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Abstract

How the brain wires up during development remains an open question in the scientific
community across disciplines. Fruitful efforts have been made to elucidate the mechanisms
of axonal growth, such as pathfinding and guiding molecules. However, recent evidence
suggests other actors to be involved in neuron growth in vivo. Notably, axons develop
in populations and embedded in mechanically constrained environments. Thus, to fully
understand this dynamic process, one must take into account collective mechanisms and
mechanical interactions within the axonal populations. However, techniques to directly
measure this from living brains are today lacking or heavy to implement.

This thesis emerges from a multidisciplinary collaboration, to shed light on axonal
development in vivo and how adult complex axonal morphologies are attained. Our work
is inspired and validated from images of single wild type and mutated Drosophila Yy axons,
which we have segmented and normalized.

We first proposed a mathematical framework for the morphological study and classifica-
tion of axonal groups. From this analysis we hypothesized that axon growth derives from
a stochastic process, and that the variability and complexity of axonal trees result from its
intrinsic nature, as well as from elongation strategies developed to overcome the mechanical
constraints of the developing brain. We designed a mathematical model of single axon growth
based on Gaussian Markov Chains with two parameters, accounting for axon rigidity and
attraction to the target field. We estimated the model parameters from data, and simulated
the growing axons embedded in spatially constraint populations to test our hypothesis.

We dealt with themes from applied mathematics as well as from biology, and unveiled
unexplored effects of collective growth on axonal development in vivo.

Key words: axon growth, morphogenesis, stochastic modelling, Gaussian Markov chains,

mechanical interactions, axon branching, elongation strategies



Résumé

La construction du cerveau et de ses connexions pendant le développement reste une question
ouverte dans la communauté scientifique. Des efforts fructueux ont été faits pour élucider
les mécanismes de la croissance axonale, tels que la guidance axonale et les molécules de
guidage. Cependant, des preuves récentes suggerent que d’autres acteurs seraient impliqués
dans la croissance des neurones in vivo. Notamment, les axones se développent dans
des environnements mécaniquement contraints. Ainsi, pour bien comprendre ce processus
dynamique, il faut prendre en compte les mécanismes collectifs et les interactions mécaniques
au sein des populations axonales. Néanmoins, les techniques pour mesurer directement cela
a partir de cerveaux vivants sont aujourd’hui insuffisantes ou lourdes a mettre en ceuvre.

Cette these résulte d’une collaboration multidisciplinaire, pour faire la lumicre sur le
développement axonal in vivo et les morphologies complexes des axones adultes. Notre
travail a été€ inspiré et validé a partir d’images d’axones Y individuels chez la drosophile, de
type sauvage et modifiés génétiquement, que nous avons segmentés et normalisés.

Nous avons d’abord proposé un cadre mathématique pour 1’étude morphologique et la
classification des groupes axonaux. A partir de cette analyse, nous avons émis 1’hypothese que
la croissance axonale dérive d’un processus stochastique et que la variabilité et la complexité
des arbres axonaux résultent de sa nature intrinseque, ainsi que des stratégies d’élongation
développées pour surmonter les contraintes mécaniques du cerveau en développement. Nous
avons con¢u un modele mathématique de la croissance d’un axone isolé fondé sur des chaines
de Markov gaussiennes avec deux parametres, représentant la rigidité axonale et I’ attraction
du champ cible. Nous avons estimé les parametres de ce modele a partir de données réelles
et simulé la croissance des axones a 1’échelle de populations et avec des contraintes spatiales
pour tester notre hypothese.

Nous avons abordé des themes de mathématiques appliquées ainsi que de la biologie, et
dévoilé des effets inexplorés de la croissance collective sur le développement axonal in vivo.

Mots clés: croissance axonale, morphogenese, modélisation stochastique, chaines de

Markov gaussiennes, interactions mécaniques, ramification axonale, stratégies d’élongation
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Chapter 1

Introduction

1.1 Motivation and goals

In the nervous system, neurons transmit information to others by projecting long and branched
extensions called axons. This thesis explores the vast and complex subject of neuron
development and axonal morphogenesis in vivo, using diverse domains such as applied
mathematics, probability theory, modelling and informatics. Intrinsically interdisciplinary,
this work proposes new hypotheses and answers on this fundamental subject, and intends
to close the existent gap between plausible experimentation and the complex reality of
biological mechanisms.

During the last decades, important advances have been achieved in recognizing the main
factors implicated in neuron development. External guiding cues involved in axonal pathfind-
ing have been largely described, as well as the internal molecular machinery that allows
axonal elongation, including many of the biochemical pathways regulating these processes.
Interestingly, recent work shows that axons are not only capable of sensing and responding to
external chemical signals, but are also guided by local changes in the mechanical properties
of their surroundings. While most of these studies consider as mechanical environment
mainly the extracellular matrix and the general mechanical properties of the tissue, little is
known about intra-population axon-axon mechanical interactions and space confinement. In
consequence, the effect of these physical phenomena on axon development and how they
influence their final morphologies are still unknown. Furthermore, to measure mechanical
interactions between individual growing neurons in the developing brain is experimentally
not trivial, as tools to reproducibly visualize and manipulate axon-axon interactions in vivo
in populations of growing neurons are either lacking or heavy to implement.

In this work we aim to better understand the origin of the complexity and variability of

adult axonal morphologies as a consequence of their developmental process in vivo. Thus,



2 Introduction

we consider and integrate the mentioned intra-population mechanical interactions in the
otherwise better known individual axonal growth process. To do so, we propose in silico
approaches validated on available in vivo data to expand the information given by the latter.
As aresult, we show the importance of considering axonal development as a dynamic and
complex process of collective morphogenesis, rather than the sum of the growth of isolated
individual axons.

Specifically, we first proposed an original classification framework to better characterize
axonal morphologies and understand the similarities and differences between genotypically
different axon groups. The framework consists of the stochastic modelling of relevant mor-
phological features, the estimation of the model parameters from data and the classification
of axons using likelihood analysis, enriched with statistics for a global description of ax-
onal groups. Next, we designed a mechanistic individual axon elongation model based on
Gaussian Markov chains with biologically related parameters, capable of generating realistic
axonal morphologies. The estimation of the model parameters from real data happened
to be not trivial, so we explored different approaches to solve this question. Using this
individual axon growth model, we simulated the development of entire axonal populations
considering external constraints such as an attractive guiding source, realistic geometrical
limits and volume exclusion between the growing axons. These simulations allowed us to
analyse the emergent effects of considering a population of axons represented as interacting
self propelled elements. The validation of the simulation results with real data showed
that our model is able to reproduce realistic morphologies. Interestingly, our simulations
reproduced morphological characteristics of the axonal population that had not been included
in the model, but rather emerged from its rules. Because our framework is based on the real
biological process, it allowed us to better understand some aspects of axonal development in
vivo. Finally, we could reproduce different mutation phenotypes by changing related aspects
in our model. In consequence, our approach nicely assembles the three desirable aspects of a
model: to be generative, explicative and predictive.

This thesis is the result of a solid collaboration with biologists from the Besse team at
the Institute de Biologie de Valrose, Nice, France. They have provided us with rich image
datasets from which this work was built, as well as biological expertise and advice. The
stress of this thesis has been set on the inter collaboration and continuous feedback between
mathematical modelling techniques and biological pertinence. Our dataset, composed of 3D
confocal images of fixed in vivo single Drosophila y axons at adult stage, as well as /ive 4D
sequences of single or a group of Drosophila y axons growing during metamorphosis, not

only inspired our model, but was also used to estimate its parameters, as well as to validate
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its results and predictions. Wild-type axons as well as different mutant genotypes where

considered to enrich the study.

1.2 Main objectives
In summary, our two main goals are:

* To develop a methodological framework for the analysis of axonal shapes based on
morphometric features and validate it with maximum likelihood classification of real

axons.

* To propose a model for axonal development that considers the stochastic path genera-
tion and branching mechanisms with parameters that can be estimated from data; and
that allows a straightforward implementation of population growth considering exter-
nal constraints such as an attractive/repellent source, geometrical limits and volume
exclusion with other axons. Ideally, this model should be generative, explicative and
predictive of different real axon genotypes.

1.3 Main Contributions

The major contributions of this work are:

In modelling

* Tree-like structures classification method based on the stochastic modelling of mor-
phological features.

» Two-parameter stochastic model to represent trajectories in space that allows renormal-
ization (equivalence between different spatial scales) and parameter estimation from
data.

* General framework with two opposite approaches to detect jump points and estimate
the parameters from piecewise homogeneous Markov chains.

In biology

* Deep morphological analysis of wild-type and mutant ¥ axons which resulted in new

observations.
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» Showcase the importance of mechanical interactions between growing axons and

confinement on in vivo neuronal development.

* Proposal of a novel elongation mechanism where branching is intrinsic to the axonal

growth process.

* Original interpretation of the imp mutant phenotype.

1.4 Manuscript Organization

This manuscript is organised in three sequential blocks: i-general axon growth biological
and modelling background, ii- stochastic framework for the study of axonal morphology and
iii- the development of the individual axon growth model and the simulation of developing
populations.

Chapter 2 presents the background of this work (i). We first summarize the state of the
art on axonal growth as well as on axonal growth mathematical and computational models,
highlighting the aspects relevant for this thesis. We then describe the used biological model:
the Drosophila mushroom body ¥ neurons (wild-type and mutant) and the image database
used throughout this work.

We start our contributions in Chapter 3, where we mainly aim at a deep understanding
of the axon morphologies in our database (i1). We first describe the data treatment scheme
that allowed us to obtain 3D axonal reconstructions from the images, and present a general
stochastic framework for neuronal morphological comparison. In particular, it consists in
applying stochastic models for each axon morphological feature, estimate their parameters
from data, to finally contrast and compare the axons using likelihood analysis and statistics
(Razetti et al., 2016, 2017).

Chapter 4 represents the main part of this thesis. It consists of the development of a mech-
anistic and dynamic mathematical model of individual axon growth, and its implementation
in a realistic environment considering mechanical interactions between the growing axons
(ii1). The chapter starts by describing the data treatment that allows considering isolated axons
as a population. Then we describe the proposed mathematical model, and present different
approaches to estimate its parameters from data. Further, we perform simulations and analyse
the results, comparing and contrasting them with data. We propose different branching
occurrence hypothesis, and unveil new plausible elongation mechanisms. Finally, we further
study the significance of the parameter values obtained from data and their implications on

the collective growth of space-constraint tubular structures.
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In the end, we present a general discussion of the contributions of this thesis and propose
perspectives on different areas (Chapter 5).

1.5 List of Publications

Conference

* Razetti, A., Descombes, X., Medioni, C., & Besse, F. (2016, February). Statistical
Characterization, Modelling and Classification of Morphological Changes in imp
Mutant Drosophila Gamma Neurons. In BIOSTEC 2016-The 9h International Joint
Conference on Biomedical Engineering Systems and Technologies.

Book chapter

e Razetti, A., Descombes, X., Medioni, C., & Besse, F. (2017). A Stochastic Framework
for Neuronal Morphological Comparison: Application to the Study of imp Knockdown
Effects in Drosophila Gamma Neurons. In: Fred A., Gamboa H. (eds) Biomedical En-
gineering Systems and Technologies. BIOSTEC 2016. Communications in Computer
and Information Science, vol 690. Springer, Cham

Conference with abstract

* Rarzetti, A., Medioni, C., Malandain, G., Besse, F., & Descombes, X. (2017, May).
Modelling collective axon growth from in vivo data reveals the importance of phys-
ical axon-axon interactions. In Cell biology of the neuron: Polarity, plasticity and
regeneration.

e Razetti, A., Medioni, C., Malandain, G., Besse, F., & Descombes, X. (2018). Un-
derstanding in vivo axonal development as an inherently asymmetric process. First
European Asymmetry Symposium.






Chapter 2
Background

If the human brain were so simple that we could understand it, we would be so simple that

we couldn’t.

Emerson M. Pugh

2.1 Axon growth: state of the art

The first historic known mention of the human brain, «skull-offal», was found in a series of
Egyptian documents on medicine and surgery called the Edwin Smith Papyrus, written in
1600 BC (but probably copied from earlier texts, from 3000 BC). Even though bounds in
the head were at that time actually associated with different serious pathologies, like speech
or walk loss, ancient Egyptians believed that intelligence and sensation were driven by the
heart, and not brain, and thus despised the importance of this organ. Almost 5000 years
later, Ramon y Cajal (1852-1934) first described the neuron as the functional unit of the
brain. Since then, the complexity of this marvellous organ has not stopped intriguing and
challenging scientists of different disciplines across the world. In this thesis, we explore
one of the most captivating open questions in neurobiology: «How» is the brain created. In
particular, we focus on neuron growth and how its complex final morphology is attained.
Specifically, we address the question about how the physical presence of other neurons as
well as spatial confinement are involved in the growth process.

During development, neurons in our nervous system extend their axonal trees in order
to reach target neurons or structures, and establish complex networks that allow the correct
functioning of the body and the mind (see Fig. 2.1 for a general scheme of the neuron).
To do so, they need to recognize the spatial position of their final target as well as the path

they should follow until they reach it; and complete the growth process in a limited time.
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Furthermore, axons can also create branches that emerge from their shafts, enhancing the
number of possible connections. However, when and where these branches are formed, as
well as how long each of them should grow is still poorly understood.

When neurons somehow fail to decode or correctly follow these instructions, they develop
corrupted adult morphologies that give rise to a large spectrum of diseases. Engle (2010)
reviews human syndromes known to be caused by aberrant axon connectivity. Corpus
Callosum Dysgenesis, L1 Syndrome and Joubert Syndrome and Related Disorders arise
when axons fail to cross the brain mid-line. They can cause a variety of symptoms, such
as severe mental retardation. Other serious syndromes are caused by guidance defects of
cranial nerves. For example, the Kallmann Syndrome is believed to be caused by errors
in growth and guidance of olfactory axons. Another example is Albinism, in which visual
deficiencies arise from altered pattern of axonal projections in the visual system, due to
axonal misguidance.

Thus, both to understand how the brain achieves its complex wiring to function in
normal conditions, as well as to unveil the causes of severe syndromes, the study of axonal
growth during development is highly relevant. During this section, we introduce the basic
mechanisms of axonal development that motivated this work. We first explain how axons
find their paths guided by chemical gradients to achieve elongation. Then, we explore
different new findings on the role of the mechanical environment of the developing brain
and how it also constitutes an important cue on axonal growth, as well as refines axonal
final morphologies. Finally, we stress the importance of considering axonal elongation as a
collective process, where axons do not grow isolated, but within populations, and explain
main aspects of axonal branching.

Axon elongation is possible thanks to the structure present in their tip during development
named the growth cone (GC). GCs present highly dynamic behaviours, and are subdivided
into three main regions: i) a proximal core region enriched in microtubules ii) a flat area
called lamellipodia made of inter-crossed actin fibres, and ii1) finger-like protrusions named
filopodia, which are held by elongated actin fibres (Fig. 2.2). The growth cone senses its
chemical environment and decides the direction of the neurite growth. Many signalling
molecules have been described to interact with the GC during development. They can
be found on other cells surfaces, attached to the extra cellular matrix (short-rate cues) or
diffusing in the extracellular domain (long-rate cues). Directional guiding cues set gradients
that indicate the GC preferred paths or directionality of growth, while positional cues indicate
when to stop. These molecules determine the outgrowth as well as the guidance of the axon
shaft, and can be attractive or repellent, providing the essential information to guide the axon

towards their specific target, even during long trajectories (Bixby and Harris, 1991; Guan and
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Fig. 2.1 Scheme of a unipolar neuron. Input from one or more neurons is received by the
dendrites, and the information travels along the axon shaft towards its branches. These
terminals form synapses with other neurons to which the information is transmitted. The
morphology of the axonal tree determines the neurons connectivity patterns.
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Rao, 2003; Kolodkin and Tessier-Lavigne, 2011; Plachez and Richards, 2005; Song and Poo,
2001; Tessier-Lavigne et al., 1996). Interestingly, guiding cues are multifunctional, meaning
that the same molecule can be attractive or repellent, as well as act in a short or long rate
manner. In addition, GCs respond not only to extrinsic but also to intrinsic factors, and the
combination of these mechanisms may be at the origin of the diversity and complexity of GC
behaviour that wires up the brain (Dickson, 2002).

Growth cone chemotaxis (i.e. movement in response to the influence of chemical stimula-
tion) occurs in two basic actions: «directional sensing» and «motility», which together occur
in the context of «polarization». «Directional sensing» means that the growth cone is capable
of sensing and amplifying noisy gradients of molecules to decode the spatial information of
growth directionality (Fig. 2.2A). «Motility» is achieved thanks to the coordinated dynamics
of the cytoskeleton components (actin and tubulin) in the growth cone, and it means that
the GC can reshape itself to be oriented towards the maximum attraction gradient. This
remodelling combines two actions: 1) the extension of protrusions towards the gradient
directionality and ii) the retraction of the rest of the structure (Fig. 2.2B). These actions
lead to the GC polarization, meaning that it maintains a leading edge, or front, and a tail.
Interestingly, GCs can present different degrees of polarization. For example, "paused" GCs
were observed to present varied and complex shapes, to maximize their sensitivity, while
CGs growing along a well defined gradient adopt simpler bullet-shapes, related with less
sensitivity and faster movement (Dent et al., 2011; Dickson, 2002; Mortimer et al., 2008;
Plachez and Richards, 2005). Once the direction of the movement has been sensed, the shaft
has to elongate (Fig. 2.2C). The most accepted theory of how this elongation is achieved is
called "the clutch" hypothesis (Mitchison and Kirschner, 1988). It suggests that the adhesion
of the growth cone to adhesive substrates in other cells surfaces or in the extracellular matrix
creates a "clutch", or anchor, that prevents retrograde flow and thus promotes actin-based
outgrowth of the growth cone (Lowery and Van Vactor, 2009).

Interestingly, even though bibliography on axon outgrowth is vast and chemotaxis has
been largely described, recent work shows that axons are not only capable of sensing
and responding to external chemical signals, but are also guided by local changes in the
mechanical properties of their surrounding (Francisco et al., 2007; Franze, 2013; Kerstein
et al., 2015; Koser et al., 2016; Sagasti et al., 2005). Francisco et al. (2007) study the growth
of embryonic chicken primary sensory neurons both in vitro and in vivo. Their results
highlight the importance of the 3D mechanical environment in axonal elongation, defined by
the extracellular matrix and spatial confinement. They show in vivo that growth cones have
mechanisms to sense mechanical constraints and respond by the redirection of the growth,

and thus propose that mechanical constraints may act complementary to chemical repellent
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Fig. 2.2 Scheme of growth cone chemotaxis. (A) The growth cone senses a gradient set by
external guiding cues. (B) It modifies its shape in order to direct its front toward the direction
of the attraction field. (C) The axon shaft grows towards the established direction.
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cues. Moreover, in vitro, they observe that the number of neurons establishing an axon was
affected by the constrained space, proposing a direct link between available space and net
axon growth. From dynamic observations, they report that axons encountering mechanical
barriers spend time interacting with them, and propose this is the reason they stay shorter
compared to axons without or encountering less mechanical constraints during their growth.
This last conclusion gives rise to an interesting proposal, specifically when considering the
developing brain, where the growth and developmental programs are time-limited. Kerstein
et al. (2015) review the last findings on how the mechanical micro-environment of the GCs
control their trajectory. They highlight the role of mechanical signals sent by immobilized
molecules attached to the 3D extracellular matrix and of forces generated between the growth
cone and its environment. They also propose that mechanical barriers may influence axonal
elongation, as it is observed for the loss of regeneration capacity of peripheral axon with age,
which is mainly caused by the mechanical barriers imposed by glial and nerve debris. Finally,
they highlight the importance of durotaxis (i.e. movement in response to the influence of
mechanical gradients), also largely studied by Koser et al. (2016). Through in vitro and
in vivo experiments, this work shows the importance of local tissue stiffness as well as
the role of mechanosensitive ion channels during neuron growth in the Xenopus retinal
ganglion cells. They find out that axons exhibit a faster and directionally persistent net
growth in stiffer tissues, while in soft tissues the growth cone moves locally faster exploring
its surrounding but the net axonal elongation is slower. Thus, in general, axons growing in
softer tissues grow less coherently and cross each other more frequently. Also, they have
observed axons extending from stiffer to softer regions which were guided mainly by this
gradient of density. As well as Francisco et al. (2007), Koser et al. (2016) mention the
importance of space availability on the mechanical control of axon growth. All this works
underline the importance of including physical interactions to our understanding of neuron
growth and conclude that a major challenge and open question is to understand how the
mechanical environment of the developing neurons affects their growth and final morphology
in vivo. While most of them consider as mechanical environment mainly the extracellular
matrix, spatial confinement and other tissue components, Sagasti et al. (2005) interestingly
highlights the importance of inter-axon contact interactions for the morphogenesis of axonal
trees. Through live imaging of Zebrafish peripheral sensory axons, they conclude that
direct repulsion caused upon axon-axon contact is the predominant force sculpting the final
trees. As mentioned in the Introduction, inter-axon mechanical interactions, as well as space
confinement, are main topics of study of this thesis.

Taking into account inter-axon interactions during development carries wider considera-

tions. In particular, it means that we do not further consider neurons growing and relating
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to their environment individually, as in classical studies, but as part of a population in a
collective way. During the last few years, the study of tissue development and cell migra-
tion in general has started to consider group effects and collective models to explain cell
behaviour (Haeger et al., 2015; Schumacher et al., 2016; Vedula et al., 2013; Weijer, 2009;
Woods et al., 2014). Not only cell-environment but also cell-cell interactions were shown
to lead from local chaos to a general gobal order as a function of cell density (Mehes and
Vicsek, 2014; Vedula et al., 2013); phenomenon known as collective motion. Even though
classically cell collective motion is defined as a group of moving cells that are connected via
cell-cell junctions (Haeger et al., 2015), recent works proposed to extend the definition scope
to other cell-cell interactions. Chick cranial neural crest cells, for example, control their
displacements autonomously, but still rely on cell-cell contacts for overall group navigation.
This behaviour is called multicellular streaming or loose collective cell migration (Friedl
et al., 2012; Rgrth, 2012; Schumacher et al., 2016), and it is similar to the mechanism
described by Sagasti et al. (2005) to shape the final axonal trees in Zebrafish peripheral
sensory axons. Here, neurons respond to internal thus individual developmental programs,
but rely on the contact with others to adopt their adult morphology. Furthermore, other
important forces than attractive and repulsive local interactions are described to be needed to
order and give directionality to the collective system; such as space confinement and external
chemoattractants (Haeger et al., 2015; Theveneau and Mayor, 2012; Vedula et al., 2013).

Different strategies to optimize growth in the context of increasing numbers of neurons
competing for space have been developed across evolution. These include organization of
neurons into populations that coordinate to grow and innervate target territories. Knowing
the relative position of neighbour growing axons enormously helps populations of neurons to
find they targets. Similarly, axon-axon interactions can be helpful to refine target innervation
previously indicated by chemical cues. For example, in the fly, repulsive axon-axon interac-
tions between the olfactory receptor neurons assure them to innervate the correct area of the
antennal lobe (Hong and Luo, 2014; Luo and Flanagan, 2007). Similar observations were
done also in vertebrates (Petrovic and Schmucker, 2015). This kind of target independent
interactions play a fundamental role in axonal development and organization. On its side,
also branching can be considered as an axonal strategy to increase the number of targets
and thus the circuit complexity (Schmidt and Rathjen, 2010). However, even though in vitro
studies have already identified branch-inducing factors, the mechanisms governing axonal
branching in vivo remain an open question (Petrovic and Schmucker, 2015).

On their side, branches are an essential aspect of axonal morphology and functionality.
During development, they can emerge by two distinct mechanisms: splitting of the terminal

GC, or extend interstitially. In the latter case, branches develop from growth cone remnants
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that accumulate on the axon shaft in regions where GC paused (Kalil and Dent, 2014; Schmidt
and Rathjen, 2010), and was reported to be the most frequent branch occurrence mechanism
in vivo (Schmidt and Rathjen, 2010). Different signalling pathways exist that regulate the
different branching triggering mechanisms, even in the same type of axon, and it is the role
of the GC to interpret and integrate simultaneously several extracellular cues that activate
different internal cascades and may indicate to start a branching event. In addition, neuronal
activity can also trigger or regulate branch occurrence, by generating transient fluctuations
on intracellular calcium, which is an essential second messenger involved in the process
(Gibson and Ma, 2011; Kalil and Dent, 2014). The question of axon branching in vivo is a
relevant subject of this thesis, and is further studied on Chapter 4.

In summary, recent studies have highlighted the importance of the mechanical environ-
ment of the developing brain, proposing that physical cues and axon-axon contact need to
be equally considered as chemical guidance in the neuron growth process. However, up
to now, most attention has been paid to the mechanical interaction with the extracellular
matrix and other neighbouring tissues, rather than direct contact between growing neurons,
which has already been described for other cell types as loose collective phenomena (Friedl
et al., 2012; Rgrth, 2012; Schumacher et al., 2016). Although studies have revealed that
inter-neuron coordination and interactions are particularly important in the context of a
developing population (Demyanenko and Maness, 2003; Goodhill and Richards, 1999; Hua
et al., 2005; Luo and Flanagan, 2007; Sagasti et al., 2005; Wang and Marquardt, 2013),
axon growth has so far been mainly studied in vitro on isolated neurons, or in vivo on entire
neuronal populations. However, to understand population growth as a whole, one needs to
understand the behaviour of single constituent neurons, and how they interact and influence
themselves to produce global growth. In this thesis we propose to consider axons growing as
a population, where elongation and tree-shaping emerge from internal growth rules as well
as from external interactions. In particular, we study the mechanical interactions between
developing axons within a dense growing population, and explore their influence on adult

morphology.

2.2 Axon growth models: state of the art

The bibliography regarding mathematical modelling of individual axon growth is vast. It is
beyond the scope of this introduction to review in detail on the subject, but rather to mention
its main areas and advances during the last years. Simpson et al. (2009) discuss how the
field of axon growth models is fragmented -i.e. lacks of a unified framework- and propose a

classification scheme into phenomenological, mechanistic and abstract. Phenomenological
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models propose mathematical formulations to mimic behaviours observed experimentally, but
without relying directly on biological mechanisms. Mechanistic models, on the other hand,
rely closely on biological or biophysical processes to control the growth cone pathfinding
and/or axonal elongation. Finally, abstract models describe the effects or results of these
mechanisms into neuron growth in a more general way, and without necessarily modelling
the biological mechanisms. This classification is quite general and can be applied to every
biologically-inspired mathematical model, and results useful as it sets the limits of a model
to be explicative and predictive of the biological mechanisms under study. However, one
must remember that each model results useful to better understand different aspects of axonal
growth, and a model including every known mechanism involved in neuron development
would not only be heavy to implement, but also difficult to analyse and tune its parameters.
Here, we present and briefly discuss a different way of classifying axonal growth models,
better suited to this work. We consider four main types of models: i) in vitro-inspired, ii) 3D
realistic, 1i1) inter-neuron interaction/competition and iv) 3D space-embedded models. We
describe and cite relevant bibliography on groups 1) to iii), and then go into more detail on
group iv, which results the most pertinent for this work. Finally, we discuss models that take
into account branch generation and their particular approaches and limits.

1) In their origin, axonal growth models have been mainly concerned by the study of
GC guidance and neurite (axon/dendrite) elongation, and were mostly based on in vitro
experiments, proposing isolated neurons growing in 2D environments. They include models
describing overall morphology generation based on the diffusion of chemical substances
in the environment and axon/branch shafts (Graham and Van Ooyen, 2001), on stochastic
rules regarding branch occurrence probabilities for different neuron types (van Pelt and
Schierwagen, 2004), or based on the specific role of molecules regulating internal calcium
concentration (Hely et al., 2001). Others focused on microtubule or actin dynamics (De Rooij
et al., 2017; McLean et al., 2004), as well as growth cone guidance, path-finding and
elongation (Aeschlimann and Tettoni, 2001; Kobayashi et al., 2010; Mortimer et al., 2009;
Nguyen et al., 2016; Segev and Ben-Jacob, 2000). For example, Nguyen et al. (2016)
describes a stochatic model of axonal guidance based on persistence, bias and noise to
better understand how GCs react by turning to different molecular gradients, in vitro and in
vivo. These models are helpful to understand axonal growth and path-finding mostly at the
molecular level, to investigate the role of the specific mechanism under study.

i1) Another important kind of models are those that aim at generating 3D realistic neurons
(Ascoli and Krichmar, 2000; Eberhard et al., 2006; Koene et al., 2009). Nevertheless, their
approach is mainly generative and thus generally based on descriptive and phenomenological

rules from deep data analysis and their goal is to generate morphologically realistic neurons
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and neuronal networks and do not intend to explain or better understand the generative
process itself.

ii1) Models taking into account inter-neuron interactions as well as different aspects
of axon competition have been also largely described in the literature (Deppmann et al.,
2008; Goodhill, 2007; Triplett et al., 2011; Van Ooyen, 2011; van Ooyen and Ribchester,
2003). Goodhill (2007) and Van Ooyen (2011) review models of competition for post target
sites and neurotrophins (a guidance molecule) during neural map formation, largely called
synaptic competition. van Ooyen and Ribchester (2003), for example, focus on how synaptic
competition lead to the reduction of synaptic connections of target neurons. We should notice
that these types of competitions mainly consider chemical resources, or space limitation
but linked directly with innervation of targets and not during the whole process of axonal
elongation and morphogenesis.

iv) Big advances have been done regarding the mathematical and computational modelling
of neuron development, from the first mostly simple models, in 2D and focused to explore a
single or a few mechanisms (i), to more complex and general ones, reproducing entire realistic
neuronal 3D networks (ii) or taking into account some aspects of neuron-neuron competition
(iii). However, up to date, 3D models considering spatial constraints and mechanical neuron-
neuron interactions -3D physically space-embedded- are so far rare (Luczak, 2006; Torben-
Nielsen and De Schutter, 2014; Vanherpe et al., 2016; Zubler and Douglas, 2009; Zubler
et al., 2013). Luczak (2006) proposes a generative approach based on diffusion-aggregation
process for dendritric tree generation. He early mentions the idea and tries to quantify the
consequences of resource and space competition between developing neurons in confinement.
Even though this work presents novel and interesting concepts, the mathematical approach
is quite abstract, thus difficult to relate with the biological process beyond. Some years
later, Zubler and Douglas (2009) proposed a model of neuron growth based on physical
forces between objects and diffusion of substances through the extracellular domain. Their
approach is very complex, as they model in detail the physical forces acting on the axons.
They also take the neurons soma into account, modelled as spheric structures, which occupy
most of the free space and thus represent the main mechanical obstacle for the growing tips.
In addition, this work does not consider an internal intrinsic growth program, thus elongation
depends exclusively on the exerted forces, without considering any random component in the
mathematical formulation. Zubler et al. (2013) use this platform and presents a complete
model of cortical neuron generation. They highlight the importance of considering the
physical environment in morphogenesis, for example to correctly reproduce branch tortuosity.
They also test and comment different plausible branch generation mechanisms. However,

their work is exclusively cortex-oriented, thus their results are difficult to translate to other
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neuron types. On its side, Torben-Nielsen and De Schutter (2014) developed a framework
for context-aware neuron development considering realistic growth rules, and highlights
the difference between neurons growing in isolation and within a more realistic mechanical
context. They represent growing tips as cellular automata that, at each time point, can grow,
stop or branch depending on their surroundings. The directionality of growth is stochastic,
and depends on attraction and retraction from nearby structures. However, their approach is
mainly phenomenological and they actually mention the need to implement further branching
generation and stopping rules, maybe based on more mechanistic aspects. In particular, they
propose that the simple branching generation and termination rules in their work are not
sufficient, and that the branching probability should depend on the integration of certain
intrinsic as well as extrinsic rules. Finally, Vanherpe et al. (2016) features the problem of
axon-like structures growing in limited spaces considering volume exclusion, and develops
an interesting framework for the development of non-intersecting tubular-like structures in
confined spaces. Their neurons are modelled by a spherical soma and branches that consist
on sequences of tubes, and consider structures of different complexity: from single random
walks to trees. Regarding volume exclusion, they study soft and hard boundaries, as well as
different levels of intersection avoidance. The mathematical formulation of the walks takes
into account the axon rigidity, as well as random noise and attraction-repulsion rules. Their
work highlights the dependence of axon elongation and final morphology on the particular
spatial boundaries (soft/hard), as well as on neurite density and the exact mathematical
growth model, which depends on the particular parameter tuning (and is relative to the walk
noise). This last work proposes relevant measurements and physic results, relating elongation
with volume exclusion. However, their scope and experiments are still far from the real
biological process, as they do not compare their results with, or estimate their parameters
from, real data.

Even if recent bibliography has already started to address the problem of more realistic 3D
space-embedded neuron development models, most of them still under-consider the question
of branch formation mechanisms. In these models, branch occurrence is considered abstractly
(Luczak, 2006) or, as in most cases, in a phenomenological way (Ganguly et al., 2016; Koene
et al., 2009; Torben-Nielsen and De Schutter, 2014). Vanherpe et al. (2016) proposes
branch formation to be space-related, but in a cortex-related scenario, where the (otherwise
phenomenological) generation rules change layer by layer. Zubler et al. (2013) and Zubler
and Douglas (2009) are also focused on cortical neurons, and take into account external
signals as well, which are chemical gradients. Interestingly, Torben-Nielsen and De Schutter
(2014) proposed simple branching origin and ending mechanisms, and highlighted that

they are not sufficient to explain axonal development and morphological variability, and
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suggest that branch probability should depend on extrinsic as well as intrinsic rules. On
the other hand, Suleymanov et al. (2013) presented a model oriented to simulate branching
point creation along the shaft of a developing axon, where the guiding cues that promote
branching come from neighbour axons. However, the approach was basically deterministic,
the population numbers are quite small (< 20) and they did not consider mechanical but
only chemical interactions. Cuntz et al. (2010) presented a model that generates dendritic
arbours based on Ramén y Cajal’s laws of conservation of cytoplasm and conduction time in
neural circuitry. Their model allows to generate realistic morphologies of different tested
neuron types, as well as neuron networks. Remarkably, they highlight the importance of
sharp physical boundaries of the tissue, as well as of the competition for inputs between
neighbouring neurons. In addition, they showed that a direct consequence of growing under
competitive conditions was spatial tiling, which might determine the variability in neuronal
branching observed in data. Similar comments on morphological observed variability were
done in Torben-Nielsen and De Schutter (2014). Hannezo et al. (2017) study branching
morphogenesis in different organs (mouse mammary gland, kidney, and human prostate),
and propose that branching morphogenesis emerges from the spatial competition between
growing tips, which themselves grow and expand following stochastic laws. This work
underlines that, if the same process occurred without competition for space, branched organs
would be characterized by stereotypical rounds of purely symmetric branching, with the
number of branches increasing exponentially with the branch level. Thus, that complex
branched structures develop as a self-organized process, based on simple rules, without the
need of a deterministic system of genetically programmed events.

In conclusion, models have evolved in complexity and in realism, reaching the category
we called 3D embedded models, which takes into account not only the path-finding but
also the environment of the growing axons. These works have all stressed the importance
of considering space-embedded processes and interactions with the cellular environment
when studying neuronal morphologies. However, they have not, or could not, use parameters
estimated from real data. Large number of parameters make them difficult to estimate, so the
models somehow loose contact with data. Another observation is that they rarely showcase
explicative or predictive aspects of their approaches. Regarding branching, the occurrence
mechanisms remain quite simple and mostly phenomenological rather than mechanistic.
In this work (Chapter 4), we develop a model that is simple enough to allow biologically
meaningful parameters that can be estimated from data, but that is still mechanistic, taking
into account the main aspects of axonal development in vivo at the cellular scale. Our model
can be also easily embedded in realistic environments, considering other axons, external

physical limits and chemical gradients. Also, we test branching mechanisms that are not
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pre-set or phenomenological, but that depend on the evolution of the whole system. With
this, we propose to give a step forward, and obtain not only morphology reproduction, but

also new hypothesis regarding relevant biological mechanisms.

2.3 Biological model: Drosophila ¥ neurons

To better understand the mechanisms of individual axon growth embedded in neuronal
populations that give birth to adult neural morphologies, we chose to work with the fruit fly
Drosophila melanogaster. An important advantage of this model organism is that imaging of
fluorescently-labelled individual axons in fixed tissue or in real time can easily be combined
with genetic manipulations, to obtain images of single (or a few) axons that can be wild-type
or present mutations.

Specifically, we study the ¥ neurons, a population forming with companion populations -
the a8 and o’ B’ neurons - bilateral structures located in the central Drosophila brain, called
the Mushroom Bodies (MBs) (Fig. 2.3A and B). These structures, each composed of roughly
2,000 cells (Aso et al., 2009), are high-order integration centres involved in olfactory learning
and memory functions (Heisenberg, 2003). The population of MB 7 neurons consists of
about 650 cells, and constitutes a model particularly suitable to study axon growth in a
population context, as it is the only one in the Mushroom body that goes through the process
of remodelling (pruning followed by regrowth). This means that, after an initial growth at
larval stages, distal v axons degenerate during metamorphosis and regrow synchronously,
in a short time frame, to establish adult axonal projection patterns (Rabinovich et al., 2016;
Watts et al., 2003; Yaniv and Schuldiner, 2016) (Fig. 2.4 C). At this stage, axons regrow
in a complex and dense environment constituted of surrounding neuronal populations and
glial cells (Aso et al., 2014; Hakim et al., 2014). Furthermore, axon growth is associated
with branching, such that adult y axons typically exhibit a varied number of side branches
(Lee et al., 1999). Axon arborization patterns are however not completely stereotypic, as an
interesting but unexplained wide range of morphologies is observed within populations of y
neurons (see Fig. 2.5).

As many invertebrate neurons, Y neurons are unipolar (Fig. 2.1). Their cell bodies are
clustered at the dorsal posterior surface of the brain, and their dendrites project just beneath,
in a structure termed calyx (Fig. 2.3B). Proximally, MB axons fasciculate to form a dense
fiber projecting ventrally: the peduncle (Fig. 2.3B). More distally, axons de-fasciculate to
innervate the so-called medial lobe (ML), following either straight paths or more tortuous
trajectories (Fig. 2.3C). In the medial lobe, they establish a dense network of branches (Figs.
2.3B and C and 2.5).
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As described, y axons grow through two very different physical environments. Firstly in
the peduncle, where the axon shafts elongate rigidly in a tight and ordered parallel bundle.
Secondly, they enter the ML. In contrast, the ML is a large structure, where the neurites are
physically less constrained and develop long terminal branches, giving birth to a big variety
of morphologies. This particular conditioning of the neuronal morphology by the physical
environment through different stages of neural growth is explored in Koser et al. (2016) for
diverse neuron types.

In conclusion, ¥ neurons represent an accurate biological model to study mechanical
constraints and inter-axon interactions during axon development, as they grow as a dense

population, forming unstereotypical morphologies in a limited brain area.

2.3.1 Imp as a regulator of axon regrowth and branching

Actin is a fibrous elongated protein composed by smaller subunits (G-actin) that have the
ability to assemble and disassemble dynamically. As mentioned in Section 2.1, it is found
on the axonal extremities during development and its role is to guide the axon tip through
the correct path following internal and external cues, as well as to provide with the force to
make the axon extend. There are many actin regulators which, depending on the particular
context, can favour or prevent actin fibers assembly or dismantling.

In this study we consider, in addition to wild-type individuals, axons that are mutant for
the conserved mRNA transport protein Imp. Molecular and genetic analysis performed in
the Besse laboratory have shown that Profilin mRNA, which encodes an actin cytoskeleton
regulator (Luo, 2002; Schliiter et al., 1997; Verheyen and Cooley, 1994), is a direct and
functional target of Imp and both are key regulators of the Drosophila ¥ neuron axonal
remodelling process, acting on the same molecular pathway. Imp carries profilin mRNA
along the axon shaft towards the extremities where the regrowth occurs, enabling Profilin
proteins to be synthetized in situ. Fig. 2.4 A and B present a scheme of Imp and Profilin
implication during metamorphosis. Medioni et al. (2014) have shown that Imp is essential
to allow axonal regrowth of ¥ neurons during metamorphosis. Our database (Section 2.4)
includes imp mutant y axons, which we used to validate the morphological analysis and
different growth hypothesis in this thesis. Furthermore, in Section 4.6 we propose a novel
interpretation of the role of Imp in the remodelling process, and its impact on adult y axon
morphology.

Regarding the imp mutant phenotype of a single mutated axon in an otherwise wild-type
environment, Medioni et al. (2014) reported that, in adults, about 50% of imp mutants
displayed shorter axons than wild-types and failed to reach their target. imp mutants also
exhibit an overall loss of branch number and complexity. Interestingly, they observed that
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Fig. 2.3 Characteristics of adult Mushroom Body 7y neurons. (A) Wild-type adult Drosophila
brain expressing the membrane-tagged CD8-GFP construct in y neurons, under the control
of the MB0O09B-Gal4. Nuclei are labelled in white with DAPI. The dotted line on the top
view image corresponds to the midline. This images were obtained using the 10x 0.6 NA air
objective of a LSM780 NLO Zeiss microscope. Z sections were taken every 0.5 um, with
a xy pixel size of 0.57 um. 3D projections have been created using FiJi (Schindelin et al.,
2012).(B) 3D reconstruction of one Mushroom Body where ¥ neurons only were labelled.
Genotype: MB0O09B-Gal4/UAS CD8-GFP. This image was obtained using the 40X 1.2 NA
water objective and the pulsed laser of a LSM780 NLO Zeiss microscope. Z sections were
taken every 0.4 um, with a xy pixel size of 0.11 um. The 3D reconstruction was generated
using the surface mode of Imaris 8.1 Bitplane software. (C) Axonal arborizations of two
individual adult ¥ neurons labelled by GFP using the MARCM technique. Confocal images
taken along the z axis were projected (Maximum Intensity Projection). Dotted lines delimit
the shape of the medial lobe. Scale bars: 20 um in A, 50 pm in B and 10 um in C.



22 Background

the over-expression of Profilin in imp mutant backgrounds partially restored the main axon
length, but not the branch complexity. imp mutant axons rescued by Profilin over-expression
are also included in our database (Section 2.4). These results suggest that Imp controls
axonal extension during remodelling at least partly by regulating pro filin mRNA expression.
However they also suggest that the branching process may be dependent on the regulation of
other Imp mRNA targets, yet to be identified. In Section 4.6 we further investigate the role
of Imp in Yy neuron remodelling. We propose a novel hypothesis on the origin of the short
phenotype, and explore the mechanistic reasons for this partial rescue observed after Profilin

over—expression .
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Fig. 2.4 The role of Imp and Profilin during remodelling. (A) Scheme of a ¥ neuron
remodelling. Imp (pink) is transported to axons during metamorphosis. (B) Schematic
representation of the role of Imp (pink) as a profilin mRNA (orange) transport protein.
Imp carries profilin mRNA from the neuron body towards its extremities. This allows the
production of Profilin proteins in situ, for a rapid control of actin polymerization in the
growing tip.

2.4 Database Description

The development and validation of models proposed in this thesis rely on two databases,
provided by Florence Besse and Caroline Medioni in the Besse Team at IBV (France).
The first one consists of 3D confocal images of individually-labelled y neurons from adult
Drosophila brains, and the second one of 3D+ image sequences of growing y axons in the
Drosophila developing brain.
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2.4.1 Adult single cell confocal in vivo images

This database consists of 3D confocal images, each comprising two channels. The first
one displays a single labelled adult y neuron, generated with the MARCM technique (Wu
and Luo, 2006). This technique allows to image a single axon that has developed in vivo
within the brain in the y population. The second channel displays the a3 entire population
shaping the medial and dorsal lobes of the MB. The ¥ axons grow in the ML, which is
highlighted with a white dotted line in Fig. 2.5. These images were used to understand the y
neuron morphology (Chapter 3), to propose the main growth model and branch generation
mechanism, as well as to directly estimate the model parameters and to validate the results
(Chapter 4).

The database consists of: 43 wild-type (WT), 45 imp mutants (Imp), 15 imp mutants
rescued with Profilin over-expression (Prof Rescue), 15 profilin mutants (Prof), 42 imp
mutants rescued by Imp over-expression (Imp Rescue) and 27 un f mutants rescued by TOR
(Unf). Both imp and pro filin mutations used here are protein-null mutations. Wild-type and
imp databases are used through all this work, while the others served for particular studies.
For all the studied mutants, the labelled axon(s) in the images is (are) the only one(s) of the y
population that present the mutation. Thus, we observe mutant axons that have developed
within an otherwise wild-type Y neuron environment.

MARCM clones were generated as described in Wu and Luo (2006), using the following
fly stocks: hsp-flp, tub-Gal80, FRT19A; 201YGal4,UAScGFP; FRT19A + and FRT19A
imp’. Brains were dissected at the adult stage, and stained with anti-GFP (molecular probes
life technology; ref A11122) and anti-Fasciclinll (1D4, DSHB) primary antibodies, revealed
by respectively anti-rabbit Alexa 546 and anti-mouse Cy5 secondary antibodies (see Medioni
et al. (2014) for a detailed procedure). Brains were mounted in propyl-galate mounting
medium, and imaged with an inverted Zeiss LSM 710 confocal microscope equipped with a
40X/1.1 NA water objective. Z sections were taken every 0.6 to 0.9 um, with a xy pixel size
of 0.09 um. Fig. 2.5 shows the maximum intensity Z projection of both channels of different

images in this database.

2.4.2 4D image sequences of the developing brain

This database consists of movies of the living developing brain, where a single ¥ axon or a
group of axons are visualized via targeted expression of the GFP marker during metamorpho-
sis (examples in Fig. 2.6). These data have been used for the branch classification regarding
formation and functionality that we present on Chapter 4, as well as to analyse the dynamic

aspects of axonal growth as a population.



24 Background

Medial lobe Peduncle
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Fig. 2.5 Adult single cell confocal in vivo images. Examples of our database, exhibiting a
single adult wild-type ¥ axon (red) and the dorsal and medial lobes of the MB (blue). The
maximal intensity projection in Z is shown for simplicity. The white dotted line in the first
image indicates the medial lobe.

To create these movies, brains were dissected out of pupae 24-30 APF (After Pupa
Formation) and mounted in a Labtek II chambered coverglass (#155378, Fisher Scientific) in
culture medium (Schneider medium, 10% FCS, 1% Antibiotic Antimycotic Solution (Sigma),
200ug/ml insulin (Sigma), 11 g/ml ecdysone (20HE; Sigma) (see Medioni et al. (2015b) for
a detailed protocol). Brains were imaged using a Zeiss LSM780 NLO inverted two-photon
microscope and a 40X/1.2 NA water objective. Medial lobe regions were imaged. Z sections
were taken every 0.8um and covered the entire medial lobe volume. Z stacks were acquired
every 5 minutes over up to 15 hours. Pixel size is 0.13um.

Drift correction was carried out by Gregoire Malandain (see Medioni et al. (2015a)). For
the single axon cases, a two-fold drift compensation was performed. First, maximum intensity
(MIP) projections of the acquired images were computed, couple of successive MIPs (that
are 2D images) were co-registered with 2D affine transformations, and these transformations
were compounded to express all the transformations with respect to a reference image (say
the first one). This first step allowed an in-plane drift compensation, but a motion along the Z
direction may still exist. A residual translation along the Z direction was then estimated using
the multiple transformation strategy described in Medioni et al. (2015a). The compounding
of the 2D affine transformation and the Z translation yielded the final 3D drift compensation.

The segmentation of the single axon movies used to quantify the length distribution of

dynamic branches (Fig. 4.35 in Section 4.5.1) was also carried out by Gregoire Malandain,
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and proceeded in two steps. First, main axon and type I (see Chapter 4) branches were
defined as segments that remain stable throughout the whole series and were extracted. Their
centrelines were computed on the first time points, via classical image processing tools
(thresholding, skeletonization, and manual selection of the skeleton parts corresponding to
the main axon and type I branches). Then, they were propagated throughout the whole 3D+t
series. The use of homotopy-preserving operations guarantees that the main axon and type I
branches form a tree (in a topological sense). Type II branches (see Chapter 4) were then
segmented by the means of an homotopic dilatation from main axon and type I branches.
Centrelines were extracted and tracked throughout the series, and their maximal length was
measured.



26 Background

10 pum

Fig. 2.6 Video of the developing Drosophila brain. (A) Image sequence extracted from one
of the movies in our database, where a single ¥ neuron from a wild-type brain undergoing
metamorphosis is followed, during the regrowth phase. Red arrows point at a branch that
shortens with time, while yellow arrows point at a branch that is growing. (B) Detail from
another movie. The first two frames show an elongation step, the third one retraction and
branching event, and the last one growth again. Arrows shows axonal tips and asterisks, the
formation of branches. Scale Bars: 10um.



Chapter 3
Morphological Study

Not everything can be explained, not everything has an answer, not everything makes sense,

not everything is fair, not everything is logic. Learn to live with that.
Anonymous

In this chapter we propose a deep axonal morphological analysis, and apply it to the study
of adult y axons to understand the behaviour and relevance of main shape features; as well
as to further understand the role of Imp and the importance of profilin mRNA expression
regulation during remodelling.

To do so, we developed a stochastic framework to exhaustively compare the adult y axon
morphologies between the WT, Imp and Prof Rescue groups (Fig. 3.1). Our framework can
be summarized in three steps: 1) selection of relevant morphological features describing the
axons, ii) stochastically model the behaviour followed by each of the chosen morphological
features and estimate the parameters associated to each model from the data (for WT and
mutant groups) and iii) classify each individual axon to a group (WT, Imp or Prof Rescue),
considering the features separately and altogether using the maximum likelihood of the
applied models. The classification results give a quantitative measure of the global similarity
or difference between groups (through its confusion matrix). We also apply statistical tests
under null hypothesis between the neuron groups for each morphological feature to enrich
the analysis. This approach provides both a biological interpretation and a quantification of
the resemblance between biological samples, detecting differences as well as similarities
between the groups. This framework is general and can be applied to model and characterize
different axon types (Fig. 3.2).

Neuron morphological automatic classification has already been addressed in the bibliog-
raphy. Kong et al. (2005) proposed an unsupervised clustering of ganglion cells in the mouse

retina by the k-means algorithm in order to define cell types. They initially disposed of 26
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morphological parameters and found out that clustering with only three of them was the most
effective way. Guerra et al. (2011) established the advantage of applying supervised classifi-
cation methods regarding morphological feature based classification to distinguish between
interneurons and pyramidal cells. They also conclude that reducing the number of features to
an optimal number outperforms the classical approach of using all the available information.
Lopez-Cruz et al. (2014) built a consensus Bayesian multinet representing the opinions of a
set of experts regarding the classification of a pool of neurons. The morphological parameters
chosen by each expert to make their decisions are not considered. A different approach was
proposed earlier in our team (Mottini et al., 2015), which consists in classifying different
neuron types by reducing them to trees and calculating a distance, combining geometrical
and topological information.

The different published approaches intend to accurately discriminate between different
types of neurons, considering misclassification as a methodological error and consequently
developing techniques to avoid these cases. However, similarities between populations are
not necessarily to be excluded as they may reflect the properties of biological samples and
provide useful information for their characterization. Furthermore, these methods do not
intend to understand which morphological characteristic is discriminant between different
species and at which level. A deeper multi-criteria statistical analysis is thus required. Our
approach allows to assess the similarities and differences between the populations for each
chosen morphological feature separately as well as considering them all together for a global
analysis. Neurons are treated individually through the likelihood analysis as well as globally
within the studied groups through the statistical comparisons, leading to an exhaustive
analysis.

Thanks to this framework we show that imp mutant neurons can be divided in two
phenotypical groups with a different aberrancy degree, and that Profilin over-expression
partially rescues the main axon as well as branch development (new observation respect
Medioni et al. (2014)), and thereby reduces the proportion of neurons with the strongest

mutant phenotype.

3.1 Digital reconstruction of the axonal trees

In this section we describe the segmentation and data treatment process (see Fig. 3.2) using
the adult single axon images described in Section 2.4. To avoid artificial jumps along the
Z axis due to image anisotropy (i.e. voxel Z dimension is several times higher than that in
XY), we applied the bicubic interpolation algorithm included in FIJI (the open source image
analysis software developed by NIH, Maryland, USA) (Schindelin et al., 2012).
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Fig. 3.1 Examples of adult y axons of genetically distinct populations. From left to right:
Wild-type (WT), imp mutant (Imp) and imp mutant rescued by Profilin (Prof. Rescue). imp
mutants are divided into short and long species (named Imp Sh and Imp L respectively) as
both phenotypes are observed.
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Fig. 3.2 Scheme of the proposed stochastic framework for the comparison of axonal mor-
phologies between groups. It starts by data treatment and axon morphological extraction.
Then the selection of the main axonal morphological features and their stochastic modelling
and parameter estimation from data. Finally, a maximum likelihood analysis is developed for
each individual neuron to quantify the similarity or difference between groups (see Section
3.3).
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3.1.1 Segmentation

An automatic segmentation of these images is still not available regarding our needs, due to a
noisy background and poorly defined and non-continuous neuron trace. Thus, we tested and
compared two well-known cell segmentation software: Imaris ® and Neuromantic (Myatt
et al., 2012). The first one is a data visualization and management software developed and
commercialized by Oxford Instruments. Even though it counts with an interactive user
interface and an automatic 3D segmentation tool, its performance is low when dealing with
our images. It has difficulties to handle their size (=200 MB) and the automatic mode
fails to correctly segment the entire axon. The use the manual mode becomes mandatory,
which is time demanding, not intuitive and inaccurate along the Z axis. On the other hand,
Neuromantic is an open software (Myatt et al., 2012), specially developed to segment 2 or
3D neurons manually or semi-automatically. The performance of this last mode, even though
time consuming as well, is more precise and easier to handle than Imaris®, as the user goes
through the axon and branches paths while the software adapts the skeleton to the nearest
trace in the image. In addition, posterior changes to the skeletons are easily handed and it
has no problem with our images size, making it the most suitable option for our needs. The
software output is a file (.swc extension) containing the nodes and edges of the resulting
skeleton graph and the neuron radius in each point. A script to read .swc files into Matlab
® had already been developed by the team. As output, we obtained a set of points along
the main axon and branches that we connected using a Bresenham-inspired 6-connectivity
algorithm. We chose this connectivity to keep further measurements simple. After this
process we obtained a tree-like set of numeric 3D curves describing the morphology of each
axon (Fig. 3.3).

To ensure all the neurons to be similarly oriented we manually rotated the images to align
the medial lobe with the horizontal axis (Fig. 3.4). We only considered a rigid transformation
to avoid axon deformation. Conserved morphology was preferred rather than more accurate
spatial location.

3.1.2 Tree hierarchy

When studying their morphology, it is necessary to understand how axonal trees are structured
i.e. the segment hierarchy: main axon and first, second, third (etc.) order branches. For this
purpose, we developed an automatic recursive algorithm capable of processing trees of any
order. It starts by taking the whole tree and selects the main axon, according to specific
criteria. After this process, a number of independent sub-trees of different orders is obtained.

During the following steps each of the sub-trees is analysed. Their main path is assigned,
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10 pm

Fig. 3.3 Extraction of neuron morphology from confocal 3D images. Maximum intensity
projection of a confocal image depicting a single ¥ neuron stained with GFP (top), its
skeleton in red after segmentation (middle) and the overlay between the original axon and its
reconstructed skeleton (bottom). The segmentation starts at the point where the axon enters
the ML (present in the second channel of the image, see Section 2.4). Scale bar: 10 pum.

7905

Fig. 3.4 Alignment of the medial lobe to the horizontal axis. The yellow arrow indicates the
medial lobe main axis. In this example, a rotation of 90° was applied to align the medial lobe
to the horizontal axis (X).
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leaving again a set of independent sub-trees, and so on. The algorithm continues until no
more untagged segments are left (Fig. 3.5).

In each step, the main path of the sub-tree is assigned following the same criteria used by
experts when done visually: total length, directionality and sense coherence. To achieve this,
we considered the points for each path between the root and the extremities of the tree (or
sub-tree), and calculate a linear regression obtaining a straight guideline (see Fig. 3.5), used
to determine directionality and sense coherence. For each path of the analysed tree/sub-tree,
a cost function f% ., (Eq. 3.1) is computed that depends on the distance between each point
in the path and the guideline (directionality), the parallelism between them (accounting for
the sense coherence of the path) and the path total length. Finally the path that minimizes
this cost function is selected as main axon in the case of the whole tree (first step), or main
branch in the case of the different sub-trees (Fig. 3.5). The cost function £, for each path

is defined by

p distance
cost —

—_ 3.1
length?angle? G-D

where distance is the sum of the Euclidean distances from each point of the path p to
the guideline normalized by the number of points (N,), length refers to the path length and

angle is defined as,

N, M
angle = TS ,Zi cos ¢ (3.2)

where ¢; are the N; angles between each vector defined by two continuous points of the
path p and the guideline whose cosine is positive (parallel direction). N, is the number of
anti-parallel points i.e.: when the vector defined by a point and the previous one in the path
forms an angle with the guideline whose cosine is negative (N; + N, = N)).

Fig. 3.6A shows an example of the application of the hierarchy algorithm to one axon
in our database. Fig. 3.6B highlights the advantage of this algorithm respect to the one
previously used by our team. In the latter, the main axon label was assigned to the longest
path from the starting point to any of the end points of the tree. The branch level was then
assigned following the order of appearance in the .swc file (and not a morphological criteria),
and was limited to 3"¢ order branches. Even though this algorithm was effective in most
cases, it occasionally committed errors regarding the main axon determination, as shown in
Fig. 3.6B. In this example, the longest path from the root to the end, thus the one assigned as
main axon by the previously used algorithm, turns completely backwards (light blue line Fig.

3.6B); making it unlikely to be the main axon. Thus, the criteria of sense coherence included
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Fig. 3.5 Scheme of the three-hierarchy algorithm. For a given tree, a guideline is first
calculated as the linear regression of all the points in the tree (dotted blue line, left tree).
Secondly, the cost function for each possible path (1-4) is obtained. The one minimizing the
cost function is labelled as “main axon” (here path 2). The algorithm is applied recursively
to each sub-tree, resulting in the hierarchy of the entire tree.

in our new algorithm becomes necessary to accurately label the main axon (pink line Fig.
3.6B).
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Fig. 3.6 Results of the hierarchy algorithm. (A) Basic steps followed by the automatic tree
hierarchy algorithm. The guideline (yellow) is calculated for all the tree (left) and the main
axon (pink) is assigned following the chosen criteria (middle). The same two steps are
applied recursively to all the neuronal subtrees (right), to label first (blue) and second (green)
order branches. (B) Previous approach, where the main axon is the longest path (main axon

in light blue) vs. new approach, where the main axon is assigned following intuitive criteria
(main axon in pink).
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3.2 Stochastic modelling of the main morphological fea-

tures

After segmentation, our data is composed of 3D tree-like skeletons of axons, where each
6-connected path (main axon or branch) is described by its round coordinates or pixels
(Fig. 3.7). Taking this simple geometrical description into account, we define the main
morphological features that best describe the individuals and present biological interest: 1)
main axon length and ii) sinuosity, as well as iii) branch density and iv) length distribution.
Further, we develop the probabilistic models chosen to describe each feature, estimate
their parameters and compute associated statistical tests under null hypothesis between the

different studied groups (Feature extraction and Stochastic modelling in Fig. 3.2).
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Fig. 3.7 Axon path scheme. Each neurite path (main axon or branch) is composed by 6-
connected pixels, described by they coordinates in space (labelled in red as an example). For
simplicity, a 4-connected skeleton in 2D is shown instead.

3.2.1 Main axon length

The main axon length was measured taking the total amount of pixels in the corresponding
path and multiplying it by the pixel size (in um). The length distribution was modelled
as Gaussian, and the mean and standard deviation for each group X (uX ., oX ) were
calculated from data (see Table 3.1). We observed the bimodal behaviour in the Imp group
reported by Medioni et al. (2014) (Fig. 3.8). Therefore, in order to make a more accurate
modelling of this parameter, we separated imp mutant axons into two groups -with long (Imp
L) and short axons (Imp Sh)- using the k-means algorithm. 54% of the neurons were assigned
to Imp Sh and 46% to Imp L, which is consistent with the percentage reported by Medioni
et al. (2014). Fig. 3.8 shows the main axon length histograms for each group, Imp divided
into Imp L and Imp Sh. We decided to keep this division of the Imp group through all the
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Table 3.1 Mean and standard deviation corresponding to the main axon length distribution
per group (in um).

Hma Oma
WT 147 28
Imp L 130 24
Imp Sh 65 16

Prof Rescue 115 20

analysis in this Chapter, in the attempt to detect other morphological differences between the
two genetically identical subgroups. To assess which groups present significant differences
regarding the main axon length, the non-parametric Kruskal Wallis test was carried out
between all the possible pairs of groups. We chose this test for the sake of consistency, as it
can be applied to analyse all the features independently of each model. The only pair not
presenting a significant difference (taken as p > 0.05) is WT vs. Imp L. It is interesting to
highlight also that Prof Rescue distribution lies in between the distributions for Imp L and Sh

and is more similar to Imp L, as it does not present extremely short axons.
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Fig. 3.8 Main axon length distributions for each biological sample.

3.2.2 Main axon morphology

To define the shape model, we considered as random variable the unit vector X, that accounts
for the shift of the axon tip between r — 1 and . Because we used the 6-connectivity and

backwards moves are not allowed, each 7,+1 (shift of the axon tip between ¢ and 7 + 1)



36 Morphological Study

can take five different values, as shown in Fig. 3.9. Assuming the main axon development

follows a second order Markov property, we have
P(Xi|¥ i 1) =P(X | 70, ¥1) (3.3)

First approach: Markov chain model with 9 parameters

We first explored the possibility of assigning to each conditional probability P, (Fig. 3.9 and
eq. 3.3) a physical meaning, related to both the axon rigidity and the presence of an attractive
field ? generated by external guiding cues. Fig. 3.9 shows two basic configurations of a
pair of (past) unit vectors [7,,7,,1] (blue arrows in Fig. 3.9) and their corresponding five
possible (future) steps 7t+1 (red arrows in Fig. 3.9). The first one is one of the six possible
cases where the vectors 7, and 7,_1 are in line (in this case in the +z direction). In these
cases, the elasticity parameters are two: one (o) for a totally rigid path (i.e. Ps in Fig. 3.9)
and a second parameter (o) for a more flexible one (i.e. Pj_4 in Fig. 3.9). We assume
isotropy for the elasticity leaving the same parameter accounting for a turn in any direction.
The second configuration in Fig. 3.9 shows one of the twenty-four cases where the vectors
¥, and 7t_1 are not in line. In these cases, similar parameters regarding elasticity were
assigned. One (03) accounts for the most rigid option (i.e. P4 in Fig. 3.9), two different
ones (04 5) to represent the cases where the future vector turns with respect to X, and stays
in the plane formed by X, and X,_1, in the same or opposite direction as X, (e P.3
and P in Fig. 3.9, respectively). Finally, a sixth parameter () accounts for the axon
elasticity when changing plane with respect to X, and ¥, and is the same for any of both
possible directions respecting the axon elasticity isotropy (P; and P, in Fig. 3.9).
Considering these parameters accounting for the axon rigidity [(¢.¢)] plus three param-
eters [Fy, Fy, F;] representing an external attracting field, we can define the value of each
possible probability P(¥ 41| %;, ¥;_1). For instance, the five conditioned probabilities

represented by the first configuration in Fig. 3.9 are defined as

(

o
P :32
_
Pz—ﬁz
P = 0+F,
by _ othy (3.4)
4=7D
F.
Py =925
D=40p+ oy +F+F+F;
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From data, we can naturally estimate the values of the 150 conditional probabilities P
(30 configurations of two past vectors [7“7:71] with 5 possible future vectors each) as the
number of occurrences of the three unit vectors [?,H , 7“ 7:4]1‘ divided by the number of
occurrences of the two past vectors [ ¥, X 1] jo

We thus obtain an overdetermined system of 150 equations with nine unknowns ([(Q.¢,
F\,F,F,)]). However, because the average length of the axons from data is not enough to
ensure good statistics for each one of the 150 equations (which is the same as saying that the
frequency of some three unit vector configurations present high variation), the overdetermined
system becomes inconsistent, thus impossible to solve. Because the parameters of the model

cannot be estimated, we propose another approach, described in the next section.

Xt41
F,
P3
Fy
@ P
4 Fy
P z
Y
X

Fig. 3.9 Second order Markov model for axon morphology. Two examples of three vector
configurations considering a 3D 6-connected path. Each future direction has a probability of
occurrence conditioned by the present and past directions, and is numbered from 1 to 150
(30 possible configurations for past plus present and 5 possible future configurations for each
of them). (left) One of the 6 possible configurations where the two past vectors are in line.
(middle) One of the 24 configurations where the two past vectors are orthogonal. (right)
Considered coordinate axis and external field components.

Second approach: non-parametric Markov chain model

Because of the problems raised by the nine parameters approach described in the previous
section, we considered the alternative non-parametric model. Thus, trajectories are modelled
by the set of conditional probabilities P;,i € [0, 150], which describe the intrinsic geometry

of the main axons in each group under study. Naturally, the explicit bond with the biological
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Table 3.2 Number of parameters with p < 0.05 for the non-parametric Kruskal Wallis test.

ImpL Imp Sh Prof Rescue

WT 12 22 28
Imp L 16 19
Imp Sh 24

nature of the problem is lost, thus the model becomes phenomenological. However, this
approach presents no need of solving systems of equations, as each parameter is directly
defined from data, avoiding the statistical problems raised by the nine parameters approach.

We performed the Kruskal Wallis non-parametric test between populations for each
conditional probability P;, 1 <i < 150 (calculated per axon). Table 3.2 shows the number of
parameters P, that present p < 0.05 between each pair of populations. Note that the values
in Table 3.2 are small considering that from the existent 150 parameters, the maximum
amount of them showing a significant difference between groups is 28. In addition, regarding
the probability of each combination of two past unit vectors [7,, 7t,1]i, the results of the
estimation show that all the groups share the six most frequent configurations, representing
together between 65 and 76% of the total. Moreover, no relevant differences where observed
regarding these six frequent discrete distributions between the groups (Hellinger distances

between them presented near zero values in every case).

3.2.3 Branching point occurrence

We propose a model that describes the branching point distribution independently of the axon
length and that is inspired from the biological process of interstitial branch formation during
development. We consider interstitial branch formation and not growth cone bifurcations, for
two main reasons. The first one is that growth cone bifurcations usually occur to stablish
well-known Y or T shapes in neurons, and are necessary for the nervous system organization
(Davis et al., 1989; Gallo, 2011a; Schmidt et al., 2007). This description does not seem to
fit our particular case where neurons present quite different morphologies between them
(and not a particular structural organization) and there is no evident need to reach different
anatomical regions with different neuron tips. The second one is that branches that are born
from bifurcation processes grow exactly as their parallel neurite (Gallo, 2011a), and our
database includes examples of phenotypes where branches are affected but not the main
axon.

This process can be described in three simple steps (Fig. 3.10): 1) the main axon grows
following particular external and internal guiding cues. ii) When the growth cone senses

external guiding cues indicating the formation of an interstitial branch, the main axon
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decreases its growing speed until it totally stops while it accumulates molecular material in
its tip (i.e. filopodial and lamellipodial protrusions which serve as precursors to branches
(Kalil and Dent, 2014)). iii) After some time the main axon continues growing following
its particular cues, leaving the accumulated material in a specific zone of its shaft. The left
material is then organized into an independent growing tip and starts elongating an interstitial
branch towards its particular target (adapted from (Szebenyi et al., 1998)).

i ii iii

/-—______,/-\__,./—\)—\.

Fig. 3.10 Interstitial branch formation during axonal development described schematically in
three main steps, adapted from Szebenyi et al. (1998). i) The main axon grows. ii) When the
growth cone senses external guiding cues indicating to branch, the growth speed is decreased
until it stops. iii) After some time the main axon continues growing, leaving accumulated
material in a specific zone of its shaft. The left material is then organized into an independent
growing tip and starts elongating an interstitial branch towards its particular target.

Modelling this process was initially complicated as none of two main actors (growing
rate, guiding cues presence) can be measured from the adult stage confocal images in our
data-base. Regarding these limitations, we focused our study on the behaviour of the axon
growing rate v. We assumed that the axon starts growing with a certain initial speed vy and
evolving until v = 0, when a new branch point appears.

We measured the number k of pixels between every two successive branching points
along each axon. Then, we supposed that each of these pixels represented a differential
progress in the axon growth, where the axon had a certain growing rate v. Our model assumes
random decreases in speed which we call Av, with a probability of occurrence p. When a
certain number of decreases AAv occurs, the speed v equals zero, thus the growing tip stops,
allowing the material needed to form a branch to accumulate. After some time the process
starts again, with initial speed vy.

Because at each k pixel a decrease in v may or not happen independently, we described
the problem using a Bernoulli distribution, where each success means the occurrence of a
decrease in speed (Av). We considered that the growing rate goes to zero after A + 1 steps
of speed decrease. The probability to reach v = 0 after k steps is given by an accumulation

process written as follows



40 Morphological Study

P(k) = (k; 1)p/‘“(l —p)Ah (3.5)

Equation 3.5 gives the probability of having A successes in k — 1 trials and a success
in the k" trial. This means that the axon tip decreases its speed A times before stopping
completely (which happens in A + 1), or equivalently that the length between two branching
points is k (Fig. 3.11). Thus, our accumulation Bernoulli-based, time-mimicking branching
point distribution model has two parameters, A and p, to be estimated from data. Knowing
all the distances k; between successive branching points for every axon in each group, we
can calculate their mean and variance ; and Gk2. From

ki—1 A
uk=2k,~( ) )p”l(l—p)"’ ! (3.6)

and

ki—1 e
szzkf( Y )pA“(l—p)k’ g (3.7)
1

It can be shown that (A, p) and 6Z(A, p) have the simple following forms (proof
described in A.1 in Appendix A):

A
Uk(A,p) = —; (3.8)
p

1-p)A
o7(4,p)= L PA . A (3.9)
p
Equations 3.8 and 3.9 allow to easily estimate A and p from data. Once A and p are
estimated, A needs to be rounded as it has to be an integer. Then, p can be recalculated

knowing the value of A as

AW+ o) (3.10)
p=—"77-—>—. .
Hk+0k2

With this model, the number A + 1 of needed /v in order to form a branch, and p their
probability to happen define each axonal group regarding their branch density.

Tables 3.3 and 3.4 present the resulting values of the parameters for each group and the
p values from the Kruskal Wallis test comparing all the distances between two consecutive
branches k; among groups, respectively. Interestingly, the only significant difference (p <
0.05) appears between Imp Sh and every other group (i.e. Imp Sh is more densely branched).
While each group has the same value of A, Imp Sh presents the highest value of p. This
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Table 3.3 p values from the non-parametric Kruskal Wallis test comparing the distances in
pixels between consecutive branches between the studied groups. Significant differences
appear in blue.

Imp L. Imp Sh Prof Rescue

WT 09 4.2¢-3 0.6
Imp L 22e¢—2 0.7
Imp Sh 1.3e -2

Table 3.4 Value of the parameters A and p describing the branching point distribution.

A p pforA=1

WT 1.2 0.0087 0.0078
Imp L 1.0 0.0068 0.0067
Imp Sh 0.9 0.0080 0.0084

Prof Rescue 1.2 0.0074 0.0068

means that /Ay occurrence is more probable, thus it takes less time to reach v = 0, and
consequently it is the most branched group.

k=#[_|+# | =Total #of steps
BP

BP

A+1=#] ]

Fig. 3.11 Bernoulli model for branch occurrence. 2D 4-connected path showing an axonal
trajectory between two branching points (3D not shown for simplicity). Light coloured pixels
depict Av and occur with a probability p, decreasing the growing rate. When the number of
light coloured pixels equals A + 1, v =0 and a new branching point appears.

3.2.4 Branch length

To study the branch length distribution within the groups, we established four length cate-
gories (um); Ly : (0,1], Ly : (1,5], L3 : (5,10] and L4 : (10, inf) following Tessier and Broadie
(2008). In this work, the authors study the role of the fmrl gene which, like imp, codes a
mRNA transport protein whose function has been associated with pruning of y axon branches
during late development. They consider large branches (>10um) and short ones (<5um).

One of their findings is that small branches go through a process of pruning at eclosion in
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Table 3.5 Branch length distribution by length category per group (%).

L; L, L; Ly

WT 106 492 11.7 285
Imp L 84 665 10.1 15
Imp Sh 19.8 48.2 145 175

Prof Rescue 19.5 483 102 22

Table 3.6 p values from the non-parametric Kruskal Wallis test comparing the branch length
distribution in L, between the studied groups. Significant differences appear in blue.

ImpL Imp Sh Prof Rescue

WT 8.9¢ —5 0.9 0.8
Imp L 9.0e —4 1.0e —3
Imp Sh 0.9

wild-type individuals, but not in d fmr1 null ones. The category L; was added to eliminate
the influence of very small branches that may actually be artefacts. The length was measured
in the same way as described for the main axon. The probability distribution modelling the
relative amount of branches within these length categories and for each group was considered
as Gaussian. For each group of axons X, we calculated the mean and standard deviation
(/.Lgi, Ggg ), 1 <i <4 of the relative number of first order branches per axon corresponding to
each length category b1-b4 (Table 3.5). To know between which groups and for which length
categories the differences are significant, we performed the Kruskal Wallis non-parametric
test for the four length groups. Significant results (p < 0.05) are only present within L,
and L4 categories. The p values are shown in Table 3.6 and Table 3.7. Imp L presents
significantly more branches in L, than any other group while WT has a bigger proportion
of L4 branches than Imp L and Sh, but not Prof Rescue. For further analysis, we took only

these discriminant categories L, and L.

Table 3.7 p values from the non-parametric Kruskal Wallis test comparing the branch length
distribution in L4 between the studied groups. Significant differences appear in blue.

ImpL Imp Sh Prof Rescue
WT 35¢—4 13e—4 0.2
Imp L 0.7 0.1
Imp Sh 0.1
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3.3 Likelihood Analysis

We first define the likelihood according to the model of each feature:

* Main axon length:

The likelihood of a given axon n of length [, to belong to a given group X is defined
by the Normal probability density function

1 exp _(ln _uui.a.)z
Gf)n(~a~ v 27[ 26}31(0.2

Li(lyln€X)=P(ljn € X) = (3.11)

* Main axon morphology:

The computation of the Markov chain likelihood appears to lack of robustness to
compare populations. This can be explained by the limited length of the axons in pixels
(~1500) and the combinatorial of the problem (150 conditional probabilities). Indeed,
some of the three vector configurations, even though with non-null probability, may
not appear in the learning sample. When this is the case, if the axon to classify does
present at least one time this configuration the likelihood becomes zero. This means
that the likelihood is extremely sensible to fluctuations in the presence of low probable
events, which is statistically inevitable with the size of our data. To overcome this
inconvenience and add robustness to the likelihood analysis, an original approach was
applied (Eq. 3.12). We assume the 30 discrete probability distributions P(.| %X, X—1)
as independent, and defined a multinomial Bernoulli distribution for the variable 7t+1
for each given [7“ 7,_1] j- For each axon n, the likelihood of each group X according
to the shape model of X, P(; 150 x), and the frequencies of appearance of three unit

vectors corresponding to n, #;, is then defined as follows

Lg,(#1.150n € X) = P(# —#150ln € X) =

30
N, Ny —#
I, e (M, ) etis

1 \ e #it2
Ny —#o1 —H#or — oy —#
s —#rr1 — o — s —Hioa P,f"? (3.12)
et *
k=5(s—1);

5
Ny =Y #is—1)+j
k=1

* Branching point occurrence:
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To calculate the likelihood of each neuron n to belong to the group X regarding this
model, we use the Binomial probability density function considering the distances

between each pair of consecutive branches k;, ,, independent between them, obtaining

M
m=1 (3.13)

( 1) A1 a1 —Ax

where M is the total number of pairs of branches.

* Branch length:

To calculate the likelihood of each neuron n with each group X regarding the branch
length distribution in L, and Ly - b, > and b, 4 - we considered a bivariate Gaussian
distribution with mean X = (u%, u¥,) and £X the covariance matrix between %

and ub.

— —
Lbl(b |I’ZEX):P(b |l’l€X):

1 Ly e (3 (3.14)
—  exp—— y
2 exp 2 ﬁ ﬁ

where |ZX| is the determinant of the covariance matrix XX,

Thus, for each axon n, we calculated its features and then computed the likelihood for
each group X, (X € WT,Imp, ProfRescue). The axon n was thus classified in the group that
maximizes the global likelihood. All the classifications presented in this work were done
using the "leave one out" technique, which consists in classifying an element of the sample
that has been removed from the database to perform the learning step (i.e. the estimation of
the model parameters). This maximum likelihood classification does not only provide an
assessment about the discriminative properties of the proposed models, but is also useful to
analyse the mixture of feature values between the populations.

Considering the four features independent, the global likelihood is given as follows

— —
L(ln,#1:150 1, kn, b nln € X) = Li(Ip|n € X)Lg,(#1:150,0/n € X )Lpp (kn|n € X)Ly ( b p|n € X)
(3.15)
and the maximum likelihood estimation results
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Table 3.8 Global likelihood analysis considering the four features.

Predicted (%)
WT ImpL Imp Sh
WT 826 174 0
Imp L 545 455 0
Actual Class |y oh | 192 39 769
Prof Rescue | 40  26.7 333
_)
neXy+— Xo= argmaxL(ln,#1;1507n,kn, b pln€X), (3.16)
b
X =WT,ImpL,ImpSh, ProfRescue. (3.17)

Equation 3.16 allows to classify each axon by resemblance to each group considering
the four morphological features (main axon length and shape, branch length distribution and
branch point distribution) and their stochastic models. Table 3.8 presents the results of the
global likelihood analysis.

These results suggest a relevant global difference between neurons belonging to Imp
L and Imp Sh, as well as between WT and Imp Sh; while between WT and Imp L this
difference is weaker. More than half of Imp L axons are likely to be WT while for Imp Sh
this proportion is less than 20%. Some WT axons are classified as Imp L but none as Imp
Sh. Interestingly, the percentage of Prof Rescue neurons likely to be WT lies in between the
percentages for Imp Sh and Imp L. This result supports the idea of a partial rescue of the
Imp neuron morphology.

To understand how each morphological feature contributes to the results in Table 3.8,
we carried out the maximum likelihood analysis regarding each of them separately. For the
main axon length, as expected from Fig. 3.8, WT axons are shared between WT and Imp
L categories; and Imp L is mixed with WT. Imp Sh is completely separated from the rest
of the groups (Table 3.9). Regarding Prof Rescue, our results agree with those in Medioni
et al. (2014) about the main axon length being partially rescued by Profilin over-expression.
Our study pointed out that 46% of imp mutant neurons present a conserved main axon length
while 54% are significantly shorter than WT. Here we show that Prof Rescue axons are
distributed by a 67% (Imp L + WT) vs. 33% (Imp Sh), moving the tendency towards a WT
phenotype.

According to the main axon shape in Table 3.10, WT and Imp L look again similar and,
interestingly, Imp Sh looks more similar to WT than to Imp L. Prof Rescue behaviour is
opposite to that of Imp Sh.
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Table 3.9 Likelihood analysis according to the main axon length feature.

Predicted (%)
WT ImpL Imp Sh
WT 39.1 544 6.5
Imp L 227 773 0
Actual Class Imp Sh 0 0 100
Prof Rescue | 6.7 60 333

Table 3.10 Likelihood analysis according to the main axon shape feature.

Predicted (%)
WT ImpL Imp Sh
WT | 543 435 22
Imp L 50 50 U
Actual Class Imp Sh 61.5 385 0
Prof Rescue | 40 60 0

Table 3.11 presents the likelihood analysis results regarding the branch point density. It
can be noticed that every group is mainly classified as Imp Sh, which our previous analysis
revealed as the most branched group. The reason for this behaviour relies on the nature of
the model. Even though the means of the distances between branches are different between
the biological groups, axons frequently display one or more pairs of branches which are
close. Because for close branches the likelihood is maximum for Imp Sh, with a significant
difference from the other groups, the presence of near branches automatically classifies a
neuron as Imp Sh. Nevertheless, the branch density coherence is respected for each group
as the resemblance with Imp Sh is maximum for the most branched group (itself) and is
followed in the correct order (regarding the statistical analysis): WT first, followed by Imp L
and Prof Rescue.

Finally, according to the branch length distribution (Table 3.12) WT, Imp L and Imp
Sh show a higher resemblance to their own groups, suggesting a significant difference

between them regarding this feature. Prof Rescue has a slight preference for Imp Sh which

Table 3.11 Likelihood analysis according to the branching point feature.

Predicted (%)
WT ImpL Imp Sh
WT 0 13 87
Imp L 13.6 182 68.2
Actual Class |y Vop | 77 115 808
Prof Rescue | 6.7  26.7 66.7
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Table 3.12 Likelihood analysis according to the branch length distribution feature.

Predicted (%)
WT ImpL Imp Sh
WT 60.9 239 15.2

ImpL 182 727 9.1
Imp Sh 154 30.8 53.8
Prof Rescue | 33.3 20 46.7

Actual Class

Table 3.13 Global likelihood analysis considering the four features. Imp includes Imp Sh and
Imp L.

Predicted (%)
WT Imp
WT 80.4 19.6

Actual Class Imp 37.5 62.5
Prof Rescue | 60 40

is understandable as both have the same proportion of branches in L, which is the most
abundant group of branches. Nevertheless, its resemblance to WT regarding this feature
is notoriously higher than those for Imp L and Imp Sh. This result reveals that Profilin
over-expression partly rescues branch length distribution —i.e. it presents a bigger proportion
of long branches- in addition to the main axon length.

In order to better understand the morphological changes induced by Profilin over-
expression in imp mutant axons, we performed the global maximum likelihood analysis
considering imp mutants altogether (i.e. Imp Sh + Imp L), and the possible classification
groups either altogether (Table 3.13) or split between Imp L and Imp Sh (Table 3.14).

From the analysis in Table 3.13, we can highlight that while only 37.5% of imp mutant
axons present a WT phenotype, 60% of Profilin rescue axons exhibit this behaviour. More-
over, it is interesting to analyse how Prof Rescue is classified regarding Imp L and Imp Sh
(Table 3.14). The percentage of neurons classified as Imp Sh decreases compared to imp

mutant from 42 to 33% while the tendency for Imp L and WT is increased in Prof Rescue.

Table 3.14 Global likelihood analysis considering the four features. Imp is split between L
and Sh for possible classification groups.

Predicted (%)
WT ImpL Imp Sh
WT 826 174 0

Actual Class Imp 35.5 23 41.5
Prof Rescue | 40 26.7 33.3
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Finally we performed a brief comparison regarding our classification results with those
in Mottini et al. (2013), where wild-type as well as imp mutant Y axons were analysed
as well. The authors reported 85 and 91.7% of accurate classifications for WT and Imp
respectively with the ESA curve distance method (based on the Elastic Shape Analysis
Framework Mottini et al. (2015)), and 52.6 and 79.2% with RTED (an efficient solution for
the tree edit distance problem (Pawlik and Augsten, 2011)). It is relevant to highlight that the
goal in their work was to discriminate between populations, thus they considered exclusively
highly discriminative parameters. On the contrary, our results -80.4 and 62.5% for WT and
Imp respectively- show and value not only the differences but also the existing similarities
between phenotypes, considering all the relevant morphological features (including those
that may be known as not discriminative). Our work also allows to correlate the conclusions
with biological parameters. In addition, our sample size doubles the one used in the previous

work.

3.4 Simulation

The models behind the main axon length, morphology and branching point distribution are
not only descriptive but also generative, meaning that new axons can be simulated using the
models and their parameters, whose values were estimated from data.

The Markov chain model for the main axon path establishes the probability of the next
position knowing the current position and the two before. This is why the first three points of
the simulated paths are arbitrarily pre-established as (0,0,0), (0,1,0) and (0,2,0). The length of
the main axon (in number of steps) is given by a random number from a Normal distribution
with (uX _, oX ) estimated from a particular group of neurons. Finally, each pixel of the
resulting path is associated with a success or a failure following the Bernoulli p parameter
for branching point distribution. When A 4 1 successes are reached, a branch point is placed
and the success counter is reinitialized as zero.

Fig. 3.12 contrasts real and simulated main axons, one per group. The axons relative
lengths as well as their branching point densities are conserved. However, simulated axons
are shorter than real ones in a tm scale. The reason is that, unlike real axons, their trajectories
present some looping and high frequency turns. These pixel-scale phenomena are artefacts
of our model, and suggest that the considered scale may not be appropriated for a generative
model. In particular, the results show that the pixel scale leads to data over-sampling, thus
the estimated parameters capture not only the main axon shape but also the noise present
at the pixel scale, due to the discretization and segmentation. To avoid this problem, one

possible solution could be to consider Markov chains of higher order. However, this adds
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complexity (i.e. number of parameters, or conditional probabilities P;) and worsens the
problem mentioned about the lack of representation of some conditional probabilities given
the axon typical lengths in our data. Other solutions are to consider as variable other quantity
than position, and to change the model scale to a larger and more adequate one. Taking these
aspects into account, we developed a more accurate generative model, presented in Chapter
4.
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Fig. 3.12 Real vs. Simulated axons from the studied groups. Yellow spots represent branch
points. Zoomed areas are also shown in both cases.

Fig. 3.13 displays 50 simulated axons for each neuron group in order to show their mass
behaviour. WT presents more diagonal directions than the rest. Imp L, Imp Sh and Prof
Rescue display similar growth directions, while Prof Rescue shows less variation between its

individuals in this point than Imp L and Imp Sh.
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Fig. 3.13 Presentation of 50 simulated main axons for each studied population.

3.5 Discussion and Contributions

3.5.1 Axon growing rate and branch formation

The value of A = 1 indicates that, according to our model, the axon tip diminishes its growing
speed only two times before stopping to create a branch, instead of doing it gradually. A
biological interpretation could be that the first time may be related to the moment when
the axon senses the external guiding cues. Then it continues growing more slowly, which
may facilitate other cues detection, until it finally stops, consequence of the second and last
speed lost. When this happens, branching material could be accumulated and after some time
an interstitial branch is created. An increased value of p may indicate a higher sensibility
to external cues and/or an increased concentration of internal cues triggering branching.
Another interpretation can be that axons with a defective growing rate (i.e. slower speed,
or high p) are more susceptible to stop independently from external cues, and therefore to
branch more. All the groups presented the same value of A, indicating that this two-step
behaviour may be conserved and therefore independent from Imp. Regarding p, Imp Sh
is significantly more branched than the rest of the groups, including Imp L, even though
they have the same genotype. This is coherent with the short phenotype, as in our model
high p means overall growing speed decrease and thus less net growth during the same
developmental time. More interestingly, Prof Rescue axons present the same value of p than
Imp L. This suggests that the phenotype presenting high branch density (Imp Sh) may be
rescued by profilin over-expression. Because profilin also rescues the main axon length, one

possibility is that the actual rescued feature is the main axon growing speed.
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3.5.2 Wild-type axons are mostly differentiated by their branch length
distribution

The global maximum likelihood analysis results in more than 80% of WT axons to be
correctly classified (Table 3.8, Table 3.13 and Table 3.14). Nevertheless, when looking at
each particular feature it becomes clear that WT shares most of those with Imp L. Regarding
the main axon length (Table 3.9), 54% of WT neurons are likely to be Imp L and 43% for the
main axon shape (Table 3.10). The analysis following the branch point density results in 13%
of WT neurons likely to be Imp L, while no WT neuron was correctly classified. This results
are validated by the p values for main axon and branch length distribution that do not show
significant differences between WT and Imp L. Regarding the shape model the situation is
similar, as between Imp L and WT the number of significantly different parameters is the
minimum of all the group pairs and it is only of 12 in 150.

The maximum likelihood analysis considering only the branch length distribution is the
sole to correctly classify WT axons (Table 3.12). While WT and Imp L present both 80% of
branches in L; and L4 altogether (Table 3.5), the difference between them is that WT shows
statistically more branches in L4 while Imp L in L;. We can relate our results to those of
Tessier and Broadie (2008) and Medioni et al. (2014). The first publication reports that a
loss of L, branches by a late pruning process occurs in wild-type neurons and not in dF MRP
mutants (dFMRP is also a Profilin regulator and mutations in fmrl gene coding FMRP is
the main cause of the Fragile X Syndrome, a mental retardation disorder and the second one
concludes a defective development of long branches (L4) in imp mutants.

The maximal percentage of correct classification for WT considering the features sepa-
rately is 60% for the branch length distribution (Table 3.12), followed by 54, 39 and even
0% corresponding to main axon shape, length and branching point distribution (Table 3.10,
Table 3.9 and Table 3.11). Interestingly, the global classification mixing the four features
improves these percentages to 80% (Table 3.8, Table 3.13 and Table 3.14). This suggests
that WT neurons are well defined and different from Imp, but it is necessary to consider
all the morphological features together for a correct classification. This also highlights the
advantages of our method as it goes beyond a simple statistical analysis, allowing to mix
different features as well as to consider each neuron independently.

3.5.3 imp mutants present two different phenotypes

Medioni et al. (2014) reported that imp mutants could either present a conserved main axon
length or an aberrant one, with ~ 50% of occurrence each. Following these results we applied

the k-means automatic algorithm to separate the Imp population in Imp L and Imp Sh, and
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obtained a 46 vs. 54% of incidence correspondingly. This bimodal behaviour can also be seen
in the length distribution (Fig. 3.8). Surprisingly, we have found other relevant morphological
differences between this two groups that had not been yet reported in the bibliography. The
main one is the branching point distribution, as Imp Sh is significantly more densely branched
than Imp L (Table 3.4 and Table 3.3). Also, the percentage of branches ranging from 1 to 5
um, while aberrant in Imp L, is conserved in Imp Sh (which shows no differences from WT
(Table 3.6)).

Regarding the global likelihood analysis (Table 3.8), while less than 20% of Imp Sh
neurons can be considered to have a WT phenotype, 55% of Imp L do, allowing to conclude
that Imp L presents a generally more conserved phenotype. Globally, we conclude that the
penetrance of the imp phenotype is 63%, following our global likelihood analysis (Table
3.13 and Table 3.13).

These results are consistent with an essential role of Imp in main axon elongation and
branch formation and elongation during the remodelling of y neurons. Nevertheless, the
phenotypical variability within imp mutants (i.e. from globally aberrant to completely WT-
like neurons) indicates the existence of other —maybe Imp-independent- important actors
with the capability of controlling also the remodelling process; and/or that the inhibition of

the gene in this condition is not 100% efficient.

3.5.4 Profilin overexpression partially rescues the main axon length as
well as the branch length distribution

The global likelihood analysis (Table 3.13) considering Imp altogether shows that Profilin
decreases the percentage of the imp mutant phenotype from 63 to 40%. Regarding the main
axon length, while aberrant neurons represent 54% of the Imp population, they represent only
33% in Prof Rescue (in Prof Rescue 67% of neurons present a conserved length (WT + Imp
L) and only 33% do not). Following the branch length distribution likelihood analysis, 33%
of Prof Rescue axons are classified as WT and represent the second maximum percentage
after WT itself (only 18 and 15% correspond to Imp L and Sh, respectively). Looking at the
p values between branch length categories (Table 3.6 and Table 3.7), we suggest that Profilin
rescues the late pruning of small branches (Tessier and Broadie, 2008), showing a conserved
percentage of L, branches and, more interestingly, also allows to develop more branches in
the long category. Even though the mean percentage of branches in L4 is slightly smaller
for Prof Rescue than WT (Table 3.5), this difference is not significant in the statistical tests,
suggesting a conserved percentage of long branches in Prof Rescue which is not seen in Imp
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Sh nor in Imp L, and thus that branching is rescued by Profilin. This results are interesting
and novel regarding the previous observations done by Medioni et al. (2014).

Finally, regarding the global likelihood analysis considering Imp L and Imp Sh separately
(Table 3.14), we conclude that Profilin rescue diminishes the general morphological aberra-
tion, as it moves the tendency towards WT and Imp L phenotypes and lowers the percentage
of neurons with an Imp Sh phenotype.

This study suggests that Profilin is also involved in branch formation and elongation, in
addition to main axon elongation during remodelling. Nevertheless, because the phenotypical
rescue is not complete, we can conclude that the localisation of profilin mRNA in axons
by imp and thus the local production of Profilin is still essential for elongation, and/or that
other Imp RNA targets are involved. Regarding branching, the over-expression of Profilin in
the neuron may lead to longer branches, but maybe is not reflecting the wild-type situation

neither.

3.5.5 Conclusion

In this chapter we proposed a framework to compare neuron groups based on their morphol-
ogy. Our procedure consists of applying probabilistic models to describe the behaviour of
selected morphological features (i.e. main axon length and shape as well as branch length
and density), associated parameters estimation from data, and a likelihood analysis combined
with statistical tests. We applied this framework to understand the effects of imp knock-down
-as well as its rescue by Profilin- in Drosophila 7y adult axon morphology. The similarities and
differences highlighted between wild-type and mutant neurons allowed to better understand
the role of Imp and Profilin during axonal remodelling, particularly on axon elongation
and branch formation. While the Imp Long phenotype seems to differ from WT only by
the absence of long (>10um) branches, the short phenotype presents, in addition to length
shortage, an overall increase in branch density. Regarding the branch occurrence model, this
can be interpreted as Imp Sh growing slower, and may suggest that Profilin over-expression
rescues the growth speed. Interestingly, the rescue with Profilin results in an homogeneous
phenotype, with main axon lengths near to those in WT, as well as an increased number of
long (> 10um) branches. Finally, our analysis shows that Profilin reduces the general imp
phenotype penetrance from 63% to 40%, suggesting the importance of Profilin in elongation
and branching, but also the need of targeted synthesis (allowed by Imp) to obtain fully grown
WT axons. An interesting overall observation is that main axon length rescue correlates with
the rescue of the branch phenotype, both in length and number. This correlation is broadly
studied in the following chapter, as well as the currently unexplained origin of Imp double
phenotype.
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We propose that this method consisting in feature selection, model application and
likelihood analysis could be applied to any case of study between species where similarities
are as important as differences. We can also conclude that the study of individuals is relevant
and more enriching than just population analysis driven by ordinary statistics. In addition,
we highlight the importance of combining different features to achieve a global result.

A final consideration is that the proposed models -particularly the main axon morphology
one- performed better at discriminative and descriptive than generative tasks. In the next
chapter we will focus on the generation of realistic axonal morphologies by a mechanistic
model, to better understand the developmental process of wild-type axons, as well as the

origin of the considered phenotypes.



Chapter 4

Space-Embedded Axon Growth Model

Chaos is merely order waiting to be deciphered.
José Saramago

In the previous chapter we analysed in detail the morphology of adult y axons and how it
is affected by imp knock-down and its rescue with Profilin over-expression. In this chapter
we go further and try to understand, for each case, how the particular axonal tree-structure
is attained considering the dynamic process of remodelling of the ML (see Fig. 2.3). We
propose a simple mathematical model that captures the essential aspects of axonal elongation
and guidance (see Chapter 2), and estimate its parameters directly from data. We then
simulate the regrowth of the 650 ¥ axons synchronously within the ML, considering the
retraction of each growing tip after contact with other axons or the ML geometrical limits.
These simulations allowed us to study the relevance of considering mechanical interactions
between the developing axons to explain their final morphology, as well as to understand
certain dynamical aspects of their growth as a population (and not as independent individuals).

Further, we investigate the branching pattern of y axons and include branch formation in
our model. A very classical but still up-to-date approach on interstitial branch formation was
considered in Chapter 3, and is described in Szebenyi et al. (1998). Here, branches appeared
at points delimited by the growth cone after sensing particular guiding cues that indicate
branching and stopping the growth for a while. Branch formation was thus, classically,
considered regarding a single neuron growing isolated and interacting only with external
chemical guiding cues. Kalil et al. (2000) further discussed interstitial branch formation and
continued with the idea proposed by Szebenyi et al. (1998) that branching points appear in
regions along the axon shaft where the primary growth cone had stopped its trajectory for
a while. They also enhanced the idea that it is the growth cone itself that distinguishes the

places of the future interstitial branches by cue recognition, and proposed that signalling
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as well as internal pathways seem to be shared between main axon and branches growing
tips. A decade later, Gallo (2011b) reviewed the signalling and internal mechanisms of
branch formation, and ends up with some unsolved questions: What additional localized
signalling events occur in axons? How are these signalling events initiated? What aspects of
the mechanisms of branch formation are shared by those of axon extension and guidance?
These open questions inspired and oriented our work towards the study of branching
origin, specifically involving mechanical and not only chemical localized signals and possible
shared mechanistic and structural aspects between main axons and branches. While the
importance of branching has mostly been considered in the context of establishing connec-
tions with partners (Armijo-Weingart and Gallo, 2017; Tsigankov and Koulakov, 2009),
our approach suggests, strikingly, that they might play another fundamental role than just
synapse formation with target cells, which has not been particularly reported before. Finally,
this work proposes that the origin of the intra-population phenotypical differences observed
within the genetically identical Imp population (largely studied on the previous chapter) is
intrinsic to the axonal collective evolution, and one needs to consider mechanical interactions

between the developing axons to explain these observations.

4.1 Data treatment

Our database is composed of images of a single axon each. In the previous chapter we
analysed them individually and we considered the pixel as the measure unit for all the
measurements and model design.

However, for this new step, we need to consider neurons within a population to take into
account group effects as well as their realistic environment, so some corrections need to be
applied. In particular, we need to take into account the possible differences between images
i.e. pixel size, Mushroom Body geometry, dimensions, rotation and relative position of the
axon within the ML. We thus implemented a normalization procedure that allowed us to
place all the single axons (collected from different MB) as if they were part of the same ML.
To do so, we chose a Standard ML (SML) from one of the images and drew two main curves
signalling the entrance and the end of the ML (Fig. 4.1). Then, to position each neuron in the
SML, we defined the point on the entrance (red) curve that better represents the actual axon
Entrance to the Lobe (EL), taking into account the anatomy of the MB in each particular case.
To correct the difference in scale and in ML size, we took the distance (in tm and parallel to
the ML main axis) from the entrance (EL) to the end of the ML in both, the image we want
to normalize and the SML. We named the quotient between these two values the Scale Factor

(SF) by which we then multiply the points in the neuron segmentation. Finally, we measured
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the angle between the ML main direction and the image horizontal axis to have the Rotation
Angle (RA). We considered that the RA in the SML is zero. All these magnitudes (EL, SF
and RA) are illustrated in Fig. 4.1B and C. We chose this procedure instead of a classic
image registration method because a rigid one would not have been accurate to account for
differences in the morphology of the MLs and a non-rigid one, on the other hand, would have
also deformed the neuron geometry. Moreover, the size of our data set makes it possible to
apply a handmade procedure analysing each image separately. We also decided to consider a
higher scale than the pixel size to describe the axon paths, via a simple polygonization of the
trajectories. The procedure to normalize an already segmented axon is then to multiply the
points of its path by the SF and then re-sample (polygonize the paths) considering the new
scale (distance between points). Throughout this work we used as sampling scale the general
axonal diameter observed in the images: 1 um. Then we rotated every point by the angle RA
and subtracted the initial point to all the points in the tree (take the axon to the origin). The
last step is to add the EL point to place the neuron in the starting point.

Fig. 4.2 shows examples of single axons before (A) and after (B) the normalization, as
well as the entire WT population placed in the SML (C). An interesting observation is that
not every axon reaches the ML end (Fig. 4.1 A). We thus defined the "stopping region",
as the region where wild-type axons stop growing in our data after registration. It goes
from X = 62um to the end of the ML. In other words, the "travelled distance" of every
wild-type axon is higher or equal than 62um. The schemes representing the stopping region
and travelled distance are shown on Fig. 4.2 D. In the rest of this work, we consider that
an axon is elongated if it stops within the defined stopping region (and non-elongated if it
does not). This classification does not pretend that every y axon has as unique goal to reach
this region, but becomes useful to develop underlying hypothesis of axonal length shortage,
generally considered aberrant in the bibliography (Medioni et al., 2014; Yaniv et al., 2012).

Fig. 4.3 shows all the axons in our dataset normalized to the SML following this
procedure. As it can be seen, the wild-type ¥ axons spread over the entire medial lobe,

suggesting that our database is representative of the entire population.

4.2 Mathematical model formulation

To model the growth of adult y axons that occurs in vivo during metamorphosis, we consider
the growth of individual axon tips as a succession of discrete steps, and used a Markov chain
with an artificial constant time unit to model the angles of these incremental steps. At each
artificial time point #;, individual growing tips advance of a certain number 7, of discrete

steps p; with a constant size Ap = 1um fixed according to data sampling (see 4.1). We
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Fig. 4.1 y axon normalization to the same standard medial lobe (SML). (A) shows the
entrance of the neurons to the ML (red) as well as the end of the ML (green) and in yellow
the image origin point (origin of coordinates). The dotted white line represents the ML shape.
(B-C) shows how we defined RA, SF and EL for each one of our images. The cross in a
circle (in B) shows the point where the neuron enters the dorsal lobe, which is represented as
the EL point in the SML. The Rotation Angle RA is taken between the ML and the X axis
(in the SML this angle is equal to zero) and the Scaling Factor (SF) is the quotient between
the distances from EL to the end of the ML that is parallel to the lobe from the image and the
SML. Scale bar: 10um.
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Fig. 4.2 v axon normalization: results. (A) Maximum intensity projections of some wild-type
single axon images in our dataset. (B) The same axons in (A), segmented and placed in the
SML. (C) The entire wild-type ¥ population in our database, segmented and placed altogether
in the SML. In Z, all the axons start from the origin (Z = 0). (D) ML scheme indicating the
definitions of the stopping region (i.e. where wild-type axons stop) and travelled distance
(i.e. projection on the X axis). Scale bars: 10um.
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wild-type imp mutant
(WT)

profilin mutant
(Prof)

imp mutant Short
(Imp Sh)

imp mutant rescued by Profilin imp mutant rescued by Imp

(Prof Rescue) (Imp Rescue)

Fig. 4.3 Normalized 7y axon populations. We present all the populations in our database, nor-
malized to the SML. imp mutant axons are also split between the short and long phenotypes.
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hypothesized that the direction of each step p; is influenced both by an internal mechanical
constraint (the axon shaft stiffness), and by an external attractive gradient field that sets
the axon preferred growth direction (Fig. 4.4 A). These two features are represented in our
model by the & and 3 parameters, respectively. We use spherical coordinates (Ap, ¢y, 9;)
to describe the ' step vector, where y,y represents the angle in the xy plane and ¢, the
elevation along the z axis. The step size Ap is set constant, thus the model is reduced to two
variables although we consider 3D trajectories. Moreover, we consider that both angles are
independent, reducing the full model to two sub-models with only one variable each: ¢. The
i step vector is thus described by its spherical coordinates (Ap, @x.y, 9;); and placed at the
end of the previous step i — 1, at coordinates (x,y,z);_1-

The probability distribution of the i’ axonal tip Cartesian position (x,y,z);, knowing the
previous one, (x,y,z);— is thus directly defined by the probability distribution of ¢;, which is
conditioned by ¢;_| and defined by

P(6,~|6i,1)0<exp—[06(01-—9,;1)2+B(9i)2], 4.1)

where

0; = tan(@), (4.2)

and ¢y; is the direction of the external attractive field at the position (x,y,z);—;. The
transformation in Eq. 4.2 establishes the domain of the model to (—eo,00), allowing a
direct implementation of the Normal distribution and avoiding the Bessel functions for the
normalization of the usual von Mises distribution for the angular domain (Fig. 4.4B). With
this definition, the variable 6; is locally defined in reference to the attractive field direction.
Furthermore, o weights the difference between the future and current direction (i.e. stiffness),
and f3 the difference between the i step vector direction and the direction of the attractive
force (i.e. attractiveness to the external field). Thus, high values of « favor a straight axonal
trajectory while @ — O results in a very tortuous one (Fig. 4.4 C). Similarly, if the external
attraction is very high (8 — o), axons tend to align to the external field gradient lines, while
if this attraction is low (8 — 0) they do not follow any preferential direction (Fig. 4.4 C).

Notably, the model can be equivalently written as follows:

6, 01 +&. 4.3)

o«
a4+ B

where
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1
i~ N (0, ——<). 4.4
With this formulation, it becomes clear that at each step of the chain 6; conditioned to the
step before, 6;_1, follows a Normal distribution with y = ﬁ@i_l and 02 = m (Fig.
4.4 A).

To feed our model with biologically meaningful parameter values, we estimated the
model parameters o and 3 from the reconstructed axon paths obtained from real data. The
nature of the axon trajectories from our data add a particular difficulty in order to estimate the
single pair of parameters that describes the whole population. A deep study on the subject
and a review of estimation methods is presented in Section 4.3.

Finally, one interesting characteristic about this model is that it allows an instant trans-
formation of the parameter values in case of information loss (e.g. to have only one over
two data points)(Fig. 4.5 B). In other words, we can calculate P(6;|6;_,) knowing P(6;|6;_1)

(i.e. renormalization by decimation) as

oo

P(6:]6,) = / P(616;-1)P(6;116;-2)dg, 4.5)

—o0

to obtain the expression

P(6;|6,_2) o< exp — [a'(6; — 6;_2)* + B'(6,)], (4.6)
with
' _ (a+p)a?
o —fl(%ﬁ)—m 4.7
- (a4 B)[(a+B)* — o
ﬁ _fZ(avﬁ) - ((x+ﬁ)2+a2 . (48)

Thus, ¢’ and B’ are the parameters defining the probability of 6; conditioned by 6;_'.

Interestingly, these equations are invertible such as

a=f'(dp)=a"= \/(2a'+/3')3 _é%i/[;ﬁ/)z(a/+ﬁ/) (4.9)
ﬁ:fz_l(a/,ﬁ/)ZﬁH=2OC/+BI—OCH~ (4.10)

Yo/ and B’ can also be obtained by recursively applying Eq. 4.3
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Fig. 4.4 3D Mathematical model of individual axon growth. (A) The axon elongates step
by step (grey segments), each step being delimited by the current point in space i and the
previous one, i — 1. Each i position in space is described by its spherical coordinates
(AP, xy, ¢;); (represented in 2D for simplicity). ¢;'7y is thrown from a conditional Normal
probability distribution (in green). The most probable value (mean of the distribution (u))
considers the directions of the last step and of the attractive field, each contribution weighted
by o and 3 respectively. For each time unit #;, a maximum number of steps is allowed. (B)
Detail of how angles @;1:3 are measured and the value of 6;;1. (C) Influence of o and
B values on axon trajectories. & represents the axon stiffness; values near zero result in
very tortuous trajectories, while higher values leads to the formation of straight axons. 3
represents the axon sensitivity to the external field (represented by an arrow). Values near
zero indicate no perception of the field direction. Axons with high 8 grow straight to follow

with high fidelity the field direction.
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Thus, we can extrapolate the values of the parameters from the current scale to any other,
including a smaller one (e.g. to have two or more data points instead of one, Fig. 4.5 C), to
compute the equivalent models to a certain scale to any other.

This means that we can estimate the parameters from our data at the sampling scale of
1 um (Fig. 4.5 A), and then simulate continuous neurons (i.e. scale as small as desired,
e.g. 0.1 um) without losing formalism nor data fidelity (Fig. 4.5 C). This is particularly
interesting because if we wanted to estimate the parameters from our data directly from a
smaller scale sampling, the results would loose fidelity. In particular, they would be biased by
oversampling and data noise at the small scale. Thus, simulations with parameters estimated
this way would not reproduce realistic, but much more noisy trajectories. This is the same
situation as observed and analysed for the Markov chain model at the pixel level discussed
in Section 3.4. Fig. 4.6 A shows the main axons in our wild-type database sampled with
a step size of 1.44um. Fig. 4.6 B shows the same number of axons simulated using the
model described above in this section, Ap = 1.44um and the parameters estimated from
the trajectories in Fig. 4.6 A. As it can be seen, the shape of the trajectories is accurately
reproduced by the model with this step size. However, with a x16 zoom the discrete steps are
observable. On the other hand, Fig. 4.7 A is identical as Fig. 4.6 A, but with the trajectories
sampled with Ap = 0.09um, which corresponds to the pixel size of the images (Section
2.4). If we estimate the parameters from these trajectories and simulate using the same step
size, the obtained axons are noisy and thus shorter in the um scale (Fig. 4.7 B, top). This is
the effect of oversampling. However, if we renormalise the parameters estimated from the
trajectories in Fig. 4.6 A using the inverse functions of 4.7 and 4.8 four times (log, % ~4)
and then simulate axons using these new values and a step size Ap = 0.09um, the shape
of the trajectories is accurately reproduced and the noise is avoided, generating smoother
trajectories. In these 2D simulations, the model parameters o and 3 were estimated using
the first approach, in Subsection 4.3.1, the number of steps that define the axon length are
thrown for each axon from a Gaussian distribution with parameters estimated from data and
the external guiding cues direction is constant and equal to the angle of the linear regression
of all the points in data. Another advantage of the normalization is that it is possible to
estimate parameters from images with different quality (i.e. different sampling scale) and

still transform the parameters to compare them in an equivalent scale.

4.3 Parameter estimation

First, in Subsection 4.3.1 we present and compare two approaches to estimate the parameters
o and B of Markov chains following Eq. 4.1 .
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Fig. 4.5 Concept of model renormalization. (A) Extract of an axonal trajectory with a certain
sampling and the correspondent values of @ and 3. (B) The same extract of axonal trajectory
as in (A), but with one over two points missing. The parameters describing the model of
these sequence of steps, o’ and 8 are a function of the parameters in (A). (C) The same
extract of axonal trajectory as in (B), but with double the points. The parameters describing
the model of these sequence of steps, &’ and B” are also a function of the parameters in (A).

Next, in Section 4.3.2, we focus on the problem of estimating the parameters from a
population of real axons, and review the different approaches we used throughout this work
to estimate the parameters from our database. The task is not trivial due to the typical lengths
of our axons, the intra-population variability and the branching process (as branches may be
born with angles that do not follow the Markov model and then be included as part of the
main axon, as shown in Fig. 4.40 C).

4.3.1 Parameter estimation of Markov chains
First approach

We first approach the problem using the definition of the variance Gg of the conditional
probability of the model P(6;]6;_1) (w1th % - 0;_ being the mean of the conditional law).

at+p
From Eq. 4.4 we know that Gg = 2 [3) Thus, for a chain of length M composed by the
sequence 0;—;.)s we have the expression for the empirical variance estimation
~ 1M o
62=M;(9i—ze,-_1>2; (4.11)



66 Space-Embedded Axon Growth Model

0 20 40 MNO 80 0 20 40 HNO 80

&
X16
\

Fig. 4.6 Data reconstruction and simulation with Ap = 1.44um. (A) Main axon trajectories
from wild-type data, with a step size of 1.44um. The black-bordered square shows the image
16 times bigger. (A) Simulated axon trajectories with parameters estimated from data in (B)
and with a step size of 1.44um. The black-bordered square shows the image 16 times bigger.
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Fig. 4.7 Data reconstruction and simulation with Ap = 0.09um (pixel size). (A) Main axon
trajectories from wild-type data, with a step size of 0.09um. The black-bordered square
shows the image 16 times bigger. (B) (Top) Simulated axon trajectories with parameters
estimated from data in (A) and with a step size of 0.09um. The black-bordered square
shows the image 16 times bigger. (Bottom) Simulated axon trajectories with parameters
estimated from data in Fig. 4.6 A renormalized 4 times, and with a step size of 0.09um. The
black-bordered square shows the image 16 times bigger.
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with

A=a+p. (4.12)

When M — o, Eq.4.11 converges to

52— 1 f(e-—“e 2o A 4.13)
M= A 2A° '
Working out 4.11 and 4.13 we obtain
A=24%< 67 >+20% < 0% | > —4aA < 6,6, >, (4.14)

thus a quadratic equation aA? + bA + C = 0 with unknown A and coefficients

a=2<6?>; (4.15)
b=—-40<6,6,_1 > —1, 4.16)
c=20%< 6, >. (4.17)

In the case that Eq. 4.14 has two real and different roots, only the solution adding the

discriminant is plausible. Indeed, for simplicity, lets consider

<67 >~<6?>=J and <66,_;>=L. (4.18)

Then Eq. 4.14 has the solutions

_daL+1+4/(4al+1)>—16a2J2

AL _ = 4.19
1 a7 (4.19)
Both solutions are real and different if
V(aL+1)2— 160272 > 0 (4.20)
from where
1 . +
L=J——+M with McRT. 4.21)

4o
In addition, we consider an attractive model (8 > 0), thus from Eq. 4.12 the solutions

must follow

Ay _>a (4.22)
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Thus, replacing L with Eq. 4.21, the solution A_ is only admissible if

4aM > \/1602M? + 3202 M. (4.23)

That equals

3202JM < 0, (4.24)

which is an absurd as both J and M are positive by definition, proving that only A is an
admissible solution.

Equation 4.14 allows to estimate A from a chain. However, we have only one equation
and two unknowns. Thus, we add the equation equivalent to 4.14 (when M — o), but 6;
conditioned by 6,_; (see Eqgs. 4.7 and 4.8)

1Y o , 1
7 2(@ — 02 = o (4.25)
1=
with
A=d+p. (4.26)
Assuming M big enough, Eq. 4.25 is equivalent to
A =247 < 0? > 420 < 0% | > —4a'A < 6,6, > . (4.27)
From Equations 4.7, 4.8 and 4.26 we have
A3
. 4.28
A2+ o (+28)
The final system from 4.14, 4.27, 4.28, 4.7 and 4.8 results in
A=2A?<60? > +2a% < 6% | > —4aA < 6,6, >
3 6 2.4 4.0
= 2((/421—“2)2) <67 > +2((A§‘+$)2) <6, > —4(@%) < 6,61 >.
(4.29)

This system is highly non-linear and does not have an analytic solution. Thus, we
proposed an iterative approach described in Algorithm 1.
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input :Arbitrary initial value o

output : Estimated values of (a¢,A = a+ f3)
while |OC,'; - OC,'I,1| < EN |A,‘t _Aitfl| < edo
it=it+1;

"STEP 1:”

solve A using (< 92 >, < 02 | >,< 66,1 >,0t;_1) from Eq. 4.14 ;
solve @, using (A;, a,t,l) from Eq. 4.7;

"STEP 2:”°

solve Al, using (< 67 >,< 6%, >,< 6;6,_» >, a},) from Eq. 4.27 ;
solve oy using (Al,,Al ) from Eq. 4.28;

end
Algorithm 1: Iterative method algorithm.

Second approach

While the previous approach used the definition of the variance of the conditional probability
of the model P(6;16;_1), this approach uses the variance of 6;. It can be shown (see A.2in
Appendix A) that the variance of 6;—.y for a chain of length N is

1_

where

o o2 — 1
a+B % T 2t By

When i — oo we obtain the expression

y= (4.31)

o5 = . (4.32)

It can also be shown (see A.3 in Appendix A) that the variance of the difference 6; — 6;_
(fori — o) is

205(1—
0oy =~ T s - ", (4.33)

To obtain the estlmatlons ¢ and [3 we assume that the chain is long enough, and calculate

the empirical estimates O ek and oz, , from where we get ¥ and GO to finally apply (4.34)

AGk ’
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y ~ 1
LA, ﬁ =——0Q. (4.34)
203 203

o=
and obtain the estimates of the model parameters.

Comparison

To analyse and compare the performance of the proposed approaches, we applied both
methods to estimate the parameters of the same simulated chains, with varying lengths and
parameter values.

Figs. 4.8 and 4.9 show the boxplots of the results of the estimations with varying o and
B respectively, for 50 chains of lengths 10, 100 and 1000 and a heating period of 100 steps.
As it can be observed, the second approach performs better, the main difference being the
variance and the number of outliers, particularly for short chains.

Regarding the first approach, Algorithm 1 results robust respect to the initialization and
converges within a large interval of o values (see Fig. B.1 in Appendix B) in a short number
of iterations. To illustrate its convergence, we estimated the parameters of 1000 simulated
chains of length 100, with € = 0.00001, @ = 8 = 10 and maximum number of iterations of
100. We observed that 81% of the trials terminated before the 12 iterations, 17.8% between
12 and 20 and 0.8% between 20 and 30. Only a 0.4% was stopped at 100 iterations due to
lack of convergence (Fig. B.2 in Appendix B).

4.3.2 Parameter estimation from a population of real axons

We applied both methods to estimate the parameters of the chains that describe the axons
from our wild-type database. Under the hypothesis that the axons of a same group behave
the same, thus have the same parameter values, we first considered the M axons altogether
(a single sequence 91-”::1};\1,:’4 ). However, we obtained parameter values of o@ = 0.023 and
B = 0.021 using the first method and o = 0.002 and 8 = 0.052 using the second one. We
know that these values do not represent the axon morphology. Fig. 4.10 shows 20 simulations
of 100 steps of size 1um using each pair of thee estimated values, where the trajectories are
clearly noisier than axons in data.

To better understand these results, we estimated the parameters from each axon individu-
ally. Fig. 4.11 presents the obtained distributions. As it can be seen, the estimated values
present large variations for both parameters, including values near zero. This could explain
the low values obtained considering the axons altogether. In particular, while simulated

chains with the same length distribution as real axons and parameters equal to the mean of
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Fig. 4.8 Parameter estimation method performance (o). Distributions of the estimates of the
parameter ¢ (&), for 50 chains of lengths 10, 100 and 1000 and varying values of a. The
central mark indicates the median, and the bottom and top edges of the box indicate the 25"
and 75" percentiles, respectively. The whiskers extend to the most extreme data points not
considered as outliers, and the outliers are plotted individually using the + symbol. Black
lines represent the line & = «. For all cases, 8 = 10. For the first approach, € = 0.00001,
0o = 100 and the maximum number of iterations was 100.
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Fig. 4.9 Parameter estimation method performance (). Distributions of the estimates of the
parameter f3 (3), for 50 chains of lengths 10, 100 and 1000 and varying values of 3. The
central mark indicates the median, and the bottom and top edges of the box indicate the 25"
and 75" percentiles, respectively. The whiskers extend to the most extreme data points not
considered as outliers, and the outliers are plotted individually using the 4+ symbol. Black
lines represent the line B = B. For all cases, o = 10. For the first approach, € = 0.00001,
o = 100 and the maximum number of iterations was 100.
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A «=0.023 5=0.021
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Fig. 4.10 Simulations using parameters estimated from data considering the axons altogether.
20 simulations of length 100. (A) o and 3 estimated using the first method. (B) o and f3
estimated using the second method.
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the histograms in Fig. 4.11 presented standard deviations within the estimations of a and 3
equal to (0 = 1.0, 05 = 0.7), the standard deviations of the estimates from data are much

higher (6 =3.0,05 = 1.9).

. =5.4684 o =2.3487
=
8 04 0.4
S 0. .
4
&
Q 0.2 0.2
7 i
2 o 0 =
— 0 5 10 15 0 5 10 15
(A}. d
ﬁ 1 =5.8916 o =2.2226
©
© o4 0.4
o
Qo
® 02 0.2
o
2 L
S o 0
S 0 5 10 15 0 5 10 15
QO 3

Fig. 4.11 Distributions of the values of & and 8 estimated axon per axon from real data. (top)
Using the first method and (bottom) using the second one.

At a first glance, the shape of the obtained histograms could be explained in different
ways. For example, it may mean that actually each axon has different parameter values.
However, the typical axonal length is not enough to obtain a precise estimation individually.
In addition, values of o and 3 near zero generate trajectories very different to those observed
in reality (see Fig. 4.10). A second possibility could be that our estimation methods are not
robust enough, which seems in contradiction with the previous study on their performance
and the fact that both present very similar results when applied to data. A third possibility
could be, unfortunately, that the proposed model is not suitable to describe real axons.

During the rest of this section, we study this problem and finally propose that the
variability in the estimates actually emerges from the nature of the problem itself, which is
the modelling of axons growing in vivo. Real axons do not grow isolated, but in constant
interaction with their environments. Thus, they encounter obstacles during their development,
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which may force them to change their trajectories, creating broken points in their otherwise
Markovian paths. Next, we display the evidence that lead us to these ideas, and propose two
different approaches to estimate the hidden parameters that govern the entire population of
axons.

Regarding the two presented estimation methods, even though they both perform very
similarly regarding the estimation of real axons, we have already shown that the second one
presents less variance and outliers on the estimations from chains with lengths similar to
those of our axons (~ 100). In addition, it is faster to apply (no iterations). Thus, it is the one

chosen to use for the rest of the study.

Histogram study

Fig. 4.12 (top) shows the distributions of the estimated values of o and 8 axon per axon for
the wild-type population. A first estimation of the global value of the parameters could be
given by the mean values of the distributions: & = 5.9 and B = 2.2. However, because these
histograms do not seem to follow any known distribution, it is not trivial to decide which
single value of o and S is the best one to describe the entire population. To find out the origin
of this behaviour, we simulated N = 45 chains using our model (Eq. 4.1), with lengths thrown
from a Gaussian distribution with parameters estimated from data. We then estimated the
parameters (¢, ) per simulated chain, to compare the obtained distributions with those from
real data. As it can be seen from Fig. 4.12 (top + middle), the obtained parameter distributions
do not particularly resemble those for real axons, as they are more Gaussian-like. However,
it can be noticed that their variance is still relevant. This behaviour is inherent to the model
and directly related to the axonal typical length (~ 100 steps). For longer simulated axons,
this variance is dramatically reduced (see Fig. B.3 in Appendix B for comparison). The
question is, therefore, which other aspect of our axons, apart from their length, contributes
to the observed histograms (Fig. 4.12 (top))? One can notice that a relevant difference
between the distributions for real and simulated axons is the presence of particularly low
parameter values in the first case. This may mean that for some axons, the paths do not
seem to accurately follow the Markov model. We hypothesize that this comes from the fact
that we are working with real axons that grew up embedded in mechanically-constrained
environments. We propose that during their growth they follow the Markov model with
(a, B), unless some mechanical event occurs that forces them to behave otherwise. To test
this idea, we simulated paths as before but including random jumps in the Markov chains
such that at each step the model may be broken -i.e. next step is thrown from the distribution
A(0,%) - with probability P = 1\% This is consistent with the birth of a branch (that appears

with a random angle, as we further study in Section 4.5). The distributions of the estimated
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parameter values of the latter case are shown in 4.12 (bottom). These histograms do resemble
those from real axons, presenting high variances and a flattened shape. This supports the
hypothesis of the occurrence of random jumps in the chains may be true, and accurately
describe our data. Figs. 4.13 and 4.14 show the same analysis, but using space-embedded
simulated axons instead of real data. This means that axons grow altogether in a constraint
environment and mechanically interact between them (this will be developed in detailed
in Section 4.4) instead of real data, to further validate this hypothesis. Fig. 4.13 depicts
space-embedded main axons vs. simulated classic chains, and the histograms result similar
(but not similar to those from real axons). However, Fig. 4.14 shows the histograms for
space-embedded simulated axons that form branches vs. classic chains and classic chains
with breakdowns. These embedded simulated axons present histograms that look similar to
those from data, as well as to those for simulated axons with breakdown. This suggests that
the histogram shape from real axons may be due, mainly, to the existence of branches.

First approach: Histogram comparison

From now on, we thus consider our real axons as Gaussian Markov chains with parameters
(a,B) plus random jumps. So, one way to estimate the values of o and f is to simulate
populations with the same size and length distribution considering different parameter values
and adding jump points. Re-estimate the parameters of these simulated chains, and observe
the resulting histograms. Thus, the values of o and 8 that most likely represent our population
are those for which their histograms resemble the most those from real data. We defined the
estimation scheme as follows:

1) Estimate the parameters for each individual axon in the dataset, save the distributions
of estimated parameters and consider an interval around the mean value of each parameter.

2) Simulate Markov Chains with the same sample size and length distribution as real
data, and with parameters within the range from 1), and include random broken points (from
the distribution .47(0, ), with probability P = I%H).

3) Estimate the parameters from the resulting simulations and save the distributions for
each tested pair of parameters;

4) Finally, select the pair of parameters whose distribution is most similar to that obtained
from data using the Kruskal Wallis test for the distribution comparison.

In order to accomplish step 4), we added the p values of each test for @ and 3, and
obtained the 3D function f(a,f) shown in Fig. 4.15 A. We then approximated this function
with a polynomial surface and chose the pair of parameters for which this surface reaches its
maximum value (Fig. 4.15 B). The estimated parameters values for different populations in

our data are presented in Table 4.1.
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Fig. 4.12 Axon by axon parameter estimation - Real wild-type and simulated axons. (top)
Histograms of the parameter values estimated axon per axon from the wild-type population
in our database. (middle) Histograms of the parameter values estimated chain per chain
from N = 45 simulated paths using o = 7.5, B = 1.7, and lengths thrown from a Gaussian
distribution with parameters estimated from data. (bottom) Histograms of the parameter
values estimated chain per chain from N = 45 simulated paths using @ = 7.5, B = 1.7, and
lengths thrown from a Gaussian distribution with parameters estimated from data. At each
step the model may be broken -i.e. next step comes from a uniform the distribution .47(0, %)
- with probability P = 1\%, All the indicated p values come from the Kruskal Wallis test.
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Fig. 4.13 Axon by axon parameter estimation - Embedded-simulated and simulated axons,
no branching. (top) Histograms of the parameter values estimated axon per axon from N=45
axons from space-embedded simulations as described in Section 4.4. (bottom) Histograms of
the parameter values estimated axon per axon from N=45 simulated chains using ¢ = 7.5,
B = 1.7, and lengths thrown from a Gaussian distribution with parameters estimated from
the space-embedded simulated axons. All the indicated p values come from the Kruskal
Wallis test.

Table 4.1 Values of the parameters estimated for different groups in our database using the
histogram comparison method.

o P
WT 7.5 1.7
ImpL 7.1 1.7
Imp Sh 6.0 1.6
Imp 6.7 1.6

Imp Rescue 7.4 1.6
Prof 5.1 3.7
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Fig. 4.14 Axon by axon parameter estimation - Embedded-simulated and simulated axons,
with branches. (top) Histograms of the parameter values estimated axon per axon from
N=45 axons from space-embedded simulations with mechanical-induced branches (further
described in in Section 4.5.2). (middle) Histograms of the parameter values estimated
axon per axon from N=45 simulated chains using @ = 7.5, B = 1.7, and lengths thrown
from a Gaussian distribution with parameters estimated from the space-embedded simulated
axons. (bottom) Histograms of the parameter values estimated axon per axon from N=45
simulated chains using o = 7.5, B = 1.7, and lengths thrown from a Gaussian distribution
with parameters estimated from the space-embedded simulated axons. At each step the model
may be broken -i.e. next step comes from a uniform distribution- with probability P = ll%n
All the indicated p values come from the Kruskal Wallis test.
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Fig. 4.15 Parameter estimation results using the histogram comparison method. (A) 3D
function (f (e, B)) representing the added p values comparing the distributions of & and 3
estimated from real data vs. estimated from simulations using different values of parameters.
(B) Polynomial surface that approximates the function in (A). The black square indicates
the maximum value. (C) Parameter estimation surfaces for different populations in data:
WT, Imp and Imp Rescue. (D) Parameter estimation surfaces for two random halves of the
real wild-type axons. The black square indicates the pair of parameters that maximizes the
surface for the entire population (the same as in (B)), and the smaller grey ones the values
that maximize the surfaces corresponding to each random half of the population.
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Fig. 4.15 C depicts the superposition of the approximated polynomial surfaces for the
wild-type (WT), imp knock-down (Imp) and imp knock-down rescued by Imp (Imp Rescue)
populations in our data. An important advantage of this method is that it provides a way of
quantitatively comparing and contrasting the parameter values for different populations. In
the depicted case, we can easily appreciate that WT and Imp Rescue seem to have similar
parameter values, while the Imp surface is clearly apart. This result is interesting as it
suggests an effective rescue of the imp knock-down phenotype towards WT.

To assess the robustness of the method, we separated the WT population into two random
halves and estimated the parameters separately. Fig. 4.15 D shows the superposition of the
surfaces for both cases. We can appreciate that the estimated values are conserved, showing
that the method is robust, as well as the morphological coherence within the WT population.

The results obtained with this method are the ones used for simulations through the rest

of this work.

Second approach: Breakdown take-out

After the presented analysis, we found out that axons from data accurately follow the proposed
Markov model with constant parameters, with the exception of some random positions in
the chain where the model is broken and another law is followed instead (jump points).
Here, we go further with this logic, and propose two approaches for the joint estimation
of the Markov chain parameters and the jump point location. We first consider a Bayesian
framework, embedding a Bernoulli prior on the jump points distribution. In the second
approach we derive a statistical test on the likelihood ratio between the Markov chain model
and an alternative one. In both cases, the aim is to detect the jump points and take them out,
in order to estimate the parameters using Eq. 4.34 directly from the entire population, instead
of axon per axon. As a reminder, when doing this directly we obtained very low parameter
values (which do not represent the axonal path morphology, Fig. 4.10).

To detect the points that do not follow the Markov model described by Eq. 4.1 an easy
way is to go through the axon and calculate, for each point i, its conditional likelihood
regarding the model (L))

L=, /%T%e—wmwm)wf—aﬁwdz (4.35)

and another null hypothesis (in case of jumps),

. / _ % _g. 2
Lé): aO;L’BOe (aﬂ"—ﬁ(])[el a0+ﬁ09171} : (436)
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with parameters (ag,bp). The parameters governing the jump hypothesis are assumed to
be known, or directly obtained from the signal parameters: ag = f(@m,bm), bo = g(am,bm)-
Here we will consider in particular two cases: (ag = 0,by9 = b,) (i.e. loss of the Markov
property) and (ag = a,bo = 0) (loss of the external attraction).

Then, the i/ point is broken if Lf) > L!. However, this method is too simple and may
over estimate the real number of broken points. A second obstacle is that one needs to
know the values of (a,,,b,,) (in addition to the null hypothesis) to calculate the likelihoods,
which are mostly generally unknown. Applying this analysis to the WT population with the
null hypothesis given by o = 0 and o = B (Hy.q—0,p,—,,)> and (am = 7.5,b = 1.7), we
obtained that, in average, 12% of the points of each axon are broken. Moreover, if we do
the same analysis using simulated chains instead of real axons -i.e. theoretically unbroken-
the percentage is the same. This means that this method is too simple and effectively
overestimates the number of broken points. Similar results are obtained if we choose the null

hypothesis Hy.q,—q,, g,—0 Instead.
Bayesian Framework

We first propose a Bayesian approach, as follows

P(6;,i|6i—1) = P(6;|6;—1,y:)P(yi, 6;—1) = P(6;|6;—1)P(y;). (4.37)

Where y; = 1 when the chain is broken and 0 otherwise. We consider a Bernoulli prior
such that P(y; = 1) = A and P(y; = 0) = 1 — A. Therefore,

Lin — 4 /%T—'_Bme(am+ﬁm)[9imei—l]2(l —2) (4.38)
. _ __% g 12
L=/ —%ZB 0~ (Gothollbi— g 017y (4.39)

To estimate the values of (@, B, A) from a data set, we propose Algorithm 2. It starts

and

with arbitrary values of the parameters and a proposed set (g, o). It detects the broken
points using the likelihood ratio, takes them out and re-estimates (@, 3,,) until convergence,
A being estimated by the detected jump point frequency.
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input :Arbitrary initial values (¢, Bx,A) and a jump model likelihood Ly, with
parameters (0, Bo)

output : Estimated values of (,, B, A)

while |a!! —all=!| < & A bl — b1~ < & do

it=it+1;

fori=2:Mdo

end

Calculate L) and L, from egs. 4.39 and 4.38;

if 70 > 1 then

V=1
end

if 2 < 1 then
| yi=0;
end

end
Calculate (o, Bi") using 6;/y; = 0 from eq. 4.34. A =Y 3 ;
Compute off = f(cti, Bif) and B = g(ogi, Bi);
Algorithm 2: Bayesian-based parameter estimation algorithm for a signal of length M.

Statistical Framework

In the second approach we design a statistical test of hypothesis based on the likelihood
ratio. Given two Gaussian distributions .4 (i, 62) and .4 (lo, 04) with variable 6;, the

likelihood ratio is given by

_ Ok | (8—tim)?

L o}
R(Ol-):L—O:?'Ze 205 20w (4.40)
m

For each 6;, the test considers that 0; was preferably thrown from the alternative distribu-
tion (Hy) : P(6;6i—1) = Py(6;) = A (Ho = ao%%@i_l,co = m) rather than from the
model (Hy) : P(6;|6-1) = Pi(6;) = A (1 = 5 %5-61,01 = W) if R(6;) > T,T €
R. The so-called p value of the test is thus given by the probability p that this occurs
randomly under hypothesis P;: p = P(R(6;) > T).

To calculate this probability, the inequality

R(6,)>T (4.41)
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can be rewritten as a quadratic equation in 6;:

(6:—Ho)® | (68— ) 0
_ > log(T— 4.42
e ) > (T 31 @42)
If (m,M) are the real roots of equation 4.42, its solution is 6; € (—oo,m|U [M,oo) or
0; € [m,M] depending of the sign of —# + L. Thus,
0

202"

m oo M
p= / P (ei)dgi + /M P (Gi)dgi orp= / P (Qi)dgl. (4.43)

m
depending on the case. For a given set (0, B, 00, Bo, 0i—1), T can thus be tabulated in
function of the chosen value of p. Fig. 4.16 shows as an example the surface relating p with T

and 6;_; for the null hypothesis Hy.q,—0,gy—g,, a0d Ho: =g, fo=0 With (04 = 7.5, By = 1.7).
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Fig. 4.16 Design of a statistical test of hypothesis. The surfaces represent the probability
p=P(R(0) > T) of acceptance of the null hypothesis Hy under hypothesis H; in function
of T and 6;—; for two different null hypothesis: Hy.q—0 g,,—g,, and Ho.qy—q,, gy—=0 With
(Qp =17.5,Bn=1.7).

To estimate the values of (¢, B,) from a data set, we consider Algorithm 3. It starts
with arbitrary values of the parameters (0, 3,,) and a chosen p value. It detects the broken

points using Eq. 4.41, takes them out and re-estimates (¢, B,;) until convergence.



86 Space-Embedded Axon Growth Model

input :Arbitrary initial values (¢, B ), an alternative jump model likelihood Hy
with parameters (@, o) and p

output : Estimated values of (@, B)

while |af — ai=1| < g A B —BiI!| < & do

it=it+1;

fori=1:M"do

Calculate R(x;) using eq. 4.40;

Obtain 7T in function of p solving eq. 4.43;

if R(x;) > T then

| yi=1

end

if R(x;) < T then
| yi=0;

end

end
Calculate (o, B1) using 6;/y; = 0 from eq. (4.34).;
Compute agy = f (0, B;r) and By = g(c. By):
end
Algorithm 3: Statistic test of hypothesis-based parameter estimation algorithm a signal
of length M.

Validation

We tested Algorithms 2 and 3 with chains of length 1000 and generated with parameters
(04w =8, B = 2). The algorithms were set with initial parameter values of (o} =20, 8} =20
and 2! = 0.1), and different jump point probabilities Pj (from P; = 0.005 to 0.11). For every
case, we used € = & = 0.0001.

We first analyze the jump point detection. Fig.4.17 A shows a single chain with P; = 0.02
and jump points thrown from the conditional law (Hy) with parameters (o = 0, By = 0.125).
The bayesian method detected 89% of the jump points with no false positives. The statistical
method (with p = 0.001) detected 90% of the jumps from which 15% were false positives.

To test the improvement of the parameter estimates using both methods and compared
with the direct estimation (without taking out the jump points, thus applying eq. 4.34 directly)
we applied the algorithms to 100 chains, with jump points thrown from the conditional law
(Hp) with parameters (o = 0, Bp = B») and Algorithm 3 with p = 0.001. Fig. 4.17 B shows

the mean errors in the parameters estimates for the algorithms and with the direct estimation.
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Both methods reduce the error in the estimates. Notably, the statistical method performs
slightly better than the bayesian one.

Fig. 4.17 C shows as an example one of the previously simulated chains (from Fig. 4.17
B, with P; = 0.05) highlighting the good detections, false positives and undetected jumps.
As it can be observed, in this case the jump points are harder to detect than the case presented
in Fig.4.17 A, and the methods detect only about 20% of the jump points. However, this
amount results sufficient to reduce the error in the parameter estimates (Fig. 4.17 B).

Both algorithms are robust regarding their number of iterations needed for convergence
and initial values. Fig. 4.18 shows the errors of the estimates (as in Fig. 4.17 B) considering
100 chains of length 1000, parameters (@, = 8, B,, = 2), jumps following the conditional
law (Hp) with parameters (0 = 0,bg = b,,) and with probability P; = 0.05; in function of
varying initial values ), B and A,1. As it can be observed, the method results are invariant
to the large variation of initial values. In every case, the algorithms stopped within iterations
number 3 and 14 despite the small value of €, = & = 0.0001. Regarding computing time,
the statistical method results longer as it calculates T for every ' point which involves the
numeric solution of the integral in eq. 4.43.

Application to data analysis

Further, we applied both presented approaches to estimate the parameters from differ-
ent populations in our database. Tables 4.2 and 4.6 show the results from the bayesian
method considering Hy. ¢, —0,g,—g,, a0d Ho. 0, p,—0 TesSpectively (initial values (o, = B =
20,A =0.1)). Tables 4.3 and 4.7 show the results from the statistical method considering
Ho. 09=0.,8y=p,, ad Ho.)—q,,, p,—0 Tespectively and p = 0.001 (initial values (04, = B, = 20)).
Tables 4.4 and 4.8 are equivalent but considering p = 0.0001. Finally, Tables 4.5 and 4.9
are the same, with p = 0.01. For the null hypothesis Hy.q,—0 g,~p,. the bayesian method
and the statistical one with p = 0.001 and p = 0.0001 present similar results, both in terms
of parameter estimates and P;, with around 2% of detected broken points. Naturally, the
statistical method with p = 0.01 detects more broken points (~ 5%), thus the parameters
estimates are higher. Interestingly, with the null hypothesis H.q)—q,, g,—0- the bayesian
approach (as well as the statistical one with p = 0.0001) detects less jump points (~ 0.5%)
than the statistical one with p =0.001 and p = 0.01, and obtains estimates very close to those
in Table 4.1 with the histogram comparison method. This makes sense as for that method,
we assumed that each point of an axon length N, had P; = ]\% of being broken, which for

the WT axons means P; = 0.01, and is close to that obtained in Table 4.6 for the bayesian
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Fig. 4.17 Validation of the bayesian and statistical approaches from chains of length 1000
generated with parameters (o, = 8, B, = 2). (A) Jump point detection of a chain where the
jump points thrown from the conditional law (Hy) with parameters (o = 0, By = 0.125).
Non-detected jumps (red), detected jumps (green) and false positives (blue) are shown for
the bayesian and statistical methods. (B) Mean error in function of the jump probability P;
in the parameter o (left), B (centre) and their average (right) regarding the two proposed
algorithms and the direct method (directly applying eq. 4.34). 100 chains are considered
and the jumps follow (Hy) with parameters (g = 0, By = B,). (C) Jump point detection of a
chain generated as in (B) with P; = 0.05. The colour code for the jump detection is the same

asin (A).
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Fig. 4.18 Independence on initial values. Mean error in function of varying initial values o}
(left), [3"11 (centre) and lnﬁ (right) for both algorithms. In each case, 100 chains of length 1000,
parameters (0, = 8, B, = 2), jumps following (Hy) with parameters (cp = 0, 8o = 1) and
probability P; = 0.05 were considered. When not varied, o}, = 20, 8,1, =20 and 4,;, = 0.5.

Table 4.2 Values of the parameters and jump probability P; estimated for different groups
in our database using the breakdown take-out method, with H. 4 —o g,—p,, and initial values
(Qy = B = 20,4 = 0.1). Bayesian approach.

o ﬁ Pj
WT 9.30 192 0.023
Imp 9.33 1.84 0.029
Imp Rescue 844 1.75 0.013
Prof 440 230 0.004

method. Another observation is that, in general, for the jump hypothesis Hy.q,—q,, g,—0 1ess
Jump points are detected than with Hy. 4 —0 g)—B,,-

To better understand the exact effects that the jump take-out algorithms have on the
axonal population, Fig. 4.19 shows the distributions of the parameters from each of 50
individual simulated paths of length 100 and (o, = 8, 3,, = 2) for two different cases:
unbroken and broken with P; = 0.05 and Hy.q—0 ,—p,,; Plus the WT axons from data. We
interpose the histograms after having applied Algorithm 3 with p = 0.001. As it can be seen,
in both simulated and real data the algorithms move the histograms towards higher values,
consequence of taking out the jump points that naturally lower the parameter estimates. The

resulting histograms resemble more those for unbroken chains. This analysis finally unveils
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Table 4.3 Values of the parameters and jump probability P; estimated for different groups
in our database using the breakdown take-out method, with H.q,—o g,—p,, and initial values
(ay = B = 20). Statistical approach - p = 0.001.

o B Pj
WT 9.24 190 0.022
Imp 9.05 1.82 0.026
Imp Rescue 8.95 1.77 0.018
Prof 5.39 242 0.010

Table 4.4 Values of the parameters and jump probability P; estimated for different groups
in our database using the breakdown take-out method, with H.q,—o g,—p,, and initial values
(ay = B = 20). Statistical approach - p = 0.0001.

o B Pj
WT 9.0 190 0.020
Imp 8.70 1.80 0.022
Imp Rescue 844 1.75 0.013
Prof 459 234 0.005

Table 4.5 Values of the parameters and jump probability P; estimated for different groups
in our database using the breakdown take-out method, with H. 4 —o g,—p,, and initial values
(ay = B = 20). Statistical approach - p = 0.01.

(04 ﬁ Pj
WT 12.53 2.05 0.058
Imp 12.88 1.97 0.068
Imp Rescue 1246 1.91 0.058
Prof 8.02 3.08 0.052

Table 4.6 Values of the parameters and jump probability P; estimated for different groups
in our database using the breakdown take-out method, with Hy. 4, —g,, g,—0 and initial values
(ay = B = 20,4 =0.1). Bayesian approach

(04 ﬁ Pj
WT 720 1.79 0.006
Imp 6.57 1.67 0.005

Imp Rescue 7.51 1.68 0.004
Prof 426 2.28 0.003
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Table 4.7 Values of the parameters and jump probability P; estimated for different groups
in our database using the breakdown take-out method, with Hy. 4, —g,, g,—0 and initial values
(ay = B = 20). Statistical approach - p = 0.001.

(04 ﬁ Pj
WT 842 198 0.014
Imp 8.50 2.0 0.020
Imp Rescue 8.50 1.89 0.013
Prof 5.51 2.84 0.020

Table 4.8 Values of the parameters and jump probability P; estimated for different groups
in our database using the breakdown take-out method, with Hy. 4, —g,, ,—0 and initial values
(ay = B = 20). Statistical approach - p = 0.0001.

(04 ﬁ Pj
WT 7.95 1.87 0.010
Imp 7.77 1.85 0.013
Imp Rescue 8.04 1.77 0.008
Prof 447 242 0.006

Table 4.9 Values of the parameters and jump probability P; estimated for different groups
in our database using the breakdown take-out method, with Hy. 4, —¢,, g,—0 @nd initial values
(a4, = B = 20). Statistical approach - p = 0.01.

(04 [3 Pj
WT 9.55 2.32 0.030
Tmp 976 2.43 0.040

Imp Rescue 9.85 2.23 0.035
Prof 7.01 4.10 0.053
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the origin of the dispersion of the estimates from real data, both in a mathematical and in a

mechanistic point of view.
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Fig. 4.19 Effect of the breakdown take-out algorithm on the parameter histograms. Dis-
tributions of the parameters from each of 50 individual simulated paths of length 100 and
(ot = 8,Bm = 2) for two different cases: unbroken (top) and broken with P; = 0.05 and
Hy.¢y—0,6y=p,, (middle); plus the WT axons from data (bottom). For the broken simulations
and real data, the histograms obtained directly from Eq. 4.34 are in black, and after having
applied the statistical algorithm with p = 0.001 are in light grey. Dark grey areas correspond
to intersections.



4.4 Space-embedded simulations 93

This approach has the advantage of being versatile, as the user can experiment with
different null hypothesis representing different physical phenomena, and with both frame-
works and different p values. One must notice that in general when more jump points are
detected, the estimates are higher. This is not problematic nor a nonsense, but just represent
different ways of reading data and allows different interpretations. It is important that, when
simulating, the same hypothesis is followed (i.e. include jump points with the same law and
probability of occurrence than when estimated) to respect the overall energy (variance) of
the system.

Finally, this framework allows to detect the exact places where the axons present jumps,
which can be interpreted axon per axon (Fig. 4.20), as well as globally in the case of
a registered population as we have (see Fig. 4.68A in Section 4.8). Fig. 4.20 presents
some axons from our database and their jump points detected with the statistic method
with p = 0.001 and null hypothesis Hy.q —0 g,—p,,- AS it can be seen, they are generally
located on branching points (% axons present jump points on or very close -one step away-
to branching points), or on regions where the axons turn sharply or go backwards. The
statistical approach, as well as the bayesian with a Bernoulli prior, do not take into account
the density of broken points (or the distance between two continuous jump points), and may
assign several neighbour points as jump points, as it can be seen in some examples of Fig.
4.20. This is of interest to detect every point that does not follow the Markov model, which
indicates in our application if the axon encountered a single constraint or several consecutive
ones (for example indicating a very dense region in space). However, one may consider a
prior following a Poisson distribution or an accumulation process to impose constraints in

the distance between jump points.

4.4 Space-embedded simulations

We have developed a mathematical model to generate individual axon paths and estimated its
intrinsic parameters from real data. In this section we model a complete y neuron population
growing inside the ML during remodelling. But before, we need to define how we simulate
the dynamic aspects, as well as the medial lobe shape, external guiding cue field and volume

exclusion.

4.4.1 Dynamic simulation framework

In vivo, adult y axons grow as a group, in a confined environment defined by surrounding
neuronal and glial cells (Fig. 4.22 and Aso et al. (2014)). Thus, to take into account the
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/'

Main axon
Branches (1%t order)
@ Jump point

A

Fig. 4.20 Jump point detection on real axons. Examples of real axons (red) and first order
branches (blue), where the jump points (green) are highlighted. Jump points were detected
with the statistic method with p = 0.001 and null hypothesis H.q,—0, )=,,-
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mechanical constraints that underlie axon growth in the crowded environment of a maturing
brain, we implemented constraints imposed by neighbouring cells in our Markov model. At
each time-point 7, every neurite is given the possibility of growing the same number of steps,

Nmax, following the Markov model for their spatial orientation. If no mechanical constraint is

Nmax AP
At

step size). If, on the contrary, axon tips encounter another ¥ neuron from the same population,

encountered, axon tips grow with a maximal speed of v, =

during z; (Ap being the

or the medial lobe geometrical limits before accomplishing n,,,, steps (Fig. 4.21 1I), they
retract the last few steps (ng: retraction rate) realized during ¢; (Fig. 4.21 III), similarly to
other growth and repulsion models (Simpson et al., 2009; Torben-Nielsen and De Schutter,
2014; Vanherpe et al., 2016). Then, they try to regrow in another direction until 7,,,, steps
are accomplished (Fig. 4.21, case A). However, if a second obstacle is encountered within
the same time frame #; (Fig. 4.21, case B), the axon tip stops its growth after retraction, and
tries again only during the next time point (¢;11). For the sake of computational time, as well
as to mimic real timing constraints imposed by the developmental program, each axon tip
has a limited global number of trials (after mechanical interactions) before it stops growing
(defined by the counter). Axons reaching the extremity of the medial lobe before this limit
will stop growing. The counter is augmented by 2 at each time the tip fails to elongate
Nmax Steps (representing the encounter of two consecutive mechanical obstacles, CASE B
in Fig. 4.21). The proposed growth and repulsion mechanism follows observations done
in the consulted bibliography. Francisco et al. (2007) observed that neurons growing with
obstacles sample repeatedly the encountered constraint, until they found a free way. Similar
observations were done by Sagasti et al. (2005), who also mention contact with other neurites
during development and the so-called growth and repulsion mechanism. Regarding the
growth stop conditions, how to exactly stop the growth of a neurite is still under discussion
in recent modelling bibliography. For example, Zubler et al. (2013)and Zubler and Douglas
(2009) reduce the diameter of the new branches until a critical value is trespassed, which
indicates the neurite to stop. However, Drosophila axon diameter has not been described to
vary from the soma towards the axonal terminations. More recently, Vanherpe et al. (2016)
also associates a counter to each neurite in a similar way as we do.

Axons start developing at the same time, and continue growing if i) they have not reached
the end of the medial lobe (Fig. 4.1), ii) their counter is smaller or equal to a fixed maximum
value, and, iii) no other branch from the same neuron has reached the extremity of the medial
lobe (type I, when branches are considered, see Section 4.5.2). The value of the counter is
incremented by two (accounting for the two encountered mechanical obstacles, steps II and
IV B in Fig. 4.21) at each time point ¢; the axon fails to elongate n, steps (case B in Fig.

4.21). Axons finding too many mechanical obstacles along their way will thus reach the



96 Space-Embedded Axon Growth Model

maximum counter value before reaching the lobe extremity. The simulation is completed
when there is no growing axon left. At each time-point 7;, axons grow sequentially to avoid
overlapping (which is computationally difficult to solve if all next positions are decided
simultaneously).

Unless the contrary is specified, for every simulation presented in this work 7, = 6,
and the counter equals 140. Furthermore, we defined ngr as the rate of retraction after
encountering an obstacle. Upon contact, axons not only loose this particular step, but also
the ng steps before, provided the neurite has already elongated more than ng steps during #;.
ng equals 2 in our experiments, unless the contrary is specified. Simulations showed that our
results are not significantly sensible to variations in n,,,, nor ng (see Fig. B.4 in Appendix
B).
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4.4.2 Medial lobe morphology reconstruction

One of the main constraints under study in this thesis is spatial limitation. The axons cannot
grow wherever the model indicates, but must stay within the medial lobe. We thus designed
an artificial lobe with hard limits that the axons cannot trespass. To do so, we used the lobes
in the second channels of the confocal images in our data (Section 2.4), as well as the MB
description in Aso et al. (2014). Fig. 4.22A depicts the limits of the ML considered as
mechanical constraints in the simulations (blue lines). Here, a simplified geometry of the
ML is represented. The purple line is a transversal cut of the peduncle placed just before the
entrance to the ML, from where the simulated axons emerge. As mentioned in Section 2.3,
the y axon shafts elongate rigidly in a tight and ordered parallel bundle along the peduncle
before entering the ML, where they spread and develop (see Section 2.3 and Fig. 2.3). To
reproduce this behaviour, the simulated axons are initially ordered (Fig. 4.22B), placed in an

upright square lattice on the plane transversal to the peduncle.

4.4.3 External Field determination

Another important contributor in our model is the external attractive field that sets the
directionality of axon growth. If axons were simply put altogether with their initial point
set to the origin of coordinates (i.e. not registered to the ML), a straightforward way to set
the attractive direction would be to use the directionality of the linear regression of all the
points, and consider it constant in space (as done in the simulations in Figs. 4.6 and 4.7). In
this context, a constant field indicating the preferred direction is sufficient to create realistic
guided trajectories. However, when the axons are registered to the ML (Section 4.1), more
information is required as the spatial configuration is complex and the direction of the guiding
cues attractiveness may not be constant in space. Thus, the challenge is to find the vector field
R? — IR? to describe the field direction at each point in space. For simplicity, we considered
it constant in Z. To give direct biological meaning to the attractive field, we describe it as the
gradient field of a function that is maximal in the regions that correspond to the axon targets,
and thus the highest concentration of attractive cues and thus axon targets (red segments
Fig. 4.24). In this model, we use only the directionality of the cue attractiveness and not its
magnitude.

However, neither the identity nor the source of the cue(s) guiding the in vivo growth
of y axons are currently known. Thus, we calibrated the external attractive field based on
the observed directionality of real axons, and some assumptions. From data we obtained
the mean directionality distribution of the WT axons (Fig. 4.23). This information can be

considered as a sample of the attractive field plus some noise. As it can be observed, ¥ main
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~edial|
Lobe

Fig. 4.22 Medial lobe geometry reconstruction. (A) 3D geometry of the medial lobe used
in the simulations. Axons start their growth perpendicular to the purple plane, representing
the peduncle transversal section, and their growth is constrained to the volume delimited by
surfaces represented by the blue lines. (B) Detail of the initial position of axons at the purple
plane. They start placed in an upright square lattice orthogonal to the peduncle.
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axons are strongly oriented toward the mid-line (dotted line, Fig. 2.3 A), and exhibit a small
bias toward the dorsal distal and ventral distal part of the medial lobe (Fig. 4.24, Real Axons).
In addition, we assumed that the guiding cues are concentrated at the end of the ML (see
Fig. 4.1 A), which makes sense regarding the MB connectivity and the axonal directionality
(Fig. 4.23). However, one must take into account that this is a modelling assumption and an
abstraction, and does not claim to represent an exact description of the biological model.

We tested different vector fields, result of simple guiding cue concentration configurations
(Fig. 4.24), and compared the obtained maps with the directionality of real data. While a
punctual source of attractive cue generates exclusively convergent attraction forces, a single
segment source generates forces that are convergent at the edges of the segment, and parallel
in its middle. Fig. 4.24 shows the distributions in the ML of the directionality of real axons,
as well as for the different proposed field configurations. It can be appreciated how real axons
enter the lobe with positive angles, and then become regressively orthogonal to the mid-line.
Even though this behaviour is more or less captured by all the proposed configurations, the
main difference between them relies on the region near the end of the ML (distal part). Real
axon trajectories are biased positively in the dorsal region, and negatively in the ventral one.
While the Punctual and Single segment configurations behave in the exact the opposite way,
the Inverted C captures this behaviour.

To tune the shape of the Inverted C that sets the most suitable gradient field, we evaluated
each candidate with a similarity index. We defined it as the average of the cosine of the
difference between the angle of each segment composing the axons with the corresponding
field directionality. This index thus goes from -1 (opposite direction ) to 1 (perfect match),
and we naturally chose the function with the maximum score. To systematically test a range
of possible configurations, we considered two variables (D,V) accounting for the dorsal
and ventral extension of the attractive source (Fig. 4.25A). The initial point (D,V) = (0,0)
represents a punctual source placed at the centre of the lobe extremity. We then varied
(D,V) from 0 to 60 wm with intervals of 5 um and calculated all corresponding similarity
indexes (Fig. 4.25B). Three field configurations where found to maximize the similarity
index: (D,V) = (45,30) (Fig. 4.25C), (D,V) = (45,25) and (D,V) = (40,25) (which
corresponds to an inverted L shape, i.e. the ventral segment orthogonal to the mid-line is
absent). From these three equally fitting options, we chose the one depicting an inverted C
((D,V) = (45,30)) as it is the only one that simulates the ventral distal bias observed in data
(Fig. 4.23).
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Fig. 4.23 v main axon directionality. Local mean directionality of the WT reconstructed and
registered ¥ axons along the medial lobe. The lobe was divided into rectangles of 2x1 um in
XY,VZ and the mean directionality in each region calculated. Then the map was interpolated
with the Matlab function griddata, and the arrows placed in a 2x2 um grid.
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Fig. 4.25 Attractive field calibration. (A) Schematic representation of the D and V distances
used to generate different attractive field configurations. The attractive source is positioned
at the end of the medial lobe, and depends on two variables (D,V). D describes the extent
of the source along the dorsal part of the lobe, and V' its extent along the ventral part. The
origin point (D,V) = (0,0) is also shown. (C) Similarity index in function of D and V. The
attractive field configuration used in this study ((D,V) = (45,30)) is represented by a black
dot. Its similarity value is 0.779. (C) Attractive field configuration maximizing the similarity
index and used for the simulations.
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With this field configuration, the trajectories in the lobe following the Markov model, and

with different parameter values are shown in Fig. 4.26.

Fig. 4.26 Influence of the chosen field configuration on axon trajectories in function of
and B values. The field is represented in the SML (see Section 4.1) by its directionality
(red arrows) and level lines (white curves). & represents the axon stiffness; values near zero
result in very tortuous trajectories that are only guided by the external field, while higher
values lead to straight axons that mostly ignore the external field and tends to follow its initial
direction. B represents the axon sensitivity to the external field. Values near zero indicate
no perception of the field direction, leading to undirected axons. Axons with high B grow
straight to follow the field direction (i.e. its trajectory stays orthogonal to the level lines of
the field).

4.4.4 Volume exclusion

Inter-axon interactions are taken into account via volume exclusion, considering the same
axon diameter d for all the neurites (main axon and branches).

Volume exclusion in the simulations is performed considering that the distance between
the growing tip and any other existing neurite in the lobe must be equal or higher than d (Fig.
4.27 A). To calculate this distance, we divide each step p; (Ap = 1um)of each existing neurite
in k points such as k = int(%p), and calculate the Euclidean distance between the growing tip
end and each of these points (Fig. 4.27 B). Geometrically, this means that we approximate

the neurite volumetric shape as a sequence of spheres (Fig. 4.27 C). This approximation
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allows a simple algorithmic implementation, and takes into account observations showing

that the neurites diameter may not be perfectly constant (images present irregular traces (Figs.
2.3 Cand2.5).
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Fig. 4.27 Neurite 3D geometry and volume exclusion. (A) Minimum Euclidean distance
between two spheres considering hard core volume exclusion. (B) The dotted line represents
the growing axon. The volume exclusion condition imposes that all the distances (dy,d,..)
between its tip and neighbour neurites are higher or equal to d. (C) The dotted curve
represents the unidimensional trajectory in space of the axon, the grey lines show the
segmentation in the segments of length Ap and the spheres its 3D geometry modelling.

Unfortunately, d cannot be measured directly from the confocal images in our data, as the
axonal trace diameter varies enormously (they can go up to d ~ 1um, as well as sometimes
disappear completely).
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With this considerations, the value of d was estimated from the electron microscopy
images in Watts et al. (2004) (depicting diameters of the order of 10~ um), and then
sharpened by simulations. We simulated the y population considering different possible
diameter values and chose the one that minimizes the ratio between the percentage of non-
elongated axons (i.e. axons that do not reach the stopping region, see Fig. 4.2 D) and the
ML neurite density (function of the diameter). In other words, we selected the maximum
diameter with the minimum elongation error as possible. The obtained diameter value results
d =0.23 um, and the obtained curves are shown in Fig. 4.28.
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Fig. 4.28 Diameter determination. (left) Percentage of non-elongated axons (see Fig. 4.2
D for definition) from simulations with different values of neurite diameter. The value just
before the elbow, d = 0.23 um, represents an error of 5%. The simulations were performed
considering branching upon contact (see Section 4.5.2). (right) Percentage of non-elongated
axons divided by the planar density & from simulations with different values of neurite
diameter (0 = W, where Ay corresponds to the largest area of the ML cut by a
plane X = cte, 6 represents the occupied fraction of the ML). This function is minimum for
d = 0.23um. This value optimizes the ratio between the error and the maximum diameter.

As it can be seen, these curves seem to follow a logistic law such that the percentage
of non-elongated axons grows very slowly for small values of d, and then grows very fast
from d = 0.23um. Fig. 4.29 presents the empirical curves of non-elongated axon percentage
in function of varying diameter values (d) and for different ML depths. For each curve, an
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approximation by a theoretical sigmoid function is also shown. As it can be observed, the
approximations result accurate for every case. Nevertheless, the exact dependence of the
sigmoid function parameter value with the physical properties of the problem is unknown.
Thus, we can only obtain these curves by simulation.
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Fig. 4.29 Error (%) (percentage of non-elongated axons) in function of the neurite diameter:
Study. (A) The filled curves (left and right) are the same as in Fig. 4.28, but for the percentage
of axons stopping at different depths (X) of the ML: X =5 X =15, X =50 and X = 62um
from darker to lighter. Dotted lines correspond to approximated sigmoid functions (left) and
the same approximated sigmoid functions divided by o (right). This theoretical functions
nicely follow the empirical ones, suggesting a logistic behaviour of the latter. (B) Same

curves as in (A), but for simulations without considering branching (only main axons).

Interestingly, the curves Error(%) do not present a minimum value, but decrease Vd in contrast

to those considering branches, for both empirical and theoretical curves.

One last comment is that axon elongation depends on the total occupied volume (conse-
quence of axon-axon interaction), which is determined by a certain function of the diameter d
(and other variables that can be considered invariant for this problem). Thus, when choosing
a particular way to model the 3D shape of the axons, one sets this function. It is not the
ambition of this work to give a precise estimation of the diameter of ¥ neurons, or their volu-
metric shape, but rather design a simple and coherent method to develop the space-embedded
simulations. Other 3D shapes would have changed this function, but the procedure to set
d would have stayed the same. If, for example, the neurites were modelled as cylindrical,
then probably the estimated value of d would have been lower (as with the same maximum

diameter, a cylinder has a higher volume than a sequence of spheres).
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4.4.5 Resulting trajectories

We now present the results of simulating 650 interacting main y axons in the ML, considering
the external field and volume exclusion. To assess the accuracy of our simulations, we
first observed the morphology of the resulting axons. As shown in Fig. 4.30, simulated
trajectories strongly resemble real ¥ main axons. This similarity can be observed in the high
frequency noise of the paths (h.f.n, i.e. how the trajectories behave along a small distance,
see Fig.4.30), as well as their global morphology (g.m., see Fig.4.30). Furthermore, the
population of simulated axons filled the entire medial lobe, the same way as populations of

in vivo neurons do (Fig. 4.30).

Single trajectories Whole population

Real axons

Simulated axons

Fig. 4.30 Space-embedded simulated vs. real axon trajectories. (left) examples of recon-
structed real wild-type v axons (upper panel) and simulated y axons (lower panel). The high
frequency noise (h.f.n) and global morphology (g.m.) are indicated.. (right) populations of in
vivo ¥ axons visualized by mCDS8 fused to GFP expressed specifically in y neurons (upper
panel; scale bar corresponds to 10um), and simulated y axons (lower panel).

To more precisely assess the similarity between real and simulated axons, we also
compared the distributions of main axon lengths and travelled distances (distance travelled
in the ML parallel to its main axis, see Fig. 4.2 D in Section 4.1). The main axon length
distribution profiles of real and simulated axons match very well, particularly regarding
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the data dispersion (see Fig. 4.31, left panels). This indicates that the sinuosity as well as
path variability is effectively well respected by the model. One must remember that the
final length of the simulated axons is not previously set, but is an emergent feature of the
model. However, the simulated axons are generally longer than real ones (,.,; = 93um and
Wsimu = 118um). This difference can be explained by the fact that the axons in the confocal
images are flattened (in the Z axis), which is a known consequence of the tissue fixation
technique. In particular, from the channel two of the images in our data (see Section 2.4), the
ML has an average width (in Z) of 10um. However, Aso et al. (2014) performs an accurate
3D reconstruction of this structure, where the ML reported width is ~ 20um (or double our
measurement). Thus, the 3D reconstructions of the real axons segmented from the confocal
images may present a bias in the increments parallel to the Z axis, while the simulated axons
are allowed to grow freely in Z. For a fair comparison with real data, the reported values
Usimu and Oy, Were calculated without the tail in the distribution, considering only the
axons that reach the stopping region (only lengths higher than 89um were considered, see
Fig. 4.31)).

One way of avoiding this bias and compare real vs. simulated axons is thus to measure
the lengths of the axons projected to the XY plane. Fig. 4.32 shows the results of considering
the axonal length in 2D and contrast with the 3D case. Nicely, we can observe that when
considering projected lengths, the distribution of simulated and real axons become more
similar, and the bias is avoided. As for the 3D case, the reported value L, was calculated
without the tail in the distribution, considering only the axons that reach the stopping region
(lengths higher than 58 um were considered, see Fig. 4.31)).

Regarding the travelled distance (Fig. 4.31, right), 85% of the simulated axons are
correctly elongated (definition in Section 4.1 and Fig. 4.2 D). This is the first clear impact
of taking into account the mechanical environment of the growing neurons, as an important
percentage of them fail to elongate. This showcases the importance of considering axon de-
velopment in a realistic environment, and shows that mechanical competition may stop some
axons from reaching the stopping region, thus from elongating accurately. The distribution
of travelled distances for simulated axons also shows that non elongated axons stop all along
the ML, and not in a specific region.

In addition, interesting dynamic aspects also emerge in our simulations. Even though sim-
ulated y axons start growing simultaneously, they reach the stopping region asynchronously.
Interestingly, this finding is very consistent with observations made on populations of y
axons growing in the context of real brains during metamorphosis. Fig. 4.33 shows a group
of growing axons through three time frames from simulations as well as from a /ive video in

our data (Section 2.4). In both cases, the first time point (¢) depicts a group of axons where
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Fig. 4.31 Space-embedded simulated vs. real axon lengths and travelled distances. (left)
Frequency distributions of main axon lengths. The same double arrow is placed on both
distributions, showing the similarity in their typical widths. The black bar on the simulated
histogram indicates from where the distribution was considered to calculate the values of
mean (Umy,) and standard deviation (Ogjy,) reported. Oy = 14um and Oy, = 11 um.
(right) Travelled distances within the medial lobe. Data from real wild-type ¥ axons is shown
in the upper panels, and data from simulated ones in the lower panels.
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Fig. 4.32 Space-embedded simulated vs. real axon lengths and travelled distances: 3D vs.
2D projections. (left) Frequency distributions of main axon lengths measured in 3D. The

dotted lines are placed at the means of the real (ufela)l, in red) and simulated (u;ﬁu, in green).

The black bar on the simulated histogram indicates from where the distribution was taken
to calculate the value of the mean. (right) Frequency distributions of main axon lengths

measured in 2D. The dotted lines are placed at the means of the real (uf’egl, in red) and

simulated (,ufiﬁu, in green). The black bar on the simulated histogram indicates from where

the distribution was taken to calculate the value of the mean.
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none of them has fully elongated yet. In the next one (¢,), only one/two real/simulated axon/s
reach the stopping region, while the rest of them continue growing behind. Such differences
in the growth speed reflect not only the stochasticity of axon paths, but most importantly the
competition within the population, which arises in our model as a consequence of spatial
constraints. Thus, some axons may be [ucky and encounter just a few obstacles, while others
may encounter more, thus advance slower and loose time with respect to the lucky ones.
Finally, in the last frame (#3) and in both cases, a few more have also reached the stopping
region while the others continue growing. A similar observation from another /ive video is

shown in Figs. B.5 and B.6 in Appendix B.

4.5 Branching mechanisms

We have presented a mathematical model for axon elongation during development with
biologically-interpretable parameters estimated directly from data. In addition, we proposed
a computational framework that allows realistic dynamic space-embedded simulations of the
growth of an entire ¥ population within the medial lobe of the Drosophila mushroom body.
We showed that our model produces realistic main axon morphologies as well as reproduces
and explains the asynchronicity between growing axons observed in /ive data.

However, y axons are not composed by a sole main axon, but form trees displaying a
wide variety of morphologies and complexities (Figs. 2.3 C, 2.5 and 3.1). The branches
composing this non-stereotypical trees display different lengths and orientations, and their
origin/end points are generally dispersed through the lobe. The developmental mechanism
behind the generation of this complex network has not yet been fully described, and therefore
deserves attention.

Moreover, given the number and size of ¥ axon branches, the combined lengths of the
branches of a single axonal tree generally represent more than the length of the main axon.
This means that the volume occupied by a complete axon (main axon plus its branches) may
double (or even more) the one we considered until now (i.e. only the main axon). In our study
this fact acquires a new central importance, as more occupied volume in the ML also means
more mechanical constraints for all the axons during development, thus more difficulty to
attain elongation at the population level. We have shown that with our framework, 15%
of the ¥ axons fail to reach the stopping region due to mechanical obstacles (Fig. 4.31).
Does this suggest that by adding the corresponding branches this percentage would increase?
This would represent a paradox, as our model suggests the existence of a non-negligible
percentage of non elongated axons while, actually, no short (i.e. non-elongated) wild-type

axons were observed in the real data.
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Simulated axons Real axons

Fig. 4.33 Emergent asynchronicity within the y population. Panels in the left show a subgroup
of 50 simulated axons, and the red arrows represent the velocity of the axon tip growth at
the specific time point. The absence of arrow means that the axon encountered mechanical
obstacles and could not grow. Panels in the right correspond to a /ive film in our data
(t; = Omin, to = 90min and t3 = 215min). The dotted lines depict the beginning of the
stopping region (Fig. 4.2 D). In both cases (real and simulated), the first screen-shot depicts
a moment in the beginning of the growth when no axon reached the stopping region. The
second one shows the first axon that arrives (yellow asterisk and red line for real video),
while in the third one several axons do (yellow asterisks and red lines for real video).



114 Space-Embedded Axon Growth Model

In this section, we analyse in detail the morphological characteristics of y axonal branches
from data, and propose different branch formation mechanisms that we test through modelling.
The analysis of the simulation results suggest interesting branching functionalities in axon
development that had not been previously described, particularly related to the mechanical

environment.

4.5.1 7Y neurons present two types of branches

In order to include a developmental branching mechanism in our model, we first analysed
from our real data the adult branch morphology. Within the medial lobe, ¥ axons extend side
branches of different length, as we can observe from the images in our database. Fig. 4.34A
shows an example, where one longer branch is differentiated from other smaller ones. Fig.
4.34B presents the lengths for first and second order branches (see Fig. 3.5 for a schema
of branch hierarchy) measured from the WT axons in data. While there are 8.8 branches
per axon (%) in the first group, only 3 are observed in the second one. In addition, these
branches are quite small.

To understand how these branches are generated, we observed the /ive videos in our
database (Section 2.4). As shown in Fig. 4.35, from the videos we could also distinguish
between longer (purple arrows) and shorter (asterisks) branches. Interestingly, the difference
between both was not only their length, but also their dynamic behaviour. While longer
branches stayed quite fixed over time (and presented a dynamic activity restricted to their tips),
the shorter ones presented very unstable behaviours, appearing and disappearing from one
time frame to another. Measuring the lengths of the branches with high dynamic behaviour
from two different movies, we observed that these branches measure between 2 and 10 um
long (Fig. 4.35B). To further analyse the dynamic behaviour of these branches, we superposed
all the frames of the movie in Fig. 4.35A, as shown in Fig. 4.36A. Then, we extracted the
stable tree (one main axon plus two long branches in this case) and quantified how many new
branches appeared along its skeleton (Fig. 4.36B). We observed that these events happened
all along the structure, and are more frequent towards the tips (Fig. 4.36C). Despite their
unstable behaviour, it can be considered that at least some of these dynamic branches finally
stabilise, to generate the small (< 10um) branches observed in adult axons. This idea is
supported by Leondaritis and Eickholt (2015), as they observed that stable branches in
dendrites and axons can be initiated by the maturation of small and transient membrane
protrusions which are highly dynamic actin-enriched structures. Given the morphological
(length) and functional (dynamics) difference between Y axon branches, we classified them

in two groups: type I (> 10um, stable) and type II (< 10um, dynamic).
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Fig. 4.34 Adult y branch length distribution. (A) Confocal image depicting a single y axon
labelled by GFP. The purple arrow shows a long branch, and the asterisks smaller ones. Scale
bar: 10um. (B) Length distributions for first and second order branches. In average, ¥ axons
present 8.8 branches per axon of first order and 3 of second order.
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Now that the branch classification is established, a new question arises: are there other
functional differences than dynamism between type I and II branches? To answer to this
question, we observed the orientation of branches in their final state (adult). Fig. 4.37A
shows all the branches in our database (normalised to the SML, Section 4.1), classified by
length. Interestingly, we observed that even though small ones are oriented quite uniformly,
the longer they grow the more their orientation is biased towards the distal end of the medial
lobe. Fig. 4.37B shows them altogether, to highlight this observation.

10 um

t=10min

Developing y neurons |
(30 h APF)

0 20 40 60 80 100 120
Type Il branch length (;:m)

Fig. 4.35 7y axon branch dynamic behaviour during development. (A) Time frames from a
video depicting a single y axon during its regrowth phase. Purple arrows indicate long stable
branches and asterisks short dynamic ones that appear, disappear or change their position
over time. Scale bar: Sum. (B) Length distribution of the dynamic branches observed from
two independent videos. The total number of branches analysed is 484.
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Fig. 4.36 7y axon branch dynamic behaviour during development -bis. (A) Superposition of
all the time frames of the movie shown in Fig. 4.35 and normalized to the maximum value.
The white central structure is present through all the movie, thus is stable. The grey area
around indicates the unstable presence of dynamic branches. (B) Number of times a new
branch appears along the skeleton of the stable structure. (C) Detail of the activity (only
peaks of activity over 30 branch appearances are shown) for the main axon (MA) and a
branch (B1) extracted from (B).
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In order to gain insight on what this difference in orientation means, and find out if there
is a link with our branch classification (type I and II), we analysed and compared other
relevant orientation distributions for type I and type II branches. Fig. 4.40A shows the angles
between the whole branch and the corresponding main axon for both types. While type
IT branches are oriented in average orthogonally with respect to their main axons, type |
branches tend to be more parallel to them.

A similar observation as in Fig. 4.40A can be done regarding the angle between the
whole branch and the main axon only locally around the branching point (Fig. 4.38, middle),
as well as for the initial segment of the branch and the main axon locally (Fig. 4.39 middle).
In addition, not only entire branches are oriented towards the end of the medial lobe as they
grow longer (Fig. 4.37), but also are their initial segments (as shown in Fig. 4.39, top).
Finally, the difference in orientation between type I and II is not only evident regarding
the lobe axis (Fig. 4.37) or relative to their main axons (Figs. 4.38 and 4.39), but also
to the external field (described in Fig. 4.25C). Fig. 4.39 (bottom) shows the distributions
of the angles between the initial segment of the branches and the local field directionality.
While type II branches are oriented independently of the field orientation, an important
bias towards the field direction is observed for type I branches. This is interesting, as the
field was designed to match the main axon directionality and still makes sense regarding
the branches initial angle. But even more importantly, it suggests information about the
branching mechanism. While the stabilization of type Il branches does not seem to depend
on their initial orientation relatively to the field, type I ones are more successful when they
are born aligned to it. This angle analysis allows to conclude that type I branches behave
similarly to main axons, regarding orientation in the lobe and their behaviour respect the
external field. On their side, type II branches seem to behave independently from main axons.

Another interesting observation is that axons reach the stopping region with between one
and four tips, considering the main axon and type I branches (Fig. 4.40 B). The fact that in
some cases only the main axon arrives, suggests that it is sufficient to create a functional
axon. Thus, the variability on the number of arriving tips within the group looks like a
redundant mechanism. Based on this observation and on the conclusions obtained from the
branch orientation analysis, we proposed the hypothesis that type I branches grow exactly as
main axons, following the external cue field and trying to reach the end of the ML. If this
hypothesis is accurate, the definition of the main axon needs to be revised. While experts
usually take into account aspects as length and orientation to define it (Section 3.1), the lack
of more information (e.g. varying diameter) leads to possible confusions. In particular, we
may label as main axon a segment that mixes the neurite that originally entered the lobe

and a type I branch that reached the stopping region. Fig. 4.40C shows as an example two
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possible segment classification for the same axonal tree. Even though this new hypothesis
on branch formation questions the concept of main axon as it is classically conceived, we
continue using this tree hierarchy (main axon and first, second order branches; as defined in
Section 3.1.2) to describe real as well as simulated axons for simplicity and uniformity, and
to allow a direct comparison with other results.
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Fig. 4.38 Relevant branch angle distributions from data. Comparison between angles for
branches < 10um and > 10um. (top) Whole branch angle relative to the X axis in the SML
(Fig. 4.1) (same information as in Fig. 4.37). (middle) Angle between the entire branch and
the main axon locally at the branch point. (bottom) Angle between the whole branch and the
entire main axon (equivalent to Fig. 4.40 A). xx x accounts for p < 0.001 from the Kruskal
Wallis test.
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Fig. 4.39 Relevant branch angle distributions from data - bis. Comparison between angles for
branches < 10um and > 10um. (top) Initial branch angle relative to the X axis in the SML
(Fig. 4.1). (middle) Angle between the initial branch segment and the main axon locally at
the branch point. (bottom) Angle between the initial branch segment and the direction of the
external field (Section 4.4). x x x accounts for p < 0.001 from the Kruskal Wallis test.
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Together, these observations suggest that type I and type II branches have different
properties, and that their growth is controlled via distinct mechanisms. In particular, type
I branches seem to behave as main axons regarding growth and connectivity, while type II
branches may be useful to sense the nearest environment of the axons.

A - B
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240 300 240
270 270 0 1 2 3 4 5

Type Il branches Type | branches #arr.

Branch angle distributions axon

W Main axon
M Type | branch
Type Il branch

Fig. 4.40 Type I branches behave as main axons. (A) Distributions of the angles between the
entire branch and its main axon for type I and II branches. (B) Distribution of the number of

arriving tips per axon (%). (C) Two possible segment hierarchy classifications of the same

axonal tree. The pink segment indicates the transversal cut of the peduncle (see Fig. 4.22),
from where the neurite that originally enters the lobe emerges.

4.5.2 Modelling the branch process

In order to implement the occurrence of type I and II branches in our model, we considered
that branching may occur at the end of every time point 7;, after elongation. For any type
of branch, we establish that the distance between two branches should respect a Poisson
distribution with parameter A estimated from data (A = .47(6.2,0.1), Fig. B.7 in Appendix
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B). This avoids two branches to be too near, and simulates the need to accumulate biological
material before creating a new branch (Ganguly et al., 2016; Szebenyi et al., 1998).

Two scenarios can be considered at the end of each #;. In the first one, the criteria for
the formation of a type I branch is evaluated (CONDITION in Fig. 4.41). The distinct
considered criteria used in this work are described in the following two sections. A type |
branch effectively emerges if CONDITION is verified and a random number from zero to
one (randp_1) is smaller or equal to the Poisson probability regarding the distance to the
previous branch (DBP in Fig. 4.41). In the second one, if a type I branch is not placed after
t;, a type Il branch tries to emerge. A random distance from the last branch point is thrown
from the Poisson distribution (randpyisson) and, if it fits (randpyisson, < DBP), the branch is
placed at that position.

Without any known prior information on the branch emergence distribution, both types
of branches initially emerge with a random uniform angle. Type I branches emerge as a
segment of two steps and if they fit (i.e. no intersection with other neurite) they continue
growing following the Markov model. Type II branches measure between 2 and 10 um (with
length distribution following Fig. 4.35B), and appear and disappear randomly during all the
simulation until they contact another branch tip or branching point and get stabilized. If they
do not stabilize by the end of the entire simulation they disappear. Type I branches grow
following the same rules as main axons, and may also form type II branches (but not type
I). The counter for new type I branches is set to zero (see Section 4.4). As type Il branches
are quite short and dynamic (and their exact dynamic behaviour is unknown), we did not
consider their volume in our model, but only their formation and stabilization.

To analyse simulated and real axons exactly the same way, the hierarchy of the simulated
trees was automatically determined after the simulations using the same algorithm as for our
data (Section 3.1).

First approach: Random branching

We now need to fix a CONDITION (Fig. 4.41) for the creation of type I branches. Unfortu-
nately, we do not have any extra information on the events that trigger branching in y axons
in vivo. Thus, we first chose a uniform random mechanism. Therefore, we simulated the
birth of type I branches with a certain uniform branch probability, P,. Thus, at the end of
each time unit 7;, the axon will create a type I branch if a random number from zero to one is
higher or equal to P, and another random number from zero to one is smaller or equal to the
Poisson probability regarding the distance (DBP) from the previous branch to a randomly
chosen position within those performed during #; (in Fig. 4.42 the random chosen position is

number two, and DBP is indicated).
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Fig. 4.41 Modelling of the branch process. Schematic representations illustrating branch
occurrence. At the end of each time point and after elongation, a type I branch is created
if a certain branching CONDITION is fulfilled, and a random number from zero to one
(randp—1) is smaller or equal to the Poisson probability regarding the distance to the previous
branch (DBP). If a type I branch is not created, then a type Il may appear if a random number
from the estimated Poisson distribuion (randpyisson) 1S smaller or equal than DBP. The new
branch is thus placed at a distance randpy;sson from the previous branch.
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Fig. 4.42 Modelling of the branch process - Random branching. Schematic representation
illustrating branch occurrence. At the end of each time point and after elongation, a type
I branch is created if a random number from zero to one (randé_l) is smaller or equal to
the branching probability (P,), and another random number from zero to one (randg_l) is
smaller or equal to the Poisson probability regarding the distance to the previous branch
(DBP). The branching point is placed at a step performed during ¢; and selected randomly.
If a type I branch is not created, then a type Il may appear if a random number from the
estimated Poisson distribuion (randpyisson) is smaller or equal than DBP. The new branch is
thus placed at a distance randp,;sson from the previous branch.
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We simulated entire y populations with different values of P,. Naturally, varying the
branching probability resulted in axonal trees with different number of type I branches. Fig.
4.43A shows the observed mean number of type I branches per axon in function of P,. The
same way as for real axons, we consider as type I branches those with length higher than 10
um. During the rest of this chapter, we will consider only first order branches. As previously
mentioned, second order branches are not only fewer, but also shorter (95 % < 10um). In
addition, the second order branch length distributions results very similar to that for type II
first order branches, which allows to consider they are mostly type II.

As mentioned in the beginning of this section, more branches mean higher proportion of
occupied volume in the lobe and thus more mechanical constraints for every axon. Also as
mentioned, this constitutes a paradox, as real axons present branches and however reach the
stopping region.

Strikingly, an increasing number of branches per axon actually increases the percentage
of elongated axons in the simulations, rather than decrease it. As observed in Fig. 4.43B,
up to around 4% result positive for axon elongation, comparing to zero branch (for which
the percentage of non elongated axons is of 15 %, Fig. 4.31) and despite the increase of
occupied volume. In particular, the presence of 1.5 to 2.5 % enhances the overall probability
that axons reach the stopping region, reducing the non-elongated axon percentage from 15 %
(with no branch, Fig. 4.31) to 9%. Fig. 4.43 C shows the travelled distances for the simulated
Y population with 1.5%, where 91% of the axons are elongated.

These results suggest that axon branching may be a mechanism promoting axon growth
in a population context in vivo. As we observed in Subsection 4.5.1, a redundant mechanism
seems to take place in the development of y axons, where branches grow the same way
as main axons, trying to reach the stopping region as well. This redundancy gains a new
sense if type I branch formation is considered as a strategy to guarantee that at least one
tip of the axon reaches the stopping region to generate an adult elongated axon, allowing
further connectivity. This new hypothesis can only be held considering axon development
as a collective space-embedded phenomena, where the neurons interact mechanically with
each other in limited space and time. A similar idea is expressed in Francisco et al. (2007):
Increased axon branching (. . . ) may allow neurons to extend more branches and thus have
a greater probability of establishing an axon.

Nevertheless, the presence of more than ~ 4% appeared prejudicial to the growth of
the population (Fig. 4.43B), reflecting a dramatic increase in neuronal density and in the
probability of encountering mechanical obstacles. Thus, forming type I branches is a good
strategy for individual elongation in a population context until a certain limit, from which the

excessive fraction of occupied volume wins over the benefits of branching.
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Fig. 4.43 y population with random branching occurrence. (A) Mean number of branches
(>10 um) per axon in function of the branching probability P,. (B) Percentage of axons not
reaching the stopping region (definition in Fig. 4.2 D) in function of the mean number of
branches (>10 um) per axon. (C) Distribution of travelled distances for the y population with
1.5% (P, =0.1), where 91% of the axons are elongated.
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Complete model: Branching upon interaction

Following the hypothesis that branching is a strategy to improve axon elongation in vivo,
the question that emerges is: do branches actually emerge randomly? Or is there any better
strategy for branch occurrence?

Fig. 4.44 displays a spatial density heat-map of the medial lobe from the registered axons
in data. This analysis shows that neuronal density is not homogeneous, peaking in the most
central part of the medial lobe and towards the mid-line. More importantly, it reveals that
spatial variation in axonal density (number of axonal segments) correlates very well with
the density profile of type I branching point (type I branching point number per axon, Fig.
4.44, bottom). The phenomenon is also observed in 2D (Fig. 4.45). As it can be seen, the
general branch point density is higher in the central area of the lobe (Fig. 4.45A), and while
type 1I branching points are distributed everywhere in the lobe, including the dorsal and
ventral areas (Fig. 4.45B and D), type I are concentrated mostly in the central area (Fig.
4.45C and D), coinciding with the general ML density raise (see Fig. 4.44). The fact that
real axons present more (type I) branches where the density is higher, suggests that type
I branches may not form with a uniform probability, but rather arise upon encountering a
mechanical obstacle and thus improve axonal elongation. Davenport et al. (1999) has already
observed, even though in vitro, that interstitial branches can be formed after mechanical
constrains encountered by the growth cone. Also, Hayashi et al. (2014) showed that actin
polymerization regulators (elements relevant for branch formation) are recruited to axon-axon
contact sites during the collective axon extension of mice amygdala neurons. They find out
that this mechanism facilitates the growth of the implicated growth cones, and suggest that it
may also have other functions. Our hypothesis additionally takes into account observations
showing that the formation of interstitial branches is decided at the level of the growth cone
and occurs after it stops its trajectory. We hypothesize that the axon stops when it finds a
mechanical barrier in its way and reorganizes itself to leave a branching point, from where
another neurite in parallel (type I branch) will try to overcome the difficulty. The branch will
then behave the same way as the main axon, trying to reach the same goal (Kalil et al., 2000),
but following a different path.

To test this new branching occurrence hypothesis, we actualized our model such that
axons encountering a mechanical constraint would not only try alternative directions until
they find an available space, but also create a type I branch (if its distance to the previous
branch is more or equal to a random Poisson number with its parameter estimated from data).
Thus, the new CONDITION (Fig. 4.41) is that the axon grew less than n,,,, steps during
t;j (or equivalently, that it encountered two consecutive mechanical constraints, Fig. 4.21 in
Section 4.4). The new branch is then placed at the axon tip, as shown in Fig. 4.46.
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Fig. 4.44 Medial lobe density and branch point distribution. Upper panel: neurite 2D spatial
density measured from data (number of neurites per um?). The values are normalized to 1,
and values higher than 0.5 are shown in the same colour for clarity. Lower panel: Correlation
between the spatial distribution of type I branching point number and axonal density. The
orange bars represent the number of type I branching points per axon along the lobe axis (see
Fig. S6 C for a representation of how the lobe was divided). The green curve represents the
number of axonal segments (main axons and axonal branches) found in each lobe region.
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Fig. 4.45 Medial lobe branch point distribution. (A) 2D branch point spatial density measured
from data (number of branching points per 2x2um?). (B) Type II branching points from
data drawn over the ML neurite density map (same as in Fig. 4.44A) for visual correlation.
Each red point represents the birth point of a single branch with length < 10um. (C) Type 1
branching points from data drawn over the ML neurite density map (same as in Fig. 4.44) for
visual correlation. Each green point represents the birth point of a single branch with length
> 10um. (D) Same type I (right) and II (left) branching points distribution on the ML, where
the central area is masked, for a better visual appreciation of the difference between them.
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Fig. 4.46 Modelling of the branch process - Branching upon contact. Schematic representa-
tions illustrating branch occurrence. At the end of each time point and after elongation, a type
I branch is created if the axon has encountered a mechanical obstacle, and a random number
from zero to one is smaller or equal to the Poisson probability regarding the distance to the
previous branch (DBP). The branching point is placed at the neurite tip. If a type I branch
is not created, then a type II may appear if a random number from the estimated Poisson
distribution (randpyisson) 1s smaller or equal than DBP. The new branch is thus placed at a
distance randpyisson from the previous branch.
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As shown in Fig. 4.47, axons simulated according to this model have on average 2.0 type
I branches along the main axon, a number very close to that of real axons (2.2). Strikingly,
the percentage of non-elongated axons is lower than any one obtained with random type |
branches, as 95% of axons reached the stopping region when mechanical branches where
implemented. This reveals that branching exactly when needed enhances axonal elongation
in a population context. This result is not trivial, as it proposes that the percentage of non
elongated axons depends not only on the fraction of occupied volume (and other model
parameters), but also on when exactly the branches are created.
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Fig. 4.47 y population with mechanical branching occurrence. (A) Percentage of axons not
reaching the stopping region (definition in Fig. 4.2 D) in function of the mean number of
branches (>10 pum) per axon. The sole value for mechanical branching, is represented in red.
The blue curve represent the case of random branches as in Fig. 4.43B. (B) Distribution of
travelled distances for the y population simulated with mechanic branching, where 95% of
the axons are elongated.

An important question is to know if the simulated axons resemble real ones morphologi-
cally. Fig. 4.48A shows examples of axons reconstructed from data and simulated ones, from
which the general similarity can be appreciated. Remarkably, the model also generated axons
with a wide-range of growth and branching patterns, mimicking the morphological diversity
observed for y axons grown in vivo. A deeper analysis on intra-group variability is performed
in Section 4.7. To quantify the similarity between simulated and real axons, we used the
distance between trees (ESA distance) developed previously in the team (Mottini et al., 2015),
and based on the previous work of Srivastava et al. (2005). This measurement takes into
account the length, the shape, and the directionality of axons, as well as branching character-
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istics. It allows to assign a scalar value to measure the similarity of two tree-like structures.
However, one-by-one comparison does not make sense, as we simulated a general population
and not mimicked a particular axon. To overcome this difficulty, we then performed the
comparison between each axon from the real data and the rest of them, and between each
axon of the real data and 43 of the simulated ones (same group size). Fig. 4.48B shows the
results of these comparisons in the shape of box-plots. As it can be observed, both cases
look very similar, suggesting there is no significant difference between comparing real axons
with real axons than real axons with simulated ones. However, when applying the Kruskal
Wallis test, the difference comes out significant. Even though this is in part due to the big
size of the samples (combinatory of 43), to further understand this difference we observed
the distributions in detail (Fig. 4.48C). Nicely, both distributions look very much alike. The
sole difference is that when comparing real axons to themselves, the distribution adopts a
bimodal behaviour, with a peak in smaller values which is absent when comparing real axons
with simulated. This study allows to conclude that simulated axons present realistic axon
morphologies, very close to real y axons (more morphologies in Figs. B.8, B.9 and B.10 in
Appendix B).

Fig.4.49A shows the branch length distribution of an entire population of simulated
Y axons. Even though the number of type I branches (> 10 um) is very close to that of
real axons (2.0%f0r simulated and 2.2% for real), the number of type II is slightly higher
(8.0% and 6.6%). We suggest that this difference could be originated in the later pruning of
small branches that y axons undergo after metamorphosis, thus not included in the model.
Tessier and Broadie (2008) observed that axons lose ~ 19% of their branches in this process,
eliminating small ones (<5Sum). This percentage is in accordance with the difference between
real and simulated data. Another observation is that type I branches are longer in simulated
axons that in real. This suggests that, in reality, there might be other branch termination
programs than those we propose in our model.

Fig. 4.49B presents the linear density (i.e. neurite number per distance inside the lobe) of
the reconstructed lobe from data and the simulated one. Nicely, both cases present similar
maximum and minimum values, and corresponding shapes. However, the simulated lobe is
denser in the beginning of the lobe, while the real one presents its maximum towards the
mid-line. We analyse the origin of this difference in Section 4.8.

Finally, Figs. 4.50 and 4.51 show the different branch orientation distributions, as
done previously with real axons (Figs. 4.38 and 4.39). Nicely, in every case, simulated
axons present equivalent behaviours as real ones. Whilst for the angle distributions in
Fig. 4.50 regarding the entire branch orientation the results are a direct consequence of

the implementation of the model (we imposed type I branches to behave the same way as
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Fig. 4.48 Real and simulated axons are morphologically alike. (A) Examples of real (WT)
and simulated axons. (B) Box-plot representation of the ESA distance between trees for real
axons vs. real axons and real axons vs. simulated ones. (C) Distribution of the ESA distance
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Fig. 4.49 Branch length distribution and linear density of simulated ¥ axons with mechan-
ical branching. (A) Branch length distribution. In average, axons present 10.1 first order
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considered) over total number of axons in function of the ML depth for simulated vs. real
axons.
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the original main axons), the results in Fig. 4.51 on the orientation of the initial branch
segments are not trivial. Even though branches are generated with uniform random angles,
we observed that while type II branches are mostly orthogonal to their main axons and
uniformly distributed in the lobe (Fig. 4.51, middle and top), type I branches had more
chances of surviving (i.e. find enough free place to be established and continue elongation)
when they were born originally oriented as their main axons as well as the external field (Fig.
4.51, middle and bottom). This suggests that the orientations regarding the initial segment
observed for real axons (Fig. 4.39) may be a consequence of the mechanical environment
and the collective growth, and not pre-defined.

Together, integrating axon-axon interactions in our model generated populations of y
axons with a realistic range of morphologies. Furthermore, it revealed that axon branching
impacts on the efficiency of axon growth at the population level, and suggested that branching
in response to physical constraints increases the chance that axons successfully reach their

final destination.

4.6 Mutant phenotype predictions

Altered branching

Until now, we described a mathematical model and a simulation framework that allows the
space-embedded simulation of a whole population of y axons growing collectively in the
ML during metamorphosis. We first analysed the growth of single axons, and observed the
impact of mechanical interactions on general axon elongation. Further we added branches
and, surprisingly, they did not aggravate the percentage of non-elongated axons due to
the natural increase on neurites in the lobe and thus occupied volume, but significantly
ameliorated it. This suggested branching as an elongation strategy. Finally, we proposed
a branching mechanism that generates long branches after mechanical collisions between
axons, with which we successfully simulated complete populations of fully elongated y
axons, morphologically very similar to real ones.

In this section we go further in the analysis and study hypothetical scenarios, where
mechanical competition, the branching strategy and/or the Markov chain parameter values
are challenged. We first wondered what would happen if the properties of only a single
neuron would be altered in a context where the rest of the population grew according to
our model. To address this question, we simulated 45 entire Yy populations where a single
axon is unable to generate type I branches, while the rest of them are normally capable of
branching. Fig. 4.52 shows the distributions of main axon lengths and travelled distances

recovered in this condition. Not only half of the population failed to fully elongate, but also a
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Fig. 4.50 Relevant branch angle distributions from simulations. Comparison between angles
for branches < 10um and > 10um. (top) Whole branch angle relative to the X axis in the
SML (Fig. 4.1). (middle) Angle between the entire branch and the main axon locally at the
branch point. (bottom) Angle between the whole branch and the entire main axon. s x
accounts for p < 0.001 from the Kruskal Wallis test.
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Fig. 4.51 Relevant branch angle distributions from simulations - bis. Comparison between
angles for branches < 10um and > 10um. (top) Initial branch angle relative to the X axis
in the SML (Fig. 4.1). (middle) Angle between the initial branch segment and the main
axon locally at the branch point. (bottom) Angle between the initial branch segment and the
direction of the external field (Section 4.4). x * % accounts for p < 0.001 from the Kruskal
Wallis test.
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bimodal behaviour emerged in both histograms. This situation is very different to the case
in Fig.4.31 where no axon presented branches, as in that case the 15 % of non-elongated
axons were distributed uniformly in the histograms of length and travelled distance, and
not creating a sub-population. This result showcases the importance of considering uneven
competition, where a mutated axon in the context of wild-type individuals reveals a new
behaviour, different than when the entire population is mutated.

Thus, a prediction of our model is that single neurons mutant for genes essential for axon
branching would fail to efficiently elongate their axons in vivo. To validate this prediction,
we analysed the properties of Imp axons in our data. As we largely discussed in Chapter
3, the inactivation of imp was shown to significantly decrease adult ¥ axon branching, in
particular long branches, and to result in defective axon growth (Medioni et al., 2014; Razetti
et al., 2017). We thus studied the distributions of lengths and travelled distances of the Imp
axons in our data, normalized to the SML (Section 4.1). As shown in Fig. 4.53, the bimodal
distribution profiles of imp mutant axons were very similar to that displayed in Fig. 4.52,
with about half of the mutant individual axons failing to reach the extremity of the medial
lobe. Furthermore, the morphology of reconstructed imp mutant axons is very similar to that
of individual simulated axons (Fig. 4.53 and 4.52, bottom). Regarding branch length, while
for type II branches the distribution and number (5.4 and 6.6 %) is very close to that of
wild-type axons, imp mutant axons present fewer (0.8 vs. 2.2 %) and shorter type I branches
(distributions in Fig. B.11A in Appendix B).

These results thus suggest that branching deficiency may be the primary defect induced
by imp inactivation, and axon growth defects are consequently due to competition with sur-
rounding wild-type neurons. Once again, the results showcase the importance of considering
axon developing as a space-embedded collective phenomenon. Regarding the Markov chain
parameter values used in these simulations, as shown in Section 4.3.2, Imp axons present
estimated values of @ and B that are slightly different than those for WT and Imp Rescue (see
Fig. 4.15). Nevertheless, the results in Fig. 4.52 were done considering the parameter values
estimated for WT for every axon, included the mutant ones. This choice was motivated
by two reasons. The first one is that previous simulations considering different parameter
values (i.e. wild-type axons with the parameters estimated from the WT population, and imp
mutants with the parameters estimated from Imp axons) showed no difference in the results
regarding the double phenotype. The second one is that the fact of using the same parameter
values showcases that this double phenotype can be exclusively explained by the branch
shortage, with no need of other aberrant characteristics.

We then performed similar experiments but with single axons that can create mechanical

type I branches with different probabilities P, < 1, in a normally branching environment.
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Fig. 4.52 Single non-branching axon in a normal population. Upper panels: frequency
distributions of axonal length and travelled distance of single simulated non-branching axons
grown in the context of otherwise branching axons. 40% of axons fail to reach the lobe
extremity in this condition (n=45). Lower panels: examples of fully elongated (left) and
non-elongated (right) simulated single axons.
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Fig. 4.53 imp mutant y axons. Upper panels: frequency distributions of axonal length and
travelled distance of single imp mutant axons grown in the context of a wild-type population.
A bimodal behaviour similar to that generated by simulations is observed (n=45). Lower
panels: example of fully elongated (left) and growth-defective (right) imp single axons from
our data-base. Scale bar 10um.
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Fig. B.11 B shows the mean number of branches in function of different values of P,),.
Naturally, increasing values of P, diminish the percentage of non-elongated axons. Fig.
4.54 (red curve) shows this percentage in function of the observed number of type I branches.
Interestingly, this behaviour is equally observed in real axons. When imp mutant axons
are rescued with Imp re-expression, the percentage of short axons diminishes to 36 % and
when rescued with Profilin to 33 % and, at the same time, these phenotypes display also
an increasing number of type I branches (analysis obtained from the corresponding images
in our database and showed in Fig. 4.54, black curve). This observations reinforce the
hypothesis of branching as an axonal elongation boost, and highlights the predictive aspect

of our model.
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Fig. 4.54 Type I branch proportion influences axonal elongation. Percentage of non-elongated
axons in function of the observed mean number of branches (>10 pm) per axon (in red for
simulated axons and in black for real ones). Each data point of the real axon curve is labelled
with the corresponding group of axons from real data.

Altered branching and guidance

We finally explored the consequences of changing the Markov chain parameter values. For
that purpose we considered the un f mutant phenotype and un f phenotype rescued by TOR
over-expression (a pathway known to control growth in general) published in Yaniv et al.
(2012). The authors proposed that Unf promotes axonal regrowth via at least two pathways,

the TOR pathway related to axon elongation and an unknown pathway regulating axon
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guidance. They did experiments where 25 % of the y population (one out of four neuroblasts)
is mutated for un f, and the rest of the axons are wild-type. The results show that the mutated
axons fail to elongate, stopping in the first half of the lobe. In parallel, they present a similar
experiment but with the unf axons rescued by over-expresion of TOR. In this case the
elongation was partially rescued and they observed that the axons occupied only the ventral
side of the lobe or the ventral and dorsal, but not central areas. Fig. 4.55 presents examples
of both cases, done at Besse Team at IBV (France). We also observe axons growing only
ventrally and dorsally and ventrally, but not in the central area. To recreate these experiments,
we changed the characteristics of 160 axons out of the 650 y axons in the ML. We first
perturbed guidance by applying a low value of B (8 = 0.1) and leaving the rest of the growth
aspects unchanged, to simulate unf rescued by TOR. Fig. 4.56A shows time points from a
movie of the simulated un f mutant rescued by TOR growing axons. Nicely, we observe the
same phenotype than described in Yaniv et al. (2012), as axons occupy mainly the ventral and
dorsal areas of the ML rather than the centre. In addition, as shown in Fig. 4.33, simulated
wild-type axons occupy firstly the central region of the ML and then the sides, in the exact
opposite way as the observed phenotype. Then we analysed the possibility that the TOR
pathway promotes axonal elongation partly by regulating the branching mechanism. This idea
comes from the observation of T'scl mutants, resulting in the TOR pathway over-activation,
that presented an important increase in the number of type I branches (3.9%) compared to
wild-types (2.2%). Thus, we simulated populations of y axons with 160 individuals with
B = 0.1 (unf mutant) and different probabilities of (mechanical) branch permission (B;),),
to simulate different possible levels of growth rescued by TOR over-expression. Therefore,
Py, = 0 means unf mutant without rescue, where the axons have guidance deficiency and
cannot branch. Fig. 4.56B (left) shows this case where, as observed for real axons in Yaniv
et al. (2012), the axons stopped growing in the first half of the lobe. When B, > 0, the
simulated rescued axons elongate more, but maintaining the phenotype regarding the lobe
occupancy. These results suggest, on the one hand, that the lobe occupancy phenotype can be
explained by a misguidance and mechanical competition with wild-type axons that occupy
the central part of the lobe first. On the other hand, it proposes that the TOR pathway may be
directly implied in branching, which results in an elongation mechanism which has not been
described yet.

Nicely, the explored cases showcase the biological relevance of our mathematical model,
and its capacity to predict the in vivo behaviour of mutant axons in a population context and

a realistic mechanical environment.
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Fig. 4.55 unf mutant recued by TOR over-expression. Maximum intensity projections of
confocal images depicting unf mutants rescued by TOR over-expression that developed in
an otherwise wild-type environment (green) and the dorsal and medial lobes of the MB (red).
(top) Examples of axons growing only ventrally, and (bottom) exaples of axons growing
dorsally and ventrally. Scale bar: 10 pm.
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Fig. 4.56 Misguided axons in a normal population. (A) Time points from a movie of 160
simulated axons with f = 0.1 growing in a wild-type context. Unlike wild-type axons, they
occupy preferentially the dorsal and ventral areas of the ML. (B) Results of simulations
where 160 of the y axons are misguided (8 = 0.1) and present different (mechanical) branch
occurrence probabilities. B,, = 0 simulates unf mutant, and the increasing values represent
different degrees of phenotype rescue by TOR. Two examples per condition are shown (one
in each row).
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4.7 Parameter value significance and other considerations

o and B

Equations 4.4 and 4.30 give the expressions of the variance of 6; conditioned by 6, (Gg),
and of 6; (Gg) in function of the model parameters, & and 3. These variances represent the
noise (or energy) of the system, and have thus an important influence on the elongation rate
of the axons. Trajectories with zero variance will continue straight, following their initial
directionality. If axons started ordered and parallel to each other, they would continue that
way without interacting.

Axons with noisy steps (high Gg) generate more axon-axon contact during the growth,
thus more mechanical obstacles and elongation difficulty. On the other hand, for any value
of Gg, if the variance of the chain is high the axonal trajectory tends to expand, generating
more collisions with the geometrical limits of the growth cavity (ML). Fig. 4.57 shows
how the values of Gg and 65 change for different values of parameters(o € [107,10%],8 €
[1072,10%)). Gg reaches high values (disorder region) when o and f3 are both small. On the
other hand, Gg is clearly more sensible to changes in 3, and presents high values (disorder
region) for small values of §, mostly independently from ¢. In both cases, the values
estimated from data lie in the ordered region, near the disorder-order transition (i.e. when the
noise of the system suddenly falls).

To study in detail how the noise of the system (or equivalently, the parameter values)
affects axonal elongation, we first analysed the efficiency of population axon growth when
varying the value of a single parameter while leaving the other one fixed, for axons simulated
with mechanical branching and without branching. Fig. 4.58 presents the results of this
analysis. The variance of the chain goes to infinity and zero when 8 tends to zero and
infinity respectively. As the results show, Gg — oo means a level of noise that generates
total chaos (lack of elongated axons), with any axon reaching the end of the lobe, with or
without branches. In both cases (branch and no branch) there is an optimal interval starting
in our estimated value of  and until B ~ 10. For every value of 3, axons simulated with
mechanical branches elongated more efficiently than those without branching. When varying
a, this is not true any more. Strikingly, to generate branches becomes the best strategy only
from values of ¢ near to that estimated from data which, in addition, is located in the minima
of the curve. These results directly link the axonal shape -thus estimated parameter values-
with theoretical elongation strategies such as creating branches and optimal noise of the
system. In particular, the value of Gg is bounded for variations in «.

To further investigate the influence of the noise of the system in axon elongation regarding

axon-axon and axon-geometrical limits interactions, we performed simulations varying o
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Fig. 4.57 Variance of 6; conditioned by 6;_ (Gg) and of 6; (Gg), in function of ¢ and 3
(Egs. 4.4 and 4.33). The dotted lines represent the values estimated from data o = 7.5 and
B=17.

and 3, with and without branches and within the medial lobe and in a tube (Fig. 4.59). To
simulate within a tube we replaced the medial lobe by a tube of transversal area equal to the
maximum area in the medial lobe, and a uniform field parallel to X axis (Fig. 4.22). For
the case of in vivo y axons within the medial lobe and with mechanical branches (LOBE
BRANCH), we observe a closed region of optimal elongation (percentage of non-elongated
axons < 5%). Interestingly, as observed also in Fig. 4.58, the parameter values estimated
from data lie within this region, in its inferior limit. For the case within the lobe but without
branches (LOBE NO BRANCH)), this region is smaller and located towards slightly smaller
values of «. In general, small values of 8 seriously disturbed axon elongation, in accordance
with the observation that the overall energy of the system is high in this condition (0'3 small,
Fig. 4.57). However, for small values of both parameters but 8 > a, the elongation in the
population context is partially recovered. Thus, for very noisy trajectories, B > « induces
order in the system by following the external force direction. However, the elongation does
not increase constantly with the value of 3, but presents an optimal region around 3 = 10 (for
a < 10) and then decays. When the population is simulated within a tube (TUBE BRANCH
and TUBE NO BRANCH), this does not happen and from around 8 = 1.7 the elongation is

total. This means that the geometry of the lobe also plays a role in the collective elongation.
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Fig. 4.58 Axon elongation in function of varying parameter values. (top) Percentage of non-
elongated axons in function of 8 and with « fixed. (bottom) Percentage of non-elongated
axons in function of o and with B fixed. In both cases, the analysis was done considering
mechanical branching and no branching. The shape of the theoretical variance of the chain
Gg is also shown. k = 1 and k = 100 for the graphs in the top and bottom respectively. The
limits of o7 for o, § — 0 and @, 8 — o are also indicated.
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In fact, high values of B generate very ordered straight trajectories that stop axons from being
able to overcome constraints imposed by a non-uniform external geometry. In the case of a
tube, axons with low noise follow the straight trajectories imposed by the uniform external
field thus avoiding collisions and fully elongating.
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Fig. 4.59 Axon elongation in function of varying parameter values in the medial lobe and
in a tube, with mechanical branches and without branches. The dotted lines represent the
values estimated from data @ = 7.5 and B = 1.7, and the black disc the parameters for which
elongation is maximal (0, Bpp)-
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This analysis shows that the parameter values estimated from data assure axonal trajecto-
ries with a level of order that avoids, on the one hand, too many axon-axon encounters and
on the other hand enough noise to be able to adapt to non-uniform external limits. However,
regarding the elongation percentage, they are not the optimal couple. In fact, the lower
percentage of non-elongated axons corresponds to o = 7.445 (the estimated value) and
B =4, which we called (), Bpp)-

Fig. 4.60 shows a morphological analysis of the y axons obtained with (0, Bpp)-
Interestingly, we noticed that the (0, B,) combination, while optimal for axon growth
efficiency, generated axons with a reduced complexity, and a lower number of type I branches
(1.6 vs. 2.2 for real axons), as it can be observed in the examples of Fig. 4.60A (more
examples in Fig. B.12 in Appendix B). Furthermore, the population of axons simulated with
these values was more homogeneous than the real axons, failing to reproduce the diversity of
axon morphologies observed in vivo. To quantify intra-population variability, we measured
within each group inter-axon similarity (similarity between every possible pair of axons
in the same population i.e. real, simulated and simulated with best parameters), using the
distance between trees developed by Mottini et al. (2015), and based on the previous work
of Srivastava et al. (2005). This measurement takes into account the length, the shape, and
the directionality of axons, as well as branching characteristics (as done in Fig. 4.48 to
compare between simulated axons with mechanical branches and real ones). As shown in
Fig. 4.60B, neurons simulated with these parameters were much more similar to each other
than were real axons, or axons simulated with (¢, B) estimated from data. Fig. 4.60C shows
the detail of the distribution of the distances within the populations. While the histograms
for real axons and simulated with estimated parameters are practically the same, the one
for simulated axons with (o), By,) presents higher frequencies of smaller values, meaning
that they look more alike. Finally, one interesting observation is that these distributions
are bimodal, meaning that (for real axons and simulated with estimated parameters) half of
the axons look alike and other half is specially different. This suggests the existence two
morphological groups within the populations that is nicely reproduced by the model without
being particularly imposed.

Together, our results indicate that the in vivo stiffness of individual y axons, as well as
their sensitivity to the attractive gradient, are not only well described by our model, but also
represent an optimal combination ensuring both morphological diversity and complexity, and

efficient population axon growth.
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Fig. 4.60 Morphologies of axons simulated with parameters optimal for elongation. (A)
Examples of axons simulated with the optimal parameters regarding elongation, (0, Bpp)-
(B) Box-plot representation of the ESA distances within the populations of real axons,
simulated with the parameters estimated from data and with (0, Bp,). (C) Distribution of
of the ESA distance within the populations of real axons, simulated with the parameters
estimated from data and with (0, Bpp)-
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Branching mechanisms

Fig. 4.47A shows the elongation rate at the population level with branches that appear
randomly at any time point 7; with some probability P, (random branches) and with branches
that appear upon interaction. One relevant observation is that, as a consequence of the
design of the growth algorithm, random branches can be placed also after the encounter of a
mechanical obstacle (i.e. at the end of each 7;, random branches emerge with probability P,
independently from the fact that the axon may or not have encountered an obstacle). Moreover,
if a neurite is actually blocked in a certain region (e.g. a particularly occupied one), not only
during 7;, but also during 71, £ 42, etc., the probability of a random branch to appear in that
place naturally increases (even though its emergence mechanisms is originally independent
of mechanical encounters). To analyse the influence of this effect on axon elongation, we
simulated populations of Yy axons with random branches with different probabilities P, but
that can appear only when the neurite did not encounter mechanical constraints, representing
an extreme case (or equivalently, only when it advanced 7, steps in ¢;, CASE A in Fig.
4.21). For didactic reasons, we call this branching mechanism Anti-mechanic, contrary to
Mechanic (branching upon contact), and we rename as Random mix when random branches
can appear at any time point (which is equivalent to random branches in Fig. 4.47). Fig. 4.61
shows the percentage of non-elongated axons for the three cases, in function of the obtained
number of type I branches per axon. For the Mechanic case, we completed the left area of the
graph by considering only mechanical branches but with branching permission probabilities
(Pyp) smaller than 1 (upon interaction, the branch is created with probability P, dotted red
line in Fig. 4.61). Naturally, with this condition we obtained less branches than for the case
with P,, = 1. Similarly, we completed the right side of the graph with mechanic branches
with P,, = 1 plus random branches at any 7; with different probabilities P, (branches emerge
upon interaction and in any other 7; with probability P, discrete red lines in Fig. 4.61). The
number of branches in function of P,, and in function of P, are shown in Fig. B.13.

For the Anti-mechanic case, the lowest percentage of non-elongated axons is of 10%,
with 1%. For the Mechanic case, the curve shows that the most effective strategy is to
place mechanic branches with P,, = 1 rather than with smaller probabilities. However, when
adding random branches, the percentage of non elongated axons starts once again to increase.
One can notice, also, that for an increased number of branches (> 4%) the curve for Random
mix and Mechanic get closer, as the mechanically originated branches in Mechanic are
overcame by those placed randomly (right side of the graph is completed with mechanic
branches plus random with increasing probabilities), in consequence of high values of P ),.

In summary, the three considered cases resulted in curves that are clearly apart from
each other, highlighting the importance of the branching strategy for collective elongation.
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Interestingly, this analysis shows a difference between the curves of Anti-mechanic and
Random mix, stressing the advantage of placing branches upon mechanical obstacles beyond
anywhere else. In addition, even though artificial, the Anti-mechanic case serves as a counter
situation of the Mechanic one. The observation that for the same number of branches the
best strategy is always mechanical branches, followed by mix and in last Anti-mechanic
(never mechanic), helps to support the idea that the system is sensible not only to the number
of branches (fraction of occupied volume) but also to the emergence strategy, which is a
non-trivial result.
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Fig. 4.61 Anti-mechanic branching. Comparison of three different branching mechanisms.
Random mix is equivalent to random in Fig. 4.47, knowing that some random branches
are also placed upon interaction as a consequence of the design of the algorithm. Thus,
Anti-mechanic means random branches that are only placed at the end of 7; when the tip
encountered no mechanical obstacle (for reference see Fig. 4.21, CASE A). The red dot
represents mechanic branches (the same as in Fig. 4.47), while the dotted lines to the left show
the results of simulations with mechanic branches with different permission probabilities,
resulting in less branches but always mechanic. The discrete lines to the right of the dot
mean mechanic branches with permission probability equal to 1 as in Fig. 4.47, plus random
branches with different probabilities after 7; with no interaction, which results in more
branches per axon.

Random pauses

Another possible consideration is that the neurite makes random pauses during its growth. In

our algorithm, this means that with a certain probability Pp,s. the axon tip will not grow in 7;.
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Fig. 4.62 shows the percentage of not elongated axons for y populations that pause without
making branches (blue full line) and that pause and independently branches upon interaction
(red full line). Even though pausing has a negative influence in elongation for both cases,
the effects are intensified when axons do not branch (~ 10% of difference for small Pp,e,
and ~ 15% of difference for higher values of Pp,,s). One may also consider that random
pauses trigger branching, as pausing is classically described as necessary to develop a branch
(Szebenyi et al., 1998). Adding branch occurrence when pausing clearly improves global
elongation compared to the non-branching cases (Fig. 4.62, blue discrete). However, for
populations that already performed branches upon interaction the addition of branches upon
pausing has a negative influence on global elongation (Fig. 4.62, red discrete).

To conclude, when axons perform random pauses the optimal strategy for elongation
is also to branch only upon interactions. Nevertheless, when pauses are not very frequent
branch occurrence also upon pausing does not include significant changes (Fig. 4.62, discrete
and full red curves are very similar for small values of Pp,;s ). Thus, mechanical branching
as main branch occurrence mechanism plus eventually branch after random pauses is also

plausible.
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Fig. 4.62 Implementation of random pauses during the neurite growth. Percentage of non-
elongated axons in function of the pausing probability Pp,,s. for cases when the axons do not
branch (blue full line), branch only upon mechanical obstacles (red full line), branch only
upon pausing (blue discrete lines) and upon mechanical obstacles plus when pausing (red
discrete lines).
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Dynamic parameters: counter and time

Fig. 4.63 presents the elongation rates of ¥ populations under different neurite growth stop
mechanisms, for axons that do not branch, that branch upon interactions and do not branch
and embedded in a branching population (Imp-like). First, we investigated the case of
varying the counter value. As it can be seen, the largest differences between the three studied
cases appear for rather small values of counter. However, for larger values the difference
is still present, showing that some neurites get actually mechanically blocked, and would
not elongate even with a very high number of trials. The second study considers that neurite
growth stop not by a counter, but by a fixed number of time-points. Because type I branches
follow the exact same rules as main axons, they start their growth with counter = 0 (Section
4.5.2). This gives a special advantage to neurons that branch respect to those that do not,
as they do not only have more growing tips but also more trials. Interestingly, the time
analysis in Fig. 4.63 shows that this advantage is not necessary to make branching an efficient
elongation strategy. Even though for long time periods no branching has the same elongation
rate in spite of being in a wild-type environment (i.e. Imp) or not, a difference is still visible
between these two cases (~ 4% of non-elongated axons) and mechanical branching (~ 1%
of non-elongated axons). In vivo, axons have limited time to develop completely which, in
our model, is represented by low values of time or counter. However, the lack of precise

temporal information to calibrate our model represents a limit to this study.

100 100
) w N0 Br.
§ 80 & § 80 = Mechanical Br. | |
© |\ © Imp
© | ©
o o)
2 140 > 90
o k)
g 40 S 40
= c
o o
c c
B 20f 1 © 20 il
S ~— S —

s -
0 L n e — - 0 K‘ m—
0 200 400 600 800 1000 100 200 300 400 500
Counter Time

Fig. 4.63 Percentage of not elongated axons for different strategies of growth stop. Three rel-
evant cases are studied: Imp (imp mutant i.e., single axons that do not branch in an otherwise
branching environment), non-branching axons and axons that branch upon interaction. (left)
For different values of the counter, where the grey bar indicates the value of the counter
used in this work, and (right) considering the same time limit for every neurite, where the
grey bar indicates the time-point in which typically the 95% of the neurites stop growing in
our simulations, considering counter = 140 (see Fig. B.14 in Appendix B).
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Emergent growth speed

Finally, we analysed the spatial distribution of the growth speed (%) of the axon tips in the
lobe. Fig. 4.64 shows the mean speeds corresponding to the entire population of simulated
Y axons that branch upon interaction, that do not branch and that branch upon interaction
but representing only the neurites that are totally elongated. Even though it is visually more
evident for the entire mechanical branching population, in every of the three cases a slow
region shows up towards the centre of the ML, and faster regions dorsally, ventrally and
distally. Slower regions mean they are also more dense, showing thus that axons initially
occupy the centre of the lobe, augmenting the density and thus making growth more difficult,
forcing neurites to expand dorsally and ventrally. Also, the end (distal area) of the lobe
appears less dense, which makes sense as neurites in vivo stop within this region, diminishing
progressively its density. An interesting observation is that in the studied mutant phenotypes
(Imp, Imp Rescue, Prof. Rescue and Prof.), the axons that stop their growth before the
stopping region (non-elongated axons), stop in the slow region. The arrows in Fig. 4.64
indicate the non-elongated stopping region and the normally-elongated stopping region, with
the "gap" observed in the imp mutant phenotype which is also interestingly conserved in
the other ones. This result suggests that axons under a disadvantageous condition find it
difficult to trespass this dense area, increasing their probability to stop their growth there.
However, the lucky ones that trespass it, find no other relevant difficulties (they enter a faster
zone) and always reach the stopping region, as wild-type axons do. The comparison with the
distribution of growth speed of the elongated segments reinforces the idea that many unlucky

neurites get blocked in this area.

4.8 Discussion and contributions

In this chapter, we developed a theoretical and practical framework to simulate the growth
of an entire population of space-embedded growing axons, and applied it to simulate the y
neuron population regrowth during metamorphosis. The major novelty in this work is that
we considered the mechanical interactions between the growing axons and between them
and their confined environment, via volume exclusion. Further, an important strength is that
we relied close to biological data from in vivo and live images for the design, calibration,
parameter estimation and validation of our model.

The first needed action was to stop considering the single axons in our in vivo images as
isolated units, but as part of a population. This concerned mostly the normalization of the
axon skeletons to the same medial lobe, to be able to fairly compare lengths and elongation

as well to analyse, even though artificially, how the lobe is covered (density map) and the
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Fig. 4.64 Neurite tip growth speed distribution in the medial lobe. Mean growth speed
in function of 2D space for all the neurites in a population of ¥ axons that branch upon
interaction (Mechanic Br.), that do not branch (No Br.) and that branch upon interaction but
only depicting the neurites that are totally elongated. The speed is represented in %" (one
step is one tm in the model). The arrows separate the regions where non-elongated mutant
axons stop, and the normal stopping region (as observed in imp mutants and in the other
studies phenotypes). A gap is present separating both regions.
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directionality of the axons within it. This constitutes a first contribution of this chapter, as it
allowed for the first time to understand and quantify the stopping region of the axons in the
medial lobe, its density, the bimodal elongation distribution of certain mutants and overall
axonal directionality.

We then designed an axon growth model where axonal trajectories are considered as the
sequential addition of segments following a 3D Markovian model on their angles. This model
can be easily embedded into a realistic environment including spatial constraints imposed by
confinement, as well as physical interactions between neighbouring axons of the growing
population. An important advantage of this model is that it relies on two single parameters
(regarding the axon path) that are not only directly linked to the physiological and mechanical
properties of individual axons, but can also be estimated from biological samples. Indeed, the
Gaussian Markov Chain governing the directionality of each new growth step embeds a first
term reflecting the axon stiffness (&), and a second term modelling the attraction towards the
external field (). Classically, the parameters of such models can be estimated from the data
with second order statistics. However, because we treat with real biological data presenting
noise and jumps in the model, the estimation acquires a higher level of complexity. Thus,
instead of considering that the model does not fit the data, we assumed that it actually does
but with special considerations. We then proposed that the model is broken when axons
growing in a population context hit surrounding cells or other axons. We developed different
estimation techniques to overcome this difficulty, and succeeded in estimating the parameter
values, which allowed to simulate realistic axonal trajectories.

Another major strength of our model is that it is predictive, and can provide mechanistic
interpretations of neuron behaviour. For example, our model explains the wide-range of
morphologies observed for MB Y neurons grown in vivo. These neurons exhibit axonal
trees of variable complexity and architecture, and project side branches of diverse length
and tortuosity. Such a diversity contrasts with the very stereotypic axonal projection pattern
observed for companion neurons innervating distinct layers of the Mushroom Bodies and
reproducibly forming two main straight dorsal and medial branches (Lee et al., 1999). The y
axon variability suggests their growth to be the result of a stochastic process, and thus that
each observed adult morphology is one of the many possible outcomes of some aleatory
function. This randomness in the morphology generation and intrinsic intra-population
variability is probably related to posterior synaptic plasticity and connectivity needs, linked
to the complex and dynamic ¥ neuron role in olfactory memory formation. Another relevant
aspect of y axons is that even though they all reach the end of the medial lobe, some of them
do it with only one tip, others with two and up to four. This becomes intriguing as, while

for some of them just one is enough, why would others present more tips reaching the end?
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This aspect suggests a redundant mechanism respect the arrival to the mid-line. In addition,
a general observation done by experts is that the determination of the y main axons is not
trivial, and usually subjective to a certain level. For example, in Fig. 2.5, the second axon
of the lower row presents two elongated neurites which, a priori, look alike in the sense of
hierarchy. Which one of them is the main axon and which one a branch? This question
can also be asked for almost all the axons in data. Again from Fig. 2.5, in the first image
of the same row, which of the two smaller branches that reach the lobe end is part of the
main axon and which one a branch? In general, experts finish up by taking the longest path,
and eventually other characteristics like directionality and sense. This selection is generally
done visually, and in this work we propose an automatic algorithm to do the task. A final
observation is that, sometimes, the selected main axon seems actually as a part of the neurite
that originally entered the lobe plus an elongated branch. A nice example is given by the
third axon in the bottom row of Fig. 2.5, where even though nobody would doubt to choose
as main axon the longest neurite reaching the end of the ML, one gets the impression that,
actually, the neurite reaching the end is a branch of the one that initially entered the ML
which, on its side, stops its growth somewhere in the middle of the ML.

These aspects inspired us with the idea that the hierarchy of the tree and its connectivity is
established after the growth process, during which the initial single axon generates branches
that elongate, sometimes reaching the end of the ML. This initial axon -the one that enters
the lobe- may even stop before its end and not represent the entire main axon a posteriori.
This idea of branches being generated and elongating to reach the end also can explain
the difference in number of tips reaching the end of the ML between axons. However, the
question rising is: why? Or, more formally, what adversity could have pushed y neurons to
develop such complex an redundant growth mechanism?

This question leads us to the central point of this chapter, which is the consideration
of mechanical interactions between axons and their confined space. Even though recent
bibliography already started to address the question of space-embedded axon growth, little
is known on the relevance of local mechanical interactions on the dynamic growth process
and final axon morphology. We thus simulated the entire y population taking into account
these considerations, and analysed their impact. To start, one very first result is that reaching
the end of the ML is not trivial. While some [ucky axons may encounter few difficulties in
their way, others may collide frequently, loosing time respect to their neighbours while the
ML volume continues to get filled and thus reduce even more their probability of finding a
free way. These neurites can get either completely blocked, or partially, meaning that even if
there is some free place around it, the time that it would take to found it would exceed the

developmental period. This matches very well the observation mentioned before, when the
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axon entering the lobe seems to have stopped near its entrance and a branch reaches its end
instead. So, this led us to our second important consideration: branches can help axons to
reach the end of the ML with at least one tip. If an axon formed (for example) just one branch,
this would then double the probability of the axon to have at least one neurite -original axon
or the branch- reaching the end of the lobe. Even though this may look trivial, one must
remember that, on the other hand, neurites grow in populations. Thus, more neurites means
more general occupied volume in the lobe and therefore more mechanical constraints and
difficulty to traverse the lobe. To test this idea we included in our simulations the possibility
of randomly creating branches, that continue then growing following the same rules as
their main axons. We observed that, effectively, branching increased overall elongation at
some level. In particular, while having more than zero and until ~ 2.5% increases axonal
elongation at the population level, more branches become prejudicial for the same purpose.
This is, naturally, due to the increase of occupied volume that creates mechanical obstacles.

What if forming branches, in addition to help create connectivity, was also an elongation
strategy in such a complex developmental environment? If we consider so, may they appear
not randomly but when the neurite finds mechanical constraints during their growth? This
mechanism may be due, for example, to the fact that neurites are forced to stop their growth
upon mechanical obstacles and this pause triggers branching.

The application of this principle in our simulations led to interesting results. Indeed,
branching upon interaction actually increments axonal elongation at the population level, and
also generates axons with the same average number of branches than real ones. Even though
this does not prove the mechanism, it shows that, at least theoretically, it is mechanically
plausible. The fact that, in addition, the simulated axons resemble very much to real ones,
could be a happy coincidence as well as have more serious implications; but this depends on a
subjective appreciation. When we estimated the model parameters from real data, we reached
the conclusion that they present jumps in their trajectories, probably due to the interaction
with their environments during growth. The hypothesis of branching upon interaction plus
the idea that branches are essential for elongation and target innervation (thus that main
axons are frequently composed by the original main axon and a branch), finally explains
these jump points in the trajectories, and allows to reproduce them with our model. Other
kind of interactions may be considered in future work to further explain these jumps.

One major contribution of this work is that our model can predict and suggest mechanistic
explanations of mutant phenotypes. In biology, the morphological characterization of pheno-
types upon mutations is generally performed by describing a set of relevant measurements -i.e.
less or shorter branches than wild-type, existence of non-elongated axons- and, reasonably,

unless other experiments are available no more assumptions are done on why the particular
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phenotype is observed. In this point our work is novel: we propose a framework where with
no more information than the axon adult morphology we are able to reproduce and propose
an explanation about its origin.

In particular, our analysis allows to suggest, for the first time, a functional link of causality
between the shortage in branching and elongation deficiency. To understand the relationship
between both, one must necessarily take into account the mechanical interactions between
axons in the developing population. In particular, these phenotypes put in evidence the
competition for space and elongation between axons. Even though this competition is always
present, in wild-type situations it becomes less palpable as all axons finally adopt a functional
and correctly elongated morphology. However, in cases of uneven competition like single
mutants in a wild-type environment, the existence of this competition becomes clearer as it
may leave evidence on the adult final morphology. An interesting example of competition
during development in mouse is seen in a model of angiogenesis using embryonic stem cell
lines forming embryonic bodies, where endothelial cells compete dynamically for the tip
position (Jakobsson et al., 2010). In this model, authors describe the constant and stochastic
re-evaluation of the implicated molecular circuit as the cell meets new neighbours, and cell
position dynamic shuffling, promoting the formation of a robust network. Interestingly,
they studied the impact of a certain mutation on the probability of taking the leadership.
Their results showed that even though completely mutated embryoid bodies showed normal
vascular generation, when mixing mutated with wild-type cells, mutated ones drastically
reduce their probability of occupying the leading position, highlighting the effects of uneven
competition. Another similar example of developmental roles between cells being decided
dynamically and stochastically (and not pre-defined) is the tracheal branching morphogenesis
in Drosophila (Ghabrial and Krasnow, 2006). In this model, two different roles exist (lead
and subsidiary positions) which are not pre-determined, but established upon competition
during development.

Fig. 4.65 summarizes the impact on elongation at the population level of different studied
scenarios. The best found strategy for correct elongation is branching upon interactions
with a 95% of elongation rate. This 5% of non-elongated axons can fairly be considered as
the error of the model, regarding all the approximations, assumptions and simplifications
that were naturally done. Another option, however, is to give this (small) percentage of
non-elongated axons biological significance. In particular, one possibility is that, in vivo,
some axons actually do not enter the lobe and stay bocked in the peduncle. If this is the
case, we would not notice this non-elongated axons when creating the database and thus do
not actually be aware of their existence. Futher studies should be done to investigate this

possibility. With almost double the error (9% instead of 5%) follows the case where every
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axon produce branches randomly. Similarly, no branching at all triplicates the error of the
best strategy,up to 15%. However, the worst scenarios regarding elongation are, naturally,
those with uneven competition, where a single axon cannot branch (40% non-elongated
axons) or the 25% of the population cannot branch and have guidance deficiency (8 ~ 0),

resulting in a total failure in elongation.
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Fig. 4.65 Non-elongated axon percentage for different studied cases. From left to right: real
wild-type axons, simulated axons: with mechanical branching, with random branching, with
no branching, single non-branching axons in a wild-type environment and 25% non-branching
and with guidance deficiency (8 ~ 0) axons in a wild-type environment.

Nevertheless, one may think that branches are created where they are, not by a random
process, but by a previously defined specific program. The same can be considered then about
the exact place where each neurite (branch or initial axon) stops, as well as its orientation
and path. Even though we do not have the tools to fully argument against this idea, we

propose a process where randomness operates creating a large variety of morphologies, and
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that connections between the created neurites as well as between them and other populations
are created a posteriori. The proposed philosophy does not pretend that branches have as
sole objective to guarantee axon elongation, but they are needed for connectivity as well and
the role that each neurite will fulfil in adulthood is decided after development, depending on
the result of the generative process (i.e. if the neurite reached the end of the medial lobe, or
not, exactly where it ends, etc.).

Previous work has already established connections between axonal branching and me-
chanical properties of their environments. Flanagan et al. (2002) observed mouse spinal cord
primary neuronal cells developing in vitro in substrates of varying deformability. In their
experiments, neurons grown on softer substrates formed significantly more branches as those
grown on stiffer gels. These results show that the mechanical properties of the substrate
specifically direct the formation of branches. Koser et al. (2016) also observed in vitro and in
vivo that axons branch more in softer tissues. In addition, they describe that, when growing
in less dense environments, axons navigate more and inter-cross themselves more. This can
be related with y neurons, as in the peduncle they are tight and grow parallel to each other
until they reach the medial lobe, where they have more available space and generate a large
variation of morphologies in a heavily inter-crossed network. However, both works consider
the density of the environment where they are embedded in, and not the density generated
by the axons themselves. This is why we relate these studies with y axons regarding the
difference between the peduncle and the medial lobe, but not within the lobe. In addition,
this would contradict our hypothesis that branches occur after mechanical interactions, as
they both observed that axons branch more in less dense environments.

Interestingly, the diversity in y axonal trees observed in vivo is well reproduced by our
model. Part of the variability observed after simulation is explained by intrinsic factors,
including the stochasticity of the axon growth process modulated by the mechanical and
chemical properties of the axons, which is traduced by the model parameters values. Increas-
ing axon sensitivity to the attractive field, indeed, generated populations of neurons with
reduced morphological heterogeneity, suggesting that differences in intrinsic properties may
partly explain the various degrees of morphological variance observed in vivo in different
populations. Interactions with the surrounding environment also largely contribute to the
variability in axon morphology observed in our model. In particular, mechanistic constraints
imposed by other ¥ axons growing synchronously and competing for space define final axon
paths. In addition, neuron-specific contacts established stochastically within the population
impact on the formation of side branches and the final morphology of axonal trees, generat-
ing further variability. Remarkably, previous work has shown that, like mammalian brain

structures, MBs exhibit a unique degree of flexibility in their organization, with neurons
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establishing plastic synapses and receiving unstructured rather than stereotyped inputs (Caron
et al., 2013; Cassenaer and Laurent, 2007; Murthy et al., 2008). Thus, establishing a dense
network of non-stereotypic axonal branches may be an optimal strategy for MB 7y neurons to
perform their described integration function, and in particular contextualize novel sensory
experiences to provide adapted output behaviour (Heisenberg, 2003; Hige, 2017).

Looking closer to the exact value of the model parameters estimated from data, we
found out that they are very near to optimal theoretical values. Furthermore, as mentioned,
they generate populations of axons morphologically very similar to axons grown in vivo,
highlighting the biological relevance of the model. Interestingly, our study shows that the
exact values of the parameters estimated from data provide the axonal trajectories with an
energy sufficient to recreate variate morphologies, as well as to be able to find alternative
paths when they are blocked. In addition, they insure enough collective order to allow the
correct elongation of the entire population.

For simplicity (and lack of extra information), we considered the parameters to be con-
stant through the population, as well as in space and time. However, this assumption may not
be true and other possibilities should be further explored. To analyse possible variabilities
between axons within the the same population, we performed simulations of entire y popula-
tions where the parameter values of each axon where stochastic and thrown from different
distributions (Bayesian approach). Some of the proposed distributions went from simple
independent uniform distributions for each parameter, independent Gaussian distributions,
bivariate Gaussian distributions, etc., all of them adapted from the parameter estimated
surfaces in Fig. 4.15B-D. However, we could not observe any evident difference with respect
to fixed values, neither in elongation, branch number or general axonal morphology. Further,
we performed similar experiments but including a single axon that cannot branch (imp
phenotype) with the intention of finding a correlation between the short phenotypes and
the associated value of parameter of each mutated axon. However, once again, we did not
observe such a correlation and thus no evidence of the impact of the parameter variation.
Even though the estimation of the parameters axon by axon results in different values for
each of them, this can be explain by the nature of the model itself (the axons lengths and the
presence of jump points) and does not necessarily mean that axons present intrinsically such
difference. Thus, even though from data we cannot directly answer if there exist parameter
value variation within the population, simulations suggest that even if it existed (until some
point), it would not impact correct development.

Other possible variations are on space/time. Fig. 4.66A shows the parameter values
estimated (using Eq. 4.34 for the whole population) in function of X (the axon position along

the lobe) with a sliding window of S5um. The curves are quite noisy and the exact values
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cannot be completely trusted as they are obtained from a very small sample. However, the
curves suggest a decrease of the parameter values along the X axis (i.e. along the ML). Fig.
4.66B shows the parameter estimation surfaces (Section 4.3) for WT, Imp and Imp Sh from
data. In addition, we calculated the estimation surface for only the first halve of WT and Imp
L. While Imp Sh axons present a value of & slightly smaller than considering Imp altogether
and WT -suggesting that parameters may be smaller in the beginning of the ML- the first
half of WT and Imp L axons present an elevated value of both parameters. From the analysis
from WT data we observe that parameters seem to be higher in the entrance of the ML and
lower afterwards, in accordance to Fig. 4.66A. Another apparent evidence of the decrease of
the parameters values along the lobe, relies in the neurite density distribution of the ML. Fig.
4.66C (top) shows the density heat map obtained from real axons, (middle) for simulated
axons with fixed parameters and (bottom) simulated axons with 3 decreasing along the X
axis. While the density increase towards the centre of the ML is well respected by simulated
axons with fixed parameters, real axons also present a peak distally that is not reproduced
by these simulations. However, when decreasing 8 along the X axis, this behaviour is
reproduced. This is due to the fact that lost (i.e. with guidance deficiency) neurites wander
more generating more tortuous and longer trajectories before reaching the end of the ML. In
consequence, they generate more local density and thus, following our model, more branches.
This distal lost behaviour is visually evident in some real axons, such as that one in Fig.
4.34A where the main axon continues growing parallel to the mid-line. In addition to this
observation, real axons also present lower densities than simulated ones in the region near
the entrance to the ML. These observations may indicate that real axons may enter the lobe
with higher values of parameters -thus lower energies and more ordered/parallel trajectories-
which progressively descend through the ML (or in time, which is similar).

These observations suggest the interest of analysing the energy of the system in function
of space/time. We thus measured the entropy of the axons paths in function of their evolution
in the X axis. We considered the angles (in the plane XY) of all the segments Ap;, ¢; in
intervals of AX = Sum. We approximated for AX the distributions of the ensemble of ¢;
observed using an Epanechnikov kernel and the functions fitdist and pdf provided by
Matlab. Fig. 4.67 presents the obtained distributions.

We the calculated the entropy S(X, ¢) by

S0.9) =~ [ Plo)og(P(9))ds. @44

As we can observe in Fig. 4.68B, even though simulated and real axons present the same
values of us = 10 and o5 = 4, its behaviour in function of the evolution of the system differs.

In the first case it remains quite constant through X, while for real axons the entropy augments
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Fig. 4.66 Parameter variation analysis. (A) Parameters calculated from wild-type real axons
considering a sliding window of size Sum along the X axis of the lobe. (B) Parameter
estimation surfaces (equivalent to those in Fig. 4.15B-D) for WT, the entire imp population
(IMP), imp only with short phenotype (IMP Short), as well as estimated from only the
first halve of wild-type (WT 1* half) and the first halve of imp only with long phenotype
(IMP Long 1% half). (C) Density heat maps (normalized by number of axons in the sample,
43 for real axons and 650 for simulated) for wild-type real axons (top), simulated axons
with mechanical branching and fixed values of parameters (middle) and simulated axons
with mechanical branching and 8 decreasing with the spatial localization along the X axis
(bottom).
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Fig. 4.67 Axon entropy calculation. Distribution of the observed angles ¢; corresponding to
the axons paths segments every AX = 5um in the domain [, 7] approximated using the
functions fitdist and pdf provided by Matlab.

until ~ X = 25um (first peak) and then descends until X ~ 60um when it starts augmenting
again until the end of the ML (second peak). This suggests that the estimated parameter
values nicely capture the general energy of the system, but they may not be actually constant
through its evolution. In particular, the shape of S(X, ¢) can be compared with the density of
broken points regarding our model and studied in Section 4.3 (Fig. 4.68A). Regarding real
axons, the model is broken mostly when the entropy of the system is high. This can be due in
part to the generation of type I branches that a posteriori form part of the main axons and are
originally born with random angles (thus detected as broken points), as simulated axons also
present a rise in broken points at X ~ 30um and they are generated with constant parameters.
However, simulated axons do not present a second peak on broken points distribution by the
end of the ML, and real axons do; suggesting that this behaviour cannot be due exclusively
to branch generation. Finally, the observed first peak on the entropy and breakdown points
coincide with area where the imp short axons stopped, both in real data and in simulations.
This is particularly interesting as, initially, they are unrelated measurements from different
databases. However, when interpreting the y population as a collective system that evolves in
space and time, with impact in the agents (axons) energy, we can link these phenomena.
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Y axons enter the lobe from the peduncle where they are placed altogether in an ordered
way (parallel trajectories) as pictured in Fig. 4.22B. Then, they enter the ML where they
adopt random and less coherent (disordered) trajectories, which impacts their evolution in
several ways. The most studied one in this work is the fact that independent tubular-like
shapes growing altogether with disordered trajectories in a constraint space will collide and
become eventually blocked, in a transient or permanent way. In our model, this phenomenon
alone may explain: e the observed ascyncronicity within the population, e neurites stopping
their growth before reaching the end of the ML, e the need of type I branches, e the
presence of jump points and e the double phenotype observed in imp knock-down (single
non-branching axons in a wild-type environment). Nonetheless, this may not be the only
emergent phenomena in our system going from order to dis-order. For example, in addition to
already exploited observations of parameter value variation, ML neurite density, energy, etc.,
real imp axons are divided half and half between short and long phenotypes, while our model
predicts only 40% of short. An interesting perspective is thus to better study this collective
phenomena, to understand if the variations in entropy are due to intrinsic characteristics
(variation of parameters values, i.e. changes in elasticity or more probable in the external
field attractivity) or to an emergent phenomenon consequence of other inter-axon interactions
that were not considered in this study.

As we mentioned in the introduction of this work, the bibliography on axon growth models
is vast, covering many different aspects of this complex process. To end this discussion, we
establish a parallelism between our model and the model published in Nguyen et al. (2016)
and discussed in Chapter 2. We chose this one as its mathematical design is similar to ours,
and because they perform detailed validations in vitro. They are interested at analysing
how the axons react and bend towards a certain source of attractive cues. They simulate
axons that are born with a certain angle orthogonal to the direction of the external attraction
field, and observe how the turning angles (angle of the segment connecting the initial and
the last points of the axon) evolve. Their model includes a term on the tendency to grow
straight (similar to our stiffness), on the effect of the chemotactic gradient (similar to our
external field attraction) plus some noise. Their noise parameter is independent from the
previous two, in contrast to our case. An important contributor in their model are the anchor
points, which determine the preferred direction of the next step regarding axon stiffness.
In Fig. 4.69A, the anchor point is the circle placed in the beginning of the axon, and ¢(¢)
the preferred direction for each step A6 (t) regarding the stiffness. Their three parameters
(stiffness, external attraction and noise) are tuned by hand, and the resulting trajectories are
closely compared to axons from peripheral nervous system growing on a laminin substrate.

Their study shows that most probably, in vitro, the only anchor points are located where the
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Fig. 4.68 Breakdown and energetic analysis for real vs. simulated axons. (A) Points where
the Markov model is broken using the statistical framework in Section 4.3 with fixed 7 = 2
and the null hypothesis of B = 0 (green). The red line represents the shape of the distribution
of broken points along the X axis. (B) The surface represents the distribution of angles ¢;
in function of X (Fig. 4.67) and the blue line the obtained entropy S(X, ¢) using Eq. 4.44
and multiplied by a factor of k = 0.1. In both cases g = 10 and o5 = 4. (C) Distribution of

travelled distances for imp axons.



170 Space-Embedded Axon Growth Model

axon emerges from the soma or at branching points. However, they propose that in vivo the
environment is more complex and axons may establish anchor points at several sites with
their substrate. They investigated how the turning angles depend on the increasing number
of anchor points, with r representing the frequency of anchor points respect to normal steps
(Fig. 4.69B (left)). Because their model is well calibrated with observed data, we wanted to
test if the trajectories proposed by our model matched theirs. We thus generated axons with
an initial angle of /2 and an external field constant direction of 0. Because they simulated
150 steps, for each value of r (anchor point frequency) the number of steps of our simulations
was 150r (each step with fixed size of 1um). The results are very similar as those using their
model, and are shown in Fig. 4.69B (right). This means that our model using the parameters
estimated from in vivo data has equivalent behaviours as their model, considering that each
step is originated in an anchor point. These results do not only cross-validate our model
and estimation with a previously published model, but also suggests a relevant difference
between axons in vitro (which have been well studied) and in vivo (mostly unknown). In
particular, our model and estimated parameter values follows the idea that anchor points
are established frequently, in our case every 1um (size of the step). They report that more
anchor points increase the fidelity of turning but with noisier trajectories, and conclude that
the frequency of anchor points plays a key role in the axonal turning response to a gradient.
Finally, they propose that in vivo, axons should present many anchor points and/or additional
cues such as mechanical ones or axon-axon interactions. We thus extend their results by
proposing that anchor points may be very frequent in vivo, at ~ 1um. Interestingly, type II
branches in the /ive data are observed roughly at this distance, suggesting further interest on

studying their function.
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Fig. 4.69 Comparison with another published axon growth model. (A) Schema of the model
proposed in Nguyen et al. (2016) for axon elongation in vitro and present in Fig. 1 A. (B)
(left) Fig. 14 G from Nguyen et al. (2016), depicting the mean and standard deviation of
the turning angles ¢(¢) (defined as the angle between the origin and the tip of the axon) in
function of the frequency of anchor points (r). (right) Mean and standard deviation of turning
angles for 1000 axons simulated using our model (o = 7.5 and 8 = 1.7) and number of steps
equal to 150xr.






Chapter 5

General conclusion, contributions and
perspectives

Todas las teorias son legitimas y ninguna tiene importancia. Lo que importa es lo que se

hace con ellas.
Jorge Luis Borges

This manuscript has two main parts where the original contributions are described,
Chapter 3: Morphological Study and Chapter 4: Space-Embedded Axon Growth Model.
Both of them present their own discussion and contributions section. We now perform a
general conclusion, and point out the main contributions of this thesis. Finally, we suggest
possible improvements and further development related to this work.

5.1 General conclusion

The aim of our work was the design of a methodological framework to unveil new aspects
of axonal dynamic growth in vivo (i.e. in the brain), counting with a collection of confocal
3D images of adult axons as main data-set, representing the final result of the process. The
central challenges have been: e to integrate previous knowledge on axonal development
from the literature, where most experiments were carried out in vitro, with new original
hypothesis on the impact of a realistic environment on axonal growth; and to e use this to
design mathematical models and algorithms allowing simulations (generative property of the
model), in order to validate the initial assumptions, as well as to better understand the impact
on axonal elongation of different aspects of the process (predictive property of the model).
First, we needed to deeply describe and understand the axonal morphology, as well as

the differences and similarities between wild-types and different considered phenotypes,
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where mainly branching and elongation were affected. To do so, we designed a stochastic
framework to compare neuron groups based on their morphology. We proposed probabilistic
models to describe the behaviour of the main morphological features, estimated from data
the associated parameters and performed a likelihood analysis combined with statistical
tests. The most relevant and novel biological conclusion of this study is that overall axonal
elongation correlates with the number and length of branches.

This morphological study suggested an interesting correlation between branching and
elongation, which had not been yet studied in the literature. In addition, the diversity of
morphologies between genetically identical axons inspired us with the idea that axonal
growth should be the result of a stochastic process and not of a pre-defined mechanism.
We proposed a mathematical model of axonal trajectories where the directionality of each
new step follows a Gaussian Markov chain with two parameters, which can be estimated
from data: accounting for the axonal rigidity and the attraction to an external field. We
then combined these model with some simulation rules on branch formation and dynamics,
to finally recreate the growth of an entire population of axons developing altogether, as it
occurs in vivo. The parameter estimation from real data resulted to be not trivial, and the
approaches we developed to overcome this inconvenient proposed that axons can actually be
described by Gaussian Markov chains with constant parameters, but piecewisely between
jump points. These places where the chains are broken may indicate obstacles that the axons
encountered during their growth in vivo. Interestingly, the parameters estimated from data
create a system that is quite noisy, and where the mechanical shocks between growing axons
not only must exist, but may even stop an important percentage of them from attaining full
elongation in the limited developmental time. This implies that other mechanisms must exist
to allow full elongation of axons in a dense population context. Because of the previous
observation on the correlation between elongation and branching, we turned our attention
to the branching characteristics in the axons of our database to be able to include their
development in our model. We concluded that there exist two types of branches, small and
dynamic and longer ones, which grow following the same rules as main axons regarding path
and elongation. This implies that the axonal hierarchy is actually set at the end of the process
(i.e. the longest path may be composed by the initial axon and a branch), and not pre-defined,
as it is classically assumed. We have also shown that even though an increment in branching
elevates the general density thus the difficulty of each axon to elongate, axons as a population
reach better growth rates when they create branches than when they do not. Strikingly, we
showed that for the same mean number of branches, the elongation strategy is even more
efficient when branches are born after mechanical collisions, rather than uniformly randomly.

Thanks to the data processing which allowed to register all the axons to the same spatial



5.2 Perspectives 175

frame, we observed that the axonal density correlates with the number of branch points,
suggesting that this mechanism is actually plausible. We also succeeded in reproducing the
phenotypes of the studied mutants (which presented phenotypic branch size, number and
overall axonal lengths), which reinforced the idea that the shortage of long branches results
in a consequent deficiency in axonal elongation, thus proposing that the main deficiency
caused by this mutations is branching, and elongation is a consequence of this. Finally, an
interesting observation is that the model parameters estimated from data are not the most
efficient in terms of growth at the population level, but they insure a compromise between

elongation and morphological diversity, which is essential to guarantee accurate connectivity.

5.2 Perspectives

We propose the following perspectives for this work:

Data analysis

* The registration technique described in Section 4.1 and used to map all the axons to the
same spatial frame does not take into account possible rotations on the X or Y axis. In
further studies, this could be taken into account to ameliorate the axonal morphological

reconstructions.

* The segmentation and analysis tools developed in the team allowed to obtain quan-
titative information on the length and number of the small and dynamic branches,
which was used in the study. However, further analysis and automatic tracking tech-
niques could be used to obtain dynamic information on the axonal tip elongation and
pathfinding, specifically from videos as those shown in Fig. 4.33. This could refine
the dynamic aspect of the simulations, as well as suggest other ways of limiting time

rather than implementing an artificial counter.

Model

* In Section 4.2 we describe the mathematical formulation of the model for spatial
trajectories evolution, that we use to simulate the axonal paths. One advantage of this
model is that it allows renormalization in space. This implies that one can segment
the trajectories in a convenient scale to maximize the signal/noise ratio, estimate the
parameters of the model, and then obtain the equivalent parameters for different scales,
including smaller ones. One perspective would be to take advantage of this, to compare

trajectories from datasets of different characteristics (i.e. different image resolution, or
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axon types of different sizes). Another use could be to simulate smaller step sizes, to

also obtain more continue-like trajectories.

An interesting (and ambitious) perspective would be to design a model which inherently
takes into account the interactions between trajectories, instead of reproducing them by
simulations. Even better, if the interaction parameter can be estimated from data, one
could obtain interesting information on the behaviour of the system just by analysing

independent trajectories.

Parameter estimation

* In Section 4.3.2 we describe a framework to detect the broken points from otherwise

homogeneous Gaussian Markov chains and thus estimate the hidden parameters. As
presented, neither the statistical approach nor the bayesian one with a Bernoulli prior,
take into account the density of broken points (or the distance between two continuous
jump points). In consequence, they may assign several neighbour points as jump points.
This is of course useful to detect every point that does not follow the Markov model.
However, further improvements may consider a prior following a Poisson distribution
or an accumulation process to impose constraints in the distance between consecutive

jump points.

Here, we developed the jump detection and estimation algorithm with the purpose
of estimating the parameters from the axons in our database. However, it would be
interesting to apply the methods to study trajectories of other nature, as well as any
kind of process susceptible of being described as a piecewisely homogeneous Gaussian

Markov chain (for example in the domains of finance or audio).

Simulations

* As studied in Section 4.8, the values of the parameters of the model seem to vary

in space and time. It would be interesting to further integrate these variations in the
model, to see the impact on axonal development and analysis the feasibility of the
hypothesis. Even though we have not observed significant impact on variations of
parameters between axons, this could have important implications and thus may be
further studied. Variations in parameter could be at the origin of the entropy peaks
discussed in the same section.

Based on the estimation results and hypothesis considered for the jump point detec-
tion framework (Section 4.3.2), the simulation rules can be modified such that after
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encountering mechanical obstacles the axon is allowed to break the Markov model.
This would imply, also, higher parameter values for the rest of the shaft (as observed
when estimating the parameters with this method). Also, it would be interesting to
analyse in the simulated axons present the same percentage of jump points as real ones
with the same jump hypothesis and estimated parameters. This could have interesting
implications, and help to validate other estimated parameters such as the axonal diame-
ter (as it suggests that the number of collisions encountered by simulated axons is the

same as real ones).

e In this work, we considered mechanical interactions between axons, via volume
exclusion. Further work could include interactions of other nature, even attractive ones,
as well as interactions with other components of the axonal environment such as the

extracellular matrix or glial cells.

Biological validation

* Here we used wild-type ¥ axons to design and calibrate the model, and a series
of mutant ones and predicted their phenotypes. It would be interesting to generate
databases with other mutants, for example where the axonal rigidity may be changed
(which has not been tested in this work).

* Finally, the most interesting perspective of this work is to apply ou model to test the
impact of mechanical interactions in axonal development in other neuron types. This
may allow to further understand the phenomenon as well as to, maybe, unveil different

elongation mechanisms.

In particular, it would be interesting to apply our model to populations of axons
presenting varied morphologies, and that form dense interconnected structures in the
vertebrate brain. For example, cerebellum-like structures, sometimes described as
the vertebrate counterparts of Mushroom Bodies, also consist of large collections of
equivalent cells that project axon-like processes into densely-packed parallel fibres
(Bell et al., 2008; Farris, 2011).
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Appendix A

Demonstrations

A.1 Bernoulli model

From equation 3.6 we can express (A + 1, p) as

k—1
WA+ 1,p) = k( )p“z(l—p)"—/*—z. A1)
¢ ; A+1

k—1 k—1 k
( A )+(A+1>:(A+l>’ (A2)

equation A.1 can be rewritten as

Using

Ww(A+1,p) Zk( ) A2(] _ p)ka2 Zk( ) P A2 (A3)

Taking out % as a common factor from the second sum in A.3, we obtain

k—1 A P k—1 A P
k A+2(] _ kA2 _ k A+1(] _ p)k—A-1 _ A D).

P
(A4)
Similarly, the first sum in A.3 can be worked out to obtain
uk<A+1,p>—1—uk<A+1 p)—%. (A.5)

From A.4 and A.5 we finally obtain
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A
(A, p) = =. (A.6)
p

From equations 3.7 and A.6 we can express

o A?
i (A, p) Zkz( )pA“(l—p)k 4 1—?, (A7)
from where
-1 o A+1)2
62 (A+1,p) Zkz( )pA+2(1—p)k a-2_ | p2> . (A.8)

Equation A.8 can be rewritten using A.2 to get

k 4 k—1 aa (A+1)?
GkZ(A—I—LP):Zk2<A+1>pA+2(1_p)k A 2_Zk2( B )pA—i—Z(l_p)k A 2_( 2) ‘
k k

p
(A9)
Working out A.9 similarly to A.3 we finally get
1-p)A
o2(A,p) = ¢ pf) - (A.10)

A.2 Parameter estimation from global variance. Part I

From
o
eizmei—1+§ia (A.11)
where
&i~ A (0 ! ) (A.12)
l 2(a+B)" '
If we denote ¥ = ﬁ, we then have
i1 =Y0i+&ivi (A.13)

0i+1 = Y[y6i—1 + &i] + &t (A.14)
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i1 =701+ Y&+ &, (A.15)

where &; and &; | are two independent random variables with the same Gaussian distri-

bution (eq. A.11). Therefore, with Gg = aip)’

Y& =~ A (0,7°07), (A.16)
and
_ 2
YE+Ei =N (0,(Y+1)63). (A.17)
Finally,
001 =701+ Tis1, (A.18)
where T ~ A(0, (> +1)03).
Similarly,
012 = ¥0i+1 +&ito, (A.19)
where & ~ A4 (0,07).
Using A.18
B2 = Y[V 01 + Tiv1] + Eiin (A.20)
012 =7V 01+ ¥Tis1 +Eipa (A21)

7,11 and &;,, are independent, thus

042 =7 0i_1 + Pi2, (A22)

with pii2 ~ A (0, (V¥ + Y +1)03).
By recursion we obtaln the cumulated variance as the series

=0} Z v (A.23)

The series in eq. A.23 is geometrical, thus
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1— 2M
o3 = o} _"yz . (A.24)
that converges to
2
2 0
= . A.25
6900 1 . ,yz ( )

A.3 Parameter estimation from global variance. Part 11

The difference AG@ = 6; — 6, is equal to

AG; =161+ & — 61 = (Y= 1)6i-1 + 6. (A.26)

The variance of A@ = 6; — 0,_1 is thus

Giei =(y— 1)205,-,1 + 03 —2E(6;1&). (A.27)

6;_1 and &; are independent and centered in 0, thus, with eq. A.25

(y=1?% |, _200-7

2 ]_
1—y? 1—y?

2
Opp. = O |

(A.28)



Appendix B

Extra Figures
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Fig. B.1 Iterative method algorithm: Initialisation. Absolute error (m’”f;a‘) of the mean of
the estimates (&) of 200 simulated chains of length 1000, with € = 0.00001, ¢ = 8 = 10
and maximum number of iterations of 100 with varying values of initial condition og. The
curves were fitted linearly with the Matlab Basic Fitting tool. The curve for a was fitted with
y = —6.6¢ — 06 xx+0.0056, and for B with y = —1.1e — 05 xx + 0.0043.
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Fig. B.2 Iterative method algorithm: Application - Number or iterations. Distribution of the
number of iterations corresponding to the estimation of parameters from 1000 simulated
chains of length 100, with € = 0.00001, @ = 8 = 10 and maximum number of iterations of
100.
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Fig. B.3 Axon by axon parameter estimation - Long simulated axons. Histograms of the
parameter values estimated axon per axon from N=45 simulated chains using o = 7.5,
B = 1.7, and constant length M = 10000.
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Fig. B.4 Error percentage in function of different n,,,, and ng. (A) Percentage of non-
elongated axons in function of the difference between maximum number of steps and
retraction rate (n,,,x — ng), for axons simulated with branching upon contact. The dotted line
is placed at 5% to indicate the results with v,,,, = 6. Each point represents a single simulation.
(B) Percentage of non-elongated axons in function of the maximum speed v;;,qy = "’"“A"[Ap , for
simulated with branching upon contact and without branching. The dotted lines are placed at
5 and 15% to indicate the results with v, = 6, respectively. Each point represents a single
simulation.
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Real axons

30 min

Fig. B.5 Emergent asynchronicity within the y population (second example). Three time-
points depicting an entire population of ¥ axons growing in the ML of a wild-type pupal
brain (30h APF stage). Left: raw movie. Right: annotated movie where some examples of
regrowing axons have been highlighted by colored tracks. Degenerating material found in
the lower right corner of the field is delimited by a white line. Scale Bar:5um.
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Fig. B.6 Emergent asynchronicity within the y population (third example). Frame from a
movie in our data set showing a whole neuroblast progeny at around 30h APE. White arrows
show two axons that have already reached the stopping region. The oval highlights a region
where we cannot easily spot the axon tips but the highly inhomogeneous image intensity
suggests that they are not all equally grown. The yellow arrow indicates the peduncle, where
axons grow tight and parallel to each other, and the purple line represents the peduncle
transversal section, as in Fig. 4.22.
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Fig. B.7 Analysis of the distances between branches in y axons. (A) Branching point distances
from 7y axons in our data. To test its resemblance to a Poisson distribution, we threw samples
(the same size as our data) from a Poisson distribution with 4, € [1,20] € N, and compared
them to our data using the Kruskal-Wallis test. The highest p value corresponded to A;, = 6.
The orange bars represent the distance distributions from data, and the blue line represents
the Poisson distribution with A, = 6.2 (tuned value). (B) To further tune the value of A,,
we proceeded the same way as in (A) with A4, € [5: 0.1 :7]. We repeated this procedure
one-hundred times and at each one took the value of A with highest p value. The histogram
represents the best A;, value for each of the one-hundred iterations. The mean and standard
deviation of the distribution are also shown. (C) Histogram of Kruskal-Wallis p values for
the best A;, at each iteration.
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Fig. B.11 Branching deficiency phenotypes. (A) Branch length distribution from the Imp
axons in our database. (B) Number of observed first order branches longer than 10 pum in
simulated axons in function of the branch permission probability. Axons thus create a branch
upon mechanical interactions with probability P,
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Fig. B.13 Number of branches in function of branching mechanisms. (A) Branches placed
upon mechanical contact and with probability pbp < 1. (B) Branches placed upon mechanical
contact and with probability pbp = 1 plus random branches, placed when no mechanical
obstacles were encountered with probability P,.
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Fig. B.14 Distributions of elongation times for simulated y axons. Three cases are presented:
every neurite (General), only the Main axons and only Branches. Naturally, branches finished
later than main axons as they are born afterwards.
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