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INTRODUCTION

During the last few decades, electric vehicles (EVs), and most recently hybrid electric
vehicles powered by fuel cells (FCHEVS) have a fast growing interest due to environment
pollution and energy ¢ risis. Compared to conventional thermal machine, fuel cell power
generatio n system shows some significant advantages, such as high conve rsion
efficiency, reduced green house gas emissions, and fast fueling time. With these
advantages, fuel cells have been widely considered as a more suitable energy device

for long -range EVs. Amon g different fuel cell types, proton exchange membrane fuel

cell (PEMFC) has the aforementioned advantages. In addition, it can operate at lower
temperature and lower pressure with higher power density compared to other types of

fuel cells.

Nevertheless, be fore mass commercialization of PEMFC, there are still many research

works need to be done:

1) Design of appropriate control strategies and auxiliaries to achieve PEMFC
optimal working modes (air compressor, humidifier, cooling circuit, power

converters, e tc.);

2) Fuel cell lifespan should be increased in order to meet the requirements of
different applications, 5000 hours are required for transportation applications,

and 100,000 hours are required for stationary;

3) Fuel cell vehicles are currently too e xpensive to compete with hybrids and
conventional gasoline and diesel vehicles. The production costs of the PEMFC

stack and hydrogen storage needs to be reduced;

4) The solutions of producing, transporting, and dispensing hydrogen need to

widespread imple mentation.

To achieve these goals, it is important to develop advance real -time control and
monitoring methods to optimize the fuel cell operation. However, it is very difficult to
observe the internal variables and state of fuel cell during its operation. Since PEMFC

incorporates different control variables in different physical domains with different time
constant ranges, such as voltage transient due to double layer capacitance, gas
pressure variation due to the volume of gas manifold, water content vari ation due to the

water absorption in membrane and temperature variation due to the cell thermal



capacity, all these dynamic phenomena in different physical domains are indeed inter -

coupled between each other and the variation of one would influence another

A good understand of how these parameters impact the fuel cell performance would

be very useful for fuel cell system design and control development. Therefore, an
accurate multi -physical PEMFC model could greatly help the system control strategy
develop ment and the parameters sensitivity analyses. The main objective of this thesis is
to present a dynamic  multi-dimensional multi -physical PEMFC (electrochemical, fluidic,
and thermal) mode I, which can be used for control coupling analysis, s patial distribution
of physical quantities prediction, real-time control implementation and prognostic. The

main contributions of this thesis can be summarized as follows:

1) A multi -dimensional dynamic modeling approach fora PEMFC is  developed . The
prop osed PEMFC model covers multi -physical domains for electrochemical,

fluidic, and thermal features;

2) A variable coupling analysis of fuel cell dynamic behaviors is presented and
discussed based on the developed dynamic PEMFC model. This coupling analysis
can help engineers to design and optimize the fuel cell control strategies,

especially for the water and thermal management in fuel cell systems;

3) A 2-D modeling approach for PEMFC for real -time control implementation is
developed . The practical feasib ilities of the modeling approach for advanced

real -time control of PEMFC systems have been experimentally demonstrated;

4) Two novel approach es for PEMFC performance degradation prediction are
proposed . These prediction method s have been experimentally validated and
their strong capabilit ies on forecasting the future trend of PEMFC degradation

voltage under different  fuel cell operation conditions  have been demonstrated

This thesis is organized as follows: Preface presents a brief introduction of proton
exchange membrane fuel cell, and gives an overview on PEMFC multi -dimensional

modeling approach es.

Chapter | proposes a dynamic multi -physical model of a proton exchange membrane

fuel cell which considers electrical, fluidic and thermal domains. In addit ion, an
innovative 2 -dimensional modeling approach who considers in particular the fuel cell

flow field geometric form is presented, in order to fully consider the characteristics of
reactant gas convection in the serpentine gas pipeline and diffusion phen omena

through the gas diffusion layer (GDL).



Based on the PEMFC dynamic multi -physical model developed in the previous chapter,
a variable coupling analysis of fuel cell dynamic behaviors is presented and discussed in

the first part of Chap ter Il. The analyses of dynamic phenomena step responses are

conducted using the relative gain array (RGA) for v arious control input variables.
Chapter | 1l proposes a novel real -time modeling approach based on the 2 -D PEMFC
multi -physical model developed in the Chapter I. In this approach, differential equations

for reactant gas convection and diffusion phenomena in serpentine channels are

transformed into tridiagonal systems of equations, in order to use an efficient numerical

solver tridiagonal matrix algorithm (TDMA). In addition, a three levels bisection algorithm
has been developed to solve spatial physical quantity distributions of electrochemical
domain.

In the first part of Chapter IV, A multi -physical aging model has been proposed in order
to predict the output voltage  degradation of PEMFC . In the proposed aging model,
three most important aging phenomena during PEMFC operation are considered. In
addition , particle filter and extrapolation approach are used to estimate the aging
parameters. In the sec ond part of Chapter IV, an innovative approach for PEMFC aging
prediction based on a combination of model -based and data -driven methods is
presented. The proposed hybrid prognostic method is able to capture both the fade

trend and non 3inear features obser ved in the fuel cell voltage degradation data.

A conclusion isgiven at last.

As another energy power source widely used in the FCHEYV powertrain, the lithium -ion
batteries have advantages of high energy density and long cycle life . In order to
accurately estimate state of charge (SOC) of battery during the FCHEVs operation, a

novel approach for battery SOC estimation based on multi -models data fusion

technique is presented  Appendix A .

The last focus of this thesis is energy management strategy for FCHEVs, since it directly
affects the efficiency and performance of energy storages in FCHEVs . For example, by
using a suitable energy distribution controller, the fuel cell system can be maintained in a

high efficiency region andt  hus saving hydrogen consumption . In Appendix B, an on-line
adaptive energy management control is proposed based on extremum seeking method

and fractional -order calculus , in order to improve both the performance and durability

of PEMFC used in the FCHEVS.



PREFACE

0.1 Introduction to Fuel Cell: What is Fuel Cell

Nowadays, the research on fuel cells is a very active field, since fuel cells have been
considered as one of the most attractive green energy generation device [1]. Different
from lithium -ion battery [2] [3], fuel cells are energy conversion devices which require a
continuous source of fuel and oxidant (usually air or pure oxygen) to sustain the
chemical reaction, in order to converts chemical energy into electricity, whereas the

lithium -ion bat tery is energy storage device.

There are many different fuel cell types. For example, a single proton exchange
membrane fuel cell generally consists of two separate electrodes cathode and anode,

as well as an electrolyte. The gaseous fuels and oxygen respe ctively transport in the gas
pipeline of cathode and anode, and diffuse from the gas diffusion layer to the catalyst

layer. In the anode catalyst layer, the fuel is oxidized to generate electrons and protons
(positively charged hydrogen ions), these proton s flow from the anode side to the
cathode side through the electrolyte (membrane), and are further reduced by
absorbing electrons and protons to produce water. At the same time, electrons are

drawn from the anode electrode to the cathode electrode through an external
electrical circuit, producing directly the electricity. The complete electrochemical

reaction in the fuel cell system ca  n be written as the following [  4]:
s . -
GE—t 6\ 6 E Zi...—”E..S(i—f)—

Based on their functionalities, a single proton exchange m embrane fuel cell in a fuel cell
stack can be separated into eight functional layers: one cooling channel, one
membrane, two catalyst layers, two gas diffusion layer s and two gas supply channels [ 5].

It should be noted that, electrical potential of an individual cell is relatively low, this

voltage is generally around 0.7V. In order to provide sufficient electrical power to meet
the requirement of applications, a fuel cell stack is commonly composed (placed in
series) of a dozen or even a hundred individual ce lIs [6].

0.2 Different types of Fuel Cells

Fuel Cells can be mainly categorized by electrolyte types. The electrolyte types

determine the catalysts types and chemical reactions inside the fuel cell, as well as the



operation temperature. The commonly used fuel cell types are listed in the following

subsections.

0.2.1 Proton Exchange Membrane Fuel Cell (PEMFC)

Proton exchange membrane fuel cell is considered as a more suitable energy device for
mobile applications, such as hybrid electric vehicles or portable power supply, since it

can operate at lower temperature and lower pressure with higher power density
compared to other types of fuel cells [ 7]. In the proton exchange membrane fuel cell
Nafion (copolymer fluoropolymer) are usually used materials for exchange membrane,
platinum is widely used as the catalyst for PEMFC. The  operation temperature of proton
exchange membrane fuel cell system is around 80 (, its chemical reactions can be

expressed as follows

The electrochemical half -reaction occurs at the anode  electrode:

t ¢\ v >EVF

The electrochemical half -reaction occurs atthe cathode electrode:

6EV CEVE¥\ v “Et g

0.2.2 Alkaline Fuel Cell (AFC)

The alkaline fuel cell (or hydrogen -oxygen fue | cell) is one of the most developed fuel
cell, which is used in Apollo space  program to provide the source of electri  cal energy
and drinking water [ 8]. The design of alkaline fuel cell is similar to the PEMFC, but the
electrolyte used in the alkaline fuel cell is generally a porous matrix saturated with an
aqueous alkaline solution, for example the potassium hydroxide (KOH) or Sodium
hydroxide (NaOH). Its operation temperature is similar to PEMFC, the materials of catalyst
required for the electrodes can b e selected from a number of relatively inexpensive
chemicals, but with a lower current density. The chemical reactions for alkaline fuel cell

system can be expressed as follows:

The electrochemical half -reaction occurs at the anode  electrode:

t gEVv 7\ v g EvF

The electrochemical half -reaction occurs atthe cathode electrode:

6Et 6 EV:t?\V ?



0.2.3 Phosphoric Acid Fuel Cell (PAFC)

In the phosphoric acid fuel cell, the phosphoric acid is used as a non -conductive liquid
acid (electrolyte) to transfer  positive hydrogen ions from anode to cathode through a n
external electrical circuit[ 9]. Since the phosphoric acid fuel cell has a simple and stable
structure, it is generally used in the stationary applications. The phosphoric acid fuel cell

system can op erate efficiently in the temperature range from 150 ( to 200 (, its

chemical reactions can be expressed as follows:

The electrochemical half -reaction occurs at the anode  electrode:

t ¢\ v >EVY

The electrochemical half -reaction occurs at the cathode  electro de:

c6EV 2EVE \ t 4

0.2.4 Molten Carbonate Fuel Cell (MCFC)

The Molten carbonate fuel cell is quite different from the previous fuel cell types: it uses

an electrolyte composed of molten carbonate salts suspended in a porous ceramic

matrix and chemically inert solid electrolyte of alumina beta|[ 10]. The molten carbonate
salts in this type produce the 8? migrate ion from the cathode to the anode, then the
hydrogen with carbonate ions from the electrolyte to produce water, carbon dioxide,

and electrons. The operating temperature of molten carbonate fuel cells is above 650 (,

its chemical reactions can be e xpressed as follows:
The electrochemical half -reaction occurs at the anode  electrode:
2 E s\ GE 5 EtY

The electrochemical half -reaction occurs at the cathode electrode:

S
6 B cEtF\ &

0.2.5 Solid Oxide Fuel Cell (SOFC)

The solid oxide fuel cell uses a solid material as the electrolyte, such as dense ceramic
materials yttrium -stabilized zirconia (YSZ), which separates gases from the anode and the
cathode, blocks electrons and conducts oxygen ions 6? from the cathode to the
anode [1 1]. Since the s olid oxide fuel cell requires high operating temperatures (from 800
( to 1000 (), it is generally used for stationary applications. The chemical reactions for

solid oxide fuel cell system can be expressed as follows:



The electrochemical half -reaction occur s at the anode electrode:
t cEt 2\ t 4 EvF
The electrochemical half -reaction occurs at the cathode electrode:

s EVF \ t ¢

0.2.6 Direct Methanol Fuel Cell (DMFC)

The methanol fueled fuel cell is derived based on the proton exchange membrane fuel

cell. It directly uses methanol ( 7 ,inaliquid form) as the fuel. The main advantage of
methanol fueled fuel cell is that the methanol is a relatively stable liquid, which is easy

and low cost for transportation [1  2]. The efficiency of methanol fueled fuel ce Il is lower
than other fuel cell types, it is generally used for portable applications, where the energy

density is more important than efficiency. During methanol fueled fuel cell operation, the
methanol is firstly converted to carbon dioxide and hydrogen at the anode, and the
remaining steps of the reaction are similar to the PEMFC, its chemical reactions can be

expressed as follows:
The electrochemical half -reaction occurs at the anode  electrode:
7 E ¢ \ 6 E X > E X:t?

The electrochemical half -reaction occurs at the cathode electrode:

u
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0.3 Why We Need A P roton Exchange Me mbrane
Fuel Cell Model

Nowadays, research on proton exchange membrane fuel cells (PEMFC) has made
major advances in sustaina bility, cost and compactness [13] [14], compared to other
types of fuel cell, the PEMFC can provide higher power density for transport and
portable applications with relatively short start -up time and lower operat  ion temperature

and pressure [1 5].

Nevertheless, before mass commerciali  zation of PEMFC, one of the major challenges in
PEMFC research is the development of appropriate control strategy for PEMFC stack

and system auxiliaries (i.e., air compressor, cooling circuit, power converter), in order to
maintain the optimal operation co nditions of fuel cell system [1 6]. In addition, the PEMFC
stack is a very compact device since it incorporates different phenomena in different

physical domains. During fuel cell operation, these dynamic phenomena are indeed



inter -coupled between each othe r and the variation of one would influence another. In
practice, it is very difficult to observe the internal variables and state of fuel cell during its

operation.

In order to get a good understand of how these parameters quantitatively impact the

fuel cell performance, and further help engineers to design and optimize the fuel cell
control strategies, one possible solution for this problem is using a model -based control
method. This brings up the need of an accurate and precise PEMFC dynamic model,

whic h at least considers the following issues:
1) Dynamic behavior should be considered for transient state control;

2) The developed model should have a capability to provide multi -dimensional
behaviors, which is very useful to give insights into the intera ction effects of

parameters on the fuel cell spatial performance;

3) The practical feasibilities of advanced real -time control of PEMFC systems should
be considered, in order to effectively perform quantitative  analysis of fuel cell

performance and make f  ast control decisions.

4) Consideration of major internal physical aging phenomena of fuel cell for
degradation prediction, for example the fuel cell ohmic losses, reaction activity

losses, and reactants mass transfer losses.

The above issuesare detailed presented in the following subsections.

0.3.1 Dynamic Behaviors

The control of the fuel cell system (air compressor, cooling circuit, power converter, etc.)
is a very complicate work because it incorporates different control variables in different
physical domains [17]. During fuel cell operation, different dynamic phenomena within
different time constant ranges, such as voltage transient due to double layer
capacitance, gas pressure variation due to the volume of gas manifold, water content

variation du e to the water absorption in membrane and temperature variation due to

the cell thermal capacity, can be clearly ob served during load transient [1 8]. These
dynamic phenomena in different physical domains are indeed inter -coupled between
each other and the  variation of one would influence another. This inter -coupling effect is

especially important between the dynamic phenomena which have similar transient
time constants. Thus, all these dynamic phenomena should be considered in the

developed PEMFC model.



0.3.2 Spatial Distribution of Physical Quantit ies

Compared with one -dimensional models, a multi -dimensional PEMFC model has a
capability to provide spatial distribution of physical quantit ies, which is very useful for

spatial non -uniformity and control coup  ling analysi s [19].

For example, the one -dimensional modeling of fuel cell bipolar plate flow field are too
simplified and do not represent accurately the pressure distribution characteristics, since

the fuel cell gas supply pipeline is assumed to be sing le and straight. In reality, cathode
and anode gas supply channels may be of different patterns like single serpentine,
parallel serpentine or inter -digital channels. Therefore, a comprehensive representation
of non -homogeneous gas phenomenon by fully taki ng the geometric form of the fuel
cell pipeline into consideration is particularly useful to achieve highly accurate spatial

distribution information for two  -dimensional model of PEMFC.

0.3.3 Real-Time Applications

Different from the common modeling appr oach, areal -time oriented fuel cell model has
more restrictions: the accuracy and computational efficiency of a real -time fuel cell
model are both crucial for  model based control process [ 20]. A sophisticated fuel cell
model can provide comprehensive physical quantities for model -based control design
and optimization. While the high performance computation of a fuel cell model ensures

the model -based controller can be efficiently implemented in real -time applications

with a low cost of computations.

0.3.4 Degradation Prediction

It is meaningful to develop a multi  -physical aging model for degradation predict ion of
fuel cell performance [2 1]. This multi-physical aging model considers the real physical
aging phenomena during the PEMFC degradation process . Although the model -based
methods need large computations and complex physical model, it can predict not only

the system degradation trend (fuel cell output voltage decay over time), but also the

information about the internal physical parameters during t he degradation process.
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Chapter I: Multi -Physic Proton
Exchange Membrane Fuel Cell
Modeling

In this chapter, a dynamic, multi  -physical model of a proton exchange membrane fuel

cell is fully developed at first. This model considers in particular the coupling effect
between the dynamic behaviors during fuel cell transient operation. In addition, an
innovative two -dimensional modeling approach is presented for proton exchange
membrane fuel cell. Specifically, the proposed two -dimensional model covers multi -
physical domains for both electrochemical and fluidic features, and fully takes the fuel

cell channel geometric form into consideration.

1.1 Uterature Review

Generally speaking, a lower dimensional fuel cell model may ignore some spatial
physical quantit ies but a lower computational cost. For example , the one -dimensional
model is considered as a macroscopic model, which describes the physical behaviors

on the basis of individual layers in a single cell. Although the spatial distribution physical
variables cannot be obtained using the one -dimensional mode s, the fuel cell dynamic
phenomena can be well represented by first-order differential equations. Therefore, the
one -dimensional models are preferred to investigate the transient behaviors inside the

fuel cells. Many PEMFC dynamic models can be found in | iterature [1] -[4].

S. Park et al. [1] propose a dynamic PEMFC model which considers dynamic behaviors

of temperature and two  -phase effects. Based on the proposed model, a comparative
study of transient behaviors are further performed including dynamics of temperature,
oxygen and vapor concentration in the gas diffusion media, liquid water saturation, and

the variations of water content in the membranes.

Z. Zhang et al. [2] propose a semi -empirical dynamic PEMFC model. The effects of the
equivalent internal resistance and the stack thermal behavior on the output

characteristics of PEMFC are investigated under different load conditions. The

experimental validation shows that the proposed model can provide an accurate

representation of the static and dynamic be haviors under different load conditions.
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K. Sedghisigarchi et al. [3] give a dynamic and transient analysis based on a dynamic
solid-oxide fuel cell model, the temperature dynamics in thermal domain and the output
voltage losses dynamics in electrochemical domain are both considered in the
developed model. The simulation results show that, for a very fast load variation, the

temperature dynamics can be ignored.

F. Gao et al. [4] present a multi -physical dynamic PEMFC stack model, which can be
directly used in real -time applications. This dynamic PEMFC model covers three physical
domains for electrochemical, fluidic and thermal features. Specifically, a fuel cell
dynamic time constants analysis is performed, and the dynamic responses of different

physical dom ains are shown through current step.

A common drawback of these models is that the different fuel cell dynamic
phenomena, especially the ones with similar time constant, are not considered
simultaneously or over -simplified, thus make them unsuitable for dynamic variable

coupling analysis.

Compare to one -dimensional models , multi-dimensional models have a capability to
provide local phenomena and spatial distrib ution physical variables, which is very useful
for spatial non -uniformity and control coupling analysis. However, calculating such
complex physical quantities leads to higher computational requirements. Many PEMFC

multi -dimensional models have been previou sly proposed in the literature [5]  -[8].

Y. Shan et al. [5] propose a dynamic two  -dimensional PEMFC model, which considers
the fluidic and thermal behaviors. In order to obtain the temperature dynamic
distribution along the gas channel direction and through -plane direction, a numerical
solver is used based on SIMPLE algorithm. In addition to the thermal dynamic behaviors,
the proposed 2 -D model can also predict the current density and oxygen concentration

dynamic distribution.

X. Wang et al. [6] present a th ree-dimensional non -isothermal PEMFC model. This model
uses two different water transport equation to describe the water two -phase
transportation during the fuel cell operation. Based on the developed model, a
parameter sensitivity analysis is performed to  show effects of different parameters on the

fuel cell polarization curve.

S. Um et al. [7] develop a multi -dimensional transient model for PMFC. The proposed
model simultaneously considers the electrochemical kinetics and hydrodynamics. In
order to predic t not only the experimental polarization curves, but also detailed

distribution of electrochemical and fluidic features, the conservation equations are
14



numerically solved using finite volume based computational fluid dynamics (CFD)

approach.

B. Sivertsen et al. [8] introduce a comprehensive non

PEMFC model. In the presented model, the fluid transport inside the fuel cell gas

channels and gas diffusion layer, as well as the thermal behaviors are developed and

solved based on the framework of a CFD code. This CFD computational model can

accurately predict the cathode over -potential distribution.

A common drawback of these works is that the presented fuel cell bipolar plate flow

field (gas channels) models are over -simplified (or n ot even considered). Thus they

cannot describe accurately the non

characteristics. On the other hand, as a commonly used modeling technique for multi

-isothermal three -dimensional

-linear and non -uniform pressure distribution

dime nsional model, the CFD models [ 7]-[8] are not suitable fo r real-time model -based

controller since the computational burdens are too heavy.

1.2

Multi -Physical PEMFC Model

In this section, the presented PEMFC dynamic model is based on a developed multi

physical PEMFC model in the previous works |

single cell level are shown in the  Figure 1.1. As shown in Figure 1.1, one fuel cell stack

level can be separated into eight cell layers, which consist of:

1)
2)
3)
4)
5)
6)
7

8)

Cathode cooling channel layer;
Cathode gas supply channel layer;
Cathode gas diffusion layer;
Cathode catalyst layer;

Proton exchange membrane layer;
Anode catalyst layer;

Anode gas diffusion layer;

Anode gas supply channel layer.

9]-[10]. The PEMFC stack level and the

15



Fuelcell stack level

: I

CeII 1 ___celi7” Cell3  ~~~-_ CellN

- ~<

Sngle celllevel

Figure 1.1 PEMFC stack level and the single cell level

The advantage of this cell layer structure is that each modeling layer can be described
separately by its own physical equations and the boundary conditions. Each cell layer is
considered as a control volume in the presented model. For each cell layer, the

modeling of different physical domain is presented in the following subsections.

1.2.1 Electrical Domain Modeling

As an electricity -converting device, the PEMFC converts fuel energy into electricity
through electrochemical reactions. Therefore, the electric domain is included in the
proposed PEMFC model.

The total output voltage & z®k a single -cell can be calculated by the following

equation:
&ode ootrBuavoF 8og s&;

where ' 4 gisgthe single fuel cell thermodynamic voltage (V), & v bs the ohmic voltage

drop (V), 8 ois the cell activation voltage drop (V).

The thermodynamic voltage ' o giscalculated from the following Nernst equation [ 11]:
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where 654§ the catalyst layer temperature (K), (L {xvzw the Faraday constant
(C/mol), 4 L zasvis the ideal gas constant, 2= g ¢ d® the oxygen pressure (atm) at the
interface of cathode catalyst layer, 24 0§ the hydrogen pressure (atm) at the

interface of anode catalyst layer (please ref er to the last paragraph of this section).

The membrane resistance 4553 © LV FDOFXODRWHG E\ >
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where #;44is the section surface of membrane (m  2), U 4is the membrane thickness
(m). NgaLV WKH UHVLVWLYLWWRWhiENHRrERg Datia °© ted by the following
equation [ 12]:
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Thus, the cell ohmic voltage drop &musan be calcu ODWHG IURP 2KP-V ODZ
[13]:

&ravd- E®aga - sa,

The electrochemical activation voltage drop 8 ¢@f single cell can be calcula ted by
Butler-Volmer equation [ 14]:

%@TimA |52 L liigp Ce -

EL B#p ol Eliinl F A Elfigi [ 1S¥;

where Hs the stack current (A), Ukis the charge transfer coefficient, Jis the electrons

number. The exchange current density B (A/m 2) can be calcul ated by an empirical

equation [ 15]:

N I
EL Cb@?EIéD @\Elllﬂl@ =& 9A Sq/.,
where (and (pare empirical parameters, ' pis the oxygen activation energy on the
electrode catalyst interface. It should be noted that, the 8 ¢ip anode side for fuel cells

of PEMFC type can be neglected due to the easy electrochemical process.

It can be seen from the equation 1. 6 that, the term activation voltage drop 8 ¢ig in an

implicit form. In order to explicitly calculate this n on-linear implicit Butler -Volmer equation

17

HTXDV



to obtain the value of 8 @n iterative solver is used. For a high stack current, the Butler -

Volmer equ ation can be w ritten as the well-known Tafel equation [1 6]:

8@" 46HJ—E- XY &
o+ T3 M BHsoco A
The dynamic behavior of activation losses voltage 8 ol the electrical dom ain due to
WKH "GRXEOH OD\HU HIIHFWpu FDQ EH H[SUHVVHG E\
@ E Roog .
— Ryl — sF— :s§,;
@%Oéﬁ % 80(")@ 4

1.2.2 Fluidic Domain Modeling

It should also be noted that, since the 2% pond 25 pocésed in equation 1. 2 are

reactant gas pressure at the catalyst layer interface instead of the gas supply channels,

another fuel cell over -potential term due to pressures drop through the GDL, well known

DV "FRQFHQWUDW LRRV ER-MVHWOUHDG LPSOLFLWO\ FRQVLGHUHG LQ
model. Therefore, the fluidic behaviors inside fuel cell, such as reactants convection in

the channels and diffusion through gas diffusion layer, have a great impact on fuel cell

performance . In this section, the fluidic domain modeling is presented.

1.2.2.1 Cooling Channels

In the gas channel, the Reynolds number can be calculat ed by the following equation
[17]:
4AL—eL'JCA)%C.A?§éO\'Xélél 'S&,
a
where &gis the channel hydraulic diameter (m), dis the mean fluid velocity in the
channel (Pa s). The mean velocity  § 5 in/s) of gas can be calculated based on the
following equation:
&od M 's&s
© #Euo e .
where Ms the fluid mass flow (kg/s), A is the total section of cooling channels (m 2). The
fluid density (kg/m 3) éygan be calculated by ideal gas equation of state
. 12 .

The gas pressure drop ¢,25 5 0f serpentine channel depends on the surface friction losses

of straight pipeline, which can be modeled by the Darcy 2AWeisbach equation[1 8]:
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where 25 aags 25ame AN 25 aappsdr€ respectively the pressure at inlet, outlet, and

center of cooling channel, . apis the total length of straight channel (m), B,is the Darcy
friction factor which can be obtained from the empirical equation [1  9]:
B, L akd S&w
4 A
The gas pressure dynamic response in the fuel cell is generally due to the ch annels

volume. Thus, the dynamic behaviors of fluid in the cooling channel can be given by the

mass balance equation:

&
luoaap@ . )
460fa|@%‘)aaqs|- I Mgeux [S& X
aag Uaaec
where [/ yals the gas molar mass (kg/mol), 8 ;48 the volume of the cool channels (m  3),
65 ad% the cooling channel temperature (K), 2¢is the gas pressure in the cool channels

(Pa) and M e iscthe fluid mass flow rate (kg/s) entering or leaving the channels.

1.2.2.2 Gas Supply Channels

The total pressure of the center of the gas supply channels can be calculated by:

a0aaolk 208 E2oeg E20a e s&y,
2oa00aa0lk 204 E 204 & Z
where 25, 25& ., 254 care respectively the oxygen, nitrogen, and vapor pressure in
the center of cathode supply channel. 20 &, 20 % eare respectively the hydrogen and

vapor pressure in the center of anode supply channel. The gas pressure in the center of

channels is defined as follow:

25080 aa@E 2008044 @e ¢

2 o o & - 158 {;
where 250450 4 4 @riS the gas pressure at the channel inlet, and 250460 a4 @e dS the gas
pressure at the channel outlet. Thus, the dynamic behaviors of fluid I yomoacPathe

center of gas supply channels can be also written based on the mass balance equation:
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where M g0 a4aa@rdS the gas mass flow at the inlet of channel, M 0456 a2 @@ dS the gas
mass flow at the outlet of channel, & 548 the volume of the gas supply channels (m  3)
and 6yp 4 a githe temperature of gas supply channel (K).
1.2.2.3 Gas Diffusion Layer (GDL)
To obtain the reactant gas pressure at interface of the catalyst layer, the diffusion
phenomenon in the gas diffusion layer can be desc ribed by modified Fick's law [ 20] [21]:

@iva  clava F46., 08,4 L
v L= 500 (sat ;
@ LA%A #A%@AVZ&?\I

where Law,&iS pressure of specie x in gas diffusion layer (Pa), U, is thickness of gas
diffusion layer (m), 6a.,js the gas diffusion layer temperature (K),  08.,4is the gas molar
flow rate of specie x (mol/s), #a, js the gas diffusion layer area (m 2), &,?12371 is the gas

diffusion coefficient (m 2/s) between the species xand y can be calculated from [  22]:
Ba v, A sr’’ _sr?7s

o] 5
FUU S y 5
&gt L5 E@F—————=0C &2%380389 ®bauboaysd @ — E )
A1 &7 2(;5\(; ¥605ﬂ@')éﬁ]g at ah197 60abi§0ahl@ /é /i

o

® :sdu;

where 2.5 is the total pressure of species (atm), 6 5 ig the critical t emperature of species
(K), 2ais; the critical pressure of species (atm), and / is the molar mass of species
(kg/mol), Vis the porosity of the GDL and  &s the GDL tortuosity. The coefficients =and >
depend on whether one of the species is a polar gas or not and are determined

accordingly , which are given as follows [ 22]:
For pair of gases contains no polar gas:
=LtyvwsrE=0@L s&tu
For pair of gases contains polar gas:
=L ukvrHsr’®=J@L tauv
1.2.2.4 Catalyst Layers
As mentioned before, the reactant gas mass flow rate through the GDL to the catalyst

layer is directly proportional to  the fuel cell stack current [ 23] [24]. Thus, the oxygen mass

flow M (kg/s) at the cathode side can be expressed by:
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M v( sdv;
the hydrogen mass flow M (kg/s) at the anode side can be expressed by:

[ 5 G ,

M L— (séw;
and the mass flow of produced water M e (kg/s) at the cathode side due to the
electrochemical reaction can be calculated by:

| ae @ .
M\, E&aa V( :sdx;
1.2.2.5 Dynamic Membrane Water Content
Because the membrane ionic conductivity &, @ ais highly dependent on water content
8s in polymer membrane [ 25], a more detailed knowledge of transient behavior of the
8, would give a more accurate value of Ohmic losses 304 ucAS shown in the equation
1.3. Moreover, the dynamic phenomena of 3, plays an important role on the dynamic
performance of PEM fuel cell due to its relatively long transie nt time (up to some minutes)
[26].
The dynamics of the membrane water content 3, is generally influenced by two water
flow effects in the membrane: the electro -osmotic drag flow due to proton conduction
from the anode to the cathode; the water back diffusion flow caused by the
concentration gradient between anode and cathode side. The membrane water
content & is defined as the relationship of the number of water molecules per ch arged
site (sulphonate site) [2 7]:
B rarvuEsyzsh e Fu{gwl c Eux{ EBOUi Qs ,
& L J o : ' . 'sdy;
SVE s&kly; ¢ F so EBOWU e Qu
where UA' g is the water activity factor, which can be obtained based on the water local
vapor partial pressure 24 ¢ (pa), and the local vapor saturation pressure 2 o(pa):
. 2i &
Us g L—— :sdz;

A E 2@@@

where the local vapor saturation pressure 2 9§ calculated by:
220 . . .
H rgg@ﬁL Ftay{VErat{whb sk tyUs w0

F{BZUMHSI K& paaF tY BV ES&VWHSI K& oaak ty Us W0  SA{:
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where 6 g 53is the vapor temperature (K). Thus, the dynamics of the water content 8 in

the membrane can be obtained by considering the water molar flows balance at two
sides (i.e. anode and cathode) of membrane, and the mass conservation of water, as

shown in Figure 1.2.

Membrane

Cathode Anode(dead-end)

Figure 1.2 Dynamic water flow behavio  rs in fuel cell membrane.

Thus, the dynamics of the water content 8, can be described by:

#agalhoabiamoa @ )
@Fl-9xa@aF9xaajoE9xU£@?kck FOxuwparo0o sar,

laga
where €315 2a1S the membrane dry density (kg/m  3), / yz4is the molecular mass of

membrane (kg/mol), and 9 represents different water molar flow (mol/s) entering or

leaving the membrane due to electro -osmotic drag and water back diffusion flow.

The water molar ente ring or leaving the membrane due to electro -osmotic drag 9«30

can be described by:

BE . )
QXéOL?( QYN ‘Sdl's

where the JL}{@ N t &is the coefficient of electro  -osmotic drag for maximum hydration

conditions. The water molar entering (from cathode to membrane) or leaving (from
membrane to anode) the membrane 9.puidue to back diffus ion flow can be

described by [2 8]:
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where & 512 23iS the dry d ensity of the membrane (kg/m  3), / 5 44is the equivalent mass
of the membrane (kg/mol). The boundary water content d-at anode and cathode side
can be expressed as a function of water activity Umwhich can be deduced from the
water vapor partial pres sure equation 1. 28. The membrane water diffusion coefficient

& 6 ¢ N ?/s) can be calculated  from the empirical equations [2  8]:

> sr?54A685:7_i?T5M” EB& Ot
- sr’%%sEt:5&% Ft;0EBt Q& Qu
‘Sr75%uF sky& FuoEBuQ& Qvav
0 sdwHsr’54 EB5, P vav

‘saly

)

&é09d§é; L

As shown in Figure 1.2, in the case of non -humidified hydrogen supply and anode dead -
end mode operation, the anode side water accumulation is only caused by the water

diffu sion from the membrane to the anode 9.y mparoa and the cathode side water
accumulation depends on three factors: 9 A40 €omes from humidified air supply at
cathode 9(ka, the produced water at cathode side 955 5during electrochemi cal

reaction and the electro  -osmotic drag flow from the anode to the cathode 9,36

Under the dead -end mode operation (no water accumulation at anode side), the
water molar flow entering into the membrane from anode due to electro -osmotic drag
9. 16 4S equal to the water molar flow leaving out the membrane to anode due to

back -diffusion 9 .« sz a2 6 s(das hed portion as shown in figure  1.2). Thus, the dynamics of

the membrane water content 8, can thus be simplified by:
Hsors o s €, 50a % E .,
a@aulﬂa Xalaaﬂa IJ— a@a&eOQ@am@a 300F3e = =3 ®]>|(a|ou ‘SAlV,
laga @ I agalhga tt(
with anode side water content 35 4

. 2 F 5% BR300 avaloa

s 4L ~ Jsaw
@ tt( Brpa&eocfxaiaoa

1.2.3 Thermal Domain Modeling

In addition to the fluidic phenomena, the effect of temperature on the fuel cell
performance should also be considered in t he fuel cell modeling. For example, the hea t
transfer changes the gas convection and diffusion behaviors, and further influences the

electrochemical quantities inside the fuel cell.
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The fuel cell temperature transient behavior in the thermal domain is due to the heat

generation and thermal conduction and convection phenomena. Like dynamic

behavior of membrane water content, dynamics of fuel cell temperature is an important

phenomenon due to its relatively long transient time. This dynamic behavior can be

ge nerally described as follows:
@,

e 8% @P

L 3844E 3802k 3Baaomaak 3acavo sl x

where éis the mean layer volume density of stack (kg/m 3), 8is the layer volume of stack
(m?3), %is the layer thermal capacity (J/kg R®), 6,iis the temperature (K) of each control
volume and  3%tands for the different types of heat (J) flows entering or leaving the layer

respectively: conduction, convective flow, forced convection and interna | heat sources.

7KH KHDW IORZV GXH WR FRQGXFWLRQ FDQ EH H[SUHYVHG DFFRUGL

t &, 1% g0 i )
3gaé>l-Tw Kb aeax 0k 6,410 sy,
where &,,jis the c ontrol volume thermal conductivity (W/m R), 5¢ g0 asds the section of
the control volume in heat transfer direction (m 2), and U,jis the control volume thickness
(m).
The convective heat flow due to the mass transfer entering or leaving th e control
volume can be calculated by
30k NI KM ag8tswao OFoacaxok 6410 [sdlz
®ag0Ul@
where M 5 g dsithe mass flow rate (kg/s).
The heat transfers by forced convection 3B.206maascan be written according to
1HZWRQ:-V FRROLQJ ODZ
3asomasd Dasomasodvask Goonn rsdu{;
where 6548 the coolant temperature and R ae gis the contact area (m  2), Qa0 is<the
forced convection heat transfer coefficient (W/m 2 ®), which can be calculated by [2 9]
0 @I/AT
Raaodg—— SET;
aao &mxéé

where &,,jis the fluid thermal conductivity, 0 Qs the Nusselt number of the fluid, which

can be calculate d by the empirical equations [  30]:
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Where %4 ¢ e ipcthe coolant thermal capacity (J/kg R).

At last, the linear expression of the heat sources 38.:28% a function of the cell

temperature can be obtained:
38 3e4d0Geae b BB EVAEG g, (S&t;

1.3 Multi-Dimensional Modeling Considerations
Compared with 1 -D models [ 31]-[39], a 2-D PEMFC model has a capability to provide

two -dimensional behaviors, which is very useful for spatial non -uniformity and control

coupling analysis. This analysis can give detailed and valuable spatial physical quantity

information under different fuel cell operation conditions by taking multiple spatial

dimension s into consideration. FRU H[DPSOH WR SUHYHQW ORFDO "KRWVSRWyu |
to non -homogeneous distribution of reactants, and can be further employed in a

model -based real -time controller.

Many PEMFC 2-D models have been previousl y proposed in the litera ture [40]-[45].

However, a common drawback of these works is that the presented fuel cell bipolar

plate flow field (gas channels) models are over -simplified (or not even considered). Thus
they cannot accurately describe the non -linear and non -uniform press ure distribution
characteristics.

For example, as shown in the upper part of figure 1.3, the gas pressure prediction results

of a model without the consideration of channel geometric form, could lead to an
inaccurate gas diffusion phenomenon in the serpentine pipeline, which would further
impact the accuracy of electrode current density analysis. In these models, the gas
supply channel is assumed to be straight and single. In fact, the gas supply pipeline in

the anode and cathode sides have different geometric patterns, as shown in the

figure 1.4.
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Figure 1.3 Double three -parallel serpentine pattern of cathode gas supply channel

and double single serpentine pattern of anode gas supply channel

It can be seen from the figure 1.4 that, the flow field forms of a Ballard NEXA 1.2kW fuel
cell stack used in this thesis includes a single serpentine pipeline in anode side and a
parallel serpentine pipeline in cathode side. Therefore, a comprehensive representation

of non -homogeneous gas phenomenon by fully taking the geometric form of the fuel
cell pipeline into consideration is particularly useful to achieve highly accurate spatial

distribution information for 2 -D model of PEMFC .

Figure 1.4 Actual geometry form of gas channel of NEXA PEMFC:

the left one is cathode air channel, the right one is anode hydrogen gas channel



In this section, a 2 -D, multi -physical PEMFC model is fully developed, which covers fluidic

and electric domains with an innovative 2 -dimensional modeling approac  h. The basis of
individual layers in a single cell of the proposed 2 -D PEMFC model is shown in the figure
15.

It can be seen from the figure 1.5 that, in the proposed 2 -D PEMFC model, a single cell
model consists of 7 individual layers: 1) cathode gas sup ply channel; 2) cathode gas
diffusion layer (GDL); 3) cathode catalyst layer; 4) membrane; 5) anode catalyst layer; 6)

anode gas diffusion layer (GDL); 7) anode gas supply channel.

Figure 1.5 Structure of a single cell of fuel cell stack.

In order to take the geometric form of the fuel cell pipeline into consideration, a 2 -D

modeling of fluidic domain is developed firstly, followed by a 2 -D electric modeling.

1.3.1 Two-Dimensional Approachin Fluidic Model

To accurately model the reactant gas pressure distribution on the electrodes surface, a
comprehensive modeling of gas convection -diffusion phenomena in the gas supply
channel and GDL is presented hereafter by precisely considering the fuel cell gas

channel geometric form in  this section.

1.3.1.1 Gas Supply Channels

Different from single and straight channel assumption in the previously developed
PEMFC model, the geometric patterns of gas supply channels (both anode and
cathode sides) are now considered in the improved model , such as single serpentine,
parallel serpentine channels, with the consideration of sharp and curved U -bends
(channel angles). Under the same inlet air supply conditions, the gas pressure distribution

on the surface of GDL depends highly on the flow field form. Thus, a detailed
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representation of non -homogeneous gas pressure distribution by considering the flow

field form can be very useful to achieve accurate modeling results.

In this thesis, the geometric form of gas supply channels is taken from Ballard NEXA fuel
cell as shown in figure 1.6. This two-sided design includes a three -parallel serpentine
channel for cathode air supply, and a single serpentine pattern channel for anode

hydrogen supply.

Figure 1.6 Three-parallel serpentine channel for cathode air supply;

and single serpentine channel for anode hydrogen supply.

The gas pressure drop ¢ 2y 0f serpentine chan nel depends on three factors [4 6] [47]: the
surface friction losses of straight pipeline  (modeled by the Darcy  AWeisbach equation),
the frictional loss suffered in the elongated section of the bends, and the sum of excess

loss coefficients Yjor n U-bends:

A a

e s Caoe
(;ZGJLB/ZME—(@UOQ}WBJ%%| Y ‘S& U

t&fﬁxéé t &Uixéé

-
where B,is the Darcy friction factor, é;gis the fluid density in the channel (kg/m  3), .gis
the total length of straight channel (m), Qs the mean fluid velocity in the channel (m/s),

&g « 3 4S the hydraulic diameter of the channel (m), . & g ais the total length of elongated

section of the bends (m), the Kays friction factor Bycan be given by [4 6]:

Fu&
B ® AL SLEVESWZATLU@ ; IS& VvV,
g ax
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where Sis the pipeline width (m), Dis the pipeline thickness (m). 4 As the Reynolds

number of the fluid in the channels, channel aspect ratio Uy g ais defined by:

. Say .
Lb@al-aj SE W
The excess bend loss coefficient of  ith bend Yijs given by [4 6]:
EBAOsSrr
YL r :S& Xf;

EBrrO4AOSsSrrr

. 5
YyL r& x4 RpH:sF r& 2%E rasxf;

- 6
H:sFraUErarttP; HnsErax| A’p’ Frarsz ,Af”pq:sé'vx,;
Ya0aiv o Yaoaiv 0

EBrrrO4AOttrr
YL uZ:sFrat%Erattos;:sFraUErarxup;

e 6

. 7 .
HLSEr&t—=-G Frarru—=2-GM:s&Xx..
&yixaa &yixaa

where . ds the spacer length between two neighboring duct, and %s the curvature

ratio of the bend, is given by [4  6]:

(S& Y,

where 4.,is the mean radius of bends, &g«saS the duct hydraulic diameter which is

calculated by:

vSD

&oixaal t:SED

S¥ zZ

where the pipeline width S, pipeline thickness DO and spacer length between two

neighboring duct . can be seen clearly in the figure  1.7.

From figure 1.7, the rectangle pane is represented as the cross sectional are a of pipeline.

The anode channel curved U  -bends are the same as those in the cathode channel.

29



Figure 1.7 Schematic diagram of pipeline width «, pipeline thickness  Zand

spacer length between two neighboring duct x=in the channel curved U -bends.

1.3.1.2 Gas Diffusion Layer

The modeling equations for reactant gas diffusion phenomena in the GDL are described

in this section. Based on the gas supply channel geometry, the GDL, which is directly
adjacenttothegascha QQHOV OD\HU FDQ EH GLYLGHG LQWR WZR VHFWLF
DGMDFHQW YROXPHu DQG "VRPHG D&MIDFGIXRQWVIW YREVHIE figrel LI X UH

1.8, the thin line GDL control volume is adjacent to the channel fluidic section, denoted

DV "IOXIDFW@GWM YROXPHVH RI *'/ 7KH JDV IORZV WR D "IOXLG DGMD
from the gas channel pipeline and the adjacent volumes. In contrast, the bold line GDL

control volumes in figure 1 DUH DGMDFHQW WR WKH FKDQQHO VROLG VHFWL
adjace QW YROXPHuy RI *'/ 7KH JDV IORZV WR D "VROLG DGMDFHQW Y

the adjacent volumes in gas diffusion layer.

In the previous section, the gas convection phenomenon in the serpentine pipeline has

been well developed. As shown in the figure 1.8, the convective gas flow direction in the
gas pipeline is marked by arrow 1 in the gas pipeline A, and by arrow 3 in the gas
pipeline B. Then, the gas diffusion phenomena through the GDL can be divided into six

categories:

1) 'LIIXVLRQ IURP SLBHOLX) B GWRD F H Q Waxié Rnaacke&dHyith arrows 2
and 4) ;

2) 'LIIXVLRQ EHWZHHQ WZR DGMDFHQW ’|OyXaxi§ nagddviEH QW YRO X

arrows 5 and 6) ;

3) 'LIIXVLRQ EHWZHHQ DGMDFHQW "IOXLG DGMDFHQW YROXPHu DQ

(x-axis, marke d with arrow 7) .
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4) 'LIIXVLRQ EHWZHHQ WZR DGMDFHQW ’“VE-&isGmaedvitFHQW YRO)

arrow 8) ;

5 'LIIXVLRQ IURP "IOXLG DGMDFHQW YR O(X&xidVmparkedRwithD WD O\V W

arrows 9 and 10) ;

6) 'LIIXVLRQ IURP "VROLG DG M D falysDIsyerY @-ax% Midketiith Ribow
11).

Figure 1.8 Gas diffusion phenomena in the GDL.

It should be noted that, when the stack current increases, the diffusion from gas pipeline
WR "IOXLG DGMDFHQW Y RifusienHfiom Bou@esWidKddtalyst layer become
more important due to the increase of mass flow from gas channels to the catalyst layer,
which is proportional to the fuel cell current. All these diffusion phenomena in the gas
diffusion layer, except the ab  ove -mentioned current -driven ones, can be modeled by

the modi fied Fick's diffusion equation  1.22.

In fact, the benefit of parallel pipeline is its lower pressure drop due to shorter single
channel length. However its main drawback is water droplet accumula tion during fuel
cell operation. The single serpentine can improve water removal while introduce a larger
pressure drop. This parallel serpentine flow field combines thus the advantages of both

patterns, in order to achieve better performance of fuel cell system.

1.3.1.3 Non-Uniform Control Volume Consideration
In order to fully describe the gas flow in the serpentine pipeline gas channels, and further

accurately obtain the two  -dimensional physical quantity distribution both in fluidic
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domain and electroc  hemical domain, the control volume mesh grid definition of gas
channels in the proposed 2 -D PEMFC model is considered in a non -uniform manner. It
means that, the geometry form of each control volume follows the channel geometric

patterns. The 2 -D channel m odel can be then implemented by defined control volumes

with the physical equations presented in the previous section. The control volume 2 -D

mesh grid at both cathode and anode sides are de picted in the following figure  1.9.

Figure 1.9 Control volumes 2 -D mesh grid at cathode/anode sides.

As shown in the figure 1.9, the two surface dimensions are considered for the proposed
2-D model, the non -uniform control volume distribution of each side is based on the
geometry form of channels (i.e. three  -parallel serpentine pattern at cathode side and

single-parallel serpent ine pattern at anode side, denoted by black mesh in the figure 1.9.

1.3.2 Two-Dimensional Approachin Electric Model

The characteristics of reactant gas convection and diffusion in the pipeline and gas
diffusion layer are fully described in the previous section. However, the spatial physical
guantity distribution on the surface of electrode (e.g. the current density distribution)
cannot be directly obtained using the non -uniform mesh grid. In order to unify the mesh
segments distribution in homogenous ma  terial such as electrode and electrolyte, the
non -uniform mesh grid of gas channels layer of each side are then linearly converted to

uniform mesh grid for GDL and membrane layers den oted by red mesh in the figure  1.10.
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Figure 1.10 Control volumes 2 -D mesh grid at cathode/anode sides,

and uniform segments for electrochemical calculation

1.4 Conclusion

In this section, a dynamic, multi -physical model of a proton exchange membrane fuel

cell is developed at first. The presented model considers in particular the transient
phenomena in both fluidic and thermal domain s (please refer to the previous work [9]
[20]).

Based on the developed multi  -physical model, a 2 -D modeling approach for a proton -
exchange -membrane fuel cell (PEMFC) is then proposed. The proposed model covers

multi -physical domains for both  fluidic and electric features. In order to accurately
describe the characteristics of reactant gas convection and diffusion in the pipeline and

gas diffusion layer, the gas pressure drop in the serpentine pipeline s is comprehensively
analyzed, especially for the reactant gas pressure drop due to the pipeline U -bends,
followed by a comprehensive description of gas diffusion layer 2 -D modeling by fully
considering the geometric form of flow field [48]. The experimental validation and

coupling effects analysis are presented in the following chap ter.
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Chapter Il: Experimental Validation
and Coupling Analysis

This chapter presents t he experimental test and simulation in order to validate the
proposed 2 -D model with a commercial Ballard NEXA 1.2 kW PEMFC stack. With the
developed 2 -D model, the spatial physical quantity information can be accurately
observed and analyzed by taking the multiple spatial dimensions into considerat ion.
These spatial results are very useful to help to quantitatively analyze the coupling effects

in different physical domains, and study the influences of model parameters on th e fuel

cell spatial performance

2.1 Lterature Review

Although the coupling of dynamic phenomena in a fuel cell has an important influence
on the control design of fuel cell system, very little information has yet been published in
the literature on the analysis of interaction between fuel cell dynamic variab les in

different physical domains.

Zhao et al. [1] present a decoupling control strategy for the strong coupling between

mass flow and pressure in centrifugal compressor system, which is a key component for

supplying compressed air to the fuel cell cathod e channel, but the dynamic
phenomena coupling in fuel cell system have not been considered. Cheah et al. [2]
give a detailed analysis of coupling effects of electro -osmotic drag, water diffusion and

interfacial water transport. Carnes et al. [3] present a analysis of coupling effect of the
water transport within the proton exchange membrane and the partially saturate d gas
diffusion electrodes. Cao et al. [4] propose a single neuron adaptive proportional -
integral derivative (PID) feedback controller for a so lid oxide fuel cell, which combines
the advantages of robust control and PID control, in order to automatically adjust

control parameters when system encounters uncertainties and disturbances. However,

they only considered the coupling effect of dynamic wa ter transport in fluidic domain

without taking the thermal domain dynamics into account.

2.2 Model Experimental Validation and Discussion

A commercial 1.2 kW Ballard NEXA 47 cells stack is used to perform the experimental
validation, which is shown in t he following figure 2.1. This PEMFC stack is supplied by
compressed air and hydrogen.
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Figure 2.1 Experiment platform: 1.2 kW Ballard NEXA 47 cells PEMFC stack,

Ballard control system board, and measurements

During the experiment, the Ballard control system is used to measure most of the
experimental data, such as the oxygen flow rate, gas temperature, fuel cell stack
current and voltage, etc. The voltage of individual cell is measured by voltage
acquisition module of Na tional Instrument. An embedded thermal sensor is used to

measure the fuel cell stack temperature.

2.2.1 Experimental Validation of Dynamic Model

Firstly, the comparison of simulation and experimental results of single cell polarization
curve are shown in the figure 2.2. It can be seen from the results that, the polarization

curve from the proposed model shows an exact conformity with the real PEMFC.

Figure 2.2 Experimental validation  of polarization curves.
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In order to further validate the presented dynamic fuel cell model through simulation
and experiment, different current profiles (static and dynamic) for model validation

purpose are presented in figure  2.3.

Figure 2.3 Experimental validation under diffe  rent stack current profile:

(a) Long current step. (b) Short current step.

The current profiles (figure 2.3) are applied to the developed model and to the real fuel

cell stack. The predicted and measured real stack voltage are compared in figure 2.4.

It can be seen clearly from the figure 2.4 that, the predicted voltage values from the
model show a great agreement with the real fuel cell. In addition, the voltage dynamic
behavior is also well reproduced by the model. Figure 2.5 shows the simulated and
expe rimental stack temperature during operation, the comparison results show again a

good agreement between them.
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Figure 2.4 Experimental validation of stack voltage with different step current profile:

(a) Long current step. (b) Short current step.

Figure 2.5 Experimental validation of stack temperature with different step current

profile: (a) Long current step. (b) Short current step.
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2.2.2 Dynamic Membrane Water Content Results and
Discussions

The same current profiles (figure 2.3) are applied to the developed model. The model
simulation results are shown in figure 2.6. Figure 2.6 (a) shows that the dynamic responses
of water content at both cathode, anode sides and in the membrane after the long

current step. From figure 2.6 (a), the cathode wate r content &ygdncreases at 100 s,
because more water is produced at cathode side at high current. In contrast, the

anode water content 8s sdecreases at 100 s, due to a higher water electro  -osmotic
drag flow (higher current) from anode to cathode. The green line represents thus
membrane average water content 8a, which depend on the boundary conditions at
both cathode and anode sides. The dynamic of membrane Ohmic resistance, which is

highly depend on membrane water content based on equation 1.3, is also shown in
figure 2.6 (b). It can be seen from the figure that, the transient time of membrane water

content, thus the transient of Ohmic resistance, can last about 500 S.

Figure 2.6 Dynamic response s after a current step:

(a) Water content. (b) Ohmic resistance.

42



Figure 2.7 Dynamic response s after current step variation:
(a) Water content. (b) Ohmic resistance.
Figure 2.7 (a) shows that the dynamic responses to quick current step variation. From
figure 2.7 (a), the anode water co  ntent 3a sdecreases sharply at a high current step, due
to the high water electro  -osmotic drag flow. It can be concluded from the figure that,
the dynamic membrane water content 8 is directly related to the stack current
variations. The corresponding  dynamic behaviors of Ohmic resistance are shown in

figure 2.7 (b).

2.2.3 Effect of the Gas Supply Serpentine Channels and
Discussions

The major improvement of gas supply channels modeling by taking the channel
geometric form into consideration can give a more accurate pressure distribution
prediction in the fuel cell, which can lead to a more precise prediction of fuel cell
voltage. A comparison of gas pressure drop in the channel between the developed flow

field model and the model using straight channe Is assumption (as in the most of
literature) is given hereafter, in order to highlight the importance of channel geometric

form on the pressure modeling accuracy.

Comparison of simulation results of pressure drop in the channels of two modeling

approaches with different step current profile are shown in figure 2.8 and figure 2.9.
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Figure 2.8 Comparison of pressure drop in the channel s of two modeling approaches

with long step current: (a) Cathode channels. (b) Anode channels.

From figure 2.8 (a), it can be seen clearly from the figure that, the predicted pressure

drop is much higher with the assumption of straight gas channel form. By taking the

channel geometric form into consideration, the obtained pressure drop in the channel

can be differed as muchas 294 Rl WRWDO FKDQQHO SUHVVXUH FRPSDUHG \
FKDQQHOMW DVVXPSWLRQ ,W KDV WR EH QRWHG WKDW WKLV SUHYV
lead to a significant error in the fuel cell voltage value. However, it could lead to a

wrong gas pressure di stribution pattern on the surface of electrode for the electrode

current density analysis for example. Thus, in order to get a more accurate gas channel

pressure results, the channel geometric form has to be taken into account in the fuel cell

model. The comparison of simulation results of  pressure drop of two modeling

approaches with short step current is also presented in figure 2.9.
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Figure 2.9 Comparison of pressure drop in the channels of two modeling approaches

with short step curren t: (a) Cathode channel. (b) Anode channels.

2.3 2-D Model Smulation Results and Discussions
2.3.1 Model Grid Independence Analysis

The model grid independence analysis determine s the minimum mesh grid number
needed for a multi -dimensional model. When increasing the mesh number, if the
changes of model ou tputs are less than a pre -defined acceptable error, this mesh

number can be considered to meet the independence criteria.

Table 1.1 Mesh Grid Independence Check for 2 D Model Output

Model outputs difference (%)

Mesh number _
(to previous mesh number results)

32 -
48 0.314
64 0.132
128 0.015
256 0.007
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The proposed 2 -D model output voltage differences for different control volume
numbers of uniform segments are shown in the table 1.1. It can be concluded from the
table 1.1 that, when the mesh number is larger than 256, the model outputs difference is
less than 0.01%, thus it can be consider that the model ou tputs are no longer affected by

the change of mesh grid size.

2.3.2 Results and Discussions

The proposed 2 -D model thoroughly considers the geometric form of parallel serpentine

flow field in the fuel cell. The oxygen pressure distribution in the cathode three -parallel
serpentine channel, and hydrogen pressure distribution in t he anode single -parallel
serpentine channel are shown in figure 2.10 (non -uniform mesh grid distribution of each

side).

Figure 2.10 Gas pressure distribution in the parallel serpentine channels:

(a) cathode side. (b) anode side.

As shown in the figure 2.10, both the oxygen and hydrogen pressure decrease gradually
along the direction of the air flow in the parallel serpentine channels, due to the
progressive consumption of reactant gas along the channels. As mentioned in the

previous section, by taking t he channel geometric form into consideration, the non

uniformity distribution results can be effectively obtained.

The 2-D simulation results of physical quantities in GDL layer (electrode) are also

illustrated under different oxygen stoichiometry ratio i, which defined by:
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where M 4 45 the inlet oxygen molar flow rate. Based on the segment independence
analysis results, the mesh number 600 is chosen for the proposed 2 -D model experimental

validation, in order to give an accurate distribution results.

When the cell current is set to  27.5A, the oxygen pressure distributions on the surface of

electrode (GDL) under different oxygen stoichiometry ratio are shown in the figure 2.11.

Figure 2.11 Oxygen pressure distribution on the surface of GDL under

different oxygen stoichiometry: (a) O E O
It can be clearly observed from the figure 2.11 (b) that, under a higher i condition
i L vdy the oxygen pressure variation is less significant compared to figure 2.11 (a). That

is because the oxygen supply excess rate is higher, and further lead to a more uniform

oxygen pressure distribution on the surface of electrode.

Under the same current, the current density distributions on the surface of electrode are

also shown in the figure 2.12.

It can be seen from the figure 2 .12 that, the current density distribution is similar to that of

oxygen pressure. The oxygen pressure at catalyst layer is higher at channel inlet than

outlet, which leads to a higher current density at air inlet. As shown in the figure 2.12 (a),
XQGHU WKH FRQGLWLRQ O WKH PD[LPXP GLIIHUHQFH RI FXUU
between fuel cell inlet and outlet. It can be also observed from the figure 2 .12 (b) that,
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XQGHU D KLJKHU O FRQGé \aukrén® dedsity distridifon gradient is less
significant compared to figure 2.12 (a). In this case, the maximum difference of current

density is only about 15% between fuel cell inlet and outlet.

Figure 2.12 Current density distribution on the electro  des under different oxygen

VWRLFKLRPHWU\ D O E O

2.4 Dynamic Phenomena Coupling Analysis

The dynamic fuel cell model has been presented for the purpose of fuel cell control
performance optimization. The fuel cell dynamic behaviors in different physical domains
are indeed inter -coupled between each other and the variation of one would influence

another. The dynamic variable coupling analysis should be performed for fuel cell system

in order to develop an optimized control algorithm.

The water and thermal management is very important for the fuel cell performance and
efficiency. For the thermal  domain, the fuel cell temperature dynamic behavior is the

most significant dynamic in the fuel cell stack. The time constants of fuel cell system in
thermal domain can be relatively long, due to large thermal capacities and volumes of

cell components (bipo lar plates, membrane, etc.) [5]. For the fluid domain, The dynamic

of the membrane water content is another significant dynamic phenomenon in the fuel

cell stack, which has similar transient time constant compared to temperature dynamic

in the thermal doma in. It is thus necessary to analyze the variable coupling between

these two fuel cell operational parameters.
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It should also be noted that, as shown and discussed in the previous section, a non -
uniform distribution of current density in the fuel cell elect rode can be observed due to
the reactant gas pressure variation in the gas supply channels. A more homogenous
distribution of current density can maintain the stability and improve the long -term
performance of the fuel cell system. The current density dist ribution is simultaneously
affected by the dynamic phenomena in both thermal and fluid domains. Therefore, it

should also be carefully considered for coupling analysis in order to provide insights into

the variable interaction among three different physica | domains.

In this section, detailed expressions of time constant for temperature and membrane
water content are given at first, followed by analyses of step responses for various fuel
cell system input variables. The corresponding dynamic variable couplin g analysis is

introduced and discussed at last.

2.4.1 Expressions of Time Constant for Temperature and
Membrane Water Contents

The expression of time constant of temperature in thermal domain can be deduced
from the general first order dynamic form [5]:

b €o o &no ¥
o220 DasodrasodDiay oeF Gearaoo

13,

Thus, in the thermal domain, the fuel cell temperature transient response time can be

estimated to be 497s in the case of studied 1.2 kW Ballard NEXA fuel cell stack.

For the time constant of membrane water content, the left hand side of equation 1.34
becomes zero in steady -state, and th e steady -state membrane water content value
ay, a4 &R can be obtained:
x Hapa&ocdxaiaoal 80 .
aUl:, U éd‘fs o] 't &,
x40 .
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Then the water content  dynamic in transient state can be obtained in a general first

order dynamic form:

#agabamoaBoal @é ~ | = .
JIOI @FEaé L aUkUaOB .ta],
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And the expression of time constant of water content in membrane le6c48) can then
be obtained by the following equation:
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It can be seen clearly from equation 2.4 that s 0 ¢ 49 determined by stack current EThus,
the system time constant value of water content 1gpcgkan be estimated to 10 8.75s
when stack current is 27 A, means that the response time of membrane water content
variation can last about 435 s. This value is in agreement with the results shown in figure
2.6.

It can also be seen that, temperature in thermal domain and membrane water content
in fluidic domain have very similar dynamic time constant. It is thus necessary to analyze

the variable coupling between these two fuel cell operational parameters.

2.4.2 Analyses of Step Responses
2.4.2.1 High Efficiency Operating Region

In order to understand the effects of fuel cell operational parameter coupling from a
control point of view among three different physical domains, the fuel cell system can
be considered as a multi input and multi output ( MIMO) system, where four possible

control input variables are listed as follows:

1) The coolant inlet temperature 6 a aira i goNtrolled by heat exchanger and

bypass circuit) ;

2) The gas channel inlet temperature B0 4 4 @ g 69 Ntrolled by inlet/outlet gas heat

exchanger);

3) The gas supply channel inlet water vapor pressure 24 aw aggontrolled by gas

humidifier) ;
4) The inlet air molar flow rate M, g4 ¢ g@ntrolled by air compressor).
And four controlled output variables in the proposed Ml MO system are listed as follows
1) The membrane electrode assembly (MEA) temperature Bigadadag
2) The bipolar plate temperature Geeazaac
3) The membrane water content 80204040

4) The uniformity coefficient of current density distribution on the electrode Beaaaa c
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where the uniformity  coefficient Qjééédggthe current density ratio between the highest
and the lowest value on the same electrode. This coefficient is proposed to describe the

degree of uniformity of current density distribution.

Thus, the non-linear state space equations of this MIMO system can then be expressed

as follows:

~B22620doBK6 520408 aarandoasamsdb mand.
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As the above fuel cell MIMO system state space shown, the vector form representations

of the manipulated input variabl esis QL 6 3 aRa n B0 4 4 @i R P4 a0 a s b tiaa g'é,,gand the
controlled output variables is UL By ga0408esasaluoacaoddesachc B B Band B
can be deriv ed using the formula of the physical modeling equations presented in
chapter Il. Since there is a complicated n on-linear mathematical relationship between
input and output variables, examining the dynamic responses of controllable outputs

after step change s of inputs are particularly useful for having insight on the possible
variable coupling. Figure 2.13 - 2.16 show the simulated dynamic responses of

controllable outputs after step changes of different inputs.
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Figure 2.13 The MIMO system outputs response after step change of €ope ™ (3

Figure 2.14 The MIMO system outputs response after step change of €4 54mmgm

The first operating point is set to between 1/3 and 1/2 rated power point, which

corresponds to the high efficiency operating region of fuel cell system. Figure 2.1 3 shows
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the dynamic response of the MIMO system outputs after step changes of the coolant

inlet temperature. An increase of the coolant inlet temperature is set at 300 s, which lead
to an increase of temperature both in the bipolar plate and MEA. It further result sin an
increase of the saturation vapor pressure. Therefore, the water activity Ugdecreases, as
well as the membrane water content at cathode side at 300 s, as the green line shows
at the bottom of the Figure 2.1 3. The uniformity coefficient, presented by the purple line
on the same figure, slightly increases at 300 s. It means that the distribution of current
density on the electrode is less homogeneous. Similarly, when the coolant inlet
temperature decreases at 1650 s, it results in an opposite effect on the four fuel cell

variables.

Figure 2.14 shows the dynamic response of the MIMO system outputs after step changes

of the channel inlet air temperature. An increase in the bipolar plate temperature and

MEA temperature can be observed when the channel i nlet air temperature is increased
at 300 s. With the MEA temperature increase, the membrane water content decrease,

as the green line shows. At the same time the purple line indicates a slightly less
homogenous distribution of current density with the incr ease of gas channel inlet

temperature.

Figure 2.15 shows the dynamic response of the fuel cell MIMO system outputs after step
changes of the gas supply channel inlet water vapor pressure. It can be seen from the
figure 2. 15 that membrane water content incr eases due to an increase of inlet water
vapor pressure at 300 s. For the thermal domain, a step change of the gas supply
channel inlet water vapor pressure has no significant effect on the temperature. For the
electrical domain, an increase of channel inle t water vapor pressure makes the current

density distribution slightly more dispersed.

Figure 2.16 shows the dynamic response of the MIMO system outputs after step changes

of the air inlet mass flow rate. An increase of air inlet mass flow rate has weak ef fects on
the thermal domain. Due to the increase of air flow rate, the water removal rate
increases, and further results in a decrease of the membrane water content. For the
electrical domain, an increase of air inlet mass flow rate makes the current densi ty
distribution more homogenous. That is because the oxygen is supplied under a higher

flow ratio. For the same oxygen consumption rate (same current), the oxygen pressure
through the cathode gas channel is thus more uniformly distributed, and further lead sto

more homogenous distribution of current density on the fuel cell electrode.

53



Figure 2.15 The MIMO system outp uts response after step change

Figure 2.16 The MIMO system outputs response after step change of

of | gear s

Tear

Ql
~
o
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2.4.2.2 Rated power Operating Region

For a well -designed fuel cell hybrid powertrain with a proper energy management

strategy, the operating range of the fuel cell system would be eith HU LQ LWV “PDJ
HITLFLHQF\pPRIIR@RY LWV "UDWHG SRZHUp JRQH 7KXV D FRXSOLQJ DQ
IRU WKH RSHUDWLQJ SRLQW LQ "UDWHG SRZHUp UHJLRQ L H IR
corresponds to a fuel cell current of 42 A), where the fuel cell system power is close to its

rated value. The simulated dynamic responses of the MIMO system outputs after step

changes are shown in the figure s2.17 - 2.20.

It can be seen from figure s2.17-220 WKDW I|IRU WKH RSHUDWLQJ SRLQW LQ WHK
region, the four variation ranges of m  embrane water content 82063024 reduced

compare to that of figure s2.13 - 2.16 as shown in the previous section. That is because

ZKHQ WKH IXHO FHOO V\VWHP RSHUDWHYV DW "PD[ SRZHUp UHJLRQ
membrane water is changed and le ad to an insensitive & gapzoadiased on the

presented analyses of step responses, detailed analyses of coupling effects between

inputs and outputs are further given in the following section.

Figure 2.17 The MIMO system outputs response after st ep change of €, .47 (s
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Figure 2.18 The MIMO system outputs response after step change

Figure 2.19 The MIMO system outputs response after step change of

of €y, 747747 s

| tged” <8
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Figure 2.20 The MIMO system outputs response after step change of oA (&

2.4.3 Coupling Analysis Using RGA Method
2.4.3.1 Relative Gain Array

In order to quantitatively analyze the interactions among multiple control loops, the

relative gain array (RGA) method in control theory are carried out in this study. RGA
method is a theory developed by Bristol in 1966 [6] [7] to quantify the degree of
interaction of input and output variables. For a Fnputs Boutputs system, the EH Fnatrix

RGA is given by:

85
4)#L N®
as ®

8" @cﬂ"

O &
0y

The open -loop gains of the Eth controlled outputs are determined based on the
response to a change of the Rh manipulated inputs, and all other manipulated inputs
remain constant:

oY ,

DQ ev@ada Y.

IR
BQ vaasa y

GEL sd&® aFL sd & ; ty;
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where Q@ represents the control inputs 6aarane Eno0as@mre A ananANd M usaroc
respectively. Lrepresents the system outputs 6yg30a08Bcecaaaatuoacacapd Cbééé@ég

respectively.

In order to give a clear implications of interactions among control loops, the RGA

analysis rules are expressed based on the values of ayy

1) &yyOr, a change of Qproduce an opposite direction effect on Wwhen other
control loops are closed, the sign of open -loop gain between Qand Uis
changed. In this case, the selection of control pairing Q@ Usshould be avoided

2) &yyL r, a change of Qcan not affect Uand therefore should not be used to
control U, In this case, there is no interaction between control pairing Q Wand

other control loops (i.e., coupling does not exist);

3) r O&yyO s there exist two effect s: the effect of open -loop gain between  Qand
U, and the effect from other control loops. The effect of open -loop gain from

control pairing @ Wijncre ases with the value of  &;yWhen &L r dythe two effects

are equivalent, there is a stro ngest coupling effect between the two control

variable pairs for a two inputs two outputs system. When r&o &;yO s the open -
loop gain of control pairing Q Wpecomes the dominant effect. In this case, the
most suitable control variable pairing should be Q U, and optimized control

results could be achieved by using a decoupling control method [1] [8] ;

4) &yL s the relative gain  sindicates the most s uitable control variable pairing QY
since the open -loop gain between  Qand Ujs not affected by the interaction

from the other control loops. In this case, there is no coupling between variable

pairing @ Wand other control loops

5) &P s the effect of other control loops enhance the open -loop gain between Q
and U;the larger &gis above the unity, the greater will be this effect. In this case,
variable pairing @ Ujs recommended when  &;is not very large, a mul tivariable

control design [9] could be used to achieve optimized control performance ;

6) &y s a value of &ygreater than 3 indicates that the system is difficult to
control due to strong coupling effects from other control loops, and is also
sensitive to input uncertainty (e.g., cause by neglected actuator dynamics) [10].

In this case, a robust decoupling control strategy [4] could be used to achieve
optimized control performance

58



2.4.3.2 Coupling Analysis of the Proposed MIMO system (High
Efficiency Operating Region)

When the MEA temperature Bizaoaoadhe bipolar plate temperature 6e e a3aadhe
membrane water content & za0a0aand the uniformity coefficient of current density
distribution on th e electrode Qjééégég are viewed as outputs
UL &ga@é@%éaéé@@gé@éo%ééég’?é,gthe formula of this four inputs four outputs
system can be described as follows:

G:pa020a0 i Baaranog

f~6aaéééé(;j L )/EAE:QEGC)JOQ:;@&B@Q
80262040 T 25 avanof
Weaazac I Muaaro®

ta;

It should be noted that, the transfer function ) £ A £€Is highly non-linear. In order to
linearize the n on-linear system equation 2. 8, two common operating points of fuel cell
system in typical fuel cell hybrid powertrain are selected for the analysis. The first
operating point is set to between 1/3 and 1/2 rated power point, which corresponds to

the high efficiency operating region of fuel cell system.

On the other hand, the  magnitude range difference of each physical parameter is very

large. For example, the variation range of control input 60 2 sira 2§ from 297.15 K to 303.15
K, the variation range of control input 24 aw apigcfrom 2814 Pa to 4700 Pa. In order to
analyze the coupling effect of different physical parameters in the same RGA, their

numerical variation ranges are normali  zed firstly prior to the RGA analysis.

Table 2.1 Relative Gain Array of System among Thermal, Fluidic and Electrical

Domain in Fuel Cell High Efficiency Operation Range

6 asrar o 66 a4 @R B ¢ 24 ad)ar @ ¢ M uaaroc
Gigadanag -2.6948 3.6892 0.0056 0.0000
Geeaaaac 3.5376 -2.5309 -0.0083 0.0016
80102040 0.1859 -0.1899 1.0369 -0.0329
GBeaspac -0.0287 0.0316 -0.0343 1.0314

Then by applying RGA method to the normalized parameters of MIMO system
equation 2.8 in fuel cell high eff iciency operation range, table 2.1 presents the
calculated corresponding steady -state RGA values between different input/output

variab les. It can be seen from table 2.1 that, the RGA elements absolute value of &5 &6
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dssand &g gare relatively large, indicate that there exist a strong coupling effects. The

RGA element value & sindicates that the thermal control input 6 2 sgaz HavE an
intermediate coupling effect on fluidic variable 8y 26 2 0-aphese two observations are in
agreement with the analysis result of time constant in secti on 2.4.1, that coupling effects
may exist between the thermal variable and flu idic variable membrane water content

due to similar dynamic time constant values.

It can be concluded from the RGA elements value of &7 87 &,and &g, that, input
variable 24 a4 4 Bas a direct control effect on the & za20306s8 the same time it has little
effect on other three output variables. The similar conclusion can be also obtained for

input variable M ga4rAS the RGA elements value of &35 85 & gand &ggindicated, the
input M waacB@s a direct control effect on Qjééé@;@t it has little effect on all other

output variables.

2.4.3.3 Coupling Analysis of the proposed MIMO system (Rated
Power Operating Region)

In addition to the high efficiency operating region, the second operating point is set to

around its rated power point, which corresponds to the high power operating region of
fuel ce Il system. In this case, table 2.2 presents the calculated corresponding RGA values

between different input/output variables.

Table 2.2 Relative Gain Array in Fuel Cel | High (Rated) Power Operation R ange

Gaakarge Goaadmro 25 ad)ard¢ M saar o ¢
Gigavadag -3.0861 4.0767 0.0094 0.0000
Geeaaaac 4.0384 -3.0351 0.0135 -0.0167
80262040 0.1227 -0.0966 0.9817 -0.0078
Q') eaaoac -0.0750 0.0551 -0.0046 1.0245

From table 2.2, the similar coupling effects can be observed, and the same results of
coupling analysis can be obtained. Thus it can be concluded that, there exist the similar
coupling effects between thermal and fluidic domains in the proposed MIMO system for

both fu el cell system typical operation points.

2.4.3.4 Coupling Analysis of Sub-System

From the analyses in the previous section, it could be possible to separate the proposed

MIMO system into two control sub -systems by minimizing control coupling effects
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betw een each other. The linearized formula of first possible sub -system can be described

as follows:
60208040 B aararac
N6eesaasQl )pes: QO N0 as@mrBe tq;
& padadao 24 adlaR G ¢
Table 2.3 Relative Gain Array of First Sub -System
6 aaRar o 6o aa@mrac 25 a1 aR @ ¢
Gigadaoag -2.7098 3.7040 0.0057
ﬁceéaaaag 3.5451 -2.5362 -0.0088
83203040 0.1647 -0.1678 1.0031

Table 2.3 presents the corresponding RGA values for new three inputs three outputs sub
system in fuel cell high efficiency operation range. As analyzed in the previous section,
large RGA elements indicate that the control design is critical and challenging due to
existence of coupling effect. In this case, a robust decoupling control strategy [4] is
recommended to achieve the optimal control objectives for output variables. For
example, in [4], a single neuron adaptive PID feedback controller is proposed, which

ca n eliminate the interference derived from the coupling effect.

On the other hand, as the previously analyzed, the variable fbééémld almost be
independently controlled by input variable M, a4 s d¥hich can be considered as the

seco nd one input one output control sub -system:
poaagtle ) wed: QM waacG ¢ T,

Furthermore, by conducting the same analysis for the rated power operating po int,
similar sub-systems separation can also be obtained for the proposed fuel cell MIMO

system.

Based on the above analysis, it can be concluded that, different fuel cell operational
parameters coupling can be observed among different physical domains dur ing fuel
cell operation. When a coupling effect exists, special attention should be paid for
control system design, in order to achieve an optimized control performance for fuel cell

systems.
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2.5 Conclusion

Although the coupling of dynamic phenomena in a fuel cell has an important influence
on the control design of fuel cell system, very little information has yet been published in

the literature on the analysis of interaction between fuel cell dynamic variables in
different physical domains. The first pa rt of this chapter investigates in particular the
coupling effect between the dynamic behaviors during fuel cell transient operation,
based on the proposed improved dynamic multi -physical proton exchange membrane

fuel cell model, which can bef  ound in the previous works [ 11] [12].
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Chapter Ill: PEMFC 2 -D model numeric
solver development for Real-Time
Control Implementation

As mentioned before, t he quantitative analyses in Chapter Il can provide us useful
information for modeling assumptions (simplification) , which can be used to  simplify the
2-D modeling . For example, since the tortuosity Eand porosity A€an be considered as
insensitive parameters for a lower fuel cell stack current, the diffusion mass transport can
be reasonably neglected. In this case, there is no total pressure gradient in the gas
diffusion layer. During the development of fuel cell model with these simplifications,

the computational complexity can be effectively reduced while maintaining a high

accuracy.

The main objective of this paper is to present a novel 2 -D PEMFC modeling approach
based on a numerical solver tridiagonal matrix algorithm (TDMA) for real-time control
implementation . The proposed PEMFC model covers multi-physical domains in both
fluidic and electrochemical . The major contributions of this paper can be summarized as

follows:

1) A novel non-uniform control volumes mesh grid is defined in fluidic domain
modeling based on  channel geometric  pattern s, in order to thoroughly describe
the gas flow characteristics by taking the fuel cell flow field geometric form into
consideration . In addition, the differential equations of reactant gas convection
and diffusion phenomena are transformed into tridiagonal systems of equations

which can be efficiently solved by tridiagonal matri x algorithm.

2) An implicit iterative solver has been developed to solve spatial physical quantity
distributions for electrochemical domain . Thisoriginal iterative solver algorithm is
composed by three interactive computational loops and use s a robust

co nvergence method for real  -time computation

3) The practical feasibilities of the proposed 2-D model in advanced real -time
control of PEMFC systems have been experimental ly demonstrate d in a RT-LAB
real -time simulator . The computing technologies presented in this paper are

original for real -time PEMFC model and completely independent of commercial
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platform . It can be easily implemented to any embedded controller of PEMFC

systems.

3.1 Literature Review

Different from the common modeling approach, a real -time oriented fuel cell model has
more restrictions: the accuracy and computational efficiency of a real -time fuel cell
model are both crucial for model based control process [1]. A sophisticated fuel cell

model can provide comprehensive physical quan tities for model -based control design
and optimization. While the high performance computation of a fuel cell model ensures
the model -based controller can be efficiently implemented in real -time applications
with a low cost of computations. Several real -time control -oriented PEMFC models have

been previously presented in the literature [2] -[4].

Jung et al. [2] present a PEMFC real -time model, which considers both the electrical and
thermal dynamics. In order to reduce the computational burden, three optimiz ation
strategies are used: minimizing algebraic calculation, model separation and reducing

the layer structure.

Gao et al. [3] develop a cell -level dynamic PEMFC model, which covers
electrochemical, fluidic and thermal domains. A top -down design approach is used to
provide an efficient PEMFC model structure. By using VHDL -AMS language, the

developed model can be used in the hardware -in-the -loop application.

Colclasure et al. [4] describes a physical -based transient solid oxide fuel cell (SOFC)
model, which considers the coupled interactions of multiple physics. In order to facilitate

the real -time control applications, linear model reduction method is used.

However, their models remain in 1 -D. During the model -based control process, the
spatial physical qua ntity distribution is neglected, such as gas pressure gradient in the
channel, or current density distribution on the surface of electrode. Many PEMFC 2 -D
models have been previo usly proposed in the literature [5] [6]. However, a common
drawback of these m odels is the computational complexity of mathematical operations.

For example, as mentioned before, the commonly used complex computational fluid
dynamic (CFD) models are not suitable for real -time simulation , since the computational

burdens are too heavy
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3.2 Tridiagonal Matrix Algorithm for Real -Time
Simulation

The tridiagonal matrix algorithm is an efficient numerical solver, which can be applied
iteratively for solving multi -dimensional problems [ 7]-[9]. The tridiagonal matrix algorithm
uses a special form of Gaussian elimination, in order to solve a set of equations for
tridiagonal system in a backward substitution. Therefore, it can reduce the

computational time  and memory usage considerably [ 9]

3.2.1 Tridiagonal M atrix Algorithm

A The TDMA is an efficient numerical solution for solving t  ridiagonal matrices. The TDMA
consists of two steps: a forward elimination procedure and a backward substitution
procedure. A tridiagonal system can be written as the following equations in the

tridiagonal matrix form:

2
|f5'5,, . rF‘IE’ni@F}
P e % a il 1 @x
i = > % a § 1@ U
i a fia R 1a R T
) %25 N Ta2s58 1@,5K
i =% »0Ta01i@OoO
where Zdenoted the non -zero inputs of tridiagonal system.
For the first line:
xTE%3Ts L @ Tud;
Divide both sides of the equation 3.2 by >
BHEUT LA DU,
with
2
e 5
AY L—
>
O%L@
0 >

In order to forward eliminat e Tg the equation 3.3 multiplied by =gand minus the second

row of equation 3.1 :
> F=%G,TLE3T, L @F %A LUd;
Divide both sides of the equation 3.4 by > F =&

BEQT LA TUAy,
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with

%

> F =
@F %A
> F =

Ay L———
AGL

Similarly, in order to forward eliminate T, the equation 3.5 multiplied by =;and minus the
second row of equation 3.1 :

> F= 3 TTE2T, L @F = A UK

Similar forward elimination procedure is repeated until the Jrow, t he tridiagonal matrix in

equation 3.1 can be transformed into  a u pper triangular matrix

0 T:
i s Y ~ o ' Ao n |’A§ I
i s b a d g
i r s G & a7 q A U
T a ffa & 7Tac Uy,
i (75N Tazs NI TA55 K
[ r sdT, 0 1A O
with
~ ?”75
AQss L —
o >25 F =a25U26
A AL @ F =3 A5
o) > F = Lé75
The inputs of tridiagonal system Zcan then be solved by backward substitution:
~ Ta L A
ATaos L Ayos F QosTa
a ua;

2 TLAFGQT
O TLAFUT,

Thus, the general solution for tridiagonal system equation 3.1 can be written as the

following equations:

: @ BK NEL J _—
Ol \@F Py BKEL JFSUFt& 4 s
with
2
% BKEL s
?CJLA I
2uF =%ps
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2 @ BKEL s
@L A g': —.A
A —_2° BKH.tada
& UF s
A detailed s chematic diagram  of the TDMA is pr esented in the following figure 3.1. It is

worth specific mention  that, by using this special form of G aussian elimination, and
solving the tridiagonal matrices in such backward substitution, compared with
straightforward Gaussian elimination 1:J7;, the arithmetic complexity of TDMA
exponential decay sto ope rations 1:J; It means that, if total number o  f control volum es
is 32 (the elements number of inputs  Zin tridiagonal system), the model computation
speed can be 1024 times faster compared with Gaussian elimination . Such fast solving

speed allows to significantly reduce the computational time and memory usage .

Figure 3.1 Schematic diagram of the TDMA

3.2.2 Modeling Hypotheses

In order to be able to simulate the model in real -time while keeping the accurate spatial
non -homogeneous effect prediction and model accuracy, some assumptions are used

when modeling the PEMFC stack.

1) The two -phase flow of water isignored , but the liquid water saturation , vapor

transportation and pressure gradient is considered in the proposed model,

2) The gas flow in the channel and diffusion through the GDL is considered in steady
state, since the transient time constant of fluid is relatively short (microsecond or

millisecond );
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3) The diffusion mass transport due to total pressure gradient is neglected ;

4) The activation losses & p@f the anode side are neglecte  d due to the fast

electrode kinetic of hydrogen gasin  PEMFC;

5) The Ohm losses are only determined by  resistance of Nafion membrane, the  layer

contact resistance, electrode resistance are negligible ;
6) Thereactants are considered as ideal gases ;

7) The geometric characteristics of each layer remain unchanged.

3.2.3 Solve Reactant Gas Convection 2 -D Model Using

Tridiagonal Matrix Algorithm

The control volume partitions of cathode parallel serpentine channel are shown in the

figure 3. 2 [10]. Based on the gas supply channel geometry, the gas supply channel can

be divided into WZR VHFWLRQV GHQRWHG DV "VWUDLJKW YROXPHp DC
illustrated in figure 3. 2. From figure 3. 2, the thin dotted line channel control volume is in

WKH VWUDLJKW VHFWLRQ GHQRWHG DV "VWUDLJKW YROXPHVH RI J
GRWWHG OLQH FKDQQHO FRQWURO YROXPH LV LQ WKH FXUYHG VHF

of gas channel. The direct ion of gas convection flow is marked with arrows.

Figure 3.2 Control volume partitions of cathode gas supply

channel based on the geometric form.
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In order to employ TDMA, the

equation 1.43 should be discretized in the serpentine

channel based on finite volume method. In addition, all the  discretized equation s should

be transformed into tridiagonal matrix as expressed in equation 3.1. Taking the gas

pipeline A (shown in the figure 3.2) as an example, the control volume mesh grid

definition s are shown in figure 3.3.

Figure 3.3 Co
the ‘gas pip

Based on the discretization usin

ntrol volume mesh grid definition of

eline A umarked in the figure 3.2.

g finite volume method, for each control volume, the

fluid mass flow entering into a control volume is equal to the fluid mass flow leaving out a

control volume due to  convective

the figure 3.3:

transportation . Thus, for the control volume 1 shown in

MardcM U T

where M 4zigdhe gas mass flow at gas  supply channel inlet

Based on the assumption 2), the fluid behaviors considered in strady state. Thus, the

discretized form of e quation 1.13 can be expressed as the following form:

Thus, the fluid massflow Man be written as:

The equation 3.11 can be  written

1254

2LutéM U
T gbE# UBS
ML 2&6é#L b ®2 & t
— , ® U t;
T uta % uat
as:
a2 Bk L 1% F 2; @ uB U
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where 2 4pigcthe pressure at gas supply channel inlet. Thus, for equations of all the

control volume:

M agdcM
ML M o
" a uB v
Mie L M7
the following equations can  be obtained:

A ZUéB;Eg%&Gé#LZsFZG&Gé#
" l-déB%Q uta lﬂ?G uta
© B F28%# 2,F2,8%#
A L 5 usw
0O |ﬁ’?6 uta 2 |ﬁ?7 uta
Yoir6 F 2637 &Gé#L 2557 F 2a0cndeb#
O Hyerep7 UtA H72aecnpcuta

where H,; is the distance between two adjacent control volumes Tand U Equation 3.15

can then be written as the  tridiagonal matrix

(2405 BEU:; 2% E (b2 L v
n (25 F:UEY: 2 E U2y Lr
a

Tud X
26 F 1 Ubis7EUsp8; 2657 E ust'ibszéégﬂé-cr
where  2;;:80d 2y4¢ 8§, considered as boundary conditions, since they are known.
Equation 3.16 describes the reactants flow behaviors in a tridiagonal matrix form, which

can be directly employed the TDMA. After solving e guation 3.16 using TDMA, the
pressure distribution due to the  mechanical losses suffered in straight channel s (235 237
can be obtained. Then the pressure distribution in the serpentine channels can be

further obtained based on the equation 1.43.

3.2.4 Solve Reactant Gas Diffusion 2-D Model Using
Tridiagonal Matrix Algorithm

,Q RUGHU WR FOHDUO\ VKRZ WKH FDOFXODWLRQ SURFHGXUHV R
YROXPHVYy DUH GHQRWHWKH "WROLG DGMDFHQW YROXPHWU DUH GH(¢
as illustrated in figure 3.4[10] 7DNH WKH "VROLG DGMDFHQW YROXPHYV 6 p DV
WR WKH GLIIXVLRQ SKHQRPHQD WKH UHDFWDQW JDV PRODU IOR
LQFOXGLQJ WKUHH SDUWYV GLII XM @natke® With armw\W)Rdiffésien

IURP ") pn WR-DFLWY PDUNHG ZLWK DUURZ GLIIXY-bRsQnatdRiP "6 p WR
ZLWK DUURZ 7KH UHDFWDQW JDV PRODU IORZ PRO V OHDYLQJ
GLIIXVLRQ IURP ’ 6yqaxisy Rarkédwith arrow 4); diffusion from 6 B WR FDWDO\VW

layer ( z-axis, marked with arrow 5).
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Figure 3.4 'LIIXVLRQ SKHQRPHQD IRU "VROLG DGMDFHQW YRO.

,Q WKH VWHDG\ VWDWH WKH JDV PRODU IORZ HQ#&d+hg:LQJ WKH

05E06EO7L08EOE56 :Uay;

where 0is the gas molar flow. Since the gas molar flow is determined by the pressure

difference between two control volumes, thus the equation 3.17 can be expressed as:

B:26F26:EB:28F246;EB:25F 26, FRB:45F 27, FOg L ud z
All these diffusion phenomena in the gas diffusion layer, except the above -mentioned
current -driven one N, can be described by the modified Fick's diffusion law equati on:

guuU
Hav, K& 1, 507 ®R2
B:¢2; L ' L W ®2 Tud {;
2 s 0 L

where 08.,4is the gas molar flow rate of specie x, #a1, kS the gas diffusion area, &,?lfjg?i
is the gas diffus ion coefficient, 4is the ideal gas constant,  6a 1, s the temperature of GDL,
. is the center point distance between two control volumes. Thus, equation 3.18 can be

rewritten by:
FU@sE:LELEUEW @FUL&,L U &,cEU®&;gF Ot 46 udr;
where

It @regeanux

Ot a6 L i

‘uds;
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,Q RUGHU WR FRPSXWH DOO WKH SUHVVXUH RI "VROLG DGMDFHQW
equation can be e  xtended to a set of equations:
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Thus, equation 3.22 describes the reactants diffusion behaviors through GDL in a

tridiagonal matrix form, which can be directly employed the TDMA.

3.3 Implicit Iterative Solver

In the proposed 2 -D PEMFC model, the calculations of fluidic gas channel model is
based on the non -uniform control volum e (black mesh in the figure  1.10), while the
calculations of electrode/electrolyte related physical quantities is based on t he unified

control volu me (red mesh in the figure  1.10).

It should be noted that, since the activation loss 8 sappears in an implicit form in the
Butler-Volmer equation 2.6, an iterative solving method should be developed to
calculate 8 g[L1]. In addition, this iterative algorithm should also solve the current of
each segment (current density distribution) and cell potential (fuel cell output voltage),

which cannot be calculated explicitly a priori in a 2-D modeling approach . A detailed
schem atic diagram of the proposed iterative algorithm is presented in the following

figure s 3.5.
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Figure 3.5 Schematic diagram of the proposed iterative solver (First level) .

As shown in the figur e 3.5, the proposed solver consists of three levels bisection algorithm.

The first level solver is the top level algorithm, which is used to compute cell potential SBarr
(fuel cell output voltage) , as shown in the figure. In order to resolve current value  of
each segment [k ggjcurrent density) based on the output of first level solver, a second

level solver is included in the algorithm . The third level iterative solver is used to calculate

activation losses 8 ggin the non -linear implicit Butl er-Volmer equation 2.6

By knowing the total current value of fuel cell, and setting appropriate numerical ranges

for activation losses of segments 8, g5 current value of segments  E ggy and cell potential
& gz rthe cell voltage and indi  vidual current in each control volume can be properly
calculated by the proposed iterative algorithm.
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3.4 Experimental Validation
3.4.1 Experimental Setup

In order to allow a real -time implementation of the developed PEMFC model, the model
physical equations, as well as the proposed iterative solver are written in pure C
language. The model is then implemented in a RT -LAB real-time simulator (real -time
processor operating at 2.5 GHz). The experimental setup of RT  -LAB simulator and PEMFC

test platform is shown in Figure 3.6.

Figure 3.6 RFLAB real-time simulator platform setup.

The RFLAB real-time simulator used in this thesis has a real -time processor operating at
2.5 GHz. For a real -time simulation, the model time step should be settled based on

model complexity and computation performance.

3.4.2 Experimental Results

The real-time simulation bench mark results of the proposed model under different 2 -D

mesh number are shown in the table 3.1.

It can be seen from the table 3.1 that, the model execution time increases quasi -linearly
with mesh number, since there are more iterati ons should be solved for a higher number

of control volumes. It can be concluded from this benchmark results that, the proposed

2-D multi -physic PEMFC model in this thesis can be effectively used in real -time control

implementations with a time step level on the order of milliseconds.

76



Table 3.1 2-D Real-Time Model Benchmark Results (2.5GHz CPU)

Mesh number Model CPU execution time Model time step used CPU occupation
32 7.429 ms 10 ms 73.3%
48 12.308 ms 15ms 82.1%
64 17.731 ms 20 ms 88.7%
128 43.061 ms 50 ms 86.12%
256 101.218 ms 120 ms 83.35%
600 257.193 ms 300 ms 85.73%

It should be noted that, the iterative algorithm used in this thesis is completely
independent of commercial platform, and can be easily implemented to any

embedded controller of ~ PEMFC systems.

3.4.3 Real-Time Performance Comparison
3.4.3.1 Comparison with 1 HZ W RIQetkod

In order to show the advantages of the proposed 2 -D model in terms of computation

time, its performance is compared with a recently pu blished research [ 12] in Table 3.2.

Table 3.2 2-D Real-time performance comparison with Newton s method [12 ].

Simulation Simulation duration Simulation time cosl Ratio
The proposed model with 800 s 297 s 37.12%
N=32 (2.5 GHz CPU) 1200's 473s 39.41%
Model in f12] with 800 s 431's 53.87%
N=25 (2.4 GHz CPU) 1200's 611 s 50.91%

The pseudo -2D fuel cell model in [ 12@ XVHV 1HZWRQ-V PHWKRG WR VROYH
differential equations, which describe reactant transport only along the straight channel

direction. It can be seen from Table 3.2 that, the proposed full -2D real -time modeling

approach can achieve a faster comp utation speed with a more comprehensive two -
dimensional consideration and a slightly larger mesh number. It is also important t o]

mention that, the model in [ 12] uses a commercial software solver (Matlab/Simulink),

while the developed iterative solver is co mpletely independent of commercial platform,

and can be easily implemented to any embedded controller of PEMFC systems.

77



3.4.3.2 Comparison with Gaussian Himination Method

As mentioned before, as the proposed approach uses a special form of elimination a nd
solves the tridiagonal system equations in backward substitution, the arithmetic
complexity of tridiagonal equations system can thus be exponentially reduced
compared to the classical Gaussian elimination method. This advantage is particularly
evident f or a larger mesh number. To show further this advantage, another Gaussian
elimination based 2 -D real-time modeling approach [ 13] has been wused for

performance comparison.

It can be seen from the model computation time of di fferent mesh numbers in Table 3.3
that, the model CPU execution time in[  13] is faster than that in this paper for a low mesh
number (N<64). Howeve r, the CPU execution time in [ 13] significantly increases with
increasing of mesh number. It can be observed that, when the mesh number N 1328,
the CPU execution time could exceed 100 ms. And as mentioned in [ 13], for a large
mesh number, the CPU execution time could exceed 1 second, thus making this model

not suitable for real -time model -based controller applications.

Table 3.3 2-D Real-time performance comparison with Gaussian method [13 ].

Mesh number 104 200 328

Execution time 6.3 ms 39.5ms 162 ms

Although the model CPU execution time in this paper is higher than that in [ 13] for a low
mesh number, the execution time quasi  -linearly increases with mesh number when the
mesh number N is larger than 128. And it can be observed tha t from Table 3.3, when the
mesh number N=600, the execution time is 50.429 ms. Such short CPU execution time
further demonstrates the effectiveness of the propo sed modeling approach, especially

for large mesh numbers.
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3.5 Conclusion

A 2-D multi -physical real -time model of proton exchange membrane fuel cell has been
presented in this chapter. An innovative non -uniform 2 -D mesh grid method is proposed
for real -time simulation performance consideration. In order to efficiently calculate the
physical quantities distribution in 2 -D plane, an iterative solver is also developed in the
model. The proposed original iterative solver algorithm is composed by three i nteractive

computational loops and uses a robust convergence method for real -time computation.

The proposed 2 -D model has been tested in a RT -LAB real-time simulator and has been
experimentally verified using a Ballard NEXA 1.2kW PEMFC stack. The experimen tal results
demonstrate the practical feasibilities of the proposed 2 -D model for advanced real -
time control of PEMFC systems with a control loop time level on the order of milliseconds

[10] [14]. Such short execution time of the proposed 2 -D model make s control decisions
and actions based on the predicted local phenomena and spatial distribution physical

variables inside the fuel cells.
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Chapter IV: Degradation Prediction of
Proton Exchange Membrane Fuel Cell
Stack

Two different degradation prediction methods for proton exchange membrane fuel cell
(PEMFC) performance are proposed in this chapter . In the first part, a novel degradation
prediction approach for proton exchange membrane fuel cell (PEMFC) performance is
proposed based on a multi -physical aging model with particle filter and extrapolation
approach . The proposed multi -physical aging model considers major internal physical
aging phenomena of fuel cells, including fuel cell ohmic losses, reaction activity losse S,
and reactants mass transfer losses. By knowing a prior the parameter -function pairs ,
even when the acquired trai  ning data is extremely limited , this physical -based method is

still able to provide acceptable results at immediate short prediction time range.

However, the first physical -based method cannot be used in the on-line prognostic
applications , since this single -step prognostic method makes predictions for a fixed
horizon only . In order to improve the proposed method , iteration -based prediction
method s are particularly useful to achieve a better performance in the on-line

prognostic applications

For this purpose, an iteration -based prediction algorithm for performance degradation

of PEMFC is proposed in the second part of this chapter . A novel approach using the

moving window method is applied, in order to dynamically retrain the models during the
forecasting process with new data inputs for iterative data training at next prediction
step. In addition, since the proposed hybrid prognostic method is based on a

combination of model -based and data -driven prognostic method s, it is able to capture
both the fade trend and n on-linear features observed in the fuel cell voltage

degradation data.

4.1 Literature Review

As an advanced concept, the Prognostic and Health Management (PHM) of PEMFC is
designed to minimize maintenance costs while increasing operational availability and
utilization of PEMFC [1]. As a key process of PHM, the prognostics use a set of monitoring
data from actual life cycles of PEMFC system, in order to indicate the future degradation
trends as well as its current state of health [2]. Based on the degradation trends, the

82



PEMFC system impending faults and remaining useful life (RUL) can be predicted , the

advent of failure can be further forecasted [3].

Generally speaking, there are two main approaches for degradation prediction: model -
based methods [4] -[6] and data -driven methods [7] -[12]. Model -based methods
consider the real physical aging phenomen a during the PEMFC degradation process.
Although model -based methods need large computations and complex physical model,

it can predict not only the system degradation trend (fuel cell output voltage decay

over time), but also the information about the int ernal physical parameters during the
degradation process. However, as mentioned before, the complexity of physical
degradation phenomena makes it very difficult to build a reliable physical model of
degradation. Several PEMFC model -based aging prediction m  ethods can be found in

the literature.

Jouin et al. [4] present a prognostics framework to provide RUL predictions based on
three voltage degradation empirical models: a linear, an exponential and a log -linear
model. However, the empirical voltage degrada tion models are too simplified, the fuel
cell operating conditions, such as operating current and temperature are also not taken

into account.

Bresselet al. [5] have proposed an empirical model of degradation. Based on Extended
Kalman Filter (EKF) method , the proposed prognostic algorithm is able to estimate the
PEMFC state of health and to predict its RUL under a variable load profile. However, the
electrochemical kinetics in the proposed aging model is described by Tafel equation.
Under a variable load profile, this aging model can lead to a large error of

electrochemical activation loss, especially for small current values.

Chen et al. [6] have developed a PEMFC lifetime quick evaluation method by taking the

various changes of the operating condition i nto consideration. This method can achieve

the RUL prediction in real -time applications. However, the fuel cell performance
degradation is described by a linear aging model, which cannot truly reflect the non -
linear aging trend. Indeed, the fuel cell is a multi -physical system (electrochemical,
fluidic, and thermal). Therefore, it is necessary to take into account aging process in

different physical domains.

In the proposed model -based method, a multi -physical aging model is developed to
consider major inte rnal physical aging phenomena of fuel cells, including Ohmic losses,

reaction activity losses, and reactants mass transfer losses. In addition, the Butler -Volmer
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equation is used in the proposed aging model to accurately calculate the

electrochemical activ  ation loss for all possible values of PEMFC stack current.

On the other hand, the data -driven methods use pattern recognition, statistical or
machine learning techniques, such as Atrtificial Neural Network (ANN) [7], Support Vector
Machine (SVM) [8], and a daptive neuro -fuzzy inference system (ANFIS) [9], to track and
predict the system n on-linear characteristics. Compared with model -based approach,
data -driven method can be easily implemented without specific knowledge of physical

degradation.

Marra et al. [10] proposed a neural network estimator of solid oxide fuel cells for its
diagnostic. The proposed degradation estimator is trained based on a set of
experimental data, in which includes stack current, temperature and reactant gas mass

flow rate.

Mao et al. [11] investigated sensor selection algorithms for prognostic of PEMFC. With the
identified optimal sensor, an adaptive neuro -fuzzy inference system (ANFIS) is used to

predict the performance of fuel cell system.

Ibrahim et al. [12] proposed a data -driven approach for PEMFC prognostic based on
Wavelet Transform technique. The prediction process consists of decomposition and
reconstruction. This approach is able to predict the future power and estimate RUL under

static and dynamic operating conditions o f PEMFC system.

However, a common drawback of these data -driven methods is that the degradation
trend and n on-linear behaviors cannot be simultaneously captured, thus make them
inaccurate for prognostic. The proposed hybrid prognostic method is able to capture
both the fade trend and n on-linear features observed in the fuel cell voltage
degradation data. In addition, a novel approach using the moving window technique is

applied in order to iteratively update the prediction process when the newly measured

data become available. This iteration -based prediction method is particularly useful to

achieve a mor e accurate prediction when the initial training samples are limited.
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4.2 Degradation Prediction Based on Multi -
physical Aging Model with Particle Filt  er Approach

In this section, a multi -physical aging model of a PEMFC is developed at first. The
presented aging model considers different physical aging phenomena including fuel

cell ohmic losses, reaction activity losses and reactants mass transfer losses. The
propos ed aging model is then initialized by fitting the PEMFC polarization curve at the

beginning of lifetime.

During the prediction process, the aging dataset is then divided into two parts: learning

and prediction phases. The particle filter framework is used to study the degradation
characteristics and update the aging parameters during the learning phase. The
suitable fitting curve functions are then selected to satisfy the degradation trends of
trained aging parameters, and used to further extrapolate the f uture values of aging
parameters in the prediction phase. By using these extrapolated aging parameters, the
prediction results are thus obtained from the proposed aging model. Three experimental
validations with different aging testing profiles have been p erformed. The results

demonstrate the robustness and advantages of the proposed prediction method.

4.2.1 Description of Aging phenomena

In this section, the presented aging model is developed based on a previously
developed multi -physical PEMFC model [ 13] [14]. In this model, each single cell is also
divided into seven different element layers, and each layer modeling covers three
physical domains: electrical, fluidic and thermal domain. It should be noted that, the

time constant of aging process is much higher than the other physical dynamics in
PEMFC system (thermal dynamic, membrane water dynamic, etc.). Thus, all the physical
dynamics are removed in the proposed aging model compared to the original multi -

physical model.

In order to model the aging proc  ess over PEMFC operating lifetime, the proposed model
uses time-variant modeling coefficients to describe three most important aging
phenomena i n different physical domains [1 5] [16], including fuel cell ohmic losses,
reaction activity losses in electrical ~ domain, and reactants mass transfer losses in fluidic

domain, as shown in the figure 4.1.
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Figure 4.1 Degra dation mechanisms considered

in the individual lumped aging parameters.

4.2.1.1 Aging Parameter Membrane Resistance
The first aging phenomenon considered in the proposed aging model is described by
ohmic losses of fuel cell, including layer contact resistance, electrode resist ance and

membrane resistance [1 6]. More explanations and causes of fuel cell ohmic losses are
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shown in the figure 4.1 (first group). In order to describe the fuel cell ohmic losses during
the degradation process, the first lumped aging parameter RKPLF UHVLVWRLQFH

been proposed as following:
4a020@004B L 4aca o uuaks E URO v,
where the aging coefficient U: R indicates the aging degree of ohmic resistance.

4.2.1.2 Aging Parameter Exchange Current Density
In order to describe the reaction activity loss es during fuel cell operation, the second
lumped aging parameter exchange current density B s@o u o {A/m 2) has been proposed

with the following form:
BeaouuaB L Beaouoabs EURO v

where the aging coefficient U: P reflects the aging degree of exchange current density
over time. As a parameter who represents electrode kinetics, the exchange current
density determines how easi ly the reaction can occur on the electrodes. The reaction
activity losses may result from degradation of active electrode surface area, Nafion in
contact with active area, or loss of catalyst material [ 16]. More explanations and causes

of reaction activity losses are shown in the figure 4.1 (second group)

4.2.1.3 Aging Parameter Gas Diffusion Coefficient
In order to describe the losses of reactants mass transfer during fuel cell aging, the third

lumped aging parameter gas diffusion coefficient &Elfj;?ﬂmué(mus) between the

species x and y has been proposed under the following form:
guuU . guu ~ R
& nari ouual L &avariouualSEUGO v,

where the aging coefficien  t U G reflects the aging degree of fuel cell gas diffusion layer
material that influences the reactants mass transfer. The losses of reactants mass transfer
may result from the corrosion of electrode supporting material, increase of tortuosity due

to cata lyst particle ripening, or more difficult water removal due to deg radation of
polymer material [1 6]. More explanations and causes of reactants mass transfer losses

are shown in the figure 4.1  (third group).

4.2.2 Estimation Method

Compared with the Extended Kalman filter (EKF) which only focuses on linea r systems
and Gaussian noise [1 7], [18], the particle filter (PF), which use the Monte Carlo

sequence for solving integration problem in Bayesian estimation, has significantly better
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estimation accuracy when n on-linear battery models are used, since it focus on

approximating the solution forn  on-linear and non -Gaussian system [1 9]-[22].

In this section, the state space representation of the proposed model is presented at first.
Then, the Bayesian estimation method is introduced, followed by a detailed description

of particle filter algorithm.

4.2.2.1 State Space Model for Aging
In order to give a clear structure of the proposed aging model, the proposed n on-linear
model can be written in the form of state -space representation as follows:

To L Tpos E Spos

\ ULDT,&Q ER

V&,

where Tyrepresents the state variable of s ystem at time k, U the observed variables of
system, Qthe input variables of system, the n on-linear system observation equation D
can be derived using the formula of the electrical and fluidic domain modeling
equations presented in chapter | . Spand R, the process and observation noises

respectively. The system state  T,includes three aging parameters:
T LUGadrGgdrGg? Vi
The schematic di agram of n on-linear function Dis shown in the figure 4.2.

It can be seen from the figure 4.2 that, three aging coefficients are considered as the

system state variables. The initial values of the three aging parameters da0a i@ U U &l
B s@o o o avand &,‘flgg?i ©uuadre obtained by fitting the polarization curve of PEMFC at

the beginning of lifetime (described hereafter in section 4.2.3.1). Other modeling
parameters (geometrical values or physical properties of the B allard Nexa 1.2kW fuel ce I

stack) can be obtained in  the previous work [13] [14].

Figure 4.2 Schematic diagram of proposed aging model.
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4.2.2.2 Bayesian Estimation

In the framework of Bayesian estimation, the state variable T,in the state space of aging
model (equation 4.1 - 4.3) is estimated based on the observation sequence Uy L UgEL
r&d & &= Then, the optimal estimation of To can be written in the form of the

conditional expectation:

" Up Lt TipliTp Up: @hp VE;

The main idea of Bayesian importance sampling is that, a set of random sample particles,
which are sampled from the known proposal distribution MTyp Us:, are used to
approxim ate the posterior probability density function L: Ty Ui Thus, ' i Tup U can

be rewritten as:

L:T, ;
@ % 17 G @ v

" Ups L £ T4a:m

Then the Summation form of equation 4.7 can be expressed by:

s - ) )
A TL S T & )
" T Usps L 0 LS@5 453" S Tip 8KT550 va;
_OSQ:T}tJa:; Va3

where Ti are the particles sampling from MTao Uz, ﬁkTE@oare the normalized form  of

importance weights  S: T3}, which can be expressed by:

LiUs Tam: L Tamp;

S:Tp: L - VE;
! Mo U

Bayesian importance sampling is an effective method using Monte Carlo sequence.
However, each step of importance weights calculation depends on all the previous
observations, thus its computation is increasing with time. In order to avoid this
deficiency, the sequential importance sampling is proposed. In this case, the
importance weig hts are calculated recursively, and the proposal distribution can be
rewritten as:

MTyp Up L MTp Taaosdha: MTazos Uwpos: VaT,

From equation 4.10, the importance weights at time Gl can be des cribed as follows:

< L L:Uzamos Taarsi L Tyaos; VE S,
P?5 MTsp05 Uipos; |

From equation 4.10 and 4.11, the importance weights at time Gcan be described as

follows:
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L:Up Tyms L Ty

Sp L ~
P T MTs Tiarsdda MTamos Uass;

vEt;

Thus, the relationship between  Sgand  Sp, 5 can then be expressed by:

L:Usp Tams L Tasps Ly Ts,L:Tp Tooss

Ss LS - LS p
P TP LiUsos Tamosi LiTamos: Mo Tymosdha: P75 M T, Tiarsdde;

VE U

It should be noted that the system state variables follow a first order Markov process, and

each observation are statistically independent.

4.2.2.3 Particle Filter Framework
From the pre vious analysis of Bayesian estimation based on the sequential importance

sampling, a detailed particle filter algorithm can be described as follows:

1) Initialization : the set of particle samples is obtained from the initial distribution at time

t=0: TY1L:T,;4EL sd & &, where O0is the number of particles.

2) Importance sampling : the proposal distribution is generated by:

T81M<TE Tiar5d420 VBV,

3) Weights calculation : the state estimation is optimal with the assumption of
I\A<TE+T}3@?5M@OL M(TS+TE?5éLL,o It means that probability density function only depends
on Tsysand U, then each sample particle Tgcan be obtained.  Each sample particles

wei ghts can be calculated from equation 4.12 and 4.13:

. o Lk A90LKTY TS50
SSL SY,¢ tbpol P_P?75 VE W
' MKTE A5, 5460
The importance weight at time t=0 is set to s 0.
4) Normalize the weights : the set of new particle sample is obtained by normalized
weights:
aLsyi sy VE X
Ugp
5) Re-sampling : the effective sample size is defined by: Ogud s A‘-L?@Eksgos, the re -
sampling step is performed when Og yig smaller than the given threshold O
6) State prediction : calculate the state by the equation:
WL &1y VE Y,
Ugas
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4.2.3 Prediction Methodology Implement

In this section, the proposed model -based PEMFC performance degradation prediction
method is given in detail. The initialization of three aging parameters is performed based

on the initial polarization curve of PE MFC. Then, the proposed prediction method is
divided into two stages: learning and prediction phases. During the learning phase, the
particle filter estimator studies the system n  on-linear behavior, and at the same time
updates the corresponding aging para meters. Based on these updated aging
parameters, suitable fitting curve functions are then selected to extrapolate the values

of aging parameters in the prediction phase. At last, by using these extrapolated aging
parameters, the proposed aging model predi cts the PEMFC degradation voltage in

prediction phase.

4.2.3.1 Initialization of Aging Parameters

The performance of the proposed prediction method depends strongly on the initial
estimation of aging parameters. In order to accurately estimate the initi al values of
aging parameters, these values are determined based on the reliable physical

equations and experimental calibrations.

4.2.3.1.1 Initialization of Aging Parameter Ohmic Resistance

At the beginning of PEMFC lifetime, the ohmic losses are considered only in the
membrane, the electrode resistance and layer contact resistance are negligible . Thus,
the initial value of ohmic resistance can be calculated by the equation:

N QDQMGQ@V

i
- 4 g o
dacau@®ugn:r; L V& Z

#apa

where [ 4 is the thickness of the membrane (m), #,g2ais the membrane section surface
(m2), Ngais the membrane resistivity and is highly d ependent on water content avin
polymer membrane, where VDX :=JK @Ay, ? =K @2 More detailed information
about ohmic losses and water conte nt equations can be found in [ 13]. With the
membrane properties  data given in [ 13], the initial value of first lumped aging parameter

4300 0@ 00 40;is around 2.1e - 0

4.2.3.1.2 Initialization of Aging Parameter Exchange Current Density

The initial value of exchange current density B s@po o udg calculated by the following
equation:
~ i ?—3&@? iTi@]gA ..
Bemouvoal L W& o BAEIT 6=8 V3 {;
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where 2: g olsothe oxygen pressure (atm) at the interface of cathode catalyst layer, Q-,
and (are two empirical parameters need to be identified through fuel cell
experimental tests, 'is the oxygen activation energy at electrode platinum interface
(d/mol). With G L tat (L t&t the initial value of second lumped aging parameter

B a@o uoal;is around 0.1154 (A/ m2).

4.2.3.1.3 Initialization of Aging Parameter Diffusion Coefficient
3) Initialization of &2.% & ;s Fhe initial value of diffusion coefficient  between species T

and U&fig?i@w;s(palculated by the equation[  13]:
S 64 1 A 6
Uy I A Ve
&ipari OUUAD LEF@WG
a abdc

5 56 sr’’ sr?7_2 .

&2z 5oau ¢ REauboawe® @F/—e E/—iG ® :var;
where 2 ds the total pressure of species (atm), 6 5 d;the critical temperature of species
(K), 2ais the critical pressure of species (atm), and / is the molar mass of species
(kg/mol). The coefficients =and >depend on whether one of the species is a polar gas
or not and are determined accordingly, Yis the porosity of the GDL and &s the GDL
tortuosity. With the characteristic data of gas diffusion layer given in [ 13], the initial value
of third lumped aging parameter &flfjg?i £0 U ad 1is around 6.7e -06 (m?2/s).
4.2.3.1.4 Genetic Algorithm
In order to demonstrate the modeling accuracy and identify the initial values of aging
parameters, the proposed multi -physical aging model is used to fit the experimental
measurement of polarization curve at the beginning of PEMFC lifetime. As a commonly
used strategy, the Genetic Algorithm (GA) is particularly suitable for such multi -
parametric and n on-linear system. The purpose of GA is to find optimal solution for

objective function, defined as follow:

Bki JoL IEJPI >, F &,i¢ 4i J0%Q Vs
cd,
where '|'Sare the estimated parameter values at time Gn the generation G ;pis the

measured output value at time Gand ki Sois the predicted output  value .

The flow diagram of aging parameters ini tialization using GA algorithm is shown in the
figure 4.3. The main idea of GA is to generate a population of solutions and then to

improve it using techniques of natural evolution, such as inheritance, mutation, selection,
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and crossover method. This gener ational process is repeated until an appropriate
solution can satisfy (optimize) the objective function. More detailed cont ent about GA

can befoundin[2 3][24].

As shown in the figure 4.3, the inputs of GA include  fuel cell stack geometry parameters
and physical properties, as well as operating condition of auxiliary components. In
addition, the numeric variation range of above each aging parameter has been set to

f 5% of their calculated initial values for the GA tuning.

Figure 4.3 Flow diagram of GA for fitting the initial polarization curve.

Figure 4.4 shows the polarization curve measured at PEMFC beginning of lifetime, and

the GA fitting result of the proposed model. It can be seen from th e figure 4.4 that, the
identified aging model output fits very well to the experimental measurement over the

entire current range by using the GA approach (the fitness value is 97.27%). The
identified initial values of three aging parameters are, respectiv ely, 4s0a06 o a02.081le-
03 °, Beapuuse0.1149 (M m2), and &20L . .76.839e-06 (m2/s). These three initial
values are further used for particle filter to study the degradation characteristics in the

learning phase of the proposed aging prediction method.

Figure 4.4 I nitial measurement s of polarization curve and GA fitting result  s.
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4.2.3.2 Prediction Method Design

The proposed model -based prediction method is divided into learning phase and
prediction phase. In order to give a detailed flow diagram of proposed algorithm design,

the PEMFC experimental degradation voltage dataset and working conditions are
presented at first. A Ballard NEXA 1.2 kW commercial PEM fuel cell stack is used in this
experimental aging test. As shown in the figure 4.5, the PEMFC stack voltage is measured
under a current of 36 A at a temperature of 40 €. The experimental aging data is

measured and recorded every ten minutes during the 400 hours experimental test.

Figure 4.5 Experimental measurements of the  fuel cell stack

output voltage under a current of 36A at a temperature of 40 T.

It should be noted that, in order to eliminate the unreliable measurement data points

before applying t he proposed algorithm, a data post -processing is performed to down -
sample the original measured data. Thus, the available measured aging data consists of

91 data points as shown in the figure 4.4. The learning phase point is set to R. It means
that, by using the proposed prediction method, the aging parameters is trained and
updated from 0 h to R h, the remaining data between the learning time R h and the
end time 400 h is thus used to evaluate the consistency of the prediction results from the

pro posed aging model.

The detailed flow diagram of proposed prediction methodology is shown in figure 4.6. It

includes accordingly two parts: learning phase and prediction phase.

For the learning phase, the objective of particle filter is to recursively esti mate the state
variables T,based on the initial aging parameters and experimental aging voltage data.

It should be noted that, during the particle filter based estimating process, the variance
selection of process noise Spis a compromise problem. A large variance of Sp can
provide a set of sample particles with great diversity, and further expands the sampling

distribution, while a small variance ensures a sufficiently fast convergence. The
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observation noise R,already exists in the experimental aging data, since the stack

voltage is measured by physical sensors.

Figure 4.6 Schematic diagram of proposed prediction methodology

including learning phase and prediction phases.

The particle filt er in the previous learning phase estimates and updates the state
variables T:.G at every sampling step, thus the n on-linear behaviors of voltage
degradation before the learning time R h can be fully captured. In order to well
represent the captured a ging behavior, the multiply exponential function is com monly
used in the literature [2 5]-[28] to describe the degradation trend. Furthermore, linear,
exponential, power, and Fourier s eries functions [2 9] can also well express the PEMFC
aging process under constant current and temperature condition. Since the
degradation trends of different aging parameters represent different physical aging
progresses and degradation mechanisms, the above -mentioned fitting curve functions
should be properly selected for eac  h aging parameter extrapolation, in order to further

achieve accurate prediction voltages in the prediction phase.
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4.2.4 Experimental Results and Discussions

In this section, a 400 hours experimental degradation voltage dataset is fully investigated

to perform the fitting curve function selections at first. Then, based on the selected fitting
functions, the proposed prediction method is then applied to 3 other 400 hours PEMFC
experimental degradation tests under different operation conditions. The predic tion
performance evaluation of the proposed approach with shorter duration of learning

phase is also shown and discussed at last.

The 4 datasets of Ballard NEXA 1.2 kW commercial PEMFC stacks, used in this thesis, are
measured and post -processed under stea dy -state operation conditions of 12A 30T, 30A
35€C, 36A 40T and 44A 40€C, respectively. Four identical NEXA stacks (from same
manufacturer batch) are used during experiments and each stack is tested under 400
hours aging experimentation. The detailed ope ration conditions of 4 NEXA fuel cell

stacks are listed in the following table 4.1.

Table 4.1 Operation Conditions of NEXA Fuel Cell Stacks

Test in section Isttestin 2d test in 31 test in
4141 section 4.1.4.2.1 section4.1.4.2.2 section 4.1.4.2.3
Stack type Ballard NEXA 1.2 kW commercial PEM fuel cell stack
Operation mode Dead 2end mode
Air supply Air blower + filter
Cooling Air fan cooled
Active area 150 ... ¢
Fuel supply 99.99% dry H. @1.2 bar
Operating hours 400 hours
Air stoichiometry 2.0 4.2 2.2 2.0
Stack temperature 40 ( 30 ( 35( 40 (
Current density 024 ..¢ 008 ..§ 020 ...S 030 .S

4.2.4.1 Fitting Function Selection and Extrapolation Method
In the first experimental aging test, the Ballard NEXA 1.2 kW PEMFC stack runs for 400
hours under 36 A at 40 T (the dataset is shown in the figure 4.5). The learning phase time

Ris set to 250 h. This experiment aims to find appropriate fitting functi  on for each aging
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parameter extrapolation. By applying the proposed prediction method, the particle filter
studies the n on-linear aging behaviors and updates the aging parameters in the
learning phase. Then, an important step of the proposed method is to s elect appropriate
fitting functions, which are used to represent the trends of aging parameters in the
learning phase, and further extrapolate the future values of aging parameters in the
prediction phase. As mentioned previously, the aging trend behaviors can be well
expressed by the following fitting curve functions: multiply exponential, linear,

exponential, power, and Fourier function.

Taking the first aging parameter 430 uo@s an example. In the learning phase, the
particle filter studies the voltages degradation behaviors and updates the parameter
40006 u o yalue s, as shown in the figure 4.7 (blue points in the learning phase). The
upward tendency of 45040 @ o u dythe learning phase can be well described b y above -
mentioned linear, exponential, power, and Fourier series functions. These four functions
also generate different extrapolated values of parameter ds05 0@ o 0 4y the prediction

p hase, as shown in the figure 4.7 (different colors points in the prediction phase ).

Figure 4.7 Fitting curves of ohmic resistance parameter using different functions.

It can be seen from the figure 4.7 that, although all the four functions can provide good

fitting results in the learning phase (high coefficient of determination 4%), the
extrapolated parameters have large differences in the prediction phase. For
compari son purpose, these different extrapolated values of parameter daaudu o AL
further used in the proposed aging model. As a consequence, the prediction results of
degradation voltage also show difference in the prediction phas e, as shown in the

figure 4.8.
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Figure 4.8 Prediction voltage results using extrapolated parameter of ST e e

In figure 4.8, the voltage curve in the learning phase (blue curve) is estimated by particle

filter. The four forecasted voltage curves in the prediction phase are generated by the
proposed aging model with the above -mentioned different extrapolated aging
parameter 4spau®uuadt can be clearly seen from the figure 4.8 that, the trend of
forecasted curves using power function and Fourier function are in good agreement

with the measured voltage points, while the linear and exponential functions h ave
relatively large errors. It can be concluded from the prediction results that, compared to

linear and exponential functions, power and Fourier functions can reflect more

accurately reflect the trend of fuel cell ohmic losses.

The similar function selec tion process are also used for the other two aging parameters
B s@o v sand &flzz?i ouuauSince each aging parameter has four different fitting
functions to extrapolation, there are a total of v’ L x wossible combinations to pr edict

the degradation voltage.

The root mean square error (RMSE) is used to measure the accuracy of all the 64
different prediction results using the above fitting functions selection method. It has been
found out that, in order to achieve best forecast performance of prediction curve, the

most appropriate extrapolation pairs are:
Power function extrapolation for  4zgau@®uoav
dacau®uuaB L UEP VAt

Fourier series function extrapolation for B sgogoau

BeaoouaiB L Ls EL ?KI@5 EL; OEAR vdu;
Multi -exponential function extrapolation for &?12 g?«l HU0E0
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where the parameters U U Ly, L Ly, i, 5 > 2 @re determined by the curve fitting

functions . The above three parameter -function pairs are then considered for future study.

4.2.4.2 Experimental Validation: Long Learning Time

In order to experimentally verify the effectiveness of proposed prediction method, three
more experimental degradation voltage datasets of the same type of Ballard NEXA 1.2
kW PEMFC stack for 400 h operation under different working conditions of 12A 30C, 30A
35€, 44A 40€ are presented respectively, with a learning time R of 250 hour.

4.2.4.2.1 First Experiment: PEMFC Operation under 12A at 30C
In the first experimen tal aging test, the PEMFC stack runs for 400 hours under a current of
12A at 30C. By applying the proposed prediction method , the extrapolation results of

the aging parameter are shown in figure 4.9.

Figure 4.9 Extrapolated result of aging parameters: (a). ohmic resistance. (b).

exchange current density. (c). diffusion coefficient. (operating current 12A at 30T).
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It can be seen from the figure 4.9 that, three aging parameters show different non -linear
aging characteristics, due to their different physical performance and degradation
mechanisms. The prediction results show that under the first PEMFC 400 hours operation
under a current of 12A at a temperature of 30C, the Ohmic resistance increases by

more than 39%, the exchange current density and d iffusion coefficient decrease by 10%
and 23%, respectively. Based on the values of three extrapolated parameters, the

proposed aging model outputs the prediction results, as shown in the figure 4.10.

Figure 4.10 Prediction result (current 12A at 30C, learning time is set to 250 h).

It can be seen from the figure 4.10 that, the predicted voltages can follow the trend of

the non 3inear experimental data set with a great accuracy. The root mean square error
(RMSE) and mean absolute percentage error (MAPE) o f prediction result are 0.1857 and
0.0042, respectively.

4.2.4.2.2 Second Experiment: PEMFC Operation under 30A at 35T

In the second experimental aging test, the PEMFC stack runs for 400 hours under a
current of 30A at 35C. By applying the proposed  prediction method , the extrapolation
results of the aging parameter and voltage degradation prediction result are shown in

figure 4.11 and figure 4.12, respectively.

It can be seen from the figure 4.11 that, three aging parameters show again different

non -linear aging characteristics. The prediction results show that, for the second
experimental aging test, the Ohmic resistance increases by more than 57%, the
exchange current density and diffusion coefficient decrease by 12% and 29%,
respectively. Then, based on the values of three extrapolated parameters, the proposed

aging model outputs the prediction voltages. Figure 4.12 clearly points out again that,

100



the proposed prediction method shows a precise conformity with the validation data.

The RMSE and MAPE of prediction result are 0.1865 and 0.0052, respectively.

Figure 4.11 Extrapolated result of aging parameters: (a). ohmic resistance. (b).

exchange current density. (c). diffusion coefficient. (operating current 30A at 35C).

Figure 4.12 Prediction result (current 30A at 35€C, learning time is set to 250 h).
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4.2.4.2.3 Third Experiment: PEMFC Operation under 44A at 40T

In the third experimental aging test, the PEMFC stack runs for 400 hours under a current

of 44A at 40T. By applying the proposed  prediction method , the extrapolation results of
the aging parameter and voltage degradation prediction result are shown in figure 4.13

and figure 4.14, respectively.

Figure 4.13 Extrapolated result of aging parameters: (a). ohmic resistance. (b).

excha nge current density. (c). diffusion coefficient. (operating current 44A at 40C)

The prediction results show that, for the third experimental aging test, the Ohmic
resistance increases by more than 76%, the exchange current density and diffusion
coefficien t decrease by 15% and 40%, respectively. Figure 4.14 clearly shows again that,
the prediction curve can describe the trend of the non -linear experimental data set. The

RMSE and MAPE of prediction result are 0.3168 and 0.0083, respectively.
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Figure 4.14 Prediction result (current 44A at 40T, learning time is set to 250 h).

It can be concluded from the above three experimental validations that, when a
relatively large amount of data is used by particle filter in the learning phase, with
suitab le fitting curve functions to extrapolate the values of aging parameters, the
proposed prediction method has demonstrated its strong capability on forecasting the

future trend of PEMFC degradation voltage under different fuel cell operation conditions.

4.2.4.3 Experimental Validation: Short Learning Time

In order to thoroughly show the effectiveness and advantages of the proposed
prediction method, we would like to further investigate the prediction performance of

the proposed model with a shorter learning time interval. The learning time Ris now set
to only 150 h (previously 250h). In this case, fewer training points are available to fit the
function. By applying the proposed method with this new learning interval, the

prediction volt ages are shown in the figure 4. 15-4.17.

The degradation prediction results for the first experimental aging test are shown in the
figure 4.15. In this limiting condition, the trend of PEMFC degradation voltage can still be
captured, however with a larger prediction error. Figure  4.16 shows the second
experimental aging te st and it can be seen that, although the proposed prediction
method could not show a precise conformity with the validation data after 200 hours,

the prediction could still provide accurate and useful prediction results in the near time
interval (i.e. betw een 150h and 200h). For the third experimental aging test, the
prediction results are shown in the figure 4.17. Since the training data is very limited, its
non-linear degradation trend is not fully learned by particle filter. Thus, the prediction
results are not very accurate, especially after 250 hours. Nevertheless, the voltage aging

trend can still be roughly described by the predicted results.
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Fgure 4.15 Prediction result (current 12A at 30T, learning time is set to 150 h).

Figure 4.16 Prediction result (current 30A at 35€, learning time is set to 150 h).

Figure 4.17 Prediction result (current 44A at 40T, learning time is set to 150 h).

Thus, it can be concluded from the above experimental validation that, although the

acquired aging data is extremely restricted, based on the prior known parameter -
function pairs, the proposed method has the potential to provide fairly acceptable
prediction results, especially at immediate short prediction time range.
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It worth also to mentioned that, when the i nitial training samples are limited, iteration -
based prediction strategies [ 30] are particularly useful to achieve a better performance

of the proposed prediction method. The purpose of using an iteration -based prediction
strategy is to provide more accurate short -term prediction results and to dynamically
update the prediction result with the newest dataset ( newly measured data) for iterative

data training at next prediction step.

4.2.5 Conclusion

In this section, a novel approach for PEMFC output voltage prediction based on a multi -
physical aging model with particle filter and data extrapolation approach w as
proposed (please refer to previous work [ 13] [14]). The proposed multi -physical aging

model fully considers the three most important aging phenomena during PEMFC

operation: ohmic losses, reaction activity losses, and reactants mass transfer losses.

The proposed prediction method is divided into two stages: learning phase and
prediction phase. During the learning phase, the particle filter is applied to study the
non-linear aging behavior and update the proposed aging parameters. Then, different

fitting ¢ urve functions are used to represent the trend of aging parameters in the
learning phase, and further extrapolate the future values of aging parameters in the
prediction phase. At last, by using the extrapolated aging parameters, the  proposed

aging model predicts fuel cell voltages in the prediction phase.

The experimental validations show that, in order to fully and accurately represent the
non-linear trends of aging parameters and further achieve a better performance of
proposed prediction method, a relat ively large amount of data should be learned by
particle filter in the learning phase, and suitable fitting curve functions should be used to
extrapolate the values of aging parameters in the prediction phase. It is also important
to note that, even when t he acquired training data is extremely limited, by knowing a
prior the parameter -function pairs, the proposed method is still able to provide

acceptable results, especially at immediate short prediction time range.
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4.3 Degradation Prediction Usinga  Moving
Window Based Hybrid Prognostic Approach

The above physical -based prediction method cannot be used in the on-line prognostic
applications , since this single -step prognostic method makes pred iction for a fixed
horizon. In order to improve the proposed method , an innovative robust prediction
algorithm for PEMFC performance degradation is proposed based on a combination of

model -based and data -driven prognostic method. In the proposed hybrid method, a

novel approach using the moving window method is appl ied, in order to 1) train the
developed models; 2) update the weight factors of each method and 3) further fuse the

predicted results iteratively. In the proposed approach, both model -based and data -

driven methods are simultaneously used to achieve a bette r accuracy.

In order to verify the proposed method, three experimental validations with different
aging testing profiles have been performed. The results demonstrate that the proposed

hybrid prognostic approach can achieve a higher accuracy than convention al
prediction methods. In addition, in order to find the satisfactory trade -off between the
prediction accuracy and forecast time for optimizing on -line prognostic (for example the
dynamic operating conditions in fuel cell hybrid electric vehicles), the performance
variation of proposed approach with different moving window length is further shown

and discussed.

In this section, a model -based fuel cell voltage degradation prediction model using
empirical equation and particle filter approach, and a data -driven prediction model
using NARNN are presented, respectively. Then, a hybrid prognostic approach is further

given based on combining the fusion approach and moving window techniques.

4.3.1 Model -Based Predicti on Method

A model -based approach has been chosen as the first prediction method in this thesis.
In this section, an empirical fuel cell voltage degradation model is presented at first. In
order to estimate the state variables in the model, a particle filte r based identification
algorithm is applied. The corresponding prognostic method is presented and discussed

at last.
Based on regression analysis of experimental degradation data, it has been found that
an empirical equation form can well describe the fuel cell voltage degradation proces s

[26]-[28]:
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where & grR3is the fuel cell output voltage at time Pthe coefficients =and >are related
to the fuel cell internal impedance, the coefficients ?and @are related to the fuel cell
aging rate. The discrete -time state space of this voltage degradation model is depicted

as follows:

T.G L T:GF s; E3p?5

\ UGL=GRATELGRE?”G R TIOG &5

VaX;

where Gs the sampling step, the state variables need to be estimated can be described
by .GL=G& G& G 4@G?, the observed variable U G represents the fuel cell

voltage, and 3, is the system stochastic normal distributed noises.

The equation 4.26 is clearly in a non -linear form. In order to accurately estimate the state
variable T:G, the particle filter approach is used, since it can effectively solve the
Bayesian estimation problem of n on-linear system based on the Monte Carlo sequence.
The purpose of using particle filter for n  on-linear model parameter identification is to
capture the trend of fuel cell degradation voltage during the training phase, and further

correctly rep resent the captured aging trend in the future (prediction phase).

Figure 4.18 Schematic diagram of model  -based diagnostic approach.

Based on the presented degradation model state space representation equation 4.26,

the detailed flow diagram of model -based prognostic methodology is shown in figure
4.18. It can be seen from the figure 4.18 that, the development and validation of this
model -based prognostic method includes three parts: initialization, training phase and

prediction phase.
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4.3.1.1 Initialization of Model -Based Approach

The detailed steps of initialization for model  -based diagnostic approach are described

as follows:

1) The degradation data and corresponding experimental conditions are
presented at first. A PEMFC stack (commercial Ballard NEXA 1.2 kW PEM fuel cell
stack) is used in a 400 hours experimental degradation test. It can be seen from
the figure 4.19 that, during the 400 hours degradation testing (operating
condition: current 35A at temperature 40€), the fuel cell degradation voltage
data is measured and recorded every 10 minutes. It should be noted that, before
applying the proposed algorithm to the PEMFC stacks aging dataset, a data
post-processing is performed to eliminate the unreliable measurement data
points. Thus, the available degradation data consists of 91 data points (by down -

sampling the original measured data), which can b e seen in the figure 4.19.

Figure 4.19 Fuel cell stack experimental aging voltage under current 36A at 35 C.

2) Then, the training time point is setto  G.and thus the prediction phase is VITF &
long. It means that, 0 hto  G:h, the state variable is trained and updated using
particle filte r, the remaining degradation data from 6.to 400 hours is use to

evaluate the prediction results.

3) The initialization of state variables T:Gis performed by fitting the experimental

degradation data into the initial model.
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4.3.1.2 Training Phase of Model -Based Approach

In the training phase, the purpose of particle filter is to estimate recursively the state
variable T:G based on the initialization model and experimental aging data in the
training phase. It should be noted that, during the part icle filter based estimating process,
the variance selection of process noise 3pneed to be chosen carefully. A large variance

of 3pensures a more extensive sampling distribution, since it provides sample particles
with a great diversity. On the other hand, a smaller variance of  3pallows a sufficiently
fast convergence. There already exists the observation noise in the experimental aging

data, since the fuel cell degradation voltage data are measured directly by sensors.

From the known proposal distribution, the particle filter uses a set of random sample
particles based on the Monte Carlo sequence, in order to estimate the posterior
probability density of n on-linear system. More detailed content about particle filter can

be found in the previous section.

4.3.1.3 Prediction Phase of Model -Based Approach

In the previous training phase, the particle filter estimates and updates the state
variables T:G at every sampling step. Thus, the voltage degradation behaviors of
training phase have been f  ully captured. As mentioned before, in order to well represent

the captured aging behavior in the prediction phase, all of the trained state variables

T:G during the training phase should be taken into account in t he empirical model
equation 4.2 5. In this case, the most efficient way of integrating all the state variables
T:Gis to use their average value during the training phase (from 0 to & hour). The

average value of state prediction results is expressed as:

A
L vay;
0(; adla
where O 3 ¢ issthe number of degradation data (blue points), which are used for particle
filter learning during the training phase, as shown in the figure 4.19.
Thus, the prediction voltage results in the prediction phase U are calculated by the
output equation of state space equation 4.25:
WL %, @A TS, GEOE %1, @ Sk, @0 vdz;

where the sample step  GL 6 Eség Et&B Eud vrr
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4.3.2 Data -Driven Prognostic Method

The proposed model -based prognostic method is essentially based on an exponential
regression model, it cannot accurately catch the non qinear and uncertain behaviors
during the aging process. C ompared with model -based prognostic method, the data -
driven approach can well describe the local non -linear characteristics of degradation
voltage. Especially for the short -range and medium -range prediction time, the data -
driven prognostic method can give a better representation of uncertainties in the
degradation process. In this thesis, a data  -driven prognostic method has been chosen

as the second prediction method.

As a data -driven approach, the artificial neural networks can be effectively used to

impli citly indicate the complex n  on-linear characterization between system inputs and
outputs. The aging process of PEMFC can be considered as a n on-linear autoregressive
time series model. The actual fuel cell voltage (model output) can be considered as a
variable determined by an unknown non -linear process from the previous voltage values.
In this case, the n on-linear autoregressive neural network (NARNN) model can then be

used to track the n on-linear characteristics of PEMFC degradation.

In this section, a NARNN model for fuel cell degradation is presented at first. An optimal
training strategy is also proposed in order to achieve good prediction performance of
the developed NARNN model.

4.3.2.1 Non-linear Autoregressive Neural Network Model
A NARNN model is suitable to describe the n  on-linear dynamic in a wide variety of
system and have been extensively impleme nted in various applications [3 1]-[33]. The

general formulation of NARNN model can be expressed as follow:

UL (Ursdloed Usy Qs Qos; vad;
where Qand Uare the prediction model inputs and outputs at time Pespectively, |
and Jare the respective delay factors, (is the NARNN function describes the n  on-linear

correlation between the Qand U For the fuel cell diagnostic purpose, the detailed

NARNN layer diagram is shown in the figure 4.20.
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Figure 4.20 Structure of the NARNN model for PEMFC aging prediction.

As shown in the figure 4.20, the vector of the input layer at time Pis
7o L Apsdlo68 Usy 3, and the output of model U stands for the PEMFC voltage value
attime PR Lis the number of neurons in the first hidden layer, Ms the number of neurons in

the second hidden layer. The activation functions of neurons in the first hidden layer are
log -sigmoid transfer functions, the function in the second hidden layer is the tan -sigmoid
transfer function, and the function in the output layer is the linear transfer function. Thus

the output of the proposed NARNN model can be written as follow:
UR LLQNAB®PFJIOEE KCGEGE>; E>; E>'; VAT

where Sand >respectively stand for the vector of weights and bias for each layer, the
output of NARNN model  U:Ris the PEMFC voltage prediction result, the model input 7cis
the PEMFC voltage in the previous time from PF sto PF I. Thus, the future degradation

behaviors of PEMFC U: P, are expressed i n the above n on-linear autoregressive form.

4.3.2.2 Data -Driven Prognostic Method Implementation

The detailed flow diagram of data -driven prognostic methodology using the presented
NARNN prediction model is shown in figure 4.21. Similar to the previous m odel -based
prognostic method, the proposed data -driven prognostic method also includes two

parts: training phase and prediction phase.
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Figure 4.21 Schematic diagram of data  -driven prediction using NARNN model.

For the training phase, the initialization of NARNN model includes setting the number of
neurons, transfer functions selection, initialization of weights and deviations in each
hidden layer, etc. In terms of the system identification algorithm, the Levenbe rge -
Marquardt optimization method is adopted. Compared with the common back
propagation first -order method, this training method provides a more rapid quadratic

rate of convergence. More detailed content about Levenberge -Marquardt method

can be found in [3 4].

It should be noted that, different from the previous particle filter training, the neural
networks are sensitive to data over -fitting. To overcome this problem in practice, the
aging data of training phase are further divided into training part and eva luation
(validation) part. The training data are used to identify the NARNN model parameters,

and the evaluation data are used to evaluate network generalization fitting ability
(accuracy on the validation data). There is usually a trade -off between accura cy for
training part and generalization fitting ability  for prediction part [3 5]. In our proposed
method, the training process is terminated when the mean squared error (MSE) of

validation part stopped decreasin g, as shown in the figure 4.21.

4.3.3 Hybrid Prognostic Approaches

As an integration process of multiple prognostic results from different methods, a suitable
fusion approach is critical to  demonstrate their advantages [3  6]-[42]. It increases the
process reliability and robustness by combining the complementary information from

different prognostic methods in intelligent ways. Therefore, a hybrid prognostic
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approach can be expected to provide more accurate and robust prediction results

compared with single model based method.

In order to combine the advantages of different prediction methods in the proposed

hybrid prognostic approach, a good understanding about the specific characteristics of

each prediction method is important. The model -based method can effectively forecast
the aging trend for a long  -range prediction time, however it cannot accurately describe

the local non -linear characteristics of aging. In contrast, the data -driven method can
provide a good n on-linear representation of uncertainties in the degradation proce ss for
the short -range and medium -range prediction time. But its long  -term prediction result is
not accurate due t o predicted data fluctuation . Therefore, in order to effectively taking
the advantages of each method into account, there are two critical iss ues that need to
be considered when using a hybrid prognostic approach: 1) the range selection of
training and prediction time, and 2) weight factors determination of each

corresponding method.

As an efficient computational strategy, the moving window meth od is considered to be
a good solution for the above -mentioned issues. In this section, a moving window
method is presented firstly in order to take different prediction time range into account.

A weight factors adjustment method is then proposed using the results from the moving
window method. The proposed method can dynamically adjust the weights vector at

each step of the moving window.

4.3.3.1 Moving Window Method

The primary purpose of using a moving window method is to update and add the
newest dataset for iterative data training, and provide dynamic weight factors to further
improve the prediction accuracy. In order to perform iterative training during the
forecasting process, the model input dataset are updated continuously by moving

window app roach, as shown in the figure 4.22.
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Figure 4.22 Sch ematic diagram of moving window

method in the proposed hybrid prognostic approach.

In the figure 4.22, the length of each window includes three parts: training part (white
region, measured data in the past), evaluation part (gray shadow region, measured
data in the past) and predicting part (black shadow region, prediction data for the
future). At each prediction step, the data in the white region are used to train the
previously developed models. The data in the gray shadow region are then used to
evaluate the newly updated model fitting ability, and the data in the black shadow

region are the future data points that need to be predicted from the models.

Take the first model -based method as an example. It is assumed that the data number in
training part , evaluation part and predicting part are equally defined as 0, the moving
size between each prediction step is also set to 0. At the k-th prediction step, the 0
measured training data located at the beginning of moving window (from sto 0) are
applied to train the  k-th model, the measured data from 0 E sto tOare then used to

evaluate the model prediction accuracy, and the predicted data are given from tOEs
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to u0. When the prediction is iterating from  k to k+1 step, the previously measured aging
data from O E sto tOare applied to train the  k+1-th model, the newly measured data
between two prediction step from t 0 E sto uOare used to evaluate the new model
accuracy, and the predicted data are given this time from u0 E sto vO0. The data -driven

method has the similar iteration procedures.

Therefore, t his moving window method is an efficient strategy to dynamically retrain the
models during the forecasting proce ss with new data inputs. In addition, by iteratively
evaluating the fitting ability of each method at each prediction step, the corresponding
weight factor can also be adjusted dynamically. Moreover, by using the proposed
moving window method, the forecast time can be easily changed by using different

values of O.

4.3.3.2 Weight Factors Calculation

As mentioned before, the data of gray shadow region are used to evaluate the model

fitting ability (estimation of accuracy at actual prediction step). During the evaluation
process (gray shadow region), the measured fuel cell voltage data are compared with

both model outputs to generate individual residuals. The generated residuals are then

used to calculate the weight coefficient of future prediction value obt ained from each
method. This weight factor, noted as Sip represents the modeling accuracy of each
method at actual prediction step, which is inversely proportional to the residual as

expressed in the following equation:

s )
Sip L VAl'S

~ . 6
Aes 8@peas EF Wean EA

where L L sstands for the first model -method and L L tstands for the second data -
driven method. @Gs the actual prediction step, W ¢ a0iS the measured fuel cell voltage
values used for evaluation, U}« g4iS the model predicted fuel cell voltage values in the

evaluation part. At each prediction step, this weight factor is dynamically adjusted.

By assuming that both prediction proc  esses (model -based and data -driven) are
conditionally independent at each prediction step, the overall prediction results Wen
can be described using weighted average as:

E

Weel | WYaias ®Sizzms vant;
a@
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where 2 L trepresenting the total number of methods, U sapis the predicting data,

S:asaaiS the normalized weight factor,  which can be calculated by:

Sae
Si a8 a4 L e vay
adaa@a® Ag@; Sg@
Figure 4.23 Flowchart of the proposed overall prediction
algorithm method for fuel cell output voltage degradation prediction.

The proposed overall prognostic algorithm can then be illustrated in figure 4.23. In figure
4.23, 0is the moving window coefficient, Jis the number of predicted data , k is the
actual prediction step, the total prediction step K (the threshold step in a specified
length of voltage data) determines the retraining cycle time.
4.3.4 Experimental Results and Discussion
In order to experimentally validate the accuracy and robustness of the proposed hybrid
prognostic method, experimental degradation datasets from three different types of fuel

cell stacks are presented respectively in this section:

First case study: Ballard NEXA 1.2 kW commercial PEM  fuel cell stack 400 hours

aging test under the working conditions of current 35A at temperature 40T

Second case study: PM 200 8.0 kW fuel cell stack 10000 hours aging test working

under sta tionary prime power application
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Third case study: 600 W stationary PEM fuel cell stack 1200 hours aging test under

static current load.

4.3.4.1 First Case Study: Comparison of the Proposed Hybrid
Model and Single Model Methods

In the first case, a Ballard NEXA 1.2 kW commercial PEM fuel cell stack runs for 400 hours
aging test under the working conditions of current 35A at temperature 40€ (the aging

dataset is pre sented in figure 4.19). This experiment aims to clearly show the accuracy
and robustness of the proposed hybrid method. The detailed operation conditions of

NEXA fuel cell stack are listed in table 4.2.

Table 4.2 Operation conditions of the first case stu  dy: Ballard NEXA fuel cell stack

First case study

Stack type Ballard NEXA 1.2kwW
Number of cells 47
Operation mode Dead 2end mode
Air supply Air blower + filter
Cooling Air fan cooled
Operating hours 400h
Air stoichiometry 2.0
Stack temperature 40 (
Stack current density 024 ...§
By applying only the model -based method, with a moving window coefficient 0 of 15,

the prediction results and identified parameters are illustrated in figure 4.24.
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Figure 4.24 Prediction results and identified

parameters of model -based prediction method.

As shown in the figure 4.24 (a), the initial known 30 data are used to train and evaluate
the model for the 1-st step of prediction. It can be seen clearly from the figure that, the
fade trend of red prediction curve is in well agreement with the measured degradation

data. It should be noted that, since the model is retrained at each step when data
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training window move forward, it is natural that the new forecast trend of the new step is
slightly different from t he previous one. For each prediction step, the blue points in each
data window indicate training data, which is used to identify four model parameters
=G&:G& . Ga®Gin equation 4.2 5. The green curve stands for the obtained training
results. Then the trained model generates the yellow curve, which is compared with the
corresponding measured data to evaluate the accuracy of the trained model. The

purple curve is the combination of prediction results at each step (moving window) from

trained model.

Fgure 4.24 (b) -(e) shows the identified model parameters at each prediction step, it can

be seen that during forecasting process, the degradation model is dynamically
retrained and the particle filter iteratively update the model parameters. As mentioned

in section 4.3.1.3, the average value of each identified parameter at each step is further

used to predict the model output in the predictio n part, as shown in equation 4. 28. These

average values of model parameters $ G &5 G £8G aBG are given in the tabl e 4.3.

Table 4.3 Average values of identified parameters used

in the prediction part at each step (model -based)
3G $G %G Gel
1-th 29.7299 -6.2637e-04 0.7831 3.9282e-03
2-th 29.7294 -4.4274e-04 0.7827 3.9289e-03
3-th 29.7297 -4.9277e-04 0.7835 3.7804e-03
4-th 29.7305 -4.8636e-04 0.7833 4.1389e-03

By applying only the data -driven prognostic method with the same moving window

coefficient, the prediction results from data -driven method are illustrated in figure 4.25.

It can be seen clearly from the figure 4.25 that, compared with previous results from

model -based method, the data  -driven method has more advantages on describing the

non -linear features of the degraded voltage during forecasting process (i.e. the results of
NARNN model are fluctuated more dynamically with the measured voltage values). For

each prediction step, the blue points in each data window indicate the training data,

which is used to identify the  model parameters. Then the trained model generates the
gray curve, which is compared with the corresponding measured data to evaluate the

accuracy of the trained model. The red curve is the combination of prediction results at
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each step (moving window) from tra ined model. The identified NARNN model is shown in

figure 4.26.

Figure 4.25 Prediction results of data -driven prediction method.

Figure 4.26 Identified NARNN model for data  -driven method.

As shown in the figure 4.26, t his NARNN model has two hidden layers, and its parameters
consist of delay coefficients, the weight coefficients array of each layer SO0 x x @a Sut x x @a
Saecaedhe bias coefficients vector of each layer 20U x x @4 00 x x @& Sa e cae AS shown in
figure 4.26, the input layer is 7. L X,sdl,gdl,. éu;?54éu;?57’?", the first hidden layer has
seven neurons, thus the output of the first hidden layer Uis a y H svector, which can be

expressed as the following e quation:
UL HK C BBiGx 3 @Uos58los @ Usa ? E o ma VAl v,
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where the weight coefficients Suuxx @S @ y Hwarray, the bias coefficients  >yyxx@iS a
y Hsvector. The second hi dden layer has four neurons, thus the output of the second

hidden layerisa v H svector, which can be expressed as follow:
ULP=J0%EC:xaPIE > xx @i TVl W

where the weight coeffici ents Syyxx@iS @ v Hyarray, the bias coefficients >y« xgis a

v H svector. The output of the NARNN Uis:

UWLLQNABEJ:e®IE >ecaec v X
where the weight co efficients Syyxx@iS @ s Hvarray, the bias coefficients  >sc54d§ a
s H svector.

Similar to the previous model -based prediction method, for each prediction step, the
NARNN model is dynamically retrained and all the weight coefficients array and bias
coefficients vector are iteratively updated. By applying now the proposed hybrid

prognostic method, the comparison of prediction results is shown in figure 4.27.

Figure 4.27 Comparisons of three prediction method results.
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It can be seen from the figure 4.27 that, by adjusting the weight factors at each
prediction step, the proposed hybrid prognostic method can simultaneously an
accurately capture the long -term fuel cell voltage degradation trend, as well as the
non -linear voltage variati on characteristics . Comparison results show that the proposed
hybrid prognostic method has stronger capability on maintaining high prediction
accuracy. The accumulated prediction errors for the entire forecasting range (0 to 400
hours), such as Root Mean S quare Error (RMSE) and maximum prediction error (MAE) are
shown in table 4.4. It can be seen again that the proposed hybrid prognostic method

can achieve better accuracy (prediction error is at least 30% lower) than both single

prediction method.

Table 4.4 RMSE of Prediction Results

d

Model -based method Data -driven method Hybrid prognostic method

RMSE 0.3362 0.3665 0.2352

MAE (V) 0.7949 0.8915 0.6302

4.3.4.2 Second Case Study: Performance Evaluation with
Different Moving Window Length

In this second case, an 8 kW PM 200 PEMFC stack (96 cells) is operated for 10000 hours

aging test. The operation conditions of PM 200 fuel cell stack are listed in table 4.5.

Table 4.5 Operation conditions of the second case study: PM 200 fuel cell stack

Second case study

Stack type PM 200 8.0kwW
Number of cells 96
Operation mode Recirculation mode
Air supply Air blower + filter
Cooling DI AVater / Glycol
Operating hours 10000h
Air stoichiometry 1.7
Stack temperature 58 (
Stack current density 0.64 ...§
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In this study, t he total available aging data contains around 6500 data points, which are
measured and post-processed under operation condition with a current density of
r&wt ?1%and a temperature of  w % . This experiment aims to analyse the influence of
different moving window coefficient (length) on the performance of proposed algorithm

for the long -term degradation prediction. By applying the proposed hybrid prognostic
method , the coefficient of moving windows Ois respectively setto 100, 200, 300, 500 and

700. The obtained prediction results are shown in the following figure 4. 28.
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Figure 4.28 Prediction results of proposed hybrid prognostic

method using different moving window coefficient U (length).
Figure 4.29 The accuracy improvement with different moving window coefficient Q.
It should be noted that, the time interval between 2 data points is around 1.5 hours in this
test case. Thus, a moving window coefficient 0100 to 700 corresponds to a forec ast

time of 150 to 1050 hours respectively. It can be concluded from the figure 4.29 that, by
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using the proposed hybrid prognostic method, the accuracy improvement decreases
when the forecast time length increases. This is mainly because the errors of data -driven
method increase significantly with the forecast time. In contrast, it can be seen that the

errors of model -based method are not visibly affected by the forecast time.

Thus, in order to maintain simultaneously high precision and relatively long forecast time

for on -line prognostic applications, a compromise between prediction accuracy and
forecasting time length should be appropriately defined based on the specific

appli cation requirement. From a decision making point of view, the prognostic of fuel

cell system must be performed with a long enough forecasting time to allow reaction.

For a stationary fuel cell application [12], around 160 hours long prediction (one week) i S
considered appropriate . It should be noted that, the proposed hybrid prognostic
method has a rapid execution time for all the training, evaluation and prediction parts

With different moving window coefficient O0from 100 to 700, the forecasting process is

capable for on -line prognostic with a time step level in the order of several seconds.

4.3.4.3 Third Case Study: Comparison of the Proposed Hybrid
Method with Other Methods

In the third case, a 600 W PEM fuel cell stack (5 cells) is operated for 1200 hours aging
test under stationary condition with a  static current density of  r& r# ? 18 This third case
experiment aims to show the prediction performance comparison between the
proposed hybrid method and other methods. The operation conditions of this case

experiment are listed in table 4.6 .

Table 4.6 Operation conditions of the third case study: 600W fuel cell stack

Third case study

Stack type 600W PEMFC assembled at FCLAB
Number of cells 5
Operation mode Recirculation mode

Air supply Air boiler

Cooling Cooling water system

Operating hours 1200h

Active area 100 ... 6

Stack current density 070 ...§
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By down -sampling the original measured data, the 1200 hours degradation voltage and

power of PEMFC are shown in the figure 4.30.

Figure 4.30 The third case 1200 hours aging test under a static current density of

Uz Ui Y fuel cell degradation voltage and power.

By applying the model -based method, the data -driven prognostic method and the

proposed hybrid prognostic method with the same moving window horizon 0 of 165
hours (corresponds to one week), the comparison of prediction voltages is shown in
figure 4.31.

Figure 4.31 Comparisons of three prediction method (voltage and absolute error).
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It can be seen from the figure 4.31 that, the proposed hybrid prognostic method can
represent both the fade trend and non Jinear features observed in the  fuel cell voltage
de gradation data. The comparison of mean prediction error between the proposed
methods and Adaptive Neuro  -Fuzzy Inference System (ANFIS) algorithm [11] is shown in
table 4.7. It can be seen that the proposed hybrid prognostic method can ensure a
higher predi ction accuracy than the both single prediction met hod, and could achieve
nearly 2 1% improvement on the mean prediction error compared with the ANFIS
algorithm. In addition, it is important to consider that the algorithm in [11] uses more
degradation data (  from O to 825 hours ) for training the ANFIS, while the proposed
moving window based prognostic approach requires fewer degradation data (only

from O to 330 hours) for the first training, and can dynamically retrain the models during
the forecasting process using the newly measured data. The above prediction results
and analysis demonstrate the robustness and effectiveness of the proposed hybrid

prognostic method.

Table 4.7 Comparison of mean prediction error

between the proposed methods and ANFIS algorithm [11]

Model -based Data -driven Hybrid prognostic ANFIS
method method method algorithm [11]
Mean error 0.0093 0.0089 0.0069 0.0087
In order to further show the prediction performance comparison of each moving

window step between the proposed hybrid method and other method, the fuel cell
power degradation dataset (shown as red curve in figure 4.30) is used to perform the
proposed prediction methods. The forecast time is also set to one week (moving window

horizon 0 L s x\wours), the comparison of prediction power is shown in the figure 4. 32.

The comparison of Root Mean Square Errors (RMSESs) between the proposed methods
and Auto -Regressive Integrated Moving Average (ARIMA) algorithm [12] is shown in
table 4.8.

It can be see n from the table 4.8 that, the proposed hybrid method shows again a
better prediction performance than single model method. Compared with the ARIMA
algorithm in [12], the proposed hybrid method could achieve higher forecasting
accuracy from the fourth week to the sixth week, the RMSE result of the proposed  hybrid

method is nearly 19% less than that of ARIMA algorithm for the total four weeks.
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Figure 4.32 Comparisons of three prediction method results

(power and absolute error).

Table 4.8 Comparison of RMSEs between the proposed methods and ARIMA [12]

Model -based Data -driven Hybrid ARIMA
method method method algorithm [12]
Week 3 0.6184 0.5832 0.4778 04
Week 4 0.6458 0.6377 0.5145 0.6
Week 5 0.8026 0.8571 0.6633 0.7
Week 6 0.8027 0.7523 0.6265 11
Total four weeks 0.7198 0.7075 0.5705 0.7
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4.3.5 Conclusion

In this section, an innovative approach based on a combination of different prognostic
methods has been proposed for the application of PEMFC performance degradation
prediction (please refer to previous work [ 43]). The proposed hybrid prognostic method
considers two basic prediction approaches: model -based approach and data -driven
approach. Model -based approach can be efficiently used to forecast the fuel cell

aging trend in a long -range forecast time. Data -driven approach can accurately
describe the local non -linear characteristics of degraded voltage for the short  -range

and medium -range prediction time.

By combining the advantages of the above two common prediction methods (i.e.

model -based approach and data -driven approach), the proposed method in this thesis

can simultaneously and accurately capture the long -term fuel cell voltage degradation
trend, as well as the non -linear voltage variation characteristics. In addition, a nove I
approach using the moving window technique is applied in order to iteratively update

the parameters during the prediction process. Furthermore, the prediction performance
evaluation of the proposed hybrid prognostic approach with different moving window

length is further shown and discussed.

Three experimental validations with three different PEMFC stacks and different aging test
profiles have been performed to verify the accuracy and effectiveness of the proposed

fuel cell performance degradation predict ion method. The presented results can help
engineers to appropriately choose the moving window length, in order to achieve
simultaneously high prediction precision and relatively long forecast time for on -line

prognostic , for example, the fuel cell hybrid  electric vehicle (FCHEV) [] []
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CONCLUSION

Before mass commercialization of proton exchange membrane fuel cell, the research

on the design of appropriate control strategies and auxiliaries need to be done for
achieving proton exchange membrane fuel cell (PEMFC) optimal working modes. An
accurate ma thematical PEMFC model can be used to observe the internal variables
and state of fuel cell during its operation, and could further greatly help the system

control strategy development.

A comprehensive multi -physical dynamic model for PEMFC is developed in chapter |I.
The proposed model covers multi  -physical domains for electric, fluidic and thermal
features. Particularly, the transient phenomena in both fluidic and thermal domain are
simultaneously considered in the proposed model, such as the dynamic behav iors of
fuel cell membrane water content and temperature. Therefore, this model can be used

to analyze the coupling effects of dynamic variables among different physical domains.

Based on the developed multi -physical PEMFC model, a full two -dimensional mu Iti-
physical model is further presented. The proposed model covers electrical and fluidic
domains with an innovative 2  -D modeling approach. In order to accurately describe the
characteristics of reactant gas convection in the channels and diffusion through the gas
diffusion layer, the gas pressure drop in the serpentine pipeline is comprehensively
analyzed by fully taking the geometric form of flow field into consideration, such as the
reactant gas pressure drop due to the pipeline sharp and U -bends. Based on the
developed 2 -D fluidic domain modeling results, spatial physical quantity distributions in
electrical domain can be further obtained. Therefore, this 2 -D PEMFC model can be use
to study the influences of modeling parameters on the local multi -dimensi onal
performance prediction. The simulation and experimental test are then performed to

validate the proposed 2 -D model with a commercial Ballard NEXA 1.2 kw PEMFC stack.

In chapter II, analyses of dynamic phenomena step responses are conducted based on

the developed multi  -physical dynamic PEMFC model using the relative gain array (RGA)
method for various control input variables, in order to quantitatively analyze the
coupling effects in different physical domains, such as the interactions of membrane
wate r content and temperature. Based on the calculated values of relative gain array,

the proposed model can be considered as a fuel cell MIMO system, which could be
divided into two independent control sub -systems by minimizing parameter coupling

effects betw een each other. Due to the closely coupled parameters in the proposed
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first control sub -system, a decoupling control method is recommended to achieve
optimized control results. The coupling analysis presented in this thesis can help
engineers to design and  optimize the fuel cell control strategies, especially for the water

and thermal management in fuel cell systems.

A mathematical solver algorithm for the developed 2-D multi -physical real -time model of
proton exchange membrane fuel cell is presented in Chapter Il using an efficient
tridiagonal matrix algorithm (TDMA). TDMA uses a special form of elimination, and solves

the tridiagonal matrices in a backward substitution, its arithmetic compl exity exponential

decays to ope rations 1:J;compared with strai ghtforward Gaussian elimination 1:J7;

In order to thoroughly and effectively describe the gas flow characteristics in serpentine
channels, the differential equations of reactant gas convection and diffusion
phenomena are transformed into tridiagonal ma trix. In addition, an original iterative
solver algorithm composed by three interactive computational loops is also developed

in the model, in order to obtain spatial physical quantity distributions of electrochemical
domain in real -time. The experimental results demonstrate the practical feasibilities of
the proposed 2 -D model for advanced real  -time control of PEMFC systems with a control
loop time level on the order of milliseconds. The model execution time can be at least 4
times faster compared with ste  p-by-step computing. Such short execution time of the
proposed 2 -D model ensures fast control decisions and actions based on the predicted

local phenomena and spatial distribution physical variables inside the fuel cells.

Two different prognostic approaches for PEMFC performance degradation prediction is
proposed in the Chapter IV.  In the first part, a novel approach for PEMFC output voltage
prediction based on a multi -physical aging model with particle filter and data
extrapolation approach is pro  posed. The proposed multi -physical aging model fully
considers the three most important aging phenomena during PEMFC operation: ohmic
losses, reaction activity losses, and reactants mass transfer losses. The proposed
prediction method is divided into two s tages: learning phase and prediction phase.
During the learning phase, the particle filter is applied to study the n on-linear aging
behavior and update the proposed aging parameters. Then, different fitting curve
functions are used to represent and extrapo late the aging parameters in the learning
phase. Three experimental validations with different aging testing profiles have been
performed. The prediction results demonstrate that, this physical -based method could
provide an acceptable prediction results under the condition of limited initial training

samples.
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However, the proposed physical -based method is a single-step prognostic method,
which cannot be directly used in the on-line prognostic applications . In order to achieve
on-line prognostic, it is important to develop an iteration -based prediction strategy
which allows the prediction result to be dynamically update d with the newest dataset

(newly measured data) for iterative data training at next prediction step.

For this purpose, i n the second p art of chapter IV, a moving window based prediction
method is developed, in order to dynamically retrain the models during the forecasting
process with new data inputs . In addition, this approach isbased on a combination of
model -based and data -driven progn ostic methods . By combining the advantages of
the above two common prediction methods, the proposed hybrid method can
simultaneously and accurately capture the long -term fuel cell voltage degradation
trend, as well as the non -linear voltage variation chara cteristics. Furthermore, the
prediction performance evaluation of the proposed hybrid prognostic approach with

different moving window length is further shown and discussed. Three experimental
validations with three different PEMFC stacks and different agi ng test profiles have been
performed to verify the accuracy and effectiveness of the proposed hybrid method. The
presented results can help engineers to appropriately choose the moving window
length, in order to achieve simultaneously high prediction precision and relatively long

forecast time for on -line prognostic applications .
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