empirical interpolation and reduced basis method for non-linear problems, Comptes Rendus Mathématique, vol.353, issue.12, pp.1105-1109, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219063

C. Daversin, S. Veys, C. Trophime, and C. Prud'homme, A reduced basis framework: Application to large scale nonlinear multi-physics problems, ESAIM: Proceedings, vol.43, pp.225-254, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00786557

C. D. Catty, Reduced basis method applied to large non-linear multi-physics problems : application to high field magnets design. Theses, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01361722

D. Davis, Natural convection of air in a square cavity: a benchmark solution, International Journal for Numerical Methods in Fluids, vol.3, pp.249-264, 1983.

S. Deparis and G. Rozza, Reduced basis method for multi-parameterdependent steady navier-stokes equations: applications to natural convection in a cavity, Journal of Computational Physics, vol.228, issue.12, pp.4359-4378, 2009.

D. Ibrahima, Analyse théorique et numérique des conditions de glissement pour les fluides et les solides par la méthode de pénalisation, 2013.

E. Gomes-dutra-do-carmo and A. C. Galeão, Feedback petrovgalerkin methods for convection-dominated problems, Computer methods in applied mechanics and engineering, vol.88, issue.1, pp.1-16, 1991.

J. Douglas and J. Wang, An absolutely stabilized finite element method for the stokes problem, Mathematics of computation, vol.52, issue.186, pp.495-508, 1989.

V. Doyeux, Modélisation et simulation de systèmes multi-fluides. Applications aux écoulements sanguins, 2014.

E. Erturk, Fourth-order compact formulation of navierstokes equations and driven cavity flow at high reynolds numbers, International Journal for Numerical Methods in Fluids, vol.50, issue.4, pp.421-436, 2006.

J. P. Fink, On the error behavior of the reduced basis technique for nonlinear finite element approximations, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol.63, issue.1, pp.21-28, 1983.

P. Leopoldo, F. Franca, and . Valentin, On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.13, pp.1785-1800, 2000.

A. Gerner and K. Veroy, Reduced basis a posteriori error bounds for the stokes equations in parametrized domains: A penalty approach, Math. Models Methods Appl. Sci, vol.21, pp.2103-2134, 2011.

A. Gerner and K. Veroy, Certified reduced basis methods for parametrized saddle point problems. SIAM, Journal of Scientific Computing, 2012.
DOI : 10.1137/110854084

URL : http://publications.rwth-aachen.de/record/82756/files/4312.pdf

T. Swetlana-giere, . Iliescu, J. Volker, and D. Wells, Supg reduced order models for convection-dominated convection-diffusion-reaction equations, Computer Methods in Applied Mechanics and Engineering, vol.289, pp.454-474, 2015.

Y. Martin-a-grepl, . Maday, C. Ngoc, A. Nguyen, and . Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.41, issue.3, pp.575-605, 2007.

P. M. Gresho, D. J. Griffiths, and . Silvester, Adaptive time-stepping for incompressible flow part i: scalar advection-diffusion, 2008.
DOI : 10.1137/070688018

URL : http://www.maths.dundee.ac.uk/%7Edfg/ggspartI.pdf

H. Grotjans and F. Menter, Wall functions for general application CFD codes, pp.1112-1117, 1998.

E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized finite element method for incompressible flows with high reynolds number, Journal of Computational Physics, vol.229, issue.23, pp.8643-8665, 2010.
DOI : 10.1016/j.jcp.2010.07.030

URL : https://hal.archives-ouvertes.fr/hal-00521881

Y. Hoarau, Analyse physique par simulation numérique et modélisation des écoulements décollés instationnaires autour de surfaces portantes, 2002.

J. R. Thomas, L. P. Hughes, M. Franca, and . Balestra, A new finite element formulation for computational fluid dynamics: V. circumventing the babuska-brezzi condition: a stable petrov-galerkin formulation of the stokes problem accommodating equal-order interpolations, Computer Methods in Applied Mechanics and Engineering, vol.59, issue.1, pp.85-99, 1986.

J. R. Thomas, L. P. Hughes, G. M. Franca, and . Hulbert, A new finite element formulation for computational fluid dynamics: Viii. the galerkin/least-squares method for advective-diffusive equations, Computer Methods in Applied Mechanics and Engineering, vol.73, issue.2, pp.173-189, 1989.

J. R. Thomas, L. P. Hughes, M. Franca, and . Mallet, A new finite element formulation for computational fluid dynamics: Vi. convergence analysis of the generalized supg formulation for linear time-dependent multidimensional advective-diffusive systems, Computer Methods in Applied Mechanics and Engineering, vol.63, issue.1, pp.97-112, 1987.

J. R. Thomas, M. Hughes, M. Mallet, and . Akira, A new finite element formulation for computational fluid dynamics: Ii. beyond supg, Computer Methods in Applied Mechanics and Engineering, vol.54, issue.3, pp.341-355, 1986.

T. J. Hughes and A. N. Brooks, A multidimensional upwind scheme with no crosswind diffusion. Finite Element Methods for Convection Dominated Flows, vol.34, pp.19-35, 1979.

D. Bao, P. Huynh, G. Rozza, S. Sen, and A. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants, Comptes Rendus Mathematique, vol.345, issue.8, pp.473-478, 2007.

T. J. Hughes and I. Harari, What are c and h?: Inequalities for the analysis and design of finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.97, pp.157-192, 1992.

K. Ito and . Ss-ravindran, A reduced-order method for simulation and control of fluid flows, Journal of computational physics, vol.143, issue.2, pp.403-425, 1998.

T. Javaherchi, Review of spalart-allmaras turbulence model and its modifications, 2010.

V. John and P. Knobloch, On discontinuity-capturing methods for convection-diffusion equations. Numerical mathematics and advanced applications, pp.336-344, 2006.

C. Johnson, A. H. Schatz, and L. B. Wahlbin, Crosswind smear and pointwise errors in streamline diffusion finite element methods. mathematics of computation, vol.49, pp.25-38, 1987.

C. Johnson, U. Nävert, and J. Pitkäranta, Finite element methods for linear hyperbolic problems, Computer methods in applied mechanics and engineering, vol.45, issue.1-3, pp.285-312, 1984.
DOI : 10.1016/0045-7825(84)90158-0

D. A. Kay, . Gresho, D. J. Griffiths, and . Silvester, Adaptive time-stepping for incompressible flow part ii: Navier-stokes equations, SIAM Journal on Scientific Computing, 2010.

T. Carl, D. E. Kelley, and . Keyes, Convergence analysis of pseudotransient continuation, SIAM Journal on Numerical Analysis, vol.35, issue.2, pp.508-523, 1998.

D. J. Knezevic, N. Nguyen, and A. T. Patera, Reduced basis approximation and a posteriori error estimation for the parametrized unsteady boussinesq equations, Mathematical Models and Methods in Applied Sciences, 2010.

A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers, Dokl. Akad. Nauk SSSR, vol.30, pp.299-303, 1941.

L. Kovasznay, Laminar flow behind a two-dimensional grid, Mathematical Proceedings of the Cambridge Philosophical Society, vol.44, pp.58-62, 1948.
DOI : 10.1017/s0305004100023999

D. Kuzmin, O. Mierka, and S. Turek, On the implementation of the ?-? turbulence model in incompressible flow solvers based on a finite element discretisation, International Journal of Computing Science and Mathematics, vol.1, issue.2-4, pp.193-206, 2007.

P. Lax and . Milgram, Ix. parabolic equations. Contributions to the Theory of Partial Differential Equations.(AM-33), vol.33, p.167, 2016.

L. Sérgio, P. Frey-leopoldo, and . Franca, Stabilized finite element methods:i. application to the advective-diffusive model, Computer Methods in Applied Mechanics and Engineering, vol.95, pp.253-276, 1992.

L. Sérgio, P. Frey-leopoldo, and . Franca, Stabilized finite element methods:ii. the incompressible navier-stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.99, pp.209-233, 1992.

L. Machiels, Y. Maday, I. B. Oliveira, A. T. Patera, and D. V. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, vol.331, issue.2, pp.153-158, 2000.

Y. Maday, A. Manzoni, and A. Quarteroni, An online intrinsic stabilization strategy for the reduced basis approximation of parametrized advection-dominated problems, Comptes Rendus Mathematique, vol.354, issue.12, pp.1188-1194, 2016.

Y. Maday, N. C. Nguyen, A. T. Patera, and G. S. Pau, A general, multipurpose interpolation procedure: the magic points. working paper or preprint, 2007.
DOI : 10.3934/cpaa.2009.8.383

URL : https://hal.archives-ouvertes.fr/hal-00174797

A. T. Yvon-maday, D. Patera, and . Rovas, A blackbox reduced-basis output bound method for noncoercive linear problems, Studies in Mathematics and Its Applications, vol.12, p.31, 2002.

M. T. Manzari, An explicit finite element algorithm for convection heat transfer problems, International Journal of Numerical Methods for Heat & Fluid Flow, vol.9, issue.8, pp.860-877, 1999.
DOI : 10.1108/09615539910297932

A. Manzoni, An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized navierstokes flows, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.4, pp.1199-1226, 2014.

. David-a-mayne, S. Asif, M. Usmani, and . Crapper, h-adaptive finite element solution of high rayleigh number thermally driven cavity problem, International Journal of Numerical Methods for Heat & Fluid Flow, vol.10, issue.6, pp.598-615, 2000.

F. Menter, Zonal two equation kw turbulence models for aerodynamic flows, 23rd fluid dynamics, plasmadynamics, and lasers conference, p.2906, 1993.
DOI : 10.2514/6.1993-2906

R. Florian and . Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal, vol.32, issue.8, pp.1598-1605, 1994.

F. R. Menter, R. Kuntz, and . Langtry, Ten years of industrial experience with the sst turbulence model. Turbulence, heat and mass transfer, vol.4, pp.625-632, 2003.

S. , On the performance of high aspect ratio elements for incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.188, issue.1-3, pp.269-287, 2000.

A. Mizukami, . Thomas, and . Hughes, A petrov-galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle, Computer Methods in Applied Mechanics and Engineering, vol.50, issue.2, pp.181-193, 1985.

F. Negri, A. Manzoni, and D. Amsallem, Efficient model reduction of parametrized systems by matrix discrete empirical interpolation, Journal of Computational Physics, vol.303, pp.431-454, 2015.
DOI : 10.1016/j.jcp.2015.09.046

URL : https://manuscript.elsevier.com/S0021999115006543/pdf/S0021999115006543.pdf

. Ahmed-k-noor, Recent advances in reduction methods for nonlinear problems, Computers & Structures, vol.13, issue.1-3, pp.31-44, 1981.

Y. Papadopoulos, A driven cavity exploration

. Janet-s-peterson, The reduced basis method for incompressible viscous flow calculations, SIAM Journal on Scientific and Statistical Computing, vol.10, issue.4, pp.777-786, 1989.

O. Pironneau and O. Pironneau, Finite element methods for fluids, 1989.

C. Prud'homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday et al., Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods, Journal of Fluids Engineering, vol.124, issue.1, pp.70-80, 2002.

C. Prud, &. Homme, and A. T. Patera, Reduced-basis output bounds for approximately parametrized elliptic coercive partial differential equations. Computing and Visualization in Science, vol.6, pp.147-162, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01220801

A. Quarteroni and G. Rozza, Numerical solution of parametrized navier-stokes equations by reduced basis methods, Numerical Methods for Partial Differential Equations: An International Journal, vol.23, issue.4, pp.923-948, 2007.
DOI : 10.1002/num.20249

A. Quarteroni, G. Rozza, and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations and applications, Journal of Mathematics in Industry, vol.1, issue.1, p.3, 2011.
DOI : 10.1186/2190-5983-1-3

URL : https://mathematicsinindustry.springeropen.com/track/pdf/10.1186/2190-5983-1-3

. Werner-c-rheinboldt, On the theory and error estimation of the reduced basis method for multi-parameter problems, Nonlinear Analysis: Theory, Methods & Applications, vol.21, pp.849-858, 1993.

D. V. Rovas, Reduced-basis output bound methods for parametrized partial differential equations, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00798352

D. Vasileios-rovas, Reduced-basis output bound methods for parametrized partial differential equations, 2003.

G. Rozza, P. Db, A. Huynh, and . Manzoni, Reduced basis approximation and a posteriori error estimation for stokes flows in parametrized geometries: roles of the inf-sup stability constants, Numerische Mathematik, vol.125, issue.1, pp.115-152, 2013.

G. Rozza, D. Huynh, and A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives of Computational, Methods in Engineering, vol.15, issue.3, p.1, 2007.
DOI : 10.1007/s11831-008-9019-9

URL : https://hal.archives-ouvertes.fr/hal-01722593

G. Rozza, D. Huynh, and A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives of Computational, Methods in Engineering, vol.15, issue.3, p.229, 2008.
DOI : 10.1007/s11831-008-9019-9

URL : https://hal.archives-ouvertes.fr/hal-01722593

G. Rozza and K. Veroy, On the stability of the reduced basis method for stokes equations in parametrized domains, Computer methods in applied mechanics and engineering, vol.196, issue.7, pp.1244-1260, 2007.

E. Schenone, S. Veys, and C. Prud'homme, High Performance Computing for the Reduced Basis Method. Application to Natural Convection, ESAIM: Proceedings, pp.255-273, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00786560

P. N. Shankar, Fluid mechanics in the driven cavity, Annual Review of Fluid Mechanics, vol.32, issue.1, pp.93-136, 2000.

K. Ratnesh, M. Shukla, X. Tatineni, and . Zhong, Very high-order compact finite difference schemes on non-uniform grids for incompressible navier-stokes equations, Journal of Computational Physics, vol.224, issue.2, pp.1064-1094, 2007.

E. Pavel, F. R. Smirnov, and . Menter, Sensitization of the sst turbulence model to rotation and curvature by applying the spalart-shur correction term, Journal of Turbomachinery, vol.131, issue.4, p.41010, 2009.

R. Philippe, . Spalart, and . Christopher-l-rumsey, Effective inflow conditions for turbulence models in aerodynamic calculations, AIAA journal, vol.45, issue.10, pp.2544-2553, 2007.

P. Spalart, A one-equation turbulence model for aerodynamic flows, 30th aerospace sciences meeting and exhibit, p.439, 1992.

T. Tonn, Reduced-basis method (rbm) for non-affine elliptic parametrized pdes.(phd), 2012.

. David-j-tritton, Physical fluid dynamics, 2012.

C. T. Shin, U. Ghia, and K. N. Ghia, High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method, Journal of Computational Physics, vol.48, pp.387-411, 1982.

A. José-m-urquiza, M. Garon, and . Farinas, Weak imposition of the slip boundary condition on curved boundaries for stokes flow, Journal of Computational Physics, vol.256, pp.748-767, 2014.

S. Vallaghé, M. Fouquembergh, A. L. Hyaric, and C. Prud'homme, A successive constraint method with minimal offline constraints for lower bounds of parametric coercivity constant, 2011.

K. Veroy and A. T. Patera, Certified real-time solution of the parametrized steady incompressible navier-stokes equations: Rigorous reduced-basis a posteriori error bounds, Int. J. Numer. Meth. Fluids, vol.47, pp.773-788, 2005.

K. Veroy, C. Prud'homme, D. V. Rovas, and A. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, Proceedings of the 16th AIAA computational fluid dynamics conference, vol.3847, pp.23-26, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01219051

K. Veroy, D. V. Rovas, and A. Patera, A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations:"convex inverse" bound conditioners. ESAIM: Control, Optimisation and Calculus of Variations, vol.8, pp.1007-1028, 2002.

S. Veys, A computational reduced basis framework : applications to nonlinears multiphysics problems. Theses, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01079415

D. C. Wan, B. S. Patnaik, and G. W. Wei, A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, Numerical Heat Transfer: Part B: Fundamentals, vol.40, issue.3, pp.199-228, 2001.

Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu, Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison, Computer Methods in Applied Mechanics and Engineering, vol.237, pp.10-26, 2012.
DOI : 10.1016/j.cma.2012.04.015

URL : http://arxiv.org/pdf/1106.3585

K. Yapici and Y. Uludag, Finite volume simulation of 2-d steady square lid driven cavity flow at high reynolds numbers, Brazilian Journal of Chemical Engineering, vol.30, issue.4, pp.923-937, 2013.
DOI : 10.1590/s0104-66322013000400023

URL : http://www.scielo.br/pdf/bjce/v30n4/a23v30n4.pdf

O. Zahm, M. Billaud-friess, and A. Nouy, Projection-based model order reduction methods for the estimation of vector-valued variables of interest, SIAM Journal on Scientific Computing, vol.39, issue.4, pp.1647-1674, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02140716