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INTRODUCTION 
 

During the last few decades, electric vehicles (EVs), and most recently hybrid electric 

vehicles powered by fuel cells (FCHEVs) have a fast growing interest due to environment 

pollution and energy crisis. Compared to conventional thermal machine, fuel cell power 

generation system shows some significant advantages, such as high conversion 

efficiency, reduced greenhouse gas emissions, and fast fueling time. With these 

advantages, fuel cells have been widely considered as a more suitable energy device 

for long-range EVs. Among different fuel cell types, proton exchange membrane fuel 

cell (PEMFC) has the aforementioned advantages. In addition, it can operate at lower 

temperature and lower pressure with higher power density compared to other types of 

fuel cells. 

Nevertheless, before mass commercialization of PEMFC, there are still many research 

works need to be done: 

1)  Design of appropriate control strategies and auxiliaries to achieve PEMFC 

optimal working modes (air compressor, humidifier, cooling circuit, power 

converters, etc.); 

2)  Fuel cell lifespan should be increased in order to meet the requirements of 

different applications, 5000 hours are required for transportation applications, 

and 100,000 hours are required for stationary; 

3)  Fuel cell vehicles are currently too expensive to compete with hybrids and 

conventional gasoline and diesel vehicles. The production costs of the PEMFC 

stack and hydrogen storage needs to be reduced; 

4)  The solutions of producing, transporting, and dispensing hydrogen need to 

widespread implementation. 

To achieve these goals, it is important to develop advance real-time control and 

monitoring methods to optimize the fuel cell operation. However, it is very difficult to 

observe the internal variables and state of fuel cell during its operation. Since PEMFC 

incorporates different control variables in different physical domains with different time 

constant ranges, such as voltage transient due to double layer capacitance, gas 

pressure variation due to the volume of gas manifold, water content variation due to the 

water absorption in membrane and temperature variation due to the cell thermal 
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capacity, all these dynamic phenomena in different physical domains are indeed inter-

coupled between each other and the variation of one would influence another.  

A good understand of how these parameters impact the fuel cell performance would 

be very useful for fuel cell system design and control development. Therefore, an 

accurate multi-physical PEMFC model could greatly help the system control strategy 

development and the parameters sensitivity analyses. The main objective of this thesis is 

to present a dynamic multi-dimensional multi-physical PEMFC (electrochemical, fluidic, 

and thermal) model, which can be used for control coupling analysis, spatial distribution 

of physical quantities prediction, real-time control implementation and prognostic. The 

main contributions of this thesis can be summarized as follows: 

1)  A multi-dimensional dynamic modeling approach for a PEMFC is developed. The 

proposed PEMFC model covers multi-physical domains for electrochemical, 

fluidic, and thermal features; 

2)  A variable coupling analysis of fuel cell dynamic behaviors is presented and 

discussed based on the developed dynamic PEMFC model. This coupling analysis 

can help engineers to design and optimize the fuel cell control strategies, 

especially for the water and thermal management in fuel cell systems; 

3)  A 2-D modeling approach for PEMFC for real-time control implementation is 

developed. The practical feasibilities of the modeling approach for advanced 

real-time control of PEMFC systems have been experimentally demonstrated; 

4)  Two novel approaches for PEMFC performance degradation prediction are 

proposed. These prediction methods have been experimentally validated and 

their strong capabilities on forecasting the future trend of PEMFC degradation 

voltage under different fuel cell operation conditions have been demonstrated. 

This thesis is organized as follows: Preface presents a brief introduction of proton 

exchange membrane fuel cell, and gives an overview on PEMFC multi-dimensional 

modeling approaches.  

Chapter I proposes a dynamic multi-physical model of a proton exchange membrane 

fuel cell which considers electrical, fluidic and thermal domains. In addition, an 

innovative 2-dimensional modeling approach who considers in particular the fuel cell 

flow field geometric form is presented, in order to fully consider the characteristics of 

reactant gas convection in the serpentine gas pipeline and diffusion phenomena 

through the gas diffusion layer (GDL).  
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Based on the PEMFC dynamic multi-physical model developed in the previous chapter, 

a variable coupling analysis of fuel cell dynamic behaviors is presented and discussed in 

the first part of Chapter II. The analyses of dynamic phenomena step responses are 

conducted using the relative gain array (RGA) for various control input variables. 

Chapter III proposes a novel real-time modeling approach based on the 2-D PEMFC 

multi-physical model developed in the Chapter I. In this approach, differential equations 

for reactant gas convection and diffusion phenomena in serpentine channels are 

transformed into tridiagonal systems of equations, in order to use an efficient numerical 

solver tridiagonal matrix algorithm (TDMA). In addition, a three levels bisection algorithm 

has been developed to solve spatial physical quantity distributions of electrochemical 

domain. 

In the first part of Chapter IV, A multi-physical aging model has been proposed in order 

to predict the output voltage degradation of PEMFC. In the proposed aging model, 

three most important aging phenomena during PEMFC operation are considered. In 

addition, particle filter and extrapolation approach are used to estimate the aging 

parameters. In the second part of Chapter IV, an innovative approach for PEMFC aging 

prediction based on a combination of model-based and data-driven methods is 

presented. The proposed hybrid prognostic method is able to capture both the fade 

trend and non–linear features observed in the fuel cell voltage degradation data.  

A conclusion is given at last. 

As another energy power source widely used in the FCHEV powertrain, the lithium-ion 

batteries have advantages of high energy density and long cycle life. In order to 

accurately estimate state of charge (SOC) of battery during the FCHEVs operation, a 

novel approach for battery SOC estimation based on multi-models data fusion 

technique is presented Appendix A. 

The last focus of this thesis is energy management strategy for FCHEVs, since it directly 

affects the efficiency and performance of energy storages in FCHEVs. For example, by 

using a suitable energy distribution controller, the fuel cell system can be maintained in a 

high efficiency region and thus saving hydrogen consumption. In Appendix B, an on-line 

adaptive energy management control is proposed based on extremum seeking method 

and fractional-order calculus, in order to improve both the performance and durability 

of PEMFC used in the FCHEVs. 
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PREFACE 
 

0.1   Introduction to Fuel Cell: What is Fuel Cell 
Nowadays, the research on fuel cells is a very active field, since fuel cells have been 

considered as one of the most attractive green energy generation device [1]. Different 

from lithium-ion battery [2][3], fuel cells are energy conversion devices which require a 

continuous source of fuel and oxidant (usually air or pure oxygen) to sustain the 

chemical reaction, in order to converts chemical energy into electricity, whereas the 

lithium-ion battery is energy storage device. 

There are many different fuel cell types. For example, a single proton exchange 

membrane fuel cell generally consists of two separate electrodes cathode and anode, 

as well as an electrolyte. The gaseous fuels and oxygen respectively transport in the gas 

pipeline of cathode and anode, and diffuse from the gas diffusion layer to the catalyst 

layer. In the anode catalyst layer, the fuel is oxidized to generate electrons and protons 

(positively charged hydrogen ions), these protons flow from the anode side to the 

cathode side through the electrolyte (membrane), and are further reduced by 

absorbing electrons and protons to produce water. At the same time, electrons are 

drawn from the anode electrode to the cathode electrode through an external 

electrical circuit, producing directly the electricity. The complete electrochemical 

reaction in the fuel cell system can be written as the following [4]: 

   
 

 
                          

Based on their functionalities, a single proton exchange membrane fuel cell in a fuel cell 

stack can be separated into eight functional layers: one cooling channel, one 

membrane, two catalyst layers, two gas diffusion layers and two gas supply channels [5]. 

It should be noted that, electrical potential of an individual cell is relatively low, this 

voltage is generally around 0.7V. In order to provide sufficient electrical power to meet 

the requirement of applications, a fuel cell stack is commonly composed (placed in 

series) of a dozen or even a hundred individual cells [6]. 

0.2   Different types of Fuel Cells 
Fuel Cells can be mainly categorized by electrolyte types. The electrolyte types 

determine the catalysts types and chemical reactions inside the fuel cell, as well as the 
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operation temperature. The commonly used fuel cell types are listed in the following 

subsections. 

0.2.1   Proton Exchange Membrane Fuel Cell (PEMFC) 

Proton exchange membrane fuel cell is considered as a more suitable energy device for 

mobile applications, such as hybrid electric vehicles or portable power supply, since it 

can operate at lower temperature and lower pressure with higher power density 

compared to other types of fuel cells [7]. In the proton exchange membrane fuel cell 

Nafion (copolymer fluoropolymer) are usually used materials for exchange membrane, 

platinum is widely used as the catalyst for PEMFC. The operation temperature of proton 

exchange membrane fuel cell system is around 80  , its chemical reactions can be 

expressed as follows 

The electrochemical half-reaction occurs at the anode electrode: 

            

The electrochemical half-reaction occurs at the cathode electrode: 

                    

0.2.2   Alkaline Fuel Cell (AFC) 

The alkaline fuel cell (or hydrogen-oxygen fuel cell) is one of the most developed fuel 

cell, which is used in Apollo space program to provide the source of electrical energy 

and drinking water [8]. The design of alkaline fuel cell is similar to the PEMFC, but the 

electrolyte used in the alkaline fuel cell is generally a porous matrix saturated with an 

aqueous alkaline solution, for example the potassium hydroxide (KOH) or Sodium 

hydroxide (NaOH). Its operation temperature is similar to PEMFC, the materials of catalyst 

required for the electrodes can be selected from a number of relatively inexpensive 

chemicals, but with a lower current density. The chemical reactions for alkaline fuel cell 

system can be expressed as follows: 

The electrochemical half-reaction occurs at the anode electrode: 

                  

The electrochemical half-reaction occurs at the cathode electrode: 
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0.2.3   Phosphoric Acid Fuel Cell (PAFC) 

In the phosphoric acid fuel cell, the phosphoric acid is used as a non-conductive liquid 

acid (electrolyte) to transfer positive hydrogen ions from anode to cathode through an 

external electrical circuit [9]. Since the phosphoric acid fuel cell has a simple and stable 

structure, it is generally used in the stationary applications. The phosphoric acid fuel cell 

system can operate efficiently in the temperature range from 150   to 200  , its 

chemical reactions can be expressed as follows: 

The electrochemical half-reaction occurs at the anode electrode: 

            

The electrochemical half-reaction occurs at the cathode electrode: 

                

0.2.4   Molten Carbonate Fuel Cell (MCFC) 

The Molten carbonate fuel cell is quite different from the previous fuel cell types: it uses 

an electrolyte composed of molten carbonate salts suspended in a porous ceramic 

matrix and chemically inert solid electrolyte of alumina beta [10].  The molten carbonate 

salts in this type produce the    
   migrate ion from the cathode to the anode, then the 

hydrogen with carbonate ions from the electrolyte to produce water, carbon dioxide, 

and electrons. The operating temperature of molten carbonate fuel cells is above 650  , 

its chemical reactions can be expressed as follows: 

The electrochemical half-reaction occurs at the anode electrode: 

   
                  

The electrochemical half-reaction occurs at the cathode electrode: 

    
 

 
          

   

0.2.5   Solid Oxide Fuel Cell (SOFC) 

The solid oxide fuel cell uses a solid material as the electrolyte, such as dense ceramic 

materials yttrium-stabilized zirconia (YSZ), which separates gases from the anode and the 

cathode, blocks electrons and conducts oxygen ions     from the cathode to the 

anode [11]. Since the solid oxide fuel cell requires high operating temperatures (from 800 

  to 1000  ), it is generally used for stationary applications. The chemical reactions for 

solid oxide fuel cell system can be expressed as follows: 
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The electrochemical half-reaction occurs at the anode electrode: 

                  

The electrochemical half-reaction occurs at the cathode electrode: 

            

0.2.6   Direct Methanol Fuel Cell (DMFC) 

The methanol fueled fuel cell is derived based on the proton exchange membrane fuel 

cell. It directly uses methanol (     , in a liquid form) as the fuel. The main advantage of 

methanol fueled fuel cell is that the methanol is a relatively stable liquid, which is easy 

and low cost for transportation [12]. The efficiency of methanol fueled fuel cell is lower 

than other fuel cell types, it is generally used for portable applications, where the energy 

density is more important than efficiency. During methanol fueled fuel cell operation, the 

methanol is firstly converted to carbon dioxide and hydrogen at the anode, and the 

remaining steps of the reaction are similar to the PEMFC, its chemical reactions can be 

expressed as follows: 

The electrochemical half-reaction occurs at the anode electrode: 

                      

The electrochemical half-reaction occurs at the cathode electrode: 

 

 
                

0.3   Why We Need A Proton Exchange Membrane 

Fuel Cell Model 
Nowadays, research on proton exchange membrane fuel cells (PEMFC) has made 

major advances in sustainability, cost and compactness [13] [14], compared to other 

types of fuel cell, the PEMFC can provide higher power density for transport and 

portable applications with relatively short start-up time and lower operation temperature 

and pressure [15]. 

Nevertheless, before mass commercialization of PEMFC, one of the major challenges in 

PEMFC research is the development of appropriate control strategy for PEMFC stack 

and system auxiliaries (i.e., air compressor, cooling circuit, power converter), in order to 

maintain the optimal operation conditions of fuel cell system [16]. In addition, the PEMFC 

stack is a very compact device since it incorporates different phenomena in different 

physical domains. During fuel cell operation, these dynamic phenomena are indeed 
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inter-coupled between each other and the variation of one would influence another. In 

practice, it is very difficult to observe the internal variables and state of fuel cell during its 

operation. 

In order to get a good understand of how these parameters quantitatively impact the 

fuel cell performance, and further help engineers to design and optimize the fuel cell 

control strategies, one possible solution for this problem is using a model-based control 

method. This brings up the need of an accurate and precise PEMFC dynamic model, 

which at least considers the following issues: 

1)  Dynamic behavior should be considered for transient state control; 

2)  The developed model should have a capability to provide multi-dimensional 

behaviors, which is very useful to give insights into the interaction effects of 

parameters on the fuel cell spatial performance; 

3)  The practical feasibilities of advanced real-time control of PEMFC systems should 

be considered, in order to effectively perform quantitative analysis of fuel cell 

performance and make fast control decisions. 

4)  Consideration of major internal physical aging phenomena of fuel cell for 

degradation prediction, for example the fuel cell ohmic losses, reaction activity 

losses, and reactants mass transfer losses. 

The above issues are detailed presented in the following subsections. 

0.3.1   Dynamic Behaviors 

The control of the fuel cell system (air compressor, cooling circuit, power converter, etc.) 

is a very complicate work because it incorporates different control variables in different 

physical domains [17]. During fuel cell operation, different dynamic phenomena within 

different time constant ranges, such as voltage transient due to double layer 

capacitance, gas pressure variation due to the volume of gas manifold, water content 

variation due to the water absorption in membrane and temperature variation due to 

the cell thermal capacity, can be clearly observed during load transient [18]. These 

dynamic phenomena in different physical domains are indeed inter-coupled between 

each other and the variation of one would influence another. This inter-coupling effect is 

especially important between the dynamic phenomena which have similar transient 

time constants. Thus, all these dynamic phenomena should be considered in the 

developed PEMFC model. 



 

 

9 

 

0.3.2   Spatial Distribution of Physical Quantities 

Compared with one-dimensional models, a multi-dimensional PEMFC model has a 

capability to provide spatial distribution of physical quantities, which is very useful for 

spatial non-uniformity and control coupling analysis [19].  

For example, the one-dimensional modeling of fuel cell bipolar plate flow field are too 

simplified and do not represent accurately the pressure distribution characteristics, since 

the fuel cell gas supply pipeline is assumed to be single and straight. In reality, cathode 

and anode gas supply channels may be of different patterns like single serpentine, 

parallel serpentine or inter-digital channels. Therefore, a comprehensive representation 

of non-homogeneous gas phenomenon by fully taking the geometric form of the fuel 

cell pipeline into consideration is particularly useful to achieve highly accurate spatial 

distribution information for two-dimensional model of PEMFC. 

0.3.3   Real-Time Applications 

Different from the common modeling approach, a real-time oriented fuel cell model has 

more restrictions: the accuracy and computational efficiency of a real-time fuel cell 

model are both crucial for model based control process [20]. A sophisticated fuel cell 

model can provide comprehensive physical quantities for model-based control design 

and optimization. While the high performance computation of a fuel cell model ensures 

the model-based controller can be efficiently implemented in real-time applications 

with a low cost of computations. 

0.3.4   Degradation Prediction 

It is meaningful to develop a multi-physical aging model for degradation prediction of 

fuel cell performance [21]. This multi-physical aging model considers the real physical 

aging phenomena during the PEMFC degradation process. Although the model-based 

methods need large computations and complex physical model, it can predict not only 

the system degradation trend (fuel cell output voltage decay over time), but also the 

information about the internal physical parameters during the degradation process. 
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Chapter I: Multi-Physic Proton 

Exchange Membrane Fuel Cell 

Modeling 
 

In this chapter, a dynamic, multi-physical model of a proton exchange membrane fuel 

cell is fully developed at first. This model considers in particular the coupling effect 

between the dynamic behaviors during fuel cell transient operation. In addition, an 

innovative two-dimensional modeling approach is presented for proton exchange 

membrane fuel cell. Specifically, the proposed two-dimensional model covers multi-

physical domains for both electrochemical and fluidic features, and fully takes the fuel 

cell channel geometric form into consideration. 

1.1   Literature Review 
Generally speaking, a lower dimensional fuel cell model may ignore some spatial 

physical quantities but a lower computational cost. For example, the one-dimensional 

model is considered as a macroscopic model, which describes the physical behaviors 

on the basis of individual layers in a single cell. Although the spatial distribution physical 

variables cannot be obtained using the one-dimensional models, the fuel cell dynamic 

phenomena can be well represented by first-order differential equations. Therefore, the 

one-dimensional models are preferred to investigate the transient behaviors inside the 

fuel cells. Many PEMFC dynamic models can be found in literature [1]-[4]. 

S. Park et al. [1] propose a dynamic PEMFC model which considers dynamic behaviors 

of temperature and two-phase effects. Based on the proposed model, a comparative 

study of transient behaviors are further performed including dynamics of temperature, 

oxygen and vapor concentration in the gas diffusion media, liquid water saturation, and 

the variations of water content in the membranes. 

Z. Zhang et al. [2] propose a semi-empirical dynamic PEMFC model. The effects of the 

equivalent internal resistance and the stack thermal behavior on the output 

characteristics of PEMFC are investigated under different load conditions. The 

experimental validation shows that the proposed model can provide an accurate 

representation of the static and dynamic behaviors under different load conditions. 
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K. Sedghisigarchi et al. [3] give a dynamic and transient analysis based on a dynamic 

solid-oxide fuel cell model, the temperature dynamics in thermal domain and the output 

voltage losses dynamics in electrochemical domain are both considered in the 

developed model. The simulation results show that, for a very fast load variation, the 

temperature dynamics can be ignored. 

F. Gao et al. [4] present a multi-physical dynamic PEMFC stack model, which can be 

directly used in real-time applications. This dynamic PEMFC model covers three physical 

domains for electrochemical, fluidic and thermal features. Specifically, a fuel cell 

dynamic time constants analysis is performed, and the dynamic responses of different 

physical domains are shown through current step. 

A common drawback of these models is that the different fuel cell dynamic 

phenomena, especially the ones with similar time constant, are not considered 

simultaneously or over-simplified, thus make them unsuitable for dynamic variable 

coupling analysis.  

Compare to one-dimensional models, multi-dimensional models have a capability to 

provide local phenomena and spatial distribution physical variables, which is very useful 

for spatial non-uniformity and control coupling analysis. However, calculating such 

complex physical quantities leads to higher computational requirements. Many PEMFC 

multi-dimensional models have been previously proposed in the literature [5]-[8]. 

Y. Shan et al. [5] propose a dynamic two-dimensional PEMFC model, which considers 

the fluidic and thermal behaviors. In order to obtain the temperature dynamic 

distribution along the gas channel direction and through-plane direction, a numerical 

solver is used based on SIMPLE algorithm. In addition to the thermal dynamic behaviors, 

the proposed 2-D model can also predict the current density and oxygen concentration 

dynamic distribution. 

X. Wang et al. [6] present a three-dimensional non-isothermal PEMFC model. This model 

uses two different water transport equation to describe the water two-phase 

transportation during the fuel cell operation. Based on the developed model, a 

parameter sensitivity analysis is performed to show effects of different parameters on the 

fuel cell polarization curve. 

S. Um et al. [7] develop a multi-dimensional transient model for PMFC. The proposed 

model simultaneously considers the electrochemical kinetics and hydrodynamics. In 

order to predict not only the experimental polarization curves, but also detailed 

distribution of electrochemical and fluidic features, the conservation equations are 
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numerically solved using finite volume based computational fluid dynamics (CFD) 

approach.  

B. Sivertsen et al. [8] introduce a comprehensive non-isothermal three-dimensional 

PEMFC model. In the presented model, the fluid transport inside the fuel cell gas 

channels and gas diffusion layer, as well as the thermal behaviors are developed and 

solved based on the framework of a CFD code. This CFD computational model can 

accurately predict the cathode over-potential distribution. 

A common drawback of these works is that the presented fuel cell bipolar plate flow 

field (gas channels) models are over-simplified (or not even considered). Thus they 

cannot describe accurately the non-linear and non-uniform pressure distribution 

characteristics. On the other hand, as a commonly used modeling technique for multi-

dimensional model, the CFD models [7]-[8] are not suitable for real-time model-based 

controller since the computational burdens are too heavy. 

1.2   Multi-Physical PEMFC Model 
In this section, the presented PEMFC dynamic model is based on a developed multi-

physical PEMFC model in the previous works [9]-[10]. The PEMFC stack level and the 

single cell level are shown in the Figure 1.1. As shown in Figure 1.1, one fuel cell stack 

level can be separated into eight cell layers, which consist of: 

1)  Cathode cooling channel layer; 

2)  Cathode gas supply channel layer; 

3)  Cathode gas diffusion layer; 

4)  Cathode catalyst layer; 

5)  Proton exchange membrane layer; 

6)  Anode catalyst layer; 

7)  Anode gas diffusion layer; 

8)  Anode gas supply channel layer. 
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Figure 1.1 PEMFC stack level and the single cell level 

The advantage of this cell layer structure is that each modeling layer can be described 

separately by its own physical equations and the boundary conditions. Each cell layer is 

considered as a control volume in the presented model. For each cell layer, the 

modeling of different physical domain is presented in the following subsections. 

1.2.1   Electrical Domain Modeling 

As an electricity-converting device, the PEMFC converts fuel energy into electricity 

through electrochemical reactions. Therefore, the electric domain is included in the 

proposed PEMFC model. 

The total output voltage       of a single-cell can be calculated by the following 

equation: 

                                                                                                                       

where       is the single fuel cell thermodynamic voltage (V),        is the ohmic voltage 

drop (V),      is the cell activation voltage drop (V). 

The thermodynamic voltage       is calculated from the following Nernst equation [11]: 
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where       is the catalyst layer temperature (K),         is the Faraday constant 

(C/mol),         is the ideal gas constant,          is the oxygen pressure (atm) at the 

interface of cathode catalyst layer,          is the hydrogen pressure (atm) at the 

interface of anode catalyst layer (please refer to the last paragraph of this section).  

The membrane resistance      (Ω) is calculated by [12]: 

                                         
       
    

 

    
                                                                            

where       is the section surface of membrane (m2),      is the membrane thickness 

(m).      is the resistivity of membrane (Ω m) which can be calculated by the following 

equation [12]: 

     

 
 

 
 

      
 
      

 
    

 
 
   

  
                                       

 

              
 
      

 
    

 
 
   

  
                 

                                        

Thus, the cell ohmic voltage drop        can be calculated from Ohm’s law equation 

[13]: 

                                                                                                                                     

The electrochemical activation voltage drop      of single cell can be calculated by 

Butler-Volmer equation [14]: 

                         
 
    
      

       
  

        
      

                                                              

where   is the stack current (A),    is the charge transfer coefficient,   is the electrons 

number. The exchange current density    (A/m2) can be calculated by an empirical 

equation [15]: 

                                       
    

 
  

      
   

     
      

 
                                                               

where    and    are empirical parameters,    is the oxygen activation energy on the 

electrode catalyst interface. It should be noted that, the      in anode side for fuel cells 

of PEMFC type can be neglected due to the easy electrochemical process. 

It can be seen from the equation 1.6 that, the term activation voltage drop      is in an 

implicit form. In order to explicitly calculate this non-linear implicit Butler-Volmer equation 
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to obtain the value of     , an iterative solver is used. For a high stack current, the Butler-

Volmer equation can be written as the well-known Tafel equation [16]: 

     
  

   
    

 

       
                                                                            

The dynamic behavior of activation losses voltage      in the electrical domain due to 

the “double layer effect” can be expressed by: 

 

  
     

 

   
   

    
    

                                                                          

1.2.2   Fluidic Domain Modeling 

It should also be noted that, since the          and          used in equation 1.2 are 

reactant gas pressure at the catalyst layer interface instead of the gas supply channels, 

another fuel cell over-potential term due to pressures drop through the GDL, well known 

as “concentration losses”, has been already implicitly considered in the proposed fluidic 

model. Therefore, the fluidic behaviors inside fuel cell, such as reactants convection in 

the channels and diffusion through gas diffusion layer, have a great impact on fuel cell 

performance. In this section, the fluidic domain modeling is presented. 

1.2.2.1   Cooling Channels 

In the gas channel, the Reynolds number can be calculated by the following equation 

[17]: 

   
              

 
                                                                             

where    is the channel hydraulic diameter (m),   is the mean fluid velocity in the 

channel (Pa s). The mean velocity      (m/s) of gas can be calculated based on the 

following equation: 

     
 

     
                                                                                    

where   is the fluid mass flow (kg/s), A is the total section of cooling channels (m2). The 

fluid density (kg/m3)      can be calculated by ideal gas equation of state: 

     
  

  
                                                                                     

The gas pressure drop        of serpentine channel depends on the surface friction losses 

of straight pipeline, which can be modeled by the Darcy–Weisbach equation [18]: 
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with  

 
                          
                            

                                                                

where         ,           and            are respectively the pressure at inlet, outlet, and 

center of cooling channel,     is the total length of straight channel (m),    is the Darcy 

friction factor which can be obtained from the empirical equation [19]: 

   
  

  
                                                                                        

The gas pressure dynamic response in the fuel cell is generally due to the channels 

volume. Thus, the dynamic behaviors of fluid in the cooling channel can be given by the 

mass balance equation: 

                          
         

      
 
 

  
              

  

      

                                                            

where      is the gas molar mass (kg/mol),       is the volume of the cool channels (m3), 

      is the cooling channel temperature (K),     is the gas pressure in the cool channels 

(Pa) and        is the fluid mass flow rate (kg/s) entering or leaving the channels. 

1.2.2.2   Gas Supply Channels 

The total pressure of the center of the gas supply channels can be calculated by: 

                                                                                           

                                                                                            

where       ,       ,         are respectively the oxygen, nitrogen, and vapor pressure in 

the center of cathode supply channel.       ,         are respectively the hydrogen and 

vapor pressure in the center of anode supply channel. The gas pressure in the center of 

channels is defined as follow: 

            
                                

 
                                                         

where                 is the gas pressure at the channel inlet, and                  is the gas 

pressure at the channel outlet. Thus, the dynamic behaviors of fluid             in the 

center of gas supply channels can be also written based on the mass balance equation: 
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where                 is the gas mass flow at the inlet of channel,                  is the gas 

mass flow at the outlet of channel,       is the volume of the gas supply channels (m3) 

and          is the temperature of gas supply channel (K). 

1.2.2.3   Gas Diffusion Layer (GDL) 

To obtain the reactant gas pressure at interface of the catalyst layer, the diffusion 

phenomenon in the gas diffusion layer can be described by modified Fick's law [20] [21]: 

                    
       
  

 
       
    

 
             

             
                                                              

where        is pressure of specie x in gas diffusion layer (Pa),      is thickness of gas 

diffusion layer (m),      is the gas diffusion layer temperature (K),         is the gas molar 

flow rate of specie x (mol/s),      is the gas diffusion layer area (m2),         
   

 is the gas 

diffusion coefficient (m2/s) between the species x and y can be calculated from [22]: 

        
   

 
 

    
    

    

               
 

 

                 
 
                   

  
   

    

  
 
    

  
 
 
              

where      is the total pressure of species (atm),       is the critical temperature of species 

(K),       is the critical pressure of species (atm), and   is the molar mass of species 

(kg/mol),   is the porosity of the GDL and   is the GDL tortuosity. The coefficients   and   

depend on whether one of the species is a polar gas or not and are determined 

accordingly, which are given as follows [22]: 

 For pair of gases contains no polar gas: 

                          

 For pair of gases contains polar gas: 

                         

1.2.2.4   Catalyst Layers 

As mentioned before, the reactant gas mass flow rate through the GDL to the catalyst 

layer is directly proportional to the fuel cell stack current [23] [24]. Thus, the oxygen mass 

flow     (kg/s)at the cathode side can be expressed by: 
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the hydrogen mass flow     (kg/s)at the anode side can be expressed by: 

       
     

  
                                                                                 

and the mass flow of produced water      (kg/s) at the cathode side due to the 

electrochemical reaction can be calculated by: 

            
      

  
                                                                           

1.2.2.5   Dynamic Membrane Water Content 

Because the membrane ionic conductivity      is highly dependent on water content 

   in polymer membrane [25], a more detailed knowledge of transient behavior of the 

   would give a more accurate value of Ohmic losses       , as shown in the equation 

1.3. Moreover, the dynamic phenomena of    plays an important role on the dynamic 

performance of PEM fuel cell due to its relatively long transient time (up to some minutes) 

[26]. 

The dynamics of the membrane water content    is generally influenced by two water 

flow effects in the membrane: the electro-osmotic drag flow due to proton conduction 

from the anode to the cathode; the water back diffusion flow caused by the 

concentration gradient between anode and cathode side. The membrane water 

content    is defined as the relationship of the number of water molecules per charged 

site (sulphonate site) [27]: 

    
                          

        
                  

                                                                              
                              

where      is the water activity factor, which can be obtained based on the water local 

vapor partial pressure      (pa), and the local vapor saturation pressure      (pa): 

     
    

    
                                                                                    

where the local vapor saturation pressure      is calculated by: 
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where        is the vapor temperature (K). Thus, the dynamics of the water content    in 

the membrane can be obtained by considering the water molar flows balance at two 

sides (i.e. anode and cathode) of membrane, and the mass conservation of water, as 

shown in Figure 1.2.  

Gas 

supply 

channel

Gas 

supply 

channel

GDL GDL

Cathode Anode(dead-end)

C
a

ta
ly

st

C
a

ta
ly

st
Membrane

humw

outletw

GDLchw 

chGDLw 

caGDLw 

memcadiffw , anmemdiffw ,

draw

prow

ca an
w

 

Figure 1.2 Dynamic water flow behaviors in fuel cell membrane. 

Thus, the dynamics of the water content    can be described by: 

                

    

   
  

                                                                

where          is the membrane dry density (kg/m3),       is the molecular mass of 

membrane (kg/mol), and   represents different water molar flow (mol/s) entering or 

leaving the membrane due to electro-osmotic drag and water back diffusion flow. 

The water molar entering or leaving the membrane due to electro-osmotic drag      

can be described by: 

                                            
   

   
         

                                                                            

where the      
        is the coefficient of electro-osmotic drag for maximum hydration 

conditions. The water molar entering (from cathode to membrane) or leaving (from 

membrane to anode) the membrane         due to back diffusion flow can be 

described by [28]: 
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where           is the dry density of the membrane (kg/m3),      is the equivalent mass 

of the membrane (kg/mol). The boundary water content    at anode and cathode side 

can be expressed as a function of water activity    which can be deduced from the 

water vapor partial pressure equation 1.28. The membrane water diffusion coefficient 

       (m2/s) can be calculated from the empirical equations [28]: 

           

 
 
 

 
       

      
 
   

 
 

    
  
                   

                             

                                  

                       

                                       

As shown in Figure 1.2, in the case of non-humidified hydrogen supply and anode dead-

end mode operation, the anode side water accumulation is only caused by the water 

diffusion from the membrane to the anode             , and the cathode side water 

accumulation depends on three factors:         comes from humidified air supply at 

cathode     , the produced water at cathode side      during electrochemical 

reaction and the electro-osmotic drag flow from the anode to the cathode     . 

Under the dead-end mode operation (no water accumulation at anode side), the 

water molar flow entering into the membrane from anode due to electro-osmotic drag 

        is equal to the water molar flow leaving out the membrane to anode due to 

back-diffusion              (dashed portion as shown in figure 1.2). Thus, the dynamics of 

the membrane water content    can thus be simplified by: 

                

    

   
  

 
                          

        
 
   

   
       

                                

with anode side water content    : 

                     
            

           

                      
                                                      

1.2.3    Thermal Domain Modeling 

In addition to the fluidic phenomena, the effect of temperature on the fuel cell 

performance should also be considered in the fuel cell modeling. For example, the heat 

transfer changes the gas convection and diffusion behaviors, and further influences the 

electrochemical quantities inside the fuel cell. 
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The fuel cell temperature transient behavior in the thermal domain is due to the heat 

generation and thermal conduction and convection phenomena. Like dynamic 

behavior of membrane water content, dynamics of fuel cell temperature is an important 

phenomenon due to its relatively long transient time. This dynamic behavior can be 

generally described as follows: 

    
    
  

                                                                                    

where   is the mean layer volume density of stack (kg/m3),   is the layer volume of stack 

(m3),    is the layer thermal capacity (J/kg K),     is the temperature (K) of each control 

volume and    stands for the different types of heat (J) flows entering or leaving the layer 

respectively: conduction, convective flow, forced convection and internal heat sources. 

The heat flows due to conduction can be expressed according to Fourier’s law [29]: 

                      
               

   
                                                                  

where     is the control volume thermal conductivity (W/m K),             is the section of 

the control volume in heat transfer direction (m2), and     is the control volume thickness 

(m). 

The convective heat flow due to the mass transfer entering or leaving the control 

volume can be calculated by 

                           

      

                                                                

where         is the mass flow rate (kg/s). 

The heat transfers by forced convection               can be written according to 

Newton’s cooling law: 

                                                                                               

where       is the coolant temperature and         is the contact area (m2),         is the 

forced convection heat transfer coefficient (W/m2 K), which can be calculated by [29]: 

        
     
      

                                                                               

where     is the fluid thermal conductivity,    is the Nusselt number of the fluid, which 

can be calculated by the empirical equations [30]: 



 

 

25 

 

         
           

         
   

      
 

 

      
         
   

     
      
 

 

                                                 

Where          is the coolant thermal capacity (J/kg K). 

At last, the linear expression of the heat sources          as a function of the cell 

temperature can be obtained: 

                                                                                           

1.3   Multi-Dimensional Modeling Considerations 
Compared with 1-D models [31]-[39], a 2-D PEMFC model has a capability to provide 

two-dimensional behaviors, which is very useful for spatial non-uniformity and control 

coupling analysis. This analysis can give detailed and valuable spatial physical quantity 

information under different fuel cell operation conditions by taking multiple spatial 

dimensions into consideration. For example to prevent local “hotspot” on electrode due 

to non-homogeneous distribution of reactants, and can be further employed in a 

model-based real-time controller. 

Many PEMFC 2-D models have been previously proposed in the literature [40]-[45]. 

However, a common drawback of these works is that the presented fuel cell bipolar 

plate flow field (gas channels) models are over-simplified (or not even considered). Thus 

they cannot accurately describe the non-linear and non-uniform pressure distribution 

characteristics.  

For example, as shown in the upper part of figure 1.3, the gas pressure prediction results 

of a model without the consideration of channel geometric form, could lead to an 

inaccurate gas diffusion phenomenon in the serpentine pipeline, which would further 

impact the accuracy of electrode current density analysis. In these models, the gas 

supply channel is assumed to be straight and single. In fact, the gas supply pipeline in 

the anode and cathode sides have different geometric patterns, as shown in the 

figure 1.4. 
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Figure 1.3 Double three-parallel serpentine pattern of cathode gas supply channel 

and double single serpentine pattern of anode gas supply channel 

It can be seen from the figure 1.4 that, the flow field forms of a Ballard NEXA 1.2kW fuel 

cell stack used in this thesis includes a single serpentine pipeline in anode side and a 

parallel serpentine pipeline in cathode side. Therefore, a comprehensive representation 

of non-homogeneous gas phenomenon by fully taking the geometric form of the fuel 

cell pipeline into consideration is particularly useful to achieve highly accurate spatial 

distribution information for 2-D model of PEMFC.  

 

Figure 1.4 Actual geometry form of gas channel of NEXA PEMFC:  

the left one is cathode air channel, the right one is anode hydrogen gas channel 
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In this section, a 2-D, multi-physical PEMFC model is fully developed, which covers fluidic 

and electric domains with an innovative 2-dimensional modeling approach. The basis of 

individual layers in a single cell of the proposed 2-D PEMFC model is shown in the figure 

1.5. 

It can be seen from the figure 1.5 that, in the proposed 2-D PEMFC model, a single cell 

model consists of 7 individual layers: 1) cathode gas supply channel; 2) cathode gas 

diffusion layer (GDL); 3) cathode catalyst layer; 4) membrane; 5) anode catalyst layer; 6) 

anode gas diffusion layer (GDL); 7) anode gas supply channel. 

 

1 2 3 4 5 6 7
 

Figure 1.5 Structure of a single cell of fuel cell stack. 

In order to take the geometric form of the fuel cell pipeline into consideration, a 2-D 

modeling of fluidic domain is developed firstly, followed by a 2-D electric modeling. 

1.3.1   Two-Dimensional Approach in Fluidic Model 

To accurately model the reactant gas pressure distribution on the electrodes surface, a 

comprehensive modeling of gas convection-diffusion phenomena in the gas supply 

channel and GDL is presented hereafter by precisely considering the fuel cell gas 

channel geometric form in this section. 

1.3.1.1   Gas Supply Channels 

Different from single and straight channel assumption in the previously developed 

PEMFC model, the geometric patterns of gas supply channels (both anode and 

cathode sides) are now considered in the improved model, such as single serpentine, 

parallel serpentine channels, with the consideration of sharp and curved U-bends 

(channel angles). Under the same inlet air supply conditions, the gas pressure distribution 

on the surface of GDL depends highly on the flow field form. Thus, a detailed 
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representation of non-homogeneous gas pressure distribution by considering the flow 

field form can be very useful to achieve accurate modeling results. 

In this thesis, the geometric form of gas supply channels is taken from Ballard NEXA fuel 

cell as shown in figure 1.6. This two-sided design includes a three-parallel serpentine 

channel for cathode air supply, and a single serpentine pattern channel for anode 

hydrogen supply. 

Inlet

Inlet

Outlet

Outlet

Cathode channel

Anode channel

 

Figure 1.6 Three-parallel serpentine channel for cathode air supply;  

and single serpentine channel for anode hydrogen supply. 

The gas pressure drop      of serpentine channel depends on three factors [46] [47]: the 

surface friction losses of straight pipeline (modeled by the Darcy–Weisbach equation), 

the frictional loss suffered in the elongated section of the bends, and the sum of excess 

loss coefficients    for n U-bends: 

       
        

 

       
 
 

 
     

     
     
      

    

 

   

                                             

where    is the Darcy friction factor,      is the fluid density in the channel (kg/m3),     is 

the total length of straight channel (m),   is the mean fluid velocity in the channel (m/s), 

       is the hydraulic diameter of the channel (m),       is the total length of elongated 

section of the bends (m), the Kays friction factor    can be given by [46]: 
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where   is the pipeline width (m),   is the pipeline thickness (m).    is the Reynolds 

number of the fluid in the channels, channel aspect ratio       is defined by: 

      
   

   
                                                                                  

The excess bend loss coefficient of i th bend    is given by [46]: 

          

                                                                                                                                          

               

          
 
                     

                                   
  

      
 

 

 
        

  

      
 
 

         

                

                                         

                   
  

      
 

 
 

        
  

      
 

 

          

where    is the spacer length between two neighboring duct, and   is the curvature 

ratio of the bend, is given by [46]: 

                                              
  

      
                                                                                  

where    is the mean radius of bends,        is the duct hydraulic diameter which is 

calculated by: 

       
   

      
                                                                         

where the pipeline width  , pipeline thickness  , and spacer length between two 

neighboring duct    can be seen clearly in the figure 1.7.  

From figure 1.7, the rectangle pane is represented as the cross sectional area of pipeline. 

The anode channel curved U-bends are the same as those in the cathode channel. 
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Figure 1.7 Schematic diagram of pipeline width  , pipeline thickness   and 

spacer length between two neighboring duct    in the channel curved U-bends. 

1.3.1.2   Gas Diffusion Layer 

The modeling equations for reactant gas diffusion phenomena in the GDL are described 

in this section. Based on the gas supply channel geometry, the GDL, which is directly 

adjacent to the gas channels layer, can be divided into two sections, denoted as “fluid 

adjacent volume” and “solid adjacent volume”, as illustrated in figure 1.8. From figure 

1.8, the thin line GDL control volume is adjacent to the channel fluidic section, denoted 

as “fluid adjacent volumes” of GDL. The gas flows to a “fluid adjacent volumes” come 

from the gas channel pipeline and the adjacent volumes. In contrast, the bold line GDL 

control volumes in figure 1.8 are adjacent to the channel solid section, denoted as “solid 

adjacent volume” of GDL. The gas flows to a “solid adjacent volume” come only from 

the adjacent volumes in gas diffusion layer. 

In the previous section, the gas convection phenomenon in the serpentine pipeline has 

been well developed. As shown in the figure 1.8, the convective gas flow direction in the 

gas pipeline is marked by arrow 1 in the gas pipeline A, and by arrow 3 in the gas 

pipeline B. Then, the gas diffusion phenomena through the GDL can be divided into six 

categories:  

1)  Diffusion from pipeline to “fluid adjacent volume” (z-axis, marked with arrows 2 

and 4); 

2)  Diffusion between two adjacent “fluid adjacent volumes” (y-axis, marked with 

arrows 5 and 6); 

3)  Diffusion between adjacent “fluid adjacent volume” and “solid adjacent volume” 

(x-axis, marked with arrow 7). 
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4)  Diffusion between two adjacent “solid adjacent volume” (y-axis, marked with 

arrow 8); 

5)  Diffusion from “fluid adjacent volumes” to catalyst layer (z-axis, marked with 

arrows 9 and 10); 

6)  Diffusion from “solid adjacent volume” to catalyst layer (z-axis, marked with arrow 

11). 

Solid adjacent 

volume

GDL

Gas 

pipeline A

Gas 

pipeline B

Fluid adjacent 

volume

 

Figure 1.8 Gas diffusion phenomena in the GDL. 

It should be noted that, when the stack current increases, the diffusion from gas pipeline 

to “fluid adjacent volume”, and the diffusion from volumes to catalyst layer become 

more important due to the increase of mass flow from gas channels to the catalyst layer, 

which is proportional to the fuel cell current. All these diffusion phenomena in the gas 

diffusion layer, except the above-mentioned current-driven ones, can be modeled by 

the modified Fick's diffusion equation 1.22. 

In fact, the benefit of parallel pipeline is its lower pressure drop due to shorter single 

channel length. However its main drawback is water droplet accumulation during fuel 

cell operation. The single serpentine can improve water removal while introduce a larger 

pressure drop. This parallel serpentine flow field combines thus the advantages of both 

patterns, in order to achieve better performance of fuel cell system. 

1.3.1.3   Non-Uniform Control Volume Consideration 

In order to fully describe the gas flow in the serpentine pipeline gas channels, and further 

accurately obtain the two-dimensional physical quantity distribution both in fluidic 
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domain and electrochemical domain, the control volume mesh grid definition of gas 

channels in the proposed 2-D PEMFC model is considered in a non-uniform manner. It 

means that, the geometry form of each control volume follows the channel geometric 

patterns. The 2-D channel model can be then implemented by defined control volumes 

with the physical equations presented in the previous section. The control volume 2-D 

mesh grid at both cathode and anode sides are depicted in the following figure 1.9. 

 

Figure 1.9 Control volumes 2-D mesh grid at cathode/anode sides. 

As shown in the figure 1.9, the two surface dimensions are considered for the proposed 

2-D model, the non-uniform control volume distribution of each side is based on the 

geometry form of channels (i.e. three-parallel serpentine pattern at cathode side and 

single-parallel serpentine pattern at anode side, denoted by black mesh in the figure 1.9. 

1.3.2    Two-Dimensional Approach in Electric Model 

The characteristics of reactant gas convection and diffusion in the pipeline and gas 

diffusion layer are fully described in the previous section. However, the spatial physical 

quantity distribution on the surface of electrode (e.g. the current density distribution) 

cannot be directly obtained using the non-uniform mesh grid. In order to unify the mesh 

segments distribution in homogenous material such as electrode and electrolyte, the 

non-uniform mesh grid of gas channels layer of each side are then linearly converted to 

uniform mesh grid for GDL and membrane layers denoted by red mesh in the figure 1.10. 
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Figure 1.10 Control volumes 2-D mesh grid at cathode/anode sides,  

and uniform segments for electrochemical calculation 

1.4   Conclusion 
In this section, a dynamic, multi-physical model of a proton exchange membrane fuel 

cell is developed at first. The presented model considers in particular the transient 

phenomena in both fluidic and thermal domains (please refer to the previous work [9] 

[10]).  

Based on the developed multi-physical model, a 2-D modeling approach for a proton-

exchange-membrane fuel cell (PEMFC) is then proposed. The proposed model covers 

multi-physical domains for both fluidic and electric features. In order to accurately 

describe the characteristics of reactant gas convection and diffusion in the pipeline and 

gas diffusion layer, the gas pressure drop in the serpentine pipelines is comprehensively 

analyzed, especially for the reactant gas pressure drop due to the pipeline U-bends, 

followed by a comprehensive description of gas diffusion layer 2-D modeling by fully 

considering the geometric form of flow field [48]. The experimental validation and 

coupling effects analysis are presented in the following chapter. 

 

 



 

 

34 

 

1.5   Reference 
[1] S. Park, S. Choe, “Dynamic modeling and analysis of a 20-cell PEM fuel cell stack 

considering temperature and two-phase effects,” J. Power Sources, vol. 179, pp. 

660–672, 2008. 

[2] Z. Zhang, X. Huang, J. Jiang, B. Wu, “An improved dynamic model considering 

effects of temperature and equivalent internal resistance for PEM fuel cell power 

modules,” J. Power Sources, vol. 161, pp. 1062–1068, 2006. 

[3] K. Sedghisigarchi and A. Feliachi, “Dynamic and transient analysis of power 

distribution systems with fuel Cells-part I: fuel-cell dynamic model,” IEEE Trans. 

Energy Convers., vol. 19, no. 2, pp. 423–428, Jun. 2004. 

[4] F. Gao, B. Blunier, D. Chrenko, D. Bouquain, and A. Miraoui, “Multirate fuel cell 

 emulation with spatial reduced real-time fuel cell modeling,” IEEE Trans. Ind. App., 

 vol. 48, pp. 1127–1135, Jul. 2012. 

[5] Y. Shan, S. Choe, S. Choi, “Unsteady 2D PEM fuel cell modeling for a stack 

 emphasizing thermal effects,”  J. Power Sources, vol. 165, pp. 196-209, 2007. 

[6] X. Wang, J. Xu, D. Lee, “Parameter sensitivity examination for a complete three-

dimensional, two-phase, non-isothermal model of polymer electrolyte membrane 

fuel cell,” Int. J. Hydrogen Energy, vol. 37, no. 20, pp. 15766–15777, 2012. 

[7] S. um, C. Yang and K. Chen, “Computational Fluid Dynamics Modeling of Proton 

Exchange Membrane Fuel Cells,” J. Electrochem. Soc., vol. 147, no. 12, pp. 4485-

4493, 2000.  

[8] B. R. Sivertsen, N. Djilali, “CFD-based modelling of proton exchange membrane 

fuel cells,” J. Power Sources, vol. 141, no. 1, pp. 65-78, Feb. 2005. 

[9] D. Zhou, F. Gao, E. Breaz, A. Ravey, A. Miraoui, K. Zhang, “Dynamic phenomena 

 coupling analysis and modeling of PEMFCs,” IEEE Trans. Energy Convers., vol. 31, 

 no.  4, pp. 1399–1412, Dec. 2016. 

[10] D. Zhou, K. Zhang, A. Ravey, F. Gao, A. Miraoui, “Dynamic variable coupling 

analysis and modeling of proton exchange membrane fuel cells for water and 

thermal management,” IEEE Applied Power Electronics Conference and 

Exposition (APEC),  Long Beach, CA, Mar. 20-24, 2016. 

[11] J. Larminie, A. Dicks. Fuel cell systems explained. 2nd ed. USA: Wiley, 2012. 

[12] T. Springer, T. Zawodzinski T, S. Gottesfeld, “Polymer electrolyte fuel cell model,” 

 J. Electroanal. Chem. vol. 138, pp. 2334-2342, 1991. 



 

 

35 

 

[13] D. Zhou, A. Ravey, F. Gao, A. Miraoui, and K. Zhang, “On-Line Estimation of 

Lithium Polymer Batteries State-of-Charge Using Particle Filter Based Data Fusion 

with Multi-Models Approach,” in Proc. IEEE IAS, Oct. 18-22, pp. 1-8, 2015. 

[14] D. Noren, M. Hoffman, “Clarifying the Butler–Volmer equation and related 

 approximations for calculating activation losses in solid oxide fuel cell models,” 

 J. Power Sources, vol. 152, pp. 175-181, 2005. 

[15] D. Zhao, M. Dou, D. Zhou, and F. Gao, “Study of the modeling parameter effects 

on the polarization characteristics of the PEM fuel cell,” Int. J. Hydrogen Energy, 

vol. 41, no. 47, pp. 22316–22327, 2016. 

[16] D. Zhao, F. Gao, P. Massonnat, M. Dou, A. Miraoui, “Parameter Sensitivity Analysis 

and Local Temperature Distribution Effect for a PEMFC System,” IEEE Trans. Energy 

Convers., vol. 30, no.3, pp. 1008-1018, Mar. 2015. 

[17] F. White, Fluid mechanics. 4th ed. McGraw Hill, ISBN 0-07-069716-7; 1998. 

[18] A. Tang, J. Bao, M. Kazacos, “Studies on pressure losses and flow rate optimization 

in vanadium redox flow battery,” J. Power Sources, vol. 248, pp. 154–162, 2014. 

[19] J. Park, X. Li, “An experimental and numerical investigation on the cross flow 

through gas diffusion layer in a PEM fuel cell with a serpentine flow channel,” J. 

Power Sources, vol. 163, pp. 853-863, 2007. 

[20] A. Bertei, C. Nicolella, “Common inconsistencies in modeling gas transport in 

porous electrodes: The dusty-gas model and the Fick law,” J. Power Sources, vol. 

279, pp. 133-137, 2015. 

[21] N. Legrand, B. Knosp, P. Desprez, F. Lapicque, S. Raël, “Physical characterization 

of the charging process of a Li-ion battery and prediction of Li plating by 

electrochemical modeling,” J. Power Sources, vol. 245, pp. 208-216, 2014. 

[22] R. Bird, W. Stewart, E. Lightfoot, Transport phenomena. 2nd ed. John Wiley & Sons; 

2002. 

[23] F. Gao, B. Blunier, D. Bouquain, A.Miraoui, and A. El Moudni, “Polymer electrolyte 

fuel cell stack emulator for automotive hardware-in-the-loop applications,” in 

Proc. IEEE VPPC, Sep. 7-10, pp. 998-1004, 2009. 

[24] F. Gao, B. Blunier, M. Simões, A. Miraoui, A. El-Moudni, “PEM fuel cell stack 

 Hardware-In-the-Loop emulation using DC/DC converter design,” in Proc. IEEE 

 EPEC,  Oct. 22-23, pp. 1-6, 2009. 

[25] R. O’Hayre, S. Cha, W. Colella, F. Prinz, Fuel cell fundamentals. John Wiley & Sons, 

 Inc., 2006. 



 

 

36 

 

[26] T. Colinart, A. Chenu, S. Didierjean, O. Lottin, S. Besse, “Experimental study on 

water  transport coefficient in Proton Exchange Membrane Fuel Cell,” J. Power 

Sources, vol.  190, pp. 230-240, 2009. 

[27] F. Barbir. PEM fuel cells, theory and practice, sustainable world. Elsevier Academic 

 Press, ISBN 978-0-12-078142-3. 

[28] S. Dutta, S. Shimpalee, J. Van, “Numerical prediction of mass-exchange between 

cathode and anode channels in a PEM fuel cell,” Int. J. Heat Mass Transfer, vol. 44, 

pp. 2024-2029, 2001. 

[29] F. Incropera, D. DeWitt, T. Bergman, A. Lavine. Fundamentals of heat and mass 

transfer. 6th ed, vol. 1. Wiley; 2007. 

[30] B. Spang. Correlations for convective heat transfer. On-line URL, 

www.cheresources.com; 2008. 

[31] C. Restrepo, T. Konjedic, A. Garces, J. Calvente, R. Giral, “Identification of a PEM 

fuel cell's model parameters by means of an evolution strategy,” IEEE Trans. Ind. 

Inf., vol. 11, no. 2, pp. 548-559, Apr 2015. 

[32] G. Park, Z. Gajic, “A Simple Sliding Mode Controller of a Fifth-Order Non-linear 

PEM Fuel Cell Model,” IEEE Trans. Energy Convers, vol. 29, no. 1, pp. 65-71, Mar. 

2014. 

[33] W. Yang, Y. He, Y. Li, “Modeling of dynamic operating behaviors in a liquid-feed 

direct  methanol fuel cell,” Int. J. Hydrogen Energy, vol. 37, no. 23, pp. 18412-

18424, Dec. 2012. 

[34] K. Nanaeda, F. Mueller, J. Brouwer, S. Samuelsen, “Dynamic modeling and 

evaluation of solid oxide fuel cell – combined heat and power system operating 

strategies,” J. Power Sources, vol.195, no. 10, pp. 3176-3185, May. 2010. 

[35] M. Guarnieri, V. Noto, F. Moro, “A Dynamic Circuit Model of a Small Direct 

Methanol Fuel Cell for Portable Electronic Devices,” IEEE Trans. Ind. Electron., vol. 

57, no. 6, pp. 1865-1873, June. 2010. 

[36] A.Stefanopoulou, I. Kolmanovsky, B. McCain, “A Dynamic Semi-Analytic Channel-

to-Channel Model of Two-Phase Water Distribution for a Unit Fuel Cell,” IEEE Trans. 

Contr. Syst. Technol., vol. 17, no. 5, pp. 1055-1068, Sep. 2009. 

[37] A. M. Dhirde, N. V. Dale, H. Salehfar, M. D. Mann, and T. H. Han, “Equivalent 

electric circuit modeling and performance analysis of a PEM fuel cell stack using 

impedance spectroscopy,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 778–786, 

Sep. 2010. 

[38] S. Pasricha, S. Shaw, “A dynamic pem fuel cell model,” IEEE Trans. Energy 

Convers., vol. 21, no. 2, pp. 484–490, Jun. 2006. 



 

 

37 

 

[39] S. Pasricha, M. Keppler, S. Shaw, M. Nehrir, “Comparison and identification of 

static electrical terminal fuel cell models,” IEEE Trans. Energy Convers., vol. 22, no. 

3, pp. 746–754, Sep. 2007. 

[40] R. Methekar, V. Prasad, R. Gudi, “Dynamic analysis and linear control strategies 

for PEM fuel cell using a distributed parameter model,” J. Power Sources, vol. 165, 

pp.152-170, 2007. 

[41] M. Mangold, A. Bück, R. Hanke-Rauschenbach, “Passivity based control of a 

 distributed pem fuel cell model,” J. Process Control, vol. 20, pp. 292–313, 2010. 

[42] M. Carnevali, M. Serra, C. Batlle, “Distributed parameter model  simulation tool for 

PEM fuel cells,” Int. J. Hydrogen Energy, vol. 39, pp. 4044–4052,  2014. 

[43] D. Chen, H. Peng, “A Thermodynamic Model of Membrane Humidifiers for PEM 

Fuel Cell Humidification Control,” J. dyn. syst. meas. control, vol. 127, no. 3, pp. 

424–432, 2005. 

[44] A. Weber, J. Newman, “Modeling Transport in Polymer-Electrolyte Fuel Cells,” 

Chem. Rev., vol. 104, no. 10, pp. 4679–4726, 2004. 

[45] H. Wu, X. Li and P. Berg, “On the modeling of water transport in polymer 

electrolyte membrane fuel cells,” Electrochimica Acta, vol. 54, no. 27, pp. 6913-

6927, Nov. 2009. 

[46] S. Maharudrayya, S. Jayanti, A.P. Deshpande, “Pressure losses in laminar flow 

through serpentine channels in fuel cell stacks,” J. Power Sources, vol. 138, pp. 1-

13, 2004 

[47] S. Maharudrayya, S. Jayanti, A.P. Deshpande, “Pressure drop and flow distribution 

in multiple parallel-channel configurations used in proton-exchange membrane 

fuel cell stacks,” J. Power Sources, vol. 157, pp. 358-367, 2006. 

[48] D. Zhou, F. Gao, E. Breaz, A. Ravey, A. Miraoui, “Development of a multi-physical 

 multidimensional modeling of proton exchange membrane fuel cell,” IEEE 

 Transportation Electrification Conference and Expo, Dearborn, Jun. 27–29, 2016. 

 

 

 

 

 



 

 

38 

 

Chapter II: Experimental Validation 

and Coupling Analysis 
 

This chapter presents the experimental test and simulation in order to validate the 

proposed 2-D model with a commercial Ballard NEXA 1.2 kW PEMFC stack. With the 

developed 2-D model, the spatial physical quantity information can be accurately 

observed and analyzed by taking the multiple spatial dimensions into consideration. 

These spatial results are very useful to help to quantitatively analyze the coupling effects 

in different physical domains, and study the influences of model parameters on the fuel 

cell spatial performance. 

2.1   Literature Review 
Although the coupling of dynamic phenomena in a fuel cell has an important influence 

on the control design of fuel cell system, very little information has yet been published in 

the literature on the analysis of interaction between fuel cell dynamic variables in 

different physical domains.  

Zhao et al. [1] present a decoupling control strategy for the strong coupling between 

mass flow and pressure in centrifugal compressor system, which is a key component for 

supplying compressed air to the fuel cell cathode channel, but the dynamic 

phenomena coupling in fuel cell system have not been considered. Cheah et al. [2] 

give a detailed analysis of coupling effects of electro-osmotic drag, water diffusion and 

interfacial water transport. Carnes et al. [3] present a analysis of coupling effect of the 

water transport within the proton exchange membrane and the partially saturated gas 

diffusion electrodes. Cao et al. [4] propose a single neuron adaptive proportional-

integral derivative (PID) feedback controller for a solid oxide fuel cell, which combines 

the advantages of robust control and PID control, in order to automatically adjust 

control parameters when system encounters uncertainties and disturbances. However, 

they only considered the coupling effect of dynamic water transport in fluidic domain 

without taking the thermal domain dynamics into account.  

2.2   Model Experimental Validation and Discussion 
A commercial 1.2 kW Ballard NEXA 47 cells stack is used to perform the experimental 

validation, which is shown in the following figure 2.1. This PEMFC stack is supplied by 

compressed air and hydrogen. 
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Figure 2.1 Experiment platform: 1.2 kW Ballard NEXA 47 cells PEMFC stack,  

Ballard control system board, and measurements 

During the experiment, the Ballard control system is used to measure most of the 

experimental data, such as the oxygen flow rate, gas temperature, fuel cell stack 

current and voltage, etc. The voltage of individual cell is measured by voltage 

acquisition module of National Instrument.  An embedded thermal sensor is used to 

measure the fuel cell stack temperature. 

2.2.1   Experimental Validation of Dynamic Model 

Firstly, the comparison of simulation and experimental results of single cell polarization 

curve are shown in the figure 2.2. It can be seen from the results that, the polarization 

curve from the proposed model shows an exact conformity with the real PEMFC. 

 

Figure 2.2 Experimental validation of polarization curves. 
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In order to further validate the presented dynamic fuel cell model through simulation 

and experiment, different current profiles (static and dynamic) for model validation 

purpose are presented in figure 2.3. 

 

Figure 2.3 Experimental validation under different stack current profile:  

(a) Long current step. (b) Short current step. 

The current profiles (figure 2.3) are applied to the developed model and to the real fuel 

cell stack. The predicted and measured real stack voltage are compared in figure 2.4. 

It can be seen clearly from the figure 2.4 that, the predicted voltage values from the 

model show a great agreement with the real fuel cell. In addition, the voltage dynamic 

behavior is also well reproduced by the model. Figure 2.5 shows the simulated and 

experimental stack temperature during operation, the comparison results show again a 

good agreement between them. 
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Figure 2.4 Experimental validation of stack voltage with different step current profile:  

(a) Long current step. (b) Short current step. 

 

Figure 2.5 Experimental validation of stack temperature with different step current 

profile: (a) Long current step. (b) Short current step. 
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2.2.2   Dynamic Membrane Water Content Results and 

Discussions 

The same current profiles (figure 2.3) are applied to the developed model. The model 

simulation results are shown in figure 2.6. Figure 2.6 (a) shows that the dynamic responses 

of water content at both cathode, anode sides and in the membrane after the long 

current step. From figure 2.6 (a), the cathode water content     increases at 100 s, 

because more water is produced at cathode side at high current. In contrast, the 

anode water content     decreases at 100 s, due to a higher water electro-osmotic 

drag flow (higher current) from anode to cathode. The green line represents thus 

membrane average water content   , which depend on the boundary conditions at 

both cathode and anode sides. The dynamic of membrane Ohmic resistance, which is 

highly depend on membrane water content based on equation 1.3, is also shown in 

figure 2.6 (b). It can be seen from the figure that, the transient time of membrane water 

content, thus the transient of Ohmic resistance, can last about 500 s. 

 

Figure 2.6 Dynamic responses after a current step:  

(a) Water content. (b) Ohmic resistance. 
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Figure 2.7 Dynamic responses after current step variation:  

(a) Water content. (b) Ohmic resistance. 

Figure 2.7 (a) shows that the dynamic responses to quick current step variation. From 

figure 2.7 (a), the anode water content     decreases sharply at a high current step, due 

to the high water electro-osmotic drag flow. It can be concluded from the figure that, 

the dynamic membrane water content    is directly related to the stack current 

variations. The corresponding dynamic behaviors of Ohmic resistance are shown in 

figure 2.7 (b). 

2.2.3   Effect of the Gas Supply Serpentine Channels and 

Discussions 

The major improvement of gas supply channels modeling by taking the channel 

geometric form into consideration can give a more accurate pressure distribution 

prediction in the fuel cell, which can lead to a more precise prediction of fuel cell 

voltage. A comparison of gas pressure drop in the channel between the developed flow 

field model and the model using straight channels assumption (as in the most of 

literature) is given hereafter, in order to highlight the importance of channel geometric 

form on the pressure modeling accuracy. 

Comparison of simulation results of pressure drop in the channels of two modeling 

approaches with different step current profile are shown in figure 2.8 and figure 2.9.  
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Figure 2.8 Comparison of pressure drop in the channels of two modeling approaches 

with long step current: (a) Cathode channels. (b) Anode channels. 

From figure 2.8 (a), it can be seen clearly from the figure that, the predicted pressure 

drop is much higher with the assumption of straight gas channel form. By taking the 

channel geometric form into consideration, the obtained pressure drop in the channel 

can be differed as much as 2.94 % of total channel pressure compared to the “straight 

channel” assumption. It has to be noted that, this pressure prediction error would not 

lead to a significant error in the fuel cell voltage value. However, it could lead to a 

wrong gas pressure distribution pattern on the surface of electrode for the electrode 

current density analysis for example. Thus, in order to get a more accurate gas channel 

pressure results, the channel geometric form has to be taken into account in the fuel cell 

model. The comparison of simulation results of pressure drop of two modeling 

approaches with short step current is also presented in figure 2.9. 
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Figure 2.9 Comparison of pressure drop in the channels of two modeling approaches 

with short step current: (a) Cathode channel. (b) Anode channels. 

2.3   2-D Model Simulation Results and Discussions 

2.3.1   Model Grid Independence Analysis 

The model grid independence analysis determines the minimum mesh grid number 

needed for a multi-dimensional model. When increasing the mesh number, if the 

changes of model outputs are less than a pre-defined acceptable error, this mesh 

number can be considered to meet the independence criteria.  

Table 1.1 Mesh Grid Independence Check for 2D Model Output 

Mesh number 
Model outputs difference (%) 

(to previous mesh number results) 

32 - 

48 0.314 

64 0.132 

128 0.015 

256 0.007 
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The proposed 2-D model output voltage differences for different control volume 

numbers of uniform segments are shown in the table 1.1. It can be concluded from the 

table 1.1 that, when the mesh number is larger than 256, the model outputs difference is 

less than 0.01%, thus it can be consider that the model outputs are no longer affected by 

the change of mesh grid size.  

2.3.2   Results and Discussions 

The proposed 2-D model thoroughly considers the geometric form of parallel serpentine 

flow field in the fuel cell. The oxygen pressure distribution in the cathode three-parallel 

serpentine channel, and hydrogen pressure distribution in the anode single-parallel 

serpentine channel are shown in figure 2.10 (non-uniform mesh grid distribution of each 

side).  

 

Figure 2.10 Gas pressure distribution in the parallel serpentine channels:  

(a) cathode side. (b) anode side. 

As shown in the figure 2.10, both the oxygen and hydrogen pressure decrease gradually 

along the direction of the air flow in the parallel serpentine channels, due to the 

progressive consumption of reactant gas along the channels. As mentioned in the 

previous section, by taking the channel geometric form into consideration, the non-

uniformity distribution results can be effectively obtained. 

The 2-D simulation results of physical quantities in GDL layer (electrode) are also 

illustrated under different oxygen stoichiometry ratio  , which defined by: 
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where           is the inlet oxygen molar flow rate. Based on the segment independence 

analysis results, the mesh number 600 is chosen for the proposed 2-D model experimental 

validation, in order to give an accurate distribution results.  

When the cell current is set to 27.5A, the oxygen pressure distributions on the surface of 

electrode (GDL) under different oxygen stoichiometry ratio are shown in the figure 2.11.  

 

Figure 2.11 Oxygen pressure distribution on the surface of GDL under  

different oxygen stoichiometry: (a) τ=1.68. (b) τ=4.94 

It can be clearly observed from the figure 2.11 (b) that, under a higher   condition 

      , the oxygen pressure variation is less significant compared to figure 2.11 (a). That 

is because the oxygen supply excess rate is higher, and further lead to a more uniform 

oxygen pressure distribution on the surface of electrode. 

Under the same current, the current density distributions on the surface of electrode are 

also shown in the figure 2.12.  

It can be seen from the figure 2.12 that, the current density distribution is similar to that of 

oxygen pressure. The oxygen pressure at catalyst layer is higher at channel inlet than 

outlet, which leads to a higher current density at air inlet. As shown in the figure 2.12 (a), 

under the condition τ=1.68, the maximum difference of current density is about 45% 

between fuel cell inlet and outlet. It can be also observed from the figure 2.12 (b) that, 
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under a higher τ condition τ=4.94, the current density distribution gradient is less 

significant compared to figure 2.12 (a). In this case, the maximum difference of current 

density is only about 15% between fuel cell inlet and outlet. 

 

Figure 2.12 Current density distribution on the electrodes under different oxygen 

stoichiometry: (a) τ=1.68. (b) τ=4.94 

2.4   Dynamic Phenomena Coupling Analysis 
The dynamic fuel cell model has been presented for the purpose of fuel cell control 

performance optimization. The fuel cell dynamic behaviors in different physical domains 

are indeed inter-coupled between each other and the variation of one would influence 

another. The dynamic variable coupling analysis should be performed for fuel cell system 

in order to develop an optimized control algorithm.  

The water and thermal management is very important for the fuel cell performance and 

efficiency. For the thermal domain, the fuel cell temperature dynamic behavior is the 

most significant dynamic in the fuel cell stack. The time constants of fuel cell system in 

thermal domain can be relatively long, due to large thermal capacities and volumes of 

cell components (bipolar plates, membrane, etc.) [5]. For the fluid domain, The dynamic 

of the membrane water content is another significant dynamic phenomenon in the fuel 

cell stack, which has similar transient time constant compared to temperature dynamic 

in the thermal domain. It is thus necessary to analyze the variable coupling between 

these two fuel cell operational parameters. 
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It should also be noted that, as shown and discussed in the previous section, a non-

uniform distribution of current density in the fuel cell electrode can be observed due to 

the reactant gas pressure variation in the gas supply channels. A more homogenous 

distribution of current density can maintain the stability and improve the long-term 

performance of the fuel cell system. The current density distribution is simultaneously 

affected by the dynamic phenomena in both thermal and fluid domains. Therefore, it 

should also be carefully considered for coupling analysis in order to provide insights into 

the variable interaction among three different physical domains. 

In this section, detailed expressions of time constant for temperature and membrane 

water content are given at first, followed by analyses of step responses for various fuel 

cell system input variables. The corresponding dynamic variable coupling analysis is 

introduced and discussed at last. 

2.4.1   Expressions of Time Constant for Temperature and 

Membrane Water Contents 

The expression of time constant of temperature in thermal domain can be deduced 

from the general first order dynamic form [5]: 

         
            

                                    
                                                   

Thus, in the thermal domain, the fuel cell temperature transient response time can be 

estimated to be 497s in the case of studied 1.2 kW Ballard NEXA fuel cell stack. 

For the time constant of membrane water content, the left hand side of equation 1.34 

becomes zero in steady-state, and the steady-state membrane water content value 

         (s) can be obtained: 

         
                      

                    
     
   

           

                                               

Then the water content dynamic in transient state can be obtained in a general first 

order dynamic form: 

                
  

                    
     
   

           

 
   
  

                                                

And the expression of time constant of water content in membrane        (s) can then 

be obtained by the following equation: 
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It can be seen clearly from equation 2.4 that        is determined by stack current  . Thus, 

the system time constant value of water content        can be estimated to 108.75 s 

when stack current is 27 A, means that the response time of membrane water content 

variation can last about 435 s. This value is in agreement with the results shown in figure 

2.6. 

It can also be seen that, temperature in thermal domain and membrane water content 

in fluidic domain have very similar dynamic time constant. It is thus necessary to analyze 

the variable coupling between these two fuel cell operational parameters.  

2.4.2   Analyses of Step Responses 

2.4.2.1   High Efficiency Operating Region 

In order to understand the effects of fuel cell operational parameter coupling from a 

control point of view among three different physical domains, the fuel cell system can 

be considered as a multi input and multi output (MIMO) system, where four possible 

control input variables are listed as follows: 

1)  The coolant inlet temperature             (controlled by heat exchanger and 

bypass circuit); 

2)  The gas channel inlet temperature                (controlled by inlet/outlet gas heat 

exchanger); 

3)  The gas supply channel inlet water vapor pressure            (controlled by gas 

humidifier); 

4)  The inlet air molar flow rate            (controlled by air compressor). 

And four controlled output variables in the proposed MIMO system are listed as follows: 

1)  The membrane electrode assembly (MEA) temperature          ; 

2)  The bipolar plate temperature         ; 

3)  The membrane water content          ; 

4)  The uniformity coefficient of current density distribution on the electrode         . 
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where the uniformity coefficient          is the current density ratio between the highest 

and the lowest value on the same electrode. This coefficient is proposed to describe the 

degree of uniformity of current density distribution.  

Thus, the non-linear state space equations of this MIMO system can then be expressed 

as follows: 

 
 
 
 
 
 

 
 
 
 
 
                                                               

                                                              

                                                                   

             
                

                
                                                          

                                                                        

   

         

        
         

        

                                              

                                       

As the above fuel cell MIMO system state space shown, the vector form representations 

of the manipulated input variables is                                                     
 , and the 

controlled output variables is                                          
 .   ,   ,    and    

can be derived using the formula of the physical modeling equations presented in 

chapter II. Since there is a complicated non-linear mathematical relationship between 

input and output variables, examining the dynamic responses of controllable outputs 

after step changes of inputs are particularly useful for having insight on the possible 

variable coupling. Figure 2.13 - 2.16 show the simulated dynamic responses of 

controllable outputs after step changes of different inputs.  
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Figure 2.13 The MIMO system outputs response after step change of            . 

 

Figure 2.14 The MIMO system outputs response after step change of               . 

The first operating point is set to between 1/3 and 1/2 rated power point, which 

corresponds to the high efficiency operating region of fuel cell system. Figure 2.13 shows 



 

 

53 

 

the dynamic response of the MIMO system outputs after step changes of the coolant 

inlet temperature. An increase of the coolant inlet temperature is set at 300 s, which lead 

to an increase of temperature both in the bipolar plate and MEA. It further results in an 

increase of the saturation vapor pressure. Therefore, the water activity    decreases, as 

well as the membrane water content at cathode side at 300 s, as the green line shows 

at the bottom of the Figure 2.13. The uniformity coefficient, presented by the purple line 

on the same figure, slightly increases at 300 s. It means that the distribution of current 

density on the electrode is less homogeneous. Similarly, when the coolant inlet 

temperature decreases at 1650 s, it results in an opposite effect on the four fuel cell 

variables. 

Figure 2.14 shows the dynamic response of the MIMO system outputs after step changes 

of the channel inlet air temperature. An increase in the bipolar plate temperature and 

MEA temperature can be observed when the channel inlet air temperature is increased 

at 300 s. With the MEA temperature increase, the membrane water content decrease, 

as the green line shows. At the same time the purple line indicates a slightly less 

homogenous distribution of current density with the increase of gas channel inlet 

temperature. 

Figure 2.15 shows the dynamic response of the fuel cell MIMO system outputs after step 

changes of the gas supply channel inlet water vapor pressure. It can be seen from the 

figure 2.15 that membrane water content increases due to an increase of inlet water 

vapor pressure at 300 s. For the thermal domain, a step change of the gas supply 

channel inlet water vapor pressure has no significant effect on the temperature. For the 

electrical domain, an increase of channel inlet water vapor pressure makes the current 

density distribution slightly more dispersed. 

Figure 2.16 shows the dynamic response of the MIMO system outputs after step changes 

of the air inlet mass flow rate. An increase of air inlet mass flow rate has weak effects on 

the thermal domain. Due to the increase of air flow rate, the water removal rate 

increases, and further results in a decrease of the membrane water content. For the 

electrical domain, an increase of air inlet mass flow rate makes the current density 

distribution more homogenous. That is because the oxygen is supplied under a higher 

flow ratio. For the same oxygen consumption rate (same current), the oxygen pressure 

through the cathode gas channel is thus more uniformly distributed, and further leads to 

more homogenous distribution of current density on the fuel cell electrode. 
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Figure 2.15 The MIMO system outputs response after step change of           . 

 

Figure 2.16 The MIMO system outputs response after step change of           . 
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2.4.2.2   Rated power Operating Region 

For a well-designed fuel cell hybrid powertrain with a proper energy management 

strategy, the operating range of the fuel cell system would be either in its “max 

efficiency” zone, or in its “rated power” zone. Thus, a coupling analysis is also performed 

for the operating point in “rated power” region (i.e. for the studied NEXA stack, it 

corresponds to a fuel cell current of 42 A), where the fuel cell system power is close to its 

rated value. The simulated dynamic responses of the MIMO system outputs after step 

changes are shown in the figures 2.17 - 2.20. 

It can be seen from figures 2.17 - 2.20 that, for the operating point in the "rated power” 

region, the four variation ranges of membrane water content           are reduced 

compare to that of figures 2.13 - 2.16 as shown in the previous section. That is because 

when the fuel cell system operates at “max power” region, the dynamic behavior of 

membrane water is changed and lead to an insensitive          . Based on the 

presented analyses of step responses, detailed analyses of coupling effects between 

inputs and outputs are further given in the following section. 

 

Figure 2.17 The MIMO system outputs response after step change of            . 
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Figure 2.18 The MIMO system outputs response after step change of               . 

 

Figure 2.19 The MIMO system outputs response after step change of           . 
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Figure 2.20 The MIMO system outputs response after step change of           . 

2.4.3   Coupling Analysis Using RGA Method 

2.4.3.1   Relative Gain Array 

In order to quantitatively analyze the interactions among multiple control loops, the 

relative gain array (RGA) method in control theory are carried out in this study. RGA 

method is a theory developed by Bristol in 1966 [6] [7] to quantify the degree of 

interaction of input and output variables. For a   inputs   outputs system, the     matrix 

RGA is given by: 

                                         

         
           
         

                                                                               

The open-loop gains of the  -th controlled outputs are determined based on the 

response to a change of the  -th manipulated inputs, and all other manipulated inputs 

remain constant: 
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where    represents the control inputs            ,                           and            

respectively.    represents the system outputs                    ,           and         , 

respectively. 

In order to give a clear implications of interactions among control loops, the RGA 

analysis rules are expressed based on the values of    : 

1)       , a change of    produce an opposite direction effect on    when other 

control loops are closed, the sign of open-loop gain between    and    is 

changed. In this case, the selection of control pairing   -   should be avoided; 

2)       , a change of    can not affect    and therefore should not be used to 

control   . In this case, there is no interaction between control pairing   -   and 

other control loops (i.e., coupling does not exist); 

3)         , there exist two effects: the effect of open-loop gain between    and 

  , and the effect from other control loops. The effect of open-loop gain from 

control pairing   -   increases with the value of    . When        , the two effects 

are equivalent, there is a strongest coupling effect between the two control 

variable pairs for a two inputs two outputs system. When          , the open-

loop gain of control pairing   -   becomes the dominant effect. In this case, the 

most suitable control variable pairing should be   -  , and optimized control 

results could be achieved by using a decoupling control method [1] [8]; 

4)       , the relative gain   indicates the most suitable control variable pairing   -  , 

since the open-loop gain between    and    is not affected by the interaction 

from the other control loops. In this case, there is no coupling between variable 

pairing   -   and other control loops; 

5)       , the effect of other control loops enhance the open-loop gain between    

and   , the larger     is above the unity, the greater will be this effect. In this case, 

variable pairing   -   is recommended when     is not very large, a multivariable 

control design [9] could be used to achieve optimized control performance; 

6)       , a value of      greater than 3 indicates that the system is difficult to 

control due to strong coupling effects from other control loops, and is also 

sensitive to input uncertainty (e.g., cause by neglected actuator dynamics) [10]. 

In this case, a robust decoupling control strategy [4] could be used to achieve 

optimized control performance. 
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2.4.3.2   Coupling Analysis of the Proposed MIMO system (High 

Efficiency Operating Region) 

When the MEA temperature          , the bipolar plate temperature         , the 

membrane water content          , and the uniformity coefficient of current density 

distribution on the electrode          are viewed as outputs 

                                           
 , the formula of this four inputs four outputs 

system can be described as follows: 

                   

         

        
         

        

          

 
 
 
 
           

              
          
           

 
 
 
                                                         

It should be noted that, the transfer function          is highly non-linear. In order to 

linearize the non-linear system equation 2.8, two common operating points of fuel cell 

system in typical fuel cell hybrid powertrain are selected for the analysis. The first 

operating point is set to between 1/3 and 1/2 rated power point, which corresponds to 

the high efficiency operating region of fuel cell system.  

On the other hand, the magnitude range difference of each physical parameter is very 

large. For example, the variation range of control input             is from 297.15 K to 303.15 

K, the variation range of control input            is from 2814 Pa to 4700 Pa. In order to 

analyze the coupling effect of different physical parameters in the same RGA, their 

numerical variation ranges are normalized firstly prior to the RGA analysis.  

Table 2.1 Relative Gain Array of System among Thermal, Fluidic and Electrical 

Domain in Fuel Cell High Efficiency Operation Range 

                                                  

          -2.6948 3.6892 0.0056 0.0000 

         3.5376 -2.5309 -0.0083 0.0016 

          0.1859 -0.1899 1.0369 -0.0329 

         -0.0287 0.0316 -0.0343 1.0314 

Then by applying RGA method to the normalized parameters of MIMO system 

equation 2.8 in fuel cell high efficiency operation range, table 2.1 presents the 

calculated corresponding steady-state RGA values between different input/output 

variables. It can be seen from table 2.1 that, the RGA elements absolute value of    ,    , 
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    and     are relatively large, indicate that there exist a strong coupling effects. The 

RGA element value     indicates that the thermal control input             have an 

intermediate coupling effect on fluidic variable          . These two observations are in 

agreement with the analysis result of time constant in section 2.4.1, that coupling effects 

may exist between the thermal variable and fluidic variable membrane water content 

due to similar dynamic time constant values. 

It can be concluded from the RGA elements value of    ,    ,     and     that, input 

variable            has a direct control effect on the          , at the same time it has little 

effect on other three output variables. The similar conclusion can be also obtained for 

input variable           . As the RGA elements value of    ,    ,     and     indicated, the 

input            has a direct control effect on         , but it has little effect on all other 

output variables. 

2.4.3.3   Coupling Analysis of the proposed MIMO system (Rated 

Power Operating Region) 

In addition to the high efficiency operating region, the second operating point is set to 

around its rated power point, which corresponds to the high power operating region of 

fuel cell system. In this case, table 2.2 presents the calculated corresponding RGA values 

between different input/output variables. 

Table 2.2 Relative Gain Array in Fuel Cell High (Rated) Power Operation Range 

                                                  

          -3.0861 4.0767 0.0094 0.0000 

         4.0384 -3.0351 0.0135 -0.0167 

          0.1227 -0.0966 0.9817 -0.0078 

         -0.0750 0.0551 -0.0046 1.0245 

From table 2.2, the similar coupling effects can be observed, and the same results of 

coupling analysis can be obtained. Thus it can be concluded that, there exist the similar 

coupling effects between thermal and fluidic domains in the proposed MIMO system for 

both fuel cell system typical operation points. 

2.4.3.4   Coupling Analysis of Sub-System 

From the analyses in the previous section, it could be possible to separate the proposed 

MIMO system into two control sub-systems by minimizing control coupling effects 
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between each other. The linearized formula of first possible sub-system can be described 

as follows: 

                     

         

        
         

            

           
              
          

                                                          

Table 2.3 Relative Gain Array of First Sub-System 

                                       

          -2.7098 3.7040 0.0057 

         3.5451 -2.5362 -0.0088 

          0.1647 -0.1678 1.0031 

Table 2.3 presents the corresponding RGA values for new three inputs three outputs sub-

system in fuel cell high efficiency operation range. As analyzed in the previous section, 

large RGA elements indicate that the control design is critical and challenging due to 

existence of coupling effect. In this case, a robust decoupling control strategy [4] is 

recommended to achieve the optimal control objectives for output variables. For 

example, in [4], a single neuron adaptive PID feedback controller is proposed, which 

can eliminate the interference derived from the coupling effect.  

On the other hand, as the previously analyzed, the variable          could almost be 

independently controlled by input variable           , which can be considered as the 

second one input one output control sub-system: 

                                                                                                                       

Furthermore, by conducting the same analysis for the rated power operating point, 

similar sub-systems separation can also be obtained for the proposed fuel cell MIMO 

system. 

Based on the above analysis, it can be concluded that, different fuel cell operational 

parameters coupling can be observed among different physical domains during fuel 

cell operation. When a coupling effect exists, special attention should be paid for 

control system design, in order to achieve an optimized control performance for fuel cell 

systems. 
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2.5   Conclusion 
Although the coupling of dynamic phenomena in a fuel cell has an important influence 

on the control design of fuel cell system, very little information has yet been published in 

the literature on the analysis of interaction between fuel cell dynamic variables in 

different physical domains. The first part of this chapter investigates in particular the 

coupling effect between the dynamic behaviors during fuel cell transient operation, 

based on the proposed improved dynamic multi-physical proton exchange membrane 

fuel cell model, which can be found in the previous works [11] [12]. 
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Chapter III: PEMFC 2-D model numeric 

solver development for Real-Time 

Control Implementation 
 

As mentioned before, the quantitative analyses in Chapter II can provide us useful 

information for modeling assumptions (simplification), which can be used to simplify the 

2-D modeling. For example, since the tortuosity ι and porosity ε can be considered as 

insensitive parameters for a lower fuel cell stack current, the diffusion mass transport can 

be reasonably neglected. In this case, there is no total pressure gradient in the gas 

diffusion layer. During the development of fuel cell model with these simplifications, 

the computational complexity can be effectively reduced while maintaining a high 

accuracy. 

The main objective of this paper is to present a novel 2-D PEMFC modeling approach 

based on a numerical solver tridiagonal matrix algorithm (TDMA) for real-time control 

implementation. The proposed PEMFC model covers multi-physical domains in both 

fluidic and electrochemical. The major contributions of this paper can be summarized as 

follows: 

1)  A novel non-uniform control volumes mesh grid is defined in fluidic domain 

modeling based on channel geometric patterns, in order to thoroughly describe 

the gas flow characteristics by taking the fuel cell flow field geometric form into 

consideration. In addition, the differential equations of reactant gas convection 

and diffusion phenomena are transformed into tridiagonal systems of equations, 

which can be efficiently solved by tridiagonal matrix algorithm. 

2)  An implicit iterative solver has been developed to solve spatial physical quantity 

distributions for electrochemical domain. This original iterative solver algorithm is 

composed by three interactive computational loops and uses a robust 

convergence method for real-time computation. 

3)  The practical feasibilities of the proposed 2-D model in advanced real-time 

control of PEMFC systems have been experimentally demonstrated in a RT-LAB 

real-time simulator. The computing technologies presented in this paper are 

original for real-time PEMFC model and completely independent of commercial 
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platform. It can be easily implemented to any embedded controller of PEMFC 

systems. 

3.1   Literature Review 
Different from the common modeling approach, a real-time oriented fuel cell model has 

more restrictions: the accuracy and computational efficiency of a real-time fuel cell 

model are both crucial for model based control process [1]. A sophisticated fuel cell 

model can provide comprehensive physical quantities for model-based control design 

and optimization. While the high performance computation of a fuel cell model ensures 

the model-based controller can be efficiently implemented in real-time applications 

with a low cost of computations. Several real-time control-oriented PEMFC models have 

been previously presented in the literature [2]-[4]. 

Jung et al. [2] present a PEMFC real-time model, which considers both the electrical and 

thermal dynamics. In order to reduce the computational burden, three optimization 

strategies are used: minimizing algebraic calculation, model separation and reducing 

the layer structure.  

Gao et al. [3] develop a cell-level dynamic PEMFC model, which covers 

electrochemical, fluidic and thermal domains. A top-down design approach is used to 

provide an efficient PEMFC model structure. By using VHDL-AMS language, the 

developed model can be used in the hardware-in-the-loop application. 

Colclasure et al. [4] describes a physical-based transient solid oxide fuel cell (SOFC) 

model, which considers the coupled interactions of multiple physics. In order to facilitate 

the real-time control applications, linear model reduction method is used. 

However, their models remain in 1-D. During the model-based control process, the 

spatial physical quantity distribution is neglected, such as gas pressure gradient in the 

channel, or current density distribution on the surface of electrode. Many PEMFC 2-D 

models have been previously proposed in the literature [5] [6]. However, a common 

drawback of these models is the computational complexity of mathematical operations. 

For example, as mentioned before, the commonly used complex computational fluid 

dynamic (CFD) models are not suitable for real-time simulation, since the computational 

burdens are too heavy. 
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3.2   Tridiagonal Matrix Algorithm for Real-Time 

Simulation 
The tridiagonal matrix algorithm is an efficient numerical solver, which can be applied 

iteratively for solving multi-dimensional problems [7]-[9]. The tridiagonal matrix algorithm 

uses a special form of Gaussian elimination, in order to solve a set of equations for 

tridiagonal system in a backward substitution. Therefore, it can reduce the 

computational time and memory usage considerably [9].  

3.2.1   Tridiagonal Matrix Algorithm 

A The TDMA is an efficient numerical solution for solving tridiagonal matrices. The TDMA 

consists of two steps: a forward elimination procedure and a backward substitution 

procedure. A tridiagonal system can be written as the following equations in the 

tridiagonal matrix form: 

 
 
 
 
 
 
                                           

                                             
                      

 
                                                  
                                               

 
 
 
 
 

 
 
 
 
 
 
  
  
  
 

    
   

 
 
 
 
 

 

 
 
 
 
 
 
  
  
  
 

    
   

 
 
 
 
 

                                                    

where   denoted the non-zero inputs of tridiagonal system.  

For the first line: 

                                                                                           

Divide both sides of the equation 3.2 by   : 

                                                                                          

with  

 
 

    
  
  

   
  
  

  

In order to forward eliminate   , the equation 3.3 multiplied by    and minus the second 

row of equation 3.1: 

                                                                                         

Divide both sides of the equation 3.4 by        : 
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with  

 
 

    
  

       

   
       
       

  

Similarly, in order to forward eliminate   , the equation 3.5 multiplied by    and minus the 

second row of equation 3.1: 

                                                                                         

Similar forward elimination procedure is repeated until the   row, the tridiagonal matrix in 

equation 3.1 can be transformed into a upper triangular matrix: 
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The inputs of tridiagonal system   can then be solved by backward substitution: 

 
 
 

 
 

     
                

 
          
          

                                                                        

Thus, the general solution for tridiagonal system equation 3.1 can be written as the 

following equations: 
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A detailed schematic diagram of the TDMA is presented in the following figure 3.1. It is 

worth specific mention that, by using this special form of Gaussian elimination, and 

solving the tridiagonal matrices in such backward substitution, compared with 

straightforward Gaussian elimination      , the arithmetic complexity of TDMA 

exponential decays to operations     . It means that, if total number of control volumes 

is 32 (the elements number of inputs   in tridiagonal system), the model computation 

speed can be 1024 times faster compared with Gaussian elimination. Such fast solving 

speed allows to significantly reduce the computational time and memory usage. 

For n=2:1:N

end

Step1: forward elimination

Step2: backward substitution

For n=N:-1:2

end

 

Figure 3.1 Schematic diagram of the TDMA. 

3.2.2   Modeling Hypotheses 

In order to be able to simulate the model in real-time while keeping the accurate spatial 

non-homogeneous effect prediction and model accuracy, some assumptions are used 

when modeling the PEMFC stack. 

1) The two-phase flow of water is ignored, but the liquid water saturation, vapor 

transportation and pressure gradient is considered in the proposed model; 

2) The gas flow in the channel and diffusion through the GDL is considered in steady 

state, since the transient time constant of fluid is relatively short (microsecond or 

millisecond); 
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3) The diffusion mass transport due to total pressure gradient is neglected; 

4) The activation losses      of the anode side are neglected due to the fast 

electrode kinetic of hydrogen gas in PEMFC; 

5) The Ohm losses are only determined by resistance of Nafion membrane, the layer 

contact resistance, electrode resistance are negligible; 

6) The reactants are considered as ideal gases; 

7) The geometric characteristics of each layer remain unchanged. 

3.2.3   Solve Reactant Gas Convection 2-D Model Using 

Tridiagonal Matrix Algorithm 

The control volume partitions of cathode parallel serpentine channel are shown in the 

figure 3.2 [10]. Based on the gas supply channel geometry, the gas supply channel can 

be divided into two sections, denoted as “straight volume” and “bend volume”, as 

illustrated in figure 3.2. From figure 3.2, the thin dotted line channel control volume is in 

the straight section, denoted as “straight volumes” of gas channel. In contrast, the bold 

dotted line channel control volume is in the curved section, denoted as “bend volumes” 

of gas channel.  The direction of gas convection flow is marked with arrows.  

 

Figure 3.2 Control volume partitions of cathode gas supply  

channel based on the geometric form. 
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In order to employ TDMA, the equation 1.43 should be discretized in the serpentine 

channel based on finite volume method. In addition, all the discretized equations should 

be transformed into tridiagonal matrix as expressed in equation 3.1. Taking the gas 

pipeline A (shown in the figure 3.2) as an example, the control volume mesh grid 

definitions are shown in figure 3.3. 

...
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... . . .
.
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Channel 
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Figure 3.3 Control volume mesh grid definition of  

the “gas pipeline A” marked in the figure 3.2. 

Based on the discretization using finite volume method, for each control volume, the 

fluid mass flow entering into a control volume is equal to the fluid mass flow leaving out a 

control volume due to convective transportation. Thus, for the control volume 1 shown in 

the figure 3.3: 

                                                                                             

where        is the gas mass flow at gas supply channel inlet 

Based on the assumption 2), the fluid behaviors considered in strady state. Thus, the 

discretized form of equation 1.13 can be expressed as the following form: 

  

  
 
    

    
                                                                                   

Thus, the fluid mass flow   can be written as: 

  
  

  

    

   
                                                                            

The equation 3.11 can be written as: 
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where        is the pressure at gas supply channel inlet. Thus, for equations of all the 

control volume: 

 

         
     

 
           

                                                                                

the following equations can be obtained: 

 
 
 
 

 
 
 

         
        

    

   
 
     
    

    

   

     
    

    

   
 
     
    

    

   
 

           
          

    

   
 
             
            

    

   

                                                    

where      is the distance between two adjacent control volumes   and  . Equation 3.15 

can then be written as the tridiagonal matrix: 

 

                         
                     

 
                                       

                                               

where        and        is considered as boundary conditions, since they are known. 

Equation 3.16 describes the reactants flow behaviors in a tridiagonal matrix form, which 

can be directly employed the TDMA. After solving equation 3.16 using TDMA, the 

pressure distribution due to the mechanical losses suffered in straight channels (    ,     ) 

can be obtained. Then the pressure distribution in the serpentine channels can be 

further obtained based on the equation 1.43. 

3.2.4   Solve Reactant Gas Diffusion 2-D Model Using 

Tridiagonal Matrix Algorithm 

In order to clearly show the calculation procedures of TDMA, the “fluid adjacent 

volumes” are denoted as “F1-F6”, the “solid adjacent volumes” are denoted as “S1-S3”, 

as illustrated in figure 3.4 [10]. Take the “solid adjacent volumes S2” as an example. Due 

to the diffusion phenomena, the reactant gas molar flow (mol/s) entering the “S2” 

including three parts: diffusion from “F3” to “S2” (x-axis, marked with arrow 1); diffusion 

from “F4” to “S2” (x-axis, marked with arrow 2); diffusion from “S1” to “S2” (y-axis, marked 

with arrow 3). The reactant gas molar flow (mol/s) leaving the “S2” including two parts: 

diffusion from “S2” to “S3” (y-axis, marked with arrow 4); diffusion from “S2” to catalyst 

layer (z-axis, marked with arrow 5). 
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Figure 3.4 Diffusion phenomena for “solid adjacent volumes S2” 

In the steady state, the gas molar flow entering the “S2” is equal to that of leaving: 

                                                                                        

where   is the gas molar flow. Since the gas molar flow is determined by the pressure 

difference between two control volumes, thus the equation 3.17 can be expressed as: 

                                                                             

All these diffusion phenomena in the gas diffusion layer, except the above-mentioned 

current-driven one   , can be described by the modified Fick's diffusion law equation: 

      
             

   
   

        
                                                                

where         is the gas molar flow rate of specie x,      is the gas diffusion area,         
   

 

is the gas diffusion coefficient,   is the ideal gas constant,      is the temperature of GDL, 

  is the center point distance between two control volumes. Thus, equation 3.18 can be 

rewritten by: 

                                                                              

where 
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In order to compute all the pressure of “solid adjacent volumes S2, S3, S3...”, the above 

equation can be extended to a set of equations: 

 
 
 
 
 

 
 
 
 

                                

               
             

  
                                

               
             

  
                                      

                 
             

  
 

                                          

Thus, equation 3.22 describes the reactants diffusion behaviors through GDL in a 

tridiagonal matrix form, which can be directly employed the TDMA. 

3.3   Implicit Iterative Solver 
In the proposed 2-D PEMFC model, the calculations of fluidic gas channel model is 

based on the non-uniform control volume (black mesh in the figure 1.10), while the 

calculations of electrode/electrolyte related physical quantities is based on the unified 

control volume (red mesh in the figure 1.10). 

It should be noted that, since the activation loss      appears in an implicit form in the 

Butler-Volmer equation 2.6, an iterative solving method should be developed to 

calculate      [11]. In addition, this iterative algorithm should also solve the current of 

each segment (current density distribution) and cell potential (fuel cell output voltage), 

which cannot be calculated explicitly a priori in a 2-D modeling approach. A detailed 

schematic diagram of the proposed iterative algorithm is presented in the following 

figures 3.5. 
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Figure 3.5 Schematic diagram of the proposed iterative solver (First level). 

As shown in the figure 3.5, the proposed solver consists of three levels bisection algorithm. 

The first level solver is the top level algorithm, which is used to compute cell potential       

(fuel cell output voltage), as shown in the figure. In order to resolve current value of 

each segment        (current density) based on the output of first level solver, a second 

level solver is included in the algorithm. The third level iterative solver is used to calculate 

activation losses        in the non-linear implicit Butler-Volmer equation 2.6. 

By knowing the total current value of fuel cell, and setting appropriate numerical ranges 

for activation losses of segments       , current value of segments       , and cell potential 

     , the cell voltage and individual current in each control volume can be properly 

calculated by the proposed iterative algorithm. 
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3.4   Experimental Validation 

3.4.1   Experimental Setup 

In order to allow a real-time implementation of the developed PEMFC model, the model 

physical equations, as well as the proposed iterative solver are written in pure C 

language. The model is then implemented in a RT-LAB real-time simulator (real-time 

processor operating at 2.5 GHz). The experimental setup of RT-LAB simulator and PEMFC 

test platform is shown in Figure 3.6. 

Temperature 

sensor
Ballard NEXA 

1.2kW PEMFC 

47-cells stack

Cell voltage 

acquisition 

module of 

National 

Instrument
Ballard control 

system board

Host console 

monitor

Host console 

Simulate

PEMFC stack and 

the test platform for 

experimental 

validation

 

Figure 3.6 RT-LAB real-time simulator platform setup. 

The RT-LAB real-time simulator used in this thesis has a real-time processor operating at 

2.5 GHz. For a real-time simulation, the model time step should be settled based on 

model complexity and computation performance.  

3.4.2   Experimental Results 

The real-time simulation bench mark results of the proposed model under different 2-D 

mesh number are shown in the table 3.1. 

It can be seen from the table 3.1 that, the model execution time increases quasi-linearly 

with mesh number, since there are more iterations should be solved for a higher number 

of control volumes. It can be concluded from this benchmark results that, the proposed 

2-D multi-physic PEMFC model in this thesis can be effectively used in real-time control 

implementations with a time step level on the order of milliseconds. 
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Table 3.1 2-D Real-Time Model Benchmark Results (2.5GHz CPU) 

Mesh number Model CPU execution time Model time step used CPU occupation 

32 7.429 ms 10 ms 73.3% 

48 12.308 ms 15 ms 82.1% 

64 17.731 ms 20 ms 88.7% 

128 43.061 ms 50 ms 86.12% 

256 101.218 ms 120 ms 83.35% 

600 257.193 ms 300 ms 85.73% 

It should be noted that, the iterative algorithm used in this thesis is completely 

independent of commercial platform, and can be easily implemented to any 

embedded controller of PEMFC systems. 

3.4.3   Real-Time Performance Comparison 

3.4.3.1   Comparison with Newton’s Method 

In order to show the advantages of the proposed 2-D model in terms of computation 

time, its performance is compared with a recently published research [12] in Table 3.2. 

Table 3.2 2-D Real-time performance comparison with Newton’s method [12]. 

Simulation Simulation duration Simulation time cost Ratio 

The proposed model with 

N=32 (2.5 GHZ CPU) 

800 s 297 s 37.12% 

1200 s 473s 39.41% 

Model in [12] with  

N=25 (2.4 GHZ CPU) 

800 s 431 s 53.87% 

1200 s 611 s 50.91% 

The pseudo-2D fuel cell model in [12] uses Newton’s method to solve the ordinary 

differential equations, which describe reactant transport only along the straight channel 

direction. It can be seen from Table 3.2 that, the proposed full-2D real-time modeling 

approach can achieve a faster computation speed with a more comprehensive two-

dimensional consideration and a slightly larger mesh number. It is also important to 

mention that, the model in [12] uses a commercial software solver (Matlab/Simulink), 

while the developed iterative solver is completely independent of commercial platform, 

and can be easily implemented to any embedded controller of PEMFC systems. 
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3.4.3.2   Comparison with Gaussian Elimination Method 

As mentioned before, as the proposed approach uses a special form of elimination and 

solves the tridiagonal system equations in backward substitution, the arithmetic 

complexity of tridiagonal equations system can thus be exponentially reduced 

compared to the classical Gaussian elimination method. This advantage is particularly 

evident for a larger mesh number. To show further this advantage, another Gaussian 

elimination based 2-D real-time modeling approach [13] has been used for 

performance comparison. 

It can be seen from the model computation time of different mesh numbers in Table 3.3 

that, the model CPU execution time in [13] is faster than that in this paper for a low mesh 

number (N<64). However, the CPU execution time in [13] significantly increases with 

increasing of mesh number. It can be observed that, when the mesh number N≥328, 

the CPU execution time could exceed 100 ms. And as mentioned in [13], for a large 

mesh number, the CPU execution time could exceed 1 second, thus making this model 

not suitable for real-time model-based controller applications. 

Table 3.3 2-D Real-time performance comparison with Gaussian method [13]. 

Mesh number 104 200 328 

Execution time 6.3 ms 39.5 ms 162 ms 

Although the model CPU execution time in this paper is higher than that in [13] for a low 

mesh number, the execution time quasi-linearly increases with mesh number when the 

mesh number N is larger than 128. And it can be observed that from Table 3.3, when the 

mesh number N=600, the execution time is 50.429 ms. Such short CPU execution time 

further demonstrates the effectiveness of the proposed modeling approach, especially 

for large mesh numbers. 
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3.5   Conclusion 
A 2-D multi-physical real-time model of proton exchange membrane fuel cell has been 

presented in this chapter. An innovative non-uniform 2-D mesh grid method is proposed 

for real-time simulation performance consideration. In order to efficiently calculate the 

physical quantities distribution in 2-D plane, an iterative solver is also developed in the 

model. The proposed original iterative solver algorithm is composed by three interactive 

computational loops and uses a robust convergence method for real-time computation. 

The proposed 2-D model has been tested in a RT-LAB real-time simulator and has been 

experimentally verified using a Ballard NEXA 1.2kW PEMFC stack. The experimental results 

demonstrate the practical feasibilities of the proposed 2-D model for advanced real-

time control of PEMFC systems with a control loop time level on the order of milliseconds 

[10] [14]. Such short execution time of the proposed 2-D model makes control decisions 

and actions based on the predicted local phenomena and spatial distribution physical 

variables inside the fuel cells. 
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Chapter IV: Degradation Prediction of 

Proton Exchange Membrane Fuel Cell 

Stack 
 

Two different degradation prediction methods for proton exchange membrane fuel cell 

(PEMFC) performance are proposed in this chapter. In the first part, a novel degradation 

prediction approach for proton exchange membrane fuel cell (PEMFC) performance is 

proposed based on a multi-physical aging model with particle filter and extrapolation 

approach. The proposed multi-physical aging model considers major internal physical 

aging phenomena of fuel cells, including fuel cell ohmic losses, reaction activity losses, 

and reactants mass transfer losses. By knowing a prior the parameter-function pairs, 

even when the acquired training data is extremely limited, this physical-based method is 

still able to provide acceptable results at immediate short prediction time range.  

However, the first physical-based method cannot be used in the on-line prognostic 

applications, since this single-step prognostic method makes predictions for a fixed 

horizon only. In order to improve the proposed method, iteration-based prediction 

methods are particularly useful to achieve a better performance in the on-line 

prognostic applications. 

For this purpose, an iteration-based prediction algorithm for performance degradation 

of PEMFC is proposed in the second part of this chapter. A novel approach using the 

moving window method is applied, in order to dynamically retrain the models during the 

forecasting process with new data inputs for iterative data training at next prediction 

step. In addition, since the proposed hybrid prognostic method is based on a 

combination of model-based and data-driven prognostic methods, it is able to capture 

both the fade trend and non-linear features observed in the fuel cell voltage 

degradation data. 

4.1   Literature Review 
As an advanced concept, the Prognostic and Health Management (PHM) of PEMFC is 

designed to minimize maintenance costs while increasing operational availability and 

utilization of PEMFC [1]. As a key process of PHM, the prognostics use a set of monitoring 

data from actual life cycles of PEMFC system, in order to indicate the future degradation 

trends as well as its current state of health [2]. Based on the degradation trends, the 
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PEMFC system impending faults and remaining useful life (RUL) can be predicted, the 

advent of failure can be further forecasted [3]. 

Generally speaking, there are two main approaches for degradation prediction: model-

based methods [4]-[6] and data-driven methods [7]-[12]. Model-based methods 

consider the real physical aging phenomena during the PEMFC degradation process. 

Although model-based methods need large computations and complex physical model, 

it can predict not only the system degradation trend (fuel cell output voltage decay 

over time), but also the information about the internal physical parameters during the 

degradation process. However, as mentioned before, the complexity of physical 

degradation phenomena makes it very difficult to build a reliable physical model of 

degradation. Several PEMFC model-based aging prediction methods can be found in 

the literature.  

Jouin et al. [4] present a prognostics framework to provide RUL predictions based on 

three voltage degradation empirical models: a linear, an exponential and a log-linear 

model. However, the empirical voltage degradation models are too simplified, the fuel 

cell operating conditions, such as operating current and temperature are also not taken 

into account.  

Bressel et al. [5] have proposed an empirical model of degradation. Based on Extended 

Kalman Filter (EKF) method, the proposed prognostic algorithm is able to estimate the 

PEMFC state of health and to predict its RUL under a variable load profile. However, the 

electrochemical kinetics in the proposed aging model is described by Tafel equation. 

Under a variable load profile, this aging model can lead to a large error of 

electrochemical activation loss, especially for small current values.  

Chen et al. [6] have developed a PEMFC lifetime quick evaluation method by taking the 

various changes of the operating condition into consideration. This method can achieve 

the RUL prediction in real-time applications. However, the fuel cell performance 

degradation is described by a linear aging model, which cannot truly reflect the non-

linear aging trend. Indeed, the fuel cell is a multi-physical system (electrochemical, 

fluidic, and thermal). Therefore, it is necessary to take into account aging process in 

different physical domains. 

In the proposed model-based method, a multi-physical aging model is developed to 

consider major internal physical aging phenomena of fuel cells, including Ohmic losses, 

reaction activity losses, and reactants mass transfer losses. In addition, the Butler-Volmer 
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equation is used in the proposed aging model to accurately calculate the 

electrochemical activation loss for all possible values of PEMFC stack current.  

On the other hand, the data-driven methods use pattern recognition, statistical or 

machine learning techniques, such as Artificial Neural Network (ANN) [7], Support Vector 

Machine (SVM) [8], and adaptive neuro-fuzzy inference system (ANFIS) [9], to track and 

predict the system non-linear characteristics. Compared with model-based approach, 

data-driven method can be easily implemented without specific knowledge of physical 

degradation.  

Marra et al. [10] proposed a neural network estimator of solid oxide fuel cells for its 

diagnostic. The proposed degradation estimator is trained based on a set of 

experimental data, in which includes stack current, temperature and reactant gas mass 

flow rate.  

Mao et al. [11] investigated sensor selection algorithms for prognostic of PEMFC. With the 

identified optimal sensor, an adaptive neuro-fuzzy inference system (ANFIS) is used to 

predict the performance of fuel cell system.  

Ibrahim et al. [12] proposed a data-driven approach for PEMFC prognostic based on 

Wavelet Transform technique. The prediction process consists of decomposition and 

reconstruction. This approach is able to predict the future power and estimate RUL under 

static and dynamic operating conditions of PEMFC system.  

However, a common drawback of these data-driven methods is that the degradation 

trend and non-linear behaviors cannot be simultaneously captured, thus make them 

inaccurate for prognostic. The proposed hybrid prognostic method is able to capture 

both the fade trend and non-linear features observed in the fuel cell voltage 

degradation data. In addition, a novel approach using the moving window technique is 

applied in order to iteratively update the prediction process when the newly measured 

data become available. This iteration-based prediction method is particularly useful to 

achieve a more accurate prediction when the initial training samples are limited. 
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4.2   Degradation Prediction Based on Multi-

physical Aging Model with Particle Filter Approach 
In this section, a multi-physical aging model of a PEMFC is developed at first. The 

presented aging model considers different physical aging phenomena including fuel 

cell ohmic losses, reaction activity losses and reactants mass transfer losses. The 

proposed aging model is then initialized by fitting the PEMFC polarization curve at the 

beginning of lifetime.  

During the prediction process, the aging dataset is then divided into two parts: learning 

and prediction phases. The particle filter framework is used to study the degradation 

characteristics and update the aging parameters during the learning phase. The 

suitable fitting curve functions are then selected to satisfy the degradation trends of 

trained aging parameters, and used to further extrapolate the future values of aging 

parameters in the prediction phase. By using these extrapolated aging parameters, the 

prediction results are thus obtained from the proposed aging model. Three experimental 

validations with different aging testing profiles have been performed. The results 

demonstrate the robustness and advantages of the proposed prediction method. 

4.2.1   Description of Aging phenomena 

In this section, the presented aging model is developed based on a previously 

developed multi-physical PEMFC model [13] [14]. In this model, each single cell is also 

divided into seven different element layers, and each layer modeling covers three 

physical domains: electrical, fluidic and thermal domain. It should be noted that, the 

time constant of aging process is much higher than the other physical dynamics in 

PEMFC system (thermal dynamic, membrane water dynamic, etc.). Thus, all the physical 

dynamics are removed in the proposed aging model compared to the original multi-

physical model. 

In order to model the aging process over PEMFC operating lifetime, the proposed model 

uses time-variant modeling coefficients to describe three most important aging 

phenomena in different physical domains [15] [16], including fuel cell ohmic losses, 

reaction activity losses in electrical domain, and reactants mass transfer losses in fluidic 

domain, as shown in the figure 4.1. 
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Figure 4.1 Degradation mechanisms considered 

in the individual lumped aging parameters. 

4.2.1.1   Aging Parameter Membrane Resistance 

The first aging phenomenon considered in the proposed aging model is described by 

ohmic losses of fuel cell, including layer contact resistance, electrode resistance and 

membrane resistance [16]. More explanations and causes of fuel cell ohmic losses are 
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shown in the figure 4.1 (first group). In order to describe the fuel cell ohmic losses during 

the degradation process, the first lumped aging parameter ohmic resistance (Ω) has 

been proposed as following: 

                                                                                                              

where the aging coefficient      indicates the aging degree of ohmic resistance. 

4.2.1.2   Aging Parameter Exchange Current Density 

In order to describe the reaction activity losses during fuel cell operation, the second 

lumped aging parameter exchange current density             (A/m2) has been proposed 

with the following form: 

                                                                                                                     

where the aging coefficient      reflects the aging degree of exchange current density 

over time. As a parameter who represents electrode kinetics, the exchange current 

density determines how easily the reaction can occur on the electrodes. The reaction 

activity losses may result from degradation of active electrode surface area, Nafion in 

contact with active area, or loss of catalyst material [16]. More explanations and causes 

of reaction activity losses are shown in the figure 4.1 (second group). 

4.2.1.3   Aging Parameter Gas Diffusion Coefficient 

In order to describe the losses of reactants mass transfer during fuel cell aging, the third 

lumped aging parameter gas diffusion coefficient               
   

 (m2/s) between the 

species x and y has been proposed under the following form: 

                        
                       

   
                                                      

where the aging coefficient      reflects the aging degree of fuel cell gas diffusion layer 

material that influences the reactants mass transfer. The losses of reactants mass transfer 

may result from the corrosion of electrode supporting material, increase of tortuosity due 

to catalyst particle ripening, or more difficult water removal due to degradation of 

polymer material [16]. More explanations and causes of reactants mass transfer losses 

are shown in the figure 4.1 (third group). 

4.2.2   Estimation Method 

Compared with the Extended Kalman filter (EKF) which only focuses on linear systems 

and Gaussian noise [17], [18], the particle filter (PF), which use the Monte Carlo 

sequence for solving integration problem in Bayesian estimation, has significantly better 
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estimation accuracy when non-linear battery models are used, since it focus on 

approximating the solution for non-linear and non-Gaussian system [19]-[22]. 

In this section, the state space representation of the proposed model is presented at first. 

Then, the Bayesian estimation method is introduced, followed by a detailed description 

of particle filter algorithm. 

4.2.2.1   State Space Model for Aging 

In order to give a clear structure of the proposed aging model, the proposed non-linear 

model can be written in the form of state-space representation as follows: 

                                 
            

                  
                                                                           

where    represents the state variable of system at time k,    the observed variables of 

system,    the input variables of system, the non-linear system observation equation   

can be derived using the formula of the electrical and fluidic domain modeling 

equations presented in chapter I.    and    the process and observation noises 

respectively. The system state    includes three aging parameters: 

                                                                                                                         

The schematic diagram of non-linear function   is shown in the figure 4.2. 

It can be seen from the figure 4.2 that, three aging coefficients are considered as the 

system state variables. The initial values of the three aging parameters               , 

             , and                 
   

 are obtained by fitting the polarization curve of PEMFC at 

the beginning of lifetime (described hereafter in section 4.2.3.1). Other modeling 

parameters (geometrical values or physical properties of the Ballard Nexa 1.2kW fuel cell 

stack) can be obtained in the previous work [13] [14]. 
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Figure 4.2 Schematic diagram of proposed aging model. 
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4.2.2.2   Bayesian Estimation 

In the framework of Bayesian estimation, the state variable    in the state space of aging 

model (equation 4.1- 4.3) is estimated based on the observation sequence            

         . Then, the optimal estimation of    can be written in the form of the 

conditional expectation: 

                                                                                               

The main idea of Bayesian importance sampling is that, a set of random sample particles, 

which are sampled from the known proposal distribution             , are used to 

approximate the posterior probability density function             . Thus,              can 

be rewritten as: 

                  
            

            
                                                              

Then the Summation form of equation 4.7 can be expressed by: 

             

 
 
     

       
   

   

 
        

  
      

        
                                               

 

   

 

where     
  are the particles sampling from             ,        

   are the normalized form of 

importance weights        , which can be expressed by: 

        
                   

            
                                                                     

Bayesian importance sampling is an effective method using Monte Carlo sequence. 

However, each step of importance weights calculation depends on all the previous 

observations, thus its computation is increasing with time. In order to avoid this 

deficiency, the sequential importance sampling is proposed. In this case, the 

importance weights are calculated recursively, and the proposal distribution can be 

rewritten as: 

                                                                                                   

From equation 4.10, the importance weights at time  -1 can be described as follows: 

     
                         

                
                                                                   

From equation 4.10 and 4.11, the importance weights at time   can be described as 

follows: 
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Thus, the relationship between   and      can then be expressed by: 

       

                   

                                          
      

                  

                 
                 

It should be noted that the system state variables follow a first order Markov process, and 

each observation are statistically independent. 

4.2.2.3   Particle Filter Framework 

From the previous analysis of Bayesian estimation based on the sequential importance 

sampling, a detailed particle filter algorithm can be described as follows: 

1) Initialization: the set of particle samples is obtained from the initial distribution at time 

t=0:   
                 , where   is the number of particles. 

2) Importance sampling: the proposal distribution is generated by: 

  
      

        
                                                                                  

3) Weights calculation: the state estimation is optimal with the assumption of 

    
        

            
      

     . It means that probability density function only depends 

on      and   , then each sample particle   
  can be obtained. Each sample particles 

weights can be calculated from equation 4.12 and 4.13: 

  
      

 
       

      
      

  

    
      

     
                                                                   

The importance weight at time t=0 is set to    . 

4) Normalize the weights: the set of new particle sample is obtained by normalized 

weights: 

   
    

     
                                                                        

 

   

        

5) Re-sampling: the effective sample size is defined by:            
  
  

   , the re-

sampling step is performed when      is smaller than the given threshold    . 

6) State prediction: calculate the state by the equation: 
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4.2.3   Prediction Methodology Implement 

In this section, the proposed model-based PEMFC performance degradation prediction 

method is given in detail. The initialization of three aging parameters is performed based 

on the initial polarization curve of PEMFC. Then, the proposed prediction method is 

divided into two stages: learning and prediction phases. During the learning phase, the 

particle filter estimator studies the system non-linear behavior, and at the same time 

updates the corresponding aging parameters. Based on these updated aging 

parameters, suitable fitting curve functions are then selected to extrapolate the values 

of aging parameters in the prediction phase. At last, by using these extrapolated aging 

parameters, the proposed aging model predicts the PEMFC degradation voltage in 

prediction phase. 

4.2.3.1   Initialization of Aging Parameters  

The performance of the proposed prediction method depends strongly on the initial 

estimation of aging parameters. In order to accurately estimate the initial values of 

aging parameters, these values are determined based on the reliable physical 

equations and experimental calibrations. 

4.2.3.1.1   Initialization of Aging Parameter Ohmic Resistance 

At the beginning of PEMFC lifetime, the ohmic losses are considered only in the 

membrane, the electrode resistance and layer contact resistance are negligible. Thus, 

the initial value of ohmic resistance can be calculated by the equation: 

                
       
    

 

    
                                                                  

where      is the thickness of the membrane (m),      is the membrane section surface 

(m2),      is the membrane resistivity and is highly dependent on water content      in 

polymer membrane, where                           . More detailed information 

about ohmic losses and water content equations can be found in [13]. With the 

membrane properties data given in [13], the initial value of first lumped aging parameter 

                is around 2.1e-03 (Ω). 

4.2.3.1.2   Initialization of Aging Parameter Exchange Current Density 

The initial value of exchange current density             is calculated by the following 

equation: 
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where         is the oxygen pressure (atm) at the interface of cathode catalyst layer,    

and    are two empirical parameters need to be identified through fuel cell 

experimental tests,    is the oxygen activation energy at electrode platinum interface 

(J/mol). With        ,        , the initial value of second lumped aging parameter 

               is around 0.1154 (A/m2). 

4.2.3.1.3   Initialization of Aging Parameter Diffusion Coefficient 

3) Initialization of               
   

: The initial value of diffusion coefficient between species   

and                 
   

 is calculated by the equation [13]: 

              
       

 

    
    

    

               
 

 

  

                 
 
                  

  
   

    

  
 
    

  
 

 
 

            

where      is the total pressure of species (atm),       is the critical temperature of species 

(K),       is the critical pressure of species (atm), and   is the molar mass of species 

(kg/mol). The coefficients   and   depend on whether one of the species is a polar gas 

or not and are determined accordingly,   is the porosity of the GDL and   is the GDL 

tortuosity. With the characteristic data of gas diffusion layer given in [13], the initial value 

of third lumped aging parameter               
   

    is around 6.7e-06 (m2/s). 

4.2.3.1.4   Genetic Algorithm 

In order to demonstrate the modeling accuracy and identify the initial values of aging 

parameters, the proposed multi-physical aging model is used to fit the experimental 

measurement of polarization curve at the beginning of PEMFC lifetime. As a commonly 

used strategy, the Genetic Algorithm (GA) is particularly suitable for such multi-

parametric and non-linear system. The purpose of GA is to find optimal solution for 

objective function, defined as follow: 

     
 
                      

 
   

 

    

                                                         

where    
 
 are the estimated parameter values at time   in the generation  ,    is the 

measured output value at time  , and        
 
  is the predicted output value. 

The flow diagram of aging parameters initialization using GA algorithm is shown in the 

figure 4.3. The main idea of GA is to generate a population of solutions and then to 

improve it using techniques of natural evolution, such as inheritance, mutation, selection, 
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and crossover method. This generational process is repeated until an appropriate 

solution can satisfy (optimize) the objective function. More detailed content about GA 

can be found in [23] [24]. 

As shown in the figure 4.3, the inputs of GA include fuel cell stack geometry parameters 

and physical properties, as well as operating condition of auxiliary components. In 

addition, the numeric variation range of above each aging parameter has been set to

±5% of their calculated initial values for the GA tuning. 

Nexa 1.2kW PEMFC stack
 geometrical parameters
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PEMFC system auxiliary 
components operating condition
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 algorithm
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Initial
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Figure 4.3 Flow diagram of GA for fitting the initial polarization curve. 

Figure 4.4 shows the polarization curve measured at PEMFC beginning of lifetime, and 

the GA fitting result of the proposed model. It can be seen from the figure 4.4 that, the 

identified aging model output fits very well to the experimental measurement over the 

entire current range by using the GA approach (the fitness value is 97.27%). The 

identified initial values of three aging parameters are, respectively,               =2.081e-

03 (Ω),              =0.1149 (A/m2), and                 
   

=6.839e-06 (m2/s). These three initial 

values are further used for particle filter to study the degradation characteristics in the 

learning phase of the proposed aging prediction method. 

 

Figure 4.4 Initial measurements of polarization curve and GA fitting results. 
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4.2.3.2   Prediction Method Design 

The proposed model-based prediction method is divided into learning phase and 

prediction phase. In order to give a detailed flow diagram of proposed algorithm design, 

the PEMFC experimental degradation voltage dataset and working conditions are 

presented at first. A Ballard NEXA 1.2 kW commercial PEM fuel cell stack is used in this 

experimental aging test. As shown in the figure 4.5, the PEMFC stack voltage is measured 

under a current of 36 A at a temperature of 40 °C. The experimental aging data is 

measured and recorded every ten minutes during the 400 hours experimental test. 

pt  

Figure 4.5 Experimental measurements of the fuel cell stack 

output voltage under a current of 36A at a temperature of 40 °C. 

It should be noted that, in order to eliminate the unreliable measurement data points 

before applying the proposed algorithm, a data post-processing is performed to down-

sample the original measured data. Thus, the available measured aging data consists of 

91 data points as shown in the figure 4.4. The learning phase point is set to   . It means 

that, by using the proposed prediction method, the aging parameters is trained and 

updated from 0 h to    h, the remaining data between the learning time    h and the 

end time 400 h is thus used to evaluate the consistency of the prediction results from the 

proposed aging model. 

The detailed flow diagram of proposed prediction methodology is shown in figure 4.6. It 

includes accordingly two parts: learning phase and prediction phase.  

For the learning phase, the objective of particle filter is to recursively estimate the state 

variables    based on the initial aging parameters and experimental aging voltage data. 

It should be noted that, during the particle filter based estimating process, the variance 

selection of process noise    is a compromise problem. A large variance of    can 

provide a set of sample particles with great diversity, and further expands the sampling 

distribution, while a small variance ensures a sufficiently fast convergence. The 
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observation noise    already exists in the experimental aging data, since the stack 

voltage is measured by physical sensors. 
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Figure 4.6 Schematic diagram of proposed prediction methodology  

including learning phase and prediction phases. 

The particle filter in the previous learning phase estimates and updates the state 

variables      at every sampling step, thus the non-linear behaviors of voltage 

degradation before the learning time    h can be fully captured. In order to well 

represent the captured aging behavior, the multiply exponential function is commonly 

used in the literature [25]-[28] to describe the degradation trend. Furthermore, linear, 

exponential, power, and Fourier series functions [29] can also well express the PEMFC 

aging process under constant current and temperature condition. Since the 

degradation trends of different aging parameters represent different physical aging 

progresses and degradation mechanisms, the above-mentioned fitting curve functions 

should be properly selected for each aging parameter extrapolation, in order to further 

achieve accurate prediction voltages in the prediction phase.  
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4.2.4   Experimental Results and Discussions 

In this section, a 400 hours experimental degradation voltage dataset is fully investigated 

to perform the fitting curve function selections at first. Then, based on the selected fitting 

functions, the proposed prediction method is then applied to 3 other 400 hours PEMFC 

experimental degradation tests under different operation conditions. The prediction 

performance evaluation of the proposed approach with shorter duration of learning 

phase is also shown and discussed at last. 

The 4 datasets of Ballard NEXA 1.2 kW commercial PEMFC stacks, used in this thesis, are 

measured and post-processed under steady-state operation conditions of 12A 30°C, 30A 

35°C, 36A 40°C and 44A 40°C, respectively. Four identical NEXA stacks (from same 

manufacturer batch) are used during experiments and each stack is tested under 400 

hours aging experimentation. The detailed operation conditions of 4 NEXA fuel cell 

stacks are listed in the following table 4.1. 

Table 4.1 Operation Conditions of NEXA Fuel Cell Stacks 

 
Test in section 

4.1.4.1 

1st test in  

section 4.1.4.2.1 

2nd test in 

section 4.1.4.2.2 

3rd test in 

section 4.1.4.2.3 

     Stack type Ballard NEXA 1.2 kW commercial PEM fuel cell stack 

Operation mode Dead–end mode 

Air supply Air blower + filter 

Cooling Air fan cooled 

Active area 150    

Fuel supply 99.99% dry H2 @1.2 bar 

Operating hours 400 hours 

Air stoichiometry 2.0 4.2 2.2 2.0 

Stack temperature 40  30  35  40  

Current density 0.24       0.08      0.20       0.30       

4.2.4.1   Fitting Function Selection and Extrapolation Method 

In the first experimental aging test, the Ballard NEXA 1.2 kW PEMFC stack runs for 400 

hours under 36 A at 40 °C (the dataset is shown in the figure 4.5). The learning phase time 

   is set to 250 h. This experiment aims to find appropriate fitting function for each aging 
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parameter extrapolation. By applying the proposed prediction method, the particle filter 

studies the non-linear aging behaviors and updates the aging parameters in the 

learning phase. Then, an important step of the proposed method is to select appropriate 

fitting functions, which are used to represent the trends of aging parameters in the 

learning phase, and further extrapolate the future values of aging parameters in the 

prediction phase. As mentioned previously, the aging trend behaviors can be well 

expressed by the following fitting curve functions: multiply exponential, linear, 

exponential, power, and Fourier function. 

Taking the first aging parameter              as an example. In the learning phase, the 

particle filter studies the voltages degradation behaviors and updates the parameter 

             values, as shown in the figure 4.7 (blue points in the learning phase). The 

upward tendency of              in the learning phase can be well described by above-

mentioned linear, exponential, power, and Fourier series functions. These four functions 

also generate different extrapolated values of parameter              in the prediction 

phase, as shown in the figure 4.7 (different colors points in the prediction phase). 

 

Figure 4.7 Fitting curves of ohmic resistance parameter using different functions. 

It can be seen from the figure 4.7 that, although all the four functions can provide good 

fitting results in the learning phase (high coefficient of determination   ), the 

extrapolated parameters have large differences in the prediction phase. For 

comparison purpose, these different extrapolated values of parameter              are 

further used in the proposed aging model. As a consequence, the prediction results of 

degradation voltage also show difference in the prediction phase, as shown in the 

figure 4.8. 
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Figure 4.8 Prediction voltage results using extrapolated parameter of             . 

In figure 4.8, the voltage curve in the learning phase (blue curve) is estimated by particle 

filter. The four forecasted voltage curves in the prediction phase are generated by the 

proposed aging model with the above-mentioned different extrapolated aging 

parameter             . It can be clearly seen from the figure 4.8 that, the trend of 

forecasted curves using power function and Fourier function are in good agreement 

with the measured voltage points, while the linear and exponential functions have 

relatively large errors. It can be concluded from the prediction results that, compared to 

linear and exponential functions, power and Fourier functions can reflect more 

accurately reflect the trend of fuel cell ohmic losses. 

The similar function selection process are also used for the other two aging parameters 

            and               
   

. Since each aging parameter has four different fitting 

functions to extrapolation, there are a total of       possible combinations to predict 

the degradation voltage.   

The root mean square error (RMSE) is used to measure the accuracy of all the 64 

different prediction results using the above fitting functions selection method. It has been 

found out that, in order to achieve best forecast performance of prediction curve, the 

most appropriate extrapolation pairs are:  

Power function extrapolation for             : 

                                                                                            

Fourier series function extrapolation for            : 

                                                                                         

Multi-exponential function extrapolation for               
   

: 
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where the parameters  ,  ,   ,   ,   ,  ,  ,  ,  ,   are determined by the curve fitting 

functions. The above three parameter-function pairs are then considered for future study. 

4.2.4.2   Experimental Validation: Long Learning Time 

In order to experimentally verify the effectiveness of proposed prediction method, three 

more experimental degradation voltage datasets of the same type of Ballard NEXA 1.2 

kW PEMFC stack for 400 h operation under different working conditions of 12A 30°C, 30A 

35°C, 44A 40°C are presented respectively, with a learning time    of 250 hour.  

4.2.4.2.1   First Experiment: PEMFC Operation under 12A at 30°C 

In the first experimental aging test, the PEMFC stack runs for 400 hours under a current of 

12A at 30°C. By applying the proposed prediction method, the extrapolation results of 

the aging parameter are shown in figure 4.9. 

 

Figure 4.9 Extrapolated result of aging parameters: (a). ohmic resistance. (b). 

exchange current density. (c). diffusion coefficient. (operating current 12A at 30°C). 
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It can be seen from the figure 4.9 that, three aging parameters show different non-linear 

aging characteristics, due to their different physical performance and degradation 

mechanisms. The prediction results show that under the first PEMFC 400 hours operation 

under a current of 12A at a temperature of 30°C, the Ohmic resistance increases by 

more than 39%, the exchange current density and diffusion coefficient decrease by 10% 

and 23%, respectively. Based on the values of three extrapolated parameters, the 

proposed aging model outputs the prediction results, as shown in the figure 4.10. 

 

Figure 4.10 Prediction result (current 12A at 30°C, learning time is set to 250 h). 

It can be seen from the figure 4.10 that, the predicted voltages can follow the trend of 

the non–linear experimental data set with a great accuracy. The root mean square error 

(RMSE) and mean absolute percentage error (MAPE) of prediction result are 0.1857 and 

0.0042, respectively. 

4.2.4.2.2   Second Experiment: PEMFC Operation under 30A at 35°C 

In the second experimental aging test, the PEMFC stack runs for 400 hours under a 

current of 30A at 35°C. By applying the proposed prediction method, the extrapolation 

results of the aging parameter and voltage degradation prediction result are shown in 

figure 4.11 and figure 4.12, respectively. 

It can be seen from the figure 4.11 that, three aging parameters show again different 

non-linear aging characteristics. The prediction results show that, for the second 

experimental aging test, the Ohmic resistance increases by more than 57%, the 

exchange current density and diffusion coefficient decrease by 12% and 29%, 

respectively. Then, based on the values of three extrapolated parameters, the proposed 

aging model outputs the prediction voltages. Figure 4.12 clearly points out again that, 
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the proposed prediction method shows a precise conformity with the validation data. 

The RMSE and MAPE of prediction result are 0.1865 and 0.0052, respectively. 

 

Figure 4.11 Extrapolated result of aging parameters: (a). ohmic resistance. (b). 

exchange current density. (c). diffusion coefficient. (operating current 30A at 35°C). 

 

Figure 4.12 Prediction result (current 30A at 35°C, learning time is set to 250 h). 



 

 

102 

 

4.2.4.2.3   Third Experiment: PEMFC Operation under 44A at 40°C 

In the third experimental aging test, the PEMFC stack runs for 400 hours under a current 

of 44A at 40°C. By applying the proposed prediction method, the extrapolation results of 

the aging parameter and voltage degradation prediction result are shown in figure 4.13 

and figure 4.14, respectively. 

 

Figure 4.13 Extrapolated result of aging parameters: (a). ohmic resistance. (b). 

exchange current density. (c). diffusion coefficient. (operating current 44A at 40°C) 

The prediction results show that, for the third experimental aging test, the Ohmic 

resistance increases by more than 76%, the exchange current density and diffusion 

coefficient decrease by 15% and 40%, respectively. Figure 4.14 clearly shows again that, 

the prediction curve can describe the trend of the non-linear experimental data set. The 

RMSE and MAPE of prediction result are 0.3168 and 0.0083, respectively. 
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Figure 4.14 Prediction result (current 44A at 40°C, learning time is set to 250 h). 

It can be concluded from the above three experimental validations that, when a 

relatively large amount of data is used by particle filter in the learning phase, with 

suitable fitting curve functions to extrapolate the values of aging parameters, the 

proposed prediction method has demonstrated its strong capability on forecasting the 

future trend of PEMFC degradation voltage under different fuel cell operation conditions. 

4.2.4.3   Experimental Validation: Short Learning Time 

In order to thoroughly show the effectiveness and advantages of the proposed 

prediction method, we would like to further investigate the prediction performance of 

the proposed model with a shorter learning time interval. The learning time    is now set 

to only 150 h (previously 250h). In this case, fewer training points are available to fit the 

function. By applying the proposed method with this new learning interval, the 

prediction voltages are shown in the figure 4.15 - 4.17. 

The degradation prediction results for the first experimental aging test are shown in the 

figure 4.15. In this limiting condition, the trend of PEMFC degradation voltage can still be 

captured, however with a larger prediction error. Figure 4.16 shows the second 

experimental aging test and it can be seen that, although the proposed prediction 

method could not show a precise conformity with the validation data after 200 hours, 

the prediction could still provide accurate and useful prediction results in the near time 

interval (i.e. between 150h and 200h). For the third experimental aging test, the 

prediction results are shown in the figure 4.17. Since the training data is very limited, its 

non-linear degradation trend is not fully learned by particle filter. Thus, the prediction 

results are not very accurate, especially after 250 hours. Nevertheless, the voltage aging 

trend can still be roughly described by the predicted results. 
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Figure 4.15 Prediction result (current 12A at 30°C, learning time is set to 150 h). 

 

Figure 4.16 Prediction result (current 30A at 35°C, learning time is set to 150 h). 

 

Figure 4.17 Prediction result (current 44A at 40°C, learning time is set to 150 h). 

Thus, it can be concluded from the above experimental validation that, although the 

acquired aging data is extremely restricted, based on the prior known parameter-

function pairs, the proposed method has the potential to provide fairly acceptable 

prediction results, especially at immediate short prediction time range. 
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It worth also to mentioned that, when the initial training samples are limited, iteration-

based prediction strategies [30] are particularly useful to achieve a better performance 

of the proposed prediction method. The purpose of using an iteration-based prediction 

strategy is to provide more accurate short-term prediction results and to dynamically 

update the prediction result with the newest dataset (newly measured data) for iterative 

data training at next prediction step.  

4.2.5   Conclusion 

In this section, a novel approach for PEMFC output voltage prediction based on a multi-

physical aging model with particle filter and data extrapolation approach was 

proposed (please refer to previous work [13] [14]). The proposed multi-physical aging 

model fully considers the three most important aging phenomena during PEMFC 

operation: ohmic losses, reaction activity losses, and reactants mass transfer losses. 

The proposed prediction method is divided into two stages: learning phase and 

prediction phase. During the learning phase, the particle filter is applied to study the 

non-linear aging behavior and update the proposed aging parameters. Then, different 

fitting curve functions are used to represent the trend of aging parameters in the 

learning phase, and further extrapolate the future values of aging parameters in the 

prediction phase. At last, by using the extrapolated aging parameters, the proposed 

aging model predicts fuel cell voltages in the prediction phase. 

The experimental validations show that, in order to fully and accurately represent the 

non-linear trends of aging parameters and further achieve a better performance of 

proposed prediction method, a relatively large amount of data should be learned by 

particle filter in the learning phase, and suitable fitting curve functions should be used to 

extrapolate the values of aging parameters in the prediction phase. It is also important 

to note that, even when the acquired training data is extremely limited, by knowing a 

prior the parameter-function pairs, the proposed method is still able to provide 

acceptable results, especially at immediate short prediction time range. 
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4.3   Degradation Prediction Using a Moving 

Window Based Hybrid Prognostic Approach 
The above physical-based prediction method cannot be used in the on-line prognostic 

applications, since this single-step prognostic method makes prediction for a fixed 

horizon. In order to improve the proposed method, an innovative robust prediction 

algorithm for PEMFC performance degradation is proposed based on a combination of 

model-based and data-driven prognostic method. In the proposed hybrid method, a 

novel approach using the moving window method is applied, in order to 1) train the 

developed models; 2) update the weight factors of each method and 3) further fuse the 

predicted results iteratively. In the proposed approach, both model-based and data-

driven methods are simultaneously used to achieve a better accuracy. 

In order to verify the proposed method, three experimental validations with different 

aging testing profiles have been performed. The results demonstrate that the proposed 

hybrid prognostic approach can achieve a higher accuracy than conventional 

prediction methods. In addition, in order to find the satisfactory trade-off between the 

prediction accuracy and forecast time for optimizing on-line prognostic (for example the 

dynamic operating conditions in fuel cell hybrid electric vehicles), the performance 

variation of proposed approach with different moving window length is further shown 

and discussed.  

In this section, a model-based fuel cell voltage degradation prediction model using 

empirical equation and particle filter approach, and a data-driven prediction model 

using NARNN are presented, respectively. Then, a hybrid prognostic approach is further 

given based on combining the fusion approach and moving window techniques. 

4.3.1   Model-Based Prediction Method 

A model-based approach has been chosen as the first prediction method in this thesis. 

In this section, an empirical fuel cell voltage degradation model is presented at first. In 

order to estimate the state variables in the model, a particle filter based identification 

algorithm is applied. The corresponding prognostic method is presented and discussed 

at last. 

Based on regression analysis of experimental degradation data, it has been found that 

an empirical equation form can well describe the fuel cell voltage degradation process 

[26]-[28]: 
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where          is the fuel cell output voltage at time  , the coefficients   and   are related 

to the fuel cell internal impedance, the coefficients   and   are related to the fuel cell 

aging rate. The discrete-time state space of this voltage degradation model is depicted 

as follows: 

 
                

                                           
                                            

where   is the sampling step, the state variables need to be estimated can be described 

by                            , the observed variable      represents the fuel cell 

voltage, and    is the system stochastic normal distributed noises. 

The equation 4.26 is clearly in a non-linear form. In order to accurately estimate the state 

variable     , the particle filter approach is used, since it can effectively solve the 

Bayesian estimation problem of non-linear system based on the Monte Carlo sequence. 

The purpose of using particle filter for non-linear model parameter identification is to 

capture the trend of fuel cell degradation voltage during the training phase, and further 

correctly represent the captured aging trend in the future (prediction phase). 
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Figure 4.18 Schematic diagram of model-based diagnostic approach. 

Based on the presented degradation model state space representation equation 4.26, 

the detailed flow diagram of model-based prognostic methodology is shown in figure 

4.18. It can be seen from the figure 4.18 that, the development and validation of this 

model-based prognostic method includes three parts: initialization, training phase and 

prediction phase.  



 

 

108 

 

4.3.1.1   Initialization of Model-Based Approach 

The detailed steps of initialization for model-based diagnostic approach are described 

as follows: 

1) The degradation data and corresponding experimental conditions are 

presented at first. A PEMFC stack (commercial Ballard NEXA 1.2 kW PEM fuel cell 

stack) is used in a 400 hours experimental degradation test. It can be seen from 

the figure 4.19 that, during the 400 hours degradation testing (operating 

condition: current 35A at temperature 40°C), the fuel cell degradation voltage 

data is measured and recorded every 10 minutes. It should be noted that, before 

applying the proposed algorithm to the PEMFC stacks aging dataset, a data 

post-processing is performed to eliminate the unreliable measurement data 

points. Thus, the available degradation data consists of 91 data points (by down-

sampling the original measured data), which can be seen in the figure 4.19. 

 

Figure 4.19 Fuel cell stack experimental aging voltage under current 36A at 35 °C. 

2) Then, the training time point is set to    and thus the prediction phase is        

long. It means that, 0 h to    h, the state variable is trained and updated using 

particle filter, the remaining degradation data from    to 400 hours is use to 

evaluate the prediction results. 

3) The initialization of state variables      is performed by fitting the experimental 

degradation data into the initial model. 
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4.3.1.2   Training Phase of Model-Based Approach 

In the training phase, the purpose of particle filter is to estimate recursively the state 

variable      based on the initialization model and experimental aging data in the 

training phase. It should be noted that, during the particle filter based estimating process, 

the variance selection of process noise    need to be chosen carefully. A large variance 

of    ensures a more extensive sampling distribution, since it provides sample particles 

with a great diversity. On the other hand, a smaller variance of    allows a sufficiently 

fast convergence. There already exists the observation noise in the experimental aging 

data, since the fuel cell degradation voltage data are measured directly by sensors. 

From the known proposal distribution, the particle filter uses a set of random sample 

particles based on the Monte Carlo sequence, in order to estimate the posterior 

probability density of non-linear system. More detailed content about particle filter can 

be found in the previous section.  

4.3.1.3   Prediction Phase of Model-Based Approach 

In the previous training phase, the particle filter estimates and updates the state 

variables      at every sampling step. Thus, the voltage degradation behaviors of 

training phase have been fully captured. As mentioned before, in order to well represent 

the captured aging behavior in the prediction phase, all of the trained state variables 

     during the training phase should be taken into account in the empirical model 

equation 4.25. In this case, the most efficient way of integrating all the state variables 

     is to use their average value during the training phase (from 0 to    hour). The 

average value of state prediction results is expressed as: 

       
    
  
   

      
                                                                                 

where        is the number of degradation data (blue points), which are used for particle 

filter learning during the training phase, as shown in the figure 4.19. 

Thus, the prediction voltage results in the prediction phase     are calculated by the 

output equation of state space equation 4.25: 

                
 
                    

 
                                                       

where the sample step                      . 
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4.3.2   Data-Driven Prognostic Method 

The proposed model-based prognostic method is essentially based on an exponential 

regression model, it cannot accurately catch the non–linear and uncertain behaviors 

during the aging process. Compared with model-based prognostic method, the data-

driven approach can well describe the local non-linear characteristics of degradation 

voltage. Especially for the short-range and medium-range prediction time, the data-

driven prognostic method can give a better representation of uncertainties in the 

degradation process. In this thesis, a data-driven prognostic method has been chosen 

as the second prediction method. 

As a data-driven approach, the artificial neural networks can be effectively used to 

implicitly indicate the complex non-linear characterization between system inputs and 

outputs. The aging process of PEMFC can be considered as a non-linear autoregressive 

time series model. The actual fuel cell voltage (model output) can be considered as a 

variable determined by an unknown non-linear process from the previous voltage values. 

In this case, the non-linear autoregressive neural network (NARNN) model can then be 

used to track the non-linear characteristics of PEMFC degradation.  

In this section, a NARNN model for fuel cell degradation is presented at first. An optimal 

training strategy is also proposed in order to achieve good prediction performance of 

the developed NARNN model. 

4.3.2.1   Non-linear Autoregressive Neural Network Model 

A NARNN model is suitable to describe the non-linear dynamic in a wide variety of 

system and have been extensively implemented in various applications [31]-[33]. The 

general formulation of NARNN model can be expressed as follow: 

                                                                                          

where    and    are the prediction model inputs and outputs at time   respectively,   

and   are the respective delay factors,   is the NARNN function describes the non-linear 

correlation between the    and   . For the fuel cell diagnostic purpose, the detailed 

NARNN layer diagram is shown in the figure 4.20. 
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Figure 4.20 Structure of the NARNN model for PEMFC aging prediction. 

As shown in the figure 4.20, the vector of the input layer at time   is 

                    
 , and the output of model    stands for the PEMFC voltage value 

at time  ,   is the number of neurons in the first hidden layer,   is the number of neurons in 

the second hidden layer. The activation functions of neurons in the first hidden layer are 

log-sigmoid transfer functions, the function in the second hidden layer is the tan-sigmoid 

transfer function, and the function in the output layer is the linear transfer function. Thus 

the output of the proposed NARNN model can be written as follow: 

                                                                                      

where   and   respectively stand for the vector of weights and bias for each layer, the 

output of NARNN model      is the PEMFC voltage prediction result, the model input    is 

the PEMFC voltage in the previous time from     to    . Thus, the future degradation 

behaviors of PEMFC      are expressed in the above non-linear autoregressive form. 

4.3.2.2   Data-Driven Prognostic Method Implementation 

The detailed flow diagram of data-driven prognostic methodology using the presented 

NARNN prediction model is shown in figure 4.21. Similar to the previous model-based 

prognostic method, the proposed data-driven prognostic method also includes two 

parts: training phase and prediction phase. 
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Figure 4.21 Schematic diagram of data-driven prediction using NARNN model. 

For the training phase, the initialization of NARNN model includes setting the number of 

neurons, transfer functions selection, initialization of weights and deviations in each 

hidden layer, etc. In terms of the system identification algorithm, the Levenberge-

Marquardt optimization method is adopted. Compared with the common back 

propagation first-order method, this training method provides a more rapid quadratic 

rate of convergence. More detailed content about Levenberge-Marquardt method 

can be found in [34]. 

It should be noted that, different from the previous particle filter training, the neural 

networks are sensitive to data over-fitting. To overcome this problem in practice, the 

aging data of training phase are further divided into training part and evaluation 

(validation) part. The training data are used to identify the NARNN model parameters, 

and the evaluation data are used to evaluate network generalization fitting ability 

(accuracy on the validation data). There is usually a trade-off between accuracy for 

training part and generalization fitting ability for prediction part [35]. In our proposed 

method, the training process is terminated when the mean squared error (MSE) of 

validation part stopped decreasing, as shown in the figure 4.21. 

4.3.3   Hybrid Prognostic Approaches 

As an integration process of multiple prognostic results from different methods, a suitable 

fusion approach is critical to demonstrate their advantages [36]-[42]. It increases the 

process reliability and robustness by combining the complementary information from 

different prognostic methods in intelligent ways. Therefore, a hybrid prognostic 
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approach can be expected to provide more accurate and robust prediction results 

compared with single model based method. 

In order to combine the advantages of different prediction methods in the proposed 

hybrid prognostic approach, a good understanding about the specific characteristics of 

each prediction method is important. The model-based method can effectively forecast 

the aging trend for a long-range prediction time, however it cannot accurately describe 

the local non-linear characteristics of aging. In contrast, the data-driven method can 

provide a good non-linear representation of uncertainties in the degradation process for 

the short-range and medium-range prediction time. But its long-term prediction result is 

not accurate due to predicted data fluctuation. Therefore, in order to effectively taking 

the advantages of each method into account, there are two critical issues that need to 

be considered when using a hybrid prognostic approach: 1) the range selection of 

training and prediction time, and 2) weight factors determination of each 

corresponding method. 

As an efficient computational strategy, the moving window method is considered to be 

a good solution for the above-mentioned issues. In this section, a moving window 

method is presented firstly in order to take different prediction time range into account. 

A weight factors adjustment method is then proposed using the results from the moving 

window method. The proposed method can dynamically adjust the weights vector at 

each step of the moving window. 

4.3.3.1   Moving Window Method 

The primary purpose of using a moving window method is to update and add the 

newest dataset for iterative data training, and provide dynamic weight factors to further 

improve the prediction accuracy. In order to perform iterative training during the 

forecasting process, the model input dataset are updated continuously by moving 

window approach, as shown in the figure 4.22. 
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Figure 4.22 Schematic diagram of moving window 

method in the proposed hybrid prognostic approach. 

In the figure 4.22, the length of each window includes three parts: training part (white 

region, measured data in the past), evaluation part (gray shadow region, measured 

data in the past) and predicting part (black shadow region, prediction data for the 

future). At each prediction step, the data in the white region are used to train the 

previously developed models. The data in the gray shadow region are then used to 

evaluate the newly updated model fitting ability, and the data in the black shadow 

region are the future data points that need to be predicted from the models. 

Take the first model-based method as an example. It is assumed that the data number in 

training part, evaluation part and predicting part are equally defined as  , the moving 

size between each prediction step is also set to  . At the k-th prediction step, the   

measured training data located at the beginning of moving window (from   to  ) are 

applied to train the k-th model, the measured data from     to    are then used to 

evaluate the model prediction accuracy, and the predicted data are given from      
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to   . When the prediction is iterating from k to k+1 step, the previously measured aging 

data from     to    are applied to train the k+1-th model, the newly measured data 

between two prediction step from      to    are used to evaluate the new model 

accuracy, and the predicted data are given this time from      to   . The data-driven 

method has the similar iteration procedures. 

Therefore, this moving window method is an efficient strategy to dynamically retrain the 

models during the forecasting process with new data inputs. In addition, by iteratively 

evaluating the fitting ability of each method at each prediction step, the corresponding 

weight factor can also be adjusted dynamically. Moreover, by using the proposed 

moving window method, the forecast time can be easily changed by using different 

values of  . 

4.3.3.2   Weight Factors Calculation 

As mentioned before, the data of gray shadow region are used to evaluate the model 

fitting ability (estimation of accuracy at actual prediction step). During the evaluation 

process (gray shadow region), the measured fuel cell voltage data are compared with 

both model outputs to generate individual residuals. The generated residuals are then 

used to calculate the weight coefficient of future prediction value obtained from each 

method. This weight factor, noted as     , represents the modeling accuracy of each 

method at actual prediction step, which is inversely proportional to the residual as 

expressed in the following equation: 

     
 

                            
 

 
   

                                                          

where     stands for the first model-method and     stands for the second data-

driven method.   is the actual prediction step,          is the measured fuel cell voltage 

values used for evaluation,           is the model predicted fuel cell voltage values in the 

evaluation part. At each prediction step, this weight factor is dynamically adjusted. 

By assuming that both prediction processes (model-based and data-driven) are 

conditionally independent at each prediction step, the overall prediction results        

can be described using weighted average as: 
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where     representing the total number of methods,          is the predicting data, 

          is the normalized weight factor, which can be calculated by: 
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Figure 4.23 Flowchart of the proposed overall prediction  

algorithm method for fuel cell output voltage degradation prediction. 

The proposed overall prognostic algorithm can then be illustrated in figure 4.23. In figure 

4.23,   is the moving window coefficient,   is the number of predicted data, k is the 

actual prediction step, the total prediction step K (the threshold step in a specified 

length of voltage data) determines the retraining cycle time. 

4.3.4   Experimental Results and Discussion 

In order to experimentally validate the accuracy and robustness of the proposed hybrid 

prognostic method, experimental degradation datasets from three different types of fuel 

cell stacks are presented respectively in this section: 

First case study: Ballard NEXA 1.2 kW commercial PEM fuel cell stack 400 hours 

aging test under the working conditions of current 35A at temperature 40°C; 

Second case study: PM 200 8.0 kW fuel cell stack 10000 hours aging test working 

under stationary prime power application; 
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Third case study: 600 W stationary PEM fuel cell stack 1200 hours aging test under 

static current load. 

4.3.4.1   First Case Study: Comparison of the Proposed Hybrid 

Model and Single Model Methods 

In the first case, a Ballard NEXA 1.2 kW commercial PEM fuel cell stack runs for 400 hours 

aging test under the working conditions of current 35A at temperature 40°C (the aging 

dataset is presented in figure 4.19). This experiment aims to clearly show the accuracy 

and robustness of the proposed hybrid method. The detailed operation conditions of 

NEXA fuel cell stack are listed in table 4.2.  

Table 4.2 Operation conditions of the first case study: Ballard NEXA fuel cell stack 

 First case study 

Stack type Ballard NEXA 1.2kW 

Number of cells 47 

Operation mode Dead–end mode 

Air supply Air blower + filter 

Cooling Air fan cooled 

Operating hours 400h 

Air stoichiometry 2.0 

Stack temperature 40  

Stack current density 0.24      

By applying only the model-based method, with a moving window coefficient   of 15, 

the prediction results and identified parameters are illustrated in figure 4.24.  
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Figure 4.24 Prediction results and identified  

parameters of model-based prediction method. 

As shown in the figure 4.24 (a), the initial known 30 data are used to train and evaluate 

the model for the 1-st step of prediction. It can be seen clearly from the figure that, the 

fade trend of red prediction curve is in well agreement with the measured degradation 

data. It should be noted that, since the model is retrained at each step when data 
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training window move forward, it is natural that the new forecast trend of the new step is 

slightly different from the previous one. For each prediction step, the blue points in each 

data window indicate training data, which is used to identify four model parameters 

                    in equation 4.25. The green curve stands for the obtained training 

results. Then the trained model generates the yellow curve, which is compared with the 

corresponding measured data to evaluate the accuracy of the trained model. The 

purple curve is the combination of prediction results at each step (moving window) from 

trained model. 

Figure 4.24 (b)-(e) shows the identified model parameters at each prediction step, it can 

be seen that during forecasting process, the degradation model is dynamically 

retrained and the particle filter iteratively update the model parameters. As mentioned 

in section 4.3.1.3, the average value of each identified parameter at each step is further 

used to predict the model output in the prediction part, as shown in equation 4.28. These 

average values of model parameters                         are given in the table 4.3. 

Table 4.3 Average values of identified parameters used  

in the prediction part at each step (model-based) 

                         

1-th 29.7299 -6.2637e-04 0.7831 3.9282e-03 

2-th 29.7294 -4.4274e-04 0.7827 3.9289e-03 

3-th 29.7297 -4.9277e-04 0.7835 3.7804e-03 

4-th 29.7305 -4.8636e-04 0.7833 4.1389e-03 

By applying only the data-driven prognostic method with the same moving window 

coefficient, the prediction results from data-driven method are illustrated in figure 4.25. 

It can be seen clearly from the figure 4.25 that, compared with previous results from 

model-based method, the data-driven method has more advantages on describing the 

non-linear features of the degraded voltage during forecasting process (i.e. the results of 

NARNN model are fluctuated more dynamically with the measured voltage values). For 

each prediction step, the blue points in each data window indicate the training data, 

which is used to identify the model parameters. Then the trained model generates the 

gray curve, which is compared with the corresponding measured data to evaluate the 

accuracy of the trained model. The red curve is the combination of prediction results at 
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each step (moving window) from trained model. The identified NARNN model is shown in 

figure 4.26.  

 

Figure 4.25 Prediction results of data-driven prediction method. 
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Figure 4.26 Identified NARNN model for data-driven method. 

As shown in the figure 4.26, this NARNN model has two hidden layers, and its parameters 

consist of delay coefficients, the weight coefficients array of each layer          ,          , 

       , the bias coefficients vector of each layer          ,          ,        . As shown in 

figure 4.26, the input layer is                                
 , the first hidden layer has 

seven neurons, thus the output of the first hidden layer   is a     vector, which can be 

expressed as the following equation: 
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where the weight coefficients           is a     array, the bias coefficients           is a 

    vector. The second hidden layer has four neurons, thus the output of the second 

hidden layer is a     vector, which can be expressed as follow: 

                                                                                        

where the weight coefficients           is a     array, the bias coefficients           is a 

    vector. The output of the NARNN    is: 

                                                                                        

where the weight coefficients           is a     array, the bias coefficients         is a 

    vector.  

Similar to the previous model-based prediction method, for each prediction step, the 

NARNN model is dynamically retrained and all the weight coefficients array and bias 

coefficients vector are iteratively updated. By applying now the proposed hybrid 

prognostic method, the comparison of prediction results is shown in figure 4.27.  

 

Figure 4.27 Comparisons of three prediction method results. 
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It can be seen from the figure 4.27 that, by adjusting the weight factors at each 

prediction step, the proposed hybrid prognostic method can simultaneously and 

accurately capture the long-term fuel cell voltage degradation trend, as well as the 

non-linear voltage variation characteristics. Comparison results show that the proposed 

hybrid prognostic method has stronger capability on maintaining high prediction 

accuracy. The accumulated prediction errors for the entire forecasting range (0 to 400 

hours), such as Root Mean Square Error (RMSE) and maximum prediction error (MAE) are 

shown in table 4.4. It can be seen again that the proposed hybrid prognostic method 

can achieve better accuracy (prediction error is at least 30% lower) than both single 

prediction method. 

Table 4.4 RMSE of Prediction Results 

 Model-based method Data-driven method Hybrid prognostic method 

RMSE 0.3362 0.3665 0.2352 

MAE (V) 0.7949 0.8915 0.6302 

4.3.4.2   Second Case Study: Performance Evaluation with 

Different Moving Window Length 

In this second case, an 8 kW PM 200 PEMFC stack (96 cells) is operated for 10000 hours 

aging test. The operation conditions of PM 200 fuel cell stack are listed in table 4.5. 

Table 4.5 Operation conditions of the second case study: PM 200 fuel cell stack 

 Second case study 

Stack type PM 200 8.0kW 

Number of cells 96 

Operation mode Recirculation mode 

Air supply Air blower + filter 

Cooling DI–Water / Glycol 

Operating hours 10000h 

Air stoichiometry 1.7 

Stack temperature 58  

Stack current density 0.64      
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In this study, the total available aging data contains around 6500 data points, which are 

measured and post-processed under operation condition with a current density of 

          and a temperature of    . This experiment aims to analyse the influence of 

different moving window coefficient (length) on the performance of proposed algorithm 

for the long-term degradation prediction. By applying the proposed hybrid prognostic 

method, the coefficient of moving windows   is respectively set to 100, 200, 300, 500 and 

700. The obtained prediction results are shown in the following figure 4. 28.  
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Figure 4.28 Prediction results of proposed hybrid prognostic  

method using different moving window coefficient   (length). 

 

Figure 4.29 The accuracy improvement with different moving window coefficient  . 

It should be noted that, the time interval between 2 data points is around 1.5 hours in this 

test case. Thus, a moving window coefficient   100 to 700 corresponds to a forecast 

time of 150 to 1050 hours respectively. It can be concluded from the figure 4.29 that, by 
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using the proposed hybrid prognostic method, the accuracy improvement decreases 

when the forecast time length increases. This is mainly because the errors of data-driven 

method increase significantly with the forecast time. In contrast, it can be seen that the 

errors of model-based method are not visibly affected by the forecast time. 

Thus, in order to maintain simultaneously high precision and relatively long forecast time 

for on-line prognostic applications, a compromise between prediction accuracy and 

forecasting time length should be appropriately defined based on the specific 

application requirement. From a decision making point of view, the prognostic of fuel 

cell system must be performed with a long enough forecasting time to allow reaction. 

For a stationary fuel cell application [12], around 160 hours long prediction (one week) is 

considered appropriate. It should be noted that, the proposed hybrid prognostic 

method has a rapid execution time for all the training, evaluation and prediction parts. 

With different moving window coefficient   from 100 to 700, the forecasting process is 

capable for on-line prognostic with a time step level in the order of several seconds. 

4.3.4.3   Third Case Study: Comparison of the Proposed Hybrid 

Method with Other Methods 

In the third case, a 600 W PEM fuel cell stack (5 cells) is operated for 1200 hours aging 

test under stationary condition with a static current density of          . This third case 

experiment aims to show the prediction performance comparison between the 

proposed hybrid method and other methods. The operation conditions of this case 

experiment are listed in table 4.6.  

Table 4.6 Operation conditions of the third case study: 600W fuel cell stack 

 Third case study 

Stack type 600W PEMFC assembled at FCLAB 

Number of cells 5 

Operation mode Recirculation mode 

Air supply Air boiler 

Cooling Cooling water system 

Operating hours 1200h 

Active area 100    

Stack current density 0.70      
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By down-sampling the original measured data, the 1200 hours degradation voltage and 

power of PEMFC are shown in the figure 4.30. 

 

Figure 4.30 The third case 1200 hours aging test under a static current density of 

         : fuel cell degradation voltage and power. 

By applying the model-based method, the data-driven prognostic method and the 

proposed hybrid prognostic method with the same moving window horizon   of 165 

hours (corresponds to one week), the comparison of prediction voltages is shown in 

figure 4.31. 

 

Figure 4.31 Comparisons of three prediction method (voltage and absolute error). 
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It can be seen from the figure 4.31 that, the proposed hybrid prognostic method can 

represent both the fade trend and non–linear features observed in the fuel cell voltage 

degradation data. The comparison of mean prediction error between the proposed 

methods and Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm [11] is shown in 

table 4.7. It can be seen that the proposed hybrid prognostic method can ensure a 

higher prediction accuracy than the both single prediction method, and could achieve 

nearly 21% improvement on the mean prediction error compared with the ANFIS 

algorithm. In addition, it is important to consider that the algorithm in [11] uses more 

degradation data (from 0 to 825 hours) for training the ANFIS, while the proposed 

moving window based prognostic approach requires fewer degradation data (only 

from 0 to 330 hours) for the first training, and can dynamically retrain the models during 

the forecasting process using the newly measured data. The above prediction results 

and analysis demonstrate the robustness and effectiveness of the proposed hybrid 

prognostic method. 

Table 4.7 Comparison of mean prediction error 

between the proposed methods and ANFIS algorithm [11] 

 
Model-based 

method 

Data-driven 

method 

Hybrid prognostic 

method 

ANFIS  

algorithm [11] 

Mean error 0.0093 0.0089 0.0069 0.0087 

In order to further show the prediction performance comparison of each moving 

window step between the proposed hybrid method and other method, the fuel cell 

power degradation dataset (shown as red curve in figure 4.30) is used to perform the 

proposed prediction methods. The forecast time is also set to one week (moving window 

horizon       hours), the comparison of prediction power is shown in the figure 4. 32.  

The comparison of Root Mean Square Errors (RMSEs) between the proposed methods 

and Auto-Regressive Integrated Moving Average (ARIMA) algorithm [12] is shown in 

table 4.8. 

It can be seen from the table 4.8 that, the proposed hybrid method shows again a 

better prediction performance than single model method. Compared with the ARIMA 

algorithm in [12], the proposed hybrid method could achieve higher forecasting 

accuracy from the fourth week to the sixth week, the RMSE result of the proposed hybrid 

method is nearly 19% less than that of ARIMA algorithm for the total four weeks. 
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Figure 4.32 Comparisons of three prediction method results  

(power and absolute error). 

Table 4.8 Comparison of RMSEs between the proposed methods and ARIMA [12] 

 
Model-based 

method 

Data-driven 

method 

Hybrid  

method 

ARIMA 

algorithm [12] 

Week 3 0.6184 0.5832 0.4778 0.4 

Week 4 0.6458 0.6377 0.5145 0.6 

Week 5 0.8026 0.8571 0.6633 0.7 

Week 6 0.8027 0.7523 0.6265 1.1 

Total four weeks 0.7198 0.7075 0.5705 0.7 
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4.3.5   Conclusion 

In this section, an innovative approach based on a combination of different prognostic 

methods has been proposed for the application of PEMFC performance degradation 

prediction (please refer to previous work [43]). The proposed hybrid prognostic method 

considers two basic prediction approaches: model-based approach and data-driven 

approach. Model-based approach can be efficiently used to forecast the fuel cell 

aging trend in a long-range forecast time. Data-driven approach can accurately 

describe the local non-linear characteristics of degraded voltage for the short-range 

and medium-range prediction time. 

By combining the advantages of the above two common prediction methods (i.e. 

model-based approach and data-driven approach), the proposed method in this thesis 

can simultaneously and accurately capture the long-term fuel cell voltage degradation 

trend, as well as the non-linear voltage variation characteristics. In addition, a novel 

approach using the moving window technique is applied in order to iteratively update 

the parameters during the prediction process. Furthermore, the prediction performance 

evaluation of the proposed hybrid prognostic approach with different moving window 

length is further shown and discussed. 

Three experimental validations with three different PEMFC stacks and different aging test 

profiles have been performed to verify the accuracy and effectiveness of the proposed 

fuel cell performance degradation prediction method. The presented results can help 

engineers to appropriately choose the moving window length, in order to achieve 

simultaneously high prediction precision and relatively long forecast time for on-line 

prognostic, for example, the fuel cell hybrid electric vehicle (FCHEV) [] []. 
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CONCLUSION 
 

Before mass commercialization of proton exchange membrane fuel cell, the research 

on the design of appropriate control strategies and auxiliaries need to be done for 

achieving proton exchange membrane fuel cell (PEMFC) optimal working modes. An 

accurate mathematical PEMFC model can be used to observe the internal variables 

and state of fuel cell during its operation, and could further greatly help the system 

control strategy development. 

A comprehensive multi-physical dynamic model for PEMFC is developed in chapter I. 

The proposed model covers multi-physical domains for electric, fluidic and thermal 

features. Particularly, the transient phenomena in both fluidic and thermal domain are 

simultaneously considered in the proposed model, such as the dynamic behaviors of 

fuel cell membrane water content and temperature. Therefore, this model can be used 

to analyze the coupling effects of dynamic variables among different physical domains.  

Based on the developed multi-physical PEMFC model, a full two-dimensional multi-

physical model is further presented. The proposed model covers electrical and fluidic 

domains with an innovative 2-D modeling approach. In order to accurately describe the 

characteristics of reactant gas convection in the channels and diffusion through the gas 

diffusion layer, the gas pressure drop in the serpentine pipeline is comprehensively 

analyzed by fully taking the geometric form of flow field into consideration, such as the 

reactant gas pressure drop due to the pipeline sharp and U-bends. Based on the 

developed 2-D fluidic domain modeling results, spatial physical quantity distributions in 

electrical domain can be further obtained. Therefore, this 2-D PEMFC model can be use 

to study the influences of modeling parameters on the local multi-dimensional 

performance prediction. The simulation and experimental test are then performed to 

validate the proposed 2-D model with a commercial Ballard NEXA 1.2 kW PEMFC stack.  

In chapter II, analyses of dynamic phenomena step responses are conducted based on 

the developed multi-physical dynamic PEMFC model using the relative gain array (RGA) 

method for various control input variables, in order to quantitatively analyze the 

coupling effects in different physical domains, such as the interactions of membrane 

water content and temperature. Based on the calculated values of relative gain array, 

the proposed model can be considered as a fuel cell MIMO system, which could be 

divided into two independent control sub-systems by minimizing parameter coupling 

effects between each other. Due to the closely coupled parameters in the proposed 
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first control sub-system, a decoupling control method is recommended to achieve 

optimized control results. The coupling analysis presented in this thesis can help 

engineers to design and optimize the fuel cell control strategies, especially for the water 

and thermal management in fuel cell systems.  

A mathematical solver algorithm for the developed 2-D multi-physical real-time model of 

proton exchange membrane fuel cell is presented in Chapter III using an efficient 

tridiagonal matrix algorithm (TDMA). TDMA uses a special form of elimination, and solves 

the tridiagonal matrices in a backward substitution, its arithmetic complexity exponential 

decays to operations      compared with straightforward Gaussian elimination      .  

In order to thoroughly and effectively describe the gas flow characteristics in serpentine 

channels, the differential equations of reactant gas convection and diffusion 

phenomena are transformed into tridiagonal matrix. In addition, an original iterative 

solver algorithm composed by three interactive computational loops is also developed 

in the model, in order to obtain spatial physical quantity distributions of electrochemical 

domain in real-time. The experimental results demonstrate the practical feasibilities of 

the proposed 2-D model for advanced real-time control of PEMFC systems with a control 

loop time level on the order of milliseconds. The model execution time can be at least 4 

times faster compared with step-by-step computing. Such short execution time of the 

proposed 2-D model ensures fast control decisions and actions based on the predicted 

local phenomena and spatial distribution physical variables inside the fuel cells. 

Two different prognostic approaches for PEMFC performance degradation prediction is 

proposed in the Chapter IV. In the first part, a novel approach for PEMFC output voltage 

prediction based on a multi-physical aging model with particle filter and data 

extrapolation approach is proposed. The proposed multi-physical aging model fully 

considers the three most important aging phenomena during PEMFC operation: ohmic 

losses, reaction activity losses, and reactants mass transfer losses. The proposed 

prediction method is divided into two stages: learning phase and prediction phase. 

During the learning phase, the particle filter is applied to study the non-linear aging 

behavior and update the proposed aging parameters. Then, different fitting curve 

functions are used to represent and extrapolate the aging parameters in the learning 

phase. Three experimental validations with different aging testing profiles have been 

performed. The prediction results demonstrate that, this physical-based method could 

provide an acceptable prediction results under the condition of limited initial training 

samples. 
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However, the proposed physical-based method is a single-step prognostic method, 

which cannot be directly used in the on-line prognostic applications. In order to achieve 

on-line prognostic, it is important to develop an iteration-based prediction strategy, 

which allows the prediction result to be dynamically updated with the newest dataset 

(newly measured data) for iterative data training at next prediction step. 

For this purpose, in the second part of chapter IV, a moving window based prediction 

method is developed, in order to dynamically retrain the models during the forecasting 

process with new data inputs. In addition, this approach is based on a combination of 

model-based and data-driven prognostic methods. By combining the advantages of 

the above two common prediction methods, the proposed hybrid method can 

simultaneously and accurately capture the long-term fuel cell voltage degradation 

trend, as well as the non-linear voltage variation characteristics. Furthermore, the 

prediction performance evaluation of the proposed hybrid prognostic approach with 

different moving window length is further shown and discussed. Three experimental 

validations with three different PEMFC stacks and different aging test profiles have been 

performed to verify the accuracy and effectiveness of the proposed hybrid method. The 

presented results can help engineers to appropriately choose the moving window 

length, in order to achieve simultaneously high prediction precision and relatively long 

forecast time for on-line prognostic applications. 

 

 


