, Detection of activity at G1, despite the addition of Adrenaline and Nifedipine , indicates that there is an electrical problem in the setup, because all physiological , calcium-driven activity should be extinguished. Nothing can be deduced about the culture, electrical problems must be fixed (generally by physically grounding faulty electrodes) and the experiment must be re-run

, Detection of activity at G1, maintained by Adrenaline but extinguished by Nifedipine indicates that the observed activity results from ? cells . Islets are of poor quality

, Detection of activity at G1 extinguished by Adrenaline suggests that activity results from ? cells , and not from ? cells , which should be activated by Adrenaline. Islets are of moderate activity, as it suggests ? cell hypersensitivity to glucose

. (. , The preparation is inactive at low glucose (G1), activates at high glucose (G15), shows physiological response to dose-responses and hormones

, The preparation is inactive at low glucose (G1), activates at high glucose (G15), shows physiological response to dose-responses and hormones

, The preparation is inactive at low glucose (G1), activates at high glucose (G15), and shows poor or partial response to dose-responses and hormones Islets have bad sensitivity but are nevertheless responsive to stimuli: they are therefore of good quality

F. Lebreton, A. Pirog, I. Belouah, D. Bosco, T. Berney et al., Matthieu Raoux, and Jochen Lang. Slow potentials encode intercellular coupling and insulin demand in pancreatic beta cells

. Diabetologia, ISSN 0012-186X. doi: 10.1007/s00125-015-3558-z. URL http, pp.1291-1299, 2015.

, Guiding pancreatic beta cells to target electrodes in a whole-cell biosensor for diabetes, Lab on a Chip, vol.15, issue.19, pp.3880-3890

F. Catrin, D. Williams, J. Lloyd, A. Lees, . Pirog et al., What the deep sea can tell us about microwaves, Microwave Symposium (IMS), 2016 IEEE MTT-S International, pp.1-4

F. Catrin, . Williams, M. Gilles, A. Geroni, and . Pirog,

A. Porch, The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation, Applied Physics Letters, vol.109, issue.9, p.93701, 2016.

A. Dimitrios, R. Koutsouras, A. V. Perrier, A. Marquez, E. Pirog et al., Simultaneous monitoring of single cell and of micro-organ activity by pedot: Pss covered multielectrode arrays, Materials Science and Engineering: C, vol.81, pp.84-89

M. Ambroise, S. Buccelli, F. Grassia, A. Pirog, Y. Bornat et al., Biomimetic neural network for modifying biological dynamics during hybrid experiments, Artificial Life and Robotics, vol.10, issue.11, pp.1-6
DOI : 10.3389/fnins.2016.00067

URL : https://hal.archives-ouvertes.fr/hal-01567497

M. Karvonen, M. Viik-kajander, E. Moltchanova, I. Libman, R. Laporte et al., Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group, Diabetes Care, vol.23, issue.10, pp.1516-1526, 2000.
DOI : 10.2337/diacare.23.10.1516

E. Gale, Type 1 diabetes in the young: the harvest of sorrow goes on, Diabetologia, vol.MD, issue.8, 2005.
DOI : 10.1007/s00125-005-1833-0

A. Mark and . Atkinson, The pathogenesis and natural history of type 1 diabetes. Cold Spring Harbor perspectives in medicine, p.7641, 2012.

V. Harjutsalo, L. Sjöberg, and J. Tuomilehto, Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study, The Lancet, vol.371, issue.9626, pp.1777-1782, 2008.
DOI : 10.1016/S0140-6736(08)60765-5

I. Weets, J. Van-autreve, . Van-der-auwera, . Schuit, K. Mvl-du-caju et al., Male-to-female excess in diabetes diagnosed in early adulthood is not specific for the immune-mediated form nor is it HLA-DQ restricted: possible relation to increased body mass index, Diabetologia, vol.44, issue.1, pp.40-47, 2001.
DOI : 10.1007/s001250051578

P. Jeffrey, . Krischer, D. David, C. Cuthbertson, and . Greenbaum, Male sex increases the risk of autoimmunity but not type 1 diabetes, Diabetes Care, vol.27, issue.8, pp.1985-1990, 2004.

D. Dabelea, A. Ronny, . Bell, B. Ralph, G. Jr et al., youth in the united states, pp.297-2716, 2007.

L. Christina, . Vandewalle, I. Marina, . Coeckelberghs, H. Ivo et al., Epidemiology, clinical aspects, and biology of iddm patients under age 40 years: Comparison of data from antwerp with complete ascertainment with data from belgium with 40% ascertainment. the belgian diabetes registry, Diabetes care, issue.10, pp.201556-1561, 1997.

C. Christopher, . Patterson, G. Gisela, E. Dahlquist, A. Gyürüs et al., Incidence trends for childhood type 1 diabetes in europe during 1989?2003 and predicted new cases 2005?20: a multicentre prospective registration study, The Lancet, issue.9680, pp.3732027-2033, 2009.

M. David, . Maahs, A. Nancy, . West, M. Jean et al., Epidemiology of type 1 diabetes. Endocrinology and metabolism clinics of North America, pp.481-497, 2010.

J. Maria, . Redondo, R. Pamela, . Fain, S. George et al., Genetics of type 1a diabetes. Recent progress in hormone research, pp.69-89, 2001.

D. Jason, D. J. Cooper, . Smyth, M. Adam, V. Smiles et al., Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci, Nature genetics, issue.12, pp.401399-1401, 2008.

M. Atkinson, J. Bluestone, . Eisenbarth, . Hebrok, . Herold et al., How Does Type 1 Diabetes Develop?: The Notion of Homicide or ??-Cell Suicide Revisited, Diabetes, vol.60, issue.5, pp.1370-1379, 2011.
DOI : 10.2337/db10-1797

D. L. , T. , and Å. Lernmark, Immunology of ?-cell destruction, The Islets of Langerhans, pp.537-583, 2010.

A. Jeffrey, K. Bluestone, G. Herold, and . Eisenbarth, Genetics, pathogenesis and clinical interventions in type 1 diabetes, Nature, issue.7293, p.4641293, 2010.

L. Steven, . Rabinowe, S. George, and . Eisenbarth, Type i diabetes mellitus: a chronic autoimmune disease? Pediatric Clinics of North America, pp.531-543, 1984.

S. Meredith, . Campbell, A. Desmond, V. Schatz, J. C. Chen et al., A contrast between children and adolescents with excellent and poor control: the t1d exchange clinic registry experience, Pediatric diabetes, vol.15, issue.2, pp.110-117, 2014.

M. Scott, D. Blackman, S. Raghinaru, . Adi, H. Jill et al., Insulin pump use in young children in the t1d exchange clinic registry is associated with lower hemoglobin a1c levels than injection therapy, Pediatric diabetes, issue.8, pp.15564-572, 2014.

R. Khardori and G. Griffing, Type 2 diabetes mellitus treatment & management, 2011.

S. Lablanche, S. Borot, and A. Wojtusciszyn,

, Five-year metabolic, functional, and safety results of patients with type 1 diabetes transplanted with allogenic islets within the swiss-french gragil network, Diabetes Care, vol.38, issue.9, pp.1714-1722, 2015.

N. Haviland, J. Walsh, R. Roberts, and T. S. Bailey, Update on Clinical Utility of Continuous Glucose Monitoring in Type 1 Diabetes. Current Diabetes Reports, pp.11892-11908

W. Roy, T. Beck, K. Riddlesworth, A. Ruedy, R. Ahmann et al., Effect of Continuous Glucose Monitoring on Glycemic Control in Adults With Type 1 Diabetes Using Insulin Injections The DIAMOND Randomized Clinical Trial, pp.371-378, 2017.

F. Aberer, M. Hajnsek, M. Rumpler, S. Zenz, M. Petra et al., Evaluation of subcutaneous glucose monitoring systems under routine environmental conditions in patients with type 1 diabetes, Diabetes, Obesity and Metabolism, vol.36, issue.5, 2017.
DOI : 10.2337/dc12-1567

J. Kropff and J. Devries, Continuous Glucose Monitoring, Future Products, and Update on Worldwide Artificial Pancreas Projects, Diabetes Technology & Therapeutics, vol.18, issue.S2, pp.2-53, 2016.
DOI : 10.1089/dia.2015.0345

E. Toschi and H. Wolpert, Utility of continuous glucose monitoring in type 1 and type 2 diabetes. Endocrinology and metabolism clinics of North America, pp.895-904, 2016.

B. Volker-lodwig, O. Kulzer, L. Schnell, and . Heinemann, Current Trends in Continuous Glucose Monitoring, Journal of Diabetes Science and Technology, vol.1, issue.2, pp.390-396, 2014.
DOI : 10.2337/dc11-1438

C. David, B. Klonoff, J. S. Buckingham, . Christiansen, M. Victor et al., Continuous glucose monitoring: an endocrine society clinical practice guideline, The Journal of Clinical Endocrinology & Metabolism, issue.10, pp.962968-2979, 2011.

P. Zimmet, C. Cowie, J. Ekoe, and J. Shaw, Classification of diabetes mellitus and other categories of glucose intolerance. International Textbook of Diabetes Mellitus, 2004.

C. Morris, M. Colm, . O-'grada, F. Miriam, . Ryan et al., Modulation of the lipidomic profile due to a lipid challenge and fitness level: a postprandial study, Lipids in Health and Disease, vol.78, issue.8, p.65, 2015.
DOI : 10.1021/ac051495j

J. Cen, E. Sargsyan, and P. Bergsten, Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondria-dependent and -independent mechanisms, Nutrition & Metabolism, vol.289, issue.1, p.59, 2016.
DOI : 10.1074/jbc.M113.531970

G. Dimitriadis, P. Mitrou, V. Lambadiari, E. Maratou, A. Sotirios et al., Insulin effects in muscle and adipose tissue. Diabetes research and clinical practice, pp.52-59, 2011.

W. Waldhäusl, Circadian rhythms of insulin needs and actions. Diabetes research and clinical practice, pp.17-24, 1989.

J. Anthony, . Verberne, S. Willian, A. Korim, I. J. Sabetghadam et al., Adrenaline: insights into its metabolic roles in hypoglycaemia and diabetes, British journal of pharmacology, vol.173, issue.9, pp.1425-1437, 2016.

C. Ionescu-tirgoviste, A. Paul, E. Gagniuc, L. Gubceac, I. Mardare et al., A 3D map of the islet routes throughout the healthy human pancreas, Scientific Reports, vol.71, issue.1, 2015.
DOI : 10.1117/1.3000430

J. Lang, Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion, European Journal of Biochemistry, vol.271, issue.Suppl. 1, pp.3-17, 1999.
DOI : 10.1074/jbc.271.30.18161

E. Leonid, . Fridlyand, A. David, L. Jacobson, and . Philipson, Ion channels and regulation of insulin secretion in human ?-cells: a computational systems analysis, Islets, vol.5, issue.1, pp.1-15, 2013.

E. Leonid, . Fridlyand, . Da-jacobson, . Kuznetsov, H. Louis et al., A model of action potentials and fast ca 2+ dynamics in pancreatic ?-cells, Biophysical Journal, issue.8, pp.963126-3139, 2009.

H. Meissner and H. Schmelz, Membrane potential of beta-cells in pancreatic islets, Pfl???gers Archiv European Journal of Physiology, vol.22, issue.Suppl., pp.195-206, 1974.
DOI : 10.1159/000142962

P. Rorsman, K. Bokvist, C. Ämmälä, P. Arkhammar, O. Per-olof-berggren et al., Activation by adrenaline of a low-conductance G protein-dependent K+ channel in mouse pancreatic B cells, Nature, vol.349, issue.6304, pp.34977-79, 1991.
DOI : 10.1038/349077a0

E. Jonathan, . Campbell, J. Daniel, and . Drucker, Pharmacology, physiology, and mechanisms of incretin hormone action, Cell metabolism, vol.17, issue.6, pp.819-837, 2013.

A. Guy, T. J. Rutter, . Pullen, J. David, A. Hodson et al., Pancreatic ?-cell identity, glucose sensing and the control of insulin secretion, Biochemical Journal, vol.466, issue.2, pp.203-218, 2015.

Y. Palti, E. Galia-ben-david, . Lachov, H. Yuval, G. Mika et al., Islets of Langerhans Generate Wavelike Electric Activity Modulated by Glucose Concentration, Diabetes, vol.45, issue.5, pp.595-601, 1996.
DOI : 10.2337/diab.45.5.595

F. Lebreton, A. Pirog, I. Belouah, D. Bosco, T. Berney et al., Slow potentials encode intercellular coupling and insulin demand in pancreatic beta cells, Diabetologia, vol.7, issue.Suppl 1, pp.1291-1299, 2015.
DOI : 10.1177/193229681300700528

URL : https://hal.archives-ouvertes.fr/hal-01347716

L. Alan, . Hodgkin, F. Andrew, and . Huxley, Propagation of electrical signals along giant nerve fibres, Proceedings of the Royal Society of London. Series B, Biological Sciences, pp.177-183, 1952.

E. Neher and B. Sakmann, Single-channel currents recorded from membrane of denervated frog muscle fibres, Nature, vol.253, issue.5554, pp.799-802, 1976.
DOI : 10.1113/jphysiol.1973.sp010213

P. Owen, . Hamill, E. Marty, B. Neher, F. Sakmann et al., Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers Archiv European journal of physiology, vol.391, issue.2, pp.85-100, 1981.

L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom et al., Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks, Lab on a Chip, vol.3, issue.18, pp.2644-2651, 2009.
DOI : 10.1002/acs.1077

A. Maccione, M. Garofalo, T. Nieus, M. Tedesco, L. Berdondini et al., Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS Micro Electrode Arrays, Journal of Neuroscience Methods, vol.207, issue.2, pp.161-171, 2012.
DOI : 10.1016/j.jneumeth.2012.04.002

C. Hassler, T. Boretius, and T. Stieglitz, Polymers for neural implants, Journal of Polymer Science Part B: Polymer Physics, vol.5, issue.10, pp.18-33, 2011.
DOI : 10.1287/orsc.5.3.344

R. Kim, S. Joo, H. Jung, N. Hong, and Y. Nam, Recent trends in microelectrode array technology for in vitro neural interface platform, Biomedical Engineering Letters, vol.79, issue.7, pp.129-141, 2014.
DOI : 10.1007/s00339-004-2991-5

X. Cui, A. Valerie, Y. Lee, . Raphael, A. James et al., Surface modification of neural recording electrodes with conducting polymer/biomolecule blends, Journal of Biomedical Materials Research, vol.453, issue.2, pp.261-272, 2001.
DOI : 10.1016/S0022-0728(98)00246-0

W. Franks, I. Schenker, P. Schmutz, and A. Hierlemann, Impedance Characterization and Modeling of Electrodes for Biomedical Applications, IEEE Transactions on Biomedical Engineering, vol.52, issue.7, pp.1295-1302, 2005.
DOI : 10.1109/TBME.2005.847523

A. Kip, . Ludwig, D. Jeffrey, J. Uram, . Yang et al., Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly (3, 4-ethylenedioxythiophene)(pedot) film, Journal of neural engineering, vol.3, issue.1, p.59, 2006.

W. Edward, . Keefer, R. Barry, . Botterman, I. Mario et al., Carbon nanotube coating improves neuronal recordings, Nature nanotechnology, vol.3, issue.7, pp.434-439, 2008.

V. Viswam, D. Jäckel, M. B. Müller, M. Radivojevic, U. Frey et al., An automated method for characterizing electrode properties of high-density microelectrode arrays, Proceedings MEA Meeting 2014: 9th International Meeting on Substrate-Integrated Microelectrode Arrays NMI Natural and Medical Sciences Institute at the University of Tuebingen, pp.302-303, 2014.

Y. Nam, C. Bruce, and . Wheeler, In vitro microelectrode array technology and neural recordings, Critical Reviews TM in Biomedical Engineering, vol.39, issue.1, 2011.

M. Engelene, J. Obien, K. Deligkaris, T. Bullmann, J. Douglas et al., Revealing neuronal function through microelectrode array recordings, Frontiers in neuroscience, vol.8, p.423, 2015.

L. Paul, R. Nunez, and . Srinivasan, Electric fields of the brain: the neurophysics of EEG, 2006.

P. Fromherz, Semiconductor chips with ion channels, nerve cells and brain. Physica E: low-dimensional systems and nanostructures, pp.24-34, 2003.

P. Mehrotra, Biosensors and their applications ??? A review, Journal of Oral Biology and Craniofacial Research, vol.6, issue.2, pp.153-159, 2016.
DOI : 10.1016/j.jobcr.2015.12.002

J. Pancrazio, . Whelan, . Da-borkholder, D. Ma, and . Stenger, Development and Application of Cell-Based Biosensors, Annals of Biomedical Engineering, vol.27, issue.6, pp.697-711, 1999.
DOI : 10.1114/1.225

C. Ziegler, Cell-based biosensors. Fresenius' journal of analytical chemistry, pp.552-559, 2000.

C. Corcoran and G. Rechnitz, Cell-based biosensors, Trends in Biotechnology, vol.3, issue.4, pp.92-96, 1985.
DOI : 10.1016/0167-7799(85)90091-5

S. Craig, M. Nunemaker, . Zhang, H. David, . Wasserman et al., Individual mice can be distinguished by the period of their islet calcium oscillations, Diabetes, issue.12, pp.543517-3522, 2005.

D. Song, H. Rosa, . Chan, Z. Vasilis, . Marmarelis et al., Nonlinear modeling of neural population dynamics for hippocampal prostheses, Neural Networks, vol.22, issue.9, pp.1340-1351, 2009.
DOI : 10.1016/j.neunet.2009.05.004

A. Zbrzeski, Y. Bornat, B. Hillen, R. Siu, J. Abbas et al., Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation, Frontiers in Neuroscience, vol.164, issue.206
DOI : 10.1109/ner.2015.7146742

URL : https://hal.archives-ouvertes.fr/hal-01347466

S. Buccelli, J. Tessadori, Y. Bornat, V. Pasquale, M. Ambroise et al., Paolo Massobrio, and Michela Chiappalone. Connecting biological and artificial neural networks

A. Bruzzone, V. Pasquale, P. Nowak, J. Tessadori, P. Massobrio et al., Interfacing in silico and in vitro neuronal networks Capteur pour la mesure de l'activite des cellules .beta.-pancreatiques ou des ilots de langerhans, fabrication et utilisation d, 37th Annual International Conference of the IEEE, pp.3391-3394787302, 2011.

A. Quotb, Y. Bornat, and S. Renaud, Wavelet Transform for Real-Time Detection of Action Potentials in Neural Signals, Frontiers in Neuroengineering, vol.4, 2011.
DOI : 10.3389/fneng.2011.00007

URL : https://hal.archives-ouvertes.fr/hal-00609083

C. Ricordi, W. Derek, . Gray, J. Bernhard, . Hering et al., Islet isolation assessment in man and large animals, Acta Diabetologica Latina, vol.164, issue.Suppl. 1, pp.185-195, 1990.
DOI : 10.2337/diab.29.1.S74

M. Van-der-burg, . Scheringa, E. Basir, and . Bouwman, Assessment of isolated islet equivalents, Transplantation proceedings, pp.1971-1973, 1997.
DOI : 10.1016/S0041-1345(97)00188-7

K. Ramachandran, H. Huang, and L. Stehno, A Simple Method to Replace Islet Equivalents for Volume Quantification of Human Islets, Cell Transplantation, vol.44, issue.11, pp.1183-1194, 2015.
DOI : 10.1016/j.tice.2012.05.001

P. Girman, Z. Berkova, E. Dobolilova, and F. Saudek, How to use image analysis for islet counting. The review of diabetic studies: RDS, p.38, 2008.

J. Müller, D. J. Bakkum, and A. Hierlemann, Sub-millisecond closed-loop feedback stimulation between arbitrary sets of individual neurons, Frontiers in Neural Circuits, vol.6, issue.121, p.2013
DOI : 10.3389/fncir.2012.00121

, A versatile electrode sorting module for meas: implementation in a fpga-based real-time system, Biomedical Circuits and Systems Conference, p.2017, 2007.

P. Bonifazi, F. Difato, P. Massobrio, L. Gian, V. Breschi et al., In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses, Frontiers in Neural Circuits, vol.7, 2013.
DOI : 10.3389/fncir.2013.00040

URL : https://hal.archives-ouvertes.fr/hal-00956625

A. Zbrzeski, R. Siu, Y. Bornat, R. Hillen, S. Jung et al., A versatile fast-development platform applied to closed-loop diaphragmatic pacing, 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), pp.22-24, 2015.
DOI : 10.1109/NER.2015.7146742

URL : https://hal.archives-ouvertes.fr/hal-01347976

S. Joucla, M. Ambroise, T. Levi, T. Lafon, P. Chauvet et al., Generation of locomotor-like activity in the isolated rat spinal cord by electrical microstimulations driven by an artificial CPG, IEEE Neural Engineering Short Papers, issue.0079, p.5218, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00966012

J. P. Newman, R. Zeller-townson, M. Fong, S. A. Desai, R. E. Gross et al., Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform, Frontiers in Neural Circuits, vol.6, issue.98, p.2013
DOI : 10.3389/fncir.2012.00098

K. Imfeld, S. Neukom, A. Maccione, Y. Bornat, S. Martinoia et al., Large-Scale, High-Resolution Data Acquisition System for Extracellular Recording of Electrophysiological Activity, IEEE Transactions on Biomedical Engineering, vol.55, issue.8, pp.2064-2073
DOI : 10.1109/TBME.2008.919139

URL : https://hal.archives-ouvertes.fr/hal-00319351

M. S-fee, D. Mitra, and . Kleinfeld, Variability of extracellular spike waveforms of cortical neurons, Journal of Neurophysiology, vol.76, issue.6, pp.3823-3856, 1996.
DOI : 10.1152/jn.1996.76.6.3823

K. Guillory and R. A. Normann, A 100-channel system for real time detection and storage of extracellular spike waveforms, Journal of Neuroscience Methods, vol.91, issue.1-2, pp.21-29, 1999.
DOI : 10.1016/S0165-0270(99)00076-X

R. R. Harrison, A low-power integrated circuit for adaptive detection of action potentials in noisy signals, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439), pp.3325-3328, 2003.
DOI : 10.1109/IEMBS.2003.1280856

F. Rummens, S. Ygorra, C. M. Hol, S. Boussamba, N. Renaud et al., Theoretical study and optimisation of a standard deviation estimator circuit for adaptive threshold spike detection, International Journal of Circuit Theory and Applications, vol.42, issue.9
DOI : 10.1002/cta.1898

URL : https://hal.archives-ouvertes.fr/hal-01347474

T. Burdyga and S. Wray, Action potential refractory period in ureter smooth muscle is set by Ca sparks and BK channels, Nature, vol.435, issue.7050, pp.559-562, 2005.
DOI : 10.1007/s004240050499

E. Pedraza, A. Karaji?, M. Raoux, R. Perrier, A. Pirog et al., Guiding pancreatic beta cells to target electrodes in a whole-cell biosensor for diabetes, Lab on a Chip, vol.90, issue.19, pp.153880-3890, 2015.
DOI : 10.1038/labinvest.2010.124

URL : https://hal.archives-ouvertes.fr/hal-01347681

E. Micha, A. Spira, and . Hai, Multi-electrode array technologies for neuroscience and cardiology, Nature nanotechnology, vol.8, issue.2, pp.83-94, 2013.

R. Biran, C. David, . Martin, A. Patrick, and . Tresco, Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays, Experimental Neurology, vol.195, issue.1, pp.115-126, 2005.
DOI : 10.1016/j.expneurol.2005.04.020

F. Kölbl, Design of electrical adaptive stimulators for different pathological contexts: a global approach, 2014.

J. Friend and L. Yeo, Fabrication of microfluidic devices using polydimethylsiloxane, Biomicrofluidics, vol.4, issue.2, 20697575.
DOI : 10.1063/1.3259624.1

D. Takashi, K. Kozai, Z. Catt, K. Du, O. Na et al., Chronic in vivo evaluation of pedot/cnt for stable neural recordings, IEEE Transactions on Biomedical Engineering, vol.63, issue.1, pp.111-119, 2016.

X. Cui, C. David, and . Martin, Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays, Sensors and Actuators B: Chemical, vol.89, issue.1-2, pp.92-102, 2003.
DOI : 10.1016/S0925-4005(02)00448-3

A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro et al., Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits, Journal of Neuroscience, vol.27, issue.26, pp.6931-6936, 2007.
DOI : 10.1523/JNEUROSCI.1051-07.2007

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane et al., Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts, Nature Nanotechnology, vol.26, issue.2, pp.126-133, 2009.
DOI : 10.1113/jphysiol.1995.sp020708

K. Fuchsberger, A. L. Goff, L. Gambazzi, F. M. Toma, A. Goldoni et al., Multiwalled Carbon-Nanotube-Functionalized Microelectrode Arrays Fabricated by Microcontact Printing: Platform for Studying Chemical and Electrical Neuronal Signaling, Small, vol.110, issue.4, pp.524-530, 2011.
DOI : 10.1016/S0165-0270(01)00412-5

A. Pasquarelli, Y. Carabelli, . Xu, . Gao, . Marcantoni et al., Diamond microelectrodes for amperometric detection of secretory cells activity, World Congress on Medical Physics and Biomedical Engineering, pp.208-211, 2009.
DOI : 10.1007/978-3-642-03887-7_58

A. Dimitrios, R. Koutsouras, A. V. Perrier, A. Marquez, E. Pirog et al., Simultaneous monitoring of single cell and of micro-organ activity by pedot: Pss covered multi-electrode arrays, Materials Science and Engineering: C, vol.81, pp.84-89, 2017.

Q. Vinh-nguyen, A. Caro, M. Raoux, A. Quotb, J. Baptiste-floderer et al., A novel bioelectronic glucose sensor to process distinct electrical activities of pancreatic beta-cells, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.172-175, 2013.
DOI : 10.1109/EMBC.2013.6609465

P. Bucher, Z. Mathe, P. Morel, D. Bosco, A. Andres et al., Assessment of a Novel Two-Component Enzyme Preparation for Human Islet Isolation and Transplantation, Transplantation, vol.79, issue.1, pp.91-97, 2005.
DOI : 10.1097/01.TP.0000147344.73915.C8

S. Lablanche, S. David-tchouda, S. Borot, A. Wojtusciszyn, J. Margier et al., A randomized, prospective, medico-economic nationwide french study of islet transplantation in patients with type 1 brittle diabetes: The stabilot study protocol, Transplant International, vol.28, p.469, 2015.

S. Schreiber, J. Fellous, . Whitmer, T. J. Tiesinga, and . Sejnowski, A new correlation-based measure of spike timing reliability, Neurocomputing, vol.52, issue.54, pp.925-931, 2003.
DOI : 10.1016/S0925-2312(02)00838-X

T. R. , C. , and J. Keizer, Minimal model for membrane oscillations in the pancreatic beta-cell, Biophysical journal, vol.42, issue.2, pp.181-189, 1983.

P. Rorsman, The pancreatic beta-cell as a fuel sensor: an electrophysiologist's viewpoint, Diabetologia, vol.40, issue.5, pp.487-495, 1997.
DOI : 10.1007/s001250050706

I. Atwater, . Dawson, . Scott, E. Eddlestone, and . Rojas, The nature of the oscillatory behaviour in electrical activity from pancreatic beta-cell. Hormone and metabolic research. Supplement series, pp.100-107, 1980.

I. Atwater, E. Ribalet, and . Rojas, Cyclic changes in potential and resistance of the beta-cell membrane induced by glucose in islets of Langerhans from mouse., The Journal of Physiology, vol.278, issue.1, pp.117-139, 1978.
DOI : 10.1113/jphysiol.1978.sp012296

. Daniel-porte-jr, A receptor mechanism for the inhibition of insulin release by epinephrine in man, Journal of Clinical Investigation, vol.46, issue.1, p.86, 1967.

Y. Marinis, A. Salehi, C. E. Ward, Q. Zhang, F. Abdulkader et al., Glp-1 inhibits and adrenaline stimulates glucagon release by differential modulation of n-and l-type ca 2+ channel-dependent exocytosis, Cell metabolism, issue.6, pp.11543-553, 2010.

S. Craig, . Nunemaker, H. David, . Wasserman, P. Owen et al., Insulin secretion in the conscious mouse is biphasic and pulsatile, American Journal of Physiology-Endocrinology and Metabolism, vol.290, issue.3, pp.523-529, 2006.

J. Henquin, D. Dufrane, J. Kerr-conte, and M. Nenquin, Dynamics of glucose-induced insulin secretion in normal human islets, American Journal of Physiology-Endocrinology and Metabolism, vol.236, issue.7, pp.640-650, 2015.
DOI : 10.1016/S0140-6736(08)60762-X

M. Gram-pedersen, G. Cortese, and L. Eliasson, Mathematical modeling and statistical analysis of calcium-regulated insulin granule exocytosis in ??-cells from mice and humans, Progress in biophysics and molecular biology, pp.257-264, 2011.
DOI : 10.1016/j.pbiomolbio.2011.07.012

P. Rorsman, L. Eliasson, E. Renström, J. Gromada, S. Barg et al., The Cell Physiology of Biphasic Insulin Secretion, Physiology, vol.15, issue.2, pp.72-77, 2000.
DOI : 10.2337/diab.42.10.1446

. Am-albisser, . Bs-leibel, . Ewart, C. Davidovac, W. Botz et al., An Artificial Endocrine Pancreas, Diabetes, vol.23, issue.5, pp.389-396, 1974.
DOI : 10.2337/diab.23.5.389

A. Cinar, Multivariable Adaptive Artificial Pancreas System in Type 1 Diabetes, Current Diabetes Reports, vol.71, issue.10, p.88, 2017.
DOI : 10.1016/j.automatica.2016.04.015

I. Ajmera, M. Swat, C. Laibe, N. L. Novere, and V. Chelliah, The impact of mathematical modeling on the understanding of diabetes and related complications. CPT: pharmacometrics & systems pharmacology, pp.1-14, 2013.

W. Victor and . Bolie, Coefficients of normal blood glucose regulation, Journal of Applied Physiology, vol.16, issue.5, pp.783-788, 1961.

N. Richard, . Bergman, S. Lawrence, C. Phillips, and . Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose, Journal of clinical investigation, issue.6, p.681456, 1981.

N. Richard, . Bergman, . Ziya-ider, R. Charles, C. Bowden et al., Quantitative estimation of insulin sensitivity, American Journal of Physiology-Endocrinology And Metabolism, vol.236, issue.6, p.667, 1979.

C. Cobelli, C. Dalla-man, G. Sparacino, L. Magni, G. D. Nicolao et al., Diabetes: Models, Signals, and Control, IEEE Reviews in Biomedical Engineering, vol.2, pp.54-96, 2009.
DOI : 10.1109/RBME.2009.2036073

A. De, G. , and O. Arino, Mathematical modelling of the intravenous glucose tolerance test, Journal of mathematical biology, vol.40, issue.2, pp.136-168, 2000.

E. Hanna, . Silber, M. Petra, N. Jauslin, R. Frey et al., An integrated model for glucose and insulin regulation in healthy volunteers and type 2 diabetic patients following intravenous glucose provocations, The Journal of Clinical Pharmacology, issue.9, pp.471159-1171, 2007.

B. Cornelia, . Landersdorfer, J. William, and . Jusko, Pharmacokinetic/pharmacodynamic modelling in diabetes mellitus, Clinical pharmacokinetics, vol.47, issue.7, pp.417-448, 2008.

A. Mari, Mathematical modeling in glucose metabolism and insulin secretion. Current Opinion in Clinical Nutrition & Metabolic Care, pp.495-501, 2002.

M. Tara, . Wallace, C. Jonathan, D. R. Levy, L. Matthews et al., Use and abuse of homa modeling Quantification of beta-cell function during ivgtt in type ii and non-diabetic subjects: assessment of insulin secretion by mathematical methods, Diabetes care Diabetologia, vol.27125, issue.610, pp.1487-1495, 2001.

R. Philip-eaton, . Rc-allen, . Ds-schade, J. Erickson, and . Standefer, Prehepatic Insulin Production in Man: Kinetic Analysis Using Peripheral Connecting Peptide Behavior*, The Journal of Clinical Endocrinology & Metabolism, vol.51, issue.3, pp.520-528, 1980.
DOI : 10.1210/jcem-51-3-520

M. Gram-pedersen, M. Gianna, C. Toffolo, and . Cobelli, Cellular modeling: insight into oral minimal models of insulin secretion, American Journal of Physiology-Endocrinology and Metabolism, vol.280, issue.3, pp.597-601, 2010.
DOI : 10.1074/jbc.M202291200

M. Huang, J. Li, X. Song, and H. Guo, Modeling Impulsive Injections of Insulin: Towards Artificial Pancreas, SIAM Journal on Applied Mathematics, vol.72, issue.5, pp.1524-1548, 2012.
DOI : 10.1137/110860306

G. Nucci and C. Cobelli, Models of subcutaneous insulin kinetics. a critical review Computer methods and programs in biomedicine, pp.249-257, 2000.

J. Li, D. James, and . Johnson, Mathematical models of subcutaneous injection of insulin analogues: a mini-review. Discrete and continuous dynamical systems, Series B, vol.12, issue.2, p.401, 2009.

G. Naviyn-prabhu-balakrishnan, L. Pandu-rangaiah, and . Samavedham, Review and Analysis of Blood Glucose (BG) Models for Type 1 Diabetic Patients, Industrial & Engineering Chemistry Research, vol.50, issue.21, pp.12041-12066, 2011.
DOI : 10.1021/ie2004779

R. Hovorka, V. Canonico, J. Ludovic, U. Chassin, M. Haueter et al., Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes, Physiological Measurement, vol.25, issue.4, p.905, 2004.
DOI : 10.1088/0967-3334/25/4/010

. Chiara-dalla-man, A. Robert, C. Rizza, and . Cobelli, Meal Simulation Model of the Glucose-Insulin System, IEEE Transactions on Biomedical Engineering, vol.54, issue.10, pp.1740-1749, 2007.
DOI : 10.1109/TBME.2007.893506

J. Sorensen, A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes, 1985.

J. Tiran, R. Kurt, D. Galle, and . Porte, A simulation model of extracellular glucose distribution in the human body, Annals of Biomedical Engineering, vol.19, issue.1, pp.34-46, 1975.
DOI : 10.1007/BF02584487

R. John, . Guyton, O. Richard, . Foster, . Stuart-soeldner et al., A model of glucose-insulin homeostasis in man that incorporates the heterogeneous fast pool theory of pancreatic insulin release, Diabetes, issue.10, pp.271027-1042, 1978.

P. Toghaw, A. Matone, Y. Lenbury, and A. D. Gaetano, Bariatric surgery and T2DM improvement mechanisms: a mathematical model, Theoretical Biology and Medical Modelling, vol.9, issue.1, p.16, 2012.
DOI : 10.1016/j.cmet.2011.03.021

M. Gerold, . Grodsky, H. Curry, L. Landahl, and . Bennett, Further studies on the dynamic aspects of insulin release in vitro with evidence for a two-compartmental storage system, Acta diabetologica latina, vol.6, pp.554-578, 1969.

M. Gerold and . Grodsky, A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling, Journal of Clinical Investigation, vol.51, issue.8, p.2047, 1972.

J. Sturis, S. Kenneth, E. Polonsky, E. Mosekilde, and . Van-cauter, Computer model for mechanisms underlying ultradian oscillations of insulin and glucose, American Journal of Physiology-Endocrinology and Metabolism, vol.260, issue.5, pp.801-809, 1991.
DOI : 10.1152/ajpendo.1991.260.5.E801

I. Marija-toli?, E. Mosekilde, and J. Sturis, Modeling the Insulin???Glucose Feedback System: The Significance of Pulsatile Insulin Secretion, Journal of Theoretical Biology, vol.207, issue.3, pp.361-375, 2000.
DOI : 10.1006/jtbi.2000.2180

R. Srinivasan, H. Arnold, R. Kadish, and . Sridhar, A mathematical model for the control mechanism of free fatty acid-glucose metabolism in normal humans, Computers and Biomedical Research, vol.3, issue.2, pp.146-165, 1970.
DOI : 10.1016/0010-4809(70)90021-2

C. Cobelli and A. Ruggeri, Evaluation of alternative model structures of metabolic systems: two case studies on model identification and validation, Medical & Biological Engineering & Computing, vol.6, issue.4, pp.444-450, 1982.
DOI : 10.1139/y79-191

C. Cobelli and A. Mari, Validation of mathematical models of complex endocrine-metabolic systems. A case study on a model of glucose regulation, Medical & Biological Engineering & Computing, vol.53, issue.4, pp.390-399, 1983.
DOI : 10.1007/BF02442625

E. Lehmann and T. Deutsch, A physiological model of glucose-insulin interaction in type 1 diabetes mellitus, Journal of Biomedical Engineering, vol.14, issue.3, pp.235-242, 1992.
DOI : 10.1016/0141-5425(92)90058-S

J. J. Steen-andreassen, R. Benn, . Hovorka, G. Kristian, . Olesen et al., A probabilistic approach to glucose prediction and insulin dose adjustment: description of metabolic model and pilot evaluation study. Computer methods and programs in biomedicine, pp.41-44, 1994.

. Chiara-dalla-man, M. Davide, . Raimondo, A. Robert, C. Rizza et al., GIM, Simulation Software of Meal Glucose???Insulin Model, Journal of Diabetes Science and Technology, vol.1, issue.3, 2007.
DOI : 10.1089/dia.2005.7.28

C. Cobelli, E. Renard, and B. Kovatchev, Artificial Pancreas: Past, Present, Future, Diabetes, vol.60, issue.11, pp.2672-2682, 2011.
DOI : 10.2337/db11-0654

E. Campos-náñez, J. E. Layne, C. Howard, and . Zisser, In Silico Modeling of Minimal Effective Insulin Doses Using the UVA/PADOVA Type 1 Diabetes Simulator, Journal of Diabetes Science and Technology, vol.12, issue.2, p.1932296817735341, 2017.
DOI : 10.1177/1932296813514502

D. Marc, R. Breton, E. Hinzmann, S. Campos-nañez, M. Riddle et al., Analysis of the accuracy and performance of a continuous glucose monitoring sensor prototype: An in-silico study using the uva/padova type 1 diabetes simulator, Journal of Diabetes Science and Technology, vol.11, issue.3, pp.545-552, 2017.

E. Campos-náñez, K. Fortwaengler, D. Marc, and . Breton, Clinical Impact of Blood Glucose Monitoring Accuracy: An In-Silico Study, Journal of Diabetes Science and Technology, vol.47, issue.2, p.1932296817710474, 2017.
DOI : 10.1177/1932296816644468

J. Xie and Q. Wang, A Variable State Dimension Approach to Meal Detection and Meal Size Estimation: In Silico Evaluation Through Basal-Bolus Insulin Therapy for Type 1 Diabetes, IEEE Transactions on Biomedical Engineering, vol.64, issue.6, 2017.
DOI : 10.1109/TBME.2016.2599073

M. Viceconti, C. Cobelli, T. Haddad, A. Himes, B. Kovatchev et al., In silico assessment of biomedical products: The conundrum of rare but not so rare events in two case studies, Proceedings of the Institution of Mechanical Engineers, pp.455-466, 2017.
DOI : 10.1080/10543406.2017.1300907

C. Toffanin, R. Visentin, M. Messori, F. D. Palma, L. Magni et al., Toward a Run-to-Run Adaptive Artificial Pancreas: In Silico Results, IEEE Transactions on Biomedical Engineering, vol.65, issue.3, 2017.
DOI : 10.1109/TBME.2017.2652062

R. Visentin, C. Giegerich, R. Jäger, R. Dahmen, A. Boss et al., Improving Efficacy of Inhaled Technosphere Insulin (Afrezza) by Postmeal Dosing: In-silico Clinical Trial with the University of Virginia/Padova Type 1 Diabetes Simulator, Diabetes Technology & Therapeutics, vol.18, issue.9, pp.574-585, 2016.
DOI : 10.1089/dia.2016.0128

S. Zavitsanou, A. Mantalaris, C. Michael, . Georgiadis, N. Efstratios et al., <italic>In Silico</italic> Closed-Loop Control Validation Studies for Optimal Insulin Delivery in Type 1 Diabetes, IEEE Transactions on Biomedical Engineering, vol.62, issue.10, pp.622369-2378, 2015.
DOI : 10.1109/TBME.2015.2427991

D. Stephen, . Patek, M. Wayne-bequette, . Breton, A. Bruce et al., In silico preclinical trials: methodology and engineering guide to closed-loop control in type 1 diabetes mellitus, Journal of diabetes science and technology, vol.3, issue.2, pp.269-282, 2009.

M. Chiara-dalla-man, C. Camilleri, and . Cobelli, A system model of oral glucose absorption: validation on gold standard data, IEEE Transactions on Biomedical Engineering, vol.53, issue.12, pp.2472-2478, 2006.

E. Carson and C. Cobelli, Modelling methodology for physiology and medicine. chapter 11, 2013.

F. Chiara-dalla-man, D. Micheletto, M. Lv, B. Breton, C. Kovatchev et al., The uva/padova type 1 diabetes simulator: new features, Journal of diabetes science and technology, vol.8, issue.1, pp.26-34, 2014.

I. Stamper and X. Wang, Mathematical modeling of insulin secretion and the role of glucose-dependent mobilization, docking, priming and fusion of insulin granules, Journal of Theoretical Biology, vol.318, pp.210-225, 2013.
DOI : 10.1016/j.jtbi.2012.11.002

A. Vivian and H. , The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves, J Physiol (Lond), vol.40, pp.4-7, 1910.

D. James and . Murray, Mathematical biology. i, 2002.

F. Preisach, Über die magnetische nachwirkung Zeitschrift für Physik A Hadrons and Nuclei, pp.277-302, 1935.

R. Nesher and E. Cerasi, Modeling phasic insulin release, Diabetes, issue.1, pp.51-53, 2002.

M. Gram-pedersen, A. Corradin, M. Gianna, C. Toffolo, and . Cobelli, A subcellular model of glucose-stimulated pancreatic insulin secretion, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.124, issue.6, pp.3525-3543, 1880.
DOI : 10.1085/jgp.200409081

P. Lonnroth, P. Jansson, and U. Smith, A microdialysis method allowing characterization of intercellular water space in humans, American Journal of Physiology-Endocrinology and Metabolism, vol.253, issue.2, pp.228-231, 1987.
DOI : 10.1016/B978-0-08-027391-4.50025-3

E. Cengiz, V. William, and . Tamborlane, A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring, Diabetes Technology & Therapeutics, vol.11, issue.S1, 2009.
DOI : 10.1089/dia.2009.0002

J. Philip, N. Stout, . Peled, J. Brian, . Erickson et al., Comparison of glucose levels in dermal interstitial fluid and finger capillary blood, Diabetes technology & therapeutics, vol.3, issue.1, pp.81-90, 2001.

K. Rebrin, M. Garry, . Steil, P. William, J. J. Van-antwerp et al., Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring, American Journal of Physiology-Endocrinology and Metabolism, vol.276, issue.39, pp.561-571, 1999.
DOI : 10.2337/diacare.5.3.162

K. Rebrin, M. Garry, and . Steil, Can interstitial glucose assessment replace blood glucose measurements? Diabetes technology & therapeutics, pp.461-472, 2000.

G. Steil, . Rebrin, . Hariri, . Jinagonda, . Tadros et al., Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia, Diabetologia, vol.95, issue.9, pp.1833-1840, 2005.
DOI : 10.1042/cs0820615

L. Heinemann, B. Douglas, and . Muchmore, Ultrafast-Acting Insulins: State of the Art, Journal of Diabetes Science and Technology, vol.26, issue.6, 2012.
DOI : 10.1177/193229680900300447

J. Pickup and H. Keen, Continuous Subcutaneous Insulin Infusion at 25 Years: Evidence base for the expanding use of insulin pump therapy in type 1 diabetes, Diabetes Care, vol.25, issue.3, pp.593-598, 2002.
DOI : 10.2337/diacare.25.3.593

B. Wayne-bequette, A Critical Assessment of Algorithms and Challenges in the Development of a Closed-Loop Artificial Pancreas, Diabetes Technology & Therapeutics, vol.7, issue.1, pp.28-47, 2005.
DOI : 10.1089/dia.2005.7.28

J. Jaremko and O. Rorstad, Advances Toward the Implantable Artificial Pancreas for Treatment of Diabetes, Diabetes Care, vol.21, issue.3, pp.444-450, 1998.
DOI : 10.2337/diacare.21.3.444

J. Francis, . Doyle, M. Lauren, J. B. Huyett, . Lee et al., Closed-loop artificial pancreas systems: engineering the algorithms, Diabetes care, vol.37, issue.5, pp.1191-1197, 2014.

P. Soru, G. D. Nicolao, C. Toffanin, C. Dalla-man, C. Cobelli et al., MPC based Artificial Pancreas: Strategies for individualization and meal compensation, Annual Reviews in Control, vol.36, issue.1, pp.118-128, 2012.
DOI : 10.1016/j.arcontrol.2012.03.009

L. William, S. Clarke, M. Anderson, S. Breton, L. Patek et al., Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: the virginia experience, 2009.

H. Lee, A. Bruce, . Buckingham, M. Darrell, W. Wilson et al., A closedloop artificial pancreas using model predictive control and a sliding meal size estimator, 2009.

K. Heinz, K. , and T. Yoneyama, A robust controller for insulin pumps based on h-infinity theory, IEEE Transactions on Biomedical Engineering, vol.40, issue.11, pp.1133-1137, 1993.

M. Ibbini and M. Masadeh, A fuzzy logic based closed-loop control system for blood glucose level regulation in diabetics, Journal of Medical Engineering & Technology, vol.38, issue.1, pp.64-69, 2005.
DOI : 10.1109/10.68209

A. Zolghadri, M. Monsion, D. Henry, C. Marchionini, and O. Petrique, Development of an operational model-based warning system for tropospheric ozone concentrations in Bordeaux, France, Environmental Modelling & Software, vol.19, issue.4, pp.369-382, 2004.
DOI : 10.1016/S1364-8152(03)00136-1

URL : https://hal.archives-ouvertes.fr/hal-00164895

X. Paez, C. Mazzei-davila, and L. Shichiri, Subcutaneous microdialysis: a simple technique for monitoring the extracellular biochemical environment. combination with capillary electrophoresis and laser-induced fluorescence detection Development of a miniaturized glucose monitoring system by combining a needle-type glucose sensor with microdialysis sampling method: long-term subcutaneous tissue glucose monitoring in ambulatory diabetic patients, Investigacion clinica Diabetes care, vol.44185, issue.175, pp.227-239387, 1994.

F. Chiara-dalla-man, A. Micheletto, . Sathananthan, A. Robert, A. Rizza et al., A model of GLP-1 action on insulin secretion in nondiabetic subjects, American Journal of Physiology-Endocrinology and Metabolism, vol.280, issue.6, pp.1115-1121, 2010.
DOI : 10.1016/S0140-6736(02)07952-7

G. Smushkin, M. Sathananthan, A. Sathananthan, C. Dalla-man, F. Micheletto et al., Diabetesassociated common genetic variation and its association with glp-1 concentrations and response to exogenous glp-1, Diabetes, issue.5, pp.611082-1089, 2012.

A. Sathananthan, C. Dalla-man, F. Micheletto, A. R. Zinsmeister, M. Camilleri et al., Common Genetic Variation in GLP1R and Insulin Secretion in Response to Exogenous GLP-1 in Nondiabetic Subjects: A pilot study, Diabetes Care, vol.33, issue.9, pp.2074-2076, 2010.
DOI : 10.2337/dc10-0200

P. Loskill, G. Sivan, A. Marcus, W. M. Mathur, K. E. Reese et al., µorgano: A lego R -like plug & play system for modular multi-organ-chips, PloS one, issue.10, pp.10-0139587, 2015.

U. Johan, . Lind, A. Travis, . Busbee, D. Alexander et al., Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing, Nature materials, vol.16, issue.3, pp.303-308, 2017.

E. Ruiz-velázquez, R. Femat, and D. Campos-delgado, Blood glucose control for type I diabetes mellitus: A robust tracking H??? problem, Control Engineering Practice, vol.12, issue.9, pp.1179-1195, 2004.
DOI : 10.1016/j.conengprac.2003.12.004

L. Kovács, B. Benyó, J. Bokor, and Z. Benyó, Induced L2-norm minimization of glucose???insulin system for Type I diabetic patients, Computer Methods and Programs in Biomedicine, vol.102, issue.2, pp.105-118, 2011.
DOI : 10.1016/j.cmpb.2010.06.019

R. Jessica, . Castle, M. Julia, J. Engle, . El-youssef et al., Novel use of glucagon in a closed-loop system for prevention of hypoglycemia in type 1 diabetes, Diabetes Care, vol.33, issue.6, pp.1282-1287, 2010.

Z. Shen, M. Nishimura, Y. Tsuura, S. Fujimoto, E. Mukai et al., Distinct effect of diazoxide on insulin secretion stimulated by protein kinase a and protein kinase c in rat pancreatic islets. Diabetes research and clinical practice, pp.9-16, 2001.

P. Mariot, P. Gilon, M. Nenquin, and J. Henquin, Tolbutamide and diazoxide influence insulin secretion by changing the concentration but not the action of cytoplasmic Ca2+ in beta-cells, Diabetes, vol.47, issue.3, pp.47365-373, 1998.
DOI : 10.2337/diabetes.47.3.365

F. Catrin, D. Williams, J. Lloyd, A. Lees, . Pirog et al., What the deep sea can tell us about microwaves, Microwave Symposium (IMS), 2016 IEEE MTT-S International, pp.1-4, 2016.

F. Catrin, . Williams, M. Gilles, A. Geroni, D. Pirog et al., Jonathan Lees, and Adrian Porch. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation, Applied Physics Letters, vol.109, issue.9, p.93701, 2016.

M. Ambroise, S. Buccelli, F. Grassia, A. Pirog, Y. Bornat et al., Biomimetic neural network for modifying biological dynamics during hybrid experiments, Artificial Life and Robotics, vol.10, issue.11, pp.1-6, 2017.
DOI : 10.3389/fnins.2016.00067

URL : https://hal.archives-ouvertes.fr/hal-01567497