S. H. Teo, A. Q. Liu, J. Singh, and M. B. Yu, Hole-type two-dimensional photonic crystal fabricated in silicon on insulator wafers, Sensors and Actuators A: Physical, 2007.

M. Liu, X. Li, S. K. Karuturi, A. I. Tok, H. J. Fan et al., Atomic layer deposition for nanofabrication and interface engineering Interdependence of structural and electrical properties in tantalum/tantalum oxide multilayers, Surface and Coatings Technology One-dimensional oxide nanostructures as gas-sensing materials: Review and issues, Three-dimensional ordered macroporous (3DOM) composite for electrochemical study on acetylcholinesterase inhibition induced by endogenous neurotoxin Square spiral 3D photonic bandgap crystals at telecommunications frequencies, pp.38-41, 2005.

Y. Li, T. Kunitake, S. Fujikawa, X. Zhang, H. Su et al., Efficient Fabrication and Enhanced Photocatalytic Activities of 3D-Ordered Films of Titania Hollow Spheres, Solar Energy Materials and Solar Cells, pp.13000-13004, 2006.
DOI : 10.1021/jp061979z

M. Fenker, H. Kappl, and C. S. Sandu, Precise control of multilayered structures of Nb???O???N thin films by the use of reactive gas pulsing process in DC magnetron sputtering, Surface and Coatings Technology, vol.202, issue.11, pp.2358-2362, 2008.
DOI : 10.1016/j.surfcoat.2007.08.007

D. Depla, S. Mahieu, and R. De-gryse, Depositing aluminium oxide: A Case study of reactive magnetron sputtering, in: Reactive sputter deposition, pp.153-197, 2008.

I. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, Surface and Coatings Technology, vol.127, issue.2-3, pp.203-219, 2000.
DOI : 10.1016/S0257-8972(00)00566-1

J. Musil, P. Baroch, J. Vl?ek, K. H. Nam, and J. G. Han, Reactive magnetron sputtering of thin films: Present status and trends, Thin Solid Films, 2005.

J. F. Pierson, D. Wiederkehr, and A. Billard, Reactive magnetron sputtering of copper, silver, and gold, Thin Solid Films, 2005.

W. D. Sproul, Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings, Surface and Coatings Technology, pp.86-87, 1996.

S. B. Kulkarni, A. T. Mane, S. T. Navale, P. S. Kulkarni, R. N. Mulik et al., Synthesis, structural, compositional, morphological and optoelectronic properties of tungsten oxide thin films, Journal of Materials Science: Materials in Electronics, vol.370, issue.4, pp.1087-1096, 2015.
DOI : 10.1016/S0040-6090(00)00745-8

C. Li, J. H. Hsieh, M. Hung, and B. Q. Huang, The deposition and microstructure of amorphous tungsten oxide films by sputtering, Vacuum, vol.118, 2015.
DOI : 10.1016/j.vacuum.2015.01.020

G. A. Niklasson and C. G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these, J. Mater. Chem., vol.36, issue.153, pp.127-156, 2007.
DOI : 10.1016/j.ergon.2005.06.005

C. G. Granqvist, Electrochromic tungsten oxide films: Review of progress 1993-1998, Solar Energy Materials and Solar Cells, pp.201-26210, 2000.

Y. S. Kim, S. Ha, K. Kim, H. Yang, S. Choi et al., Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film, Applied Physics Letters, vol.86, issue.21, 2005.
DOI : 10.1016/0925-4005(96)01822-9

C. V. Ramana, S. Utsunomiya, R. C. Ewing, C. M. Julien, and U. Becker, Thin Films, The Journal of Physical Chemistry B, vol.110, issue.21, pp.10430-10435, 2006.
DOI : 10.1021/jp056664i

URL : https://hal.archives-ouvertes.fr/hal-01281558

M. B. Johansson, B. Zietz, G. A. Niklasson, and L. Österlund, thin films prepared by DC magnetron sputtering, Journal of Applied Physics, vol.31, issue.21
DOI : 10.1088/0022-3719/13/36/005

K. J. Patel, C. J. Panchal, V. A. Kheraj, and M. S. Desai, Growth, structural, electrical and optical properties of the thermally evaporated tungsten trioxide (WO3) thin films, Materials Chemistry and Physics, vol.114, issue.1, pp.475-478, 2009.
DOI : 10.1016/j.matchemphys.2008.09.071

D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, and R. De-gryse, Understanding the discharge voltage behavior during reactive sputtering of oxides, Journal of Applied Physics, vol.101, issue.1, 2007.
DOI : 10.1103/PhysRevB.45.1391

W. D. Sproul, P. J. Rudnik, C. A. Gogol, and R. A. Mueller, Advances in partial-pressure control applied to reactive sputtering, Surface and Coatings Technology, pp.39-40, 1989.

A. F. Hmiel, Partial pressure control of reactively sputtered titanium nitride, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.3, issue.3, pp.592-595, 1985.
DOI : 10.1116/1.572957

S. Kadlec, J. Musil, and H. Vyskocil, Hysteresis effect in reactive sputtering: a problem of system stability, Journal of Physics D: Applied Physics, vol.19, issue.9, pp.187-190, 1986.
DOI : 10.1088/0022-3727/19/9/004

N. Martin, A. R. Bally, P. Hones, R. Sanjinés, and F. Lévy, High rate and process control of reactive sputtering by gas pulsing: the Ti?O system, Thin Solid Films, pp.377-378, 2000.

N. Martin, O. Banakh, A. M. Santo, S. Springer, R. Sanjinès et al., Correlation between processing and properties of TiOxNy thin films sputter deposited by the reactive gas pulsing technique, Applied Surface Science, vol.185, issue.1-2, pp.123-133, 2001.
DOI : 10.1016/S0169-4332(01)00774-7

O. Banakh, T. Heulin, P. E. Schmid, H. Le-dréo, I. Tkalcec et al., Influence of process parameters on the properties of the tantalum oxynitride thin films deposited by pulsing reactive gas sputtering, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.24, issue.2, pp.328-333, 2006.
DOI : 10.1116/1.2172946

M. Grafouté, C. Petitjean, A. Diama, J. F. Pierson, J. M. Greneche et al., Structural investigations of iron oxynitride multilayered films obtained by reactive gas pulsing process, Surface and Coatings Technology, vol.272, pp.158-164, 2015.
DOI : 10.1016/j.surfcoat.2015.04.010

P. Carvalho, L. Cunha, E. Alves, N. Martin, E. Le-bourhis et al., ZrOxNy decorative thin films prepared by the reactive gas pulsing process, Journal of Physics D: Applied Physics, vol.4242, pp.22-3727, 2009.
DOI : 10.1088/0022-3727/42/19/195501

URL : https://hal.archives-ouvertes.fr/hal-00437753

N. M. Parreira, T. Polcar, and A. Cavaleiro, Characterization of W???O coatings deposited by magnetron sputtering with reactive gas pulsing, Surface and Coatings Technology, vol.201, issue.9-11, pp.5481-5486, 2007.
DOI : 10.1016/j.surfcoat.2006.07.017

J. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne et al., Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process, Applied Surface Science, vol.253, issue.12, pp.5312-5316, 2007.
DOI : 10.1016/j.apsusc.2006.12.004

K. Robbie, M. J. Brett, and A. Lakhtakia, Chiral sculptured thin films, Nature, vol.384, issue.6610, pp.384-616, 1996.
DOI : 10.1038/384616a0

R. N. Tait, T. Smy, and M. J. Brett, Modelling and characterization of columnar growth in evaporated films, Thin Solid Films, pp.196-201, 1993.

A. Boudiba, P. Roussel, C. Zhang, M. Olivier, R. Snyders et al., Sensing mechanism of hydrogen sensors based on palladium-loaded tungsten oxide (Pd???WO3), Sensors and Actuators B: Chemical, vol.187, pp.84-93, 2013.
DOI : 10.1016/j.snb.2012.09.063

M. Usta, S. Kahraman, F. Bayansal, and H. A. Çetinkara, Effects of annealing on morphological, structural and electrical properties of thermally evaporated WO3 thin films, Superlattices and Microstructures, vol.52, issue.2, 2012.
DOI : 10.1016/j.spmi.2012.05.008

R. F. Garcia-sanchez, T. Ahmido, D. Casimir, S. Baliga, and P. Misra, Gas-Sensor Materials, The Journal of Physical Chemistry A, vol.117, issue.50, pp.13825-13856, 2013.
DOI : 10.1021/jp408303p

T. Stoycheva, F. E. Annanouch, I. Gràcia, E. Llobet, C. Blackman et al., Micromachined gas sensors based on tungsten oxide nanoneedles directly integrated via aerosol assisted CVD, Sensors and Actuators B: Chemical, vol.198, pp.210-218, 2014.
DOI : 10.1016/j.snb.2014.03.040

J. Guérin, M. Bendahan, and K. Aguir, A dynamic response model for the WO3-based ozone sensors, Sensors and Actuators B: Chemical, vol.128, issue.2, 2008.
DOI : 10.1016/j.snb.2007.07.010

W. Belkacem, A. Labidi, J. Guérin, N. Mliki, and K. Aguir, Cobalt nanograins effect on the ozone detection by WO3 sensors, Sensors and Actuators B: Chemical, vol.132, issue.1, 2008.
DOI : 10.1016/j.snb.2008.01.023

R. Boulmani, M. Bendahan, C. Lambert-mauriat, M. Gillet, and K. Aguir, Correlation between rf-sputtering parameters and WO3 sensor response towards ozone, Sensors and Actuators B: Chemical, vol.125, issue.2, pp.622-627, 2007.
DOI : 10.1016/j.snb.2007.03.011

A. Labidi, M. Gaidi, J. Guérin, A. Bejaoui, M. Maaref et al., Alternating current investigation and modeling of the temperature and ozone effects on the grains and the grain boundary contributions to the WO3 sensor responses, Thin Solid Films, vol.518, issue.1, pp.355-361, 2009.
DOI : 10.1016/j.tsf.2009.06.034

X. You, F. N. Egolfopoulos, and H. Wang, Detailed and simplified kinetic models of n-dodecane oxidation: The role of fuel cracking in aliphatic hydrocarbon combustion, Proceedings of the Combustion Institute. 32 I, 2009.
DOI : 10.1016/j.proci.2008.06.041

M. A. Yazdi, N. Martin, E. Monsifrot, P. Briois, and A. Billard, ZnO nano-tree active layer as heavy hydrocarbon sensor: From material synthesis to electrical and gas sensing properties, Thin Solid Films, vol.596, pp.128-134, 2015.
DOI : 10.1016/j.tsf.2015.08.065

H. A. Wriedt, The OW (oxygen-tungsten) system, Journal of Phase Equilibria, pp.368-384, 1989.

Y. Zhao, S. Zhang, G. Zhang, X. Deng, and C. Xie, Highly sensitive porous metal oxide films for early detection of electrical fire: Surface modification and high throughput screening, Sensors and Actuators B: Chemical, vol.191, pp.431-437, 2014.
DOI : 10.1016/j.snb.2013.09.111

A. T. Mane, S. B. Kulkarni, S. T. Navale, A. A. Ghanwat, N. M. Shinde et al., NO 2 sensing properties of nanostructured tungsten oxide thin films, Ceramics International, vol.40, issue.10, pp.16495-16502, 2014.
DOI : 10.1016/j.ceramint.2014.08.001

E. Çiftyürek, K. Sabolsky, and E. M. Sabolsky, Molybdenum and tungsten oxide based gas sensors for high temperature detection of environmentally hazardous sulfur species, Sensors and Actuators, B: Chemical, vol.237, 2016.

M. Zhao, M. H. Wong, J. X. Huang, and C. W. Ong, Ultrathin percolated WO3 cluster film and its resistive response to H2, Journal of Alloys and Compounds, vol.612, 2014.
DOI : 10.1016/j.jallcom.2014.05.108

F. Tian, L. Zhao, X. Xue, Y. Shen, X. Jia et al., DFT study of CO sensing mechanism on hexagonal WO3 (001) surface: The role of oxygen vacancy, Applied Surface Science, vol.311, pp.362-368, 2014.
DOI : 10.1016/j.apsusc.2014.05.069

T. A. Ho, T. Jun, and Y. S. Kim, Material and NH3-sensing properties of polypyrrole-coated tungsten oxide nanofibers, Sensors and Actuators B: Chemical, vol.185, pp.523-529, 2013.
DOI : 10.1016/j.snb.2013.05.039

S. Shukla, S. Chaudhary, A. Umar, G. R. Chaudhary, and S. K. Mehta, Tungsten oxide (WO3) nanoparticles as scaffold for the fabrication of hydrazine chemical sensor, Sensors and Actuators B: Chemical, vol.196, pp.231-237, 2014.
DOI : 10.1016/j.snb.2014.02.016

X. Chi, C. Liu, L. Liu, Y. Li, Z. Wang et al., Tungsten trioxide nanotubes with high sensitive and selective properties to acetone, Sensors and Actuators B: Chemical, vol.194, pp.33-37, 2014.
DOI : 10.1016/j.snb.2013.12.078

M. Zhao, J. Huang, and C. Ong, Preparation and structure dependence of H2 sensing properties of palladium-coated tungsten oxide films, Sensors and Actuators B: Chemical, vol.177, 2013.
DOI : 10.1016/j.snb.2012.12.011

URL : http://hdl.handle.net/10397/27180

H. G. Moon, S. D. Han, M. Kang, W. Jung, B. Kwon et al., Glancing angle deposited WO 3 nanostructures for enhanced sensitivity and selectivity to NO 2 in gas mixture, Sensors and Actuators B: Chemical, vol.229, pp.92-99, 2016.
DOI : 10.1016/j.snb.2016.01.084

N. D. Hoa, N. Van-duy, and N. Van-hieu, Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications, Materials Research Bulletin, vol.48, issue.2, 2013.
DOI : 10.1016/j.materresbull.2012.10.047

J. Yu, H. Wen, M. Shafiei, M. R. Field, Z. F. Liu et al., A hydrogen/methane sensor based on niobium tungsten oxide nanorods synthesised by hydrothermal method, Sensors and Actuators B: Chemical, vol.184, pp.118-129, 2013.
DOI : 10.1016/j.snb.2013.03.135

N. M. Vuong, D. Kim, and H. Kim, Surface gas sensing kinetics of a WO3 nanowire sensor: part 1???oxidizing gases, Sensors and Actuators B: Chemical, vol.220, 2015.
DOI : 10.1016/j.snb.2015.06.031

Y. Qin, W. Xie, Y. Liu, and Z. Ye, Thermal-oxidative growth of aligned W18O49 nanowire arrays for high performance gas sensor, Sensors and Actuators B: Chemical, vol.223, 2016.
DOI : 10.1016/j.snb.2015.09.113

A. Maity, A. Ghosh, and S. B. Majumder, Understanding the anomalous conduction behavior in ???n??? type tungsten oxide thin film during hydrogen gas sensing: Kinetic analyses of conductance transients, Sensors and Actuators B: Chemical, vol.220, pp.949-957, 2015.
DOI : 10.1016/j.snb.2015.06.038

Y. Qin, C. Liu, M. Liu, and Y. Liu, Nanowire (nanorod) arrays-constructed tungsten oxide hierarchical structure and its unique NO 2 -sensing performances, Journal of Alloys and Compounds, vol.615, pp.616-623, 2014.
DOI : 10.1016/j.jallcom.2014.07.080

W. Zeng, Y. Li, B. Miao, and K. Pan, Hydrothermal synthesis and gas sensing properties of WO3H2O with different morphologies, Physica E: Low-Dimensional Systems and Nanostructures, 2014.
DOI : 10.1016/j.physe.2013.09.005

D. Susanti, A. S. Perdana, H. Purwaningsih, L. Noerochim, and G. E. Kusuma, Preparation of CO gas sensor from WO3 nanomaterial synthesized via sol-gel method followed by hydrothermal process, 5th Nanoscience and Nanotechnology Symposium, pp.14-19, 2014.
DOI : 10.1063/1.4866722

URL : http://aip.scitation.org/doi/pdf/10.1063/1.4866722

H. Zhang, Z. Liu, J. Yang, W. Guo, L. Zhu et al., Temperature and acidity effects on WO3 nanostructures and gas-sensing properties of WO3 nanoplates, Materials Research Bulletin, vol.57, pp.260-267, 2014.
DOI : 10.1016/j.materresbull.2014.06.013

Y. Liu, S. Xie, C. Liu, J. Li, X. Lu et al., Facile synthesis of tungsten oxide nanostructures for efficient photoelectrochemical water oxidation, Journal of Power Sources, vol.269, 2014.
DOI : 10.1016/j.jpowsour.2014.07.012

G. Zhang and C. Xie, A novel method in the gas identification by using WO3 gas sensor based on the temperature-programmed technique, Sensors and Actuators B: Chemical, vol.206, 2015.
DOI : 10.1016/j.snb.2014.09.063

G. Zhang, C. Xie, S. Zhang, J. Zhao, T. Lei et al., Temperature-Programmed Technique Accompanied with High-Throughput Methodology for Rapidly Searching the Optimal Operating Temperature of MOX Gas Sensors, ACS Combinatorial Science, vol.16, issue.9, pp.459-65, 2014.
DOI : 10.1021/co500054r

X. Bai, H. Ji, P. Gao, Y. Zhang, and X. Sun, Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors, Sensors and Actuators B: Chemical, vol.193, 2014.
DOI : 10.1016/j.snb.2013.11.059

A. Kumar, S. Keshri, and D. Kabiraj, Influence of annealing temperature on nanostructured thin films of tungsten trioxide, Materials Science in Semiconductor Processing, vol.17, 2014.
DOI : 10.1016/j.mssp.2013.07.018

N. M. Parreira, N. J. Carvalho, and A. , Cavaleiro, Synthesis, structural and mechanical characterization of sputtered tungsten oxide coatings, Thin Solid Films, 2006.
DOI : 10.1016/j.tsf.2005.12.299

URL : https://estudogeral.sib.uc.pt//bitstream/10316/4224/1/file07b7c85d20884bfbbebdd250b749570d.pdf

N. M. Parreira, T. Polcar, and A. Cavaleiro, Thermal stability of reactive sputtered tungsten oxide coatings, Surface and Coatings Technology, vol.201, issue.16-17, 2007.
DOI : 10.1016/j.surfcoat.2007.01.019

URL : https://estudogeral.sib.uc.pt//bitstream/10316/4205/1/file02d94b0d904f439e9bcc3a4657556c3e.pdf

T. Polcar, T. Kubart, E. Malainho, M. Vasilevskiy, N. M. Parreira et al., Nanoscale colour control: W???O graded coatings deposited by magnetron sputtering, Nanotechnology, vol.19, issue.39, pp.10-1088, 2008.
DOI : 10.1088/0957-4484/19/39/395202

URL : https://dspace.cvut.cz/bitstream/10467/60927/1/2008_Nanoscale-colour-control.pdf

C. Charles, N. Martin, M. Devel, J. Ollitrault, and A. Billard, Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition, Thin Solid Films, 2013.

C. Charles, N. Martin, and M. , Optical properties of nanostructured WO3 thin films by GLancing Angle Deposition: Comparison between experiment and simulation, Surface and Coatings Technology, vol.276, 2015.
DOI : 10.1016/j.surfcoat.2015.06.051

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel et al., Improving accuracy by subpixel smoothing in the finite-difference time domain, Optics Letters, p.31, 2006.
DOI : 10.1364/ol.31.002972

D. Deniz, D. J. Frankel, and R. J. Lad, Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition, Thin Solid Films, 2010.
DOI : 10.1016/j.tsf.2009.10.153

M. Horprathum, K. Limwichean, A. Wisitsoraat, P. Eiamchai, K. Aiempanakit et al., NO2-sensing properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering, Sensors and Actuators B: Chemical, vol.176, pp.685-691, 2013.
DOI : 10.1016/j.snb.2012.09.077

H. G. Moon, Y. Shim, D. H. Kim, H. Y. Jeong, M. Jeong et al., Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors, Scientific Reports
DOI : 10.1021/jp2020325

URL : http://www.nature.com/articles/srep00588.pdf

A. Wisitsoorat, M. Z. Ahmad, M. H. Yaacob, M. Horpratum, D. Phakaratkul et al., Optical H2 sensing properties of vertically aligned Pd/WO3 nanorods thin films deposited via glancing angle rf magnetron sputtering, Sensors and Actuators B: Chemical, vol.182, pp.795-801, 2013.
DOI : 10.1016/j.snb.2013.03.091

M. Z. Ahmad, A. Wisitsoraat, A. S. Zoolfakar, R. A. Kadir, and W. Wlodarski, Investigation of RF sputtered tungsten trioxide nanorod thin film gas sensors prepared with a glancing angle deposition method toward reductive and oxidative analytes, Sensors and Actuators B: Chemical, vol.183, pp.364-371, 2013.
DOI : 10.1016/j.snb.2013.04.027

C. Wongchoosuk, A. Wisitsoraat, D. Phokharatkul, M. Horprathum, A. Tuantranont et al., Carbon doped tungsten oxide nanorods NO2 sensor prepared by glancing angle RF sputtering, Sensors and Actuators B: Chemical, vol.181, pp.388-394, 2013.
DOI : 10.1016/j.snb.2013.01.066

L. J. Van-der-pauw, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Research Reports, pp.1-9, 1958.

E. Hall and . Measurements, https://www.nist.gov/pml/engineering-physics- division/popular-links/hall-effect, 2010.

A. Gaddari, F. Berger, M. Amjoud, J. B. Sanchez, M. Lahcini et al., A novel way for the synthesis of tin dioxide sol???gel derived thin films: Application to O3 detection at ambient temperature, Sensors and Actuators B: Chemical, vol.176, pp.811-817, 2013.
DOI : 10.1016/j.snb.2012.10.049

J. A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, Journal of Vacuum Science and Technology, vol.11, issue.4, pp.666-670, 1974.
DOI : 10.1116/1.1312732

A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, pp.4087-4090, 2010.
DOI : 10.1016/j.tsf.2009.10.145

URL : https://digital.library.unt.edu/ark:/67531/metadc932513/m2/1/high_res_d/974538.pdf

T. P. Drüsedau, T. Bock, T. John, F. Klabunde, and W. Eckstein, Energy transfer into the growing film during sputter deposition: An investigation by calorimetric measurements and Monte Carlo simulations, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.17, issue.5, pp.2896-2905, 1999.
DOI : 10.1116/1.581957

S. Schiller, U. Heisig, C. Korndörfer, G. Beister, J. Reschke et al., Reactive d.c. high-rate sputtering as production technology, Surface and Coatings Technology, vol.33, pp.405-423, 1987.
DOI : 10.1016/0257-8972(87)90206-4

A. Billard and C. Frantz, Attempted modelling of thickness and chemical heterogeneity in coatings prepared by d.c. reactive magnetron sputtering, Surface and Coatings Technology, vol.59, issue.1-3, pp.41-47, 1993.
DOI : 10.1016/0257-8972(93)90052-P

N. Martin, R. Sanjinès, J. Takadoum, and F. Lévy, Enhanced sputtering of titanium oxide, nitride and oxynitride thin films by the reactive gas pulsing technique, Surface and Coatings Technology, pp.142-144, 2001.
DOI : 10.1016/s0257-8972(01)01149-5

T. Kubart, T. Polcar, O. Kappertz, N. Parreira, T. Nyberg et al., Modelling of Magnetron Sputtering of Tungsten Oxide with Reactive Gas Pulsing, Plasma Processes and Polymers, vol.510, issue.S1, pp.522-526, 2007.
DOI : 10.1002/ppap.200731301

S. Berg and T. Nyberg, Fundamental understanding and modeling of reactive sputtering processes, Thin Solid Films, pp.215-230, 2005.
DOI : 10.1016/j.tsf.2004.10.051

M. Stolze, B. Camin, F. Galbert, U. Reinholz, and L. K. Thomas, Nature of substoichiometry in reactively DC-sputtered tungsten oxide thin films and its effect on the maximum obtainable colouration by gases, Thin Solid Films, vol.409, issue.2, pp.254-264, 2002.
DOI : 10.1016/S0040-6090(02)00058-5

D. R. Lide, CRC Handbook of Chemistry and Physics. Section 14, Geophysics, Astronomy, and Acoustics; Abundance of Elements in the Earth's Crust and in the Sea, 2005.

G. Reiss, J. Vancea, and H. Hoffmann, Grain-Boundary Resistance in Polycrystalline Metals, Physical Review Letters, vol.9, issue.19, pp.2100-2103, 1986.
DOI : 10.1143/JJAP.9.1326

URL : https://pub.uni-bielefeld.de/download/1775158/2311819/Reiss_002.pdf

A. Cacucci, I. Tsiaoussis, V. Potin, L. Imhoff, N. Martin et al., The interdependence of structural and electrical properties in TiO2/TiO/Ti periodic multilayers, Acta Materialia, vol.61, issue.11, pp.4215-4225, 2013.
DOI : 10.1016/j.actamat.2013.03.047

URL : https://hal.archives-ouvertes.fr/hal-00875605

I. Goldfarb, F. Miao, J. J. Yang, W. Yi, J. P. Strachan et al., Electronic structure and transport measurements of amorphous transition-metal oxides: observation of Fermi glass behavior, Applied Physics A, vol.68, issue.71, pp.1-11, 2012.
DOI : 10.1103/PhysRevB.68.041403

J. M. Berak and M. J. Sienko, Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals, Journal of Solid State Chemistry, vol.2, issue.1, pp.109-133, 1970.
DOI : 10.1016/0022-4596(70)90040-X

J. Molenda and A. Kubik, Electrical Properties of Nonstoichiometric WO3???y at Temperatures 77 to 300 K, physica status solidi (b), vol.38, issue.2, pp.471-478, 1995.
DOI : 10.1080/01418638008222332

E. Machlin, Materials Science in microelectronics I: The relationships between thin film processing and structure, 2010.

V. Patil, P. Joshi, M. Chougule, and S. Sen, Synthesis and characterization of Co3O4 thin film, Soft Nanoscience Letters, 2012.

Y. U. Peter and M. Cardona, Fundamentals of semiconductors: physics and materials properties, 2010.

S. Sadeghi-khosravieh and K. Robbie, Morphology and crystal texture in tilted columnar microstructured titanium thin film coatings, Thin Solid Films, pp.69-76, 2017.
DOI : 10.1016/j.tsf.2017.02.038

Y. Li, N. Koshizaki, and W. Cai, Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices, Coordination Chemistry Reviews, vol.255, issue.3-4, pp.357-373, 2011.
DOI : 10.1016/j.ccr.2010.09.015

X. Xu, M. A. Pour-yazdi, J. Rauch, R. Salut, A. Billard et al., Tungsten Oxide Thin Films Sputter Deposited by the Reactive Gas Pulsing Process for the Dodecane Detection, Materials Today: Proceedings, vol.2, issue.9, pp.4656-4663, 2015.
DOI : 10.1016/j.matpr.2015.09.019

URL : https://hal.archives-ouvertes.fr/hal-02131250

S. Kasap and P. Capper, Handbook of Electronic and Photonic Materials, 2006.

R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon, Journal of Physics E: Scientific Instruments, vol.16, issue.12, pp.1214-1222023, 1983.
DOI : 10.1088/0022-3735/16/12/023

A. Besnard, N. Martin, L. Carpentier, and B. Gallas, A theoretical model for the electrical properties of chromium thin films sputter deposited at oblique incidence, Journal of Physics D: Applied Physics, vol.44, issue.21, pp.22-3727, 2011.
DOI : 10.1088/0022-3727/44/21/215301

URL : https://hal.archives-ouvertes.fr/hal-00618210

K. Viswanathan, K. Brandt, and E. Salje, Crystal structure and charge carrier concentration of W18O49, Journal of Solid State Chemistry, vol.36, issue.1, pp.45-5110, 1981.
DOI : 10.1016/0022-4596(81)90190-0

D. B. Migas, V. L. Shaposhnikov, and V. E. Borisenko, Tungsten oxides. II. The metallic nature of Magn??li phases, Journal of Applied Physics, vol.1, issue.9, 2010.
DOI : 10.1016/j.solmat.2007.01.026

B. Frühberger, M. Grunze, and D. J. Dwyer, Surface chemistry of H2S-sensitive tungsten oxide films, Sensors and Actuators B: Chemical, vol.31, issue.3, pp.167-174, 1996.
DOI : 10.1016/0925-4005(96)80062-1

C. S. Rout, A. Govindaraj, and C. N. Rao, High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires, Journal of Materials Chemistry, vol.58, issue.40, pp.3936-3941, 2006.
DOI : 10.1039/b607012b

J. F. Mcaleer, P. T. Moseley, J. O. Norris, D. E. Williams, P. Taylor et al., Tin oxide based gas sensors, Materials Chemistry and Physics, vol.17, issue.6, pp.577-583, 1987.
DOI : 10.1016/0254-0584(87)90017-4

D. Kohl, Surface processes in the detection of reducing gases with SnO2-based devices, Sensors and Actuators, pp.71-113, 1989.

X. Xu, M. A. Yazdi, R. Salut, J. Cote, A. Billard et al., Structure, composition and electronic transport properties of tungsten oxide thin film sputter-deposited by the reactive gas pulsing process, Materials Chemistry and Physics, vol.205, pp.391-400, 2018.
DOI : 10.1016/j.matchemphys.2017.11.048

URL : https://hal.archives-ouvertes.fr/hal-02131416

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield et al., Surface Area Characterization of Obliquely Deposited Metal Oxide Nanostructured Thin Films, Langmuir, vol.26, issue.6, pp.26-4368, 2009.
DOI : 10.1021/la903444e

C. Charles, N. Martin, and M. , Thin Films Modeled by Finite-Difference Time-Domain and Fabricated by Glancing Angle Deposition, Journal of Nanoscience and Nanotechnology, vol.12, issue.12, pp.9125-9130, 2012.
DOI : 10.1166/jnn.2012.6761

URL : https://hal.archives-ouvertes.fr/hal-00790264

M. C. Carotta, V. Guidi, G. Martinelli, M. Nagliati, D. Puzzovio et al., Sensing of volatile alkanes by metal-oxide semiconductors, Sensors and Actuators B: Chemical, vol.130, issue.1, pp.497-501, 2008.
DOI : 10.1016/j.snb.2007.09.053

J. Guérin, K. Aguir, M. Bendahan, and C. Lambert-mauriat, Thermal modelling of a WO3 ozone sensor response, Sensors and Actuators B: Chemical, vol.104, issue.2, pp.289-293, 2005.
DOI : 10.1016/j.snb.2004.05.019

S. Ferrer and G. S. Somorjai, surfaces, Journal of Applied Physics, vol.64, issue.7, pp.4792-4794, 1981.
DOI : 10.1016/0039-6028(77)90070-X

URL : https://hal.archives-ouvertes.fr/hal-01469636

A. Labidi, C. Jacolin, M. Bendahan, A. Abdelghani, J. Guerin et al., Impedance spectroscopy on WO3 gas sensor, Sensors and Actuators B: Chemical, vol.106, 2005.

K. Kanda and T. Maekawa, Development of a WO3 thick-film-based sensor for the detection of VOC, Sensors and Actuators B: Chemical, vol.108, issue.1-2, 2005.
DOI : 10.1016/j.snb.2005.01.038

V. V. Malyshev, A. A. Vasiliev, A. V. Eryshkin, E. A. Koltypin, Y. I. Shubin et al., Gas sensitivity of SnO2 and ZnO thin-film resistive sensors to hydrocarbons, carbon monoxide and hydrogen, Sensors and Actuators B: Chemical, vol.10, issue.1, pp.11-14, 1992.
DOI : 10.1016/0925-4005(92)80004-H

S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao et al., Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors, Nature Communications, vol.21, issue.1, pp.1-9, 2015.
DOI : 10.1088/0953-8984/21/8/084201

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai et al., Nanorods Prepared by Glancing-Angle dc Magnetron Sputtering, ACS Applied Materials & Interfaces, vol.6, issue.24, pp.22051-22060, 2014.
DOI : 10.1021/am505127g

, Appendices 9.1. Curriculum Vitae Introduction: Name: XU Xiaolong Birthday, p.7, 1988.

. Major, Materials science Mobile Call: +33 6 68 07 71 08 E-mail: roy.xiaolong.xu@outlook.com Address: 18, rue de la Cassotte

, 09~2010.07 Tianjin University Department of Business Administration Bachelor Research Experience: 2014.09-present Project of " Nanostructured metal oxide thin films for gas sensors Research Assistant: Project of " Research of preparation of composite nano material and its optical response for purification of sewage Research Assistant: Project of " Preparation of carbon inverse opal photonic crystal Project of " Low-temperature sintering of ZnO varistor ceramics and its performance optimization11 With the team work, finished the project " Preparation and properties of respiratory disease -electronic nose with nanometer sensitive material Capabilities and Skills, pp.9-2009, 2008.

, Visual Basic (certification), Origin, Jade, Photoshop, Mendeley, Digital Micrograph. Basic use of AutoCAD, Skilled in use of Microsoft Office

E. , D. , T. , and X. , UV-visible spectrophotometer, infrared spectrometer, SEM, XRD, gas sensor detect system, 4-point resistivity Analysis experience of, Independent operation of sputtering process Language Skills: IELTS 6.0 (English), TCF B1 (French) Publications and Communication: 9 Publications referenced by SCI and EI 3 Communications (international and national) 2 Patents in China

, List of publications and communications List of publications

X. Xu, M. A. , P. Yazdi, J. Sanchez, A. Billard et al., Exploiting the dodecane and ozone sensing capabilities of nanostructured W-O films, Sensors & Actuators B. Chemical. in press, 2018.

X. Xu, M. A. , P. Yazdi, J. Sanchez, A. Billard et al., Reactive co-sputtering of W-O thin films by GLancing Angle Deposition for gas sensors, Materials Today: Proceedings. in press, 2018.

X. Xu, M. A. , P. Yazdi, R. Salut, J. Cote et al., Structure, composition and electronic transport properties of tungsten oxide thin film sputter-deposited by the reactive gas pulsing process, Materials Chemistry and Physics, vol.205, pp.391-400, 2018.
DOI : 10.1016/j.matchemphys.2017.11.048

URL : https://hal.archives-ouvertes.fr/hal-02131416

X. Xu, M. A. , P. Yazdi, J. Rauch, R. Salut et al., Thin Films Sputter Deposited by the Reactive Gas Pulsing Process for the Dodecane Detection. Materials Today: Proceedings. 2015, pp.4656-46634656

H. Zhang and X. Xu, Transition Metal Oxides Inverse Opals and Their Applications in Photo(electro)chemical Processes. Progress in Chemistry, pp.25-1858

X. Xu, H. Zhang, and S. Liu, Preparation of Three-Dimensional Ordered Macroporous Zirconia and Characteristics of Its Pore Walls, Journal of the Chinese Ceramic Society, issue.5, pp.41-705, 2013.

X. Xu, H. Zhang, and S. Liu, Study on Surface Characteristics of TiO2 Three- Dimensional Ordered Macroporous Materials, Journal of Synthetic Crystals, issue.3, pp.42-461, 2013.

H. Zhang, X. Xu, and F. Li, Influencing Factors of Macroporous Ordering in TiO2 and ZrO2 Inverse Opals, Key Engineering Materials, vol.554, pp.209-212, 2013.

H. Zhang, C. , and X. Xu, Syntheses of Mesoporous ZnO and SnO<sub>2</sub> Microspheres by Spray Reaction Process, Key Engineering Materials, vol.519, pp.74-78, 2012.
DOI : 10.4028/www.scientific.net/KEM.519.74

X. Xu, M. A. , P. Yazdi, J. Sanchez, A. Billard et al., Reactive co-sputtering of W-O thin films by GLancing Angle Deposition for gas sensors, 3rd International Workshop on Functionalized Surfaces for Sensor Applications, 2017.

X. Xu, M. A. , P. Yazdi, J. Rauch, R. Salut et al., WOX Film Sputter Deposition by GLAD and Gas Pulsing, 7th international conference on innovations in thin film processing and characterization, 2015.

X. Xu, H. Zhang, and S. Liu, One Step Preparation of Al2O3 and ZrO2 Three- Dimensional Ordered Macroporous Materials Nanjing China: 17th National Academic Conference of High-tech Ceramics, List of patents, 2012.

H. Zhang, X. Xu, and M. Fu, Preparation of Controllable Line Defect Colloidal Photonic Crystal

H. Zhang and X. Xu, Method of Particulate Fluidization Assembly of Multiple Colloidal Photonic Crystal