R. To, . D. Thesis, F. Floresyona, P. Goubard, and . Aubert, Highly Active Poly(3-hexylthiophene) Nanostructures for Photocatalysis under Solar Light

A. Mathurin, S. Dazzi, P. Ghosh, F. Beaunier, S. Brisset et al., Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation, 101 " Visible-Light-Driven Water Oxidation by Conjugated Polymer Nanostructures without the Assistance of Co-Catalyst, pp.23-32, 2015.

S. Mendes-marinho, W. Leibl, D. Floresyona, F. Goubard, and P. ,

H. Ghosh, A. Remita, and . Aukauloo,

J. Trevors, What is a Global Environmental Pollution Problem?, Water, Air, & Soil Pollution, vol.210, issue.1-4, pp.1-2, 2010.
DOI : 10.1007/s11270-010-0337-9

E. Mearns, Primary Energy in The European Union and USA Compared, Energy Matters, 2016.

, Pollution and exhaustibility of fossil fuels -ScienceDirect Available at: http://www.sciencedirect.com/science/article, p.13, 2017.

I. A. Shiklomanov, Appraisal and Assessment of World Water Resources, Water International, vol.4, issue.1, pp.11-32, 2000.
DOI : 10.1080/02508067708685757

C. N. Rao, A. Müller, and A. Cheetham, Nanomaterials ? An Introduction. in The Chemistry of Nanomaterials, pp.1-11, 2004.

S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, pp.1989-1992, 2000.
DOI : 10.1126/science.287.5460.1989

A. Eychmüller, Structure and Photophysics of Semiconductor Nanocrystals, The Journal of Physical Chemistry B, vol.104, issue.28, pp.6514-6528, 2000.
DOI : 10.1021/jp9943676

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Hybrid Nanorod-Polymer Solar Cells, Science, vol.295, issue.5564, pp.2425-2427, 2002.
DOI : 10.1126/science.1069156

M. A. El-sayed, Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes, Accounts of Chemical Research, vol.34, issue.4, pp.257-264, 2001.
DOI : 10.1021/ar960016n

M. Sasaki, Templating fabrication of platinum nanoparticles and nanowires using the confined mesoporous channels of FSM-16???their structural characterization and catalytic performances in water gas shift reaction, Journal of Molecular Catalysis A: Chemical, vol.141, issue.1-3
DOI : 10.1016/S1381-1169(98)00266-0

, Chem, vol.141, pp.223-240, 1999.

A. Fukuoka, Preparation and catalysis of Pt and Rh nanowires and particles in FSM-16, Microporous and Mesoporous Materials, vol.48, issue.1-3, pp.171-179, 2001.
DOI : 10.1016/S1387-1811(01)00341-9

J. Belloni, M. Mostafavi, H. Remita, J. Marignier, and M. Delcourt,

, Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids

, New J. Chem, vol.22, pp.1239-1255, 1998.

S. Remita, J. M. Orts, J. M. Feliu, M. Mostafavi, and M. O. Delcourt, STM identification of silver oligomer clusters prepared by radiolysis in aqueous solution, Chemical Physics Letters, vol.218, issue.1-2
DOI : 10.1016/0009-2614(93)E1451-L

, Chem. Phys. Lett, vol.218, pp.115-121, 1994.

R. Krishnaswamy, Complex, ChemPhysChem, vol.21, issue.7, pp.1510-1513, 2006.
DOI : 10.1021/la046807c

URL : https://hal.archives-ouvertes.fr/hal-00101611

G. Surendran, Synthesis of Porous Platinum Nanoballs in Soft Templates, Chemistry of Materials, vol.19, issue.21, pp.5045-5048, 2007.
DOI : 10.1021/cm071672s

URL : https://hal.archives-ouvertes.fr/hal-00186970

G. Surendran, Palladium Nanoballs Synthesized in Hexagonal Mesophases, The Journal of Physical Chemistry C, vol.112, issue.29, pp.10740-10744, 2008.
DOI : 10.1021/jp801703z

URL : https://hal.archives-ouvertes.fr/hal-00333505

S. Ghosh, Conducting polymer nanofibers with controlled diameters synthesized in hexagonal mesophases, New Journal of Chemistry, vol.47, issue.11, pp.8311-8320, 2015.
DOI : 10.1143/JJAP.47.3769

URL : https://hal.archives-ouvertes.fr/hal-01224129

J. Belloni, Nucleation, growth and properties of nanoclusters studied by radiation chemistry, Catalysis Today, vol.113, issue.3-4, pp.141-156, 2006.
DOI : 10.1016/j.cattod.2005.11.082

URL : https://hal.archives-ouvertes.fr/hal-00088362

J. Belloni, T. Douki, and M. Mostafavi, 7 Radiation chemistry, Annual Reports Section "C" (Physical Chemistry), vol.96, issue.1, 2012.
DOI : 10.1039/b001203n

H. Remita and S. Remita, Metal Clusters and Nanomaterials: Contribution of Radiation Chemistry. in Recent Trends in Radiation Chemistry, pp.347-38310, 2010.

W. Abidi and H. Remita, Gold based Nanoparticles Generated by Radiolytic and Photolytic Methods, Recent Patents on Engineering, vol.4, issue.3, pp.170-188, 2010.
DOI : 10.2174/187221210794578556

C. F. Bohren and D. R. Huffman, Absorption and Scattering by an Arbitrary Particle. in Absorption and Scattering of Light by Small Particles, 1998.

Y. Liu, J. Goebl, and Y. Yin, Templated synthesis of nanostructured materials, Chem. Soc. Rev., vol.50, issue.130, pp.2610-2653, 2013.
DOI : 10.1002/anie.201105479

O. Kim, Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure, Nature Communications, vol.163, issue.1, p.3473, 2013.
DOI : 10.1016/j.jpowsour.2006.09.026

M. Kitahara, Preparation of Mesoporous Bimetallic Au-Pt with a Phase-Segregated Heterostructure Using Mesoporous Silica, Chemistry - A European Journal, vol.4, issue.52, pp.19142-19148, 2015.
DOI : 10.1039/C0EE00232A

W. Lee and S. Park, Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures, Chemical Reviews, vol.114, issue.15, pp.7487-7556, 2014.
DOI : 10.1021/cr500002z

J. Fei, Controlled Fabrication of Polyaniline Spherical and Cubic Shells with Hierarchical Nanostructures, ACS Nano, vol.3, issue.11, pp.3714-3718, 2009.
DOI : 10.1021/nn900921v

M. Trueba, A. L. Montero, and J. Rieumont, Pyrrole nanoscaled electropolymerization, Electrochimica Acta, vol.49, issue.25, pp.4341-4349, 2004.
DOI : 10.1016/j.electacta.2004.03.043

M. S. Cho, H. J. Choi, and W. Ahn, Enhanced Electrorheology of Conducting Polyaniline Confined in MCM-41 Channels, Langmuir, vol.20, issue.1, pp.202-207, 2004.
DOI : 10.1021/la035051z

Y. Holade, A. Lehoux, H. Remita, K. B. Kokoh, and T. W. Napporn, Efficient Design and Fabrication of Porous Metallic Electrocatalysts, Electrocatalysts for Low Temperature Fuel Cells, pp.511-531, 2017.
DOI : 10.1002/cssc.201501593

K. Holmberg, B. Jönsson, B. Kronberg, and B. Lindman, Introduction to Surfactants. in Surfactants and Polymers in Aqueous Solution, pp.1-37, 2002.

, Sigma-Aldrich Available at: http://www.sigmaaldrich.com/technical-documents/articles/biofiles/detergentproperties, Detergent Properties and Applications, p.17, 2017.

, Polyethylene glycol. Wikipedia, 2017.

V. Bhardwaj, K. Sharma, S. Chauhan, and P. Sharma, Intermolecular interactions of CTAB and potential oxidation inhibitors: physico-chemical controlled approach for food/pharmaceutical function, RSC Adv., vol.114, issue.90, pp.49400-49414, 2014.
DOI : 10.1021/jp106031d

A. R. Zarei, H. Bagheri-sadeghi, and S. Abedin, Selective Cloud Point Extraction for the Spectrophotometric Determination of Cetylpyridinium Chloride in Pharmaceutical Formulations. Iran, J. Pharm. Res. IJPR, vol.12, pp.671-677, 2013.

B. Naskar, S. Mondal, and S. P. Moulik, Amphiphilic activities of anionic sodium cholate (NaC), p.3

, propanesulfonate (CHAPS) and their mixtures: A comparative study. Colloids Surf

, B Biointerfaces, vol.112, pp.155-164, 2013.

K. Holmberg, B. Jönsson, B. Kronberg, and B. Lindman, Surfactant Micellization. in Surfactants and Polymers in Aqueous Solution, pp.39-66, 2002.

G. H. Findenegg and . Israelachvili, Intermolecular and Surface Forces (With Applications to Colloidal and Biological Systems), p.296, 1985.

. Seiten, Preis: $ 65.00, Berichte Bunsenges. Für Phys. Chem, vol.90, pp.1241-1242, 1986.

J. Israelachvili, The science and applications of emulsions ??? an overview, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.91, pp.1-8, 1994.
DOI : 10.1016/0927-7757(94)02743-9

J. N. Israelachvili, D. J. Mitchell, and B. W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, Journal of the Chemical Society, Faraday Transactions 2, vol.72, pp.72-1525, 1976.
DOI : 10.1039/f29767201525

K. Holmberg, B. Jönsson, B. Kronberg, and B. Lindman, Phase Behaviour of Concentrated Surfactant Systems. in Surfactants and Polymers in Aqueous Solution, pp.67-96, 2002.

J. P. Hill, L. K. Shrestha, S. Ishihara, Q. Ji, and K. Ariga, Self-Assembly: From Amphiphiles to Chromophores and Beyond, Molecules, vol.133, issue.6, pp.8589-8609, 2014.
DOI : 10.1038/am.2012.30

URL : https://www.mdpi.com/1420-3049/19/6/8589/pdf

Q. Liu, Z. Sun, Y. Dou, J. H. Kim, and S. X. Dou, Two-step self-assembly of hierarchically-ordered nanostructures, Journal of Materials Chemistry A, vol.42, issue.22, pp.11688-11699, 2015.
DOI : 10.1039/C2CS35261C

URL : https://ro.uow.edu.au/cgi/viewcontent.cgi?article=2478&context=aiimpapers

E. Pena-dos-santos, Existence and Stability of New Nanoreactors:?? Highly Swollen Hexagonal Liquid Crystals, Langmuir, vol.21, issue.10, pp.4362-4369, 2005.
DOI : 10.1021/la047092g

URL : https://hal.archives-ouvertes.fr/hal-00077923

F. Ksar, Palladium Nanowires Synthesized in Hexagonal Mesophases: Application in Ethanol Electrooxidation, Chemistry of Materials, vol.21, issue.8, pp.1612-1617, 2009.
DOI : 10.1021/cm803492j

URL : https://hal.archives-ouvertes.fr/hal-00514226

S. Ghosh, Conducting polymer nanostructures for photocatalysis under visible light, Nature Materials, vol.13, issue.5, pp.505-511, 2015.
DOI : 10.1246/cl.2009.238

S. Ghosh, PEDOT nanostructures synthesized in hexagonal mesophases, New J. Chem., vol.14, issue.3, pp.1106-1115, 2014.
DOI : 10.1002/adfm.200305059

URL : https://hal.archives-ouvertes.fr/hal-01117164

A. Lehoux, Tuning the Porosity of Bimetallic Nanostructures by a Soft Templating Approach, Advanced Functional Materials, vol.11, issue.2, pp.4900-4908, 2012.
DOI : 10.1021/nl200322s

URL : https://hal.archives-ouvertes.fr/hal-00762379

P. F. Siril, Synthesis of Ultrathin Hexagonal Palladium Nanosheets. Chem

. Mater, , pp.5170-5175, 2009.

S. Dutt, P. F. Siril, and S. Remita, Swollen liquid crystals (SLCs): a versatile template for the synthesis of nano structured materials, RSC Advances, vol.131, issue.2, pp.5733-5750, 2017.
DOI : 10.1021/ja903305d

F. Ksar, Bimetallic Palladium???Gold Nanostructures: Application in Ethanol Oxidation, Chemistry of Materials, vol.21, issue.15, pp.3677-3683, 2009.
DOI : 10.1021/cm901364w

URL : https://hal.archives-ouvertes.fr/hal-00514225

G. Berhault, L. Bisson, C. Thomazeau, C. Verdon, and D. Uzio, Preparation of nanostructured Pd particles using a seeding synthesis approach???Application to the selective hydrogenation of buta-1,3-diene, Applied Catalysis A: General, vol.327, issue.1, pp.32-43, 2007.
DOI : 10.1016/j.apcata.2007.04.028

URL : https://hal.archives-ouvertes.fr/hal-00175429

C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, and S. Mann, Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis, Journal of Materials Chemistry, vol.12, issue.6
DOI : 10.1039/b200953f

, Mater. Chem, vol.12, pp.1765-1770, 2002.

S. Ghosh, Visible-light active conducting polymer nanostructures with superior photocatalytic activity, Scientific Reports, vol.13, issue.1, p.18002, 2015.
DOI : 10.3390/catal3040942

URL : https://hal.archives-ouvertes.fr/hal-01250170

E. Pena-dos-santos, Existence and Stability of New Nanoreactors:?? Highly Swollen Hexagonal Liquid Crystals, Langmuir, vol.21, issue.10, pp.4362-4369, 2005.
DOI : 10.1021/la047092g

URL : https://hal.archives-ouvertes.fr/hal-00077923

B. P. Block and J. C. Bailar, Journal of the American Chemical Society, vol.73, issue.10, pp.4722-4725, 1951.
DOI : 10.1021/ja01154a071

E. Grabowska, Modification of Titanium(IV) Dioxide with Small Silver Nanoparticles: Application in Photocatalysis, The Journal of Physical Chemistry C, vol.117, issue.4, pp.1955-1962, 2013.
DOI : 10.1021/jp3112183

S. Ghosh, Conducting polymer nanostructures for photocatalysis under visible light, Nature Materials, vol.13, issue.5, pp.505-511, 2015.
DOI : 10.1246/cl.2009.238

A. Dazzi and C. B. Prater, AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging, Chemical Reviews, vol.117, issue.7, pp.5146-5173, 2017.
DOI : 10.1021/acs.chemrev.6b00448

G. Gritzner and J. K?ta, Recommendations on reporting electrode potentials in nonaqueous solvents, Electrochimica Acta, vol.29, issue.6, pp.869-873, 1984.
DOI : 10.1016/0013-4686(84)80027-4

B. Stambouli, A. Traversa, and E. , Fuel cells, an alternative to standard sources of energy, Renewable and Sustainable Energy Reviews, vol.6, issue.3, pp.295-304, 2002.
DOI : 10.1016/S1364-0321(01)00015-6

W. Applications, -. H. Nehrir, and C. Wang, Modeling and Control of Fuel Cells: Distributed Generation Available at

, Accessed: 11th, 2017.

H. Xu, L. Kong, and X. Wen, Fuel Cell Power System and High Power DC???DC converter, IEEE Transactions on Power Electronics, vol.19, issue.5, pp.1250-1255, 2004.
DOI : 10.1109/TPEL.2004.833440

K. Xin and A. M. Khambadkone, Dynamic modelling of fuel cell with power electronic current and performance analysis, The Fifth International Conference on Power Electronics and Drive Systems, pp.607-612, 2003.

B. Ozpineci, L. M. Tolbert, G. J. Su, and Z. Du, Optimum fuel cell utilization with multilevel DC-DC converters, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04., pp.1572-1576, 2004.
DOI : 10.1109/APEC.2004.1296074

B. Ozpineci, L. M. Tolbert, and Z. Du, Optimum fuel cell utilization with multilevel inverters, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), pp.4798-4802, 2004.
DOI : 10.1109/PESC.2004.1354847

URL : http://power.eecs.utk.edu/pubs/apec_2004.pdf

R. Wai, R. Duan, J. Lee, and L. Liu, High-Efficiency Fuel-Cell Power Inverter With Soft-Switching Resonant Technique, IEEE Transactions on Energy Conversion, vol.20, issue.2, pp.485-492, 2005.
DOI : 10.1109/TEC.2004.832092

S. J. Jang, C. Y. Won, B. K. Lee, and J. Hur, Fuel Cell Generation System With a New Active Clamping Current-Fed Half-Bridge Converter, IEEE Transactions on Energy Conversion, vol.22, issue.2, pp.332-340, 2007.
DOI : 10.1109/TEC.2006.874208

J. S. Lai, A high-performance V6 converter for fuel cell power conditioning system, IEEE Vehicle Power and Propulsion Conference, 2005.

, doi:10.1109/VPPC, 2005.

R. Sickel, Modular converter for fuel cell systems with buffer storage, 2005 European Conference on Power Electronics and Applications, 2005.
DOI : 10.1109/EPE.2005.219721

, European Conference on Power Electronics and Applications, 2005.

, doi:10.1109/EPE, 2005.

M. H. Todorovic, L. Palma, and P. Enjeti, Design of a wide input range DC-DC converter with a robust power control scheme suitable for fuel cell power conversion, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04., pp.374-379, 2004.
DOI : 10.1109/APEC.2004.1295837

Y. J. Song, S. Chung, and P. N. Enjeti, A current-fed HF link direct DC/AC converter with active harmonic filter for fuel cell power systems, Conference Record of the 2004 IEEE Industry Applications Conference, p.128, 2004.

A. M. Tuckey and J. N. Krase, A low-cost inverter for domestic fuel cell applications, 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289), pp.339-346, 2002.
DOI : 10.1109/PSEC.2002.1023892

Y. Kim, H. Moon, S. Kim, E. Cheong, and C. Won, A fuel cell system with Z-source inverters and ultracapacitors, The 4th International Power Electronics and Motion Control Conference, pp.1587-1591, 2004.

J. Wang, F. Z. Peng, J. Anderson, A. Joseph, and R. Buffenbarger, Low cost fuel cell inverter system for residential power generation, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, pp.367-373, 2004.

S. Jain, J. Jiang, X. Huang, and S. Stevandic, Single Stage Power Electronic Interface for a Fuel Cell Based Power Supply System, 2007 IEEE Canada Electrical Power Conference, pp.10-11094520330, 2007.
DOI : 10.1109/EPC.2007.4520330

A. Kirubakaran, S. Jain, and R. K. Nema, A review on fuel cell technologies and power electronic interface, Renewable and Sustainable Energy Reviews, vol.13, issue.9, pp.2430-2440, 2009.
DOI : 10.1016/j.rser.2009.04.004

M. Rydén, Hydrogen production from fossil fuels with carbon dioxide capture, using chemical-looping technologies, 2008.

, Advances in Fuel Cells for Transportation Applications Available at: http://papers.sae, p.11, 2017.

C. Lamy, Recent advances in the development of direct alcohol fuel cells (DAFC), Journal of Power Sources, vol.105, issue.2, pp.283-296, 2002.
DOI : 10.1016/S0378-7753(01)00954-5

L. An, T. S. Zhao, S. Y. Shen, Q. X. Wu, and R. Chen, Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output, Journal of Power Sources, vol.196, issue.1, pp.186-190, 2011.
DOI : 10.1016/j.jpowsour.2010.05.069

L. An, T. S. Zhao, S. Y. Shen, Q. X. Wu, and R. Chen, Performance of a direct ethylene glycol fuel cell with an??anion-exchange membrane, International Journal of Hydrogen Energy, vol.35, issue.9, pp.4329-4335, 2010.
DOI : 10.1016/j.ijhydene.2010.02.009

L. An, T. S. Zhao, R. Chen, and Q. Wu, A novel direct ethanol fuel cell with high power density, Journal of Power Sources, vol.196, issue.15, pp.6219-6222, 2011.
DOI : 10.1016/j.jpowsour.2011.03.040

K. Park and Y. Sung, Catalytic Activity of Platinum on Ruthenium Electrodes with Modified (Electro)chemical States, The Journal of Physical Chemistry B, vol.109, issue.28, pp.13585-13589, 2005.
DOI : 10.1021/jp047430m

J. Kua and W. A. Goddard, Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru):?? Application to Direct Methanol Fuel Cells, Journal of the American Chemical Society, vol.121, issue.47, pp.10928-10941, 1999.
DOI : 10.1021/ja9844074

K. Deshpande, A. Mukasyan, and A. Varma, High throughput evaluation of perovskite-based anode catalysts for direct methanol fuel cells, Journal of Power Sources, vol.158, issue.1, pp.60-68, 2006.
DOI : 10.1016/j.jpowsour.2005.09.025

M. Z. Kamarudin, S. K. Kamarudin, M. S. Masdar, and W. R. Daud, Review: Direct ethanol fuel cells, International Journal of Hydrogen Energy, vol.38, issue.22, pp.9438-9453, 2013.
DOI : 10.1016/j.ijhydene.2012.07.059

Y. Holade, A. Lehoux, H. Remita, K. B. Kokoh, and T. W. Napporn, Au@Pt Core???Shell Mesoporous Nanoballs and Nanoparticles as Efficient Electrocatalysts toward Formic Acid and Glucose Oxidation, The Journal of Physical Chemistry C, vol.119, issue.49, pp.27529-27539, 2015.
DOI : 10.1021/acs.jpcc.5b09417

URL : https://hal.archives-ouvertes.fr/hal-01491215

R. Zhang and W. Chen, Synthesis and Electrocatalysis of Pt-Pd Bimetallic Nanocrystals for Fuel Cells. in Nanomaterials for Fuel Cell Catalysis, pp.169-223, 2016.
DOI : 10.1007/978-3-319-29930-3_4

M. M. Dimos and G. J. Blanchard, Evaluating the Role of Pt and Pd Catalyst Morphology on Electrocatalytic Methanol and Ethanol Oxidation, The Journal of Physical Chemistry C, vol.114, issue.13, pp.6019-6026, 2010.
DOI : 10.1021/jp911076b

S. Srinivasan, B. B. Davé, K. A. Murugesamoorthi, A. Parthasarathy, A. Appleby et al., J. Overview of Fuel Cell Technology. in Fuel Cell Systems

M. J. Mugerwa and M. N. , , pp.37-72, 1993.

H. Wang and Z. Liu, Selectivity of Direct Ethanol Fuel Cell Dictated by a Unique Partial Oxidation Channel, The Journal of Physical Chemistry C, vol.111, issue.33, pp.12157-12160, 2007.
DOI : 10.1021/jp074923t

Z. X. Liang, T. S. Zhao, J. B. Xu, and L. D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media, Electrochimica Acta, vol.54, issue.8, pp.2203-2208, 2009.
DOI : 10.1016/j.electacta.2008.10.034

C. Lamy, E. M. Belgsir, and J. Léger, Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC), Journal of Applied Electrochemistry, vol.31, issue.7, pp.799-809, 2001.
DOI : 10.1023/A:1017587310150

W. Zhou, Pt based anode catalysts for direct ethanol fuel cells, Applied Catalysis B: Environmental, vol.46, issue.2, pp.273-285, 2003.
DOI : 10.1016/S0926-3373(03)00218-2

S. Lai, S. C. Koper, and M. T. , Ethanol electro-oxidation on platinum in alkaline media, Physical Chemistry Chemical Physics, vol.108, issue.44, pp.10446-10456, 2009.
DOI : 10.1021/1a902251z

G. A. Camara and T. Iwasita, Parallel pathways of ethanol oxidation: The effect of ethanol concentration, Journal of Electroanalytical Chemistry, vol.578, issue.2, pp.315-321, 2005.
DOI : 10.1016/j.jelechem.2005.01.013

Y. Wang, S. Zou, and W. Cai, Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials, Catalysts, vol.9, issue.3, pp.1507-1534, 2015.
DOI : 10.1149/1.2044058

M. Shao, Q. Chang, J. Dodelet, and R. Chenitz, Recent Advances in Electrocatalysts for Oxygen Reduction Reaction, Chemical Reviews, vol.116, issue.6, pp.3594-3657, 2016.
DOI : 10.1021/acs.chemrev.5b00462

Y. Holade, A. Lehoux, H. Remita, K. B. Kokoh, and T. W. Napporn, Efficient Design and Fabrication of Porous Metallic Electrocatalysts, Electrocatalysts for Low Temperature Fuel Cells, pp.511-531, 2017.
DOI : 10.1002/cssc.201501593

N. Menzel, E. Ortel, R. Kraehnert, and P. Strasser, Electrocatalysis Using Porous Nanostructured Materials. ChemPhysChem, vol.13, pp.1385-1394, 2012.

B. Jiang, Morphosynthesis of nanoporous pseudo Pd@Pt bimetallic particles with controlled electrocatalytic activity, Journal of Materials Chemistry A, vol.14, issue.17, pp.6465-6471, 2016.
DOI : 10.1021/nl501205j

A. Lehoux, Tuning the Porosity of Bimetallic Nanostructures by a Soft Templating Approach, Advanced Functional Materials, vol.11, issue.2, pp.4900-4908, 2012.
DOI : 10.1021/nl200322s

URL : https://hal.archives-ouvertes.fr/hal-00762379

F. Ksar, Bimetallic Palladium???Gold Nanostructures: Application in Ethanol Oxidation, Chemistry of Materials, vol.21, issue.15, pp.3677-3683, 2009.
DOI : 10.1021/cm901364w

URL : https://hal.archives-ouvertes.fr/hal-00514225

V. R. Stamenkovic, Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability, Science, vol.315, issue.5811, pp.493-497, 2007.
DOI : 10.1126/science.1135941

URL : https://zenodo.org/record/1230876/files/article.pdf

J. Snyder, T. Fujita, M. W. Chen, and J. Erlebacher, Oxygen reduction in nanoporous metal???ionic liquid composite electrocatalysts, Nature Materials, vol.46, issue.555, pp.904-907, 2010.
DOI : 10.1038/nmat2878

N. Jung, D. Y. Chung, J. Ryu, S. J. Yoo, and Y. Sung, Pt-based nanoarchitecture and catalyst design for fuel cell applications, Nano Today, vol.9, issue.4, pp.433-456, 2014.
DOI : 10.1016/j.nantod.2014.06.006

T. Xia, Facile and Rapid Synthesis of Ultrafine PtPd Bimetallic Nanoparticles and Their High Performance toward Methanol Electrooxidation, Journal of Nanomaterials, vol.38, issue.29, p.496249, 2014.
DOI : 10.1016/S0022-0728(80)80368-8

URL : http://doi.org/10.1155/2014/496249

Q. Jiang, Promoting Effect of Ni in PtNi Bimetallic Electrocatalysts for the Methanol Oxidation Reaction in Alkaline Media: Experimental and Density Functional Theory Studies, The Journal of Physical Chemistry C, vol.114, issue.46, pp.19714-19722, 2010.
DOI : 10.1021/jp1039755

Y. Zhou, Self-Decoration of PtNi Alloy Nanoparticles on Multiwalled Carbon Nanotubes for Highly Efficient Methanol Electro-Oxidation, Nano-Micro Letters, vol.38, issue.13, pp.371-380, 2016.
DOI : 10.1016/j.ijhydene.2012.06.045

URL : https://link.springer.com/content/pdf/10.1007%2Fs40820-016-0096-2.pdf

B. Zhang, bimetallic electrocatalysts for the methanol electro-oxidation reaction, Chemical Communications, vol.136, issue.20, pp.3927-3930, 2016.
DOI : 10.1021/ja4124658

URL : http://pubs.rsc.org/en/content/articlepdf/2016/cc/c5cc08978f

C. Zhu, S. Guo, S. Dong, and . Rapid, Rapid, General Synthesis of PdPt Bimetallic Alloy Nanosponges and Their Enhanced Catalytic Performance for Ethanol/Methanol Electrooxidation in an Alkaline Medium, Chemistry - A European Journal, vol.195, issue.3, pp.1104-1111, 2013.
DOI : 10.1016/j.jpowsour.2009.11.145

F. Kadirgan, Carbon supported nano-sized Pt???Pd and Pt???Co electrocatalysts for proton exchange membrane fuel cells, International Journal of Hydrogen Energy, vol.34, issue.23, pp.9450-9460, 2009.
DOI : 10.1016/j.ijhydene.2009.09.028

URL : http://repository.bilkent.edu.tr/bitstream/11693/11847/1/10.1016-j.ijhydene.2009.09.028.pdf

F. Kadirgan, S. Beyhan, and T. Atilan, Preparation and characterization of nano-sized Pt???Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation, International Journal of Hydrogen Energy, vol.34, issue.10, pp.4312-4320, 2009.
DOI : 10.1016/j.ijhydene.2009.03.024

K. S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and Applied Chemistry, vol.57, issue.4, pp.603-619, 1985.
DOI : 10.1351/pac198557040603

Z. Yin, H. Zheng, D. Ma, and X. Bao, Porous Palladium Nanoflowers that Have Enhanced Methanol Electro-Oxidation Activity, The Journal of Physical Chemistry C, vol.113, issue.3, pp.1001-1005, 2009.
DOI : 10.1021/jp807456j

M. M. Dimos and G. J. Blanchard, Evaluating the Role of Pt and Pd Catalyst Morphology on Electrocatalytic Methanol and Ethanol Oxidation, The Journal of Physical Chemistry C, vol.114, issue.13, pp.6019-6026, 2010.
DOI : 10.1021/jp911076b

S. Ghosh, PEDOT nanostructures synthesized in hexagonal mesophases, New J. Chem., vol.14, issue.3, pp.1106-1115, 2014.
DOI : 10.1002/adfm.200305059

URL : https://hal.archives-ouvertes.fr/hal-01117164

D. Floresyona, Highly active poly(3-hexylthiophene) nanostructures for photocatalysis under solar light, Applied Catalysis B: Environmental, vol.209, pp.23-32, 2017.
DOI : 10.1016/j.apcatb.2017.02.069

URL : https://hal.archives-ouvertes.fr/hal-01553454

S. Ghosh, Conducting polymer nanofibers with controlled diameters synthesized in hexagonal mesophases, New Journal of Chemistry, vol.47, issue.11, pp.8311-8320, 2015.
DOI : 10.1143/JJAP.47.3769

URL : https://hal.archives-ouvertes.fr/hal-01224129

G. Surendran, Highly Swollen Liquid Crystals as New Reactors for the Synthesis of Nanomaterials, Chemistry of Materials, vol.17, issue.6, pp.1505-1514, 2005.
DOI : 10.1021/cm0484495

URL : https://hal.archives-ouvertes.fr/hal-00126542

T. Takamura and K. Minamiyama, Anodic Oxidation of Methanol at Palladium Electrode in Alkaline Solution, Journal of The Electrochemical Society, vol.112, issue.3, pp.333-335, 1965.
DOI : 10.1149/1.2423534

C. Hu and T. Wen, Voltammetric investigation of palladium oxides???I: Their formation/reduction in NaOH, Electrochimica Acta, vol.40, issue.4, pp.495-503, 1995.
DOI : 10.1016/0013-4686(94)00324-T

S. Ghosh, Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation, International Journal of Hydrogen Energy, vol.40, issue.14, pp.4951-4959, 2015.
DOI : 10.1016/j.ijhydene.2015.01.101

Z. X. Liang, T. S. Zhao, J. B. Xu, and L. D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media, Electrochimica Acta, vol.54, issue.8, pp.2203-2208, 2009.
DOI : 10.1016/j.electacta.2008.10.034

D. M. Anjos, F. Hahn, J. Léger, K. B. Kokoh, and G. Tremiliosi-filho, situ FTIRS studies of the electrocatalytic oxidation of ethanol on Pt alloy electrodes

, J. Solid State Electrochem, vol.11, pp.1567-1573, 2007.

Z. Zhou, Q. Wang, J. Lin, N. Tian, and S. Sun, situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media

, Electrochimica Acta, vol.55, pp.7995-7999, 2010.

L. Ma, D. Chu, and R. Chen, Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media, International Journal of Hydrogen Energy, vol.37, issue.15, pp.11185-11194, 2012.
DOI : 10.1016/j.ijhydene.2012.04.132

H. An, Electrocatalytic performance of Pd nanoparticles supported on TiO2-MWCNTs for methanol, ethanol, and isopropanol in alkaline media, Journal of Electroanalytical Chemistry, vol.741
DOI : 10.1016/j.jelechem.2015.01.015

, Chem, vol.741, pp.56-63, 2015.

D. A. Rand and R. Woods, The nature of adsorbed oxygen on rhodium, palladium and gold electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.31, issue.1, pp.29-38, 1971.
DOI : 10.1016/S0022-0728(71)80039-6

M. Grde?, A. Pia?cik, Z. Koczorowski, and A. Czerwi?ski, Hydrogen electrosorption in Pd???Pt alloys, Journal of Electroanalytical Chemistry, vol.532, issue.1-2, pp.35-42, 2002.
DOI : 10.1016/S0022-0728(02)00750-7

D. R. Rolison, Catalytic Nanoarchitectures--the Importance of Nothing and the Unimportance of Periodicity, Science, vol.299, issue.5613, pp.1698-1701, 2003.
DOI : 10.1126/science.1082332

A. J. Botz, M. Nebel, R. A. Rincón, E. Ventosa, and W. Schuhmann, Onset potential determination at gas-evolving catalysts by means of constant-distance mode positioning of nanoelectrodes, Electrochimica Acta, vol.179, pp.38-44, 2015.
DOI : 10.1016/j.electacta.2015.04.145

C. Zuliani, D. A. Walsh, T. E. Keyes, and R. J. Forster, Formation and Growth of Oxide Layers at Platinum and Gold Nano- and Microelectrodes, Analytical Chemistry, vol.82, issue.17, pp.7135-7140, 2010.
DOI : 10.1021/ac101728a

D. Kim, Y. W. Lee, S. B. Lee, and S. W. Han, Convex Polyhedral Au@Pd Core-Shell Nanocrystals with High-Index Facets, Angewandte Chemie International Edition, vol.6, issue.1, pp.159-163, 2012.
DOI : 10.1038/nnano.2011.42

L. Zhang, S. Zhong, and A. Xu, Highly Branched Concave Au/Pd Bimetallic Nanocrystals with Superior Electrocatalytic Activity and Highly Efficient SERS Enhancement, Angewandte Chemie International Edition, vol.109, issue.2, pp.645-649, 2013.
DOI : 10.1021/cr9000995

H. M. Song, B. A. Moosa, and N. M. Khashab, Water-dispersable hybrid Au???Pd nanoparticles as catalysts in ethanol oxidation, aqueous phase Suzuki???Miyaura and Heck reactions, Journal of Materials Chemistry, vol.46, issue.31, pp.15953-15959, 2012.
DOI : 10.1016/j.tetlet.2005.03.118

H. Remita, I. Lampre, M. Mostafavi, E. Balanzat, and S. Bouffard, Comparative study of metal clusters induced in aqueous solutions by ??-rays, electron or C6+ ion beam irradiation, Radiation Physics and Chemistry, vol.72, issue.5, pp.575-586, 2005.
DOI : 10.1016/j.radphyschem.2004.03.042

URL : https://hal.archives-ouvertes.fr/hal-00126096

P. Urchaga, S. Baranton, C. Coutanceau, and G. Jerkiewicz, on Pt Nanosurfaces: Solution of the Peak Multiplicity Puzzle, Langmuir, vol.28, issue.7, pp.3658-3663, 2012.
DOI : 10.1021/la202913b

URL : https://hal.archives-ouvertes.fr/hal-00749429

P. Urchaga, S. Baranton, C. Coutanceau, and G. Jerkiewicz, Evidence of an Eley???Rideal Mechanism in the Stripping of a Saturation Layer of Chemisorbed CO on Platinum Nanoparticles, Langmuir, vol.28, issue.36, pp.13094-13104, 2012.
DOI : 10.1021/la302388p

URL : https://hal.archives-ouvertes.fr/hal-00749896

S. Wang, G. Yang, and S. Yang, Bimetallic Nanocrystals for Electrocatalytic Methanol Oxidation and Hydrogen Evolution, The Journal of Physical Chemistry C, vol.119, issue.50, pp.27938-27945, 2015.
DOI : 10.1021/acs.jpcc.5b10083

Y. Ge, PtNi/NiO Clusters Coated by Hollow Sillica: Novel Design for Highly Efficient Hydrogen Production from Ammonia???Borane, ACS Applied Materials & Interfaces, vol.9, issue.4, pp.3749-3756, 2017.
DOI : 10.1021/acsami.6b15020

P. Kamat, Nanostructures: Recent Physical Chemistry Advances, The Journal of Physical Chemistry C, vol.116, issue.22, pp.11849-11851, 2012.
DOI : 10.1021/jp305026h

M. G. Méndez-medrano, with Au Nanoclusters for Efficient Water Treatment and Hydrogen Generation under Visible Light, The Journal of Physical Chemistry C, vol.120, issue.43
DOI : 10.1021/acs.jpcc.6b06854

. Phys and . Chem, , pp.25010-25022, 2016.

Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima et al., Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity, Journal of the American Chemical Society, vol.136, issue.1, pp.458-465, 2014.
DOI : 10.1021/ja410994f

E. Kowalska, O. O. Mahaney, R. Abe, and B. Ohtani, Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces, Physical Chemistry Chemical Physics, vol.111, issue.65
DOI : 10.1103/PhysRevB.75.035105

, Chem. Chem. Phys, vol.12, pp.2344-2355, 2010.

P. Kamat, Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design, The Journal of Physical Chemistry Letters, vol.3, issue.5, pp.663-672, 2012.
DOI : 10.1021/jz201629p

Q. Luo, L. Bao, D. Wang, X. Li, and J. An, Nanoparticles Modified by Conjugated Derivatives of Polyisoprene, The Journal of Physical Chemistry C, vol.116, issue.49, pp.25806-25815, 2012.
DOI : 10.1021/jp308150j

S. Linic, P. Christopher, and D. B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nature Materials, vol.3, issue.12, pp.911-921, 2011.
DOI : 10.1021/jp953720e

X. Wang, A metal-free polymeric photocatalyst for hydrogen production from water under visible??light, Nature Materials, vol.10, issue.1, pp.76-80, 2009.
DOI : 10.1039/f19888402795

N. Serpone and A. Emeline, Semiconductor Photocatalysis ??? Past, Present, and Future Outlook, The Journal of Physical Chemistry Letters, vol.3, issue.5, pp.673-677, 2012.
DOI : 10.1021/jz300071j

C. Su, Visible-Light Photocatalysis of Aerobic Oxidation Reactions Using Carbazolic Conjugated Microporous Polymers, ACS Catalysis, vol.6, issue.6, pp.3594-3599, 2016.
DOI : 10.1021/acscatal.6b00443

J. Liu, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway, Science, vol.10, issue.6225, pp.970-974, 2015.
DOI : 10.1021/cs400913h

, Radiation Available at: http://qdl.scs-inc.us

, Accessed: 3rd, 2017.

. Polyacetylene, CH)x: n?type and p?type doping and compensation, Appl. Phys. Lett, vol.33, pp.18-20, 1978.

J. D. Yuen, Nonlinear transport in semiconducting polymers at high carrier densities, Nature Materials, vol.129, issue.7, pp.572-575, 2009.
DOI : 10.1103/PhysRevLett.96.246403

I. B. Martini, Controlling optical gain in semiconducting polymers with nanoscale chain positioning and alignment, Nature Nanotechnology, vol.139, issue.10, pp.647-652, 2007.
DOI : 10.1103/PhysRevB.69.035204

D. Ma, M. Aguiar, J. A. Freire, and I. A. Hümmelgen, Organic Reversible Switching Devices for Memory Applications, Advanced Materials, vol.12, issue.14, pp.1063-1066, 2000.
DOI : 10.1002/1521-4095(200007)12:14<1063::AID-ADMA1063>3.0.CO;2-9

H. Sirringhaus, N. Tessler, and R. H. Friend, Integrated Optoelectronic Devices Based on Conjugated Polymers, Science, vol.280, issue.5370, pp.1741-1744, 1998.
DOI : 10.1126/science.280.5370.1741

Z. Yin and Q. Zheng, Controlled Synthesis and Energy Applications of One-Dimensional Conducting Polymer Nanostructures: An Overview, Advanced Energy Materials, vol.10, issue.88, pp.179-218, 2012.
DOI : 10.1021/nl101723g

S. Ghosh, T. Maiyalagan, and R. N. Basu, Nanostructured conducting polymers for energy applications: towards a sustainable platform, Nanoscale, vol.3, issue.12, pp.6921-6947, 2016.
DOI : 10.1039/C5TA07381B

S. Ghosh, Visible-light active conducting polymer nanostructures with superior photocatalytic activity, Scientific Reports, vol.13, issue.1, p.18002, 2015.
DOI : 10.3390/catal3040942

URL : https://hal.archives-ouvertes.fr/hal-01250170

J. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catalysis Today, vol.53, issue.1, pp.115-129, 1999.
DOI : 10.1016/S0920-5861(99)00107-8

S. E. Braslavsky, Glossary of Terms used in Photochemistry, IUPAC Recommendations Pure Appl. Chem, vol.79, pp.293-465, 2006.
DOI : 10.1016/B978-044451322-9/50034-8

, Electronic and Optical Properties of Conjugated Polymers -Oxford Scholarship Available at, 2013.

, 0001/acprof-9780199677467. (Accessed: 26th, 2017.

A. J. Epstein, Insulator to metal transition in polyaniline Available at: http://www.physics.ufl, pp.87-89, 1987.

B. A. Bolto, R. Mcneill, and D. E. Weiss, Electronic Conduction in Polymers. III. Electronic Properties of Polypyrrole, Australian Journal of Chemistry, vol.16, issue.6, pp.1090-1103, 1963.
DOI : 10.1071/CH9631090

H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x, Journal of the Chemical Society, Chemical Communications, issue.16, pp.578-580, 1977.
DOI : 10.1039/c39770000578

G. Zhang, Z. Lan, and X. Wang, Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution, Angewandte Chemie International Edition, vol.358, issue.51, pp.15712-15727, 2016.
DOI : 10.1016/j.apsusc.2015.08.173

M. A. Rahman, P. Kumar, D. Park, and Y. Shim, Electrochemical Sensors Based on Organic Conjugated Polymers, Sensors, vol.15, issue.1, pp.118-141, 2008.
DOI : 10.1002/elan.200302755

, Electronics of Conjugated Polymers (I): Polyaniline Available at: http://connection.ebscohost.com/c/articles/84358543/electronics-conjugated- polymers-i-polyaniline, 2017.

P. Atkins, J. Paula, and . De, Physical Chemistry. (W. H. Freeman, 2007.

Y. Cheng, S. Yang, and C. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications, Chemical Reviews, vol.109, issue.11, pp.5868-5923, 2009.
DOI : 10.1021/cr900182s

Y. Shi, L. Peng, Y. Ding, Y. Zhao, and G. Yu, Nanostructured conductive polymers for advanced energy storage, Chemical Society Reviews, vol.4, issue.19, pp.6684-6696, 2015.
DOI : 10.1016/j.jpowsour.2010.11.132

J. Pecher and S. Mecking, Nanoparticles of Conjugated Polymers, Chemical Reviews, vol.110, issue.10, pp.6260-6279, 2010.
DOI : 10.1021/cr100132y

O. Prieto-mahaney, N. Murakami, R. Abe, and B. Ohtani, Correlation between Photocatalytic Activities and Structural and Physical Properties of Titanium(IV) Oxide Powders, Chemistry Letters, vol.38, issue.3, pp.238-239, 2009.
DOI : 10.1246/cl.2009.238

B. Ohtani, O. O. Mahaney, F. Amano, N. Murakami, and R. Abe, Abstract, Journal of Advanced Oxidation Technologies, vol.13, issue.3, pp.247-261, 2016.
DOI : 10.1515/jaots-2010-0303

N. Chemical, |. Brayner, and |. Springer, Available at, p.18, 2017.

S. Günes, H. Neugebauer, and N. S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells, ChemInform, vol.107, issue.31, pp.1324-1338, 2007.
DOI : 10.1021/cr050149z

D. Wang, Characterization and photocatalytic activity of poly(3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light, Journal of Hazardous Materials, vol.169, issue.1-3, pp.546-550, 2009.
DOI : 10.1016/j.jhazmat.2009.03.135

T. Zheng, J. Xu, Z. Zhang, and H. Zeng, P3HT/Bi 2 MoO 6 heterojunction with enhanced photocatalytic activity, Materials Letters, vol.164, pp.640-643, 2016.
DOI : 10.1016/j.matlet.2015.11.089

X. Qiao, X. Wang, and Z. Mo, The effects of different alkyl substitution on the structures and properties of poly(3-alkylthiophenes), Synthetic Metals, vol.118, issue.1-3, pp.89-95, 2001.
DOI : 10.1016/S0379-6779(00)00286-1

N. Serpone, Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: relative photonic efficiencies ??r, Journal of Photochemistry and Photobiology A: Chemistry, vol.94, issue.2-3
DOI : 10.1016/1010-6030(95)04223-7

, Photochem. Photobiol. Chem, vol.94, pp.191-203, 1996.

P. J. Brown, Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene), Physical Review B, vol.70, issue.6, p.64203, 2003.
DOI : 10.1103/PhysRevLett.70.1505

S. Cook, A. Furube, and R. Katoh, Analysis of the excited states of regioregular polythiophene P3HT, Energy & Environmental Science, vol.17, issue.2, pp.294-299, 2008.
DOI : 10.1039/b805643a

J. Piris, Photogeneration and Ultrafast Dynamics of Excitons and Charges in P3HT/PCBM Blends, The Journal of Physical Chemistry C, vol.113, issue.32, pp.14500-14506, 2009.
DOI : 10.1021/jp904229q

S. Trotzky, T. Hoyer, W. Tuszynski, C. Lienau, and J. Parisi, Femtosecond up-conversion technique for probing the charge transfer in a P3HT???:???PCBM blend via photoluminescence quenching, Journal of Physics D: Applied Physics, vol.42, issue.5, p.55105, 2009.
DOI : 10.1088/0022-3727/42/5/055105

R. A. Cruz, T. Catunda, W. M. Facchinatto, D. T. Balogh, and R. M. Faria, Absolute photoluminescence quantum efficiency of P3HT/CHCl3 solution by Thermal Lens Spectrometry, Synthetic Metals, vol.163, pp.38-41, 2013.
DOI : 10.1016/j.synthmet.2012.12.018

S. Ghosh, Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation, International Journal of Hydrogen Energy, vol.40, issue.14, pp.4951-4959, 2015.
DOI : 10.1016/j.ijhydene.2015.01.101

E. Antolini, Composite materials: An emerging class of fuel cell catalyst supports, Applied Catalysis B: Environmental, vol.100, issue.3-4
DOI : 10.1016/j.apcatb.2010.08.025

, Appl. Catal. B Environ, vol.100, pp.413-426, 2010.

, A polymer?metal?polymer?metal heterostructure for enhanced photocatalytic hydrogen production, Journal of Materials Chemistry A

, Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane Available at, 2017.

B. Jana, S. Bhattacharyya, and A. Patra, Conjugated polymer P3HT???Au hybrid nanostructures for enhancing photocatalytic activity, Physical Chemistry Chemical Physics, vol.24, issue.23, pp.15392-15399, 2015.
DOI : 10.1007/978-1-4757-3061-6

Z. Cui, Radiation-induced reduction???polymerization route for the synthesis of PEDOT conducting polymers, Radiation Physics and Chemistry, vol.119, pp.157-166, 2016.
DOI : 10.1016/j.radphyschem.2015.10.011