, Final overlay for experiment 3. The fluorescence LM is overprinted in green. Top: Overlay visualized for one given slice. Bottom: Overlay visualized on the full 3D stack, Fig, vol.5

?. B. Toledo-acosta, X. Heiligenstein, G. Malandain, and P. Bouthemy, Intensity-based matching and registration for 3D correlative microscopy with large discrepancies
URL : https://hal.archives-ouvertes.fr/hal-01930740

, IEEE International Symposium on Biomedical Imaging (ISBI'18), 2018.

?. B. Toledo-acosta, A. Basset, P. Bouthemy, and C. Kervrann, Multi-scale spot segmentation with selection of image scales, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'17), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01561164

?. B. Toledo-acosta, P. Bouthemy, and C. Kervrann, A common image representation and a patch-based search for correlative light-electron-microscopy (CLEM) registration, IEEE International Symposium on Biomedical Imaging (ISBI'16), 2016.
URL : https://hal.archives-ouvertes.fr/hal-01400854

?. P. Bouthemy, B. M. Toledo-acosta, and B. Delyon, Robust selection of parametric motion models in image sequences, IEEE International Conference on Image Processing (ICIP'16), 2016.
URL : https://hal.archives-ouvertes.fr/hal-01400895

C. Agostinelli, Robust model selection in regression via weighted likelihood methodology, Statistics and Probability Letters, vol.56, issue.3, pp.289-300, 2002.

A. V. Agronskaia, J. A. Valentijn, L. F. Van-driel, C. T. Schneijdenberg, B. M. Humbel et al., Integrated fluorescence and transmission electron microscopy, Journal of Structural Biology, vol.164, issue.2, pp.183-189, 2008.

H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-723, 1974.

J. R. Anderson, B. W. Jones, J. H. Yang, M. V. Shaw, C. B. Watt et al.,

. Marc, A computational framework for ultrastructural mapping of neural circuitry, PLOS Biology, vol.7, issue.3, 2009.

S. Ayer and H. S. Sawhney, Layered representation of motion video using robust maximum-likelihood estimation of mixture models and MDL encoding, Proceedings of IEEE International Conference on Computer Vision, pp.777-784, 1995.

P. Bajcsy, A. Cardone, J. Chalfoun, M. Halter, D. Juba et al., Survey statistics of automated segmentations applied to optical imaging of mammalian cells, BMC Bioinformatics, vol.16, p.330, 2015.

A. Basset, J. Boulanger, J. Salamero, P. Bouthemy, and C. Kervrann, Adaptive Spot Detection With Optimal Scale Selection in Fluorescence Microscopy Images, IEEE Transactions on Image Processing, vol.24, issue.11, pp.4512-4527, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01248290

A. Basset, P. Bouthemy, and C. Kervrann, Recovery of motion patterns and dominant paths in videos of crowded scenes, IEEE International Conference on Image Processing, pp.184-188, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01097357

M. Basu, Gaussian-based edge-detection methods-a survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol.32, issue.3, pp.252-260, 2002.

H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, Speeded-Up Robust Features (SURF)

, Computer Vision and Image Understanding, vol.110, issue.3, pp.346-359, 2008.

M. S. Beckwith, K. S. Beckwith, P. Sikorski, N. T. Skogaker, T. H. Flo et al., Seeing a Mycobacterium-Infected Cell in Nanoscale 3d: Correlative Imaging by Light Microscopy and FIB/SEM Tomography, PLOS ONE, vol.10, issue.9, pp.1-19, 2015.

P. J. Besl and N. D. Mckay, A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.2, pp.239-256, 1992.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych et al., Imaging Intracellular Fluorescent Proteins at Nanometer Resolution, Science, vol.313, issue.5793, pp.1642-1645, 2006.

M. J. Black and P. Anandan, The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields. Computer Vision and Image Understanding, vol.63, pp.75-104, 1996.

D. Bohorquez, F. Haque, S. Medicetty, and R. A. Liddle, Correlative Confocal and 3D Electron Microscopy of a Specific Sensory Cell, Journal of Visualized Experiments, issue.101, p.52918, 2015.

P. Bouthemy, B. M. Acosta, and B. Delyon, Robust selection of parametric motion models in image sequences, IEEE International Conference on Image Processing, pp.3743-3747, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01400895

D. S. Bright and E. B. Steel, Two-dimensional top hat filter for extracting spots and spheres from digital images, Journal of Microscopy, vol.146, issue.2, pp.191-200, 1987.

K. P. Burnham and D. R. Anderson, Model selection and multimodel inference: a practical information-theoretic approach, 2002.

Y. S. Bykov, M. Cortese, J. A. Briggs, and R. Bartenschlager, Correlative light and electron microscopy methods for the study of virus-cell interactions, FEBS Letters, vol.590, issue.13, pp.1877-1895, 2016.

T. Cao, C. Zach, S. Modla, D. Powell, K. Czymmek et al., Multimodal registration for correlative microscopy using image analogies, Medical Image Analysis, vol.18, issue.6, pp.914-926, 2014.

A. Cardona, S. Saalfeld, S. Preibisch, B. Schmid, A. Cheng et al., An integrated micro-and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy, PLOS Biology, vol.8, issue.10, 2010.

S. Cha, Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions, 2007.

N. Chacko, K. G. Chan, and M. Liebling, Intensity-based point-spread-functionaware registration for multi-view applications in optical microscopy, IEEE International Symposium on Biomedical Imaging, pp.306-309, 2015.

W. Cheung and G. Hamarneh, N-SIFT: N-DIMENSIONAL SCALE INVARIANT FEATURE TRANSFORM FOR MATCHING MEDICAL IMAGES, IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.720-723, 2007.

A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens et al., Automated multi-modality image registration based on information theory, 1995.

K. Cortese, A. Diaspro, and C. Tacchetti, Advanced correlative light/electron microscopy: current methods and new developments using Tokuyasu cryosections, Journal of Histochemistry and Cytochemistry, vol.57, issue.12, pp.1103-1112, 2009.

K. Cortese, G. Vicidomini, M. C. Gagliani, P. Boccacci, A. Diaspro et al., Chapter 6-3d HDO-CLEM: Cellular Compartment Analysis by Correlative LightElectron Microscopy on Cryosection, Correlative Light and Electron MIcroscopy, vol.111, pp.95-115, 2012.

D. Cremers and S. Soatto, Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation, International Journal of Computer Vision, vol.62, issue.3, pp.249-265, 2005.

P. De-boer, J. P. Hoogenboom, and B. N. Giepmans, Correlated light and electron microscopy: ultrastructure lights up, Nature Methods, vol.12, p.503, 2015.

A. Desolneux, L. Moisan, and J. Morel, A Grouping Principle and Four Applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.4, pp.508-513, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00170783

R. M. Dickson, A. B. Cubitt, R. Y. Tsien, and W. Moerner, On/off blinking and switching behaviour of single molecules of green fluorescent protein, Nature, vol.388, issue.6640, p.355, 1997.

J. Dubochet, M. Adrian, J. Chang, J. Homo, J. Lepault et al., Cryo-electron microscopy of vitrified specimens, Quarterly reviews of biophysics, vol.21, issue.2, pp.129-228, 1988.
DOI : 10.1017/s0033583500004297

P. A. V.-d.-elsen, J. B. Maintz, E. J. Pol, and M. A. Viergever, Automatic registration of CT and MR brain images using correlation of geometrical features, IEEE Transactions on Medical Imaging, vol.14, issue.2, pp.384-396, 1995.

M. A. Fischler and R. C. Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, Communications of the ACM, vol.24, issue.6, pp.381-395, 1981.
DOI : 10.1016/b978-0-08-051581-6.50070-2

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA460585&Location=U2&doc=GetTRDoc.pdf

D. Fortun, P. Bouthemy, and C. Kervrann, Optical flow modeling and computation: A survey, Computer Vision and Image Understanding, vol.134, pp.1-21, 2015.
DOI : 10.1016/j.cviu.2015.02.008

URL : https://hal.archives-ouvertes.fr/hal-01104081

E. François and P. Bouthemy, Derivation of qualitative information in motion analysis, Image and Vision Computing, vol.8, issue.4, pp.279-288, 1990.

J. Frank, Averaging of low exposure electron micrographs of non-periodic objects, Ultramicroscopy, vol.1, issue.2, pp.159-162, 1975.

J. Franks, C. T. Wallace, M. Shibata, M. Suga, N. Erdman et al., Correlative Fluorescence and Electron Microscopy in 3D-Scanning Electron Microscope Perspective, vol.80, pp.1-12, 2017.
DOI : 10.1002/cpcy.18

Y. Fukuda, N. Schrod, M. Schaffer, L. R. Feng, W. Baumeister et al., Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling, Ultramicroscopy, vol.143, pp.15-23, 2014.
DOI : 10.1016/j.ultramic.2013.11.008

N. Gheissari and A. Bab-hadiashar, Motion analysis: model selection and motion segmentation, 12th International Conference on Image Analysis and Processing, pp.442-447, 2003.
DOI : 10.1109/iciap.2003.1234090

N. Gheissari and A. Bab-hadiashar, A Comparative Study of Model Selection Criteria for Computer Vision Applications, Image and Vision Computing, vol.26, issue.12, pp.1636-1649, 2008.

A. Gil, O. M. Mozos, M. Ballesta, and O. Reinoso, A comparative evaluation of interest point detectors and local descriptors for visual SLAM. Machine Vision and Applications, vol.21, pp.905-920, 2010.

. Joy, Scanning electron microscopy and X-ray microanalysis, 2017.

B. Grosjean and L. Moisan, A-contrario Detectability of Spots in Textured Backgrounds, Journal of Mathematical Imaging and Vision, vol.33, issue.3, p.313, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00534713

L. Gueguen and M. Pesaresi, Multi scale Harris corner detector based on Differential Morphological Decomposition, Pattern Recognition Letters, vol.32, issue.14, pp.1714-1719, 2011.
DOI : 10.1016/j.patrec.2011.07.021

S. Halary, S. Duperron, and T. Boudier, Direct Image-Based Correlative Microscopy Technique for Coupling Identification and Structural Investigation of Bacterial Symbionts Associated with Metazoans, Applied and Environmental Microbiology, vol.77, issue.12, pp.4172-4179, 2011.

S. Handschuh, N. Baeumler, T. Schwaha, and B. Ruthensteiner, A correlative approach for combining microCT, light and transmission electron microscopy in a single 3d scenario, Frontiers in Zoology, vol.10, issue.1, p.44, 2013.
DOI : 10.1186/1742-9994-10-44

URL : https://frontiersinzoology.biomedcentral.com/track/pdf/10.1186/1742-9994-10-44?site=frontiersinzoology.biomedcentral.com

C. Harris and M. Stephens, A combined corner and edge detector, Proceedings of Fourth Alvey Vision Conference, pp.147-151, 1988.
DOI : 10.5244/c.2.23

URL : http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Y. He, A. B. Hamza, and H. Krim, A generalized divergence measure for robust image registration, IEEE Transactions on Signal Processing, vol.51, issue.5, pp.1211-1220, 2003.

X. Heiligenstein, J. Heiligenstein, C. Delevoye, I. Hurbain, S. Bardin et al., The CryoCapsule: Simplifying Correlative Light to Electron Microscopy, vol.15, pp.700-716, 2014.
DOI : 10.1111/tra.12164

URL : https://hal.archives-ouvertes.fr/hal-01712232

X. Heiligenstein, P. Paul-gilloteaux, M. Belle, G. Raposo, and J. Salamero, eC-CLEM: Flexible Multidimensional Registration Software for Correlative Microscopies with Refined Accuracy Mapping. Microscopy and Microanalysis, vol.23, pp.360-361, 2017.

S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Optics letters, vol.19, issue.11, pp.780-782, 1994.

R. Henderson, J. M. Baldwin, T. Ceska, F. Zemlin, E. Beckmann et al., Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy, Journal of molecular biology, vol.213, issue.4, pp.899-929, 1990.

D. L. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, Medical image registration, Physics in Medicine and Biology, vol.46, issue.3, pp.1-45, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00615977

L. Hodgson, D. Nam, J. Mantell, A. Achim, and P. Verkade, Retracing in correlative light electron microscopy: where is my object of interest?, Methods in Cell Biology, vol.124, pp.1-21, 2014.

L. Hogrebe, A. R. Paiva, E. Jurrus, C. Christensen, M. Bridge et al., Serial section registration of axonal confocal microscopy datasets for long-range neural circuit reconstruction, Journal of Neuroscience Methods, vol.207, issue.2, pp.200-210, 2012.

P. W. Holland and R. E. Welsch, Robust regression using iteratively reweighted least-squares, Communications in Statistics-Theory and Methods, vol.6, issue.9, pp.813-827, 1977.

B. Huang, H. Babcock, and X. Zhuang, Breaking the Diffraction Barrier: SuperResolution Imaging of Cells, Cell, vol.143, issue.7, pp.1047-1058, 2010.

B. Huang, M. Bates, and X. Zhuang, Super resolution fluorescence microscopy, Annual Review of Biochemistry, vol.78, pp.993-1016, 2009.

P. J. Huber, Robust Statistics, 1981.

T. Jabid, M. H. Kabir, and O. Chae, Local Directional Pattern (LDP) for face recognition, Digest of Technical Papers International Conference on Consumer Electronics, pp.329-330, 2010.

M. Jain, J. C. Gemert, H. Jégou, P. Bouthemy, and C. G. Snoek, Tubelets: Unsupervised action proposals from spatiotemporal super-voxels, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01561056

A. Jaiswal, W. J. Godinez, R. Eils, M. J. Lehmann, and K. Rohr, Tracking Virus Particles in Fluorescence Microscopy Images Using Multi-Scale Detection and MultiFrame Association, IEEE Transactions on Image Processing, vol.24, issue.11, pp.4122-4136, 2015.

N. Jiménez, E. Van-donselaar, D. D. Winter, K. Vocking, A. Verkleij et al.,

, Gridded Aclar: preparation methods and use for correlative light and electron microscopy of cell monolayers, by TEM and FIB-SEM, Journal of Microscopy, vol.237, issue.2, pp.208-220, 2010.

A. C. Jirapatnakul, S. V. Fotin, A. P. Reeves, A. M. Biancardi, D. F. Yankelevitz et al., Automated nodule location and size estimation using a multi-scale BIBLIOGRAPHY Laplacian of Gaussian filtering approach, International Conference of the IEEE Engineering in Medicine and Biology Society, pp.1028-1031, 2009.

H. J. Johnson, M. M. Mccormick, and L. Ibanez, Template:The ITK Software Guide Book 1: Introduction and Development Guidelines, vol.1, 2015.

K. Kanatani, Geometric Information Criterion for Model Selection, International Journal of Computer Vision, vol.26, issue.3, pp.171-189, 1998.

K. Kanatani, Model selection for geometric inference, Proceedings of Asian Conference on Computer Vision, 2002.

M. A. Karreman, L. Mercier, N. L. Schieber, T. Shibue, Y. Schwab et al., Correlating Intravital Multi-Photon Microscopy to 3d Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points, PLOS ONE, vol.9, issue.12, pp.1-23, 2014.

M. A. Karreman, B. Ruthensteiner, L. Mercier, N. L. Schieber, G. Solecki et al., Chapter 13-Find your way with X-Ray: Using microCT to correlate in vivo imaging with 3d electron microscopy, Correlative Light and Electron Microscopy III, vol.140, pp.277-301, 2017.

K. Kobayashi, D. Cheng, M. Huynh, K. R. Ratinac, P. Thordarson et al., Imaging fluorescently labeled complexes by means of multidimensional correlative light and transmission electron microscopy: practical considerations, Methods in Cell Biology, vol.111, pp.1-20, 2012.

I. Kolotuev, Y. Schwab, and M. Labouesse, A precise and rapid mapping protocol for correlative light and electron microscopy of small invertebrate organisms, Biol. Cell, vol.102, issue.2, pp.121-132, 2010.

H. Kong, H. C. Akakin, and S. E. Sarma, A Generalized Laplacian of Gaussian Filter for Blob Detection and Its Applications, IEEE Transactions on Cybernetics, vol.43, issue.6, pp.1719-1733, 2013.

S. Konishi and G. Kitagawa, Information Criteria and Statistical Modeling, Biometrics, vol.64, issue.2, pp.661-661, 2008.

B. G. Kopek, M. G. Paez-segala, G. Shtengel, K. A. Sochacki, M. G. Sun et al., Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples, Nature Protocols, vol.12, p.916, 2017.

W. Kukulski, M. Schorb, S. Welsch, A. Picco, M. Kaksonen et al., Precise, correlated fluorescence microscopy and electron tomography of lowicryl sections using fluorescent fiducial markers, Methods in Cell Biology, vol.111, pp.235-257, 2012.

W. Kukulski, M. Schorb, S. Welsch, A. Picco, M. Kaksonen et al., Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision, The Journal of Cell Biology, vol.192, issue.1, pp.111-119, 2011.

Y. Leng, Light Microscopy, Materials Characterization, pp.1-44, 2008.

X. Lin, S. Ruan, T. Qiu, and D. Guo, Nonrigid medical image registration based on mesh deformation constraints, Computational and Mathematical Methods in Medicine, p.373082, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00946623

T. Lindeberg, Scale-Space for Discrete Signals, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.3, pp.234-254, 1990.

T. Lindeberg, Scale-Space Theory in Computer Vision, 1993.

T. Lindeberg, Feature Detection with Automatic Scale Selection, International Journal of Computer Vision, vol.30, issue.2, pp.79-116, 1998.

C. S. López, C. Bouchet-marquis, C. P. Arthur, J. L. Riesterer, G. Heiss et al., Chapter 8-A fully integrated, three-dimensional fluorescence to electron microscopy correlative workflow, Correlative Light and Electron Microscopy III, vol.140, pp.149-164, 2017.

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.

M. S. Lucas, M. Gunthert, P. Gasser, F. Lucas, and R. Wepf, Bridging microscopes: 3d correlative light and scanning electron microscopy of complex biological structures, Methods in Cell Biology, vol.111, pp.325-356, 2012.

J. A. Machado, Robust Model Selection and M-Estimation, Econometric Theory, vol.9, issue.3, pp.478-493, 1993.

B. Maco, M. Cantoni, A. Holtmaat, A. Kreshuk, F. A. Hamprecht et al., Semiautomated correlative 3D electron microscopy of in vivo-imaged axons and dendrites, Nature Protocols, vol.9, pp.1354-1366, 2014.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, Multimodality image registration by maximization of mutual information, IEEE Transactions on Medical Imaging, vol.16, issue.2, pp.187-198, 1997.

J. B. Maintz, P. A. Elsen, and M. A. Viergever, Evaluation of ridge seeking operators for multimodality medical image matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.4, pp.353-365, 1996.

J. B. Maintz and M. A. Viergever, A survey of medical image registration, Medical Image Analysis, vol.2, issue.1, pp.1-36, 1998.

C. L. Mallows, Some Comments on C p, Technometrics, vol.15, issue.4, pp.661-675, 1973.

S. Marsland, C. J. Twining, and C. J. Taylor, A Minimum Description Length Objective Function for Groupwise Non-rigid Image Registration, Image and Vision Computing, vol.26, issue.3, pp.333-346, 2008.

J. Matas, O. Chum, M. Urban, and T. Pajdla, Robust wide-baseline stereo from maximally stable extremal regions, Image and Vision Computing, vol.22, issue.10, pp.761-767, 2004.

Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H. Shum, Full-frame video stabilization with motion inpainting, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.7, pp.1150-1163, 2006.

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, Nonrigid multimodality image registration, Proceedings of Medical Imaging, vol.4322, pp.4322-4322, 2001.

P. Meer, Robust techniques for computer vision, pp.107-190, 2004.

C. Meisslitzer-ruppitsch, C. Rohrl, J. Neumuller, M. Pavelka, and A. Ellinger, Photooxidation technology for correlated light and electron microscopy, Journal of Microscopy, vol.235, issue.3, pp.322-335, 2009.

A. Merdes and J. De-mey, Kinetochore Microtubules, Analyzed by Correlated Light and Immunoelectron Microscopy, Microtubule Dynamics: Methods and Protocols, pp.209-221, 2011.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas et al., A Comparison of Affine Region Detectors, International Journal of Computer Vision, vol.65, issue.1-2, pp.43-72, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00548528

M. S. Miri, M. D. Abràmoff, Y. H. Kwon, and M. K. Garvin, Multimodal registration of SD-OCT volumes and fundus photographs using histograms of oriented gradients, Biomedical Optics Express, vol.7, issue.12, pp.5252-5267, 2016.

S. Müller and A. H. Welsh, Outlier Robust Model Selection in Linear Regression, Journal of the American Statistical Association, vol.100, issue.472, pp.1297-1310, 2005.

W. E. Moerner and L. Kador, Optical detection and spectroscopy of single molecules in a solid, Physical review letters, vol.62, issue.21, p.2535, 1989.

G. E. Murphy, K. Narayan, B. C. Lowekamp, L. M. Hartnell, J. A. Heymann et al., Correlative 3D imaging of whole mammalian cells with light and electron microscopy, Journal of Structural Biology, vol.176, issue.3, pp.268-278, 2011.

D. Nam, J. Mantell, L. Hodgson, D. Bull, P. Verkade et al., Feature-based registration for correlative light and electron microscopy images, IEEE International Conference on Image Processing, pp.3567-3571, 2014.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi et al., Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film, Journal of Structural Biology, vol.169, issue.3, pp.438-449, 2010.

J. M. Odobez and P. Bouthemy, Robust Multiresolution Estimation of Parametric Motion Models, Journal of Visual Communication and Image Representation, vol.6, issue.4, pp.348-365, 1995.

F. P. Oliveira and J. M. Tavares, Medical image registration: a review, Computer Methods in Biomechanics and Biomedical Engineering, vol.17, issue.2, pp.73-93, 2014.

J. Olivo-marin, Extraction of spots in biological images using multiscale products, Pattern Recognition, vol.35, issue.9, pp.1989-1996, 2002.

B. A. Othman, C. Greenwood, A. F. Abuelela, A. A. Bharath, S. Chen et al., Correlative LightElectron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity, Advanced Healthcare Materials, vol.5, issue.11, pp.1310-1325, 2016.

K. Pan, A. Kokaram, J. Hillebrand, and M. Ramaswami, Gaussian mixture models for spots in microscopy using a new split/merge em algorithm, IEEE International Conference on Image Processing, pp.3645-3648, 2010.

C. J. Peddie, K. Blight, E. Wilson, C. Melia, J. Marrison et al., Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells, Ultramicroscopy, vol.143, pp.3-14, 2014.

J. Pérez-rúa, A. Basset, and P. Bouthemy, Detection and Localization of Anomalous Motion in Video Sequences from Local Histograms of Labeled Affine Flows, Frontiers in ICT, vol.4, issue.10, 2017.

A. Perfumo, A. Elsaesser, S. Littmann, R. A. Foster, M. M. Kuypers et al., Epifluorescence, SEM, TEM and nanoSIMS image analysis of the cold phenotype of Clostridium psychrophilum at subzero temperatures, FEMS Microbiology Ecology, vol.90, issue.3, pp.869-882, 2014.

M. Perkovic, M. Kunz, U. Endesfelder, S. Bunse, C. Wigge et al.,

. Frangakis, Correlative Light-and Electron Microscopy with chemical tags, Journal of Structural Biology, vol.186, issue.2, pp.205-213, 2014.

J. Piovano and T. Papadopoulo, Local Statistic Based Region Segmentation with Automatic Scale Selection, Proceedings of European Conference on Computer Vision, pp.486-499, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00423331

J. P. Pluim, J. B. Maintz, and M. A. Viergever, Image registration by maximization of combined mutual information and gradient information, IEEE Transactions on Medical Imaging, vol.19, issue.8, pp.809-814, 2000.

J. P. Pluim, J. B. Maintz, and M. A. Viergever, Mutual-information-based registration of medical images: a survey, IEEE Transactions on Medical Imaging, vol.22, issue.8, pp.986-1004, 2003.

G. Qian and H. R. Künsch, On model selection via stochastic complexity in robust linear regression, Journal of Statistical Planning and Inference, vol.75, issue.1, pp.91-116, 1998.

S. Ram, J. J. Rodríguez, and G. Bosco, Segmentation and detection of fluorescent 3d spots, Cytometry Part A, vol.81, issue.3, pp.198-212, 2012.

A. Rényi, On Measures of Entropy and Information, Proceedings of Berkeley Symposium on Mathematical Statistics and Probability, pp.547-561, 1961.

S. H. Rezatofighi, R. Hartley, and W. E. Hughes, A new approach for spot detection in total internal reflection fluorescence microscopy, IEEE International Symposium on Biomedical Imaging, pp.860-863, 2012.

J. Rissanen, Modeling by shortest data description, Automatica, vol.14, issue.5, pp.465-471, 1978.

A. Roche, X. Pennec, G. Malandain, and N. Ayache, Rigid registration of 3-D ultrasound with MR images: a new approach combining intensity and gradient information, IEEE Transactions on Medical Imaging, vol.20, issue.10, pp.1038-1049, 2001.
URL : https://hal.archives-ouvertes.fr/cea-00333699

M. Rohde, , 2011.

E. Ronchetti, Robust model selection in regression, Statistics & Probability Letters, vol.3, issue.1, pp.21-23, 1985.

E. Ronchetti and R. G. Staudte, A Robust Version of Mallows's C P, Journal of the American Statistical Association, vol.89, issue.426, pp.550-559, 1994.

E. Rosten and T. Drummond, Fusing points and lines for high performance tracking, Proceedings of IEEE International Conference on Computer Vision, 2005.

G. G. Roussas and G. G. Roussas, A course in mathematical statistics, 1997.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach et al., Nonrigid registration using free-form deformations: application to breast MR images, IEEE Transactions on Medical Imaging, vol.18, issue.8, pp.712-721, 1999.

D. B. Russakoff, C. Tomasi, T. Rohlfing, and C. R. Maurer, Image Similarity Using Mutual Information of Regions, pp.596-607, 2004.

M. R. Russell, T. R. Lerner, J. J. Burden, D. O. Nkwe, A. Pelchen-matthews et al.,

J. Domart, A. Durgan, M. L. Weston, C. J. Jones, R. Peddie et al., 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy, Journal of Cell Science, vol.130, issue.1, pp.278-291, 2017.

P. Ruusuvuori, T. Äijö, S. Chowdhury, C. Garmendia-torres, J. Selinummi et al., Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images, BMC Bioinformatics, vol.11, issue.1, pp.1-17, 2010.

D. Sage, F. R. Neumann, F. Hediger, S. M. Gasser, and M. Unser, Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics, IEEE Transactions on Image Processing, vol.14, issue.9, pp.1372-1383, 2014.

H. Samet and M. Tamminen, Efficient component labeling of images of arbitrary dimension represented by linear bintrees, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.10, issue.4, pp.579-586, 1988.

M. J. Sanderson, I. Smith, I. Parker, M. D. Bootman, and . Microscopy, pdb.top071795-pdb.top071795, 2014.

A. Sartori, R. Gatz, F. Beck, A. Rigort, W. Baumeister et al., Correlative microscopy: bridging the gap between fluorescence light microscopy and cryoelectron tomography, Journal of Structural Biology, vol.160, issue.2, pp.135-145, 2007.

L. Schaad, R. Hlushchuk, S. Barré, R. Gianni-barrera, D. Haberthür et al., Correlative Imaging of the Murine Hind Limb Vasculature and Muscle Tissue by MicroCT and Light Microscopy, Scientific Reports, vol.7, p.41842, 2017.

K. Schindler, D. Suter, and H. Wang, A model-selection framework for multibody structure-and-motion of image sequences, International Journal of Computer Vision, vol.79, issue.2, pp.159-177, 2008.

C. Schmid, R. Mohr, and C. Bauckhage, Evaluation of Interest Point Detectors, International Journal of Computer Vision, vol.37, issue.2, pp.151-172, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00548302

M. Schorb and J. A. Briggs, Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity, Ultramicroscopy, vol.143, pp.24-32, 2014.

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.

T. Senst, V. Eiselein, and T. Sikora, Robust Local Optical Flow for Feature Tracking, IEEE Transactions on Circuits and Systems for Video Technology, vol.22, pp.1377-1387, 2012.

D. Shen and C. Davatzikos, HAMMER: hierarchical attribute matching mechanism for elastic registration, IEEE Transactions on Medical Imaging, vol.21, issue.11, pp.1421-1439, 2002.

K. A. Sjollema, U. Schnell, J. Kuipers, R. Kalicharan, and B. N. Giepmans, Correlated light microscopy and electron microscopy, Methods in Cell Biology, vol.111, pp.157-173, 2012.

I. Smal, M. Loog, W. Niessen, and E. Meijering, Quantitative Comparison of Spot Detection Methods in Fluorescence Microscopy, IEEE Transactions on Medical Imaging, vol.29, issue.2, pp.282-301, 2010.

I. Smal, W. Niessen, and E. Meijering, A new detection scheme for multiple object tracking in fluorescence microscopy by joint probabilistic data association filtering, IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.264-267, 2008.

P. Soille, Morphological Image Analysis: Principles and Applications, 2003.

G. E. Sosinsky, B. N. Giepmans, T. J. Deerinck, G. M. Gaietta, and M. H. Ellisman, Markers for correlated light and electron microscopy, Methods Cell Biol, vol.79, pp.575-591, 2007.

A. Sotiras, C. Davatzikos, and N. Paragios, Deformable Medical Image Registration: A Survey, IEEE Transactions on Medical Imaging, vol.32, issue.7, pp.1153-1190, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00684715

C. Spiegelhalter, J. Laporte, and Y. Schwab, Correlative Light and Electron Microscopy: From Live Cell Dynamic to 3d Ultrastructure, Electron Microscopy, vol.1117, pp.485-501, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00452375

C. Studholme, E. Novotny, I. G. Zubal, and J. S. Duncan, Estimating Tissue Deformation between Functional Images Induced by Intracranial Electrode Implantation Using Anatomical {MRI}, NeuroImage, vol.13, issue.4, pp.561-576, 2001.

H. A. Sturges, The Choice of a Class Interval, Journal of the American Statistical Association, vol.21, issue.153, pp.65-66, 1926.

R. Szeliski, Image Alignment and Stitching: A Tutorial. Found. Trends. Comput. Graph. Vis, vol.2, issue.1, pp.1-104, 2006.

D. Thomann, D. R. Rines, P. K. Sorger, and G. Danuser, Automatic fluorescent tag detection in 3d with super-resolution: application to the analysis of chromosome movement, Journal of Microscopy, vol.208, issue.1, pp.49-64, 2002.

B. M. Toledo-acosta, A. Basset, P. Bouthemy, and C. Kervrann, Multi-scale spot segmentation with selection of image scales, IEEE International Conference on Acoustics, Speech and Signal Processing, pp.1912-1916, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01561164

B. M. Toledo-acosta, P. Bouthemy, and C. Kervrann, A common image representation and a patch-based search for correlative light-electron-microscopy (CLEM) BIBLIOGRAPHY registration, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp.257-260, 2016.

B. M. Toledo-acosta, X. Heiligenstein, G. Malandain, and P. Bouthemy, Intensitybased matching and registration for 3D correlative microscopy with large discrepancies, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI), 2018.
URL : https://hal.archives-ouvertes.fr/hal-01930740

P. H. Torr, An assessment of information criteria for motion model selection, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.47-52, 1997.

B. Triggs, Detecting Keypoints with Stable Position, Orientation and Scale under Illumination Changes, European Conference on Computer Vision, vol.3024, pp.100-113, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00548533

S. Tu and L. Xu, A Theoretical Investigation of Several Model Selection Criteria for Dimensionality Reduction, Pattern Recognition Letters, vol.33, issue.9, pp.1117-1126, 2012.

C. Van-rijnsoever, V. Oorschot, and J. Klumperman, Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections, Nature Methods, vol.5, issue.11, pp.973-980, 2008.

T. Veit, F. Cao, and P. Bouthemy, An a contrario Decision Framework for RegionBased Motion Detection, International Journal of Computer Vision, vol.68, issue.2, pp.163-178, 2006.

G. Vicidomini, M. C. Gagliani, M. Canfora, K. Cortese, F. Frosi et al.,

D. Fiore, P. Boccacci, A. Diaspro, and C. Tacchetti, High data output and automated 3d correlative light-electron microscopy method, Traffic, vol.9, issue.11, pp.1828-1838, 2008.

L. Vincent, Morphological grayscale reconstruction in image analysis: applications and efficient algorithms, IEEE Transactions on Image Processing, vol.2, issue.2, pp.176-201, 1993.

P. Viola and W. M. Wells, Alignment by Maximization of Mutual Information, International Journal in Computer Vision, vol.24, issue.2, pp.137-154, 1997.

S. Watanabe, A. Punge, G. Hollopeter, K. I. Willig, R. J. Hobson et al., Protein localization in electron micrographs using fluorescence nanoscopy, Nature Methods, vol.8, issue.1, pp.80-84, 2011.

M. Weber, M. Mickoleit, and J. Huisken, Chapter 11-light sheet microscopy, Quantitative Imaging in Cell Biology, vol.123, pp.193-215, 2014.

H. Wechsler, Z. Duric, F. Li, and V. Cherkassky, Motion estimation using statistical learning theory, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.4, pp.466-478, 2004.

W. Wein, S. Brunke, A. Khamene, M. R. Callstrom, and N. Navab, Automatic CTultrasound registration for diagnostic imaging and image-guided intervention, Medical Image Analysis, vol.12, issue.5, pp.577-585, 2008.

P. William, H. Viola, S. Atsumi, R. Nakajima, and . Kikinis, Multi-modal volume registration by maximization of mutual information, Medical Image Analysis, vol.1, issue.1, pp.35-51, 1996.

D. B. Williams and C. B. Carter, The Transmission Electron Microscope, Transmission Electron Microscopy: A Textbook for Materials Science, pp.3-17, 1996.

T. J. Woehl, S. Kashyap, E. Firlar, T. Perez-gonzalez, D. Faivre et al., Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging. Microscopy and Microanalysis, vol.21, pp.1499-1500, 2015.

J. Yang and H. Li, Dense, accurate optical flow estimation with piecewise parametric model, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.1019-1027, 2015.

J. Yang, J. P. Williams, Y. Sun, R. S. Blum, and C. Xu, A robust hybrid method for nonrigid image registration, Pattern Recognition, vol.44, issue.4, pp.764-776, 2011.

A. Yilmaz, O. Javed, and M. Shah, Object Tracking: A Survey. ACM Comput. Surv, vol.38, issue.4, 2006.

B. Zhang, M. J. Fadili, J. L. Starck, and J. C. Olivo-marin, Multiscale VarianceStabilizing Transform for Mixed-Poisson-Gaussian Processes and its Applications in Bioimaging, IEEE International Conference on Image Processing, vol.6, 2007.

B. Zitová and J. Flusser, Image registration methods: a survey, Image and Vision Computing, vol.21, issue.11, pp.977-1000, 2003.