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Bacillus subtilis, une bactérie Gram-positive présente dans le sol, peut lorsque 

les nutriments sont en concentrations limitantes, sporuler, former des biofilms ou 

devenir compétente. La compétence est, chez B. subtilis, caractérisée par un arrêt de 

la division cellulaire, une tolérance aux antibiotiques et l’expression de plus d’une 

centaine de gènes. L’expression de la compétence, aussi désignée sous le nom de « K-

state », est dépendante de la synthèse du facteur de transcription ComK et se fait de 

façon stochastique résultant en la formation de deux sous-populations bactériennes, 

non-compétentes et compétentes. L’émergence, à partir de cellules génétiquement 

identiques, de deux sous-populations distinctes est une stratégie de survie très 

répandue chez les procaryotes, connue sous le nom de « bet-hedging ».  

Bien que les mécanismes de régulation du développement de la compétence 

ont, chez B. subtilis, largement été étudiés au cours des dernières années, la raison 

pour laquelle les souches non-domestiques sont très peu transformables (1-2% de la 

population) comparé aux souches domestiques (~15%) reste méconnue. Nous 

démontrons ici que c’est essentiellement dû à une mutation de transition dans le 

promoteur du gène degQ. Cette mutation diminue la synthèse de DegQ, protéine 

impliquée dans la régulation de la formation de biofilms, de la synthèse 

d’exoprotéases et de la transformation génétique. DegQ est une protéine impliquée 

dans le transfert d’un groupe phosphoryl entre la kinase DegS et son substrat DegU. 

Une faible quantité de DegQ diminue la concentration en DegU~P ce qui a pour 

conséquence la désinhibition de l’opéron srfA entrainant une accumulation de ComK 

et l’expression de la compétence. C’est ainsi que, dans les souches domestiques de B. 

subtilis, un plus grand nombre de bactéries atteignent le niveau nécessaire en ComK 

pour activer une boucle d’auto-activation transcriptionnelle de comK. Nous 
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démontrons aussi que l’activation transcriptionnelle de srfA est, dans les souches non-

domestiques, transitoire alors que la population bactérienne entre en phase 

stationnaire de croissance. Ces données indiquent que le développement de la 

compétence est moins fréquent et plus transitoire dans les souches non-domestiques 

de B. subtilis. De plus, cette limitation du K-state dans les souches non-domestiques 

est plus importante que précédemment « pensé » probablement dû à la domestication 

de B. subtilis au cours de ces 50 dernières années.  

Ce travail reflète non seulement, l’importance de l’utilisation de souches non-

domestiques dans la caractérisation des voies de régulation de la compétence chez B. 

subtilis, mais aussi la portée du choix de modèle biologique dans l’étude de 

phénomènes biologiques complexes. 
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Bacillus subtilis, a Gram-positive soil bacterium, can enter into several 

developmental pathways such as sporulation, biofilm formation and competence 

development for DNA transformation when it becomes limited for essential nutrients. 

During competence, cells do not divide, are tolerant to antibiotics and competent cells 

express more than a 100 genes. The competent state has been named the K-state after 

its master regulator ComK. 

In B. subtilis, the entry into the K-state is stochastically determined by the 

activation of the transcription factor ComK and occurs, in the domesticated strains of 

B. subtilis, in approximately 15% of the population. The emergence from genetically 

identical cells of two distinct subpopulations (competent cells and non-competent 

cells) is known to be a classic survival strategy for bacteria, known as bet-hedging. 

Regulation of entry into the K-state has been intensively studied and is well 

understood; however, the reasons why undomesticated isolates of B. subtilis are 

poorly transformable compared to the domesticated strains remained unexplained. We 

show here that fewer cells enter the K-state, suggesting that some regulatory pathway 

limiting its expression has been lost in the domesticated backgrounds. We 

demonstrate that this is largely due to an inactivating point mutation in the degQ 

promoter region resulting in a decrease of the amount of DegQ. DegQ is known to 

stimulate phosphate transfer from the DegS autokinase to its cognate response 

regulator DegU. A low level of DegQ thus decreases the concentration of the 

phosphorylated form of DegU, leading to the de-repression of the srfA operon, which 

increases the amount of ComS leading to the stabilization of ComK. Thus, in 

domesticated strains of B. subtilis, more cells reach the concentration threshold of 

ComK needed to activate the positive auto-regulatory loop of ComK acting on its own 



 10 

promoter. We also show that the activation of srfA transcription in undomesticated 

strains is transient, as it is turned off when cells enter the stationary phase. 

Taken together, these data indicate that the K-state and transformability are 

less frequent and more transient in the undomesticated strains of B. subtilis. 

Consideration of the regulatory mechanisms and the fitness advantages and costs of 

the K-state must from now on take these features into consideration. These results 

underscore that our understanding of real-life biology requires the use of wild isolates. 
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A brief history of DNA 

The DNA story began in the mid-nineteenth century 

with the work of a young Swiss physician, Friedrich 

Miescher. After graduation, he went to Germany to work in 

one of the first laboratories focusing on the composition of 

lymphoid cells. As it was difficult to extract material from 

the lymph glands, Miescher had the idea to accumulate 

bandages from a nearby clinic to collect the pus. During his experiments with this 

material, he identified a substance with unexpected properties that did not match those 

of proteins; this substance was made of oxygen, hydrogen, nitrogen and phosphorus 

but there was a unique ratio of phosphorus to nitrogen. Since it had been purified 

from the nucleus of the cells, Miescher named this substance “nuclein,” which ended 

up being partially purified deoxyribonucleic acid (DNA) (Dahm, 2008).  

 

 Born in 1869 in Lithuania, Phoebus Levene migrated 

to the U.S. to practice medicine in the Lower East Side of 

Manhattan a few years before World War II. As he was 

interested in the chemical structure of sugars, Levene further 

characterized Miescher’s “nuclein” by showing it was made 

of a nitrogenous base, a sugar, and a phosphate group and 

that the different units were connected to each other via a phosphate group (Levene, 

1919). 
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 In 1928, the British bacteriologist Frederick Griffith was 

working on the epidemiology and pathology of Streptococcus 

pneumoniae, the pathogen responsible for pneumonia, and 

showed in what is now known as “Griffith’s Experiment” the 

first evidence of bacterial transformation. Indeed, he realized he 

could transfer the virulence trait from a heat-inactivated (dead) 

virulent strain of S. pneumoniae to a live but non-virulent strain of S. pneumoniae, 

simply by mixing both live and dead strains. Unaware of the precise substance 

involved in the transfer of this new virulence phenotype acquired by the non-

pathogenic strain, Griffith named this mysterious agent the “transforming principle” 

(Griffith, 1928) (Figure 1). 

 

 

Figure 1: The Griffith Experiment 
1- The mice infected by a virulent “S” strain of S. pneumoniae are killed. 2 and 3- The mice infected 
by either non-virulent “R” strain or heat-killed virulent “S” strain of S. pneumoniae survive. 4- After 
co-infection by “R” and “S” killed by heat, the mice die. Griffith was then able to isolate both live “R” 
and live “S” strains of S. pneumoniae from the blood of these dead mice. He concluded that the “R” 
strain had been "transformed" into the lethal “S” strain by a "transforming principle”. 
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pneumoniae are not killed. After co-infection by “R” and “S” killed by heat, mice die. Griffith was then able to isolate both live “R” and live “S” 

strains of S. pneumoniae  from the blood of these dead mice. He concluded that the “R” strain had been "transformed" into the lethal “S” strain by 

a "transforming principle" that was somehow part of the dead “S” strain bacteria.  
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 In the mid-nineties, the scientific community wondered 

about a big mystery: in which molecule is the genetic 

information hidden? Son of a Baptist minister at the Mariners’ 

Temple In New York’s Lower East Side, Oswald Theodore 

Avery, a Canadian doctor, repeated Griffith’s original 

experiment using purified DNA from a virulent strain of S. pneumoniae and showed 

that it was sufficient to transfer the virulence trait to a non-virulent strain (Avery, 

Macleod, & McCarty, 1944) (Hershey, 1952). Avery was the first to propose that 

Griffith’s transforming principle was actually DNA. 

 

DNA acquisition in prokaryotes 

 Bacteria can acquire new traits either by mutation or by the acquisition of 

external genetic material. This external acquisition of DNA is termed horizontal gene 

transfer (HGT) (de la Cruz & Davies, 2000) (Ochman, Lawrence, & Groisman, 2000), 

referring to the transfer of genes between organisms in a manner that contrasts with 

vertical transfer, the inheritance of genes from the parental generation to offspring via 

sexual or asexual reproduction. HGT has been shown to be an important factor in the 

evolution of many organisms and the primary reason for the spread of bacterial 

antibiotic resistance (Koonin, Makarova, & Aravind, 2001). HGT occurs through 

three mechanisms: conjugation, transduction and transformation (Koonin et al., 2001).  

 

Conjugation 

Conjugation is the transfer of DNA from a donor to a recipient by direct 

physical contact between two cells (Clark & Adelberg, 1962). Many but not all 

species of bacteria can conjugate and conjugation is possible between cells of the 
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same species or even between cells of two different species (Trieu-Cuot, Gerbaud, 

Lambert, & Courvalin, 1985) (Penalva, Moya, Dopazo, & Ramon, 1990) (Kuhsel, 

Strickland, & Palmer, 1990). A plasmid called the F factor (Fertility factor) is 

required for conjugation (Lederberg, Cavalli, & Lederberg, 1952). As it carries its 

own origin of replication and an origin of tranfert, the F plasmid is an episome. It also 

carries the tra locus that incodes for pilin proteins. Only one copy of the F plasmid 

can be found in a given bacterium. In bacteria there are two “mating types,” a donor 

(or F+) and a recipient (or F-) and the direction of transfer of genetic material is 

unidirectional (Lederberg et al., 1952). After the pilus of the donor cell recognizes 

and binds to specific receptors sites on the cell wall of the recipient cell, a single 

stranded DNA molecule from the mobile plasmid is transferred from the donor to the 

recipient and is later converted to double stranded DNA (Wozniak & Waldor, 2010) 

(Figure 2). 
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Figure 2: Schematic drawing of bacterial conjugation 
1- The donor cell produces a pilus, which is encoded on the mobile plasmid. 2- The pilus attaches to 
the recipient cell and brings the two cells in close proximity. 3- The plasmid is nicked and a single 
strand of DNA is then transferred to the recipient cell. 4- After genetic transfer, both cells synthesize 
the complementary strands to produce a double stranded circular plasmid. Both cells are now donors. 

 

 

Transduction 

Transduction is the transfer of genetic information from a donor to a recipient 

by means of a bacteriophage and can happen through either the lytic cycle or the 

lysogenic cycle (Zinder & Lederberg, 1952) (Kresge, Simoni, & Hill, 2011). In the 
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the prophage and will not be expressed. The prophage is then transmitted as well as 

the rest of the genetic information to the daughter cells (called lysogens) as the 

bacterium divides. The switch to the lytic cycle can be induced at any time and the 
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to produce phage elements. The prophage DNA will then be incorporated in the phage 
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host chromosomal DNA may be incorporated as well.  The phage coat protects its 

genome in the environment so that transduction, unlike transformation, is not affected 

by extracellular nucleases. We can assume that, because this mode of gene transfer 

does not depend on many dedicated bacterial genes, phages played an important role 

in the ecology and evolution of bacteria. Indeed, by moving pieces of bacterial DNA 

among themselves, phages probably contributed in making bacteria what bacteria are 

nowadays (Spizizen, Reilly, & Evans, 1966) (Figure 3).  

 

 

 

Figure 3: Schematic drawing of bacterial transduction. 
1- Phage infects a susceptible bacterial cell. 2- The host bacterial DNA is hydrolyzed while phage 
DNA and proteins are produced. 3- New viral particles are synthesized and will occasionally 
incorporate phage DNA into the mature virion, instead of phage DNA. The cell lyses and releases the 
new bacteriophages. 4- Transducing phages infect new cell (recipient host) and transfer bacterial DNA, 
but are defective as lytic phages. 5- New DNA is incorporated into recipient’s genome by 
recombination.  
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Transformation 

Transformation is the gene transfer resulting from the uptake of exogenous 

(environmental) DNA. Certain bacteria species (e.g. Bacillus, Haemophilus, 

Neisseria, Pneumococcus) can naturally incorporate DNA into their genomes. Like 

conjugation systems, transformation systems depend on specialized operons that 

encode DNA uptake machinery. Proteins encoded by these genes include those 

necessary for DNA binding, internalization, and possible recombination of DNA with 

the genome. This process will be discussed in great detail (see “Competence for 

transformation and the K-state”). 

 

Transformation is a conserved phenomenon among bacteria 

Cells expressing genes needed for acquiring DNA from the environment are 

said to be in a state of competence. Since this state is mediated by genes present in the 

bacterial genome, and is not induced artificially, this form of competence is referred 

to as genetically-programmed (Erickson, 1970) (Chen, Christie, & Dubnau, 2005). In 

contrast, other bacteria such as Escherichia coli are not able to take up DNA 

naturally, but the competent state can be induced through the addition of either 

chemical or physical agents (electroshock), which permit DNA to pass through the 

cell wall. Most naturally competent bacteria only take up DNA at a specific time 

during growth. It has been argued that the benefits of genetic competence are that the 

acquired DNA can be used as a source of nutrition, to repair existing genes, or for the 

acquisition of new genetic material (Redfield, 1993). Examples of natural bacterial 

competence are represented in both Gram-negative (i.e. Neisseria gonorrhoeae, 

Haemophilus influenzae, Helicobacter pylori) and Gram-positive (i.e. Streptococcus 

pneumonia, Bacillus subtilis) species (Chen et al., 2005). While in Gram-positive 

bacteria, DNA must go through the thick peptidoglycan layer of the cell wall and the 
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cytoplasmic membrane; it must also traverse the highly impermeable outer membrane 

of Gram-negative bacteria. Therefore, additional steps are involved in the Gram-

negative transformation systems, and the initial interaction of DNA with the cell 

envelope is also different in the two types of bacteria. Despite these differences, the 

protein machinery required to transport DNA in Gram-positive and Gram-negative 

bacteria is conserved, and interestingly, is also closely related to protein machines 

used for molecular secretion (Burton & Dubnau, 2010).  
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Bacillus subtilis 

General introduction 

 Bacillus subtilis (B. subtilis) is a bacterium naturally found in soil and 

vegetation that belongs to the Firmicute phylum of bacteria, which includes Gram-

positive bacteria with a low G+C content. Firmicutes have been differentiated from 

one another based on different characteristics such as the nature of their cell envelope, 

their aerotolerance (how well they live and grow in oxygen) and their ability to form 

endospores. Consequently there are seven classes of Firmicutes: the Erysipelotrichia, 

the Negativicutes, the Limnochordia, the Tissierellia, the Thermolithobacteria, the 

Clostridia and the Bacilli. Because stress and starvation are common in its 

environment, B. subtilis has evolved a set of strategies that allow its survival under 

these harsh conditions: formation of stress resistant endospores or uptake of external 

DNA, which allows the bacteria to adapt by recombination. And partly because B. 

subtilis is also a non-pathogenic bacterium for humans it has been used as a model 

organism to further understand pathogenic microorganisms belonging to the same 

phylum such as Streptococcus pneumoniae (a major cause of pneumonia), Bacillus 

anthracis (agent of anthrax) or Listeria monocytogenes (food infection). B. subtilis is 

used in industry to produce antibiotics (subtilin, bacitracin) and secrete several 

commercial enzymes used in the food industry (amylases for bread  production) or the 

detergent industry (proteases). Also, a strain of B. subtilis formerly known as Bacillus 

natto is typically used in Japan to produce a treat called “natto”. This traditional 

course is made of soybeans fermented with Bacillus natto and can be eaten for 

breakfast. 
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A short history of Bacillus subtilis 

B. subtilis was originally discovered more than a hundred and fifty years ago 

and the domesticated laboratory strains have now been used for more than half a 

century (Zeigler et al., 2008). B. subtilis laboratory strains derive from a single 

tryptophan-requiring auxotrophic strain, strain 168. In the mid 1900s, two Yale 

University botanists, Paul Burkholder and Norman Giles, isolated strain 168 after the 

B. subtilis Marburg strain was mutagenized with X-rays (Burkholder & Giles, 1947). 

Unfortunately the Yale group abandoned its B. subtilis experiments to focus on other 

research interests, and most of its B. subtilis collection has been lost. At least five 

mutants (auxotrophs requiring threonine (strain 23), nicotinic acid (strain 122), or 

tryptophan (strains 160, 166 and 168)) were preserved from those original 

experiments, and were transferred to Charles Yanofsky and John Spizizen, who 

showed that three of them (strains 122, 166 and 168) could be transformed to 

prototrophy when exposed to DNA from strain 23 (Spizizen, 1958). The highly 

transformable strain 168 became the subject of many other studies and was therefore 

disseminated around the world. By the mid 1970s, so many mutants had been 

developed from strain 168 that a centralized repository, the Bacillus Genetic Stock 

Center (BGSC), was established in Ohio to maintain them. Interestingly, X-irradiation 

and domestication brought many changes in B. subtilis strain 168 behaviors: a 

dramatic reduction in its ability to form complex, structured and matrix-adhered 

colonies known as biofilms, an inability to swarm on solid surfaces and an increased 

competence for genetic transformation (Branda, Gonzalez-Pastor, Ben-Yehuda, 

Losick, & Kolter, 2001) compared to its probable ancestor NCIB3610 (hereafter 

referred to as 3610). One major change was the loss of a plasmid, called pBS32, 

which encodes a cassette of phage genes (Konkol, Blair, & Kearns, 2013). While 



 26 

pLS32 is not present in the closest relatives of strain B. subtilis 3610, it is found in 

more distantly related strains (Tanaka & Ogura, 1998).  

 

Cell types in Bacillus subtilis 

Soil is a variable environment and accordingly B. subtilis can adapt by 

differentiating into distinct subpopulations of specialized cells, which express 

different traits that may confer a survival advantage in adverse conditions (Lopez, 

Fischbach, Chu, Losick, & Kolter, 2009) (Lopez, Vlamakis, & Kolter, 2009). Thus, B. 

subtilis is a good model organism for the study of alternative lifestyles. When 

nutrients are abundant, cells can grow in a free-floating planktonic form. At the onset 

of stationary phase, or when B. subtilis is shifted to poor nutrient conditions, some B. 

subtilis cells adapt by becoming naturally transformable (Chen et al., 2005). Other 

cells secrete toxins, which kill siblings by inducing cell lysis and the release of 

cellular components for scavenging (Lopez, Fischbach, et al., 2009). Also, during 

growth, cells may switch from a sessile to a motile state or vice versa.  The sessile 

lifestyle choice leads to the formation of a multi-cellular, community known as a 

biofilm. Production of the extracellular matrix, which is essential for biofilm 

formation, is carried out by a subpopulation of specialized cells in B. subtilis (Chai, 

Chu, Kolter, & Losick, 2008). However, the whole community benefits from the 

presence of the extracellular matrix, because all of the cells are encased within the 

matrix in mature biofilms, and thus protected from environmental insults such as 

antibiotics or phage (Vlamakis, Aguilar, Losick, & Kolter, 2008). As an extreme 

survival mechanism, the population will produce spores, and the mother cells lyse 

during the process. These spores are metabolically inactive, resistant to heat, radiation 

and toxic chemicals, and able to persist over long periods of time without nutrients. If 

optimal conditions arise and nutrients become available, spores germinate and resume 
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growth. The development of each of these specialized states is triggered by specific 

signals. For example, sporulation is proposed to be activated when the intracellular 

concentrations of essential metabolic molecules, like GTP, decrease (Lopez, Gontang, 

& Kolter, 2010) but the signal itself remains unknown. Transformation is regulated in 

part by quorum-sensing, a form of cell-cell communication in which cells secrete 

signaling molecules that accumulate in the medium as they grow and typically elicit a 

coordinated response from the population (Hahn & Dubnau, 1991) (Lazazzera, 2000). 

Overall, although the cells of a B. subtilis culture are genetically identical, different 

triggers activate specific changes in gene expression that often result in distinct 

subpopulations of cells (Lazazzera, 2000) (Lopez, Vlamakis, & Kolter, 2009). 
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Competence for transformation and the K-state 

Foreword 

The timing for competence expression is different among bacteria. S. 

pneumoniae, for example, expresses competence only during early exponential 

growth (Pakula & Walczak, 1963) while Neisseria gonorrhoeae is competent during 

the entire exponential phase (Sparling, 1966). B. subtilis develops competence at the 

onset of the stationary phase. The percentage of competent cells is also different 

between bacteria: only 10 to 20% of the cells express competence in domesticated B. 

subtilis while the entire population becomes competent in S. pneumoniae. Also, 

factors triggering the expression of competence are different; as the chemical 

composition of the media is important for S. pneumoniae, whereas nutrient limitation 

is important for B. subtilis, although this has not been studied in any detail (Tomasz, 

1966) (Morrison & Baker, 1979). 

Competence provides the cell population with an alternative mechanism of 

survival under environmentally challenging conditions. Indeed, different theories 

have been proposed on the benefits of genetic transformation, such as the use of DNA 

to repair damaged genes, the use of DNA as a source of nutrition (carbon, nitrogen 

and phosphorous) or the use of this exogenous DNA to allow genetic diversity in the 

population (Finkel & Kolter, 2001). A unique feature of competence in B. subtilis is 

that cells expressing competence do not divide. It has also recently been shown that 

competent cells are tolerant of antibiotics, a form of persistence (Hahn, Tanner, 

Carabetta, Cristea, & Dubnau, 2015). Because more than 100 genes are expressed 

when cells are competent (Hamoen, Smits, de Jong, Holsappel, & Kuipers, 2002) 

(Berka et al., 2002) (Ogura et al., 2002), and because most of these genes are not 

needed for transformation, the competent state has been called the K-state, named for 



 29 

the master regulator ComK (Maamar & Dubnau, 2005). The emergence from 

genetically identical cells of two distinct subpopulations (competent cells and non-

competent cells) is a classical survival strategy for bacteria, known as bet-hedging 

(Suel, Kulkarni, Dworkin, Garcia-Ojalvo, & Elowitz, 2007) (Veening, Smits, & 

Kuipers, 2008). 

 

Overview of the transformation process in B. subtilis 

 The proteins that are essential for DNA-uptake are encoded by three different 

operons, comE (Albano, Hahn, & Dubnau, 1987) (Hahn, Inamine, Kozlov, & Dubnau, 

1993) (Inamine & Dubnau, 1995), comF (Londono-Vallejo & Dubnau, 1993) 

(Londono-Vallejo & Dubnau, 1994) and comG (Albano, Breitling, & Dubnau, 1989) 

(Albano & Dubnau, 1989) (Briley et al., 2011) as well as the gene product of comC 

(Mohan, Aghion, Guillen, & Dubnau, 1989) (Chung & Dubnau, 1995). Other genes 

are needed for the processing and integration of DNA following uptake. The process 

of transformation can be subdivided in four distinct steps. First, double-stranded DNA 

(dsDNA) from the environment is bound to competent cells. Previous studies showed 

that there is no sequence preference and that there are approximately 50 binding sites 

per cell (Dubnau, 1991). It was proposed that a “competence pseudopilus,” made up 

of pilin subunits encoded by the comG operon which are processed by the protease 

ComC, traverses the cell wall and makes contact with the exogenous dsDNA. 

However, while the competence pseudopilus is required for DNA binding, none of its 

components have been shown to have DNA binding properties (Chen & Dubnau, 

2004), suggesting that some unknown DNA binding protein exists. Following the 

association of DNA with the cell, the ds-DNA is non-specifically cleaved by the 

membrane-bound endonuclease NucA, where the average size of the fragments is 11-

18kb (Provvedi, Chen, & Dubnau, 2001) (Figure 4). Next, the dsDNA is transported 
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through the plasma membrane via the aqueous ComEC channel and one strand is 

degraded by an unknown nuclease. ComFA was proposed to be a DNA translocase 

and/or helicase, which may provide energy for the movement of the DNA through the 

ComEC channel (Londono-Vallejo & Dubnau, 1993) (Londono-Vallejo & Dubnau, 

1994) (Dubnau & Cirigliano, 1972) (Lacks, Greenberg, & Neuberger, 1975). In B. 

subtilis there is no evidence that the complementary strand is degraded while the other 

strand is transported through the channel, as has been shown in S. pneumoniae 

(Mejean & Claverys, 1993). Also, an ortholog of the endonuclease that degrades the 

non-transforming strand in S. pneumoniae is lacking in B. subtilis. Finally, once in the 

cytoplasm, the single stranded DNA (ssDNA) is integrated into the genome by 

homologous recombination (Fernandez, Ayora, & Alonso, 2000). This final step 

requires the involvement of competence-induced proteins DprA, RecA and SSB. 

Indeed, DprA (DNA processing protein A) presumably binds the ssDNA to protect it 

from degradation by nucleases, and also recruits the recombinase RecA (Yadav et al., 

2013) (Yadav, Carrasco, Serrano, & Alonso, 2014) (Lenhart, Schroeder, Walsh, & 

Simmons, 2012). RecA polymerizes on ssDNA and promotes a homology search 

along chromosomal DNA (Yadav et al., 2013) (Yadav et al., 2014) to form a 

recombination heteroduplex intermediate with the host chromosome (Figure 4). 
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Figure 4: DNA uptake machinery in B. subtilis 
ComG pre-pilin subunits are first translated as integral membrane proteins with a cytoplasmic leader 
peptide. They are then processed by the pre-pilin peptidase ComC before being translocated out of the 
membrane where they oligomerize into a pilus. The energy necessary for the movement of the pilus 
through the conserved membrane protein ComGB is provided by the associated ATPase ComGA. 
When the double stranded DNA (dsDNA) makes contact with the pilus, it is believed that ComEA 
delivers the DNA to the membrane channel ComEC where one strand of DNA is likely degraded by an 
unknown nuclease. This single-stranded DNA (ssDNA) internalization is driven by the ATP-dependent 
translocase ComFA. Cytoplasmic ssDNA is bound by DprA, which recruits RecA to allow 
homologous recombination with the host DNA. 
 

 

K-state regulation in B. subtilis 

 Competence development in B. subtilis has become an important model for 

bistable gene expression where the expression of a key regulatory protein (ComK) is 

tightly regulated to prevent the entire population from becoming competent. In B. 

subtilis, competence development is the result of a dramatic increase in the cellular 

concentration of the transcriptional regulator, ComK (Hamoen, Van Werkhoven, 

Bijlsma, Dubnau, & Venema, 1998; van Sinderen et al., 1995; van Sinderen & 

Venema, 1994). ComK is referred to as the “master regulator of competence,” 

because it is both necessary and sufficient for the transcriptional activation of all of 
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the K-state genes. ComK is a 22kDa transcription factor that binds as a tetramer or 

dimer of dimers to A/T rich regions within its targets promoter genes that contain 

“ComK boxes” (van Sinderen et al., 1995) (Hamoen et al., 1998). But, in addition to 

competence regulation, ComK also activates the transcription of genes involved in 

many other different processes such as cell shape determination, cell division, 

transcriptional regulation, transport, protein synthesis and stress responses (Ogura et 

al., 2002) (Berka et al., 2002). As noted already, ComK regulates more than genes 

required for transformation, and the “K-state,” which can be broadly described as a 

global, persistence-like, bet-hedging, expression state (Berka et al., 2002) (Hahn et 

al., 2015). Thus, the K-state enhances fitness by a means distinct from 

transformability (Maamar & Dubnau, 2005). 

 

Regulation of comK 

 As mentioned previously, cells expressing ComK are fully dedicated to enter 

the K-state and stop DNA replication and cellular division. This represents a risk for 

the cell population. To avoid such a situation, the expression of ComK is tightly 

regulated during growth. During exponential growth, the transcription of comK is 

inhibited via the direct binding of the transcriptional repressors AbrB (Hamoen et al., 

2003), CodY (Serror & Sonenshein, 1996) and Rok (Hoa, Tortosa, Albano, & 

Dubnau, 2002) (Figure 4). In addition to this transcriptional repression, ComK 

stability is also regulated. Any ComK that is made will be degraded by a second 

regulation system, ClpC/ClpP mediated proteolysis (Turgay, Hahn, Burghoorn, & 

Dubnau, 1998). The adaptor protein MecA directly interacts with ComK and delivers 

it to the ATP-dependent chaperone ClpC, where it is unfolded and then completely 

degraded by ClpP (Figure 5) (Turgay, Hamoen, Venema, & Dubnau, 1997) (Turgay 
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et al., 1998). These negatively acting mechanisms are relieved as the cells approach 

stationary phase, which is when the small peptide ComS is produced. ComS binds 

directly to the ComK-binding site of MecA releasing ComK from degradation 

(Turgay et al., 1997) (Prepiak & Dubnau, 2007). The expression of comS is a 

consequence of quorum-sensing mechanisms taking place in late exponential phase. 

Once released from degradation, the basal level of ComK exceeds a threshold in some 

cells and comK expression will then be amplified by a positive feedback loop in 

which ComK acts on its own promoter (PcomK). The resulting burst of ComK 

synthesis triggers the expression of the transformation apparatus genes and the other 

K-state genes. (Figure 5).  

 

 

Figure 5: Overview of the competence regulation in B. subtilis 
A represention of the relevant effectors involved in the expression of competence for DNA uptake. On 
the left is the phosphorelay composed of five histidine kinases KinA-E, Spo0F (0F), Spo0B (0B) and 
Spo0A (0A) ultimately leading to the phosphorylation of the master regulator Spo0A. Depending on its 
concentration in the cells, Spo0A-P will activate and repress directly or indirectly the comK promoter. 
To the right, the synthesis and processing of the two qurorum sensing pheromones ComX and CSF are 
shown, which leads to the stabilization of ComK through the activation of the transcription of the srfA 
operon and the synthesis of ComS peptide. ComS, in turn, blocks ComK degradation by the MecA-
ClpC-ClpP complex. Once ComK is stabilized, it autoactivates its own transcription, and triggers the 
expression of the com operons, which encode the proteins to assemble the DNA uptake apparatus.  
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Regulation of comK expression by quorum sensing  

 In strain 168 derivatives the maximum of K-state expression is reached two 

hours after entering in the stationary phase because of the accumulation of quorum 

sensing pheromones. Quorum-sensing is a cell-cell communication mechanism that 

monitors cell density. Secreted molecules accumulate in the medium and activate a 

cognate receptor at high concentration, triggering an intracellular response 

(Lazazzera, 2000). In B. subtilis, two quorum-sensing peptides are known to regulate 

the expression of comS: ComX (Magnuson, Solomon et al. 1994) and competence 

stimulating factor, CSF (Solomon, Magnuson, Srivastava, & Grossman, 1995).  

 

ComX is a signaling peptide that regulates competence through the ComP-

ComA two-component regulatory system (Hahn & Dubnau, 1991) (Solomon et al., 

1995). Synthesized as a 55 amino acid precursor, pre-ComX is cleaved and modified 

by ComQ, to generate its mature form consisting in a 10 amino acid peptide with a 

hydrophobic isoprenoid modification on a tryptophan and a cyclization event 

(Weinrauch, Msadek, Kunst, & Dubnau, 1991) (Ansaldi, Marolt, Stebe, Mandic-

Mulec, & Dubnau, 2002). The mature ComX is secreted and when present in high 

enough concentrations, binds to ComP, a membrane histidine kinase. Binding 

activates the autophosphorylation of a conserved histidine residue in the cytoplasmic 

domain of ComP (Piazza, Tortosa, & Dubnau, 1999). The phosphoryl group is 

transferred to the N-terminal regulatory domain of its cognate response regulator 

ComA (Weinrauch et al., 1991) allowing its binding to DNA and the activation of the 

srfA operon that encodes ComS (Figure 5) (Nakano, Xia, & Zuber, 1991) (Nakano & 

Zuber, 1991) (Roggiani & Dubnau, 1993). 
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CSF (Competence and Sporulation Factor) is the second signaling peptide that 

regulates competence through quorum-sensing. CSF comes from the last five codons 

of the gene product of phrC (Solomon, Lazazzera, & Grossman, 1996) and is 

exported via an unknown mechanism after cleavage to produce a pentapeptide 

(ERGMT) without any post-translational modifications. Secreted CSF is internalized 

back into the cell through the oligopeptide permease Spo0K (Rudner, LeDeaux, 

Ireton, & Grossman, 1991) (Solomon et al., 1995) (Lazazzera, Solomon, & 

Grossman, 1997). This peptide then prevents the dephosphorylation of ComA-P by 

inhibiting the phosphatase RapC (Figure 5) (Solomon et al., 1995). 

 

Regulation of comK basal expression: “the uptick” 

 Another cause of temporal regulation comes from the tight regulation of comK 

basal expression. The basal expression of comK, measured in the absence of ComK 

autoregulation, increases gradually with growth, reaching a maximum as cells enter 

the stationary phase, and then declines (Leisner, Stingl, Radler, & Maier, 2007) 

(Mirouze, Desai, Raj, & Dubnau, 2012). This uptick in basal expression is the result 

of an increasing concentration of the phosphorylated form of the master regulator 

Spo0A. Spo0A-P levels are controlled by a multi-component phosphorelay (further 

described below). Spo0A-P affects the comK promoter both directly and indirectly. 

Spo0A-P represses the expression of abrB thus relieving the repression of AbrB on 

the comK promoter (Figure 6A) (Strauch, Webb, Spiegelman, & Hoch, 1990). 

Secondly, early on when Spo0A-P levels are low, it binds to three high affinity sites 

within the comK promoter and activates comK transcription by antagonizing the 

repressive effect of Rok (Mirouze et al., 2012). As Spo0A-P levels accumulate in the 

cells, it binds to two lower affinity sites within the comK promoter, shutting off the 
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transcription of comK. Thus, Spo0A-P establishes a temporal gate referred as to a 

“window of opportunity” for cells to enter the K-state, by mediating a transient uptick 

in comK expression (Figure 6A) (Mirouze et al., 2012). 

 

 

Figure 6: comK uptick regulation in B. subtilis 
A- Low levels of Spo0A-P bind to three low affinity sites (A1-A3) and activate basal comK 
transcription by antagonizing the repressor Rok. At higher concentrations, Spo0A-P binds to repressor 
sites (R1-2) that are downstream of the transcription start site, and block gene expression. B- 
Schematic representation of the window of opportunity for competence development in B. subtilis 
defined by the levels of Spo0A-P and their effects on the comK promoter. 
 

 

In a small percentage of cells the basal level of ComK is high enough to allow 

expression of the DNA uptake apparatus and other K-state genes, because the 

expression is above a threshold and ComK has been further stabilized through the 

quorum-sensing produced ComS. ComS is made in all cells in a population, whereas 

noise in the basal expression allows only some cells to exceed the threshold for 

positive autoregulation. Thus the temporal gate provided by the uptick results in a 

“window of opportunity” for K-state expression explaining both the timing of 

expression and its bistable nature (Mirouze et al., 2012) (Smits et al., 2005). The 
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accumulation of ComX contributes to the timing by ensuring that the K-state can only 

occur when the cell density is high  (Figure 6B). 

 

 

The escape from the K-state 

When the cell population is facing favorable environmental conditions the 

non-competent cells resume growth, whereas competent cells are delayed at least 90 

minutes before they start growing again. This is because growth is inhibited by 

ComGA, Maf and MreB, all of which are expressed in the K-state under ComK 

control. The late competence protein ComGA is known to inhibit cell elongation by 

preventing the formation of FtsZ rings but this regulation mechanism remains 

unknown. ComGA prevents the degradation of ppGpp by binding to RelA (Hahn et 

al., 2015) and the accumulation of this small molecule inhibits cell elongation. It is 

possible that this is the mechanism of inhibition of FtsZ rings because these structures 

do not form if cell-size remains small. The highly conserved protein Maf is also 

involved in the regulation of cell division in competent cells where Maf acts 

downstream of ComGA (Briley et al., 2011). comGA null mutant cells remain blocked 

in division in a later stage (Haijema, Hahn, Haynes, & Dubnau, 2001). When the cells 

become competent ComGA accumulates at the cell poles where it co-localizes with 

other proteins to form the DNA uptake machinery (Hahn, Maier, Haijema, Sheetz, & 

Dubnau, 2005). The actin-like protein MreB also plays a role in the delay in growth 

observed for competent cells (Mirouze, Ferret, Yao, Chastanet, & Carballido-Lopez, 

2015). During vegetative growth, MreB localizes along the sidewalls and promotes 

cell elongation whereas, in competent cells, MreB relocalizes at the cell poles with 

ComGA. After 120 minutes, MreB and ComGA co-localization is lost, allowing 

MreB to relocalize along the sidewalls to reinitiate elongation suggesting that 
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ComGA sequesters MreB in competent cells to prevent cell elongation and therefore 

escape from competence. Thus ComGA may work in two ways to delay the 

resumption of growth. This delay in growth for the competent cells may be a “check-

point” allowing the cells to repair the chromosome after recombination and before 

resuming growth. Also, it is likely that the delay has been selected because it confers 

antibiotic tolerance (persistence) (Nester & Stocker, 1963) (Haijema et al., 2001; 

Johnsen, Dubnau, & Levin, 2009) (Briley et al., 2011; Hahn et al., 2015) (Yuksel, 

Power, Ribbe, Volkmann, & Maier, 2016). 

 

 

Two component systems in bacteria 

General introduction 

Free-living organisms modulate gene expression in response to environmental 

changes. To do so, they require sensors to detect physical and/or chemical signals as 

well as regulators to change the levels of gene products. Many of these signaling 

systems have been described as two-component systems, since they depend upon the 

interaction of two regulatory proteins: a sensor kinase and a response regulator 

(Henner, Ferrari, Perego, & Hoch, 1988) (Giraldo, Andreu, & Diaz-Orejas, 1998; 

Jiang, Shao, Perego, & Hoch, 2000).  

Sensor kinases typically have two functional domains: an N-terminal stimulus 

detection domain (or input domain, which is often transmembrane) and a C-terminal 

autokinase domain. The autokinase domain contains a phosphotransferase subdomain 

(with a histidine that becomes phosphorylated) as well as an ATP-binding subdomain 

(Figure 7A). Because of the variety of signals, input domains are very heterogeneous 

in amino acid sequence and size compared to autokinase domains, which are of 
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similar length and show many conserved amino acids suggesting a common 

evolutionary origin (Mitrophanov & Groisman, 2008). When the input domain of the 

kinase is activated, it performs an autophosphorylation reaction, transferring a 

phosphoryl group from ATP to a specific histidine residue within the 

phosphotransferase sub-domain. The phosphoryl group is then transferred from the 

kinase to an aspartate residue on the response regulator’s receiver domain (Figure 

7A). This typically triggers a conformational change that activates the response 

regulator’s effector domain, which in turn produces the cellular response to the signal, 

usually by activating (or repressing) expression of target genes (Mitrophanov & 

Groisman, 2008) (Capra & Laub, 2012). While the majority of effector domains have 

DNA-binding activity to regulate the transcription of specific genes, some have an 

enzymatic domain or no C-terminal domain at all, i.e. in the chemotaxis system and in 

the Spo0A phosphorelay (Stock, Robinson, & Goudreau, 2000). 
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Figure 7: Two component systems in bacteria 
A- Two component system arecomposed of a histidine kinase and its cognate response regulator. After 
activation by signal binding to the input domain of the kinase, a histidine residue is phosphorylated 
within the autokinase domain. The phosphoryl group is then transferred from the histidine to an 
aspartate residue on the response regulator’s receiver domain, which triggers a conformational change 
that activates the response regulator’s effector domain. B- Phosphorelays are evolved two component 
systems. Shown here is the phosphorelay in B. subtilis leading to the phosphorylation of Spo0A (here 
0A). Input signals can be sensed by a pool of five kinases (KinA, B, C, D and E) leading to the 
phosphorylation cascade where Spo0F and Spo0B (0F and 0B respectively) are used as intermediates 
between these kinases and their cognate response regulator Spo0A.  
 

 

The number of two-component systems present in a bacterial genome is highly 

correlated with genome size as well as ecological niche; bacteria that occupy niches 

with frequent environmental fluctuations indeed have more histidine kinases and 

response regulators (Capra & Laub, 2012). Furthermore it has been shown that 

bacteria can acquire new two-component systems through gene duplication or by 

horizontal gene transfer (Alm, Huang, & Arkin, 2006). In most cases, response 

regulator genes are located in the same operon as their cognate histidine kinase. 
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The phosphorelay 

To respond to multiple signal inputs, bacteria may use more complex types of 

two-component-based systems called phosphorelays. In these systems, the response 

regulator is not directly phosphorylated by the sensor kinase but instead additional 

regulatory and phosphotransferase domains may be involved. For example, the sensor 

kinase may transfer the phosphoryl group to a single domain response regulator that 

will subsequently transfer it to a second phosphotransferase domain, which then 

serves as the primary phosphoryl donor to the response regulator. In B. subtilis,the 

“sporulation phosphorelay” is one such example, where the sensor kinases KinA-E 

transfer a phosphoryl group to the transcription factor Spo0A through Spo0F and 

Spo0B (Burbulys, Trach, & Hoch, 1991) (Figure 7B). In this case, the different 

domains are on different proteins, but for other phosphorelays, the sensor kinase and 

the additional domains can form a multi-domain protein, as in the BvgS sensor kinase 

of Bordetella pertussis (Uhl & Miller, 1996). 

 

 

The DegS-DegU Two Component System in B. subtilis 

The DegS-DegU two-component system in B. subtilis is involved in the 

control of many cellular processes, including exoprotease production and the K-state 

(Dahl, Msadek, Kunst, & Rapoport, 1992) (Msadek, Kunst, Klier, & Rapoport, 1991). 

DegS is a 44 kDa protein with a histidine kinase domain, but without a 

transmembrane segment, suggesting that DegS is either cytosolic or associated to the 

membrane through another protein. The signal that activates DegS has not yet been 

identified, but recently (Hsueh et al., 2011) (Cairns, Marlow, Bissett, Ostrowski, & 

Stanley-Wall, 2013) it has been proposed that flagellar rotation or basal body 

assembly may serve as signals that inhibit DegS phosphorylation. The degU and degS 
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genes constitute an operon that contains three promoters, which will be discussed in 

more detail later. (Figure 8A). 

 

  

Figure 8: The DegS-DegU two component system in B.subtilis. 
A- Schematic representation of the regulation of the response regulator DegU by its cognate kinase 
DegS. DegQ facilitates the phosphotransfer from DegS to DegU by an unknown mechanism. The cell 
regulates the level of DegU-P by interrupting the positive feedback loop of DegU-P on the P3 promoter 
of degU. DegU DNA binding is also regulated by the phosphatase RapG which is inhibited when PhrG 
accumulates in the cell. B- Representation of the different effects of DegU-P depending on its 
concentration in the cell. Unphosphorylated DegU activates competence, while a low and intermediate 
level of DegU-P triggers swarming and biofilm formation. Instead, a high concentration of DegU-P in 
the cell activates the synthesis of exoproteases and inhibits competence, swarming motility and biofilm 
formation. 
 

 

DegU, a 25 kDa protein that belongs to the LuxR-FixJ family, has a helix-

turn-helix DNA domain at its C-terminus that recognizes AT-rich octamers. DegU is 

a response regulator activated by phosphorylation of a conserved aspartate residue 

within N-terminal domain by its cognate kinase DegS (Ogura, Shimane, Asai, 

Ogasawara, & Tanaka, 2003). Importantly, the small protein DegQ stimulates 
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phosphate transfer from phosphorylated DegS (DegS~P) to DegU (Figure 8A) 

(Kobayashi, 2007b). 

 DegU is also regulated direct interaction by RapG, which inhibits DegU’s 

DNA binding. This inhibition is relieved by the accumulation of the small peptide 

PhrG, that prevents RapG binding (Ogura et al., 2003) (Figure 8A). When 

unphosphorylated, DegU is known to regulate the comK promoter by stimulating 

ComK binding to its own promoter when concentrations are low (Hamoen, Van 

Werkhoven, Venema, & Dubnau, 2000). No other targets of unphosphorylated DegU 

are known, except possibly the fla-che promoter (Tsukahara & Ogura, 2008) (Mordini 

et al., 2013), whereas phosphorylated DegU is known to trigger the expression of 

many genes, including aprE, nprE (degradation of proteins), sacB, sacX (sucrose 

metabolism) and degQ, and repress that of wapA (WapA carries a C-terminal toxin 

domain which is deployed to inhibit the growth of neighboring cells) (Msadek et al., 

1991) (Crutz & Steinmetz, 1992) (Dartois, Debarbouille, Kunst, & Rapoport, 1998). 

For example, when levels of DegU-P are low, it activates the fla-che operon, which is 

critical for motility (Hamoen et al., 2000) (Tsukahara & Ogura, 2008). Low levels of 

DegU~P also promotes complex colony architecture during biofilm formation, but 

higher DegU~P concentrations inhibits it (Verhamme, Kiley, & Stanley-Wall, 2007). 

When levels of DegU-P are high, degU transcription is activated by an autoregulatory 

loop (Kobayashi, 2007b) (Ogura & Tsukahara, 2010), but the AAA+ (ATPase 

associated with diverse cellular activities) protease ClpCP may specifically degrade 

the DegU-P, leading to modulation of DegU autoactivation (Ogura & Tsukahara, 

2010). The hyperphosphorylation of DegU results in overproduction of degradative 

enzymes and prevents K-state development (Hahn, Luttinger, & Dubnau, 1996). The 

genetic context of the DegS-DegU two-component system and its role in the 



 44 

regulation of competence development in B. subtilis will be discussed later in this 

manuscript  (Figure 8B).
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Biofilms 

 

Introduction to biofilms 

Biofilm formation is a universal trait among bacteria, and biofilms can be 

found on many diverse natural or artificial surfaces (Hall-Stoodley, Costerton, & 

Stoodley, 2004) (Stewart & Franklin, 2008). Since biofilms are problematic in many 

man-made settings, they have been studied intensively during the past decade. 

Biofilms confer resistance to antimicrobial and antibacterial agents (Mah & O'Toole, 

2001) (Stewart, 2002) (Davies, 2003). There is also an industrial interest in 

characterizing biofilms to possibly exploit them for bioremediation, which is a waste-

management technique that involves the use of organisms to remove or neutralize 

pollutants from a contaminated site, or as a potential source of energy in the form of 

microbial fuel cells (Singh, Paul, & Jain, 2006) (Logan, 2009). Natural biofilms likely 

contain mixtures of different microbial species, but much work has focused on single 

species biofilms.  

 

 

Description of B. subtilis biofilms 

Biofilms are communities of surface-associated microorganisms encased in a 

self-produced extracellular matrix. The B. subtilis matrix is primarily composed of 

exopolysaccharide (EPS) and proteins. The major EPS component of all B. subtilis 

biofilms is synthesized by the products of the epsABCDEFGHIJKLMNO operon 

(Branda, Vik, Friedman, & Kolter, 2005) (Kearns, Chu, Branda, Kolter, & Losick, 

2005). Another extracellular polymer, !-poly-DL-glutamic acid (PGA), is produced in 

large amounts by some strains and can enhance formation of submerged biofilms, but 
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PGA is not required for wrinkled-colony morphology or for pellicle formation 

(Branda, Chu, Kearns, Losick, & Kolter, 2006). In addition to EPS, many other 

proteins are found in biofilms, and two important structural proteins have been so far 

described: the translocation-dependant antimicrobial spore component (TasA) and the 

biofilm surface layer protein BslA (Kobayashi & Iwano, 2012). So far, TasA has been 

described to form long fibers attached to the cell through TapA (TasA anchoring and 

assembly protein) but this theory has recently been challenged (not yet published). 

These two proteins are encoded by the tapA-sipW-tasA, sipW encoding for the type I 

signal peptidase W which processes both TasA and TapA (Stover & Driks, 1999). 

B. subtilis biofilms have been studied as colonies at an air-agar interface, 

floating biofilms that form at the air-liquid interface (also termed pellicles) and, in the 

case of certain domesticated strains, submerged, surface-adhered biofilms that form at 

the liquid-solid interface. The capacity to form robust biofilms has largely been lost in 

the descendants of the laboratory strain 168, and is best studied on natural isolates, 

such as 3610, the probable parent of 168 (McLoon, Guttenplan, Kearns, Kolter, & 

Losick, 2011). In the laboratory, matrix production and biofilm formation are 

promoted when cells are grown in a defined media (MsGG). 

 

 

Biofilm life cycle 

It has been shown that biofilms contain different cell types, in that cells 

producing matrix, expressing motility or sporulating are all found in a same biofilm in 

B. subtilis (Vlamakis et al., 2008). Using time-lapse microscopy, it was showed that at 

the early stage of biofilm formation on a solid surface, most cells produce flagella and 

were motile (Vlamakis et al., 2008). Later, the number of motility-expressing cells 

decreases, and the few remaining motile cells are located at the edge and the base of 
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the biofilm once it is formed. This is in part because EpsE, not only participates in 

matrix formation but also acts as a clutch to repress flagellar rotation by interacting 

with the flagella motor switch protein, FliG (Blair, Turner, Winkelman, Berg, & 

Kearns, 2008) (Guttenplan, Blair, & Kearns, 2010). Matrix production is then 

activated and requires Spo0A-P. While the number of matrix-producing cells declines 

after 24 hours, sporulating cells have been shown to arise from the matrix producers 

and to locate preferentially in aerial projections from the biofilm surface, called 

“fruiting bodies” (Figure 9) (Branda et al., 2001).  

  

 

Figure 9: The life cycle of a B. subtilis biofilm. The formation of a biofilm occurs in several stages, 
comprising the development, maturation and disassembly of the bacterial community. At the initiation 
of biofilm formation, motile cells with flagella differentiate into non-motile, matrix-producing cells 
that form long chains which are encased in extracellular matrix. In mature biofilms, matrix-producing 
cells may sporulate.  As time progresses, the extracellular matrix will break down, which allows the 
cells to disperse in the environment. The exact signals and mechanism for biofilm dispersal remain 
unknown. It is important to note that although functionally distinct cell types exist within the biofilm, 
these cells are genetically identical, and differentiation into a specific cell type is not terminal and can 
be altered when environmental conditions change. 
 
 

It is important to note that although functionally distinct cell types exist within 

the biofilm, these cells are genetically identical, and differentiation into a specific cell 

type is not terminal and can be altered when environmental conditions change. Given 

all of the components that are necessary to assemble the matrix, B. subtilis has 

evolved a complex regulatory network to coordinate expression of matrix genes in 
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response to the shifting environmental conditions that it encounters in its natural 

environment. 

 

 

The Spo0A pathway 

 As its name suggests, Spo0A was first discovered as a gene required for the 

sporulation pathway. Further studies revealed that Spo0A is an essential 

transcriptional factor for all the adaptation pathways in B. subtilis by controlling the 

expression of more than a hundred promoters, which differ in their Spo0A-P binding 

affinities. Spo0A-P induces biofilm formation when present at intermediate levels, but 

as the biofilm matures and the concentration of Spo0A-P increases in a subpopulation 

of cells, sporulation will be triggered (Fujita, Gonzalez-Pastor, & Losick, 2005). As 

previously described, Spo0A-P also regulates the K-state.  

 Spo0A-P promotes biofilm formation by inhibiting the action of two major 

repressors of the epsA-O and the tapA operons, SinR and AbrB (Figure 10). The 

derepression of SinR via Spo0A-P is indirect,. Spo0A-P directly increases the 

transcription of sinI. SinI is an antagonist of the matrix gene repressor SinR, via 

protein-protein interactions that inhibit SinR DNA binding. SinI is a SinR paralog, 

that lacks the N-terminal DNA binding domain but contains a C-terminal 

oligomerization domain similar to that of SinR. Furthermore, SinR activity is 

regulated by SlrR. SlrR is another SinR paralog, but contains both domains found in 

SinR. Its transcription is repressed by SinR (Chu et al., 2008). When slrR expression 

is derepressed by SinR inactivation through SinI, induced SlrR binds to SinR and 

reprograms SinR to repress expression of motility-promoting genes (see below) 

(Vlamakis et al., 2008) (Chai et al., 2008). The second repressor of matrix production 

AbrB is directly repressed by very low concentrations of Spo0A-P. In addition to its 
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inhibitory effect on the epsA-O and the tapA operons, AbrB has been shown to repress 

the expression of the regulatory protein SlrR and the matrix protein BslA (Chu et al., 

2008) (Chai, Kolter, & Losick, 2009). The presence of the two matrix production 

repressors SinR and AbrB with overlapping targets indicates that the regulation of 

biofilm formation is tightly regulated in order to coordinate expression of the matrix 

genes.  

 

 

The SinR-SlrR regulation switch 

 The SinR-SlrR complex serves as a switch between biofilm formation and 

motility, which is why, as previously mentioned, both SinR and AbrB control slrR 

gene expression. At low concentrations of SlrR, lytABC and lytF (genes encoding for 

autolysins, which are proteins involved in the separation cell chains), and hag (the 

gene encoding flagellin) expression are not repressed (Figure 10). But when the level 

of SlrR is high enough, the activity of SinR decreases in the cell, allowing the 

expression of matrix coding genes and the development of biofilms. Additionally, the 

SinR-SlrR complex represses the expression of hag, lytABC and lytF, as cell chaining 

is essential for the onset of biofilm formation (Chai, Kolter, & Losick, 2010) (Chai, 

Norman, Kolter, & Losick, 2010). The switch between the low level to the high level 

of SlrR is dependent on SinI-mediated inhibition of SinR, which is directly controlled 

by Spo0A-P (Figure 10). The SinR-SlrR switch remarkably leads to epigenetically 

heritable changes (Vlamakis, Chai, Beauregard, Losick, & Kolter, 2013).  
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Figure 10: The SinI-SinR-SlrR switch between motile and sessile life  
A- When the concentration of Spo0A-P is low, motility genes and autolysin are expressed while 
biofilm formation is inhibited as the tasA-sipW-tapA and epsA-O operons are repressed. Without SinI, 
the repression of SinR low, and therefore SlrR is not present in highe enough concentrations to inhibit 
SinR. So, SinR represses biofilm formation, and cells are motile B- The concentration of Spo0A-P 
increases to some threshold level, and the SinR/SinR-SlrR ratio is reversed, by lowering the amount of 
free SinR in the cells. The repression of matrix production is relieved, while the synthesis of autolysin 
and motility is inhibited allowing the development of biofilm formation. 
 

 

Biofilms and the DegS-DegU pathway 

As previously described, DegU is a major regulator that is involved in the 

regulation of many cellular adaptations such as the K-state, motility and secretion of 

degradative enzymes. Furthermore, a degU mutant cannot form normal biofilms 

because of the loss of the surface hydrophobicity protein BslA (Kobayashi & Iwano, 

2012) (Kobayashi, 2007a) (Verhamme, Murray, & Stanley-Wall, 2009). BslA is a 

small extracellular protein that, with TasA and exopolysaccharide, facilitates the 

assembly of the matrix within a biofilm (Ostrowski, Mehert, Prescott, Kiley, & 

Stanley-Wall, 2011).  BslA forms a hydrophobic layer on the surface of the B. subtilis 
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biofilm (Kobayashi & Iwano, 2012) (Hobley et al., 2013). Transcription of bslA has 

been shown to be indirectly activated by the transcription factor Rok (Kovacs & 

Kuipers, 2011), is directly inhibited by AbrB (Verhamme et al., 2009) and by an 

intermediate level of DegU-P during biofilm formation. Additionaly, a degU null 

mutant cannot synthesize the PGA polymer encoded by the pgs operon (Stanley & 

Lazazzera, 2005), which in some bacilli is a prominent feature of biofilms. DegU-P, 

in addition to its activator function at an intermediate level, can also inhibit biofilm 

formation when its concentration is high (above some threshold) (Verhamme et al., 

2007) (Figure 8B). 

 

 

Quorum Sensing in biofilms 

One of the first molecules identified as an inducer of matrix gene expression 

was surfactin. In addition to its surfactant and anti-microbial activities, surfactin 

triggers the phosphorylation of Spo0A through the membrane-localized kinase KinC. 

Here, instead of responding to direct binding of surfactin, KinC is activated by the 

function of the molecule. Surfactin is a lipopeptide that inserts into the membrane and 

results in potassium leakage, which activates KinC by an unknown mechanism and 

leads to the expression of matrix genes (Lopez et al., 2010). Surprisingly, surfactin is 

only produced by a sub-population of cells, and the cells that produce surfactin do not 

respond to the molecule. Since the surfactin producers do not respond to the signal 

they make and the signal is unidirectional, the surfactin production in B. subtilis can 

be described as a paracrine signaling system (Lopez, Vlamakis, Losick, & Kolter, 

2009). It contrasts with previously described quorum-sensing systems where every 

cell in a population is thought to produce and respond to the signaling molecule. 
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Making a biofilm, a hallmark of undomesticated B. subtilis strains 

 As many laboratories work with the domesticated strain 168 or its derivatives, 

the ability of B. subtilis to form robust biofilms has only been studied and 

characterized at the beginning of this century (Branda et al., 2006). This work has 

been carried out in the “wild” strain 3610, a strain believed to be the closest relative 

of the laboratory strain 168 as these two strains share a great similarity in genome 

sequence. A few mutations that are responsible for the phenotypic differences 

between these two strains have been identified. Interestingly, single point mutations in 

four genes (sfp, epsC, swrA and degQ) and the lack of the rapP gene are responsible 

for the defect in matrix production in the domesticated strain. The sfp gene encodes a 

broad-substrate-specificity phosphopantetheinyl transferase, which is involved in the 

production of surfactin and a point mutation in strain 168 impairs its function. The 

second point mutation is in epsC, which results in a decrease of exopolysaccharide 

synthesis. The third mutation contributing to the impairment of biofilm formation is 

located within swrA, which is known to be essential for swarming motility and poly-

!-polyglutamic acid synthesis (Stanley & Lazazzera, 2005). The last point mutation is 

in the promoter sequence of degQ, a protein involved in the regulation of the DegS-

DegU pathway that is important for the regulation of biofilm formation (Verhamme et 

al., 2009) (Marlow et al., 2014). As noted above, DegQ facilitates the transfer of a 

phosphoryl group from DegS-P to DegU. The regulatory gene rapP, encoded on the 

plasmid pLS32 is no longer present in strain 168. RapP has also recently been shown 

to be involved in the regulation of biofilm formation (Omer Bendori, Pollak, Hizi, & 

Eldar, 2015) (Parashar, Konkol, Kearns, & Neiditch, 2013) is unclear. 
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It is well known that all the developmental adaptations (competence, 

sporulation, biofilm formation) in B. subtilis share regulatory proteins (Spo0A, 

DegS/DegU, SinI/SinR...). These adaptations have so far been studied in optimal 

media with selected B. subtilis strains such as the laboratory strain 168 for the study 

of competence, and the undomesticated 3610 strain for the study of biofilm formation. 

In a given environment, while all the cells have the same genome, some cells will 

induce one adaptation while others will develop another. Because biofilms contain 

sporulating and non-sporulating cells, and presumably competent cells as well, they 

appear to be the perfect context in which to study the relationships between all the 

environment adaptations in B. subtilis. It is now clear that strain 168 has been selected 

over decades for its high expression of competence for transformation, loosing at the 

same time its ability to form biofilms. To study competence development in a biofilm 

context it is therefore important to first understand competence regulation in 

undomesticated isolates of B. subtilis. 

In what follows I will refer to the state of competence for transformation as 

the K-state because it is induced by the transcription factor ComK. The use of this 

term serves as a reminder that this state of gene expression involves more than just 

transformation and is a state of dormancy distinct from spores that confers tolerance 

to antibiotics.  

I began this scientific exploration by observing that most of the 

undomesticated, biofilm forming strains of Bacillus subtilis are poorly transformable: 

(i) the number of cells entering into the K-state is lower in undomesticated strains 

compared to the laboratory strain 168; (ii) the ensemble rate of transcription of 

ComK, the master regulator of competence, is significantly lower in wild isolates 

(PS216 and 3610) than in the reference strain 168 while the uptick (explained below) 
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is the same in these three backgrounds. This difference suggests that an important 

aspect of regulation has been lost by domestication and that our understanding of K-

state control is therefore incomplete. This work is devoted to correcting this 

deficiency. 

 

The main results of this study are presented here in three different chapters. 

The first chapter introduces the publication of the work we have done on the 

characterization of a genomic sequence of a new strain of B. subtilis: the PS216 strain 

is indeed another undomesticated strain of B. subtilis that has been isolated in 

Slovenian soil that form robust and structured biofilms.  

The second chapter shows the work done on the characterization of the basic 

network for competence regulation in the domesticated strain 168 and two 

undomesticated strains of B. subtilis: the ancestral strain 3610 and the neo-

characterized PS216 strain. By comparing the genome sequences of these three 

different strains and studying the effect of competence gene knock outs on the 

expression of transformability and the K-state, we concluded that the core circuitry 

for competence development is identical in domesticated and undomesticated strains. 

We also confirmed that, in comparison to PS216 and 3610, the laboratory strain 168 

carries in its genome a previously identified point mutation in the promoter of degQ 

that will be of great interest in this study. 

 In the third chapter we show that this point mutation is involved in the 

increased level of ComK in the undomesticated strain 168 and that its effect is 

mediated by regulation of the phosphorylation state of DegU-P, a response regulator 

known to be involved in the control of motility and biofilm formation. We discovered 

that because of this point mutation in the promoter region of degQ, ComK is 
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stabilized in the laboratory strain compared to the undomesticated strain 3610. We 

finally showed that, after screening other candidates, rapP, a gene encoded by a 

plasmid in strain 3610 is also involved in the regulation of competence development 

in this isolate, as it turns down the expression of the srfA operon and therefore limits 

the percentage of cells entering into the K-state.  
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CHAPTER I 

Genome sequence of the 

Bacillus subtilis biofilm-

forming transformable 

strain PS216 
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ABSTRACT 

PS216, a strain of Bacillus subtilis isolated in Slovenia has been sequenced.  

PS216 is transformable and forms robust biofilms, making it useful for the study of 

competence regulation in an undomesticated bacterium. 
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RESULTS 

Bacillus subtilis is the most studied Gram-positive model organism 

(Sonenshein, 2002 #4258). It has become apparent that the standard reference strain 

168 has been modified by decades of inadvertent selection in the laboratory, thereby 

acquiring a high frequency of transformability and losing the ability to form biofilms 

(McLoon, 2011 #4080). Recently, “undomesticated” strains, notably NCIB3610, have 

been investigated intensively because of their ability to form robust biofilms 

(McLoon,  #4080). However, NCIB3610 is poorly transformable, limiting its 

usefulness for the study of genetic competence and compromising its ability to be 

manipulated genetically. B. subtilis PS216, which was isolated in Slovenia from 

sandy soil, forms robust biofilms and is more transformable than NCIB3610. Based 

on phylogenetic analysis of three concatenated protein coding genes (dnaJ, gyrA and 

rpoB), PS216 is most closely related to B. subtilis ssp. subtilis and belongs to a clade 

demarcated as the putative ecotype 10 (Stefanic,  #4727). Strain PS216 resides in the 

same quorum-sensing pherotype group as 168 (Tortosa, 2001 #1706;Stefanic, 2009 

#4201).  

 

MATERIALS AND METHODS 

The genome sequence of B. subtilis PS216 was generated as described in 

(Koren,  #4728). Briefly, 274 Mb of PacBio long-read data was error-corrected with 

150 bp MiSeq data using the pacBioToCA pipeline, resulting in approximately 71 Mb 

of corrected long reads that were then assembled by the Celera assembler. This 

assembly contained 146 contigs, 90% of the assembly in 26 contigs larger than 42Kb.  
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The initial assembly yielded a total of 112 single nucleotide changes compared 

to the reference strain 168 (NC_000964) and 140 SNPs compared to strain NCIB3610 

(NZ_CM000488). SNPs were identified in SAMtools (Li, 2009 #4726) using short 

read alignments generated by BWA (Li, 2009 #4725). Sequencing of PCR products 

confirmed four of the nucleotide changes in genes of interest (oppD, comP, degQ, 

sigH). Of the 112 nucleotides that differed between strains 168 and PS216, 27 were 

identical in sequence between PS216 and NCIB3610. These include the confirmed 

nucleotide changes in degQ, oppD and sigH.  

Notably, no large plasmids were detected in PS216 such as the one present in 

NCIB3610 (McLoon, 2011 #4080). We used NUCmer  (Kurtz, 2004 #4721) and 

ABACAS (Assefa, 2009 #4723) to order and orient the contigs with respect to the 

reference, an analysis which revealed that both the 20,521 bp ICEBs1 element (Lee,  

#4701) and the 134,385 bp SPß temperate bacteriophage present in 168 (Lazarevic, 

1999 #4719) were missing from PS216. The absence of the latter two elements was 

verified by sequencing a PCR product that crossed the two insertion sites.  

We anticipate that this sequence information for PS216 will facilitate 

comparative studies of development and physiology in Bacillus. 

 

NUCLEOTIDE SEQUENCE ACQUISITION NUMBER.  

This Whole Genome Shotgun project has been deposited at 

DDBJ/EMBL/GenBank under the accession AQGR00000000. The version described 

in this paper is the first version, AQGR01000000.  
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CHAPTER II 

Domesticated and 

undomesticated strains of 

Bacillus subtilis share the 

same basic network for 

competence development 
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The firefly luciferase: a powerful tool for gene expression 

studies 

To further investigate if the core circuitry for competence regulation was the 

same in the undomesticated backgrounds compared to the reference strain 168, we 

looked at the effects on comK or comGA expression of knock outs (KO) of the main 

regulators of competence determined in the reference strain. To follow the 

transcriptional activity of these two genes in B. subtilis, we chose the luciferase gene 

as a reporter. In the luciferase reaction, light is emitted when the luciferase acts on the 

luciferin substrate. Photon emission can be detected by a properly equipped light 

sensitive apparatus such as a plate reader. Possibly because the luciferase half life is 

low, this is a powerful tool to study transcription rates in vivo  compared to reporters 

like ß-galactosidase that measure he accumulation of gene product (Figure 1A) 

(Gould & Subramani, 1988).  

 

 
Figure 1: The luciferase as a reporter gene to measure genes rate of transcription 
(A) Enzymatic reaction. 
(B) Genetic organization of the gene reporter. 
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To study the transcriptional activity of comK (and comGA), the firefly 

luciferase coding sequence has been cloned downstream of the comK and comGA 

promoters and inserted in the chromosome by homologous recombination (Figure 

1B). This was done in two natural isolates, PS216 and NCIB3610. 

 

Effect of different competence regulators KO on K-state 

development 

Because of the essential role of Spo0A in the regulation of competence 

development via the regulation of the uptick (Mirouze et al., 2012), we first examined 

the effect of a spo0A KO on the expression of comK and comGA. Figures 2A and 2B 

show that the rate of transcription of both comK and comGA is greatly reduced in the 

spo0A null mutants compared to the wild type, which is consistent with the known 

role of Spo0A in the domesticated strain.  
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Figure 2: Effect of !spo0A on expression of comK (A) and comGA (B) in IS75, 3610 and PS216. 
 

On the other hand, in all three backgrounds, a rok KO dramatically increases 

the transcriptions of comK and comGA, as expected for this repressor of ComK 

(Figures 3A and 3B).  
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Figure 3: Effect of !rok on expression of comK (A) and comGA (B) in IS75, 3610 and PS216. 

 

We also investigated the effect of early competence gene KOs on the 

expression of comK and comGA. For example a comS KO has a severe effect on the 

expression of comGA in the three backgrounds; in the comS null mutants, ComS 

cannot prevent ComK degradation via the MecA/ClpC/ClpP system (Figure 4B). We 

observed the same phenomenon when looking at the expression of comK: the rate of 

transcription of comK is lowered in the comS mutant compared to the wild type in the 

three strains because ComK is not available to activate its own promoter (Figure 4A). 

However we can distinguish some residual expression that coincides with the uptick: 

the comS KO disrupts the autoregulatory loop of ComK on PcomK as ComK is 

degraded but doesn’t have any effect on the uptick regulation of PcomK.  

 

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

*!!"

+!!"

#!!!"

!" $" &" (" *" #!"
!"

'!"

#!!"

#'!"

$!!"

$'!"

%!!"

%'!"

!" $" &" (" *" #!"
!"

'!"

#!!"

#'!"

$!!"

$'!"

!" $" &" (" *" #!"

!"

'"

#!"

#'"

$!"

$'"

%!"

%'"

&!"

!" $" &" (" *" #!"
!"

'"

#!"

#'"

$!"

$'"

%!"

%'"

&!"

!" $" &" (" *" #!"
!"

'"

#!"

#'"

$!"

$'"

%!"

%'"

&!"

!" $" &" (" *" #!"

,-
.
/0

1"
2#
!&
"

3456"

73"
!!"#"

!"#$%&!"#$''%&!%
(%

,-
.
/0

1"
2#
!&
"

3456"

)*+,%&!"#$''%&!%

,-
.
/0

1"
2#
!&
"

3456"

&"-+*%&!"#$''%&!%
,-
.
/0

1"
2#
!&
"

3456"

73"
!!"#"

!"#$%&!"#'(''%&!%

.%
,-
.
/0

1"
2#
!&
"

3456"

)*+,%&!"#'(''%&!%

,-
.
/0

1"
2#
!&
"

3456"

&"-+*%&!"#'(''%&!%



 68 

 

Figure 4: Effect of !comS on expression of comK (A) and comGA (B) in IS75, 3610 and PS216. 

 

Contrary to the undomesticated strains, the laboratory strain 168 does not 

produce surfactin because of a mutation in sfp (a gene involved in surfactin 

production). To determine if the production of surfactin explains the lower 

transformability of the wild isolates compared to strain 168 we monitored the 

expression of comK and comGA in a surfactin null mutant. Eliminating the expression 

of surfactin has no effect on the expression of either comK or comGA in the 

undomesticated strains: the rate of transcription of our two reporter genes is 

comparable in the mutants and the wild types in 3610 and PS216 (Figure 5A and 5B).  
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Figure 4: Effect of !srfA on expression of comK (A) and comGA (B) in IS75, 3610 and PS216. 

 

All together, these results suggest that the basic circuitry for competence 

development is the same in the laboratory strain 168 and the two undomesticated 

strains tested, 3610 and PS216. 
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Strains Table 

Strain 
Number 

Backgrounda Descriptionb 

IS75 168 derivative his leu met 
BD6655 B. subtilis (IS75) PcomK::luc (Cm), "spo0A (Kan) 
BD6656 B. subtilis (3610) PcomK::luc (Cm), "spo0A (Kan) 
BD6657 B. subtilis (PS216) PcomK::luc (Cm), "spo0A (Kan) 
BD6667 B. subtilis (IS75) PcomGA::luc (Cm), "spo0A (Kan) 
BD6668 B. subtilis (3610) PcomGA::luc (Cm), "spo0A (Kan) 
BD6669 B. subtilis (PS216) PcomGA::luc (Cm), "spo0A (Kan) 
BD6460 B. subtilis (IS75) PcomK::luc (Cm), "rok (Kan) 
BD6464 B. subtilis (3610) PcomK::luc (Cm), "rok (Kan) 
BD6462 B. subtilis (PS216) PcomK::luc (Cm), "rok (Kan) 
BD6658 B. subtilis (IS75) PcomGA::luc (Cm), "rok (Kan) 
BD6659 B. subtilis (3610) PcomGA::luc (Cm), "rok (Kan) 
BD6660 B. subtilis (PS216) PcomGA::luc (Cm), "rok (Kan) 
BD6604 B. subtilis (IS75) PcomK::luc (Cm), "comS (Tet) 
BD6605 B. subtilis (3610) PcomK::luc (Cm), "comS (Tet) 
BD6606 B. subtilis (PS216) PcomK::luc (Cm), "comS (Tet) 
BD6607 B. subtilis (IS75) PcomGA::luc (Cm), "comS (Tet) 
BD6608 B. subtilis (3610) PcomGA::luc (Cm), "comS (Tet) 
BD6609 B. subtilis (PS216) PcomGA::luc (Cm), "comS (Tet) 
BD6652 B. subtilis (IS75) PcomK::luc (Cm), "srfA (Kan) 
BD6653 B. subtilis (3610) PcomK::luc (Cm), "srfA (Kan) 
BD6654 B. subtilis (PS216) PcomK::luc (Cm), "srfA (Kan) 
BD6664 B. subtilis (IS75) PcomGA::luc (Cm), "srfA (Kan) 
BD6665 B. subtilis (3610) PcomGA::luc (Cm), "srfA (Kan) 

BD6666 B. subtilis (PS216) PcomGA::luc (Cm), "srfA (Kan) 
aThe IS75 derivatives are all his leu met auxotrophs.  
bAll of the fusion constructs are inserted by single crossover at the native loci.  
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CHAPTER III 

A DegU-P and DegQ-

dependent regulatory 

pathway for the K-state in 

Bacillus subtilis 
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ABSTRACT 

The K-state in the model bacterium Bacillus subtilis is associated with 

transformability (competence) as well as with growth arrest and tolerance for 

antibiotics. Entry into the K-state is determined by the stochastic activation of the 

transcription factor ComK and occurs in about ∼15% of the population in 

domesticated strains. Although the upstream mechanisms that regulate the K-state 

have been intensively studied and are well understood, it has remained unexplained 

why undomesticated isolates of B. subtilis are poorly transformable compared to their 

domesticated counterparts. We show here that this is because fewer cells enter the K-

state, suggesting that a regulatory pathway limiting entry to the K-state is missing in 

domesticated strains. We find that loss of this limitation is largely due to an 

inactivating point mutation in the promoter of degQ. The resulting low level of DegQ 

decreases the concentration of phosphorylated DegU, which leads to the de-repression 
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of the srfA operon and ultimately to the stabilization of ComK. As a result, more cells 

reach the threshold concentration of ComK needed to activate the auto-regulatory 

loop at the comK promoter. In addition, we demonstrate that the activation of srfA 

transcription in undomesticated strains is transient, turning off abruptly as cells enter 

the stationary phase. Thus, the K-state and transformability are more transient and 

less frequently expressed in the undomesticated strains. This limitation is more 

extreme than appreciated from studies of domesticated strains. Selection has 

apparently limited both the frequency and the duration of the bistably expressed K-

state in wild strains, likely because of the high cost of growth arrest associated with 

the K-state. Future modeling of K-state regulation and of the fitness advantages and 

costs of the K-state must take these features into account. 

 

INTRODUCTION 

The transcription factor ComK (van Sinderen et al., 1995) directly activates 

more than 100 genes (Berka et al., 2002; Hamoen et al., 2002; Ogura et al., 2002). 

While about 20 of these mediate the uptake, processing and integration of exogenous 

DNA resulting in transformation (Burton and Dubnau, 2010), the roles of the 

remaining ∼80 genes are poorly understood. Because these genes are not needed for 

transformation (J. Hahn, unpublished) the expression of ComK must result in 

phenotypes beyond competence that presumably enhance fitness. In fact, ComK also 

induces a period of growth arrest during which the cells that express ComK exhibit 

antibiotic tolerance (Nester and Stocker, 1963; Haijema et al., 2001; Johnsen et al., 

2009; Briley et al., 2011; Hahn et al., 2015; Yuksel et al., 2016). This persistent state 

has been called the K-state, to emphasize that ComK regulates more than competence 

for transformation (Berka et al., 2002). 
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A long recognized and remarkable feature of the K-state is that it is expressed 

in a minor fraction of a clonal population, in a more or less all or nothing fashion 

(Nester and Stocker, 1963; Singh and Pitale, 1967; Hadden and Nester, 1968; 

Haseltine- Cahn and Fox, 1968; Maamar and Dubnau, 2005; Smits et al., 2005). Entry 

into the K-state is determined stochastically and studies in domesticated strains 

derived from the indole-requiring auxotrophic strain 168 (Spizizen, 1958) have 

ascribed this stochastic determination to noise in the basal expression of the comK 

promoter (Maamar et al., 2007; Süel et al., 2007). When the noisy expression of comK 

causes a subpopulation of cells to exceed a threshold level of ComK, two dimers of 

this protein bind cooperatively to the comK promoter (van Sinderen and Venema, 

1994; Hamoen et al., 1998), activating a positive feedback loop and the rapid 

transition of these cells into the K-state, where ComK activates downstream genes. 

The frequency of these activation events is extremely low during exponential 

growth and then rises as a culture approaches the stationary phase of growth. This 

temporal control has two principal causes. First, growing cultures secrete ComX, a 

quorum sensing pheromone, which accumulates and ultimately causes the 

phosphorylation of the response-regulator protein ComA (Magnuson et al., 1994). 

ComA-P then binds to and activates the promoter of the srfA operon, which encodes 

the small protein ComS (Nakano and Zuber, 1991; Nakano et al., 1991; Roggiani and 

Dubnau, 1993; Hamoen et al., 1995). ComS in turn competes with ComK for binding 

to the MecA-ClpC-ClpP protease, which rapidly degrades ComK during growth 

(Turgay et al., 1997, 1998; Prepiak and Dubnau, 2007). Stabilization occurs toward 

the end of exponential growth when high cell densities have produced sufficient 

ComX levels. A second cause of temporal regulation derives from the exquisitely 

controlled kinetics of comK basal expression (Leisner et al., 2007; Mirouze et al., 
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2012). Ensemble measurements show that the average basal rate of comK 

transcription increases gradually during growth, reaches a maximum as cells depart 

from exponential growth (T0), and then declines. This uptick in basal expression is 

due to a gradual increase in the phosphorylated form of the master regulator Spo0A as 

cells approach stationary phase (Mirouze et al., 2012). Spo0A is phosphorylated as a 

consequence of a phosphorylation cascade in which several kinases transfer 

phosphoryl groups to Spo0F (Burbulys et al., 1991). These groups are then passed to 

the phosphotransfer protein Spo0B and finally to Spo0A. Low levels of Spo0A-P 

directly activate the basal expression of comK, while higher levels bind to repressive 

operator sites so that the rate of comK expression decreases (Mirouze et al., 2012). 

Thus, Spo0A- P opens and then closes a temporal gate for transitions to the K-state. 

Although K-state regulation has been well characterized, there was reason to believe 

that our understanding was lacking. It has been observed that the transformability of 

undomesticated isolates of Bacillus subtilis and its close relatives is much lower than 

that of the domesticated derivatives of 168 (Cohan et al., 1991). In fact the model 

undomesticated isolate NCIB3610 (hereafter 3610), is poorly transformable, although 

it is very closely related to the wild parent of 168. The poor transformability is due in 

part to comI, a gene that is absent in 168-derivatives. Interestingly, the ComI protein 

appears to decrease the uptake of DNA, without affecting K-state expression (Konkol 

et al., 2013). Together, these observations suggest that some regulatory feature has 

been lost in the domesticated strains and that our appreciation of K-state regulation is 

consequently incomplete. 

In the present study, we have shown that a known promoter mutation in degQ 

in domesticated strains (Yang et al., 1986; McLoon et al., 2011) is primarily 

responsible for this difference in transformability. It is of interest that this mutation 
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also contributes to the failure of strain 168 derivatives to form robust biofilms 

(McLoon et al., 2011). A consequence of this mutation is that the response regulator 

DegU is poorly phosphorylated in domesticated strains (Stanley and Lazazzera, 2005; 

Kobayashi, 2007). This deficit in DegU-P derepresses PsrfA. This causes ComK to be 

stabilized, allowing more cells to pass the threshold for comK auto-activation, thereby 

increasing the fraction of K-state cells. It is known that unphosphorylated DegU is 

required for K-state expression because it helps ComK bind to its own promoter, thus 

acting as a priming protein when the ComK concentration is low (Hamoen et al., 

2000). Thus, our present results show that the regulation of the K-state in 

undomesticated strains requires the proper ratio of phosphorylated and 

unphosphorylated DegU, in accordance with the view that this protein acts as a 

rheostat for development (Verhamme et al., 2007).  

 

MATERIALS AND METHODS 

Microbiological Methods 

Bacterial strains are listed in Supplementary Table S1. The backgrounds used 

for all experiments were either IS75, a derivative of strain 168, PS216 (an 

undomesticated strain of B. subtilis isolated in Slovenia and kindly provided by Inés 

Mandic-Mulec) (Durrett et al., 2013), 3610!comI or 3610 comIQ12L (both gifts 

from Dan Kearns). The comIQ12L mutation abolishes ComI activity (Konkol et al., 

2013), removing a block in DNA uptake. Constructs were introduced into IS75 by 

transformation (Albano et al., 1987) and into 3610!comI and PS216 by transduction 

using bacteriophage SPP1 (Cozy and Kearns, 2010). An exception was for the 

swapping of the degQ alleles, which was carried out by transformation, as described 

below. Bacterial growth was at 37#C in competence medium (Albano et al., 1987) 
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unless otherwise specified. Antibiotic selections were carried out on Lysogeny Broth 

(LB) agar plates (Cozy and Kearns, 2010) containing ampicillin (100 µg ml$1), 

spectinomycin (100 µg ml$1), erythromycin (5 µg ml$1), kanamycin (Kan) (5 µg 

ml$1) or chloramphenicol (5 µg ml$1). In some cases selection was for erythromycin 

(Ery) (1 µg ml$1) plus lincomycin (20 µg ml$1). Solid media were solidified by the 

addition of 1.5% agar. Transformation frequencies were determined using genomic 

DNA isolated from a leucine prototroph. 

 

Luciferase Assays 

Light output from luciferase reporter constructs was measured as previously 

described (Mirouze et al., 2011). Briefly, strains were first grown in LB medium for 2 

h. Cells were then centrifuged and resuspended in fresh competence medium (Albano 

et al., 1987), adjusting all the cultures to an OD600 of 2. These pre-cultures were then 

diluted 20-fold in fresh competence medium and 200 µl was distributed in duplicate 

in the wells of a 96-well black plate (Corning Incorporated Costar). Ten microliters of 

luciferin was added to each well to reach a final concentration of 1.5 mg/ml (4.7 

mM). The cultures were incubated at 37#C with agitation in a PerkinElmer Envision 

2104 Multilabel Reader equipped with an enhanced sensitivity photomultiplier for 

luminometry. The temperature of the clear plastic lid was maintained at 38#C to avoid 

condensation. Relative Luminescence Units (RLU) and OD600 were measured at 1 

min intervals after two 30-s shaking steps. The data were processed using a script 

written in MATLAB, exported to Excel and plotted as RLU/OD versus time from the 

beginning of growth. 

 

SDS-PAGE and Immunoblotting 
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Cell pellets were resuspended in STM buffer (50 mM Tris pH 8.0, 25% 

sucrose, 50 mM NaCl, 5 mM MgCl2) containing 300 µg ml$1 lysozyme and 

incubated at 37#C for 5 min. The volume of STM was normalized to the turbidity 

measurement of the culture (determined in a Klett colorimeter) when the sample was 

collected. Sample buffer (final concentration of 20 mM Tris HCl pH 6.8, 10% 

glycerol, 1% SDS, 0.01% bromophenol blue, 2% 2-mercaptoethanol) was added to 

the samples, which were then incubated at 100#C for 5 min. Samples were separated 

by electrophoresis in 12% Tris-tricine SDS polyacrylamide gels (Schägger and von 

Jagow, 1987). The proteins were transferred to nitrocellulose membranes (Millipore) 

using a Trans Blot Turbo semidry transfer apparatus (Bio-Rad). Primary antiserum 

raised in rabbits against ComK was used at a dilution of 1:5000. Signal was detected 

using a secondary dilution of 1:10,000 goat anti- rabbit antiserum conjugated to 

horseradish-peroxidase (HRP) followed by visualization using Enhanced 

Chemiluminescence (ECL) Prime Western Blot Detection Reagent (GE Healthcare) 

according to the manufacturers’ instructions. Images were recorded by using a 

Thermo Scientific MyECL Imager and band intensities were measured using ImageJ 

software (Schneider et al., 2012). 

 

degQ Allele Swapping with pMiniMAD2 

To swap the degQ promoter between IS75 and 3610 at the native loci, we used the 

pMiniMAD2 cloning strategy as described (Cozy and Kearns, 2010; Mukherjee et al., 

2013). A 2 kb fragment containing degQ from strain 168 or 3610 was amplified using 

primers (HinDIII-degQ9: 

5%GCAGCAAAGCTTCTGCGATTTCCGGATAAAAGAACATAATAATCCCAG-

3% and BamHI-degQ10: 5%-GCAGCAGGATC 



 79 

CGCAGCCTGCTTCTTATATGCTGATCG-3%). The amplicons, which carried the 

degQ wild and mutant alleles near their centers, were cloned into the HinDIII and 

BamHI sites on pMiniMAD2, to produce the plasmids pED1932 and pED1931, which 

carried the wild-type and mutant degQ alleles, respectively. These plasmids were used 

to transform IS75 (with pED1932) and 3610 (with pED1931) where they integrated 

by single crossover events. Plasmid-free strains carrying the swapped degQ promoters 

were isolated (Cozy and Kearns, 2010; Mukherjee et al., 2013) to create IS75 

degQ3610 (BD7454) and 3610 degQIS75 (BD7445). The presence of the swapped 

promoters was confirmed by sequencing of PCR products amplified from the 

chromosome, carried out by Eton Biosciences (Union, NJ, USA). 

 

The Phyper-spank-degQ Construction  

The primers degQ15 (5%-TTAGTCGACAGCTAGCCACCATAC 

ACAATTCATTGATCTTTCA-3%) and degQ16 (5%-CTTGCAT 

GCGGCTAGCTACTCGTTAATCCTACTGTATACAAGGA-3%) were used to 

amplify a 676 bp sequence containing the degQ gene without its promoter. The 

amplicon was inserted into the Phyper-spank vector pED1870 that had been cut with 

NheI, using the In-Fusion HD cloning kit (Clontech, Inc.), as per the manufacturer’s 

instructions. The resulting plasmid was integrated into the desired host strains by 

transformation with single crossover events, by selection for Kan resistance. 

pED1870 carries the Phyper-spank, lacI and lacO sequences. This and all other 

constructs were verified by sequencing. The resulting plasmid creates a strain in 

which degQ is under Phyper-spank at its native locus. 

 

Microscopy 
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Cells were harvested, diluted into PBS (81 mM Na2HPO4 + 24.6 mM 

Na2HPO4 + 100 mM NaCl) and 1 µl of each culture was placed on a pad of 1% 

agarose made up in 0.5X TAE buffer. Images were collected using a Nikon Eclipse Ti 

inverted microscope equipped with an Orca Flash 4.0 digital camera (Hamamatsu), 

with a Nikon TIRF 1.45 NA Plan Neoflur 100 oil immersion objective. NIS-Elements 

AR (v 4.40, Nikon) software was used to collect and analyze images, which were then 

imported into Photoshop to configure the images for publication. Fluorescence 

intensities were determined using the automated General Analysis tool of NIS-

Elements. 

 

RESULTS 

Undomesticated Bacillus subtilis Strains Express the K-state in Few Cells  

It has been observed that the transformability of undomesticated B. subtilis 

strains is generally lower than that of the domesticated strain 168 and its derivatives 

(Cohan et al., 1991). Because the K-state is expressed bistably, this difference may 

reflect differing efficiencies of transformation per cell or differing frequencies of K-

state cells in the population. We therefore determined the percentage of competence-

expressing cells during growth in five randomly chosen natural isolates: the B. subtilis 

subsp. subtilis RO-OO-2 and RO-FF-1 strains, the B. subtilis subsp. spizizenii RO-E-

2 [all three isolated in the Mojave desert (Cohan et al., 1991)], the commonly used 

model strain 3610 (Branda et al., 2006; McLoon et al., 2011) and B. subtilis PS216, 

isolated in Slovenia (Durrett et al., 2013). Throughout this study we have used comI 

mutants of 3610. ComI does not affect the expression of comK but does inhibit the 

uptake of transforming DNA (Konkol et al., 2013). In each case, after verifying that 

the regulatory sequences upstream of comK were the same in all the strains (not 
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shown), comK promoter (PcomK) fusions to the genes encoding Cyan Fluorescent 

Protein (CFP) or Green Fluorescent Protein (GFP) were integrated by single 

reciprocal recombination and the percentages of comK-expressing cells were 

enumerated microscopically and compared to that of the 168- derivative IS75, which 

is the reference domesticated strain used throughout this study. We determined that 

the time of maximal transformability for PS216 and 3610 was attained after 240 min 

of growth and after 315 min for IS75 (Supplementary Figure S1). The results in 

Figure 1 were therefore obtained with samples taken at those times, which correspond 

to about T0 and T2 for the undomesticated and domesticated strains, respectively. The 

growth curves for all the strains under these conditions were similar (not shown). The 

results summarized in Figure 1 show that the samples from the undomesticated 

isolates contain significantly fewer competence-expressing cells (0.2–5%) than the 

domesticated strain sample (15.4%).  
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Figure 1: Undomesticated strains express the K-state with low frequency. Shown are 
representative images of the indicated strains expressing PcomK fusions to the genes encoding GFP 
(top row) or CFP (bottom row). The fields were selected to show at least one expressing cell. The 
measured frequencies of K-state cells are indicated in the lower right of each panel. As explained in the 
text, the domesticated strain (IS75) was imaged at T2 and the undomesticated strains at T0. Strain 
numbers are presented in Supplementary Table S1. 
 

To compare the transcription rates from PcomK in strains 3610 and PS216 to 

that of the domesticated strain, we utilized promoter fusions to firefly luciferase, 

which reports transcription rates rather than the accumulation of a gene product 

(Mirouze et al., 2011). The fusions were integrated by single-reciprocal 

recombination placing the reporter gene under control of the normal comK regulatory 

sequences. The peak rates of transcription from PcomK in the domesticated strain and 

in both 3610 and PS216 approximately reflect the frequencies of K-state cells in each 

population (Figure 2). The peak transcription rates in the undomesticated strains are 

about 9.6- and 5.7-fold lower than in the IS75 background, while the fractions of 

competence- expressing cells differ by 38- and 4.2-fold, respectively. We do not 

expect an exact correspondence between the peak rates of transcription and 

transformation frequencies; light output from luciferase does not inform us about the 

amount of ComK synthesized, the activation of the downstream genes needed for 

transformation and the assembly of the transformation machinery. In the domesticated 

strain, the transcription rate remains elevated even as the cultures enter stationary 

phase (Figure 2A). In 3610 and PS216, the rates decline rapidly from a maximum 

reached at about T0 (Figures 2B,C). These data demonstrate that unknown 

mechanisms limit the probability of transitions to the K-state and cause the expression 

of comK to cease abruptly. Interestingly, these mechanisms have been lost in the 

domesticated strains. 
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Figure 2: Expression from PcomK is higher in IS75 (A) than in the undomesticated strains 3610 (B) 
and PS216 (C). (D) The three curves plotted on the same scale. The vertical arrows on panels (A–C) 
point to T0. Strain numbers are presented in Supplementary Table S1. 
 

A degQ Mutation in the Domesticated Strains Causes Increased comK 

Expression 

To identify gene(s) that limit transitions to the K-state in undomesticated 

strains, we transformed PS216 with DNA from a domesticated strain that carries a 

fusion of the comG promoter to lacZ, linked to a kanamycin (Kan) resistance 

determinant. It was reasoned that selection for this marker on plates containing Kan 

and 5-bromo-4-chloro-3-indolyl-&-D-galactopyranoside (X-gal) would select for 

transformable cells and might transfer an unlinked mutation from the domesticated 

strain, capable of conferring increased expression from PcomG. Indeed, dark blue 

colonies were observed, representing about 1% of the total number of KanR colonies, 

a frequency consistent with “congression,” the simultaneous transformation of B. 
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subtilis by unlinked markers. Although PS216 colonies are normally mucoid, all of 

these blue colonies were not. Mucoidy in B. subtilis indicates the production of poly-

!-glutamic acid, due to the expression of the pgs operon and is dependent on the 

presence of phosphorylated DegU and the small protein, DegQ (Stanley and 

Lazazzera, 2005). DegQ increases the net transfer of a phosphoryl group from the 

histidine kinase DegS to its cognate response regulator protein DegU (Kobayashi, 

2007). Because derivatives of strain 168 carry a promoter mutation that markedly 

decreases the expression of degQ (Yang et al., 1986; McLoon et al., 2011), we 

reasoned that the blue colonies might have inherited this mutation. The degQ 

promoters of several blue transformants were sequenced and indeed all had the T'C 

promoter mutation at position $10 that exists in 168 derivatives. 

To determine whether this mutation was responsible for the high comK 

expression of domesticated strains, we swapped the wild-type and mutant degQ 

alleles between the domesticated and undomesticated strains, using pMiniMAD2. For 

this, and for all subsequent experiments reported here, we have used 3610, which has 

been widely adopted as a model undomesticated B. subtilis, rather than the less 

intensively studied PS216. Figure 3A shows the expression profiles of PsrfA, PcomK, 

and PcomG luciferase fusions in the IS75 background, for strains carrying the 

indigenous mutant (degQIS75) and wild-type (degQ3610) alleles.  
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Figure 3: Effect of the mutant (degQIS75) and wild-type (degQ3610) degQ alleles on expression of 
srfA, comK, and comG in IS75 (A) and 3610 (B). In each panel, the data from strains with indigenous 
and swapped alleles are indicated by solid and dashed lines, respectively. The vertical arrows in each 
panel point to T0. Strain numbers are presented in Supplementary Table S1. 
 

Clearly the introduction of the wild-type degQ allele resulted in a marked 

diminution of the transcription rates of each reporter so that the peak levels were 

similar to those of 3610 (compare to Figure 3B). The converse was also true (Figure 

3B); introduction of the degQIS75 allele into the 3610 background increased the 

maximum transcription rates of all three promoters to approximately the levels 

measured in IS75 (Figure 3A). A degQ knockout was also tested (Supplementary 

Figure S2) using a PcomG-luc reporter in the 3610 background. As expected, a large 

increase in comG transcription was noted. The effects of degQ allele swapping shown 

in Figure 3 can thus be explained most economically by a repressing effect of DegU-P 

on PsrfA, which would decrease the amount of ComS, destabilizing ComK. In fact it 

has been shown that mutations resulting in an elevated level of DegU-P do indeed 
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depress the transcription of srfA in the domesticated background (Hahn and Dubnau, 

1991). 

 

The Sharp Decrease in Transcription in 3610 Is Not Due to DegQ  

Somewhat surprisingly, the characteristic sharp decreases in the transcription 

rates of srfA and of comK in the 3610 background are not affected by the introduction 

of the mutant degQ promoter (Figure 3). Nor are the sustained high transcription rates 

from these promoters in the domesticated background obliterated when the wild-type 

degQ allele is introduced. This is seen clearly when the peak values of the swapped 

and un-swapped strains are normalized (Supplementary Figure S3). The comK 

transcription patterns can be explained by differences in srfA transcription if we make 

the simplifying assumption that ComS is unstable. Thus, when the rate of comS 

transcription decreases sharply, ComK would no longer be protected from 

degradation, and the transcription of comK and of comG would decrease. In accord 

with this reasoning, the transcription rates of srfA, comK and comG begin to drop 

after 2.3, 3.1, and 3.1 h of growth, respectively (Figure 3). The converse would apply 

in the domesticated strains; sustained transcription from the srfA promoter would 

provide a steady supply of ComS, stabilizing ComK. To test this idea, we measured 

the transcription rates of srfA in three different backgrounds. As noted above, PS216 

is intermediate between 3610 and IS75 in transformability, in comK expression and in 

the percentage of cells that enter the K-state. Supplementary Figure S4 shows that 

while transcription from PsrfA drops to zero in 3610, it decreases to an intermediate 

level in PS216. This can be seen clearly when the three curves are normalized to the 

same peak value (Supplementary Figure S4B). These comparisons are in agreement 
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with the hypothesis that the kinetics of srfA transcription underlie the strain 

differences in transformability. 

 

The DegQ Effect on K-state Expression Is Mediated by Increased DegU-P  

If the presence of the mutant degQ allele affects competence expression 

because of its depressing effect on DegU phosphorylation, it should be mimicked, at 

least in 3610, by inactivation of degS, which encodes the DegU-cognate histidine 

kinase. The results obtained in the 3610 background support a role for DegU-P as a 

regulator of srfA and hence of comK and comG expression (Figure 4). The degS 

knockout strain reaches a higher rate of srfA transcription than the wild-type and 

presumably produces more ComS (Figure 4B). Consequently ComK is stabilized, 

more comK transcription takes place and comG transcription is actually increased 

(Figure 4B). In contrast with this straightforward result, Figure 4A reveals that the 

inactivation of degS has no effect on srfA transcription in the IS75 background. This 

is not unexpected, because in this background, which is naturally lacking in DegQ, 

the amount of DegU-P is low and does not limit srfA transcription. However, the 

expression from comK is affected, decreasing in peak value about twofold. This 

relatively minor effect of degS inactivation can be explained as follows. 

Unphosphorylated DegU is known to increase the affinity of ComK for its own 

promoter (Hamoen et al., 2000). Because DegU-P activates one of the promoters that 

drive degU expression (Ogura and Tsukahara, 2010), it is likely that the inactivation 

of degS decreases the amount of DegU and thus compromises ComK binding to 

PcomK. The expression from PcomG is also affected (Figure 4A) but less than that 

from PcomK, suggesting that ComK is normally produced in excess. 
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Figure 4: Effect of degS on expression of srfA, comK, and comG in IS75 (A) and 3610 (B). The 
vertical arrows in each panel point to T0. Strain numbers are presented in Supplementary Table S1. 
 

Further evidence that the depressing effect on srfA expression in 3610 is due 

to phosphorylated DegU was obtained using a degUD56N allele. The DegUD56N 

protein cannot be phosphorylated. Supplementary Figure S5 shows that the 

DegUD56N mutant strain is de-repressed for srfA transcription similarly to the degS 

inactivated strain (compare to Figure 4B). As observed when the degQ alleles were 

swapped (Figure 3; Supplementary Figure S3), no effect of either the D56N or degS 

knockout mutations was observed on the sharp downturn in srfA transcription in the 

3610 background. 

 

DegQ Regulates the Stability of ComK 

If the effects of DegU-P on PsrfA, and hence on comS transcription underlie 

the differences in K-state expression, we would expect to see this reflected in 

measurements of ComK stability. Because the amount of ComK in the presence of 
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elevated DegQ is quite low, we resorted to the following strategy to investigate its 

stability. A strain was constructed that carries a copy of comK under control of the 

xylose-inducible Pxyl promoter inserted in the ectopic amyE locus of IS75. The 

native comK gene was left intact so that the effects of induction due to the addition of 

xylose would be amplified by the auto- activation of comK transcription. Also present 

was a copy of degQ under control of the isopropyl-&-D-thiogalactoside (IPTG)- 

inducible Phyper-spank promoter, located in the chromosome at the degQ locus. This 

strain was grown in the continuous presence of xylose, with and without IPTG. When 

late log phase was reached, rifampicin and puromycin were added to terminate 

mRNA and protein synthesis, samples were collected thereafter at regular intervals, 

and Western blotting was used to monitor the decay of ComK (Figure 5).  

As predicted, the stability of ComK was markedly reduced when degQ was 

induced. In the uninduced culture the half-life of ComK is well in excess of 20 min; 

extrapolation would suggest it to be at least 60 min. The half-life of ComK in the 

presence of induced DegQ is 7– 8 min. As expected, the initial amount of ComK was 

also reduced in the induced culture. These data confirm that the enhanced 

transformability of the domesticated strain can be ascribed to the increased stability of 

ComK, caused by the de-repression of srfA (comS). 
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Figure 5: DegQ lowers ComK stability. A strain carrying Pxyl-comK and Phyper-spank-degQ 
(BD8288) was grown in the presence of xylose and with and without IPTG. At T$1, puromycin and 
rifampicin, each at 200 µg/ml were added. At the indicated times, samples were withdrawn for Western 
blotting with anti-ComK antiserum. (A) The -IPTG gel was exposed for a shorter time to compensate 
for its higher initial intensity of the ComK band. Extracts from a comK strain were included to assist in 
the identification of the correct band. The ±IPTG images were from the same gel and placed one above 
the other (B) Bands intensities were quantified from digitized images using ImageJ software and 
plotted against time after the addition of the inhibitors. 
 

 

Single Cell Expression in degQ-Swapped Strains  

Ensemble measurements of srfA and comG transcription show that their 

expression is correlated, and influenced by the levels of DegU-P. Figure 6 shows this 
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behavior on a single cell level. For these experiments, cells expressing promoter 

fusions of genes encoding mCherry and GFP to PsrfA and PcomG, respectively, were 

examined microscopically. Unlike firefly luciferase these reporters reflect the 

accumulation of gene products. These images were collected for the wild-type IS75 

and 3610 strains as well as for strains in which the degQ alleles had been swapped. It 

is obvious that the GFP expressed from PcomG accumulated in more cells in the IS75 

background than in 3610, as expected. Also as expected, the intensity of the mCherry 

fluorescence expressed from PsrfA was much higher in IS75 than in the 

undomesticated strain. When the degQIS75 allele was introduced into 3610, the 

expression from PsrfA increased and the frequency of PcomG-expressing cells also 

increased. Nevertheless, the mCherry fluorescence in IS75 is still more intense than 

that of the 3610 degQIS75 strain, despite the fact that the maximum rates of srfA 

expression are the same in both strains (Figure 3). This probably reflects the sustained 

srfA transcription rate in IS75 and the sharp decrease in the 3610 background. As 

expected, when degQ3610 was swapped into IS75 the mCherry fluorescence decreased 

to a level lower than that of wild-type IS75 and even lower than that of 3610 degQIS75, 

consistent with the fourfold higher amplitude of the PsrfA transcription rate curve in 

3610 degQIS75 than in IS75 degQ3610 (Figure 3). These data demonstrate that the 

results presented above for promoter transcription rates were reflected on the single-

cell level. 
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Figure 6: Single-cell expression of PsrfA-mCherry and PcomG-gfp. The indicated strains, all of 
which carried these two fusion constructs, were grown to the time of maximum K-state expression and 
samples were taken for microscopy. Representative images are shown. The 3610 and IS75 degQ3610 
images were selected to include at least one K-state cell each. On the right are the percentages of K-
state cells determined by examining at least 1200 cells for each strain. Strain numbers are presented in 
Supplementary Table S1. 
 

We next sought to determine whether the K-state was expressed preferentially 

in cells that had accumulated more mCherry, expressed from PsrfA. For this, we 

measured the average pixel intensities of mCherry in K-state cells, identified by their 

GFP signals, compared to the intensities of non-K- state cells. Equal numbers of K-

state and non-K-state cells were selected from each microscope field to minimize 

inter-field bias. Table 1 shows that at the time of these measurements, K-state cells in 
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both the 3610 and IS75 backgrounds do not appear to exhibit a noticeably different 

mCherry signal than the non-K- state cells. This would suggest that variation in 

transcription from PsrfA may not be an important determinant of K-state transitions. 

However, this conclusion must be tempered by two considerations. First, the decision 

to enter the K-state was made, on the average, before these measurements were made. 

Second, the mCherry signal does not necessarily reflect the concentration of ComS. 

 

 

RapP Influences the Sharp Downturn in srfA Expression in 3610  

As noted above (Figure 3), the sharp downturn in srfA, and hence in comK and 

comG transcription, is clearly not dependent on DegQ and remains unexplained. We 

have considered the possibility that the differing kinetics of srfA transcription in 3610 

and IS75 are influenced by the absence of a functional copy of swrA in 168-

derivatives, because SwrA has been reported to modulate the binding of DegU-P to 

some promoters (Ogura and Tsukahara, 2012). To test this we used pMiniMAD2 to 

swap the functional and mutant swrA alleles between the two strains. No effect on 

srfA transcription was observed (not shown). Similarly, we wondered whether 

surfactin, the product of the srfA operon, would exert an effect on the kinetics of srfA 

transcription. Accordingly, we inactivated the srfA operon in the 3610 strain and no 

effect on PsrfA transcription was observed (not shown). Another strain difference is 

that 3610 carries a large plasmid, which encodes RapP, a phosphatase that acts on 

Spo0F-P (Parashar et al., 2013). It has been reported that the inactivation of rapP 

mitigates the sharp downturn in srfA transcription (Parashar et al., 2013; Omer 

Bendori et al., 2015). This result has been verified in our hands; we have consistently 

observed a shoulder in the srfA transcription rate curves in the rapP knockout strain, 
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and we have found that the transcription rate does not drop to zero as it does in the 

rapP+ parent (Supplementary Figure S6A). Although the inactivation of rapP 

mitigates the downturn in srfA transcription in 3610, it does not phenocopy the 

sustained transcription observed in IS75 (compare Supplementary Figure S6A with 

Figure 4A). Clearly other genes must be involved that differ between the 

domesticated and undomesticated strains. 

Given the more sustained transcription of srfA in the 3610 !rapP strain, we 

would expect the transcription of comK to increase due to stabilization of ComK. 

Instead, the transcription of comK was reduced (Supplementary Figure S6B). This 

unexpected effect was caused by a depressing effect of rapP inactivation on the basal 

level of comK transcription. This is shown by the expression of PcomK when auto-

regulation is abrogated due to the absence of a functional copy of comK 

(Supplementary Figure S6C). In the comK rapP background, the basal expression of 

comK first increases as in the rapP+ strain but then abruptly declines. 

These data have an interesting implication; although PS216, like IS75, lacks a 

rapP ortholog, the basal level expression of comK is similar in amplitude and overall 

kinetics in IS75, 3610, and PS216 (Supplementary Figure S7). It appears that 

selection has used both RapP-dependent and independent mechanisms to maintain the 

balanced increase and decrease in basal comK expression. 

 

 

DISCUSSION 

The first important conclusion of this study is that the frequency of K-state 

cells in the population is controlled in natural isolates by a pathway that regulates the 

amount of DegU-P, providing one more illustration of the importance of using 
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undomesticated strains as a way to approximate real-life biology (McLoon et al., 

2011). This previously unrecognized pathway for K-state regulation, summarized in 

Figure 7, acts by controlling the transcription of the srfA operon, which in turn affects 

the stability of ComK. Although noise in the basal expression of comK selects cells 

for competence, it appears that the instability of ComK in undomesticated strains 

effectively decreases the fraction of cells that exceed the threshold level of ComK 

needed to activate the auto-induction of comK transcription. This pathway is lost in 

168-derivatives due to a promoter mutation that reduces the transcription of degQ. 

Since this mutation is present in all of the sequenced 168 derivatives, it must have 

been present in 168 itself, and is responsible for the choice of the indole- requiring 

168 strain as a highly transformable subject for further investigation (Spizizen, 1958). 

We do not know how the elevated level of DegU-P that is present in 3610 acts to 

decrease the transcription from PsrfA, nor do we know whether DegU-P acts directly 

on this promoter. Although degS and degU mutations that cause the accumulation of 

very high levels of DegU-P were known to inhibit the K-state (Msadek et al., 1990; 

Hahn and Dubnau, 1991), we show here for the first time that this mechanism is 

biologically relevant; DegU plays both positive and negative roles in regulation of the 

K-state in undomesticated strains. It is conceivable that the mucoidy, which can 

accompany increased DegU-P may itself compromise the binding of DNA to K-state 

cells, thereby contributing to the low transformability of undomesticated strains apart 

from the effect of DegU-P on PsrfA. 

Interestingly, PdegQ is activated by ComA-P (Msadek et al., 1991), 

suggesting the following attractive mechanism. As the pheromone ComX 

accumulates, both comS and degQ would be transcribed. ComS would then stabilize 

ComK, helping to activate the auto-regulation of comK transcription, while DegQ 
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would accumulate, increasing the concentration of DegU-P and eventually shutting 

down srfA transcription. However, as shown above (Figure 3B), the sharp down turn 

in srfA transcription that occurs in 3610 is not dependent on DegQ. Instead it is partly 

dependent on RapP, a phosphatase that acts on Spo0F- P, presumably restricting the 

rate of Spo0A-P accumulation. We conclude that this pleasing model does not seem 

to be true, at least under laboratory conditions. 

Unphosphorylated DegU binds to sequences upstream from comK, helping 

ComK bind to its own promoter (Hamoen et al., 2000). We have shown here that 

DegU-P plays an important role in 3610, PS216 and presumably in other natural 

isolates, restricting the expression of srfA and hence of comK. Because DegU and 

DegU-P have respective positive and negative effects on K-state expression, the ratio 

of their concentrations must be critically controlled. Because srfA is essential for 

biofilm formation (Lopez et al., 2009), swarming motility (Kearns et al., 2004) and 

surface spreading (Kinsinger et al., 2003), the balance of phosphorylated and 

unphosphorylated DegU is also important for these forms of development, beyond the 

role of DegU-P in activating the expression of the hydrophobin BslA for biofilms 

(Hobley et al., 2013). In particular, swarming requires DegU-P (Verhamme et al., 

2007). Biofilm formation is likewise inhibited when the amount of DegU-P is too 

high (Kobayashi, 2007; Verhamme et al., 2007). The mechanisms and upstream 

signals that control the level of DegU phosphorylation are not clear, but are certainly 

complex (Jers et al., 2011; Cairns et al., 2015) and important to elucidate. 

As described above, Spo0A phosphorylation sets a temporal gate, opening and 

closing a window of opportunity for transitions to the K-state. Although 

phosphorylated and unphosphorylated DegU also play both positive and negative 

roles in the K-state, they may not control a temporal gate, because neither the 
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inactivation of degS (Figure 4B) nor introduction of the non- phosphorylatable mutant 

form of DegU (D56N) (Supplementary Figure S5) affect the sharp downturn in srfA 

transcription in 3610. Perhaps instead, the ratio of DegU and DegU-P is simply 

adjusted in response to upstream signals to help set the probability of K-state 

development. 

The inactivation of the RapP phosphatase in 3610 markedly decreases the 

basal expression from PcomK, thus reducing transitions to the K-state (Supplementary 

Figure S6). It is possible that RapP has an activity aside from its ability to 

dephosphorylate Spo0F-P and that an unknown gene in this strain down-regulates the 

basal transcription of comK in the absence of RapP. However, because Spo0A-P is 

known to repress the basal expression of comK, it seems more likely that in the 

absence of RapP, excess phosphorelay activity increases the production of Spo0A-P 

and represses PcomK. This is consistent with the kinetics of the basal expression 

shown in Supplementary Figure S7, which displays an initial rise identical to that in 

the rap+ strain, followed by sharp repression. However, regardless of the presence or 

absence of rapP, the basal expression of comK in IS75, PS216, and 3610 are similar 

(Supplementary Figure S7). Apparently, additional factors in IS75 and PS216 must 

serve to control the phosphorelay in the absence of RapP. Selection, whether in the 

laboratory or in nature, precisely modulates the formation of Spo0A-P, probably 

because of the multiple and dramatic consequences imposed by the presence of too 

much or too little of this key transcription factor. We have shown elsewhere that 168- 

derivatives carry a mutation in sigH, which decreases the activity of the phosphorelay 

compared to that of 3610 (Dubnau et al., 2016). Using pMiniMAD2, we have 

swapped sigH168 into a 3610 derivative lacking rapP and found that the basal level 

of comK transcription is still reduced (not shown). We suggest that some other 
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difference between IS75 and 3610 is responsible for retarding Spo0A-P accumulation 

under K-state conditions. 

Bacillus subtilis K-state cells are growth-arrested (Nester and Stocker, 1963; 

Haijema et al., 2001). The K-state appears to be a persistent state in which a trade off 

between the costs of growth-arrest and the expression of the competence machinery 

are balanced by fitness benefits due to tolerance in the face of environmental insults, 

e.g., exposure to antibiotics (Nester and Stocker, 1963; Johnsen et al., 2009; Hahn et 

al., 2015; Yuksel et al., 2016), as well as the ability to acquire useful genetic 

information. In the face of this trade-off, bet-hedging due to the bistable expression of 

the K-state, presumably helps to maximize fitness (Dubnau and Losick, 2006; 

Veening et al., 2008). It seems reasonable to assume that the frequency of K-state 

expression must be adjusted to obtain the biggest fitness advantage. Selection appears 

to have set the basal expression of comK and the kinetics of srfA expression to keep 

the frequency and timing of transitions to the K-state near an optimum. As noted 

above it has done this by at least two distinct mechanisms; RapP-dependent and 

RapP-independent. What appear to be important for fitness are the final kinetic 

behaviors of srfA and of comK basal expression. Although the transition frequency 

varies among undomesticated strains, it appears to be lower than in 168-derivatives, 

suggesting that the optimal bet-hedging frequency lies in a range below ∼15% (Figure 

1). 

Not only do the expressions of srfA, comK, and comG decline abruptly in 

PS216 and 3610, but so does transformability (Supplementary Figure S1). In other 

words competence, as traditionally defined, is restricted in these two strains to the 

time of entry to stationary phase, reaching a maximum at about T0 and decreasing 

thereafter. Perhaps this rapid decrease is due to the turnover of competence proteins, 



 99 

which might provide resources for the eventual growth of cells that are hunkered 

down in a persistent state. ComK expression is not terminated abruptly in IS75, so 

this turnover might have been overlooked. This would imply the existence of an 

additional K-state-related mechanism that has been lost during domestication, 

masking the natural transience of transformability. 
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SUPPLEMENTAL DATA 

 

 

Figure S1: The timing and duration of transformation is different in the domesticated strain IS75 
and the two undomesticated strains 3610 and PS216. Transformation efficiency (grey) and turbidity 
(black) were determined every hour for 7 hours. Note that while the turbidity scale, measured in a Klett 
colorimeter, is the same for the three panels (left axes), the transformation efficiencies are plotted on 
different scales.  

 

 

 

 

Figure S2: Effect of !degQ on expression from PcomG in the 3610 background. The vertical arrow 
points to T0. 
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Figure S3: Normalized curves for srfA, comK and comG transcription rates in the degQ swapped 
strains in the IS75 (A) and 3610 (B) backgrounds. To more graphically compare the shapes of the 
rate curves, the data from Fig. 2 has been normalized by the maximum value for each curve. The 
vertical arrows in each panel point to T0.  
 
 
 

 

Figure S4:Transcription rate data for PsrfA in the IS75, PS216 and 3610 backgrounds, plotted 
together (A). Panel B shows the data from panel A, normalized using the maximum of each curve. In 
this experiment, PS216 reached T0 earlier than the other two strains. 
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Figure S5: Transcription rates of srfA-luc in the 3610 wild-type and degUD56N strains 

 

 

 

Figure S6 | Effect of the !rapP mutation on transcription rates from PsrfA, PcomK and PcomK in 
the !comK backgrounds. 
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Figure S7: The basal expression from PcomK is comparable in IS75, PS216 and 3610. All three 
strains carry PcomK-luc and (comK. 
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Table S1 Strains 
Strain 

Number Backgrounda Descriptionb 

IS75 168 derivative his leu met 
BD3338 B. subtilis RO-OO-2 PcomK::gfp (Cm) 
BD3339 B. subtilis RO-FF-1 PcomK::gfp (Cm) 
BD3341 B. subtilis RO-E-2 PcomK::gfp (Cm) 
BD4374 B. subtilis (IS75) PcomK::cfp (Kan) 
BD4773 B. subtilis (IS75) PcomK::luc (Cm) 
BD4893 B. subtilis (IS75) "comK (Spc), PcomK::luc (Cm) 
BD6432 B. subtilis (PS216) PcomK::luc (Cm) 
BD6434 B. subtilis (PS216) PcomK::cfp (Kan) 
BD6437 B. subtilis (PS216) "comK (Spc), PcomK::luc (Cm) 
BD6438 B. subtilis (3610) "comI, "comK (Spc), PcomK::luc (Cm) 
BD6439 B. subtilis (3610) "comI, PcomK::luc (Cm) 
BD6441 B. subtilis (3610) "comI, PcomK::cfp (Kan) 
BD7125 B. subtilis (3610) "comI, PcomG::luc (Cm), "degQ (Tet) 
BD7447 B. subtilis (3610) "comI, PcomK::luc (Cm), degQ IS75 
BD7448 B. subtilis (3610) "comI, PcomG::luc (Cm), degQ IS75 
BD7456 B. subtilis (IS75) PcomK::luc (Cm), degQ3610 
BD7457 B. subtilis (IS75) PcomG::luc (Cm), degQ3610 
BD8276 B. subtilis (IS75) PsrfA::luc (Cm), degQ3610 

BD8277 B. subtilis (3610) "comI, PsrfA::luc (Cm), degQ IS75 
BD8278 B. subtilis (IS75) PsrfA::luc (Cm), "degS (Kan) 
BD8279 B. subtilis (IS75) PcomK::luc (Cm), "degS (Kan) 
BD8280 B. subtilis (168) PcomG::luc (Cm), "degS (Kan) 
BD8281 B. subtilis (3610) "comI, PsrfA::luc (Cm), "degS (Kan) 
BD8282 B. subtilis (3610) "comI, PcomK::luc (Cm), "degS (Kan) 
BD8283 B. subtilis (3610) "comI, PcomG::luc (Cm), "degS (Kan) 

BD8284 B. subtilis (IS75) PsrfA::mCherry (Kan), PcomG::gfp (Cm) 

BD8285 B. subtilis (IS75) PsrfA::mCherry (Kan), PcomG::gfp (Cm), degQ3610 
BD8286 B. subtilis (3610) "comI, PsrfA::mCherry (Kan), PcomG::gfp (Cm) 
BD8287 B. subtilis (3610) " comI, PsrfA::mCherry (Kan), PcomG::gfp (Cm), degQIS75 
BD8288 B. subtilis (IS75) Pxyl-comK (Ery), Phyper-spank-degQ (Kan) 
BD8289 B. subtilis (3610) "rapP, PsrfA::luc (Cm) 
BD8290 B. subtilis (3610) "rapP, PcomK::luc (Cm) 
BD8291 B. subtilis (3610) "rapP, "comK (Spc), PcomK::luc (Cm) 
BD8292 B. subtilis (3610) "comI, PsrfA::luc (Cm), degUD56N (Kan) 

aThe IS75 derivatives are all his leu met auxotrophs. bAll of the fusion constructs and 
the Phyper-spank-degQ construct are inserted by single crossover at the native loci. The 
Pxyl-comK construct is at the amyE locus. 
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We have presented data supporting the idea that domestication led to the loss 

of a regulation pathway for the K-state in B. subtilis. The standard laboratory strains 

of B. subtilis, derived from strain 168, have been selected during more than fifty years 

of use for ease of manipulation as useful genetic models. This selection is responsible 

for (i) the high frequency of transformability and (ii) the loss of ability to form 

biofilms (McLoon et al., 2011). The inability to form biofilms is attributed to five 

genomic mutations/deletions. sfp, epsC, swrA and degQ are mutated while the 

extrachromosomally encoded rapP gene is missing due to loss of the pLS32 plasmid 

(McLoon et al., 2011).  

Over the past decade, the undomesticated strain 3610, considered as the parent 

of strain 168, has been intensively investigated because of its ability to form biofilms 

and is widely viewed as an “undomesticated model” of B. subtilis. Although 3610 is 

genetically really closely related to the domesticated 168 derivative, IS75, it is poorly 

transformable. This phenotype for DNA transformation is partially due to the 

presence of comI, a gene encoded by pLS32, a plasmid absent from the laboratory 

strain. (Konkol et al., 2013) showed that ComI decreases the uptake of DNA without 

interfering with the expression of the K-state. Because 3610 expresses the K-state 

poorly, these observations suggest that the domesticated strain IS75 has lost some 

regulatory feature of competence and that, therefore, our understanding of the K-state 

regulation in B. subtilis is incomplete.  

The undomesticated B. subtilis PS216 was isolated from a Slovenian soil sample and 

has been shown to form structured and robust biofilms. Also, it exhibits a 

transformation frequency and K-state expression intermediate between that of IS75 

and 3610. All three strains, IS75, 3610 and PS216 belong to the same quorum-sensing 

phenotype group and therefore respond to the same ComX quorum sensing 
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pheromone (Tortosa et al., 2001) (Stefanic & Mandic-Mulec, 2009). We have 

characterized the genomic sequence of PS216, and have attempted to understand the 

differences in frequency of K-state expression in the three strains in order to uncover 

the regulatory features that are missing in IS75.  

Our initial analysis confirmed, unsurprisingly, that the core circuitry for 

competence regulation is the same in both domesticated and undomesticated strains of 

B. subtilis as inactivation of key competence regulators, e.g. comK, mecA, comA and 

comS, has the same effect on K-state expression in the three backgrounds. 

We then designed a genetic approach to identify genes reducing K-state 

development in undomesticated strains of B. subtilis. The undomesticated B. subtilis 

PS216 strain was transformed with chromosomal DNA from strain IS75 carrying a 

comG promoter lacZ fusion linked to a kanamycin-resistance marker. PS216 was used 

because it is more transformable than 3610. We selected for kanamycin resistance and 

screened for blue colonies as an indication that an unlinked allele from IS75 that 

increases expression from the comG promoter had been transferred by “congression” 

(simultaneous transformation of B. subtilis by unlinked markers). 1% of the 

kanamycin resistant colonies developed a blue color, a frequency consistent with 

congression in B. subtilis. Although PS216 colonies are normally mucoid, all the blue 

colonies were non-mucoid. This difference in mucoidy expression, pointed to a 

difference in the B. subtilis “Deg” regulatory system. Indeed, the mucoidy phenotype 

in B. subtilis indicates the production of poly-"-glutamic acid through the expression 

of the pgs operon, that is dependent on DegU~P and DegQ (Stanley & Lazazzera, 

2005). As previously reported, one of the genetic differences between domesticated 

168 strains (e.g. IS75) and the undomesticated strains 3610 and PS216 is a mutation 

in the promoter region of degQ, which negatively affects the transcription of degQ 
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(Yang, Ferrari, Chen, & Henner, 1986) (McLoon et al., 2011). All the PS216 blue 

colonies were then shown to have the degQ promoter mutation from strain IS75 

suggesting that the “Deg” pathway down regulates K-state regulation in 

undomesticated strains of B. subtilis.  

To confirm the role of the degQ promoter mutation in K-state regulation we 

swapped the degQ allele between strains IS75 and 3610. The rates of transcription of 

srfA, comK and comG were all increased dramatically in strain 3610 with the mutant 

degQ allele and decreased in strain IS75 with the wild-type degQ allele. We also 

showed that the degQ swap has an effect on the percentage of competent cells as the 

number of cells entering the K-state is increased or decreased in the swapped strains 

compared to the wild types in the 3610 and IS75 backgrounds, respectively.  

degQ is described in the literature as a modulator of the phosphorylation state 

of DegU, which increases the transfer of a phosphoryl group from the histidine kinase 

DegS to its cognate response regulator DegU (Kobayashi, 2007b). To determine if the 

differences in the K-state previously observed is a consequence of a different level of 

DegU~P in the cells, we looked at the effect of a degS KO on the expression of 

competence genes (srfA, comK and comGA). These experiments confirmed that the 

degQ effect on the K-state expression is mediated by the expected changes in 

DegU~P.  

We then tried to identify how the level of DegU~P can modulate the 

expression of the K-state in B. subtilis. Our lab has shown that a stable form of 

DegU~P, which is dephosphorylated at a slow rate, decreases the expression of the 

early srfA operon, suggesting that a high level of DegU~P might inhibit srfA 

expression. Because the comS open reading frame is embedded in the srfA operon, 

and because ComS protects ComK from degradation by the ATP-dependent 
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MecA/ClpC/ClpP protease, we hypothesized that an increased level of DegU~P 

would decrease ComK stability by repressing the expression of srfA (and therefore 

comS). Data presented in this work confirm that the enhanced transformability of the 

domesticated strain IS75 can be explained by the increased stability of ComK, caused 

by the derepression of srfA (comS). 

We have shown here that DegU~P plays an important role in the 

undomesticated strains of B. subtilis by inhibiting the expression of srfA and therefore 

the K-state. It was shown previously that unphosphorylated DegU binds to sequences 

upstream from ComK helping ComK to bind to its own promoter at the onset of 

competence development. Because DegU and DegU~P have both positive and 

negative effects on the expression of the K-state it appears that the ratio of their 

concentrations must be tightly regulated. The different mechanisms and upstream 

signals controlling the phosphorylation of DegU are not yet fully understood. Our 

results revealed that a relatively high level of DegU~P inhibits the K-state by 

repressing the expression of srfA. The molecular mechanism of this repression has not 

been characterized. Indeed, while we know DegU is able to directly bind DNA, we 

don’t know if DegU~P is able to bind directly to the srfA promoter region to inhibit 

its expression.  

Competence for DNA transformation in B. subtilis is a consequence of noise 

in the basal expression of ComK. Competent cells are produced when the threshold 

level of ComK needed to activate the auto induction of comK transcription is 

exceeded by basal (ComK-independent) comK transcription. This basal level of comK 

transcription is set by changing amounts of Spo0A~P. Here we have shown that the 

probability that a cell will transition to the K-state is also determined by the ratio of 

DegU to DegU-P, which determine the binding affinity of ComK to its own promoter 
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and the stability of ComK, respectively. This work highlights a previously unknown 

pathway for K-state regulation: the control of the transcription of the srfA operon 

through DegU~P affects the stability of ComK which in turn affects the fraction of 

cells entering the K-state in undomesticated strains of B. subtilis. The working model 

of this pathway is presented in the figure X.  

 

 

Figure X: K-state regulation in domesticated and undomesticated strains of B. subtilis. 

 

In domesticated strains of B. subtilis, a mutation in the promoter region of 

degQ decreases the rate of transcription of degQ (Yang et al., 1986). This low level of 

DegQ decreases the phosphorylation of DegU through its cognate kinase DegS which 

inhibits the repression effect of DegU~P at the srfA promoter level. As a result, ComS 

is synthetized and inhibits the degradation of ComK through the proteolytic complex 
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MecA/ClpC/ClpP, allowing ComK to bind to its own promoter and develop 

competence. On the other hand, the undomesticated strains of B. subtilis do not carry 

the mutation in the degQ promoter region resulting in a higher synthesis of DegQ 

resulting in the accumulation of DegU~P. As a result, srfA transcription is repressed 

and so is competence expression. 

This work provides one more illustration of the importance of using wild 

isolates for the study of real-life biology.  
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RESUME: 
Les bactéries peuvent développer de nouvelles caractéristiques par mutation génétique 
ou par l’acquisition d’un matériel génétique exogène. Ce dernier, aussi appelé 
transfert de gène horizontal, peut se produire selon trois mécanismes différents : la 
conjugaison, la transduction et la transformation.  
L’organisme modèle, Bacillus subtilis, est naturellement transformable (ou 
compétent) si, et seulement si, le facteur de transcription ComK est produit. Au sein 
des souches domestiques, environ 15% de la population bactérienne devient 
compétente. Bien que les mécanismes de régulation de la compétence soient bien 
caractérisés, la raison pour laquelle les souches non domestiques  de B. subtilis sont 
peu transformables (1~2%) reste inconnue. Nous démontrons ici que c’est 
essentiellement dû à une mutation de transition dans le promoteur du gène degQ. La 
protéine DegQ est impliquée dans la régulation de la formation de biofilms, de la 
synthèse d’exoprotéases et de la transformation génétique.  
Ce travail permet de mettre en évidence une nouvelle voie de régulation dans le 
développement de la compétence génétique qui était jusque-là méconnue. En effet, 
toutes les souches domestiques de B. subtilis partagent la mutation ponctuelle dans la 
région du promoteur de degQ qui a pour conséquence de diminuer la synthèse 
protéique de DegQ et de favoriser, à plus long terme, la stabilité de ComK. Ainsi, 
dans le contexte des souches domestiques, ComK va permettre à un plus grand 
nombre de bactéries de devenir compétentes.  
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