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Terrassa, Spain

Christophe AUBRUN Professeur, Université de Lorraine
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Introduction et motivation

Dans ce chapitre, un résumé étendu de la motivation et de la résolution des problèmes traités
dans cette thèse est donné en Français.

Introduction

La climatisation des bâtiments constitue une grande partie de la consommation d’énergie globale
dans un pays. Selon le rapport du département d’énergie (DoE) des États-Unis, les bâtiments
résidentiels et commerciaux représentaient près de 40% de l’énergie totale consommée aux États-
Unis en 2010. On estime que la phase d’exploitation d’un immeuble représente 80% de l’énergie
totale de son cycle de vie, cela étant la conséquence de l’utilisation des systèmes de chauffage,
ventilation et climatisation, de l’éclairage et de la consommation d’énergie des divers autres
appareils. Par conséquent, les mesures d’économie d’énergie et de coûts d’utilisation qui ciblent
la phase opérationnelle d’un bâtiment ont un impact majeur tant au niveau local pour les
propriétaires de bâtiments, qu’au niveau mondial pour la l’approvisionnement énergétique du
pays.

L’objectif du projet ‘Energy in Time (EiT)’ est de développer une approche intégrée de
contrôle. Celle-ci combinera des techniques de modélisation de pointe avec le développement
de méthodes de commande basées sur la simulation pour automatiser la génération de plans de
fonctionnement optimaux adaptés aux besoins réels du bâtiment et des utilisateurs. Cela devrait
réduire les inefficacités du système et améliorer l’efficacité énergétique des bâtiments tout en
maintenant le confort des occupants. Le projet EiT cible les bâtiments non résidentiels existants
pour lesquels les marges d’améliorations dont élevées et peuvent avoir un impact important.
Notons que les stratégies développées peuvent également être adaptées à de nouveaux bâtiments
dès leur leur mise en service initiale.

Contributions au projet européen

L’équipe de l’Université de Lorraine a été impliquée dans les ‘workpackages’ concernant le
développement de méthodes à bases de modèles pour la surveillance et le contrôle. Afin de
tester des approches à base d’observateurs, un benchmark de simulation été développé en util-
isant le logiciel MATLAB et la boîte à outils SIMBAD. Ce simulateur comporte les éléments clés
impliqués dans les systèmes de chauffage, ventilation et climatisation et un modèle représentatif
des zones d’occupation multiples (deux à six zones). Dans cette contribution, trois fautes au
niveau du système, ont été considérées. La première est un encrassement qui réduit l’efficacité
d’un échangeur de chaleur. La seconde correspond à une pompe ou une vanne bloquée, ce qui af-
fecte la vitesse de l’eau chaude. Enfin, la troisième concerne une dégradation du fonctionnement

1



Introduction et motivation

des ventilateurs ou des registres d’air ce qui affecte la délivrance des flux d’air aux différentes
zones. La détection de ces défauts est effectuée à l’aide d’un filtre de Kalman étendu. Deux
types d’adaptation pour des défauts sont aussi développé : modification du point de consigne
(pour le défaut de l’actionneur) et l’approche de capteur virtuel (pour le défaut de capteur).

Spécification du problème
Considérons par exemple le blocage d’une vanne du circuit d’eau chaude dans une unité de clima-
tisation. La position de la vanne (et donc le débit massique de l’eau) est l’entrée de commande
et une vanne bloquée correspond à un défaut d’actionneur. Les échangeurs de chaleur sont
souvent affectés par le dépôt de matériaux pendant son fonctionnement, appelé encrassement.
Il en résulte une décroissance lente ou une dégradation de son efficacité affectant le transfert
de chaleur efficace entre l’air et l’eau. Un entretien périodique est généralement prévu pour
nettoyer les tubes internes de l’échangeur de chaleur sur la base d’une estimation du coefficient
d’encrassement. Un module de détection et d’estimation de défaut de la vanne doit pouvoir
fonctionner même si l’échangeur est encrassé (variation paramétrique du modèle considéré).

Considérons un autre exemple : une grande salle comme un hall dans un aéroport ou un
restaurant dans l’immeuble d’une entreprise. La climatisation est contrôlée par plusieurs boîtes
VAV (Variable Air Volume), qui à leur tour fournissent l’air chaud/froid à travers plusieurs
gaines d’aération. Un défaut bien connu est une obturation complète ou partielle du conduite
d’air, soit en raison de blocages dans les gaines d’aération, soit parce que l’amortisseur VAV
est bloqué dans une position indésirable. La détection d’une défaut et son estimation dans de
tels scénarios doivent être accomplie en utilisant divers signaux de contrôle et de mesure de
la température de l’air à divers points de la salle. La température de l’air dans la pièce est
également affectée par des facteurs tels que l’état d’une porte/fenêtre ouverte ou des fuites dans
l’isolation. Ces facteurs apparaissent comme des paramètres constants ou lentement variables
dans le temps lorsqu’ils sont modélisés par les premiers principes. Dans ces scénarios, le système
de détection et d’estimation des défauts doit estimer simultanément un ou plusieurs paramètres
inconnus.

Un observateur basé sur un modèle dans un tel cas doit estimer à la fois les états et certains
paramètres inconnus. Un problème connexe est la capacité d’estimer les états et les paramètres
en utilisant une certaine forme d’observateurs. L’étude de l’identifiabilité des paramètres appa-
raît donc nécessaire. Ce dernier problème est également intéressant en raison de sa pertinence
dans le problème de placement des capteurs pour l’estimation des paramètres, la détectabilité
des défauts, etc.

Principaux problèmes traités dans cette thèse:

• Conception d’observateurs pour l’estimation des états et de quelques
paramètres inconnus.

• Analyse de l’identifiabilité des paramètres inconnus.

Observateurs pour l’estimation de l’état et des paramètres
La conception d’observateurs pour l’estimation de l’état et des paramètres ainsi que l’identifiabilité
des paramètres sont des problèmes très génériques. Les travaux développés dans cette thèse se
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sont focalisés sur des modèles non linéaires décrits dans l’espace d’état pouvant être ré-écrit sous
forme quasi-LPV (Linear Parameter Varying).

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)
y(t) = C(ρ(t))x(t) (1)

où x ∈ Rnx , y ∈ Rny et u ∈ Rnu représentent les états, les sorties et les entrées, et ρ ∈ Rnp
représente les variables d’ordonnancement ou de prémisse.

La paramétrisation du modèle de système considérée est affine. Le modèle dans (1) peut
être de la forme:

ẋ(t) = A(ρ(t), θ)x(t) +B(ρ(t), θ)u(t) + F (ρ(t), θ)
y(t) = C(ρ(t), θ)x(t) (2)

où

X(ρ(t), θ) = X0(ρ(t)) +
nθ∑
j=1

θjX̄j(ρ(t)) (3)

avec X représentant l’une des quatre matrices système possibles dans (2).

Le modèle d’intérêt: modèles quasi-LPV avec paramétrisation affine.

De façon générale, les observateurs sont utilisés pour générer des résidus qui permettent la
détection de défauts. La variation de la valeur de certains paramètres du modèle peut être
révélatrice de l’apparition de défauts de système. Il est donc utile de concevoir des observa-
teurs capables non seulement d’estimer l’état du système mais également la valeur de certains
paramètres. Il existe deux types d’approches pour la conception de tels observateurs. Dans la
première, les paramètres inconnus sont ajoutés au vecteur d’état pour construire un nouveau
vecteur d’état étendu et donc un nouveau modèle. Ce vecteur d’état est alors estimé en utilisant
le plus fréquemment un filtre de Kalman. Cette approche ne permet cependant pas d’obtenir
des garanties de convergence de l’erreur d’estimation. La deuxième approche conduit à ce que
l’on appelle communément les observateurs adaptatifs qui estiment conjointement les états et es
paramètres. Nous avons choisi ici cette seconde approche.

Problème 1: Conception d’observateurs adaptatifs pour les modèles MIMO
quasi-LPV avec paramétrisation affine

Placement de capteurs pour l’estimation des paramètres

La procédure de conception d’un observateur suppose que les mesures disponibles permettent
d’effectuer l’estimation des états (et/ou des paramètres du modèle). Cette propriété structurelle
s’appelle observabilité lorsqu’elle est relative à l’état et identifiabilité lorsqu’elle concerne les
paramètres. L’évaluation de cette propriété est de première importance si l’on souhaite dévelop-
per des stratégies optimales de placement des capteurs.

Le placement de capteurs dans de grandes infrastructures comme les bâtiments est contraint
par divers facteurs : contrainte d’espace due à l’espace ouvert important, contraintes de coût
dues au nombre de capteurs requis pour surveiller de vastes espaces, etc. La détection et la
correction des défauts dans une telle grande infrastructure doivent faire partie d’une action de
maintenance planifiée où l’analyse des données se combine avec des connaissances d’experts. De
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manière similaire, la dégradation des performances (par exemple, l’encrassement d’un échangeur
de chaleur, le blocage du filtre à air) est également évaluée par l’intermédiaire d’une heuristique
et d’une compréhension experte. Au-delà de la maintenance planifiée, toute détection de dé-
faillance ou analyse de dégradation de performance est effectuée en s’appuyant sur des mesures
de variables clés à différents points de l’infrastructure. Pour équiper ces technologies du point
de vue de la maintenance du système, des approches adéquates de placement des capteurs pour
l’observation de l’état, l’identifiabilité des paramètres, la détectabilité des défauts et l’isolabilité
sont nécessaires. L’estimation d’état et de paramètres repose sur l’identifiabilité des paramètres
du modèle du système sous-jacent : c’est le second problème d’intérêt de cette thèse.

Problème 2: Méthodes d’analyse de l’identifiabilité des paramètres pour les
modèles quasi-LPV avec paramétrisation affine

Plan de la thèse
La figure 1 présente l’organisation de la thèse avec la description du contenu des chapitres
et leurs interactions. Le premier chapitre donne un bref aperçu du projet, qui constitue la
motivation de l’application pour la thèse. Le projet s’inscrit dans le contexte du diagnostic
des défaillances basé sur un modèle ainsi que problème de contrôle sous-jacent. Le chapitre 2
présente tout d’abord l’approche polytopique ou de Takagi-Sugeno (TS) pour la modélisation des
systèmes et la conception d’observateurs. S’ensuit une étude bibliographique de la conception
des observateurs TS appliqués dans le domaine des systèmes énergétiques du bâtiment. Cette
analyse a conduit à développer plus particulièrement des observateurs permettant l’estimation
conjointe des états et des paramètres des modèles considérés. La conception de tels observateurs
sur la base de modèles quasi-LPV décrits en temps continu est présentée lors du chapitre 3.
La dynamique d’estimation des paramètres est issue d’une analyse de stabilité à l’aide d’une
fonction de Lyapunov.

Une méthode plus classique (observateur de type proportionnel intégral) a été utilisée dans
le cas des systèmes décrits en temps discret. Celle-ci est décrite au chapitre 4. Les cas de
paramètres constants et variant dans le temps sont analysés.

Une stratégie différente est exposée au chapitre 5. Il s’agit de découpler l’estimation d’état
de l’estimation paramétrique. Une approche de type espace de parité est tout d’abord utilisée
afin d’éliminer, des équations du modèle, le vecteur d’état. Les équations résultantes permettent
d’estimer les paramètres du modèle. Ceux-ci ayant été déterminés, un observateur à mémoire
finie (Finite Memory Observer – FMO) permet ensuite d’estimer les états.

Cette approche a fait apparaître plusieurs difficultés en particulier celle relative à l’identifiabilité
paramètrique. Le chapitre 6 a donc été consacré à l’analyse de cette identifiabilité pour les mod-
èles sous forme quasi-LPV. Quelques résultats initiaux sur l’utilisation du calcul de l’espace nul
symbolique et numérique dans l’analyse d’identifiabilité sont donnés.

La thèse se termine par le chapitre 7 qui résume les contributions de la thèse et présente un
large éventail de perspectives tirées des contributions des chapitres 3 à 6.
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Chapter 1

Introduction and motivation

The origins of this thesis and the research performed in the last few years lie in the European
commission project, Energy in Time (EiT). The project gave the initial impetus to the
directions to take for the research and most importantly the financial support. In this chapter,
a very brief outline of the project and the work as part of the project are given. This is
followed by a discussion into different problems to explore and then finalizing the problems of
interest in this thesis. The chapter ends with an outline to the organization of the thesis.

Contents
1.1 EiT project description . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Project contributions: a summary . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Observers for fault diagnosis . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Fault adaptive control strategies . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Research inspirations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.1 Project work challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3 Specific research problems . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Buildings constitute a large part of the overall energy consumption in a country. According
to the United States’ Department of Energy (DoE) report, residential and commercial buildings
accounted for nearly 40% of the total energy consumed in the US for 2010 (see Fig. 1.1). It is
estimated that operational stage represents 80% of a building’s life cycle cost1. Out of this about
50% is the consequence of the energy use. Further, up to 90% of the buildings’ life cycle carbon
emission occur during the operational phase, mainly as a consequence of the HVAC (Heating,
Ventilation and Air Conditioning) systems, lighting and other appliances’ energy use. A typical
break-up of such energy consumption is given in Fig. 1.2 for 20102. Hence, energy and cost
saving measures that target the operational phase of a building will have a major impact both at
a local level for the building owners, and at the global level for the energy safety of the country.

The Energy in Time (EiT) project3 aims to address this by going beyond building control
techniques, developing an integrated control and operations approach. This will combine the
state of the art modeling techniques with the development of a simulation based control technique

1Details based on an internal document, Annex-I - Description of Work
2The graphs were created based on open data available at www.eia.gov
3www.energyintime.eu
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Figure 1.1: Total Energy consumption split for the US in 2010

to automate the generation of optimal operation plans tailored to the actual building and user
requirements. This is expected to reduce system inefficiencies and hence improve building energy
efficiency at the same time maintaining occupant comfort. The EiT project targets existing non-
residential buildings, which are the types that apparently guarantees higher impact and a lot of
room for improvement because of the wide variety of facilities and equipments covered. Further,
a methodology to enhance the implementation of such strategies for new buildings from the time
of their initial commissioning, is also envisioned.

1.1 EiT project description
To realize the above motivation, the project was split into multiple work packages that would
split various tasks associated. In this section, an abridged summary of this is given. It is to be
noted that this is not the exact breakup or organization of the project, but a description that is
useful to illustrate the components associated with the works relevant to the thesis. This avoids
sharing confidential details but at the same time provides the context necessary to connect to the
thesis. A simplified representation of the blocks involved in the project implementation is given
in Fig. 1.3. The blocks are further split into multiple actionable tasks that are termed work
packages (WPs), that track and illustrate the effectiveness of the EiT architecture. The project
involves 9 work packages and could be accessed from the project website4. In the following, a
brief summary of the architecture and the information flow along with an abridged version of
the relevant work packages are given:

The WP1 covers collating requirements and formulating the EiT system architecture. This
includes the data acquisition module which should define the sensor, energy and weather data
to be collected for the demonstration sites. The WP2: Simulation Reference Model deals with

4http://energyintime.eu/work-packages/

8



1.1. EiT project description

Figure 1.2: Building Energy consumption split for the US in 2010

characterizing the building using energy usage, occupancy data, HVAC equipments, weather
loads, control loops etc. This would also be used as a forecast tool in the EiT system archi-
tecture. The relevant modules for this thesis in the form of building control and maintenance
are realised through the work packages, WP3: Whole building Intelligent Control System and
WP4: Diagnosis and Continuous Commissioning. The building intelligent control is responsible
for key tasks such as preparing an operational plan for the energy system’s working, a dynamic
model on demand control as well as a fault adaptive module for the entire system. The build-
ing maintenance module includes tasks such as continuous commissioning, fault diagnosis and
operational maintenance of equipments.

Out of these, the relevant tasks related to the contents of this part of the thesis are: fault
diagnosis and fault adaptive control. A brief of the contributions to the project is given in Sec.
1.2. The other work packages relate to data analysis, validation of the EiT architecture at the
laboratory scale as well as in the demonstration sites. More details could be obtained from the
project website or from the deliverable documents for partners.

Project partners and demonstration sites

The EiT project involves a number of partners bringing various skill sets to the table. Further,
partners include those who manage the four demonstration sites and a laboratory scale set-up
where the parts of EiT architecture could be evaluated. The project partners are:

• Acciona Infraestructuras S.A (ACCIONA), Spain

• ANA - Aeroportos de Portugal, S.A (ANA), Portugal

• Fundacion Circe Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE),
Spain
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Figure 1.3: An abridged version of the project organization

• Cork Institute of Technology (CIT), Ireland

• Université de Lorraine (UL), France

• Centre Scientifique et Technique du Bâtiment (CSTB), France

• Fundacion Universitaria Iberoamericana (Funiber), Spain

• Institutule de Cercetari Electrotehnice (ICPE), Romania

• Integrated Environmental Solutions Limited (IES), United Kingdom

• STAM SRL (STAM), Italy

• Universidad de Granada (UGR), Spain

• United Technologies Research Centre Ireland, Limited (UTRCI), Ireland

• YIT Kiinteistötekniikka Oy (YIT), Finland

The demonstration sites provide a diversity in its characterization and could be briefly sum-
marized as follows:

FARO Airport, Portugal This is an airport building with an area of about 41000m2 which
was refurbished in 2001. The airport contains large open spaces with large flow of people at
certain times. A part of this airport building is available for demonstration purposes.

ICPE, Bucharest, Romania This is an office and test labs facility of an area of 17384m2

built in 1982. The space inside the building are closed and distributed with a constant flow of
people with a scheduled occupancy.

Levi-Lapland, Finland A large 42500m2 area hotel built in 2010. The building has three
distinct spaces for occupancy. The occupancy is seasonal and has high variability.
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Panorama, Helsinki, Finland A commercial and office building of 38160m2 in size and built
in 1999. The occupancy spaces in this building are open and distributed. The occupancy has a
varied flow, but with clear scheduling.

Specific details about the demonstration sites, from energy usage to occupancy patterns,
from energy sources to HVAC equipments are confidential. Further, only a part of these sites
are available for demonstration purposes. Given below are some relevant technical characteristics
of the sites. They are specific enough to be useful to understand the context of this part of the
thesis, but general enough and not localized to the sites so as not to affect any confidentiality
aspects.

Energy sources Apart from the electricity supply from the grid, which is used in some split
air conditioning and lighting, the heating and cooling of the buildings are accomplished through
a variety of energy sources, including,

• District heating

• Solar water heating

• Heat pump

• Boilers

• Ground thermal heating

• Water condensing machines

• Chillers

• Ice banks

Transmission system The hot or cold water is supplied to the buildings in different ways. In
some buildings, radiators and convection apparatus let the space to be heated or cooled directly.
For buildings that use district heating or a centralized heat source, a network of heat exchangers
are employed to regulate the temperature of the water being supplied to various loads.

Air handling In the buildings where the heating/cooling is not accomplished through direct
convection, an air handling set-up is used. Typically they are of two categories:

• Heat exchangers (water-air) with a VAV (Variable Air Volume) box

• Fan coil unit (FCU)

Air Handling Units (AHU) also incorporate ways to save energy by recapturing heat from exhaust
air through mixers.

Spaces served A variety of different occupancy spaces are served by the HVAC systems in
the building. This includes,

• Office spaces

• Logistics/warehouses
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• Common areas, stairs

• Restaurants

• Kitchen

• Shopping spaces

• Auditoriums

• Guest rooms

Control infrastructure These buildings have a variety of control infrastructures installed in
monitoring and controlling the energy usage. This ranges from programmable logical controllers
(PLCs) based set-up to latest building automation systems technologies that have fine granular
understanding of the energy usage.

Based on the literature survey and taking into account the various objectives of the project,
this section summarizes the ideal requirement specifications to realize those objectives.

1.2 Project contributions: a summary

As discussed in Sec. 1.1, the project is split into multiple work packages. The main contribution
from the team at the Université de Lorraine (UL) was in the work packages WP3: Whole
building intelligent control system and WP4: Diagnosis and Continuous Commissioning. Under
these work packages, team UL was involved in the fault adaptive control part in WP3 and
the diagnosis part in WP4. There were three possible scenarios to evaluate algorithms to be
developed, which in-turn influenced the approach to follow:

• Demonstration sites

• Laboratory scale set-up

• Simulation benchmark

The access to demonstration sites proved to be restrictive, partly because of the lack of suffi-
cient instrumentation and partly because of the requirements for the fault diagnosis and adaptive
control modules (data collection before, during and after fault). This brought the focus to the
laboratory scale set-up where all the necessary instrumentation for purposes such as fault real-
ization was available. However, this also turned futile and hence it was agreed that the project
partner responsible for the laboratory scale set-up evaluation would develop fault diagnosis and
adaptation methods using data-based techniques and UL would focus on model based methods.

Simulation benchmark

The SIMBAD toolbox 5 of the MATLAB software package was the chosen platform to develop a
benchmark on which the algorithms would be evaluated. SIMBAD (SIMulator of Building And
Devices) is a MATLAB/Simulink component library dedicated to the modelling and dynamic
simulation of fully equipped buildings developed by CSTB (Centre Scientifique et Technique du
Bâtiment). The simulation benchmark model has the key elements involved in the AHU and a

5http://www.simbad-cstb.fr/index.html
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Figure 1.4: Schematic of the simulation benchmark

representative model of occupancy areas with multiple zones (two or six zones). A general outline
of the benchmark is given in Fig. 1.4. A VAV based system is used to control the temperature of
the room. The idea is to use the faults that can occur in these elements and illustrate the energy
loss and comfort index degradation. It would also be used to test the model based observers
developed for Fault detection and Diagnosis. The benchmark used a mix of SIMBAD library
components and Simulink library components in conjunction with other MATLAB elements.
Modifications were made to incorporate aspects that are useful in illustration, such as:
• More complicated dynamics: e.g., dynamics of heat exchanger were enhanced to display

the nonlinear characteristics

• Incorporation of degradations: e.g., fouling in heat exchanger

• Incorporation of faults: e.g., stuck damper in the VAV box

The spectrum of work that team UL contributed within the work packages of WP3 and WP4
are summarized below:
• D3.3 Fault-adaptive control algorithms

• D4.1 System and equipment level fault detection module

• D4.2 Building operational fault detection module

• D4.3 Sensor diagnostics module

• A host of predictive maintenance and continuous commissioning modules
The predictive maintenance modules were executed by another team within UL and is out of
scope for this thesis. For the other 4 modules, team UL provided some strategies and approaches
that were envisaged by the lead project partner of those modules. A select set of these modules
is discussed in the next two sections.
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1.2.1 Observers for fault diagnosis

Observers form the core of the model based fault detection and diagnosis strategies. In this
contribution, three faults, all at the system level, were considered 6.

• Fouling: Fouling is the process of deposition or accumulation of unwanted materials such
as scale, algae, suspended solids and insoluble salts on the internal or external surfaces of
heat exchangers. The efficiency of the heat exchanger could be severely affected by fouling.
When fouling accumulates in a heat exchanger the resistance to heat transfer increases,
which decreases the overall heat transfer coefficient (referred to as UA) and hence will
increase the energy cost of the heat exchanger.

• Pump or valve stuck: Mass flow rate of water is one of the parameter that is used as a
control input for heat exchangers, though in the benchmark simulator, the focus has been
on the temperature. Water flow rate in a heat exchanger system could be influenced by
many factors. A malfunctioning pump or a valve and can lead to heat exchanger efficiency
issues and comfort index degradation. Hence estimation of mass flow rate changes is crucial
in the effective understanding of heat exchanger operation.

• Fan or air damper stuck: Mass flow rate of air is a crucial parameter in the function of
the heat exchanger. In a VAV system, the air temperature is kept constant and the VAV
adjusts the flow of air into the room using the damper. During the operation, to avoid
pressure build up in the ducts, the air flow rate may be adjusted through the fan. If the
fan gets stuck or is not able to operate at certain speeds, it could cause a difference in
the air temperature and hence the comfort. Estimating the mass flow rate and comparing
it with the command to fan (through appropriate conversion), one could detect the fault
and estimate the same.

These could be classified as process fault (fouling) and actuator faults (the other two). A
discretized nonlinear model of a heat exchanger was used and an Extended Kalman filter was
designed for each of the fault detection scenario and the results were illustrated on the benchmark
simulator.

1.2.2 Fault adaptive control strategies

A brief outline of the contribution in the fault adaptive control (FAC) module is discussed here.
First, the proposed performance indices to better understand the effect of fault adaptive control
strategies are given. This is followed by two strategies proposed for fault adaptation and their
corresponding results are given.

Performance indices

Many internal subsystems in a HVAC system have local control loops that can mask faults
occurring in the equipments in these subsystems. On one hand, this is useful to avoid drastic
impact of the fault, this is a problem from the perspective of optimizing the balance between
the overall comfort of the occupants and the energy usage. To visualize this lack of balance, the

6Other faults at subsystem level such as VAV damper stuck and temperature sensor fault were considered for
the project contribution but were executed by other members of the team and hence not outlined in this thesis.
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following two indices are proposed to evaluate the performances of the comfort and the energy:

CI = 100
TSP × ttotal

×

 ∑
|Tz−TSP |>Tth

(‖Tz − TSP ‖−Tth)× ts

 (1.1)

and

EI = En − Eref
Eref

× 100 (1.2)

with the summation is performed only when the zone temperature exceeds from the limit of
±Tth from the set point TSP . where
CI and EI - comfort and energy indices (no units)
Tz and TSP - zone temperature measured and its set point respectively (◦C)
Tth - threshold (above or below TSP ) indicating loss of comfort (◦C)
ts - the sampling interval (second)
ttotal - the total time period for which the index is computed (second)
En, Eref - the measured and reference energy (in J) respectively

The energy is computed based on the following formula,

E =
∑
ttotal

(Cp−air × ṁair(k)×∆Tair(k)× ts)

Where, ∆Tair(k) corresponds to the change in the air temperature from the input to the output
of the heat exchanger, ṁair is the mass flow rate (kg/s), and Cp−air is the specific heat capacity
of the air (in J/(kg-K)).

Fault adaptation strategies

For the benchmark model, system-level analysis comprises of the AHU with the heat exchanger
and the associated components. Most of the system level equipment faults are managed by the
robustness of the internal loops in the AHU. However, two interesting cases of faults, one at
the system-level and another at subsystem level with adaptation at the system level could be
illustrated:

• System level: hot water mass flow rate fault (pump or valve stuck)

• Subsystem level: damper stuck fault

The fault adaptive control proposed strategies assumed the availability of a perfectly working
fault detection and isolation module. With this, the strategy proposed involves the following
(respectively for the two scenarios above):

• Controller reconfiguration: Detection of the fault would lead to a new controller in the
loop

• Actuator effort distribution through reference management: Adjustment of reference at
the system level to account for fault at the subsystem level.
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Pump or valve fault

The mass flow rate of water is normally used to control the temperature of air that is supplied to
the VAV boxes. This flow rate is controlled either using a control valve (if the hot water source
is separate from AHU) or a pump (if source is local). An obstruction in the mass flow rate could
be caused due to either a pump fault or a valve stuck at a position. Such faults lead to either an
increase or decrease in the air temperature to the VAV and can lead to a reduction in comfort
index. If the mass flow rate of water is stuck, a redundant loop to control the temperature of
the water could be activated. Fig. 1.5 illustrates this strategy. As pointed out in the schematic,
this fault adaptation strategy involves a redundant controller which was implemented using the
Model Predictive Control (MPC) strategy.

Figure 1.5: Schematic of fault adaptation strategy for the water mass flow rate fault

Damper stuck fault

One insight obtained during the simulations for the controller reconfiguration based fault adap-
tation was on the distribution of actuator effort. It was observed that even if the AHU cannot
deliver the required amount of energy in the air, VAV based systems, with their internal control
loop, may adjust to allow for a correction. This inspires the idea to handle faults at the sub-
system level using changes at the system level. This is also particularly useful in big buildings
where zones are tightly interconnected without any walls between them. For example, a waiting
hall in FARO airport where there would be multiple VAVs supplying heated/cooled air.

A schematic of one possible way to implement the proposed strategy is given in Fig. 1.6.
A reference management technique is implemented using a PID controller. As simulation was
just to illustrate the idea, the implementation was done without prolonged tuning of the PID
controller. This approach can be implemented with a more sophisticated MPC based control
whereupon all the constraints of different actuators could be taken into account and the comfort
index could be improved further as well as better use of energy. The effectiveness of the strategy
was illustrated for two simulation cases: one fault in each zone leading either to heating or
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Figure 1.6: Schematic of fault adaptation strategy for the damper stuck fault

cooling the zone. It was also illustrated that with this strategy, there is little change in the
comfort index of the zone which is not affected by the damper stuck fault.

1.3 Research inspirations

In this section, an overview of the research problems that are tackled in the thesis is given. To
motivate the choice of the problems, especially in the context of the project work, the challenges
encountered in the project are discussed first in Sec. 1.3.1. This is followed by a brief about the
control problem that is taken out of the project. A clear specification of the problems handled
in this thesis concludes this section.

1.3.1 Project work challenges

The Sec. 1.2 illustrated the contribution to the project in terms of simulations. The choice of
simulation allowed simplified assumptions on available models, data and duration of data, etc.
During the project, significant limitations came up during the discussions on the data collection.
First, fault diagnosis module was a small part of the overall architecture. Second, apart from
the sensor data, there was a need to conceive and induce faults in the demonstration sites and
then collect measurement data accordingly. These factors were bottlenecks to capture sufficient
data before and after the occurrence of faults. The concerns regarding the difficulty to simulate
faults in demonstration sites were raised early. This lead to the choices of the type of faults
simulated for the contributions in Sec. 1.2, which focused on the load side and AHU components.
However, fault data for these appliances were also not available until towards the end of the
project. The delay in obtaining the data, their focus only on a single demonstration scenario
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made it difficult to use this data as a central part of the thesis work.

The model based approach was the choice that the simulations took. This relied heavily
on the availability of accurate description of the demonstration sites in the form of dynamical
models. However, there were several challenges in this regard. First, the modeling part of the
project, carried out by another partner, focused on the static characteristics of the building.
Their primary goal was to capture the energy performance of the building without any dynamic
characteristics, which are useful in capturing abnormal behaviours such as faults. Second, the
team at the Université de Lorraine was not associated in any of the work packages that deals
with modeling. This made it difficult to get access to as well as drive the modeling approach to
suit to our needs.

The challenges described above turned the focus towards problems at a more fundamental
level. These are described in the next section.

1.3.2 Research directions

Fault detection, isolation (FDI) and estimation in large and complex dynamical systems have
several challenges. One is the presence of unknown parameters in the system model. These
unknown parameters could be due to performance degradation in equipment manifesting as
modeling uncertainties, changes in model parameters due to changes in operation characteristics
etc. Common remedy for this challenge is the use of robust design methods to reduce the
influence of such parameters on the fault detection modules [1]. In some circumstances, these
parameters need to be estimated simultaneously with the states of the system as well the faults.

Figure 1.7: Schematic of a simple air handling unit (AHU)

Take the example of valve stuck fault detection and estimation in an AHU (see Fig. 1.7).
The valve is on the water path that supplies hot water to the heat exchanger. The hot water
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is supplied from a remote location, such as the district heating. The temperature of the air
on the secondary (2◦ in the figure) side of the heat exchanger is the controlled output (heat
exchanger control loop). The valve position (and hence the mass flow rate of water) is the
control input and a stuck valve indicates an actuator fault. Further, the input air flow rate and
its temperature are assumed to be known. A practical heat exchanger is affected by deposition
of materials during its operation, termed fouling (as discussed in Sec. 1.2.1). This results in
slow decay or degradation of its efficiency affecting the effective heat transfer between the air
and the water. Periodic maintenance is scheduled to clean the internals of the heat exchanger
based on an estimation of the fouling coefficient. A fault detection and estimation module for
the valve stuck fault should work under fouling whose coefficients also need to be estimated.

Consider another example in the building energy systems of a large hall, such as in an airport
or a restaurant in an office building. A hall is climate controlled by multiple VAV boxes, which
in-turn supply the hot/cold air through multiple vents. A well-known fault in such a set-up
is blockage in the air path, either due to blockages in the vents or the VAV damper being
stuck in an undesirable position. FDI and estimation in such scenarios are to be accomplished
using various control signals and measurement of air temperature at various points in the hall.
The air temperature in the room would also be affected by factors such as the state of an
open door/window or leakages in the insulation. These factors appear as constant or slowly
time-varying parameters when modeled through first principles.

In these scenarios, the fault detection and estimation problem has to simultaneously estimate
some unknown parameter(s). A model based observer in such a case should estimate both the
states and some unknown parameters. A related problem is the ability to estimate the states
and the parameters using some form of observers. For the state, the well-studied property of
observability plays the role, whereas identifiability forms the basis for the parameters. The study
of parameter identifiability in relation to estimation of the parameters through an observer is
of interest. The latter problem is of interest also due to its relevance in sensor placement for
parameter estimation, fault detectability etc., which is further discussed later in this section. At
the outset, the problems of interest could be stated as follows, more specific version of this and
their motivations are discussed subsequently.

Thesis problems of interest:

• Designing observers for the estimation of states and some unknown pa-
rameters.

• Analyzing identifiability of unknown parameters

1.3.3 Specific research problems

Observer design for state and parameter estimation and parameter identifiability is a very generic
problem. To narrow this down, a couple of specifics that are general to both the problem of
interest, model type, and parametrization type are described here. This thesis would consider
state space models, nonlinear in nature and can be converted into a quasi-LPV (Linear Parameter
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Varying) form. These models have a general form,

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)
y(t) = C(ρ(t))x(t) (1.3)

where x ∈ Rnx , y ∈ Rny and u ∈ Rnu represent the states, outputs and the inputs, and ρ ∈ Rnp
represents the scheduling or premise variables which appears as a scalar function in the matrix
entries and the matrices having appropriate dimensions. The system is LPV if ρ is an external
parameter and quasi-LPV if it is one of the system variables such as the states, inputs or outputs.
Three scenarios that are possible:

• Only known and measured premise variables: y and u. This case is by default considered
in the entirety of the thesis.

• Some unmeasured premise variables. When this is considered, it is explicitly mentioned.

• The premise variables contain feedback control inputs. This option is not considered this
work as it is difficult to clearly articulate the conservativeness of the quasi-LPV form.

In some special cases, an affine term F on top of the A and B terms could also be present.

The system model parametrization considered is affine. While affine parametrization is not
a significant part of the possible parametrizations, they are however important in engineering
systems. The model in (1.3) could be of the form:

ẋ(t) = A(ρ(t), θ)x(t) +B(ρ(t), θ)u(t) + F (ρ(t), θ)
y(t) = C(ρ(t), θ)x(t) (1.4)

where

X(ρ(t), θ) = X0(ρ(t)) +
nθ∑
j=1

θjX̄j(ρ(t)) (1.5)

with X representing one of the four possible system matrices in (1.4).

The model of interest: quasi-LPV models with affine parametrization.

Observers for state and parameter estimation

One form of model-based fault detection methods has a stable, state observer design at its core.
The observers would be used to obtain residuals, which along with a threshold would help detect
faults in the system [2]. In the scenario under discussion, these observers would provide a state
estimation corrected for the unknown parameters, which are also estimated. There are two
broad categories to design observers that perform a joint estimation of states and parameters.
In the first category, the unknown parameters are augmented to the state vector to construct
a new extended state vector and hence a new model. Consider the linear model with an affine
unknown parameter,

ẋ(t) = (A0 + Āθ)x(t) +Bu(t)
y(t) = Cx(t)
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the extended model is given by,

ẋe(t) =
[
ẋ(t)
θ̇

]
=
[
A0 + Āθ 0

0 0

] [
x(t)
θ

]
+
[
B
0

]
u(t)

y =
[
C 0

] [x(t)
θ

]
A state observer designed to estimate x̂e will simultaneously estimate the states and the param-
eters of the model. In the literature, Kalman filter based approaches are popular for this type of
approach (see for e.g., [3]). For nonlinear models, however, there is no guarantee for convergence
with the extended Kalman filter.

The second category of such observers is commonly referred to as adaptive observers in the
literature [4]. The parameter estimation is either through a choice of observer structure that is
rooted in intuition (see [5], [6]) or carefully designed structure based on the underlying dynamic
model of the system [7].

This thesis would focus on the second category of observer design, that is, adaptive observers.
For a class of single output nonlinear system models with affine parametrization, there have been
well-established studies on adaptive observer design strategies that admit a quadratic Lyapunov
function [8]. However, analytical understanding for MIMO systems have been limited. Design
strategies such as in [7] and some fundamental insights provided in [9] could be used to develop
the Takagi-Sugeno (T-S) polytopic version of adaptive observers for quasi-LPV models.

Problem 1: Design of adaptive observers for MIMO quasi-LPV models with
affine parametrization

From an application point of view, the observer design strategy shall be extended to fault
detection, isolation and estimation scenarios, such as that discussed in [10].

Sensor placement for parameter estimation

An observer design procedure assumes that the available measurements guarantee the states
(and the parameters) to be estimated, which more formally refers to state observability (and
parameter identifiability). State-space models arise naturally when the first principles model-
ing approach is used to capture the characteristics of a system. Models so obtained have their
structural properties such as state observability, parameter identifiability and from an applica-
tion point of view, fault detectability, isolability, etc., governed by the available measurements.
This makes the problem of evaluating these structural properties and developing optimal sensor
placement strategies to mitigate any lack of these structural properties closely linked to the
observer design problem.

Sensor placement in large infrastructures like buildings is constrained by various factors: space
constraint due to the large open space, cost constraints due to the number of sensors required
to monitor the vast space etc. This is further exaggerated in the case of analysing performance
degradation and faults in those sensors itself. Consider the scenario that is illustrated in Fig. 1.8.
If one of the vents in the large open space has a block, even if the fault is detected, the isolation
of the fault to the specific vent is severely constrained, partly because the sensors are usually
placed in locations where the air is sufficiently mixed.
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Figure 1.8: Schematic of a large room with multiple VAVs/vents

Fault detection and correction in such large infrastructure is hence part of a scheduled main-
tenance where data analysis combines with expert knowledge [11], [12]. Similarly, degradation of
performances (e.g., fouling in heat exchanger, blocking of air filter, opening and closing positions
of valves/dampers) are also evaluated through heuristics and expert understanding. Beyond the
scheduled maintenance, any urgent fault detection or performance degradation analysis is per-
formed through manual measurement of key variables at various points in the infrastructure (in
this case, building). Only recently semi-automated tools are being developed for continuous-
condition based maintenance platforms for buildings (see for instance [13]). One interesting
direction is the emergence of new sensor capabilities which could mitigate the problem of evalu-
ating faults and performance degradation in a timely manner. Terrestrial [14] and airborne [15]
robots are already coming up in management of logistics and could follow suit for applications
such as building energy management.

To equip these technologies from a system maintenance perspective, adequate approaches
to sensor placement for state observability, parameter identifiability, fault detectability and
isolability would be required. For state and parameter estimation, parameter identifiability
of the given state-space model of an underlying system is a key factor. This would enable
to obtain a trajectory for human-held or robot-mounted sensors to traverse through to collect
measurement data that would lead to the estimation of the parameters. This would hence be
the second problem of interest in this thesis.

Problem 2: Methods to verify Parameter Identifiability for quasi-LPV models
with affine parametrization

With these problems in place, the thesis is outlined in the following section.
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Figure 1.9: Thesis outline

1.4 Thesis outline

With the research inspiration and the problems clarified, the thesis organization is briefly out-
lined in this section. A schematic of the outline of the thesis is given in Fig. 1.9, where the
contents of the chapters and their relationships to others are outlined. This is further elaborated
in this section, where the key contribution in each of the chapter is presented as well as how
they connect with each other.

The present chapter gave a brief overview of the project, which forms the application mo-
tivation for the thesis. The project also directed towards the broad area of model based fault
diagnosis as the underlying control problem. In Chapter 2, initial explorations in this regard
are given. The T-S polytopic modeling and design approach that is used for the observer design
in this thesis is outlined first. Following this, relevant existing literature in T-S observer design
are applied to some problems in the domain of building energy systems.

The explorations in Chapter 2 revealed possible theoretical contributions in the observer
design for state and parameter estimation. The primary among them being the reduction in the
complexity of the LMI (Linear Matrix Inequality) conditions for the case when the parameters
are constant. The design approach obtained to do it, for continuous-time quasi-LPV models are
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described in Chapter 3. Here, the adaptive observer design follows a control Lyapunov function-
like strategy to obtain the parameter estimation dynamics providing an asymptotic estimation
guarantees against the much conservative L2 bounded guarantees in Chapter 2.

The design approach developed in Chapter 3 couldn’t be extended to discrete-time because
the control Lyapunov function strategy doesn’t transfer well into the discrete-time case. Hence,
the Chapter 4 develops the discrete-time version of the design approach that was used in the
Chapter 2 for building energy applications. Both the constant and time-varying parameters cases
are analyzed. The main challenge in this chapter is to overcome several of the bottlenecks that
had to be overcome to show the convergence. However, the results obtained were significantly
conservative.

The theoretical challenges and the complex LMI conditions obtained for the discrete-time
adaptive observer in Chapter 4 turned the attention towards following a different strategy. One
attempt in that direction that provided some insights are discussed in Chapter 5, where a parity
space-like approach [16] is used to decouple the estimation of the parameters and the states. In
the first step, the states are eliminated to estimate the parameters, and subsequently, the states
are estimated. This is set up as a finite memory observer (FMO) to estimate the states and
the parameters. This approach provides exact estimates under no modeling errors without noise
since it performs a sort of system-inversion.

Several problems arose in the realization of the decoupled state and parameter estimation
work. This paved way to treat the problem of parameter identifiability. Incidentally, this is also
central to the problem of sensor placement, which did not get significant attention during the
major part of the research work. This convergence led to a study of the parameter identifiability
methods for nonlinear models and in particular to those that could be represented in quasi-LPV
form. These are summarized in Chapter 6. Some initial results on the use of symbolic and
numerical null space computation in identifiability analysis are given.

Finally, in Chapter 7, the thesis contributions are summarized and a wide range of perspec-
tives that came out of the contributions in Chapters 3 through 6 are discussed.
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Chapter 2

State and parameter estimation in
building energy systems

This chapter provides a prelude to the two subsequent chapters on the observer design for
state and parameter estimation using the Takagi-Sugeno (T-S) approach. To start with, an
introduction to the T-S modeling approach and the observer design process is given. This is
followed by the implementation of an existing result on joint state and parameter estimation
with the T-S approach for two building energy applications. The chapter ends with a brief on
the limitations faced during the implementation and the directions for the subsequent
contributions.

Contents
2.1 Modeling and observer design with Takagi-Sugeno approach . . . . 25

2.1.1 Origins of Takagi-Sugeno models . . . . . . . . . . . . . . . . . . . . . . 26
2.1.2 Takagi-Sugeno polytopic model . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.3 Observer design using T-S polytopic approach . . . . . . . . . . . . . . . 29
2.1.4 Some useful results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 State and parameter estimation in building energy systems . . . . . 32
2.2.1 State and parameter estimation using a T-S design approach . . . . . . 33
2.2.2 Customizations for implementation . . . . . . . . . . . . . . . . . . . . . 37
2.2.3 Application: heat exchanger . . . . . . . . . . . . . . . . . . . . . . . . . 39
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2.3 Perspectives for the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1 Modeling and observer design with Takagi-Sugeno approach

Observers use the input and output signals of a system, together with a system model to generate
an estimate of the system’s state, which is then deployed in control, monitoring, fault detection,
etc. The origins of observers date back to the seminal work by Luenberger in [17] for linear
systems. For nonlinear systems, one of the popular observer design approaches is using the
Takagi-Sugeno models in polytopic formulation [18]. This is made use of in several of the
contributions in this thesis. In this section, a brief overview of Takagi-Sugeno models, the
observer design methods and the key techniques involved in it are discussed.
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2.1.1 Origins of Takagi-Sugeno models

The origins of Takagi-Sugeno (T-S) models go back to the article [19] by Tomohiro Takagi and
Michio Sugeno where the approach was proposed to model of fuzzy systems. It consists of several
if-then rules to capture the characteristics of a system. For example, the ith rule of a T-S model
is given as,

Model rule i :
If z1 is Zi1 and Z2 is Zi2 and · · · zn is Zin then y = gi(z)

The vector z contains the premise or scheduling variables with each zj belonging to a fuzzy set
Zij for the ithe model. The dependence of the region of scheduling variables on the choice of the
gi function is captured through weights wi(z) to obtain the overall output as,

y =
m∑
i=1

wi(z)gi(z) (2.1)

The consequent gi(z) requires to be a static function, but there is no specific restriction on what
y is. Authors have taken liberty to to use linguistic variables ẋ and y to consider state-space
models of the form,

Model rule i :
If z1 is Zi1 and z2 is Zi2 and · · · zn is Zin then,

ẋ = Aix+Biu

y = Cix+Diu (2.2)

It is to be noted that the ẋ one one side of the equation is not related to the x on the other
side. However, this notation is not wrong within the realms of linguistic variables. This allows
further the following fuzzy model,

ẋ =
n∑
i=1

wi(z)(Aix+Biu)

y =
n∑
i=1

wi(z)(Cix+Diu) (2.3)

We would refer to this representation as T-S fuzzy model. For more details on this formulation,
refer to [18], [20].

2.1.2 Takagi-Sugeno polytopic model

As was hinted above, there is an abuse of notation in the T-S fuzzy modeling literature and this
extends to the T-S polytopic representation. To clarify this, first the method to obtain a T-S
polytopic model from a nonlinear model is discussed. Given a nonlinear model,

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t))

which can be rewritten7 into a quasi-LPV form,

ẋ(t) = A(x(t), u(t))x(t) +B(x(t), u(t))u(t)
y(t) = C(x(t), u(t))x(t) +D(x(t), u(t))u(t) (2.4)

7if feasible, using nonlinear embedding techniques to be discussed shortly
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where x ∈ Rnx , u ∈ Rnu and y ∈ Rny are the states, inputs and the output variables. A(.), B(.),
C(.), and D(.) are smooth nonlinear matrix functions of appropriate dimensions. The quasi-
LPV model can be further turned in a polytopic form with the use of the sector nonlinearity
approach [21] which embeds the nonlinearity into a weighting function µi(.) that depends on
system variables to obtain a polytopic model of the form,

ẋ(t) =
m∑
i=1

µi(x(t), u(t))(Aix(t) +Biu(t))

y(t) =
m∑
i=1

µi(x(t), u(t))(Cix(t) +Diu(t)) (2.5)

Notice that the representations in (2.3) and (2.5) are exactly same except for the deliberate usage
of different notations for the weighting functions. If we consider z to contain the system variables,
the representations are the same. However, this notational abuse is sometimes confusing as unlike
in the fuzzy representation, the scheduling/premise variables are system variables and hence do
not have a fuzzy nature as in (2.2). In this thesis, representation would be referred to as T-S
polytopic model.

To obtain a T-S polytopic model from a nonlinear model, there are two major approaches:
linearisation and nonlinear embedding. Linearisation method uses a two-step process to arrive
at the T-S model: First, to decide on the scheduling variables on which the weighting functions
will depend on and second choosing sufficient number of linearisation points to obtain the system
matrices. Linearisation method provides an approximation to the original nonlinear model. One
example of a linearisation method is [22]. In this thesis, the focus is on methods that can provide
exact representation of the nonlinear model within a compact set and so linearisation method
is not discussed any further.

Nonlinear embedding Obtaining a T-S polytopic model involves a two-step process. In the
first step, the nonlinear model is converted into an equivalent quasi-LPV form. Depending upon
the choice of the premise variables and how the entries of the matrices in (2.4) are constructed,
different quasi-LPV models can be obtained for the same nonlinear model. For a simple nonlinear
model, this can be done manually and for large and complex models, formal steps are required.
Once the quasi-LPV model is obtained, the nonlinearities have to be embedded into the weighting
functions so that the system matrices A(.) etc. are replaced with constant matrices Ai. This
step involves finding polytopic bounds for the nonlinear matrix function A(.) formed by the
vertices Ai. Depending upon the choice of the vertices, the polytopic model provides an exact
characterization of the nonlinear model within the polytope.

A popular way to obtain a T-S polytopic model is to manually choose the premise variables
to obtain the quasi-LPV form in (2.4) and then apply the sector nonlinearity approach in [21].
The approach obtains a T-S polytopic model of the form,

ẋ(t) =
2np∑
i=1

µi(z(t))(Aix(t) +Biu(t))

y(t) =
2np∑
i=1

µi(z(t))(Cix(t) +Diu(t)) (2.6)
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where z(t) refers to the np premise variables leading to 2np submodels. The weighting functions
(µis) absorb the nonlinearity in the model and they also satisfy the convex sum property,

r∑
i=1

µi(z(t)) = 1 and 0 ≤ µi(z(t)) ≤ 1, ∀t, ∀i ∈ {1, 2, ...np}

The sector nonlinearity approach allows to define the weighting functions such that the resultant
T-S model exactly represents the original nonlinear behaviour within the sector. For a given
premise variable z1, enclosed within the sector of [zmin

1 , zmax
1 ], the membership functions are

given by,

µ̃1
1(z(t)) = z(t)− zmin

1
zmax

1 − zmin
1

, and µ̃2
1(z(t)) = zmax

1 − z(t)
zmax

1 − zmin
1

(2.7)

For practical systems the extremum values of the premise variables, zmin
1 and zmax

1 can be ob-
tained from experience. For a general scenario, the models could be simulated to find the
range within which the model max/min value would be satisfactory. The weighting functions
µi(z(t)) are then obtained by normalizing the products of the membership functions of indi-
vidual premise variables. For instance, for a system with two premise variables, there are four
submodels/weighting functions given by (the dependence z(t) is omitted for simplified notation),

µ1 = µ̃1
1µ̃

1
2∑

ij µ̃
i
1µ̃

j
2
, µ2 = µ̃1

1µ̃
2
2∑

ij µ̃
i
1µ̃

j
2
, µ1 = µ̃2

1µ̃
1
2∑

ij µ̃
i
1µ̃

j
2
, µ4 = µ̃2

1µ̃
2
2∑

ij µ̃
i
1µ̃

j
2

The chosen premise variables would replace the corresponding functions of x and u in the
matrices. By replacing these premise variables with their appropriate extremum values, the
constant matrices Ai, Bi, Ci, Di in (2.6) are obtained. Examples for the applications are in the
following chapters as well as can be referred to in [21], [18], [20].

The sector nonlinear approach forms a polytope around the nonlinear model trajectories
that does not take into account the relationship that may exist between the premise variables.
This leads to conservative models which, while still offering an exact representation within the
polytope, can be restrictive when this model is used for applications such as control, fault
diagnosis etc. In the works [23], [24], the authors develop an approach to find a balance between
accuracy and conservatism of the final model with the use of principal component analysis
(PCA). Their approach to find a balance can be summarized as follows:

• Generate typical trajectories of scheduling signals

• Compute parameter trajectories generated by these scheduling signal trajectories and nor-
malize this data to form a matrix of normalized parameter data.

• Apply PCA to find a coordinate transform that yields a tighter parameter set

• Apply the normalization and the mapping derived from the data to the parameter functions
to determine the desired representation

Other approaches to reduce conservativeness could be referred to such as in [25], and can even-
tually make use of linear programming techniques such as in [26].
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Instead of the manual approach to obtain a quasi-LPV model from a nonlinear model, it
is possible to use systematic procedures to do so. In [27], the authors propose a method to
obtain a quasi-LPV model for control-affine SISO models. The method exploits the feedback
linearisation technique by constructing a diffeomorphism which forms the tranformation where
the final quasi-LPV model has only measured premise variables. The authors in [23] also provide
a systematic approach to obtain which consists of the following four steps:

• Rewrite the original model in standard form

• Classify the terms

• Assign terms for the state-space matrices

• Combine the terms

This systematic procedure is combined with the conservativeness reduction procedure discussed
above to obtain appropriate LPV models for control system problems in application.

2.1.3 Observer design using T-S polytopic approach

One of the contributions in this thesis relates to the design of observers to estimate the states and
parameters for quasi-LPV model. To achieve this, the state observer design for T-S polytopic
models is used as the foundation. In general, T-S polytopic models are used in control design due
to the ability to formulate the design problem to that of solving a set of LMIs. Typically these
problems could be classified into one of: LMI feasibility problem and LMI optimization problem
(eigenvalue problem or generalized eigenvalue problem). More details on these formulations
could be referred to from [28], [29]. Given the availability of a host of LMI solvers that use
semidefinite programming techniques (for example LMILab from MATLAB, SeDuMi [30]) the
design problems can be easily evaluated with the modern computers.

At the core of the observer design using the T-S models is the Lyapunov’s direct method.
This makes the approach only a sufficient condition, that is, if the LMI solvers cannot return a
solution, it does not provide any definitive answer on the stability of the T-S model. The most
popular of the Lyapunov function used for stability analysis is the quadratic Lyapunov function,
that is (the time dependence (t) is dropped for simplifying notation),

V (x) = xTPx (2.8)

where P = P T > 0 is a symmetric positive definite matrix. An autonomous T-S model (u = 0) of
the form (2.6) is quadratically stable if the Lyapunov function (2.8) decreases and asymptotically
goes to zero for all the trajectories permitted by the system model. That is (the time dependence
(t) is dropped for simplifying notation),

V̇ =
(2np∑
i=1

µi(z)Aix
)T

Px+ xTP

(2np∑
i=1

µi(z)Aix
)

=
(2np∑
i=1

µi(z)xT (PAi +ATi P )x
)

(2.9)

Since the weighting functions satisfy convex sum properties, the following results follow:
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Theorem 1. [31] The autonomous model

ẋ =
2np∑
i=1

µi(z)Aix

is globally asymptotically stable if there exists a matrix P = P T > 0 such that the following LMI
feasibility problem has a solution,

PAi +ATi P < 0 (2.10)
for i = 1, 2, · · · , 2np

It is important to note that the Lyapunov matrix P has to be common to all the different
vertices of the polytope (the matrices Ai, ∀ i). This is the reason why conservativeness of the
T-S model is an important issue as a very conservative model may end up having widely varying
Ais and hence would make it very difficult to find a common P which satisfies (2.10). Pole
placement approach could be used to make the quadratic stability analysis to have arbitrary
speed of convergence and is termed D-stability. This is realized by adding extra LMI constraints,
more details could be referred to from [32]. There are non-quadratic Lyapunov functions that
are also possible to be used with continuous-time T-S models and more details could be referred
to in [33], [34]. For discrete-time models, special Lyapunov functions which verify the reduction
in the Lyapunov function dynamics over a few sampling intervals have been proposed in [35].
For the purpose of this thesis, the focus would mostly be on quadratic Lyapunov functions.

For a non-autonomous case, especially when there are unknown or unmeasured disturbances
that exist in the equation (2.6), the analysis is carried out to minimize the impact of the
disturbances on the stability. These could be achieved through the bounded real lemma (BRL)
discussed in the following chapter. To illustrate the relevance of the stability analysis for observer
design, consider a simple case of continuous-time T-S model in (2.6) where the premise variables
z are composed of either known or measured variables. For this system, the following observer
is designed,

˙̂x(t) =
2np∑
i=1

µi(z(t))(Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))

ŷ(t) =
2np∑
i=1

µi(z(t))(Cix̂(t) +Diu(t)) (2.11)

The error dynamics obtained will be,

ė(t) =
2np∑
i=1

2np∑
j=1

µi(z(t))µj(z(t))(Ai − LiCj)e(t) (2.12)

This is now an autonomous T-S model and the results in Theorem 1 can be extended to,

Theorem 2. [31] The estimation error dynamics associated with the observer design in (2.12)
is asymptotically stable, if there exists P = P T > 0, and Li, i = 1, · · · , 2np such that,

P (Ai − LiCi) + (Ai − LiCi)TP < 0
P (Ai − LiCj +Aj − LjCi) + (Ai − LiCj +Aj − LjCi)TP < 0

(2.13)
(2.14)

for i = 1, 2, · · · , 2np and j = i + 1, i + 2, ..., 2np assuming that the two submodels are active
simultaneously or the corresponding weighting function is non-zero.
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Note that the two conditions (2.13)-(2.14) are not LMIs due to the cross terms of two
unknowns Li and P. However, a simple change of variables would be sufficient to cast them as
an LMI. That is, consider, Ri = PLi, i = 1, · · · , 2np , then the conditions are reformulated as,

PAi −RiCi +ATi P − CTi RTi < 0
PAi −RiCj + PAj −RjCi +ATi P − CTj RTi +ATj P − CTi RTj < 0

(2.15)
(2.16)

The observer gain Li is then obtained by Li = P−1Ri. These two theorems form the basis
of the results in this chapter as well as the subsequent chapters where observers for state and
parameter estimation are investigated and proposed.

2.1.4 Some useful results

Casting a given control design problem into an LMI problem involves a number of properties of
matrix inequalities. Some of those which are used later in the thesis are given below:

Lemma 1. [36] Consider two matrices X and Y with appropriate dimensions, a time varying
matrix ∆(k) and a positive scalar λ. The following property is verified:

XT∆T (k)Y + Y T∆(k)X ≤ λXTX + λ−1Y TY (2.17)

for ∆T (k)∆(k) ≤ I

Lemma 2. [37] The following LMIs, for appropriately suitable dimensions, are equivalent:

ATPA−Q < 0, P > 0 (2.18)[
−Q ATP
PA −P

]
< 0, P > 0 (2.19)

Lemma 3. (Bounded Real Lemma[28]) Assume that A is stable, (A,B,C) is minimal, and
DTD < 0. Then, the following are equivalent, for the L2 gain Γ:

1. The system
ẋ = Ax+Bu, y = Cx+Du, x(0) = 0

is nonexpansive, i.e., satisfies∫ T

0
y(t)T y(t)dt ≤

∫ T

0
u(t)TΓu(t)dt

for all u and T ≥ 0

2. The LMI

P > 0,
[
ATP + PA+ CTC PB + CTD

BTP +DTC DTD − Γ

]
≤ 0 (2.20)

in the variable P = P T is feasible. This corresponds to the existence of a quadratic
Lyapunov function V (x) = xTPx that satisfies

V̇ + yT y − uTΓu ≤ 0 (2.21)
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Lemma 4. (Discrete-time Bounded Real Lemma [38]) For a discrete-time system, of the
form,

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k) (2.22)

the Bounded Real Lemma equivalent LMI condition for stability with an L2 gain Γ is,

P > 0,
[
ATPA− P + CTC ATPB + CTD
BTPA+DTC DTD +BTPB − Γ

]
≤ 0 (2.23)

where this corresponds to existence of a quadratic Lyapunov function V (xk) = xTk Pxk such that

V (xk+1)− V (xk) + yTk yk − uTk Γuk ≤ 0 (2.24)

Lemma 5. (Schur’s Complement) For a symmetric matrix M , given by,

M =
[
A B
BT C

]

if C is invertible, then the following properties hold:

1. M > 0 iff C > 0 and A−BC−1BT > 0

2. if C > 0, then M ≥ 0 iff A−BC−1BT ≥ 0.

2.2 State and parameter estimation in building energy systems

In Sec. 1.3.2, some examples from building energy systems were stated to motivate the problem
of joint state and parameter estimation. In the current section, a result from existing literature is
customized and applied for models of some building energy modules. The focus is on quasi-LPV
models and the analysis is through the polytopic Takagi-Sugeno modeling approach.

To give the context, a brief review of the use of Takagi-Sugeno models in control and esti-
mation problem in building energy systems is given. The following works give a flavour of those
that use a data-based model building and use in control applications. In [39], the authors use a
multiple model predictive control (MMPC) for the temperature control in the AHU of a HVAC
system. A divide-and-conquer strategy by which the nonlinear characteristics is split into a set
of T-S models at a lower level and fuzzy integrated LPV model at the global level is proposed.
This allows them to develop a hierarchical MMPC strategy using parallel distribution compen-
sation method. The weights corresponding to the various T-S submodels are learned through a
fuzzy satisfactory clustering (FSC) algorithm. This approach is illustrated in an HVAC system
with three chillers, three zones with three AHUs. The authors in [40] develop a Fuzzy MPC to
the temperature control of an industrial scale cross-flow heat exchanger. To train the model,
the local linear model tree algorithm (LOLIMOT) is applied. The authors in [41] choose a T-S
modeling approach to model a parallel flow heat exchanger which is part of a thermal plant
identified through an iterative fuzzy clustering algorithm.
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2.2. State and parameter estimation in building energy systems

Very limited number of works deploy a T-S model obtained through first principles. In
[42], the authors consider a tubular heat exchanger of counter flow type. The heat exchanger
model is obtained according to the direct lumping procedure and the dynamical model that’s
considered has four states and two outputs in the quasi-LPV form. The aim of the paper is
to estimate fouling and the modeling approach renders the fouling parameter to appear in two
different unknown parameters. The authors rewrite the model such that the difference between
the nominal value of the unknown parameters are bunched together as two unknown inputs.
These unknown inputs are considered as polynomials of degree 2, and an extended state vector
with the unknown inputs and their non-zero derivatives is formed. A T-S observer is designed
for this extended model that estimates both the state and the unknown inputs. To improve
performance, a D-stability approach is used. One assumption that makes this approach work
for fouling detection is that the temperatures on the primary and secondary sides of the heat
exchanger for the two counter flowing liquids are the same. This assumption, however is very
difficult to achieve in practice even if the two liquids are the same. In order to test the proposed
approach, the authors use input/output data generated by simulation using a refined model of
the considered heat exchanger in the ANSYS Fluent CFD software. In [43], the authors follow
a similar modeling approach for the heat exchanger as in [42] and the detection of fouling is
attached to two different unknown parameter detection. Unlike in the previous work, the authors
consider these parameters as constant and add them to the state vector. The observer design
considers the model with uncertain terms and follows a sum of squares (SOS) approach.

2.2.1 State and parameter estimation using a T-S design approach

One key observation in the models of several building energy components is that the unknown
parameters appear affinely when represented in the LPV state-space (LPV-SS) form. For in-
stance, this enabled the authors in [42] to rewrite the fouling detection problem as an additive
unknown input observer problem. That is, the models are of the form,

ẋ(t) =
(
A0(z(t)) +

nθ∑
i=1

Āi(z(t))θi

)
x(t) +

(
B0(z(t)) +

nθ∑
i=1

B̄i(z(t))θi

)
u(t)

y(t) = Cx(t) (2.25)

where z(t) refers to the premise or scheduling variables. θi is one of the nθ unknown parameters.
The unknown parameters can be time-varying to represent effects such a degradation, faults etc.
Further, since these models are obtained through transformation from nonlinear counterparts,
the premise or scheduling variables shall consist of the system variables such as inputs, outputs
or one of the unmeasured states, making the models quasi-LPV. The requirements lead to use
of the joint state and parameter estimation approach proposed and developed in papers such
as [44] and [6]. They use the Takagi-Sugeno polytopic approach. The motivation for the choice
could be summarized as:

• the unknown parameters, θi, be time-varying

• the premise variables, z, be unmeasured/unknown

• no specific restriction on the dynamics of the unknown parameters

The fundamental idea behind the parameter estimation approach proposed in [44] is to rewrite
a given unknown parameter using the sector nonlinearity (SNL) transformation [21]. The main
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Chapter 2. State and parameter estimation in building energy systems

assumption required for this construction is that the maximum and minimum values within
which the parameter varies are known. That is,

θ(t) = µ1(θ)θ1 + µ2(θ)θ2 (2.26)

where θ1 and θ2 represent the minimum and maximum values that the parameter can attain
and the membership functions µi(θ) are given by,

µ1(θ) = θ2 − θ(t)
θ2 − θ1 , µ2(θ) = θ(t)− θ1

θ2 − θ1

When this approach is extended to a model in quasi-LPV state-space form, SNL transformation
is applied to both the premise variables and the unknown parameters. First, the application
of SNL transformation to an LPV/quasi-LPV model (without any unknown parameters) would
lead to Takagi-Sugeno models of the form,

ẋ(t) =
2np∑
i=1

µzi (z(t)) (Aix(t) +Biu(t))

y(t) = Cx(t) (2.27)

where there are np premise variables leading to 2np submodels. Further details about the model
could be referred to in Sec. 2.1. For the model in (2.25), while considering the parameters as
unknown and time-varying, the SNL transformation would lead to,

ẋ(t) =
2np∑
i=1

2nθ∑
j=1

µzi (z(t))µθj(θ(t))(Aijx(t) +Biju(t))

y(t) = Cx(t) (2.28)

with,

Aij = Ăi +
nθ∑
j=1

θkj Āj , Bij = B̆i +
nθ∑
j=1

θkj B̄j (2.29)

where θj ∈ [θ1
j , θ

2
j ] and the weighting functions are obtained using the bounds assumed for

the corresponding premise variables and the parameters. The terms Ăi (and B̆i) refers to the
components of the matrix Aij (and Bij) that does not depend on the parameters θ. The reader
is referred to the original reference [45] for more details about the SNL transformation and
modeling. For a system defined by (2.28)-(2.29), the authors in the original reference propose
an observer with a structure given by

˙̂x(t) =
2np∑
i=1

2nθ∑
j=1

µzi (ẑ(t))µθj(θ̂(t))[Aij x̂+Biju+ Lij(y(t)− ŷ(t))]

˙̂
θ(t) =

2np∑
i=1

2nθ∑
j=1

µzi (ẑ(t))µθj(θ̂(t))[Kij(y(t)− ŷ(t))− ηij θ̂(t)]

ŷ(t) = Cx̂(t) (2.30)

where Lij , Kij and ηij have to be adjusted to estimate the states and the parameters. Note
the use of ẑ(t) in the weighting function, which indicates that the premise variable can be
considered unmeasured and that an estimate of the premise based on the state estimates go into
it. Also of interest to note is that the parameter estimation component in the observer has a
proportional-integral (PI) structure.
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2.2. State and parameter estimation in building energy systems

The analysis of the convergence of the estimation requires the computation of the error
between the original and estimated states. However, the weighting functions in the observer
model depend on estimated premise variables (µθj(θ̂), µzi (ẑ(t))) which makes the comparison
of the system equations (2.28) and the observer equations (2.30) difficult. This is avoided by
representing the original system in an uncertain-like form as,

ẋ(t) =
2np∑
i=1

2nθ∑
j=1

µzi (ẑ(t))µθj(θ̂(t)) [(Aij + ∆A(t))x(t) + (Bij + ∆B(t))u(t)]

y(t) = Cx(t) (2.31)

where ∆A(t) and ∆B(t) are bounded time varying factors and a function of the differences
between the weighting functions given by

∆A(t) =
2np∑
i=1

2nθ∑
j=1

[
µzi (z(t))µθj(θ(t))− µzi (ẑ(t))µθj(θ̂(t))

]
Aij = AΣA(t)EA

∆B(t) =
2np∑
i=1

2nθ∑
j=1

[
µzi (z(t))µθj(θ(t))− µzi (ẑ(t))µθj(θ̂(t))

]
Bij = BΣB(t)EB (2.32)

where

A =
[
A11 ... A2np2nθ

]
, B =

[
B11 ... B2np2nθ

]
EA =

[
Inx ... Inx

]T
, EB =

[
Inu ... Inu

]T
ΣA(t) = diag (δ11Inx , · · · , δ2np2nθ Inx) , ΣB(t) = diag (δ2np2nθ Inu , · · · , δ2np2nθ Inu)

with δij = µzi (z(t))µθj(θ(t))− µzi (ẑ(t))µθj(θ̂(t))

The matrix representation AΣA(t)EA for ∆A(t) (as well as that for ∆B(t)) is useful later when
deriving LMI conditions. This representation helps to obtain the observer error dynamics of the
form:

ėa(t) =
2np∑
i=1

2nθ∑
j=1

µzi (ẑ(t))µθj(θ̂(t))[Φijea(t) + Ψij(t)ũ(t)] (2.33)

where ea(t) , [ex(t) eθ(t)]T combines the error dynamics of both the states and the parameter,
with ũ ,

[
x(t) θ(t) θ̇(t) u(t)

]T
and,

Φij =
[
Aij − LijC 0
−KijC −ηij

]
, Ψij(t) =

[
∆A(t) 0 0 ∆B(t)

0 ηij I 0

]
(2.34)

The problem is now reduced to finding observer gains such that the error will decay and the
effect from the external inputs ũ is minimized with guaranteed bounds. Considering a quadratic
Lyapunov function, V (t) = eTa (t)Pea(t), P = P T > 0, the following inequality needs to hold,

V̇ (t) + eTa (t)ea(t)− ũT (t)Γ2ũ(t) < 0 (2.35)

where Γ2 corresponds to the matrix with block entries corresponding component in ũ. This can
be expanded taking into account the dynamics in (2.33) to obtain

2np∑
i=1

2nθ∑
j=1

µi(z(t))µj(θ̂(t))
[
ea(t)
ũ(t)

]T [ΦT
ijP + PΦij + I PΨij(t)

ΨT
ij(t)P −Γ2

] [
ea(t)
ũ(t)

]
< 0 (2.36)
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Chapter 2. State and parameter estimation in building energy systems

To obtain the conditions to guarantee stability and bounded influence of the elements in ũ(t)
on the convergence, BRL is a candidate of application. The uncertain terms inside Ψij(t) in
(2.34) makes it a time-varying factor and application of BRL requires the error dynamics to
have constant matrices. The uncertain terms in Ψij(t) in (2.34) depend on weighting functions
which are time varying but follow the convex sum property which is exploited by the authors.
The authors use the Lemma 1 to obtain an upper bound for the uncertain terms, which depend
on the weighting functions. The resulting matrix inequalities are not linear, however and require
the following two steps to obtain LMIs:

• The Lyapunov matrix P has a block diagonal structure, that is, P = diag(P0, P1) of the
sizes corresponding to nx and nθ. This makes it easy to reduce the nonlinear matrix
inequalities to LMIs.

• Change of variables for bilinear terms: Rij = P0Lij , Fij = P1Kij and η̄ij = P1ηij .

This leads to LMI conditions which are summarized in the following theorem.

Theorem 3. [6] There exists a robust state and parameter observer for the polytopic system
with a time varying parameter with a bounded L2 gain β of the transfer from ũ(t) to ea(t)
(β > 0) if there exists P0 = P T0 > 0, P1 = P T1 > 0, β > 0, λ1, λ2, Γ0

2, Γ1
2, Γ2

2, Γ3
2, ηij,

Fij and Rij solution for the optimization problem (2.37) under the LMI constraints (2.39) (for
i = 1, 2, ..., 2np j = 1, ..., 2nθ):

minimize
P0,P1,Rij ,Fij ,η̄ij ,λ1,λ2,Γk2

β

Γk2 < βI for k = 0, 1, 2, 3, 4

(2.37)

(2.38)

Q11
ij −CTF Tij 0 0 0 0 P0A P0B
∗ Q22

ij 0 η̄ij P1 0 0 0
∗ ∗ Q33 0 0 0 0 0
∗ ∗ ∗ −Γ1

2 0 0 0 0
∗ ∗ ∗ ∗ −Γ2

2 0 0 0
∗ ∗ ∗ ∗ ∗ Q66 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ −λ1Ina 0
∗ ∗ ∗ ∗ ∗ ∗ 0 −λ2Inb


< 0 (2.39)

with,
Q11
ij = P0Aij +ATijP0 −RijC − CTRTij + Inx

Q22
ij = −η̄ij − η̄Tij + Inθ

Q33 = −Γ0
2 + λ1E

T
AEA

Q66 = −Γ3
2 + λ1E

T
BEB

and the entry ‘∗’ refers to the transpose of the corresponding element due to the symmetric
nature. The indices for the identity matrices are given by: na = nx×2np+nθ and nb = nu×2np+nθ .
The solution to this LMI would then be used to obtain the observer gains by:

Lij = P−1
0 Rij

Kij = P−1
1 Fij

ηij = P−1
1 η̄ij

(2.40)
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2.2. State and parameter estimation in building energy systems

2.2.2 Customizations for implementation

The results in [6] need some adaptation when applying to specific problems, such as the following:

• The models contain known or measured premise variables ⇒ A joint state and parameter
estimation result with known premise variables is envisaged.

• An L2 bound for noise influence on the estimation error. The authors analyze this for the
linear case in [44], but extension to quasi-LPV is pending.

• Reducing the number of variables to be determined:

– The gains Γk2 in (2.35) are chosen. This follows the Remark 3 in [6]. However,
choosing all the Γk2 parameters transforms the constrained optimization problem with
LMI constraint in Theorem 3 to an LMI feasibility problem.

– The gains ηij in (2.34) are chosen. The presence of a non-zero integral gain allows
for the matrix Φij in (2.34) to have non-zero eigenvalues and hence choosing them
simplifies the problem.

• Numerical constraints:

– To obtain the LMIs from nonlinear matrix inequalities, change of variables is em-
ployed. This leads to the final observer gain computation as given in (2.40) which
require the computation of P−1

0 and P−1
1 . If the computed P0 and P1 are close to

0, the inverse computation will be numerically intractable. To avoid this, additional
conditions are added such that P0 > P0init and P1 > P1init for sufficiently large P0init
and P1init.

– It was observed during simulations that there is a need for between the gains Kij and
η and an additional LMI constraint is considered as,

Fij > ρP1η (2.41)

where ρ is chosen such that the integral gain would not let the estimation vanish to
zero due to the effect of η. ρ shall be a diagonal matrix of different values depending
upon the scale of each the unknown parameter θ. This aspect requires further analysis
for cases such as multiple θ.

For the purpose of illustration, the integral gain ηij is considered the same across different
submodels and denoted as η0. The chosen L2 gains for the component of ũ is given by Γ =[
Γx Γθ Γθ̇ Γu Γν

]T
, where the last element corresponds to the measurement noise ν(t).

The system model considered for the implementation is given by,

ẋ(t) =
2np∑
i=1

2nθ∑
j=1

µzi (z(t))µθj(θ(t))(Aijx(t) +Biju(t))

y(t) = Cx(t) +Hν(t) (2.42)
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with the noise ν(t) affecting the measurement through the transmission matrix H. The observer
structure is chosen to be

˙̂x(t) =
2np∑
i=1

2nθ∑
j=1

µzi (z(t))µθj(θ̂(t))[Aij x̂+Biju+ Lij(y(t)− ŷ(t))]

˙̂
θ(t) =

2np∑
i=1

2nθ∑
j=1

µzi (z(t))µθj(θ̂(t))[Kij(y(t)− ŷ(t))− η0θ̂(t)]

ŷ(t) = Cx̂(t) (2.43)

Theorem 4. There exists a robust state and parameter observer (2.43) for the Takagi-Sugeno
model with time-varying parameters (2.42) with a chosen bounded gain of Γ from ũ(t) to ea(t),
if there exists P0 = P T0 > 0, P1 = P T1 > 0, λ1, λ2 > 0, Fij, Rij such that (for i = 1, 2, ..., 2np
and j = 1, 2, ..., 2nθ), the following LMIs are satisfied

Q11
ij −CTF Tij 0 0 0 0 −RijH P0A P0B
∗ Q22

ij 0 P1η0 P1 0 −FijH 0 0
∗ ∗ Q33 0 0 0 0 0 0
∗ ∗ ∗ −Γθ 0 0 0 0 0
∗ ∗ ∗ ∗ −Γθ̇ 0 0 0 0
∗ ∗ ∗ ∗ ∗ Q66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Γν 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ1Ina 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2Inb


< 0 (2.44)

Fij > ρP1η0Inθ (2.45)
where Q11

ij refers to that in (2.39) and

Q22 = −η0 − ηT0 + P1 + Inθ

Q33 = −Γx + λ1E
T
AEA

Q66 = −Γu + λ2E
T
BEB

The observer gains are given by:

Lij = P−1
0 Rij and Kij = P−1

1 Fij (2.46)

Proof. Though the premise variables are considered measured, the proof follows the steps in [6].
The central crux of the convergence analysis is to handle the difference between the actual and
the estimated weighting functions. This means that whether the premise variables or known or
not, the conservativeness of the proposed results remains the same. In the modified scenario
with known premise variable, this difference continues to remain. This is because the weighting
function is product of the membership functions corresponding to the premise variables and the
unknown parameters and the latter remains estimated. That is, the uncertain-like terms ∆A(t)
and ∆B(t) in (2.32) are modified, but have the same structure and characteristic as given by

∆A(t) =
2np∑
i=1

2nθ∑
j=1

µzi (z(t))
[
µθj(θ(t))− µθj(θ̂(t))

]
Aij

∆B(t) =
2np∑
i=1

2nθ∑
j=1

µzi (z(t))
[
µθj(θ(t))− µθj(θ̂(t))

]
Bij (2.47)
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This means that whether the premise variables are known or not, the conservativeness of the
proposed result remains the same. Further, since there is an additional measurement noise
considered, the analysis leads to the vector ũ(t) to be extended to include the measurement
noise such that,

ũ(t) =
[
x(t) θ(t) θ̇(t) u(t) ν(t)

]T
with the Ψ(t) matrix in (2.34) having the form,

Ψij(t) =
[
∆A(t) 0 0 ∆B(t) −LijH

0 η0 I 0 −KijH

]

To accommodate this, the L2 gain matrix adds another block Γν and corresponding modification
in the LMI condition with the addition of a row and column all following the steps in [44].

In the subsequent sections, this result will be applied to several examples from building
energy systems.

2.2.3 Application: heat exchanger

Heat exchanger is a recurring component in different types of HVAC systems. One way to model
heat exchanger is from the first principles considering the energy balance between the heat
exchanging fluids, the interaction with the intervening material and the external environment.
In this sense, the model used in [42] provides an ideal starting point. One way to simplify the
model in [42] is to lump the variables at the ends of the heat exchanger. Further, specific choice
of the fluids are made with the water being supplied to the heat exchanger to supply heat to
(or take away heat from) the air to be fed to the occupancy zones. This is represented by the
nonlinear differential equations

dTao(t)
dt

= qa(t)
Ma

(Tai(t)− Tao(t)) + UA(t)
2CpaMa

∆T (t)

dTwo(t)
dt

= qw(t)
Mw

(Twi(t)− Two(t))−
UA(t)

2CpwMw
∆T (t)

(2.48)

(2.49)

where
Tao, Tai : Output/input air temperature (K)
Two, Twi : Output/input water temperature (K)
qa, qw : Air and water mass flow rates (g/s)

Cpa, Cpw : Specific heat capacities (J/g.K)
UA : Overall heat transfer coefficient (J/K)

The following are assumed for the model:

• The mass flow rates of air and water do no undergo any change inside the heat exchanger.

• The temperature variation is considered lumped at the ends of the heat exchanger.

• There is no heat loss in the transfer through the metal conductor.

• The term ∆T is chosen as Two + Twi − Tao − Tai as discussed in [42] which is considered a
better approximation.
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• UA(t), the heat transfer coefficient is a time varying factor. However, it changes very slowly
(over weeks) and hence could be considered constant for problems where time duration is
small.

By making the following definitions for the states and inputs of the system:

x1(t) , Tao(t), x2(t) , Two(t), d(t) , Tai(t), u1(t) , Twi(t)

and defining the constants as

α1 ,
1
Ma

, α2a ,
1

2CpaMa
, α2w ,

1
2CpwMw

, α3 = 1
Mw

the model could be represented as

ẋ1(t) = α1qa(t)(d(t)− x1(t)) + α2aUA(t)(x2(t) + u1(t)− x1(t)− d(t))
ẋ2(t) = α3qw(t)(u1(t)− x2(t))− α2wUA(t)(x2(t) + u1(t)− x1(t)− d(t))

(2.50)
(2.51)

This can further be represented in a matrix form as

ẋ(t) = A(x, u)x(t) +B(x, u)u(t) (2.52)

where

A(x, u) =
[
−α1qa(t)− α2aUA(t) α2aUA(t)

α2wUA(t) −α3qw(t)− α2wUA(t)

]

B(x, u) =
[
α1qa(t)− α2aUA(t) α2aUA(t)

α2wUA(t) α3qw(t)− α2wUA(t)

]

The input air temperature is considered as a measured disturbance since the external weather
is not controlled, but measured.

To represent the heat exchanger model, the premise variables considered are the mass flow
rates z(t) =

[
qa(t) qw(t)

]
. Thus the time varying system matrices are given by,

Ai(t) =
[
−α1z

i
1 − α2aUA(t) α2aUA(t)
α2wUA(t) −α3z

i
2 − α2wUA(t)

]

Bi(t) =
[
α1z

i
1 − α2aUA(t) α2aUA(t)
α2wUA(t) α3z

i
2 − α2wUA(t)

]
C =

[
1 0

]
(2.53)

for i = 1, 2, 3, 4. The superscript i on the premise variable refers to the corresponding maximum
or minimum value of the premise variable of the ith submodel. That is, i = 1 shall correspond
to the minimum values of both the premise variables, and hence z1

1 and z2
1 are the minimum

values of the two premise variables. The four possible combinations are represented as four
submodels. As is evident, the model assumes the temperature of air at the secondary side of
the heat exchanger as measured.
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Figure 2.1: Typical inputs and premise variables for the model in (2.48)-(2.48)

In the following, three example cases of joint state and parameter estimation using the heat
exchanger model (2.48)-(2.49) are given. A typical set of inputs and premise variables are
shown in Fig. 2.1. The models were simulated over a 10 hour period with a sampling interval
of 1 minute. It is to be noted that over a 10 hour period, it can be assumed that there would
be no noticeable change in the heat transfer coefficient UA(t). Hence for the illustration of the
estimation of UA(t), it has been shown to vary over this short time period. The results are
expected to hold with appropriate time scaling. All simulations were carried out in MATLAB
with the Yalmip toolbox in conjunction with the LMILab solver from Mathworks. As discussed
in the previous section, the parameters whose values were fixed are given in table 2.1. For

Table 2.1: Simulation parameters comparing Examples 1, 2 and 3
Parameters Example 1 Example 2 Example 3

η0 10−4 5× 10−5 10−7

ρ 105 106 107

Γθ 0.01 100 100
Γθ̇ 0.01 10 10

Γx, Γu 0.01 1 1
Γν 0.01 1 1

the simulation, the measurement noise added was a zero mean Gaussian noise with a standard
deviation of 1K. The sector bounds considered for the premise variables and the time varying
parameters for the simulation are given by: UA(t) ∈ [27, 324] J/K, qw(t) ∈ [80, 1200] g/s and
qa(t) ∈ [200, 1500] g/s.
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Example 1. (Fouling estimation) The heat exchanger surfaces suffer deposition of unwanted
materials over time. This phenomenon, known as fouling, leads to reduction of effectiveness of
the heat exchanger. Due to this deposition, the heat transfer coefficient UA(t) changes over a long
period of time. This can be analyzed by constructing a parameter estimator for θ(t) , UA(t).
With the premise variables as z1(t) , qa(t) and z2(t) , qw(t), the system matrices in (2.28) and
(2.29) for this problem can be given by,

Ăi =
[
−α1z

i
1 0

0 −α3z
i
2

]
Ā =

[
−α2a α2a
α2w −α2w

]

B̆i =
[
α1z

i
1 0

0 α3z
i
2

]
B̄ =

[
−α2a α2a
α2w −α2w

]
(2.54)

with i = 1, 2, 3, 4.

For this example, the estimated states and parameters using the observer in (4) is given in
Fig. 2.2. For the given simulation, the error characteristics are summarized in table 2.2. The
mean and standard deviation values given are for the absolute error over the entire simulation
period. The characteristics of fouling was simulated by representing it as a part of a cosine wave
as suggested in [46].

Figure 2.2: State and parameter estimates: UA estimation (Example 1)
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Table 2.2: Results: UA(t) Estimation
Error Mean (%) Standard Deviation (%)
|ex1 | 2.4 2
|ex2 | 1.4 0.4
|eθ| 1.1 1.2

Example 2. (Air mass flow rate estimation) The mass flow rate of air is maintained by the fan
speed as well as the pressure balance in the air network. An estimation of the air mass flow rate
as a parameter can potentially point out to malfunctioning of the fan or problems in the duct.
With z(t) , qw(t) and θ(t) , qa(t), the system matrices for the parameter estimation become,

Ăi =
[
−α2au α2au
α2wu −α3z

i − α2wu

]
Ā =

[
−α1 0

0 0

]

B̆i =
[
−α2au α2au
α2wu α3z

i − α2wu

]
B̄ =

[
α1 0
0 0

]
(2.55)

with i = 1, 2.

The air flow rate estimation results along with the corresponding state estimation are given
in Fig 2.3. The estimation errors’ mean and standard deviation are given in table 2.3. As is
evident from the figure, the estimation of the air mass flow rate follows the actual value.

Table 2.3: Results: qa(t) Estimation
Error Mean (%) Standard Deviation (%)
|ex1 | 0.7 0.32
|ex2 | 0.57 0.52
|eθ| 1.3 1.5

Example 3. (Water mass flow rate estimation) The mass flow rate of the water is one of the
control inputs used in the industry to regulate and maintain the output air temperature of the
heat exchanger. The water mass flow rate could be affected by a number of reasons: a stuck or
malfunctioning valve, a malfunctioning pump, etc. Since the time scale over which this occurs
is considerably small, the heat transfer coefficient is considered constant: α2wu , α2wUA and
α2au , α2aUA. With z(t) , qa(t) and θ(t) , qw(t), the system matrices for the parameter
estimation become,

Ăi =
[
−α1z

i − α2au α2au
α2wu −α2wu

]
Ā =

[
0 0
0 −α3

]

B̆i =
[
α1z

i − α2au α2au
α2wu −α2wu

]
B̄ =

[
0 0
0 α3

]
(2.56)

with i = 1, 2.

The estimated water mass flow rate along with the estimated states are given in Fig 2.4.
The mean and standard deviation of the estimation errors for the entire simulation duration is
given in table 2.4. It can be seen that there is considerable error in the parameter estimation
in this case. Part of the reason is due to the initial period of oscillations, but also due to model
characteristics, further details of which follow in the discussions.
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Figure 2.3: State and parameter estimates: qa estimation (Example 2 )

Remark 1. During the simulation, it was observed that the condition Kij/ηij > ρ realized using
the LMI condition 2.45 is not sufficient. During the initial simulation period or during sudden
changes in the parameter to be estimated, the error y(t)− ŷ(t) is significantly high and hence a
high value of Kij leads to significant oscillations. This oscillations could be damped too slowly
for a meaningful response if the ratio (and hence Kij) is too high. This phenomenon could be
seen partly in the simulation results in Fig. 2.3 and Fig. 2.4. Given the time varying nature of
the residue, an appropriate observer will have a Kij value that would be adapted with time and
residue amplitude.

Remark 2. The simulations were performed with the unit of gram for mass since kg introduced
scaling issues leading to stiffness in the mass flow rate estimation models.

Remark 3. It is apparent from the results that the estimate of qw(t) is the least convincing of
the three. This could be understood by a simple local algebraic observability analysis (see for
example, [47]). From (2.50)-(2.51), the UA(t) and qa(t) estimates can be written as (dropping
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Figure 2.4: State and parameter estimates: qw estimation (Example 3)

(t) for simplicity and considering y = x1),

UA = ẏ − α1qa(d− y)
α2a(u1 + x2 − d− y)

qa = ẏ − α2aUA(u1 + x2 − d− y)
α1(d− y)

They depend only on ẏ, and the other unknown x2 can be obtained from (2.51) without the need
for ÿ. However, qw is given by,

qw = ẋ2 + α2wUA(u1 + x2 − d− y)
α3(u1 − x2) (2.57)

The dependence on ẋ2 directly indicates the need for ÿ to compute qw and hence explains the
observation of noise and delay in the estimate of qw. One possible approach to avoid this could
be to design the parameter estimation observer with a filtering mechanism inbuilt to minimize
the effect of the measurement noise.
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Table 2.4: Results: qw(t) Estimation
Error Mean (%) Standard Deviation (%)
|ex1 | 0.22 0.64
|ex2 | 0.32 1.04
|eθ| 17 25

2.2.4 Application: air handling unit with a VAV box

In the previous section, the three examples considered cases with measured or known premise
variables. In this section, an application example is formulated where the premise variable is
unmeasured. The system considered is an AHU with a heat exchanger at its core and the air to
be distributed to two zones through a VAV box. A schematic of the system considered is given
in Fig. 2.5. The following are the points to be noted for the model:

Figure 2.5: Schematic of the system under consideration

• Only two zones are considered for the system, though this could be easily extended to any
number of zones supplied by a single AHU.

• The VAV boxes have an internal control loop that adjusts the damper position based on
the deviation of zone temperature from the set point.

• The two zone temperatures are measured along with the air mass flow rate qa.

• The mass flow rate of water (qw) is the manipulated variable. The water temperature is
considered constant and known.

• Further the overall heat transfer coefficient of the heat exchanger, UA(t), is assumed con-
stant, since fouling takes place over a very long period of time.

• The heat exchanger is assumed extract air from the environment, which is also the same
ambient temperature outside the walls of the zone.

The heat exchanger (main component of the AHU) model structure is the same as that used in
the Sec. 2.2.3. The zone models were derived based on an energy balance approach and inspired
by the thermal modeling (see for e.g., [48], [49]) and given by:

C1
dT1(t)

dt
= q1(t)Cpa(Tao(t) − T1(t)) + K12(T2(t) − T1(t)) + K1amb(Tai(t) − T1(t)) + Kd2 d2(t)

C2
dT2(t)

dt
= q2(t)Cpa(Tao(t) − T2(t)) + K21(T1(t) − T2(t)) + K2amb(Tai(t) − T2(t)) + Kd3 d3(t) (2.58)
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where q1, q2 are the air mass flow rate into each zones. The known, measured or forecast
disturbances like occupancy, solar radiation are combined and represented as d2 and d3. C1, C2
are the corresponding zone capacitance. The gains K12, K21, K1amb, K2amb correspond to the
heat transfer coefficient offered by a wall or a window that remains between the zone temperature
and the other zone and the zone and the external environment respectively. Kd2 and Kd3
represent the general resistance offered for the exchange of thermal energy between objects in
the room with the air. The values are computed following the approach in [48].

The modeling of the VAV boxes and other components on the air flow rate path is simplified
by the following assumptions:

• The control loop in VAV terminal boxes have a negligible time constant compared to that
of the AHU and the zones and the actuator actions are instantaneous.

• Let β1 and β2 be ratios of the air flow rate into each zone. The air mass balance gives,

q1(t) = β1qa(t), q2(t) = β2qa(t)
β1 + β2 = 1 (2.59)

• The fan dynamics are ignored, while the fan speed and hence qa(t), is measured.

With these assumptions in place, the overall model of the AHU-VAV-Zone combination could
be given as (time is dropped for simplicity),

ẋ1 = α1qa(d1 − x1) + α2au(Twi + x2 − d1 − x1)
ẋ2 = α3u(Twi − x2)− α2wu(Twi + x2 − d1 − x1)
ẋ3 = α4β1qa(x1 − x3) + α5(x4 − x3) + α6(d1 − x3) + α7d2

ẋ4 = α8(1− β1)qa(x1 − x4) + α9(x3 − x4) + α10(d1 − x4) + α11d3

(2.60)
(2.61)
(2.62)
(2.63)

where the state and the input variables are defined as,

x1 , Tao, x2 , Two, x3 , T1, x4 , T2, u , qw, d1 , Tai

and the constants as,

α1 ,
1
Ma

, α3 ,
1
Mw

, α2au ,
UA

2CpaMa
, α2wu ,

UA
2CpwMw

α4 ,
Cpa
C1

, α5 ,
K12
C1

, α6 ,
K1amb
C1

, α7 ,
Kd1
C1

,

α8 ,
Cpa
C2

, α9 ,
K21
C2

, α10 ,
K2amb
C2

, α11 ,
Kd3
C2

To obtain the T-S equivalent model of the AHU-VAV-Zones system in the polytopic form, the
equations (2.60)-(2.63) are written in state space form as,

ẋ(t) = A(t)x(t) +Bu(t)u(t) +Bd(t)d(t) +BTTwi

y(t) = Cx(t) +Hν(t) (2.64)

where the premise variables to be considered for this problem are z1(t) , qa(t) and z2(t) ,
x2(t). These premise variables are assumed to be within a sector, zj ∈ [zminj zmaxj ]. ν(t)
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is the measurement noise and H its distribution matrix. Given that the AHU water output
temperature is not measured, this is an unmeasured premise variable. The matrices in (2.64)
are given by,

A(t) =


−α1z1(t)− α2au α2au 0 0

α2wu −α2wu 0 0
α4β1z1(t) 0 −α4β1z1(t)− α5 − α6 α5

α8(1− β1)z1(t) 0 α9 −α8(1− β1)z1(t)− α9 − α10



Bu(t) =


0

α3(Twi − z2(t))
0
0

 , Bd(t) =


α1z1(t)− α2au 0 0

α2wu 0 0
α6 α7 0
α10 0 α11



BT =


α2au
−α2wu

0
0

 , C =
[
0 0 1 0
0 0 0 1

]
(2.65)

To obtain the model of the form (2.27), the matrices’ entries of z1(t) and z2(t) are replaced with
the corresponding sector extremum values corresponding to the submodel i, i.e., zminj or zmaxj .
The membership functions are obtained by,

µ1
i (zj(t)) =

zj(t)− zminj

zmaxj − zminj

, µ2
i (zj(t)) =

zmaxj − zj(t)
zmaxj − zminj

and the weighting functions are obtained through the product of these membership functions
for the corresponding extremum values.

For the application problem scenario, there is one unknown parameter β1 ∈ [β1
1 , β

2
1 ] which

affects only the state matrix. Hence, the corresponding representation for (2.29) would be,
Aij = Ăi + βj1Āj , where j = 1, 2 and βj1 corresponds to either the minimum of maximum value
of the parameter. The system matrices corresponding to (2.28) are given by,

Ăi =


−α1z

i
1 − α2au α2au 0 0
α2wu −α2wu 0 0

0 0 −α5 − α6 α5
α8z

i
1 0 α9 −α8z

i
1 − α9 − α10



Āj =


0 0 0 0
0 0 0 0

α4z
i
1 0 −α4z

i
1 0

−α8z
i
1 0 0 α8z

i
1



B̆ui =


0

α3(Twi − zi2)
0
0

 , B̆di =


α1z

i
1 − α2au 0 0
α2wu 0 0
α6 α7 0
α10 0 α11


and B̄ui = 04×1, B̄di = 04×3 with BT and C remaining unchanged from (2.65). zi1 and zi2 refer
to the values of the premise variables corresponding to the ith submodel.
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To illustrate the methodology, a simulation of the AHU-VAV-Zones system combination was
executed in MATLAB. The yalmip [50] LMI parser was used along with the lmilab solver in the
LMI toolbox. The system model parameters were derived to be reasonably representative and
not accurate. The heat exchanger component was designed based on steady state analysis of
the model after fixing some of the variables. The zone models were obtained considering zones
of dimensions 3× 5× 4 and 3× 4× 4 (m). The sector maximum and minimum vales of premise
variables and the unknown time varying parameters are given in the Table 2.5. It is to be noted
that the parameter β1 was scaled by 100 to allow for a reasonably close scale for the parameters
and states of the observer. The simulation parameters that were chosen for the LMI feasibility
problem are given in the Table 2.6.

Table 2.5: Sector minimum and maximum values of model parameters
Parameter Min Max

z1 0.16 kg/s 1.6 kg/s
z2 293 K 368 K
β1 0 100

Table 2.6: Simulation and Model parameters
Parameters Values

η 10−4

ρ 105

Γθ2 0.1
Γθ̇2 0.1
Γx2 0.1I4
Γu2 0.1
Γν2 0.1

The results are shown in Figures 2.6 and 2.7. The inputs used to generate these results are
shown in Fig 2.8. The error statistics of the observer estimates are summarized in Table 2.7.

Table 2.7: Simulation Results: β1(t) Estimation
Error Mean (%) Standard Deviation (%)
|ex1 | 0.04 0.4
|ex2 | 0.07 0.55
|ex3 | 0.03 0.3
|ex4 | 0.03 0.3
|eθ| 10.9 18.34

Remark 4. It is clear that the main error deviation on the estimated parameter is at the initial
periods of the simulation. It was observed that by dropping the first few estimates, the standard
deviation came down by 5%. The other significant behaviour is the noisy estimate. This could
be partially mitigated through filtering the estimate.

The above results were communicated in [51] and [52].
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Figure 2.6: Estimated and actual states

2.3 Perspectives for the thesis

In the previous chapter, the Takagi-Sugeno modeling framework and its use to design observers
for joint state and parameters were discussed. Further, the approach developed in [6] was
customized and illustrated for some application examples in building energy system models.
This exercise provided necessary insights to envisage some characteristics to avoid and some to
expect as an improvement. They are briefly summarized below.

Choice of model structure The work in [6] as well as other works that used T-S approach for
heat exchanger in [42] and [43] adapted observer model structures from the linear systems. The
complications in the derivations to obtain the sufficient conditions in [6] were a direct result of
fixing the model structure at the start. Hence a desired characteristics of an observer design
for joint state and parameter estimation is to have an observer structure that reflects better the
underlying nonlinear model structure.

Complexity of the obtained LMIs The observer design process in Sec. 2.2 results in LMIs
whose dimensions and cardinality grow exponentially with that of the system model and the
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Figure 2.7: Estimated and actual parameter β

number of premise variables (or nonlinearity). The dimension of the LMIs in (2.44) is given by:

2nx + 3nθ + nu + ny + (nx + nu)(2np+nθ)

Further, the number of LMIs that the feasibility problem should solve is 2np+nθ . Hence design
solutions to problems where system models are large is difficult to obtain. For each of the
example in Sec. 2.2, the dimension of the LMIs is given in table 2.8. A desirable characteristics
of the observer design process could be to reduce the dimension of the LMIs.

Table 2.8: Dimension of LMIs for application examples in Sec. 2.2
Example Dimension
Example 1 in Sec. 2.2.3 42
Example 2 in Sec. 2.2.3 18
Example 3 in Sec. 2.2.3 18
Example in Sec. 2.2.4 63

Remark 5. The complexity of the LMIs are due to the generalized scenario handled by the
observer design process, namely unmeasured premise variables and time-varying parameters.
Hence, the concern on complexity is not a drawback of the design process itself, but a desirable
quality for the application scenarios we are looking for.

Insights into structural characteristics The observer design process in Sec. 2.2 relies on state
observability and parameter identifiability assumptions without explicitly stating them. Further,
the significance of the choice of the affine parametrization is not discussed. This can make it
difficult to precisely identify the reasons for not finding a solution to the LMI problem: whether it
is because of the sufficient nature of the conditions (either numerical issues or that the quadratic
Lyapunov function is insufficient) or is it due to structural issues associated with the model itself.
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Figure 2.8: Various inputs used for the simulation

The observer design procedures use Lyapunov approach, which for nonlinear system models,
can only give sufficient conditions and hence the first ambiguity is difficult to mitigate. How-
ever, an observer design approach can also provide better insights into the necessary structural
requirements of the underlying system model so that a joint state and parameter estimation
exists. This is not necessarily a global necessary condition for all nonlinear system models with
unknown parameters, but for those models for which the proposed design procedure will work.
This would be another desirable feature of the observer design.

Case of measured premise variables The observer design approach in Sec. 2.2 considered a
general case where the premise variable is unmeasured. However, the complexities of the final
LMI conditions do not reduce when the premise variables are measured/known, as illustrated in
Theorem 4. This is a limitation of the design approach. It is envisaged to develop an approach
that will have progressively complex conditions/steps as the problem moves from measured
to unmeasured premise variable case. This would ensure that whenever simpler scenarios are
available, the design process would be simpler.

The next chapter addresses some of these through a contribution of an observer design
process.

52



Chapter 3

Adaptive observers for
continuous-time models

Adaptive observer refers to those observers that provide a joint estimation of states and
unknown parameters of the system model. Towards the end of Chapter 2, a number of avenues
for improvement were suggested. This chapter attempts to realize some of them. The chapter
begins by outlining the existing literature on adaptive observer design for nonlinear models in
general as well as those for T-S polytopic models. The proposed adaptive observer design
follows a control-Lyapunov function like strategy, that is, it derives the parameter estimation
part of the observer based on the choice of the Lyapunov function. Some insights into the
design process follow with an illustrative example.

Contents
3.1 Review of literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Adaptive observer design . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.2 Assumptions and initial steps . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.4 Simulation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.5 Structural connotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1 Review of literature
In the adaptive systems paradigm [4], adaptive control refers to the control of partially known
systems, where some or all of the model parameters are not accurately known. To realize this
paradigm of control, observer based control are employed. These observers, which estimate the
parameters in addition to the states of the model, are referred to as adaptive observers. This
paradigm is adopted in this literature as the adaptive observers are destined to be used for
applications such as fault diagnosis under unknown parameters.

The choice of developing adaptive observers over a more popular Extended Kalman filter
(EKF) approaches stems from the difficulty to perform stability analysis for the latter. This
is one of the main motivation for early ventures into adaptive observer design such as [53].
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These approaches exploited the feedback linearization idea and transformed a given nonlinear
model with linearizable dynamics through state feedback. For system with unknown parameters,
their existence and the design for single output system have been worked out in [54] and then
with exponential convergence in [8]. These approaches however had limited reach as they do
not transfer well beyond the narrow class of single output nonlinear models with linearizable
dynamics.

One of the first formal adaptive observer design process for MIMO nonlinear systems was
proposed in [7]. The authors consider linear output equation and assume that the output of the
system and the parameters have a positive real connection. By employing suitable persistence
of excitation conditions and the use of pseudo inverse of the output matrix, the authors provide
a systematic design approach that provides the observer gains by solving LMIs. A systematic
study of the design approach proposed by [7] was performed by [9], where the authors introduce
an adaptive observer form to characterize the models for which the design process in the former
is feasible. A number of works have descended based on the design approach proposed in these
two works. A related, but different MIMO design was proposed in [55] where the authors achieve
an exponential convergence under noise-free conditions. The work is proposed for time-varying
models, though the authors claim it can work, under certain assumptions, for quasi-LPV models
with measured premise variable, a class of model considered in this chapter. The state estimation
part uses a Luenberger form whereas a two-stage filter structure is deployed for the parameter
estimation part. The design of observer gains, however is not clear and is one reason for not
adopting this approach for this chapter. The application aim of developing adaptive observers
for this thesis is to deploy it for fault diagnosis. In this respect one can refer to the use of
adaptive observers in fault diagnosis in [56].

For T-S observers, the literature of adaptive observers could be viewed in two broad cate-
gories: those that consider an additive unknown parameter in the form of unknown inputs and
those that consider unknown parameters affecting any system matrices. In the former case, a
number of works that could be considered relevant including, [57], [58], [59], [60], [61]. A general
characterization of these works could be that they use a Luenberger form for the state observer
and a Proportional Integral (PI) or Proportional Multiple Integral (PMI) form for the parame-
ter estimation part. They focus on specific design nuances such as the use of decoupling class
approach in [57], a robust observer design in [59] or considering unmeasured premise variables
in [58]. The use of PMI form for parameter estimation is driven by the assumption that the
parameter is not constant, but its derivative is zero beyond a certain order of differentiation.
Two application examples for the T-S adaptive observer design could be the two works described
in Chapter 2: [42] and [43].

For adaptive observers considering multiplicative unknown parameters, different observer
structures are considered. In [20], an adaptive observer is designed for the estimation of un-
modeled dynamics in a T-S system. The authors propose an observer structure inspired from
that in [7]. These results have been applied to estimate the uncertainties in the state matrices
of a two-degrees-of-freedom robot arm model in [62]. The estimates are then used to control
the robot arm. In this chapter, the design process is motivated from [7] and improves upon the
results in [20].
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3.2 Adaptive observer design
In this section, the main contributions of the chapter are given. The continuous-time T-S
adaptive observer design problem is formulated and then the proposed results are given with an
illustrative example.

3.2.1 Problem formulation

The system models considered in this chapter follows that in Chapter 2. That is, LPV and
quasi-LPV models that have unknown parameters appearing affinely and any nonlinear models
that could be transformed to this form. This could be written in a more extended form as

ẋ(t) = A(z(t), θ)x(t) +B(z(t), θ)u(t) + F (z(t), θ)
y(t) = Cx(t) (3.1)

where z(t) is the premise or scheduling variable and θ is the unknown parameter. Note that
θ is represented as a constant, which is a requirement for the analysis used in the proposed
approach. However, as would be shown in the example, this is not a limitation in practice. The
system matrices are given by the structure,

X(z(t), θ) = X0(z(t)) +
nθ∑
j=1

X̄jθj

with X used as a place holder for the system matrices A, B, and F . For this model, the observer
design is envisaged to have the following structural characteristics:

• A Luenberger-like form for the state estimation part

• A nonlinear structure for the parameter estimation part that will be obtained from the
error convergence analysis

That is,

˙̂x(t) = A(z(t), θ̂)x̂(t) +B(z(t), θ̂)u(t) + F (z(t), θ̂) + L(z(t))(y(t)− ŷ(t))
˙̂
θj(t) = fj(θ̂i(t), x̂(t), y(t)), ∀j = 1, ..., nθ
ŷ(t) = Cx̂(t) (3.2)

Remark 6. As can be noted in (3.2), the scheduling or premise variables are considered known/
measured. The unmeasured premise variable case is not treated in this chapter.

Consider the nonlinear system of the form used in [7] ,

ẋ(t) = Ax(t) + φ(x(t), u(t)) + bf(x(t), u(t))θ
y(t) = Cx(t) (3.3)

where b is a transmission vector. For this model, it has been shown that a state and parameter
observer with asymptotically vanishing error is possible under certain conditions. This model
structure will lead to a LPV/quasi-LPV model of the form (3.1) (with possibly unmeasured
premise variables) when put through the procedure of, say [23]. The choice of the observer
structure in this chapter is motivated from these works.
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The Takagi-Sugeno polytopic approach would be the tool used for this design. Hence the
model (3.1) can be transformed, through SNL transformation as

ẋ =
2np∑
i=1

µi(z)

(Ai +
nθ∑
j=1

θjĀij)x+ (Bi +
nθ∑
j=1

θjB̄ij)u+ (Fi +
nθ∑
j=1

θjF̄ij)


y = Cx (3.4)

Note that the time factor (t) has been dropped for notational convenience. While the un-
known parameters are shown to affect all the matrices, the corresponding transmission matrices
(Āij , B̄ij , F̄ij) could be zero, if a particular unknown parameter θj does not affect it. Thus
observer structure is given by,

˙̂x=
2np∑
i=1

µi(z)

(Ai +
nθ∑
j=1

θ̂jĀij)x̂+(Bi +
nθ∑
j=1

θ̂jB̄ij)u+(Fi +
nθ∑
j=1

θ̂jF̄ij)+Li(y − ŷ)


˙̂
θj = fj(θ̂j , x̂, y), ∀j = 1, ..., nθ
ŷ = Cx̂

(3.5)

where fj(.) is a nonlinear function to be obtained through the design process. Note that the
estimated parameter θ̂ is not constant and the aim is to have θ̂ → θ as t→∞.

3.2.2 Assumptions and initial steps

The observer design for the T-S system of the form (3.4) is given under the following assumptions:

1. There exists a θ̄ such that |θj |< θ̄, ∀j. This value is assumed to be known. However, the
maximum value allowed by the design process could be determined as described later.

2. All the submodels are sufficiently excited, illustrated by the variation in the weighting
functions of each submodels, so that the system is under a persistence of excitation.

3. θ̇ = 0. The proof for the main result uses this condition to assume that the unknown
parameters are constant. However, it is shown in the examples that, on a practical point
of view, this approach will work for slowly varying parameters as well.

Define the state estimation error between the system (3.4) with that of the Luenberger
observer structure in (3.5) and that of the parameter estimation errors as

ex(t) , x(t)− x̂(t), eθj (t) , θj − θ̂j(t)

The dynamics based on the model and observer equations are given by,

ėx(t) =
2np∑
i=1

µi(z(t))

(Ai − LiC)ex(t) +
nθ∑
j=1

(θjĀijx(t)− θ̂jĀij x̂(t)) + (B̄iju(t) + F̄ij)eθj (t)


By adding and subtracting

∑nθ
j=1 θjĀij x̂, the error dynamics becomes,

ėx(t) =
2np∑
i=1

µi(z(t))

Ai − LiC +
nθ∑
j=1

θjĀij

 ex(t) +

 nθ∑
j=1

Āij x̂(t) + B̄iju(t) + F̄ij

 eθj (t)

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To analyze stability, consider the following Lyapunov function

V (ex, eθ) = eTx (t)Pex(t) +
nθ∑
j=1

eθj (t)ρjeθj (t) (3.6)

where P = P T > 0 is a positive definite matrix and ρj > 0, ∀j. Its derivative is then given by

V̇ (t) = ėTx (t)Pex(t) + eTx (t)P ėx(t) + 2
nθ∑
j=1

ρj ėθj (t)eθj (t)

Considering,

Gij , P (Ai − LiC +
nθ∑
j=1

θjĀij) + (Ai − LiC +
nθ∑
j=1

θjĀij)TP

and since θ̇ = 0,

2
nθ∑
j=1

ρj ėθj (t)eθj (t) = −2
nθ∑
j=1

ρj
˙̂
θj(t)eθj (t) (3.7)

leads to,

V̇ (t) =
2np∑
i=1

µi(z(t))

eTx (t)Gijex(t) + 2
nθ∑
j=1

eθj (t)(Āij x̂(t) + B̄iju(t) + F̄ij)TPex(t)


− 2

nθ∑
j=1

ρj
˙̂
θj(t)eθj (t) (3.8)

To ensure V̇ (t) < 0, each term on the right hand side (RHS) of (3.8) is analyzed. The first
contains a quadratic term with the unknown parameter in Gij . Following the Assumption 1,
the result of robust stability analysis for error dynamics as in [63] (and [64]) is applied. This
translates to,

P = P T , P > 0, Q = QT , Q > 0
P (Ai − LiC)+(Ai − LiC)TP < −Q

nθāθ̄ ≤
λmin(Q)

2λmax(P )

(3.9)
(3.10)

(3.11)

where ā is the maximum of the norms of the different matrices Āij , that is

ā = maxij‖Āij‖, ∀ i, j (3.12)

The equivalent LMI condition for (3.10) is given by:

PAi +ATi P −MiC − CTMT
i < −Q (3.13)

with the observer gain obtained as, Li = P−1Mi. The condition (3.11) will be satisfied if the
following LMI condition is met, [

Q− γI P
P I

]
> 0 (3.14)

where
γ = (nθāθ̄)2, ∀i, j (3.15)
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The second and third terms in the RHS of (3.8) relate to the coefficients of eθ and one way to
manage the Lyapunov function is to annihilate the coefficients of each error eθj ,

2np∑
i=1

µi(z(t))(Āij x̂(t) + B̄iju(t) + F̄ij)TPex(t)− ρj ˙̂
θj(t) = 0, ∀j (3.16)

This would lead to the condition,

˙̂
θj(t) = 1

ρj

2np∑
i=1

µi(z(t))
(
Āij x̂(t) + B̄iju(t) + F̄ij

)T
Pex(t), ∀ j (3.17)

Since ex(t) is not available, construction of ex(t) from ey(t) = y(t) − ŷ(t) for the conditions
specified is to be explored. This could be resolved in multiple ways and discussed as follows.

3.2.3 Main results

In this section, the open question above is resolved in several ways based on both existing
literature and original results. To start with, the proposed observer for the model (3.4) is given
as

˙̂x(t) =
2np∑
i=1

µi(z(t))
(
Ăij x̂(t) + B̆iju(t) + F̆ij + Li(y(t)− ŷ(t))

)
˙̂
θj(t) = 1

ρj

2np∑
i=1

µi(z(t))
(
Āij x̂(t) + B̄iju(t) + F̄ij

)T
PC†(y(t)− ŷ(t)), ∀ j

ŷ(t) = Cx̂(t) (3.18)

where C† is the pseudo inverse of C, and

Ăij = Ai +
nθ∑
j=1

θ̂j(t)Āij , B̆ij = Bi +
nθ∑
j=1

θ̂j(t)B̄ij , F̆ij = Fi +
nθ∑
j=1

θ̂j(t)F̄ij

This is an adaptive observer for the system (3.4) if one of the following theorems are satisfied,
which resolve the problem in (3.17), that is, to obtain the parameter estimation component as
function of measured/estimated parameters.

Theorem 5. (adapted from [20]) The observer (3.18) for the system (3.4) provides an asymp-
totically converging estimates for the states and the parameters, if

1. The conditions (3.9), (3.13) and (3.14) are satisfied

2. Ni is of full column rank and

rank(CNi) = rank(Ni), ∀i (3.19)

where Ni is a pre-multiplying matrix that is common for all Āij , B̄ij , F̄ij(∀j) such that,

Āij = NiÃij , B̄ij = NiB̃ij , F̄ij = NiF̃ij , ∀j (3.20)
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Alternately this could be stated in the form of Āij , B̄ij, F̄ij(∀i, j) are of full column rank, and

rank(CĀij) = rank(Āij)
rank(CB̄ij) = rank(B̄ij)
rank(CF̄ij) = rank(F̄ij) (3.21)

Proof. Given the rank conditions, there exists, an Ri such that, RiC = NT
i P which could be

used in (3.17) to give

˙̂
θj = 1

ρj

2np∑
i=1

µi(z)
(
Ãij x̂+ B̃iju+ F̃ij

)T
Riey, ∀ j (3.22)

Considering Ri = NT
i PC

†, the parameter estimation part of the observer would become

˙̂
θj = 1

ρj

2np∑
i=1

µi(z)
(
Āij x̂+ B̄iju+ F̄ij

)T
PC†ey, ∀ j (3.23)

Hence the proof.

Remark 7. This result is considerably restrictive due to the rank conditions on the system
matrices of model chosen for this work. Apart from the structural constraints to be satisfied,
there is no standard procedure that connects choice of Ri with that of the Lyapunov matrix P .
To mitigate these problems, another approach is considered and given in the following theorem.

Theorem 6. The system (3.5) forms an observer for the system (3.4), if

1. The conditions (3.9), (3.13) and (3.14) are satisfied

2. For every θj,
ĀTijPH = 0, ∀i
B̄T
ijPH = 0, ∀i

F̄ TijPH = 0, ∀i (3.24)

where H , I − C†C with I being the identity matrix of appropriate dimensions.

Proof. Consider the following lemma,

Lemma 6. ([65]) Let A ∈ Rm×n and A† be any generalized inverse of A. Then a general
solution of a consistent nonhomogeneous equation Ax = y is

x = A†y +Hω (3.25)

where ω is an arbitrary vector and H = I − C†C. The necessary and sufficient condition that
Ax = y is consistent is,

AA†y = y (3.26)

The nonhomogeneous equation in the problem under focus is, ey = Cex, and based on this
lemma,

ex = C†ey +Hω (3.27)
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for some arbitrary ω. Applying this to (3.17) leads to,

x̂T ĀTijPex = x̂T ĀTijP (C†ey +Hω), ∀i
uT B̄T

ijPex = uT B̄T
ijP (C†ey +Hω), ∀i

F̄ TijPex = F̄ TijP (C†ey +Hω), ∀i (3.28)
The second term on the right hand side of the equation would lead to zero, if the conditions in
(3.24) are satisfied. Hence, the proof.

Convergence of θ̂ For a given parameter θj , j = 1, 2, · · · , nθ, the above proof of convergence
for the parameter only guarantees that,

2np∑
i=1

µi(z)
(
θjĀijx− θ̂jĀij x̂+ B̄iju+ F̄ij

)
eθj → 0

Given (x̂− x)→ 0 as t→∞, this can be written as,
2np∑
i=1

µi(z)
(
Āijx+ B̄iju+ F̄ij

)
eθj → 0

and hence the convergence of the parameter θj is guaranteed under the following persistence of
excitation condition. ∃ α, β, δ such that,

αI ≥
∫ t0+δ

t0

(2np∑
i=1

[
Āijx+ B̄iju+ F̄ij

] [
Āijx+ B̄iju+ F̄ij

]T
dτ

)
≥ βI ∀ t0 (3.29)

Corollary 1. If the value of θ̄ as in the Assumption 1 is not known, the maximum θ̄ allowed by
a particular design could be obtained by rewriting the above results as an optimization problem
considering γ as an objective to be maximized. That is,

maximize
P,Q,Li

γ (3.30)

∀i, such that, the conditions (3.9), (3.13) and (3.14) are satisfied.
One concern that may arise in Theorem 6 is that on the ability to satisfy equality conditions

using numerical approaches under the simulation tools. To mitigate this, the following theorem
rewrites the equality conditions as an objective to minimize.
Theorem 7. The observer (3.18) for the system (3.4), could be designed if the following opti-
mization problem has a solution,

min
P,Mi

nθ∑
j=1

βj (3.31)

under the constraints of (3.9), (3.13), (3.14). Here,

βj =
2np∑
i=1
‖ĀTijPH‖+‖B̄T

ijPH‖+‖F̄ TijPH‖ (3.32)

It is useful to note that the Lyapunov analysis performed in the previous section is valid for
the Theorem 6 and not for that in Theorem 7. Theorem 7 is only a procedure to evaluate it
when the equality conditions are not satisfied.
Remark 8. It is to be noted that the parameter ρj is not considered in the design process. It
is manually tuned to improve the dynamics of the parameter estimation and the values would
depend on the scale of the corresponding θj.
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3.2.4 Simulation example

Example 4. Consider a nonlinear system of the form

ẋ1 = −0.7x2
1 − x2 + x3 + (1− 0.8x1)θ

ẋ2 = −x1x3 − 2x2 + (x2 + u)θ
ẋ3 = 0.5x1 − 2x3 + u

y1 = x1 + x2

y2 = x2 (3.33)

Using the sector nonlinearity approach, this system could be transformed into a system of the
form (3.4). z , x1 is the premise variable and is assumed to be in the sector of [0, 2]. The
weighting functions are given by µ1 = z1

2 and µ2 = 1−µ1. The following are the system matrices
obtained after applying the sector nonlinearity approach.

A1 =

−1.4 −1 1
0 −2 −2

0.5 0 −2

 , A2 =

 0 −1 1
0 −2 0

0.5 0 −2


Ā11 = Ā21 =

−0.8 0 0
0 1 0
0 0 0


B1 = B2 =

0
0
1

 , B̄11 = B̄12 =

0
1
0

 , C =
[
1 1 0
0 1 0

]

Figure 3.1: State errors’ evolution over time

The simulation of this example was carried out on MATLAB with the Yalmip modeling
interface [50] and using the SeDuMi solver [30]. As could be seen, the conditions in (3.24) are
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Figure 3.2: Unknown parameter and its estimate

satisfied for this example only if P is constrained to be block diagonal. By using Theorem 7,
the results show that this constraint is not required.

The state estimation errors are shown in the Fig. 3.1. As could be seen, the estimation
results are fairly accurate. The parameter estimation tracking is shown in the Fig. 3.2, which
shows a good tracking even when the unknown parameter changes (ρ1 = 1 is used for this
simulation). The input used for the simulation is shown in the Fig. 3.3 and the weighting
functions in Fig. 3.4 illustrate the sufficient excitation of both the submodels. The Lyapunov
matrix obtained through the optimization problem was, 1.169 0.657

0.657 1.153 −4.7× 10−14

−4.7× 10−14 −3.3× 10−14 1.365

 (3.34)

and the value of the β1 = 1.31× 10−13.

3.2.5 Structural connotations

It is interesting to note the correlation between the structural constraints that arise out of
this result with that of the nonlinear adaptive observer form as proposed in [9]. In [9], the
state equations are split into those that are measured and unmeasured. Further, the unknown
parameter θ is allowed to appear only on the dynamics of the measured states. In [7], this
constraint is given, for the system in (3.3), as bTP should be in the space spanned by C. This
is seen from the constraints in (3.24),

ĀTijP = (ĀTijPC†)C ⇒ ĀTijP ∈ span(C) (3.35)

However, the design procedure in [7] and the T-S equivalent approach in [20] are ambiguous on
how integrate the two components: obtain a P that will simultaneously satisfy the structural
requirement (the need for a path between the parameter and the output) and the LMI con-
ditions. The approach proposed in this thesis provides a procedure where the two aspects are
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Figure 3.3: Input used for the illustration

connected. And to ease the restrictive nature of the equality constraint an optimization problem
was formulated.

Further insights could be obtained by the observation on the connection between the struc-
tures of C and Āij , B̄ij , F̄ij with that of the Lyapunov matrix P . Consider the structure of C
of the form,

C =
[
Xny×ny 0ny×(nx−ny)

]
, (3.36)

with X ∈ Rny×ny is a regular full rank matrix. This follows the following assumptions:

• The C matrix is of full row rank. This is reasonable, for the redundant measurements, if
exist, could be dropped.

• There are some states that are not directly measured.

Given C is full row rank, C† could be computed as

C† = CT (CCT )−1 =
[
XT

0

] [
XXT

]−1
(3.37)

This would lead to the matrix H = I − C†C,

H = Inx −
[
XT

0

] [
XXT

]−1 [
X 0

]
=
[
Iny 0
0 Inx−ny

]
−
[
XT (XXT )−1X 0

0 0

]

=
[
0 0
0 Inx−ny

]

With this structure of H, some insights could be obtained for the structure of P that can satisfy
the LMI conditions. Consider,

P =
[
P1 0
0 P2

]
(3.38)
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Figure 3.4: Weighting function evolution for the simulation

with P1 = P T1 > 0 ∈ Rny×ny and P2 > 0 is a diagonal matrix of dimension (nx − ny). If the
transmission matrices (Āij , B̄ij , F̄ij) have a structure such that the unknown parameters affect
only the measured states, then a Lyapunov matrix with the above structure would guarantee
the equality conditions in (3.24). However, there are no standard procedures to enforce such a
structure on P . Fortunately, the optimization procedure in Theorem 7 facilitates this process
without an explicit choice of the structure. Hence it could be asserted that the algorithm
facilitates an integration of connecting the stability requirements of the state estimation and
the structural requirements of the parameter estimation. This could be seen by the value of P
obtained in the Example 4 in (3.34), the procedure numerically tends to a structure of P with
a full rank for the first ny = 2 block and then towards a diagonal for the nx − ny = 1 block.

The results discussed above were communicated in [66].

3.3 Extensions

In this section, some extensions of the observer design procedure to other scenarios are explored,
such as the presence of measurement noise. Often in a practical scenario, the system models
would be affected by noise. In this extension, we consider a model which is affected by a
measurement noise. To illustrate the design approach, we consider the following model

ẋ =
2np∑
i=1

µi(z)

(Ai +
nθ∑
j=1

θjĀij)x+ (Bi +
nθ∑
j=1

θjB̄ij)u+ (Fi +
nθ∑
j=1

θjF̄ij)


y = Cx+ Eν(t) (3.39)

Here, ν(t) ∈ Rnν is the measurement noise affecting the measurement through the transmission
matrix E ∈ Rny×nν . For this model, the observer proposed is the same as the previous case,
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that is,

˙̂x(t) =
2np∑
i=1

µi(z(t))
(
Ăij x̂(t) + B̆iju(t) + F̆ij + Li(y(t)− ŷ(t))

)
˙̂
θj(t) = 1

ρj

2np∑
i=1

µi(z(t))
(
Āij x̂(t) + B̄iju(t) + F̄ij

)T
PC†(y(t)− ŷ(t)), ∀ j

ŷ(t) = Cx̂(t) (3.40)

Theorem 8. The system (3.40) is an observer for the system (3.39) has an L2 gain bound of
Γx2 for the state error in case, if a solution to the following optimization problem is found,

min
P,Mi

nθ∑
j=1

βj (3.41)

under the constraints,

P = P T > 0, Q = QT > 0[
PAi +ATi P −KiC − CTKT

i +Wx KiE
ETKT

i −Γx

]
< −Q, ∀i[

Q− γI P
P I

]
> 0

(3.42)

(3.43)

(3.44)

where γ is given in (3.15) and

βj =
2np∑
i=1
‖ĀTijPH‖+‖B̄T

ijPH‖+‖F̄ TijPH‖ (3.45)

Proof. The error dynamics is given by,

ėx(t) =
2np∑
i=1

µi(z(t))

(Ai − LiC)ex(t) +
nθ∑
j=1

(θjĀijx(t)− θ̂jĀij x̂(t)) + (B̄iju(t) + F̄ij)eθj (t) + LiEν(t)


By adding and subtracting

∑nθ
j=1 θjĀij x̂, the error dynamics becomes,

ėx(t) =
2np∑
i=1

µi(z(t))

Ai − LiC +
nθ∑
j=1

θjĀij

 ex(t) +

 nθ∑
j=1

Āij x̂(t) + B̄iju(t) + F̄ij

 eθj (t) + LiEν(t)


To analyze stability, consider the following Lyapunov function

V (ex, eθ) = eTx (t)Pex(t) +
nθ∑
j=1

eθj (t)ρjeθj (t) (3.46)

where P = P T > 0 is a positive definite matrix and ρj > 0, ∀j are positive scalars. The Bounded
Real Lemma (Lemma 3) offers a way to integrate the reduction of influence of perturbations
(such as ν(t)) on the estimates by considering the following equation for the derivative of the
Lyapunov condition to satisfy:

V̇ (t) + ex(t)TWxex(t)− νT (t)Γx2ν(t) < 0 (3.47)
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The matrix Wx could be chosen and it could be an identity matrix of appropriate dimensions.
Following the steps in the main results and considering

Gij , P (Ai − LiC +
nθ∑
j=1

θjĀij) + (Ai − LiC +
nθ∑
j=1

θjĀij)TP

and further making use of the observer equation for the parameter estimation dynamics would
lead to a simplification in the matrix form as,

2np∑
i=1

µi(z)
[
ex(t)
ν(t)

]T [
PGi +GTi P +Wx PLiE

ETLTi P −Γx2

] [
ex(t)
ν(t)

]
< 0 (3.48)

The term Gi contains the parameter θ and it could be bounded using the same strategy followed
in the previous result. Further doing the change of variable Ki = PLi, we have the LMI
conditions as in (3.44). Hence the proof.

Remark 9. The design approach in Theorem 8 ignores the effect of measurement noise on the
parameter estimation error. This omission is due to the inability to bring upon a bound on this
influence. When the effects of ν on both ex and eθ was included in (3.47), an approach that
mimics that in [6], that is,

V̇ (t) + ea(t)T ea(t)− νT (t)Γx2ν(t) < 0, where, ea =
[
ex
eθ

]

the LMI condition corresponding to (3.43) becomes,PAi +ATi P −KiC − CTKT
i + I 0 KiE

0 I 0
ETKT

i 0 −Γx2

 < −Q, ∀i (3.49)

which is an impossible condition to satisfy. The reason for this limitation arises in the manner
in which the observer structures was chosen. The observer state equation structure was fixed a
priori, whereas, the parameter structure was obtained through the design process. This makes it
difficult to integrate the two errors in (3.47).

The above remark hints at a way to suppress the effect of ν on eθ indirectly. That is, if eθ
is a perturbation in (3.47) and its effect on ex is suppressed, then it could indirectly mean that
the effect of ν on eθ is also suppressed. This means that the derivative of Lyapunov function
should satisfy,

V̇ (t) + ex(t)TWxex(t)− ũT (t)Γ2ũ(t) < 0, where, ũ =
[
eθ
ν

]
, and Γ2 =

[
Γθ2 0
0 Γν2

]

which would then lead to

2np∑
i=1

µi(z)
[
ex(t)
ũ(t)

]T [
PGi +GTi P +Wx PLiE

ETLTi P −Γ2

] [
ex(t)
ũ(t)

]
< 0

The result could then be summarized as the following corollary:
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Corollary 2. The system (3.39) is an observer for the system (3.40) with an asymptotically

vanishing error in case of no noise and an L2 gain bound of Γ2 =
[
Γθ2 0
0 Γν2

]
for the state error

in case, if the following LMI conditions replace (3.43),PAi +ATi P −KiC − CTKT
i +Wx 0 KiE

0 −Γθ2 0
ETKT

i 0 −Γν2

 < −Q, ∀i (3.50)

A careful choice of Γ2 would enable the conditions to be satisfied.
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Chapter 4

Adaptive observers for discrete-time
models

The results in this chapter borne out of the explorations towards developing a discrete-time
version of joint state and parameter estimation observer. After a brief review of the literature,
a state and time-varying parameter estimation method that follows the existing
continuous-time results discussed in Chapter 2 are given. A Lyapunov approach with
quadratic Lyapunov function is used. The result is also customized for a case with constant
parameters. Simulation examples illustrate the obtained results.
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4.1 Review of literature

As discussed in Chapter 3, a systematic approach for adaptive observer design for nonlinear
system was proposed in [7]. However, the extension of this approach to discrete-time models
is not straightforward. The design in [7] derives the parameter estimation component of the
observer equation using the continuous-time trajectories of the Lyapunov function dynamics.
This does not transfer well into the discrete-time. But discrete-time adaptive observer literature
still has interesting works, some focusing on specific applications.

An approach that combines a diagnostic observer with an adaptive uncertainty estimation is
proposed in [67]. The observer assumes the uncertainties have a parametric model. Further, all
the states are assumed to be measured, which allows to consider an innovation term ex,k+1 −
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(A − Ko)ex,k, where A and Ko are system and state observer gain matrices respectively with
ex,k represents the error. This innovation allows for a cancellation of terms that complicates the
stability analysis as it uses the same form as in [7]. The fault detection then depends on the
particular choice of thresholds that make the use of the estimated parameter. This approach is
restricted to specific circumstances of adaptive observer, and the conditions on the eigenvalues
of the Lyapunov and gain matrices makes the design process cumbersome to generalize.

In [68], a fault detection method for discrete-time nonlinear system is proposed. The con-
sidered system model contains nonlinearities and model uncertainties on both the state and the
output equation. Further, the authors also consider additive faults on the actuator and the
sensor affecting both the equations. The uncertainties are assumed to be bounded with a known
constant. The observer uses a Luenberger form for the state estimation component. The fault
components are represented by a general class of what is termed, online function approximators
in discrete-time (OLAD). The OLAD allows for a mechanism such that the observer updates its
parameter only after the fault occurs. In order to avoid false alarms due to unmodeled dynamics,
the proposed fault detection scheme utilizes a dead zone to improve the robustness whose values
depend on the bounds of unmodeled dynamics. This tight interconnection of the design makes
the approach effective for fault diagnosis but difficult to adapt for general adaptive observers.

One way to develop observers for general nonlinear systems could be using equivalent forms.
In the above works, a recurring theme was boundedness of the transition matrices and inputs.
If we further add the condition that the states too are bounded, the quasi-LPV equivalent forms
could be obtained. With the systematic procedure proposed in [23], it is possible to obtain
a quasi-LPV form for a given nonlinear system. For the discrete-time version of the adaptive
observer form given in [7],

xk+1 = Hxk + φ(xk, uk) + bf(xk, uk)θ
yk = Cxk (4.1)

the quasi-LPV form would be,

xk+1 = A(xk, uk)xkθ +B(xk, uk)ukθ
yk = Cxk (4.2)

and possibly an affine term.

Two possible directions exist for the observer design for such quasi-LPV forms: observer
design for Linear Time Varying (LTV) models and Tagaki-Sugeno (T-S) polytopic models. The
reason for considering LTV systems in inspired by the assertion in [69] that the observer design
strategy for the LTV systems of the form,

xk+1 = Akxk +Bkuk

yk = Ckxk (4.3)

covers the design problems for systems of the form,

xk+1 = Ak(yk, uk)xk +Bk(yk, uk)
yk = Ck(uk)xk (4.4)
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which is intuitive under some assumptions such as the sampling interval is larger than measure-
ment delay, for instance. This structure covers majority of the models obtained based on the
adaptive observer form characterized in [9].

For discrete-time LTV systems, the adaptive observers proposed in [5], which takes inspiration
from its continuous-time counterpart [55] is notable. The authors consider a stochastic MIMO
time-varying system with bounded zero mean noise affecting the state and output equations as
well as unknown parameters (wk, vk, ek respectively).

θk+1 = θk + ek

xk+1 = Akxk +Bkuk + Ψkθk + wk

yk = Ckxk + vk (4.5)

For this system, the proposed observer with the gain Kk is of the form,

Υk+1 = (Ak −KkCk)Υk + Ψk

θ̂k+1 = θ̂k + µkΥT
kC

T
k (yk − Ckx̂k)

x̂k+1 = Akx̂k +Bkuk + Ψkθ̂k +Kk(yk − Ckx̂k) + Υk+1(θ̂k+1 − θ̂k)

where Υk is a matrix sequence obtained by linearly filtering Ψk. The exponential convergence
of the observer is proven based on boundedness of the available matrices and the boundedness
of factors by the choice of the scalar µk. For a noisy case, the authors assert that with bounded
and zero mean noises, the estimated values of the state and parameter error will be bounded
and tend to zero. The two main drawbacks of this approach are: lack of a clear procedure
to compute the gains of the matrix (specifically µk), and the need to check and guarantee the
boundedness conditions at every sampling instant.

These criticisms are reiterated in [70] and claimed it is hence not effective in controlling the
decay rate of the estimation error (xk − x̂k). To this end, the authors in [70] propose an ex-
ponential forgetting factor based approach adopted from [69] and implement an interconnected
forgetting factor design - one for the state and one for the parameters. This approach mimics a
Kalman filter, with update steps at measurements as well as propagation step between measure-
ments. The complete uniform observability of the system and the invertibility of Ak, ∀k are the
main assumptions. The decay rates of the state and parameter estimation errors are indepen-
dently tuned through separate factors. However, as remarked earlier, some parts of nonlinear
systems cannot be handled by this type of approach.

4.2 Problem formulation for adaptive observer design

The existing literature covers a broad class of adaptive observers for quasi-LPV models if we
assume that the observers designed for LTV systems in (4.3) also works well for quasi-LPV
models in (4.4). Beyond this, there is a class of system for which the existing literature does not
cater to. That is the class of systems where the premise variables are not measured and hence
the adaptation of results from LTV systems does not apply. This is the interest in this chapter
and the corresponding problem is formulated in this section.
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Representing a time-varying parameter using SNL

The idea of the estimation of time-varying parameter lies in representing it using the SNL
transformation. This is a direct adaptation of the method proposed in [6] The SNL assumes
that the parameter is bounded and its boundary values are known. For a scalar parameter
θk ∈ [θ1, θ2], we could write,

θk = µ1(θk)θ1 + µ2(θk)θ2 (4.6)

where
µ1(θk) = θ2 − θk

θ2 − θ1 , µ2(θk) = θk − θ1

θ2 − θ1 (4.7)

The membership functions satisfy the convex sum property, that is,∑
i

µi(.) = 1, 0 ≤ µi(.) ≤ 1, ∀i (4.8)

Hence each parameter could be represented by a weighted sum of two elements. For a vector case,
or for T-S systems with unknown parameters, the membership functions can be manipulated to
obtain weighting functions that depend on the same membership functions. To illustrate this,
take the case of two unknown parameters, θ1,k ∈ [θ1

1, θ
2
1] and θ2,k ∈ [θ1

2, θ
2
2] and represented as,

θ1,k = µ1
1(θ1,k)θ1

1 + µ2
1(θ1,k)θ2

1

θ2,k = µ1
2(θ2,k)θ1

2 + µ2
2(θ2,k)θ2

2 (4.9)

We can now create a new formulation for each unknown parameter by multiplying the summation
of the weighting function of the other parameter. Since this summation equals to 1 due to the
convex sum property, this does not change anything but to obtain a representation with the
same weighting functions. That is,

θ1,k =
(
µ1

2(θ2,k) + µ2
2(θ2,k)

)
θ1,k

θ2,k =
(
µ1

1(θ1,k) + µ2
1(θ1,k)

)
θ2,k (4.10)

By rewriting the parameters in (4.9) with this alternative representation, we obtain the mem-
bership functions that depend on the same, but 4 weighting functions, which are the products
of the membership functions of the original representation. In general, this approach would
lead to 2nθ submodels, where nθ is the number of parameters. A detailed treatment of this
representation could be obtained from [71].

System model structure

Consider the following quasi-LPV model with unknown time-varying parameters:

xk+1 = A(zk,Θk)xk +B(zk,Θk)uk
yk = Cxk (4.11)

where Θk ∈ Rnθ is the vector of the time-varying parameter θi,k, ∀i ∈ [1, . . . , nθ], k being the time
index and zk ∈ Rnp is the vector of premise or scheduling variables which are either measured
or unmeasured. Further, xk ∈ Rnx , uk ∈ Rnu and yk ∈ Rny . The differentiation between zk and
Θk comes from two aspects:
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• The scheduling or premise variables zk that are not system variables, that is, exogenous
inputs, are assumed measured. The unmeasured variables have to be one of the states of
the systems.

• The unknown parameters Θk can be considered as unmeasured scheduling variables. How-
ever, the extra assumption is that the parametrization is affine in the quasi-LPV form,
that is,

A(zk,Θk) = A0(zk) +
nθ∑
i=1

θi,kĀi(zk), B(zk,Θk) = B0(zk) +
nθ∑
i=1

θi,kB̄i(zk) (4.12)

To this model, the SNL transformation is applied in two steps, first to obtain a T-S model that
has unknown parameters,

xk+1 =
2np∑
i=1

µi(zk)

(A0 +
nθ∑
j=1

θj,kĀij)xk + (B0 +
nθ∑
j=1

θj,kB̄ij)uk


yk = Cxk

In the second step, the SNL transformation is applied to the unknown parameters to obtain,

xk+1 =
2np∑
i=1

2nθ∑
j=1

µi(zk)µj(Θk) (Aijxk +Bijuk)

yk = Cxk

To simplify the notations, the two different indices i and j to represent the submodels corre-
sponding to that of premise variables and unknown parameters could be combined together such
that,

xk+1 =
r∑
i=1

hi(zk,Θk) (Aixk +Biuk)

yk = Cxk (4.13)

where r = 2np+nθ and hi(zk,Θk) refers to the product of the two weighting functions corre-
sponding to zk and Θk. Ai and Bi are constant matrices obtained with appropriate replacement
of the premise variables and the unknown parameters for their maximum and minimum values
(for the appropriate submodel). For the model in (4.13), we propose an observer of the form,

x̂k+1 =
r∑
i=1

hi(ẑk, Θ̂k)(Aix̂k +Biuk + Li(yk − ŷk))

Θ̂k+1 = Θ̂k +
r∑
i=1

hi(ẑk, Θ̂k)(Ky,i(yk − ŷk)−KθΘ̂k)

ŷk = Cx̂k (4.14)

The gains Li ∈ Rnx×ny and Ky,i ∈ Rnθ×ny are to be estimated while the gain Kθ ∈ Rnθ×nθ
is chosen. The choice of Kθ shall typically be in the form of a diagonal matrix. In the initial
work [45], this was introduced to avoid a marginal stability condition for the error dynamics. As
discussed in Sec. 2.2.2, choosing this reduces the number of variables in the final LMI to solve
and hence allows for a computationally tractable problem. Further, in the discrete-time case,
Kθ as a variable leads to unresolvable nonlinear terms in the matrix inequalities.
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Error dynamics

Let the state estimation error be ex,k = xk − x̂k. The analysis of the dynamics of the errors
based on the system and observer models in (4.13) and (4.14) would involve comparing systems
weighted by functions that depend on mismatched variables (i.e., zk,Θk vs ẑk, Θ̂k). This is
a typical problem in observer design for T-S systems with unmeasured premise variables. To
mitigate this, the original system model can be rewritten as,

xk+1 =
r∑
i=1

hi(ẑk, Θ̂k)(Aixk +Biuk) + ∆k

yk = Cxk (4.15)

with,

∆k =
r∑
i=1

(hi(zk,Θk)− hi(ẑk, Θ̂k))(Aixk +Biuk)

This leads to the error dynamics as

ex,k+1 =
r∑
i=1

hi(ẑk, Θ̂k)(Ai − LiC)ex,k + ∆k (4.16)

The challenge is to obtain the conditions that are necessary to show the convergence of the
estimates or the vanishing of the error (4.16). The approach followed is exploiting the uncertain-
like model representation explored in [58] and used for joint state and parameter estimation for
continuous-time models in [45]. This approach leads to finding bounds for ∆k exploiting the
convex sum property satisfied by the weighting functions and hence to obtain the bounds for
the estimation error ek. The next sections discuss these results.

4.3 Proposed observer design method
In this section, the approach used in Sec. 2.2.2 following the works of [45] and [58] would be
used to analyze the error dynamics arising out of the observer model.

Uncertain-like representation

We split the term ∆k in (4.15) into ∆k = ∆Ak + ∆Bk with

∆Ak =
r∑
i=1

(hi(zk,Θk)− hi(ẑk, Θ̂k))Ai = AΣA,kEA

∆Bk =
r∑
i=1

(hi(zk,Θk)− hi(ẑk, Θ̂k))Bi = BΣB,kEB (4.17)

where

A =
[
A1 A2 ... Ar

]
∈ Rnx×nx.r, EA =

[
Inx Inx ... Inx

]T
∈ Rnx.r×nx

ΣA,k =



(
h1(zk,Θk)− h1(ẑk, Θ̂k)

)
Inx · · · 0

... . . . ...

0 · · ·
(
hr(zk,Θk)− hr(ẑk, Θ̂k)

)
Inx


(4.18)
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and

B =
[
B1 B2 ... Br

]
∈ Rnu×nu.r, EB =

[
Inu Inu ... Inu

]T
∈ Rnu.r×nx

ΣB,k =



(
h1(zk,Θk)− h1(ẑk, Θ̂k)

)
Inu · · · 0

... . . . ...

0 · · ·
(
hr(zk,Θk)− hr(ẑk, Θ̂k)

)
Inu


(4.19)

Noting that −1 ≤ hi(zk,Θk) − hi(ẑk, Θ̂k) ≤ 1, the matrices ΣA,k ∈ Rnxr×nxr, ΣB,k ∈ Rnur×nur
have the useful property,

ΣT
A,kΣA,k ≤ I, ΣT

B,kΣB,k ≤ I (4.20)
which will later be used to bound the time-varying difference between the known and estimated
weighting functions. The system model could now be rewritten as,

xk+1 =
r∑
i=1

hi(ẑk, Θ̂k)[(Ai + ∆Ak)xk + (Bi + ∆Bk)uk]

yk = Cxk (4.21)
Now, the main result is expressed in the following theorem,
Theorem 9. Given the system model of the form (4.13) an observer of the form (4.14) exists,
if there exists P0, P1, Ri, Fi, λ1, λ2, λ3, λ4, Γj2 (∀i ∈ [1, r], ∀j ∈ {x, u, θ,∆θ}), such that,

P0 = P T0 > 0, P1 = P T1 > 0
λm > 0, ∀m ∈ {1, 2, 3, 4}, Γj2 > 0, ∀j (4.22)

−P + I QA,i ΦT
i P 0

∗ T22 0 QB
∗ ∗ −P 0
∗ ∗ ∗ −P

P0,iA P0,iB 0 0
0 0 0 0
0 0 0 0
0 0 P0A P0B

*
−λ1I 0 0 0
∗ −λ3I 0 0
∗ ∗ −λ2I 0
∗ ∗ ∗ −λ4I


(4.23)

Here,

P0,i = ATi P0 − CTRTi , P = diag(P0, P1), ΦT
i P =

[
P0,i −CTF Ti
0 −KT

θ P1

]

QA,i =

0 0 −CTF Ti (I +Kθ) −CTF Ti

0 0 −KT
θ P1(I +Kθ) −KT

θ P1

 , QB =


0 0
0 0
0 (I +Kθ)TP1
0 P1



T22 =


T 11

22 0 0 0
0 T 22

22 0 0
0 0 −Γθ2 0
0 0 0 −Γ∆θ

2

 (4.24)

where T 11
22 = −Γx2 + (λ1 + λ2)ETAEA and T 22

22 = −Γu2 + (λ3 + λ4)ETBEB.
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The observer gains are given by,

Ky,i = P−1
1 Fi, Li = P−1

0 Ri, ∀ i (4.25)

Proof. Defining errors of the form,

ex,k = xk − x̂k, eΘ,k = Θk − Θ̂k

and comparing the uncertain-like representation of the system in (4.21) with the observer (4.14),

ex,k+1 =
r∑
i=1

hi(ẑk, Θ̂k) ((Ai − LiC)ex,k + ∆Akxk + ∆Bkuk)

eΘ,k+1 =
r∑
i=1

hi(ẑk, Θ̂k) (∆Θk + (I +Kθ)Θk −Ky,iCex,k −KθeΘ,k) (4.26)

where ∆Θk = Θk+1 −Θk. This error dynamics can be represented as

ex,k+1

eΘ,k+1

 =
r∑
i=1

hi(ẑk, Θ̂k)

Φi

ex,k
eΘ,k

+ Ψi,k


xk
uk
Θk

∆Θk




where

Φi =
[
Ai − LiC 0
−Ky,iC −Kθ

]
, Ψi,k =

[
∆Ak ∆Bk 0 0

0 0 I +Kθ I

]
(4.27)

Considering,
ea,k =

[
eTx,k eTΘ,k

]T
, ũk =

[
xTk uTk ΘT

k ∆ΘT
k

]T
the error dynamics can be written by,

ea,k+1 =
r∑
i=1

hi(ẑk, Θ̂k) (Φiea,k + Ψi,kũk) (4.28)

The aim here is the vanishing of the error and the minimization of the effect of ũk on the error. It
is to be noted that Φi has constant entries, but Ψi,k has time varying entries, while both contain
the design parameters. To analyze the stability of (4.28), the following Lyapunov candidate is
considered,

Vk = eTa,kPea,k (4.29)

Since there are time-varying perturbations that affect the error ea,k in (4.28), the sufficient
condition for stability could be enforced using

Vk+1 < Vk − (eTa,kea,k − ũTk Γ2ũk) (4.30)

where Γ2 is a block diagonal matrix with the entries

Γ2 = diag(Γx2 ,Γu2 ,Γθ2,Γ∆θ
2 ) (4.31)
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that represent the L2-gains of the effect of the elements in ũ on the error e− a, respectively. By
applying the discrete-time version of the bounded real lemma (BRL) in Lemma 4 to (4.28),[

ΦT
i PΦl − P + I ΦT

i PΨl,k

∗ ΨT
i,kPΨl,k − Γ2

]
< 0, ∀ i, l (4.32)

is obtained. Note the introduction of the index l. This is to indicate the cross terms that
would emerge when applying BRL (because of the quadratic term in the Lyapunov function
as well as the term eTa,kea,k in (4.30)). This however would make the final LMI significantly
complex. To avoid this, a more conservative, but less complicated conditions can be obtained
if the submodels considered are vertices corresponding to l = i. This assumption works well
for discrete-time models as discussed in Theorem 17 in [33]. This hence makes the condition in
(4.32) as, [

ΦT
i PΦi − P + I ΦT

i PΨi,k

∗ ΨT
i,kPΨi,k − Γ2

]
< 0, ∀ i (4.33)

Further, the condition in (4.33) are not LMIs and following changes are required to convert
them:

• Linearization of nonlinear terms (ΦT
i PΦi, ΦT

i PΨi,k and their transposes)

• Obtain bounds for the time-varying terms (in ΦT
i PΨi,k and ΨT

i,kPΨi,k)

Linearization The quadratic terms associated with Φi and Ψi,k could be reduced to linear
terms by using the Schur complements (Lemma 5) for the nonlinear terms, the matrix terms in
(4.32) could be reduced to,

−P + I ΦT
i PΨi,k ΦT

i P 0
∗ −Γ2 0 ΨT

i,kP

∗ ∗ −P 0
∗ ∗ ∗ −P

 < 0, ∀ i (4.34)

This has not resolved all the nonlinear entries, though, and the residual factors are in the form of
unresolvable terms inside ΦT

i P and ΦT
i PΨi,k. This is because as in (4.27), Φi has two variables

Li and Ky,i, as part of the matrix split into nx and nθ blocks. This issue is alleviated in two
steps:

• Consider a diagonal structure for the Lyapunov matrix P =
[
P0 0
0 P1

]

• This Lyapunov structure would lead to terms P0Li and P1Ky,i. These quadratic terms are
eliminated by introducing new variables,

Ri = P0Li, Fi = P1Ky,i (4.35)

These steps would reduce the nonlinear matrix entries in (4.34) to linear terms. First, to simplify
notations, consider

P0,i = ATi P0 − CTRTi (4.36)
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From the definition of Φi in (4.27), the term ΦT
i P would reduce to,

ΦT
i P =

[
P0,i −CTF Ti
0 −KT

θ P1

]

Further, the linearized time-varying matrices are split into those with constant entries and time-
varying terms,

ΦT
i PΨi,k = QA,i + LU,i,k

ΨT
i,kP = QB + LTL,k (4.37)

where

QA,i =

0 0 −CTF Ti (I +Kθ) −CTF Ti

0 0 −KT
θ P1(I +Kθ) −KT

θ P1

 , QB =


0 0
0 0
0 (I +Kθ)TP1
0 P1


LU,i,k =

P0,i∆Ak P0,i∆Bk 0 0

0 0 0 0

 , LL,k =
[
P0∆Ak P0∆Bk 0 0

0 0 0 0

]
(4.38)

Bounds for time-varying terms The linearized version of the inequality in (4.34) can now
be split into terms with and without time-varying terms and their corresponding transposes,

Qi + Li,k + LTi,k < 0 (4.39)

where

Qi =


−P + I QA,i ΦT

i P 0
∗ −Γ2 0 QB
∗ ∗ −P 0
∗ ∗ ∗ −P

 (4.40)

with QA,i and QB given in (4.24). The time-varying terms are gathered as below,

Li,k =


0 LU,i,k 0 0
0 0 0 0
0 0 0 0
0 LL,k 0 0

 (4.41)

and its transpose with the terms defined in (4.38).
There are 4 time-varying terms and their transposes in (4.39). A bound for each of these

terms could be obtained using the matrix representation idea shown in (4.17) and the fact that
these matrices have interesting bounds that could be exploited (see (4.20)). Similarly each of the
uncertain-like term in Li,k could be split. Let the four terms as part of individual matrices be
LA1,k, LA2,k, LB1,k, LB2,k corresponding to the time-varying factors, P0,i∆Ak, P0∆Ak, P0,i∆Bk,
P0∆Bk respectively. That is,

LA1,k =


0
[
P0,i∆Ak 0 0

0 0 0

]
0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , LB2,k =


0 0 0 0
0 0 0 0
0 0 0 0

0
[
0 P0∆Bk 0
0 0 0

]
0 0

 (4.42)
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and similarly for LB1,k and LA2,k, so that,

Li,k = LA1,k + LA2,k + LB1,k + LB2,k (4.43)

It is to be noted that the 0 entries in the matrices have appropriate dimension and are usually
grouped together to make the representation easier. By taking cue from the representation in
(4.17),

LA1,k=



[
P0,iA

0

]
0
0
0

ΣA,k

[
0
[
EA 0 0

]
0 0

]
, LA2,k=


0
0
0[

P0A
0

]
ΣA,k

[
0
[
EA 0 0

]
0 0

]

LB1,k=



[
P0,iB

0

]
0
0
0

ΣB,k

[
0
[
0 EB 0

]
0 0

]
, LB2,k=


0
0
0[
P0B

0

]
ΣB,k

[
0
[
0 EB 0

]
0 0

]

The Lemma 1 is now applied on the sum of these terms and their transposes.

LA1,k + LTA1,k ≤ λ−1
1



[
P0,iA

0

]
0
0
0


[[
ATP0,i 0

]
0 0 0

]
+ λ1



0ETA0
0


0
0


[
0
[
EA 0 0

]
0 0

]

≤



[
λ−1

1 P0,iAATP0,i 0
0 0

]
0 0 0

0
[
0 λ1E

T
AEA 0

0 0 0

]
0 0

0 0 0 0
0 0 0 0



for some scalar λ1. Similarly,

LA2,k + LTA2,k ≤



0 0 0 0

0
[
λ2E

T
AEA 0 0
0 0 0

]
0 0

0 0 0 0

0 0 0
[
λ−1

2 P0AATP0 0
0 0

]


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LB1,k + LTB1,k ≤



[
λ−1

3 P0,iBBTP0,i 0
0 0

]
0 0 0

0
[
0 0 0
0 λ3E

T
BEB 0

]
0 0

0 0 0 0
0 0 0 0



LB2,k + LTB2,k ≤



0 0 0 0

0
[
0 0 0
0 λ4E

T
BEB 0

]
0 0

0 0 0 0

0 0 0
[
λ−1

4 P0BBTP0 0
0 0

]


Adding them all up gives,

Li,k + LTi,k ≤



[
L1
i 0

0 0

]
0 0 0

0 L2 0 0
0 0 0 0

0 0 0
[
L3 0
0 0

]


with,

L1
i = λ−1

1 P0,iAATP0,i + λ−1
3 P0,iBBTP0,i,

L2 =


(λ1 + λ2)ETAEA 0 0 0

0 (λ3 + λ4)ETBEB 0 0
0 0 0 0
0 0 0 0


L3 = λ−1

2 P0AATP0 + λ−1
4 P0BBTP0 (4.44)

This would lead to the inequality in (4.39) to,


L11
i QA,i ΦT

i P 0
∗ −Γ2 + L2 0 QB
∗ ∗ −P 0
∗ ∗ ∗ L44

 < 0 (4.45)

where

L11
i =

[
−P0 + I + L1

i 0
0 P1

]
, L44 =

[
−P0 + I + L3 0

0 P1

]
(4.46)

These terms have quadratic entries (L1
i and L3) that could be handled by applying Schur’s
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complement. In this way, we could consider,

L11
i < 0⇔


−P0 + I 0 P0,iA P0,iB

0 P1 0 0
0 0 −λ1I 0
0 0 0 −λ3I

 < 0,

L44
i < 0⇔


−P0 + I 0 P0,iA P0,iB

0 P1 0 0
0 0 −λ2I 0
0 0 0 −λ4I

 < 0 (4.47)

By putting them together and rearranging, we get,



[
−P0 + I 0

0 −P1 + I

]
QA,i ΦTi P 0

QTA,i T22 0 QB

PΦij 0
[
−P0 0

0 −P1

]
0

0 QTB 0
[
−P0 0

0 −P1

]


P0,iA P0,iB 0 0

0 0 0 0
0 0 0 0
0 0 P0A P0B


ATP0,i 0 0 0
BTP0,i 0 0 0

0 0 0 ATP0
0 0 0 BTP0

 −λ1I 0 0 0
0 −λ3I 0 0
0 0 −λ2I 0
0 0 0 −λ4I




(4.48)

which in a simplified form can be represented as,

−P + I QA,i ΦT
i P 0 P0,iA P0,iB 0 0

∗ T22 0 QB 0 0 0 0
∗ ∗ −P 0 0 0 0 0
∗ ∗ ∗ −P 0 0 P0A P0B
∗ ∗ ∗ ∗ −λ1I 0 0 0
∗ ∗ ∗ ∗ ∗ −λ3I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −λ2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ4I


< 0 (4.49)

which is the same as the LMI condition (4.23). Hence the proof.

Corollary 3. The observer design problem can be formulated as an optimization problem with
the objective to minimize the L2-gain between the perturbation factors ũk and the errors ea,k in
(4.28). This could be achieved by minimizing a scalar β, such that,

min
P0,P1,Fi,Ri,Γj2,λm

β (4.50)

∀i ∈ [1, r], ∀j ∈ {x, u, θ,∆θ}, ∀m ∈ {1, 2, 3, 4} such that, the LMIs in (4.23) are satisfied along
with,

βI > Γj2, ∀j ∈ {x, u, θ,∆θ} (4.51)

There is an inherent assumption that the L2-gains of various perturbations are scaled appropri-
ately so that using a single β makes sense. This could otherwise be achieved by using appropriate
scaling factor instead of I on the left hand side of (4.51).
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Remark 10. It is to be noted that since there are only two time-varying terms ∆Ak and ∆Bk
in (4.41), we could split the time-varying terms into only two additive factors and hence apply
the Lemma 1 twice. However, the resulting matrix inequality is nonlinear with crossover terms
making it impossible to resolve. Hence four additive factors were used.

Remark 11. In the continuous-time version in [45], the factor Kθ allowed to avoid numerical
issues in the LMI conditions. This has been followed through in the discrete-time case presented
here. The value of Kθ however, is also important because it may lead to the effect of the inno-
vation term Ky,i(yk − ŷk) to become negligible due to relative scaling between Kθ and Ky,i as
discussed in Sec. 2.2.2. This could be done by adding an extra condition. For example, for a
scalar parameter estimation case, let kθ be the scalar value of the observer gain Kθ, which would
lead to the condition,

1
kθ
Ky,i > ρ (4.52)

where ρ > 1 is a constant chosen depending upon the relative scaling between θ and yk − ŷk.
Further conditions along with the LMIs in (4.23) allows mitigating this problem. For instance,
consider a scalar parameter case,

Fi > ρP1kθ (4.53)

Remark 12. The term −P + I in (4.23) has its origins in the Lyapunov function of the form
eTa,kIea,k. This could provide a numerical limitation while solving the LMI feasibility problem.
This could be modified by choosing the Lyapunov function as eTa,kQeea,k, where Qe > 0 that could
be chosen such that a solution exists.

Remark 13. Some problem specific conditions could be added to obtain an optimum solution to
the problem. For example, pole placement for the state observers Ai − LiC could be added as a
separate LMI condition so as to achieve favourable rate of convergence. Further, some minimum
value for the gain corresponding to parameter estimation, Ki, ∀i could be imposed so that the
innovation term is useful in augmenting the estimated θ (due to the relative scaling between the
values of θ̂ and y − ŷ).

4.4 Extensions
In this section, a couple of extensions to the proposed observer design method are discussed.

4.4.1 Measurement noise

If the system in (4.13) has measurement noise, this would lead to

xk+1 =
r∑
i=1

hi(zk,Θk) (Aixk +Biuk)

yk = Cxk +Hνk (4.54)

where νk ∈ Rny is the measurement noise with H ∈ Rny×nν the transmission matrix. This leads
to the perturbation variable to become ũk =

[
xk uk Θk ∆Θk νk

]T
and the matrix Ψi,k in

(4.27) as,

Ψi,k =
[
∆Ak ∆Bk 0 0 −LiH

0 0 I +Kθ I −Ky,iH

]
(4.55)
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which would then lead to the same LMIs as in (4.63) with the modifications in the following
components in (4.24) as,

QA,i =

0 0 −CTF Ti (I +Kθ) −CTF Ti −RiH

0 0 −KT
θ P1(I +Kθ) −KT

θ P1 −FiH



T22 =


T 11

22 0 0 0 0
0 T 22

22 0 0 0
0 0 −Γθ2 0 0
0 0 0 −Γ∆θ

2 0
0 0 0 0 −Γν2

 (4.56)

where Γν2 is the L2-gain between the noise ν and the error ea,k. It is to be noted that Γν2 will
also be added as a diagonal block in the matrix Γ2.

4.4.2 Constant parameters

If we consider the parameters θ to be constant, some simplification could be attempted. Our
aim is to design an adaptive observer assuming that we know a range of values [θ1

i , θ
2
i ] in which

the true value of each of the θi, ∀i ∈ 1, .., nθ lies. This would then transform the problem in the
same lines of the bounds of a time-varying parameter considered in the previous section. This
would mean, we could represent the system model as

xk+1 =
s∑
i=1

hi(zk,Θ)(Aixk +Biuk)

yk = Cxk (4.57)

where s = 2np+nθ and hi(zk,Θ) is the weighting function obtained by normalizing the product
of membership functions associated with the premise variables zk and the parameters Θ. For
this type of system, we propose an observer of the form,

x̂k+1 =
s∑
i=1

hi(ẑk, Θ̂k) [Aix̂+Biuk + Li(yk − ŷk)]

Θ̂k+1 = Θ̂k +
s∑
i=1

hi(ẑk, Θ̂k)Ky,i(yk − ŷk)

ŷk = Cxk (4.58)

As could be noted, the Kθ gain term has been dropped. One main reason is the simplification
this offers. Further, in the continuous-time case, the condition Kθ = 0 lead to unsolvable LMIs
but not in discrete-time. To compute the state and parameter error, we follow the uncertain-like
model approach, the augmented error dynamics is given by,

ea,k+1 =
[
Ai − LiC 0
−Ky,iC 0

]
ea,k +

[
∆Ak ∆Bk

0 0

] [
xk
uk

]

As could be seen, the number of perturbations has reduced and hence the dynamic matrices
simplified. By applying discrete-time BRL and following it up with the application of LMI
equivalence using Schur’s complement (Lemma 5), then splitting the Lyapunov matrix to be of
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the form P =
[
P0 0
0 P1

]
, and applying the variable transformations Ri = P0Li and Fi = P1Ky,i,

we get, 
−P + I ΦT

i PΨi,k ΦT
i P 0

∗ −Γ2 0 ΨT
i,kP

∗ ∗ −P 0
∗ ∗ ∗ −P

 < 0 (4.59)

with

ΦT
i PΨi,k =

[
P0,i∆Ak P0,i∆Bk

0 0

]
, ΦT

i P =
[
P0,i −CTF Ti
0 0

]
, ΨT

i,kP =
[
∆ATk P0 ∆BT

k P0
0 0

]

(4.60)

Further following the same steps described in the proof of Theorem 9, we can summarize the
results as follows,
Theorem 10. Given a discrete-time T-S model of the form (4.57), an observer of the form
(4.58) exists, if there exists P0, P1, Ri, Fi, λ1, λ2, λ3, λ4, Γj2 (∀i ∈ [1, r],∀j ∈ {x, u}), such
that,

P0 = P T0 > 0, P1 = P T1 > 0
λm > 0, ∀m ∈ 1, 2, 3, 4, Γj2 > 0,∀j

(4.61)
(4.62)

−P + I 0 ΦT
i P 0 P0,iA P0,iB 0 0

∗ T22 0 0 0 0 0 0
∗ ∗ −P 0 0 0 0 0
∗ ∗ ∗ −P 0 0 P0A P0B
∗ ∗ ∗ ∗ −λ1I 0 0 0
∗ ∗ ∗ ∗ ∗ −λ3I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −λ2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ4I


< 0 (4.63)

where ΦT
i P is given in (4.60), and there are some structural changes to accommodate the changes

in the number of zero rows due to the change of T22 to,

T22 =
[
T 11

22 0
0 T 22

22

]
where T 11

22 = −Γx2 + (λ1 + λ2)ETAEA and T 11
22 = −Γu2 + (λ3 + λ4)ETBEB.

Proof. The proof follows that of Theorem 9 with the changes in the matrix block entries discussed
above.

4.5 Simulation examples

4.5.1 Time-varying parameter

Example 5. Consider the second order nonlinear system,

x1,k+1 = −0.5x2
1,k + 0.5x2,k + x1,kθk

x2,k+1 = 0.8x1,k + (1− 0.5θk)uk
yk = x1,k (4.64)
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A T-S model of the nonlinear model could be obtained by considering that the state x1,k ∈
[0, 1], θk ∈ [−1, 1] and z , x1 as the premise variables. The system matrices for this is given by,

A11 =
[
−1 0.5
0.8 0

]
A12 =

[
1 0.5

0.8 0

]
A21 =

[
−1.5 0.5
0.8 0

]
A22 =

[
0.5 0.5
0.8 0

]
(4.65)

and with

B11 = B13 =
[
0
1

]
B21 = B22 =

[
0

0.5

]
(4.66)

The weighting functions are given by,

µ1(x̂1) = 1− x̂1, µ2(x̂1) = x̂1, µ̃1(θ̂) = 1− θ̂
2 , µ̃2(θ̂) = θ̂ + 1

2 (4.67)

For developing the observer, the aspects were considered:

• The value of η was fixed at −0.995. Apart from avoiding the nonlinear matrix term, this
would also avoid Φij to become marginal stable in (4.27).

• A condition to ensure that the value ofKij are sufficiently larger than that of η as discussed
in Sec. 2.2.2, the following LMI condition was introduced

Fij > P1η

• The chosen values for Qe = diag(Qe0, Qe1) (See Remark 12) are given by

Qe0 =
[
0.001 0

0 0.001

]
, Qe1 = 0.001

The resultant observer gains were as follows:

L11 =
[
−1
0.8

]
L12 =

[
1

0.8

]
L21 =

[
−1.5
0.8

]
L22 =

[
0.5
0.8

]
and Kij = 1.014 ∀i, j (4.68)

The state and the parameter estimation results are shown in the Fig. 4.1. The input used for
the simulation as well as the variation of the four weighting functions during the simulation are
shown in the Fig.4.2.

4.5.2 Constant parameter

Example 6. We consider the discrete-time version of the simplified waste water treatment plant
from [45]. The simplification concerns reducing the 10-state system to a 2-state model, given by,

x1,k+1 = x1,k + Ts

[
ax1,k
x2,k + b

x2,k − x1,kuk

]

x2,k+1 = x2,k + Ts

[
− cax1,k
x2,k + b

x2,k + (d− x2,k)uk

]
yk = x1,k (4.69)
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Figure 4.1: States and the parameter of the system and their estimates for Example 5

Figure 4.2: Input used and the weighting function trajectory generated for Example 5
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Table 4.1: Model Parameters
Parameter Value

a0 0.5
b 0.4
c 0.4
d 2
Ts 1

In this model, we consider an uncertainty in the parameter a, that is,

a = a0 + θ (4.70)

The parameters of the model used are given in Table 4.1. The unknown parameter θ is constant;
however, for the observer design purposes we assume it to be known and in the range,

θ ∈ [−0.3, 0.3] (4.71)

We choose the premise variables,

z1,k = uk, and, z2,k = x1,k
x2,k + b

(4.72)

It is evident that z2,k depends on the unmeasured state x2,k making it unmeasured. Assuming
a range of values for uk ∈ [0, 0.4], x1,k ∈ [0.01, 6], and x2,k ∈ [0.01, 3], we get the range of the
premise variables as,

z1,k ∈ [0, 0.4], z2,k ∈ [0.003, 14.63] (4.73)

With these parameters, we get the model

xk+1 =
8∑
i=1

hi(zk, θk) [Aixk +Biuk] (4.74)

where hi(zk, θ) is obtained from the product of membership functions of z1,k, z2,k and θ corre-
sponding to the submodel i. The system matrices are given by,

A1 =
[
1 5.9× 10−4

0 0.99

]
A2 =

[
1 0.0024
0 0.99

]
A3 =

[
1 2.92
0 −0.17

]
A4 =

[
1 11.7
0 −3.68

]

A5 =
[
0.6 5.9× 10−4

0 0.6

]
A6 =

[
0.6 0.0024
0 0.6

]
A7 =

[
0.6 2.93
0 −0.57

]
A8 =

[
0.6 11.7
0 −4.1

]

and, Bi=
[
0
2

]
, ∀i

MATLAB with Yalmip [50] interface and LMIlab toolbox were used to solve the LMI conditions
in (4.63). Further, as noted in Remark 12, the value of Qe was chosen as

Qe =
[
0.001Inx 0

0 0.1Inθ

]
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Figure 4.3: Estimation of x1,k (Example 6)

Figure 4.4: Estimation of x2,k (Example 6)

88



4.5. Simulation examples

Figure 4.5: Estimation of θk (Example 6)

It is to be noted that there are a number of variables to be determined by the LMI solver. This
could be reduced by fixing some of the parameters as was done in Sec. 2.2.2. For this example,
the values for Γx2 = Γu2 = 0.1 and λi = 0.001, ∀i = 1, 2, 3, 4 were chosen. This significantly
reduces the computational complexity of the problem. With the above simplifications and
added conditions, the following observer gain values were obtained,

L1 =
[
0.23
0.24

]
L2 =

[
0.23
0.24

]
L3 =

[
0.31
0.21

]
L4 =

[
0.61
0.09

]

L5 =
[
−0.41
0.30

]
L6 =

[
−0.41
0.30

]
L7 =

[
−0.41
0.30

]
L8 =

[
−0.27
0.24

]

and Ki = 0.03, ∀i. The state estimation results are shown in the Fig 4.3 and 4.4 (here ‘Nonlin’
and ’TSObs’ refer to the results from nonlinear system T-S observer respectively). The estima-
tion of the unknown parameter is given in Fig 4.5. Further, the input used for the simulation
is shown in the Fig 4.6. To illustrate the nonlinearity of the model, the weighting function
trajectories over the simulation period hi(x̂, θ̂) is given in the Fig 4.7.

Remark 14. The transient response characteristics of polytopic observers have some known
issues. This concerns not explicitly taking into account the known bound for the states in the
observer design. This could cause the transient response of estimated states (and hence the
parameters) to go out of the bounds and lead to jerks in the response as is seen in Fig 4.5. This
could be partially mitigated through approaches such as that described in [72].

The results presented in this chapter were published as [73] and [74]
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Figure 4.6: Input used for simulation (Example 6)

Figure 4.7: Weighting functions of the submodels (Example 6)
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Chapter 5

A Finite Memory Observer for
decoupled state and parameter

estimation

This short chapter provides a bridge between the preceding chapters and the following ones.
The work in this chapter stems from the attempt to decouple the state and parameter
estimation problem, that is, first to eliminate the states and estimate the parameters, and then
use the estimated parameters for state estimation. In this chapter, an outline of this decoupling
realized using a parity-space technique using a Finite Memory Observer (FMO) strategy is
given. The discussion is brief because the open questions and challenges during this attempt
lead to a more detailed work in the parameter identifiability problem in the next chapter.

Contents
5.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 The elimination-estimation process . . . . . . . . . . . . . . . . . . . . 93
5.4 The FMO strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Introduction and motivation
In the preceding chapters, it was observed that the choice of the observer structure plays a
significant role in the overall complexity of the design process. In particular, the choice of the
observer structure for the parameter estimation was tricky and plays a role in the ability to show
the convergence of the estimation. This is further complicated in the discrete-time models. One
direction to mitigate this is to consider decoupling the estimation of states and the parameters.
This would make it easier to prove the convergence. For example, the recent work on state and
parameter estimation for switching systems in [75] decouples the LMI conditions for the design
of states and parameter estimation.

Algebraic approaches offer an alternative option to realize the decoupling. Algebraic ob-
servers have been proposed in continuous-time case [76] which make use of the ability to obtain
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stable higher order derivatives. For the discrete-time case, the notion of FMO provides a more
streamlined way to handle observer design in the algebraic framework. The idea of using a fixed
memory for estimation rather than the infinite past stems from the possibility that aspects such
as faults and related phenomenon are more visible in recent data. One of the early works in
this direction is in [77] where the authors propose a continuous finite memory observer as an
alternative to Luenberger and Kalman filter approaches. They were then applied in fault diag-
nosis applications in subseauent works such as in [78] and [79]. In the recent times, this has also
been extended to fault detection applications in linear time varying [80] and polytopic models
[81]. In [80], a detailed study on the use of FMO for fault diagnosis is given, including the case
when there is noise. One recent work that follows this idea is proposed in [82] for polytopic LPV
models. The parameters are estimated using an iterative constrained optimization in the first
step and then the states are estimated using a robust polytopic observer.

Parity-space approach (or Chow-Wilsky approach) introduced in [16] was directed at fault
detection in the context of robustness to model uncertainties. Analytical redundancy relations
of the underlying system are derived and used to design residual generation methods which
in-turn could aid in minimizing the effects of the uncertainties. Parity-space approach can be
realized in several ways and polynomial null-space basis computation is one of them (see [83],
[84]). The combination of parity-space and null-space could also be used in case of parameter
estimation and is attempted in this chapter.

5.2 Problem formulation
The quasi-LPV models of interest are of the form,

xk+1 = A(ρk, θ)xk +B(ρk, θ)uk
yk = Cxk (5.1)

where x ∈ Rn, θ ∈ Rq, y ∈ Rp, u ∈ Rm and ρk is the premise variable composed of one of the
system variables or an extraneous signal. The following are the assumptions associated with
this model:
Assumption 1. The output equations are linear

The discussion in this chapter considers the output equations to be linear. However, the
results are easily extended to nonlinear outputs as long as they satisfy the other assumptions.
Assumption 2. The premise variables ρk are composed of only measured or known variables

That is, if the premise variable is one of the system variables (or a function of system
variables), it has to be either known or measured or a combination of these variables.
Assumption 3. The parameters θ are constant

The underlying procedure assumes that the parameters are constants. However, as would
be illustrated, the FMO strategy can be tuned to allow for time-varying parameters to be also
estimated using the same framework.
Assumption 4. The parametrization is affine in the system matrices. That is, the system
matrices are of the form,

A(ρk, θ) = A0(ρk) +
q∑
i=1

Āi(ρk)θi, B(ρk, θ) = B0(ρk) +
q∑
i=1

B̄i(ρk)θi (5.2)
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Further, the proposed approach also works for cases where the parameters appear affine in
the state equation. That is, the state equation could be of the form,

xk+1 = A(ρk, θ)xk +B(ρk, θ)uk + F (ρk)θ

However, this is not explicitly discussed.

Assumption 5. The system model is noise-free

This assumption stems from the system inversion performed to eliminate states and estimate
the parameters. However, as FMO strategy could be equipped to handle noise, it is possible to
develop strategies to handle noise, though they are not rigorously discussed here. With these
assumptions in place, the aim here is the estimation of states and parameters in the following
steps:

1. Eliminate states using the parity-space approach realized through null-space computation
of appropriate matrices.

2. Estimate the parameters.

3. Estimate the states.

The contribution in this chapter focuses on the first two steps of eliminating the states and
estimating the parameters. The state estimation step could be realized using a number of
strategies, including a polytopic observer design as in [82]. In this chapter, a least-squares
solution for the state estimates is given. It can be noted that, if feasible, analytical redundancy
equations that rely only on inputs and outputs can be obtained to extend this approach to fault
detection applications.

5.3 The elimination-estimation process
In this section, the steps involved in the decoupled estimation of the states and parameters are
discussed. To make the visualization simple, the system matrices in (5.1) are simplified by the
following notations:

Aθk , A(ρk, θ), Bθ
k , B(ρk, θ)

Formulation of algebraic equations Given the system model of the form (5.1), the following
well-known algebraic equations in the matrix form could be written,

Yk = Oθ
kxk + Gθ

kUk (5.3)

where

Yk =


yk
yk+1
yk+2
...

yk+w

 , Uk =


uk
uk+1
...

uk+w−1

 , Oθ
k =


C
CAθk

CAθk+1A
θ
k

...
CAθk+w−1 · · ·Aθk

 ,

Gθ
k =


0 0 · · · 0

CBθ
k 0 · · · 0

CAθk+1B
θ
k CBθ

k+1 · · · 0
...

... . . . ...
CAθk+w−1B

θ
k CAθk+w−2 · · ·Aθk+2B

θ
k+1 · · · CBθ

k+w−1

 (5.4)
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The index w is indicative of the size of the window (w + 1) to be chosen in formulating the
algebraic equations. In the FMO formulation, this indicates the size of the finite memory.

Null-space computation To eliminate the states in (5.3), the left null-space of Oθ
k should

be computed. That is, to find Ωθ
k such that,

(Ωθ
k)TOθ

k = 0 (5.5)

The null-space computation can be realized in two ways:

• Symbolic computation: Symbolic computation can be realized through packages such as
the symbolic computation toolbox in MATLAB. This would help in obtaining the null-
space and the subsequent steps through symbolic values for known/measured variables.
The consequence is that, all the steps preceding the parameter estimation step would be
performed only once.

• Numerical computation: The entries of the matrix Oθ
k are composed of known/measured

variables (except the parameters), and hence it is possible to compute the null-space
numerically. To achieve this, the problem is posed as the computation of the null-space
basis of a polynomial matrix. The matrix Oθ

k is a polynomial in θ because of the affine
parametrization (Assumption 4). This can be better explained with a scalar parameter θ1
and the system as follows:

xk+1 =
(
A0(ρk) + θ1Ā1(ρk)

)
xk +Buk

yk = Cxk

or in a simplified representation,

xk+1 =
(
Ak + θ1Āk

)
xk +Buk

yk = Cxk

For this system model with for example w = 2, the matrix is given by,

Oθ
k =

 C

C(Ak + θ1Āk)
C(Ak+1 + θ1Āk+1)(Ak + θ1Āk)


=

 C
CAk

CAk+1Ak

+ θ1

 0
CĀk

C(Ak+1Āk + Āk+1Ak)

+ θ2
1

 0
0

CĀk+1Āk


= O0,k + θ1O1,k + θ2

1O2,k

That is, for a length of window size w, the observability matrix Oθ
k is parametrized as:

Oθ
k = O0,k + θ1O1,k + · · ·+ θw−1

1 Ow−1,k (5.6)

The null-space can also be parametrized, for some s as,

Ωθ
k = Ω0,k + θ1Ω1,k + θ2

1Ω2,k + · · ·+ θs1Ωs,k (5.7)
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For the condition in (5.5), the coefficient of θ1 on either side of the equation can be
evaluated. These equations can be gathered into a matrix form as,[

ΩT
0,k ΩT

1,k ΩT
2,k · · · ΩT

s,k

]
P = 0 (5.8)

where,

P =


O0,k O1,k O2,k · · · Ow−1,k 0 0 · · ·

0 O0,k O1,k · · · Ow−2,k Ow−1,k 0 · · ·
0 0 O0,k · · · Ow−3,k Ow−2,k Ow−1,k · · ·
...

...
... . . . ...

...
...

...


The left null-space of the matrix P would give the desired null-space. The number of row
blocks in P would be equal to s + 1. One aspect that is not clear here is the choice of
s. It is not possible to predict a priori the degree of the polynomial of the null-space as
it will depend entirely on the specific model. An iterative approach followed in [85], [86]
solves this problem and computes the polynomial basis for the null-space. It is important
to note that, this polynomial null-space computation however, has not been extended to
multivariate case. Hence their applicability to the present problem is limited.

Obtaining a set of Input-Output-Parameter (I-O-P) equations Once the null-space is
computed, the states are eliminated to obtain,

(Ωθ
k)T

(
Yk −Gθ

kUk
)

= 0 (5.9)

which are a set of equations in the known and measured variables along with the parameter θ
such that,

Ψ(yk, yk+1, · · · , yk+w, uk, · · · , uk+w, θ) = 0 (5.10)

The dimension of Ψ(.) would depend on the chosen size of the finite memory, w and the observ-
ability properties of the model.

Estimating the parameters Depending upon the structure of I-O-P equations, Ψ(.), it can
be analytically solved or an optimization solution could be found.

• Solving for the parameters: If the I-O-P equations have a polynomial structure in θ, then
the solution could be obtained by either directly solving through algebraic operations or
more formally, by computing the Gröbner basis using Buchberger algorithm [87]. That is,
given a set of polynomial equations in θ,

Ψ = {ψ1, ψ2, · · · , ψr}

where each ψi represents an equation of the form,

ψi(yk, · · · , yk+w, uk, · · · , uk+w, θ) = 0

the Gröbner basis of these equations would be the set of all the solutions (if they exist). If
the solution is not unique (but finitely many), specific conditions on the parameter values
could be put to choose one of the solutions. It is to be noted that the Gröbner basis
approach assumes that the I-O-P equations have a polynomial structure.
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• Nonlinear optimization: Formulating a nonlinear optimization problem is an alternative
when the direct solving approach fails. While this approach is complex to solve and
prone to local solutions, additional information about parameters could be introduced as
constraints to obtain the right solution. This option has not been evaluated during this
investigation.

Estimating the states Once an estimate of the parameter θ̂ is obtained, the next step is to
obtain an estimate for the states of the system. Considering the least squares estimation of the
states based on (5.3) would give,

x̂k =
(
(Oθ̂

k)TOθ̂
k

)−1
(Oθ̂

k)T
(
Yk −Gθ̂

kUk
)

(5.11)

assuming that the inverse exists, that is, the matrix Oθ̂
k has full row rank. In this context, if

there is noise in the state or measurement equation, the estimation strategy followed in [80]
could be adapted.

5.4 The FMO strategy

A finite memory observer strategy typically falls into two categories [80]:

• Filtering FMO: if the measurement window is from k − w1 to k and the attempt is to
estimate the states xk. The term filtering refers to the fact that past values are used to
predict/refine the current estimates.

• Predicting FMO: if the measurement window is from k − w1 and up to k + w2 where
w2 > 0, then, the observer is in prediction form. That is, for w2 = 1, the observer is a
1-step prediction. The idea is that in real-time, k corresponds to the current instant and
estimating xk+w2 corresponds to future values that are to be predicted.

These terminologies effectively stem from the choice of the start of the measurement window.
In this chapter, there is an abuse of notation in this regard as well as the strategy followed and
outlined as follows:

• The measurement/input data used is from the sample instants k to k + w

• The estimation of the parameters and states corresponding to that of k is achieved with a
delay of w samples

• The estimation happens over a sliding window of measurements

Aligning the proposed method to the formal categories is possible, though is not attempted.
This FMO strategy would be useful to detect both constant parameters and cases where the
parameters model an abrupt fault scenario, that is, the parameter remains constant and changes
abruptly and then remains constant again. This is illustrated in Example 9 in the next section.

Choice of the window size w All the preceding discussions assume that the window size
w will guarantee that the parameters are estimated within this window. This considers two
aspects:
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• The parameters can be estimated with measurement data from k to k+w: this relates to
the parameter identifiability property.

• The window size w can be determined a priori: closely related to the observability index
of the system model in (5.1).

These are discussed further in the next section and in depth in the next chapter. To paraphrase,
the choice of w is equal to the system dimension n for rational and control-affine analytical
models. However, for other systems there are no proof to show a relationship between the choice
of w and the dimensions of system variables.

5.5 Illustrative examples
In this section, a set of simple examples is given to illustrate the steps discussed in the previous
sections.

Example 7. Consider the following model with the scheduling variables as ρ1,k , yk and ρ2,k ,
uk,

xk+1 =
[
ρ1,k −0.5
0.5θ ρ2,k

]
xk +

[
θ
0

]
uk, yk =

[
1 0

]
xk

The matrices in (5.4) are given (with w = 3) as,

Oθ
k=

 1 0
yk −0.5

ykyk+1 − 0.25θ −0.5(uk + yk+1)

 , Gθ
k=

 0 0
θ 0

θyk+1 θ


And the corresponding null-space and the I-O-P equations are given by,

Ωθ
k =

0.25θ + ukyk
−uk − yk+1

1


yk+2−yk+1(uk+yk+1)−θuk+1+yk(0.25θ+ukyk)+θu2

k = 0
In this example, given that there is a single parameter to be estimated, the I-O-P equation

is rewritten to obtain θ̂ as a function of known and measured variables. For some multi-variable
cases the solution could be found symbolically to represent all the parameters as a function of
known and measured variables (e.g., solve in MATLAB). The parameter thus estimated θ̂ is
assigned to the system matrices in (5.3) to obtain an estimate for the state,

x̂k =
(
(Oθ̂

k)T (Oθ̂
k)
)−1

(Oθ̂
k)T

(
Yk −Gθ̂

kUk
)

(5.12)

The existence of the solution for θ̂ and the inverse
(
(Oθ̂

k)T (Oθ̂
k)
)−1

depend on the numerical
values of the inputs and outputs and is equivalent to the persistence of excitation condition used
in adaptive observer design.

Example 8. This example considers multiple unknown parameters with multiple outputs.
x1,k+1 = 0.2x1,k + θ2x4,k + uk, y1,k = x1,k

x2,k+1 = θ1x2,k − 0.5x3,k, y2,k = x2,k

x3,k+1 = ukx2,k + 0.2x4,k

x4,k+1 = 0.5x3,k + 0.8x4,k
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A quasi-LPV model with the scheduling variable ρk , uk is,

xk+1 =


0.2 0 0 θ2
0 θ1 −0.5 0
0 ρk 0 0.2
0 0 0.5 0.8

xk +


1
0
0
0

uk
yk =

[
1 0 0 0
0 1 0 0

]
xk

For w = 3 the null-space obtained symbolically is given by,

Ωθ
k =



0.16 −0.02/theta2
−θ1θ2 0.5uk
−1 0.1/θ2
θ2 −θ1
1 0
0 1


The I-O-P equations are given by,

0.8uk−uk+1+0.16y1,k−y1,k+1+y1,k+2+θ2y2,k+1−θ1θ2y2,k=0

y2,k+2−θ1y2,k+1+0.5uky2,k−
y1,k
50θ2

−0.1uk−y1,k+1
θ2

=0

The parameter estimate θ̂ can be obtained by solving the two equations.

Example 9. In this example, a case where the parameter only appears in the input matrix in
the LPV form is given. If the parameter is considered time-varying in this case, this models a
multiplicative actuator fault scenario. Considering the same scheduling variables as ρ1,k , yk
and ρ2,k , uk we have,

xk+1 =

0.2 −0.5 0
0 ρ1,k 0.5
0 0.5ρ2,k −0.5

xk +

 0
1 + θ

0

uk
yk =

[
1 0 0

]
xk

Given that the state transmission matrix A doesn’t have θ appearing, the null-space would not
contain θ. Symbolic computation leads to the following null-space and the I-O-P equation,

Ωθ
k =


0.05uk + 0.1yk

0.2yk+1−0.5yk−0.25uk−0.1
0.3−yk+1

1


yk+3+ 1+θ

4 (uk+2uk+1)−yk+1(uk4 + yk
2 −

yk+1
5 + 0.1)− yk+2(yk+1 − 0.3)+yk(

uk
20 + 0.1yk) = 0

For this example, we show the results of the estimation of both the parameter and the
states. MATLAB computing environment was used to implement with the aid of the symbolic
computation toolbox. In Fig. 5.1, the parameter estimation is illustrated for a case where the
parameter varies in a waytypical in abtrupt fault scenarios. There is a delay because it takes
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Figure 5.1: True and estimated values of the parameter

w = 4 measurements to be available before an accurate estimation can be achieved. In Fig. 5.2,
the errors of state estimation are illustrated as percentage of their values. We accounted for
the delay to calculate these errors since the states have a dynamic nature. The errors on the
states x1 and x2 are less than 1% and hence appear to be almost zero. The spike in the state
estimation error for x3 coincides with the transition on the parameter θ.

These results were communicated in [88].

5.6 Discussion

The development of the proposed FMO for decoupled state and parameter estimation was ham-
pered by several factors. The efforts to solve these bottlenecks revealed the opportunities for
algorithms to evaluate parameter identifiability (more in Chapter 6), and diverted efforts away
from FMO. The key factors responsible for this action are outlined in this section.

Choice of window size w The choice of window size w plays an important role in any
FMO design, more so for this chapter, because it should guarantee that θ can be estimated.
The decoupling strategy eliminates the states and hence the window size is directly related to
the observability index of the system model. That is, if the window size w is equal to the
observability index of the model, then Yk in (5.3) has sufficient data to guarantee that the
null-space Ωθ

k exists. For some specific types of nonlinear models, the system dimension n forms
the upper bound for the observability index. For MIMO system, this upper bound is highly
likely to be conservative as each output’s observability index would add up to a lot more than
n in general. So the window size needs to be determined by checking the definition (see [89] or
Chapter 6 for more details).

Parameter identifiability and obtaining I-O-P equations The estimation of parameters
assume that the unknown parameters are identifiable. Further, to estimate these parameters, it
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Figure 5.2: State estimation errors

should also be possible to write them in I-O-P form so that subsequent steps of Gröbner basis
or optimization problem can be formulated and solved. Search for answers to this question lead
to the works discussed in Chapter 6.

Solving for the parameters The parameter estimation step is computationally expensive
(except for some simple cases) for real-time implementation. The illustrative examples used
MATLAB’s solve command which do not scale well. The Gröbner basis approach is computa-
tionally expensive to apply symbolically, though a one-time analysis to obtain θ as a function of
the input-output values is possible (if the I-O-P equations are lower degree polynomials). Nu-
merical assignment of input-output values leads to a much simpler set of polynomials to solve
using Gröbner basis. But performing this for every sliding window is computationally expensive.
A completely different take on this could be to use Ritt’s algorithm as given in [90] to obtain θ as
a function of the inputs and outputs8. For system models where Gröbner basis is unsuitable, an
optimization problem is suggested to be formulated. This again is computationally expensive.

Time-varying parameter estimation The FMO strategy, under certain circumstances al-
lows one to estimate the unknown parameters that are time-varying. The main assumptions
here are:

• The parameters are constant for a period of time (at least w samples)

• There is no noise on the measurements

A brief of this strategy could be described as follows: Based on the assumption, the parameter is
constant from k to k+w. This would mean that, for this finite memory window, there is only one
unknown, θk. Once θk it is estimated, for the next sliding window (from k+1 to k+w+1), there
will be at most one unknown parameter, θk+w+1. This is because θk+i = θk, ∀ i = 0, · · · , w.
This process could be continued to estimate any time-varying parameter as long as it varies
slower than the sampling rate.

8The discrete-time validity of the results in [90] can be referred to in [91]
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5.6. Discussion

To summarize the ambiguity in the choice of window size w and the computational effort
required for real-time estimation, directed the effort towards identifiability analysis, which is an
a priori analysis. However, the above discussion contains hindsights arrived at after the work
in Chapter 6 and hence opportunities exists to extend the works in this chapter and discussed
in Chapter 7.
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Chapter 6

Parameter identifiability

Parameter identifiability is an implicit condition for the design of adaptive observers. Further,
the design problem of sensor placement for fault detection, degradation estimation, etc., rely
on the analysis of parameter identifiability of the model. In this chapter, a parity-space [16]
based procedure for the parameter identifiability analysis of quasi-LPV models is proposed.
The parameters are assumed to be constant and the parametrization affine.
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6.1 Motivation

Broadly, the study of parameter identifiability is motivated by the need to have a well-posed
problem in several applications. For instance, when the problem of parameter estimation is
transformed into an optimization problem of minimizing a cost function (e.g., [82]), there is
an expectation that there is a unique set of parameters which satisfy the input, output values
available from the experiment. If multiple parameter sets satisfy the input-output data, the
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next interest will be if at least locally, the parameter set is unique. It is in this respect the dis-
tinguishability property of parameters is defined and forms the basis of parameter identifiability
analysis. Consider the general nonlinear system model of the form,

Σθ :
{
ẋ(t) = f(x(t), u(t), θ)
y(t) = h(x(t), u(t), θ)

(6.1a)
(6.1b)

with x ∈ Rn, u ∈ Rm, y ∈ Rp and the constant parameters θ ∈ Rq. Distinguishability property
of a model structure refers to the following [90],

ỹ(t|θ′) ≡ ỹ(t|θ′′)⇒ θ′ = θ′′ (6.2)

where, ỹ refers to a set of measurements of the output (6.1b) and the presence of θ′/θ′′ indi-
cate the parameter vector that generated the output. In the following, the importance of the
distinguishability property in the context of the research problems of interest in Sec. 1.3.2 is
outlined. It is important to note that a priori parameter identifiability assumes error-free model
and noise-free data and thus is a necessary and not a sufficient condition for the existence of a
solution.

Consider the problem of sensor placement for maintenance activities (such as degradation
estimation, fault estimation, etc.). Maintenance activities are rare and typically involve gath-
ering data by deploying temporary sensors (e.g., hand-held monitors). Consequently, a finite
amount of data is available to estimate relevant parameters that are indicative of the underlying
phenomena. This estimation procedure requires that the available input-output data admit a
unique solution for the set of unknown parameters, at least within a known range of parameter
values. This constraint is satisfied by local parameter identifiability of the model.

The second situation is when measurements from permanently installed sensors are used to
perform the same task. Adaptive observers (as discussed in earlier chapters), or Kalman filter like
observers provide an alternative. In the latter case, an extended model is formed by augmenting
the unknown parameters to the state vector. To understand the effect of identifiability properties
on the combined state and parameter estimation, we refer to the preliminary analysis in [92]. The
authors conceive a definition of combined state and parameter identifiability (CSPI) that is valid
for autonomous single-input-single-output (SISO) linear systems. Then, they provide necessary
and sufficient conditions for non-identifiability of the models of different orders. Consider a
linear model of second order,

ẋ(t) =
[
a11 a12
a21 a22

]
x(t), y(t) =

[
1 0

]
x(t), x(0) = x0

For this autonomous model, CSPI is defined assuming as if the system is subjected by an

impulse input through a input transmission matrix
[
b1
b2

]
. CSPI refers to the ability to estimate

the parameters (aij) and two additional parameters (b1, b2) of the impulse input matrix. The
authors perform this analysis by comparing the transfer function obtained from the state-space
model to a generic SISO transfer function of 2nd order. We reproduce here three of the five
conditions 9 given by the authors for non-identifiability of the above model:

9The other two conditions are important, but not relevant for this discussion.
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1. a12 = 0

2. a12 6= 0, a21 = 0 and a12 is unknown

3. a12 6= 0, a21 6= 0, and a12 and a21 are unknown
To understand the relationship between these results and parameter identifiability of the original
model, consider an example of a second order linear model:

ẋ(t) =
[
1 1 + θ
0 1

]
x(t), y(t) =

[
1 0

]
x(t) (6.3)

which satisfies the condition 2 as given above, implying that the model is unidentifiable in the
CSPI sense.

This example could also be analyzed for parameter identifiability using some existing methods
in the literature10. For example, consider the extended observability analysis approach proposed
in [93] and that is valid locally for general nonlinear models of type (6.1). As the name refers to,
extended observability analysis considers parameters as states without dynamics and augments
them to the state vector. The identifiability is verified if the extended observability matrix
(referred to as the observability-identifiability matrix [94]), obtained by computing the n+ q−1
derivatives of the output has rank n+q. For the above example, the observability-Identifiability
matrix of the extended state vector (where x̃ =

[
x1 x2 θ

]T
) is given by,

∂Φ
∂x̃

=

1 0 0
1 1 + θ x2
1 2(1 + θ) 2x2


which has a (structural) rank of 2, which is less that n+ q = 3 required for θ to be identifiable.
So θ is not identifiable.

The motivation behind this illustration is to show the role of parameter identifiability in the
joint estimation of states and parameters. This aspect is not generally discussed explicitly in the
literature where they are masked by a host of other structural conditions11. However, it is not
possible to say beyond the fact that parameter identifiability appears to be a necessary condition
for the joint state and parameter identifiability. This is because, in [92] the authors provide two
examples (II.2 and II.3) that are not CSPI. However, by the observability-identifiability matrix
approach above, the example II.2 can be verified to be parameter identifiable (locally) whereas
II.3 is not.

Having established the motivation to perform parameter identifiability, the chapter is ar-
ranged as follows to tackle the problem for quasi-LPV models: a select review of the relevant
identifiability works is given in the Sec. 6.2. The identifiability problem is formulated in Sec. 6.3
where the relevant definitions and the assumptions are given. The components of the proposed
method for continuous-time models is given and illustrated with examples in Sec. 6.4 while the
discrete-time version is summarized with examples in Sec. 6.5. To realize the methods into
a systematic algorithm, the challenges are discussed in Sec. 6.6 where systematic algorithms
for specific scenarios are provided. A discussion in Sec. 6.7 covers an ensemble of details and
limitations related to the proposed approach.

10A more detailed discussion of these methods follows in the next section
11For e.g., in [7] it appears as the positive real connection between output and the parameter. In [9], it is the

existence of certain transformation.
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6.2 Review of literature

As discussed earlier, parameter identifiability primarily drives to show the distinguishability
property of the underlying model. Given the wide range of models encompassed by (6.1), an
array of different identifiability definitions exists in the literature. These definitions and the
corresponding characterizations vary due to several factors, including,

• The characteristics of the functions f and h (e.g., analytic, homogeneous, meromorphic)

• The characteristics of the inputs (sufficiently continuous/differentiable, piecewise continu-
ous etc.)

• Initial (state) conditions assumptions (known/unknown/partial)

• Neighbourhood of identifiability (local/global, parameter/state+parameter)

There are also nuances associated with strong and weak notions of the identifiability. For
example, in [95], the authors note that their identifiability definitions are weaker compared to
that in [96] because the distinguishability in the latter work is for ‘all the admissible inputs
within an open dense subset’, whereas it is just ‘at least one input’ as a sufficient condition in
their own work12. For the purpose of this review, the following definition is considered (adapted
from [97]). For the system model Σθ in (6.1), Σθ1 = Σθ1∗ refers to the models indistinguishable
by their outputs.

6.2.1 Identifiability of continuous-time models

The problem of structural identifiability was initially investigated in [98]. Several works have
since been developed to characterize parameter identifiability. The basic premise is to validate
the distinguishability property (6.2) of a given model. In a broad sense, the methods could be
classified as those that perform:

1. Analysis of observables

2. Analysis of the system map

The term observables has been borrowed from [97] and roughly refers to the outputs and the
parameter information embedded in them. That is, the first classification refers to verifying
directly, whether the outputs (and inputs) provide a way to validate the distinguishability prop-
erty in (6.2). Methods such as Taylor series approach and generating series approaches fall into
this category. The second class of methods look at some specific properties of the system model
to check for identifiability. Isomorphism based approaches or approaches that consider identi-
fiability as an extended observability property belong to the second class. This classification
is not strict as several methods cross over. For example, the implicit function theorem based
approach and the differential algebraic tools based approach exploit the system model properties
to eliminate the latent (state) variables and then analyze the observables.

12But at the same time, the authors in [95] consider piece-wise continuous inputs which are more representative
in biological system identification.

106



6.2. Review of literature

Taylor series and generating series approach

Taylor series approaches were one of the first methods to be proposed for identifiability analysis
in [99]. The idea is to consider the output as an analytic function of time and hence their
derivatives should hold all the possible information about the unknown parameters θ. And
the uniqueness of the Taylor series expansion of this function should be an indication of the
identifiability of the system. With the coefficients obtained for the Taylor’s series expansion, it
can now be verified whether the they admit only one or multiple possible parameter values. If
the test fails, however, it does not mean identifiability. More coefficients are to be computed
and verified again.

The generating series approach [100] is conceptually similar to the Taylor series approach
and is applicable on control affine models of the form,

ẋ = f(x, θ) + g(x, θ)u, x(t0) = x(θ)
y = h(x, θ) (6.4)

Instead of using derivatives, Lie derivative expansion of the output functions along the vector
fields f and g are computed. The coefficients of the output functions and their Lie derivatives are
termed exhaustive summary, and their uniqueness validates the structural global identifiability
of the model.

Both these approaches have the drawback of the lack of knowledge on the number of deriva-
tives over which the identifiability can be verified. That is, the results provided by these methods
are sufficient only. To mitigate some of these issues, iterative approaches have been suggested.
The identifiability tableau proposed in [101] applied it for Taylor series approach. It simplifies
the procedure to understand the identifiable parameters given the outputs and their derivatives.
This iterative procedure was also paired with the generating series method in [97] to develop
the genSSI MATLAB toolbox.

Isomorphism based approach

The isomorphism based approaches answer the distinguishability question by analyzing the
relationship between state-space realizations. These methods exploit the fact that, under certain
conditions, indistinguishable state space models have locally isomorphic state spaces. So the
identifiability analysis works to show that state isomorphisms must have certain properties
within the class of state space systems considered. This helps to parametrize indistinguishable
state space models and if the isomorphism can be shown to be identity, then global identifiability
is also verified.

One of the earliest works to analyze the identifiability property through the state-space
realization theory is in [102]. For nonlinear systems, local state isomorphism based works were
proposed in [103] which were followed up by works such as [104] for uncontrolled systems, [105] for
homogeneous systems, and [95] for polynomial and rational models with provision for piece-wise
continuous inputs. These approaches assume the system model is minimal, however minimality is
not necessary for identifiability. One critique of this approach is the lack of systematic approach
to verify identifiability. While this was mitigated to some extent in the systematic solution
proposed in [106], this continues to remain an issue to use this method for complex nonlinear
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models [97]. For specific types of nonlinear models, realization theory associated with those
models are used to turn the identifiability problem to verifying the rank of a certain matrix.
For example, the identifiability results in [95] depend on the realization theory developed for
rational and polynomial systems in [107]. Several results, including [106], use the local state
isomorphism theorem from [108].

Differential algebraic approach

The potential of the differential algebraic tools in identifiability was discussed in the seminal
paper [90]. The authors deploy the Ritt’s algorithm to find the characteristic set of the polyno-
mial ideal generated by the system model (which is assumed to be either polynomial or those
models that could be written in such a form). Given the system model Σθ in (6.1b), the idea is
to rewrite the state-space model as a set of polynomials,

gi(
d

dt
, u, y, θ) = 0 (6.5)

along with θ̇ = 0. Here i = 1, 2, , · · · and d
dt stands for all the higher order derivatives of the

inputs and outputs. Then after a careful choice of ranking of the variables, the characteristic
set of the ideal generated by the set of polynomials (6.5) is obtained through Ritt’s algorithm.
The characteristic set has the following form,

A1(u, y), · · · , Ap(u, y),B1(u, y, θ1),
B2(u, y, θ1, θ2), · · · , Bq(u, y, θ1, · · · , θq),
C1(u, y, θ, x), · · · , Cn(u, y, θ, x)

(6.6)

which leads to the following conclusions,

• Non identifiable: For some i one has Bi = θ̇i

• Globally identifiable: All Bi are of order 0 and degree 1 in θi

• Locally identifiable: All Bi are of order 0 and degree 1 in θi, some Bj is of degree greater
than 1 in θj

The authors also show that the identifiability and the estimation of the parameters are guaran-
teed when for each parameter, a linear regression form,

Pi(
d

dt
, u, y) + θiQi(

d

dt
, u, y) = 0 (6.7)

is obtained. Implementation of differential algebra approach has different flavour. One approach,
proposed in [109] uses a differential ring that does not consider θ, a strategy framed in [110]. For
biological systems, this proves useful, as they have a huge number of parameters and hence if the
differential ring includes them, would lead to enormous computational effort. This is elaborated
in [111] which develops identifiability tools for biological systems.

Differential geometric approach

In [93], the authors discuss several identifiability definitions. These definitions are characterized
as an extended observability problem, where the parameters are added to the state vector and
the observability of the new model is evaluated. These results are local in nature, but have an
intuitive appeal to it that it lead to the development of the toolbox STRIKE-GOLDD [112].
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In [96], the implicit function theorem is employed as a means to derive local identifiability
results. The authors consider geometric identifiability, which is a structural identifiability con-
struct that is local both around the states and the parameters. Local structural identifiability is
formulated as algebraic identifiability. While the relationship between the various local identifia-
bility characterizations are clearly given, the actual computation steps to validate identifiability
is slightly ambiguous and the example provided also seems ad hoc. The results in this chapter
mitigate this to an extent.

6.2.2 Discrete-time identifiability

For the discrete-time case, the identifiability results are limited. In [91], the authors formulated
the cryptographic key’s ability to be cracked as an identifiability problem and then reused the
continuous-time results in the discrete-time context. The authors in [113] develop a discrete-
time version of the local state isomorphism theorem and use it to establish identifiability results
for discrete-time systems with polynomial nonlinearities.

The authors in [114] develop discrete-time local identifiability results using the implicit func-
tion theorem similar to that of continuous-time in [96]. These results, however, don’t provide
any specific systematic procedure and the examples provided are too simple to provide insight
into the procedure.

For identifiability of LPV models, all the works consider models with static dependence on
the scheduling variables. The authors in [115] derive some perspectives on those models that
could be represented using the linear fractional transformation (LFT) approach. They provide
an identifiability characterization of such models using the existence of similarity transformation
between two realizations. In [116], the authors deal with the dual problems of identifiability and
informativity that concerns the parameter estimation. The models considered are the input-
output models with LPV-ARX structure in contrast to the state-space models of interest in this
chapter. Discrete-time affine LPV model identifiability is discussed in [117], where the authors
use the realization theory developed in [118]. The authors provide a systematic procedure
that culminates in a rank condition that would verify the presence of an isomorphism between
the realizations. The results are necessary and sufficient for local structural identifiability and
sufficient for global structural identifiability.

6.2.3 Software packages for identifiability evaluation

While there are several systematic approaches to validate identifiability for different systems,
implementation of each of those methods for comparison purposes would be difficult. In this
respect, the existing software packages which were used to validate the results obtained from
the approach proposed in the chapter were: DAISY ([119]), genSSI ([97]) and STRIKE-GOLDD
([112]).

DAISY is a package developed under the REDUCE platform and implements the ideas that
originated in [109] and elaborated in [111]. The package uses the Ritt’s algorithm to eliminate
the states of the system and compute the characteristic set associated with the differential ideal
generated by the system differential equations. The differential ring used is R[x, y, u] (instead
of the R[x, y, u, θ] as in [90]) and hence a normalized input-output relation is obtained from
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Table 6.1: Comparison between the available identifiability software packages
Software Model scope Neighbourhood

scope
Applicability
scope

DAISY [119] Models of the form
(6.1) with analytic
functions

Local, Global Necessary and
Sufficient

genSSI [97] Control affine mod-
els (6.4) with ana-
lytic functions

Local, Global Sufficient

STRIKE-GOLDD [112] Models of the form
(6.1) with h(.) inde-
pendent of inputs

Local Necessary and
Sufficient

the characteristic set. The exhaustive summary [100] is extracted from the normalized input-
output relations by gathering the functions of parameters that appear as coefficients. Further,
the authors assign random numerical values to the parameters and subject it to the Buchberger
algorithm to compute their Gröbner basis. Depending upon the number of solutions it admits,
the original system is globally, locally or non-identifiable.

The genSSI package is a toolbox under the MATLAB computing platform. This package
evaluates the identifiability of models in the control affine form using the generating series ap-
proach from [100]. The package requires the maximum number of derivatives to be computed
as an input. Hence it provides a sufficient condition for the identifiability results. The iden-
tifiability tableau introduced in [101] is included as an aid to understand the identifiable and
unidentifiable parameters.

The STRIKE-GOLDD toolbox also works on the MATLAB computing platform. It is based
on the extended observability approach of [93] and computes n+ q derivatives of the output and
then evaluates the Jacobian of the resulting equation with respect to the extended state vector
that includes the unknown parameters. Given the use of observability-identifiability-condition
(OIC), the results are local in nature.

A comparison of the capabilities of the three software toolboxes, in terms of the class of
models considered and the locality/globality of the results obtained is given in Table 6.1.

6.2.4 Motivation for the chapter

There is a wealth of literature available for nonlinear model identifiability analysis. For the
objective of adapting or developing tools to perform identifiability analysis for quasi-LPV models,
it is useful to note that quasi-LPV models can represent different types of nonlinear models,
including polynomial, rational and transcendental. Hence, developing a unified method for quasi-
LPV models is a difficult challenge. Elimination strategies seem appropriate in this context as
it can work, to some extent, agnostic to the underlying model. One of the underlying themes in
the literature of elimination techniques is to arrive at exhaustive summary. In [100], it is through
a generating series, whereas in [111], it is through differential algebra (Ritt’s algorithm). In this
chapter, a parity-space based approach is used to eliminate the system states and arrive at the
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exhaustive summary. The results from the proposed method are compared with that of DAISY
[119], as the strategies are similar.

6.3 Problem formulation
In this section, the problem of interest is specified precisely.

To start with, a reiteration of the model structure for which identifiability is envisaged is
given,

Assumption 6 (Model structure). The models of interest are those nonlinear models that could
be written in the quasi-LPV form with affine parametrization. That is,

ẋ(t) = A(ρ(t), θ)x(t) +B(ρ(t), θ)u(t)
ẏ(t) = C(ρ(t), θ)x(t) +D(ρ(t), θ)u(t) (6.8)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, ρ ∈ Rξ θ ∈ Rq with the appropriate dimensions for the system
matrices (A, B, C, D) which are of the form,

X(ρ(t), θ) = X0(ρ(t)) +
q∑
j=1

θjX̄j(ρ(t)) (6.9)

The scheduling or premise variable, ρ(t), is either composed of external variables with static
dependence (in which case the model is LPV) or that of system variables such as an inputs,
states and outputs (in which case the model is quasi-LPV).

Assumption 7 (Premise variables). The premise variables of the quasi-LPV model are known
or measured.

When writing nonlinear models in quasi-LPV form, one of the unmeasured states can appear
as a premise variable. However, this chapter considers only those models where the premise vari-
ables are composed of known or measured variables. This assumption also puts some constraints
on the structure of C(.) and D(.) matrices (or h(.) in Σθ) such that they are restricted to one
or more of the following:

• The premise variables are functions of states that are directly measured. For example
when the output equation is of the form,

y(t) =
[
1 0 0
0 0 1

]
x(t)

• The premise variables are functions of states that can be resolved algebraically using the
output equations. For example,

y1(t) = x1(t)x2(t), y2(t) = x1(t)u(t)

or in quasi-LPV form, [
y1(t)
y2(t)

]
=
[

0 x1(t)
u(t) 0

] [
x1(t)
x2(t)

]
with two premise variables ρ1(t) = x1(t) and ρ2(t) = u(t)
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• The measured nonlinearity appears as a whole as premise variables. For instance, for a
model of the form,

ẋ1(t) = x2
1(t)x2(t) + θ1x2(t)

ẋ2(t) = θ2x1(t) + θ3x2(t)
y(t) = x1(t)x2(t)

a quasi-LPV model can be obtained with the premise variable ρ(t) = x1(t)x2(t) such that[
ẋ1(t)
ẋ2(t)

]
=
[
ρ(t) θ1
θ2 θ3

] [
x1(t)
x2(t)

]
y(t) = ρ(t)

Remark 15. The nonlinear models of the form (6.1) can be rewritten into quasi-LPV forms
using several of the existing embedding techniques (see for example, [21], [23], [27]). The quasi-
LPV representation is not unique, and only those models are of interest in this thesis which
result in known or measured premise variables. Further, it is assumed that the methods do not
change the identifiability properties of the original model during the embedding from nonlinear
model to quasi-LPV model.

Definition 1. Identifiability

A parameter θi, i ∈ {1, · · · , q}, is structurally globally (or uniquely) identifiable if for almost
any θ∗i ∈ Θ,

Σθi = Σθ∗
i
⇒ θi = θ∗i

A parameter θi, i ∈ {1, · · · , q}, is structurally locally identifiable if for almost any θ∗i ∈ Θ,
there exists a neighbourhood η(θ∗) such that

Σθi = Σθ∗
i
⇒ θi = θ∗i

Consequently, a parameter θi, i ∈ {1, · · · , q}, is structurally non-identifiable if for almost any
θ∗i ∈ Θ, there exists no neighbourhood η(θ∗) such that

Σθi = Σθ∗
i
⇒ θi = θ∗i

The above definition formalizes the distinguishability property through structural identi-
fiability. To a priori verify identifiability using standard mathematical tools, more tangible
definitions are required. In this respect two approaches of interest are discussed below, namely,
structural identifiability [111] and algebraic identifiability [96], which are shown to be related
shortly. This characterization requires the following notation and terminology:

• Exhaustive summary ([100]) of an experiment is a set of functions, Π(θ), if it contains
only, but all the information about θ that can be extracted from the knowledge of u and
y. That is, they embody the parameter dependence of the input-output model completely.
These are also referred to as the observational parameter vector in [120]. Some authors
use a slightly different terminology, for example, in [111], the authors refer to the set of
equations,

Π(θ) = θ̃ (6.10)
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as exhaustive summary, where θ̃ refers to the specific instance of θ used to verify if Π(θ)
admits only on solution, that is, θ̃. In this thesis, we use exhaustive summary to refer
to the generic set of equations denoted by Π(θ) whereas (6.10) would be referred to as
exhaustive summary evaluation.

• Φ(.) Set of identifiability equations: These are q equations which are functions of only
the known and measured variables and their derivatives and the unknown parameters and
are of the form:

Φ(y, ẏ, ÿ, · · · , u, u̇, · · · , θ) = 0

Given a system model (6.1), it is possible to obtain its exhaustive summary through various
methods and then validate the number of solutions admitted by it. This characterization is
formalized as follows. Note that the use of y(Π(θ), t) is in reference to the experiment which
provides a set of outputs which depend on the exhaustive summary.

Definition 2 (Structural identifiability ([111])). A parameter θi is,

globally (or uniquely) identifiable if and only if, for almost any θ̃, the following system has
only one solution, θi = θ̃i:

y(Π(θ), t) = y(Π̃(θ̃), t) (6.11)

locally (nonuniquely) identifiable (LSI) if and only if, for almost any θ̃, the system (6.11) has
(for θi) more than one, but a finite number of solutions.

non-identifiable if and only if, for almost any θ̃, the system (6.11) has (for θi) infinite number
of solutions.

The second definition of interest is the algebraic identifiability in [96].

Definition 3 (Algebraic identifiability (AI) ([96])). The system model Σθ is said to be alge-
braically identifiable if there exist a T > 0, a positive integer k and a meromorphic function
Φ : Rq × R(k+1)m × R(k+1)p → Rq such that

det∂Φ
∂θ
6= 0 (6.12)

and
Φ(θ, y, ẏ, ..., y(k), u, u̇, ..., u(k)) = 0 (6.13)

hold, on [0, T ], for all (θ, u, ...u(k), y, ẏ, ..., y(k)) where (θ, x0, u) belong to an open and dense
subset.

The relationship between algebraic identifiability and the local structural identifiability is
clarified in the following proposition. This is done by reiterating the characterization of the two
definitions to illustrate the equivalence.

Proposition 1 (AI vs LSI). A system model of type Σθ is algebraically identifiable (AI) if and
only if it is locally structurally identifiable (LSI)13.

13Generically, for almost all cases
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Proof To validate AI, we need to find Φ = {φ1, · · ·φq}, a set of q equations, such that,

rank∂Φ
∂θ

= q, and φi(y, ẏ, · · · , u, u̇, · · · , θ) = 0, for i = 1, · · · , q

To validate LSI, we need to arrive at Γ, a set of equations in the inputs, outputs, their deriva-
tives and the parameter so as to obtain the exhaustive summary. For a given experiment, the
cardinality would be equal to the number of outputs p. In the DAISY software package, these
are referred to as the ’normalized input-output equations’, such that,

Γ = {γ1, · · · , γp}, with, γi(y, ẏ, · · · , u, u̇, · · · , θ) = 0 (6.14)

The exhaustive summary Π(θ) is obtained from Γ by extracting the coefficients containing θ
considering it as a set of polynomials in inputs, outputs and their derivatives. If the model is LSI,
then, the exhaustive summary Π(θ) admits finitely many solutions, or a unique solution locally
around a certain value of the vector θ. The equivalence for the two identifiability definitions is
achieved if one can show,

Φ⇔ Γ, for q = p, q < p, q > p (6.15)

(i) LSI ⇒ AI: For case q = p, this is trivial as Φ = Γ and given LSI, rank∂Γ
∂θ = q.

For q < p, then Φ ⊂ Γ and hence it is a matter of finding the right set of equations such
that rank∂Φ

∂θ = q. For example, one can compute the Jacobian ∂Γ
∂θ and pick the relevant rows

and columns.
For q > p, the set Φ can be constructed by augmenting Γ with the derivatives of the

polynomials that is contained in it. That is,

Φ = {Γ, γ(1)
1 , · · · γ(g1)

1 , · · · γ(1)
p , · · · γ(gp)

p }, where, g1 + · · ·+ gp = q − p

(ii) AI ⇒ LSI: Given that AI is satisfied, it is sufficient to pick the exhaustive summary (Π)
from Φ which will permit a unique local solution. More on this could be referred to in [120].

Remark 16. The proposition illustrates what appears to be a fairly straightforward result. How-
ever, the discussion also emphasizes the equivalence of the Jacobian computation and Gröbner
basis evaluation when the problem is local. The importance of this would be evident during the
later discussions.

Assumption 8 (Characteristics of f and h). The state and the output functions, f and h
respectively, are assumed to be meromorphic. Further,

rank
(
∂h(x, θ, u)

∂x

)
= p (6.16)

The assumptions on the model functions are a superset to the assumptions given in [111] and
[96] to complete the definitions 2 and 3. In terms of the quasi-LPV model, this condition requires
the following

• The nonlinearities that appear in the matrices A(.), B(.), C(.), and D(.) are meromorphic.

• The rows of the matrix C(.)x+D(.)u are locally independent, that is,

rank
(
∂

∂x
(C(.)x+D(.)u)

)
= p
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Assumption 9 (Initial conditions). The state initial conditions are arbitrary, but do not contain
special values that invalidate identifiability result.

The initial conditions play a role in the identifiability analysis in the sense that it is possible
that for some specific initial conditions, the model loses identifiability for some parameters.
These specific initial conditions form a very thin (invariant) set [121], but have the power to
render the identifiability analysis, which assumes arbitrary initial conditions, void. See, for
instance, Example 4 in [94], Example 2 in [122]. To illustrate the idea, consider the three
compartment model (Example 1 in [121]),

ẋ1 = θ13x3 + θ12x2 − θ21x1 + u, x1(0) = x10,

ẋ2 = −θ12x2 + θ21x1, x2(0) = x20,

ẋ3 = −θ13x3, x3(0) = 0,
y = x2

For arbitrary initial values of x1 and x2 and the specific initial value of x3(0) = 0, it is very
straightforward to see that θ13 would never appear on the output and their successive derivatives.
It is always multiplied by x3 and x3 = 0 is an invariant set. The above model, for arbitrary initial
conditions, is identifiable. However, for the specific initial condition x3(0) = 0, the parameter θ3
is not identifiable14. In general terms, this relates to a form of reachability of the given model
as discussed in [121]. The corresponding analysis for the parity-space approach is a future work.

Assumption 10 (Inputs). The higher order derivatives of the inputs are defined and are known

This assumption is required at least up to the order required for identifiability analysis so
that it is possible to formulate Φ(.) in (6.13) or Γ in (6.14).

Remark 17 (Discrete-time case). The discussion in this section has focused on continuous-time
models, though it holds for the discrete-time case with the exchange of shift in discrete-time for
derivatives in continuous-time as commented in [91].

6.4 Parameter identifiability for continuous-time models

In this section, an overview of the proposed parity-space based identifiability analysis method
is given. A set of examples illustrate the steps involved as well as comparing the results with
that obtained from DAISY.

6.4.1 Steps involved

The procedure for the identifiability analysis proposed is inspired by the parity-space approach
in [16] as a means to eliminate the states of the system so as to obtain a set of equations of
the form Φ in (6.13) or of the form Γ in (6.14). The analysis of the Jacobian of these equations
or their exhaustive summary would then allow to determine the identifiability. The procedure
could be summarized as follows:

14It is to be noted that this linear model has a pole-zero cancellation in its transfer function leading to unob-
servability of the state x3. However, similar problems could be seen in other nonlinear examples in the literature
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Step 1: Formulation of algebraic equations The quasi-LPV model in (6.8) is rewritten
for illustration purposes as follows,

x(1) = A(0)x(0) +B(0)u(0)

y(0) = C(0)x(0) +D(0)u(0) (6.17)

where the superscript refers to the order of derivatives, that is,

A(j) = dj (A(ρ(t), θ))
dtj

with the dependence on time, premise variables and the parameters is omitted for the sake of
simplicity. To illustrate the gathering of algebraic equations, consider that there are up to 2nd
order derivatives of the output, it is possible to write the following set of algebraic equations,

y(0) = C(0)x(0) +D(0)u(0)

x(1) = A(0)x(0) +B(0)u(0)

y(1) = C(1)x(0) + C(0)x(1) +D(1)u(0) +D(0)u(1)

x(2) = A(1)x(0) +A(0)x(1) +B(1)u(0) +B(0)u(1)

y(2) = C(2)x(0) + 2C(1)x(1) + C(0)x(2) +D(2)u(0) + 2D(1)u(1) +D(0)u(2) (6.18)

which could then be rewritten in matrix form, but taking all the known and measured compo-
nents to the left hand side as,

y(0) −D(0)u(0)

B(0)u(0)

y(1) −D(1)u(0) −D(0)u(1)

B(1)u(0) +B(0)u(1)

y(2) −D(2)u(0) − 2D(1)u(1) −D(0)u(2)

 =


C(0) 0 0
−A(0) In 0
C(1) C(0) 0
−A(1) −A(0) In
C(2) 2C(1) C(0)


x(0)

x(1)

x(2)

 (6.19)

which could be rearranged to give,
y(0) −D(0)u(0)

y(1) −D(1)u(0) −D(0)u(1)

y(2) −D(2)u(0) − 2D(1)u(1) −D(0)u(2)

B(0)u(0)

B(1)u(0) +B(0)u(1)

 =


C(0) 0 0
C(1) C(0) 0
C(2) 2C(1) C(0)

−A(0) In 0
−A(1) −A(0) In


x(0)

x(1)

x(2)

 (6.20)

More generally for up to an order w,[
Y

0w×n

]
+
[
−D(θ)
B(θ)

]
U =

[
C(θ)
A(θ)

]
X (6.21)

with the left hand side containing known and measured terms. The indication (θ) indicates the
explicit appearance of the parameter in the matrices. Notice, however that, all the elements
except U are indirectly dependent on θ. Here,

Y =
[
(y(0))T (y(1))T (y(2))T · · · (y(w))T

]T
U =

[
(u(0))T (u(1))T (u(2))T · · · (u(w))T

]T
X =

[
(x(0))T (x(1))T (x(2))T · · · (x(w))T

]T
(6.22)
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and,

B(θ) =



B(0) 0 0 0 · · · 0 0
B(1) B(0) 0 0 · · · 0 0
B(2) 2B(1) B(0) 0 · · · 0 0
B(3) 3B(2) 3B(1) B(0) · · · 0 0
...

...
... . . . ...

B(w−1) (w
2
)
B(w−2) (w

3
)
B(w−3) (w

4
)
B(w−4) · · · B(0) 0



D(θ) =



D(0) 0 0 0 · · · 0 0
D(1) D(0) 0 0 · · · 0 0
D(2) 2D(1) D(0) 0 · · · 0 0
D(3) 3D(2) 3D(1) D(0) · · · 0 0
...

...
... . . . ...

D(w) (w+1
2
)
D(w−1) (w+1

3
)
D(w−2) (w+1

4
)
D(w−3) · · · 2D(1) D(0)



(6.23)

(6.24)

C(θ) =



C(0) 0 0 0 · · · 0 0
C(1) C(0) 0 0 · · · 0 0
C(2) 2C(1) C(0) 0 · · · 0 0
C(3) 3C(2) 3C(1) C(0) · · · 0 0
...

...
... . . . ...

C(w) (w+1
2
)
C(w−1) (w+1

3
)
C(w−2) (w+1

4
)
C(w−3) · · · 2C(1) C(0)



A(θ) =



−A(0) In 0 0 · · · 0 0
−A(1) −A(0) In 0 · · · 0 0
−A(2) −2A(1) −A(0) In · · · 0 0
−A(4) −3A(2) −3A(1) −A(0) · · · 0 0

...
...

... . . . ...
−A(w−1) −

(w
2
)
A(w−2) −

(w
3
)
A(w−3) −

(w
4
)
A(w−4) · · · −A(0) In



(6.25)

(6.26)

As is apparent, each of these matrices form a Pascal’s triangle with the increasing order of
derivatives. This aides in easier representation to automate the algorithms. The representation
in (6.21) is further simplified to indicate the dependence on the unknown parameter as,

Y0 + G(θ)U = O(θ)X (6.27)

Notice that the matrix O(θ) has a dimension of (wp+ (w − 1)n)× ((w − 1)n).

Remark 18 (Choice of the set of algebraic equations). The choice of the particular form of
algebraic equations in (6.19) has some specific advantages. It is possible to consider the more
common observability matrix to obtain the set of algebraic equations, that is,[

y(0)

y(1)

]
=
[

C(0)

C(1) + C(0)A(0)

]
x(0) +

[
D(0) 0

C(0)B(0) +D(1) D(0)

] [
u(0)

u(1)

]
(6.28)

However, the form chosen in the parity-space approach provides the following advantages:

• The observability matrices have several matrix multiplications leading to a significant com-
plexity in the computation. This is already visible when consider only the 1st order deriva-
tives in (6.28).
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• Given that we consider affine parametrization, the degree of θ in the form (6.19) or its
condensed notation (6.21) is 1, that is O(θ) is affine in θ. In the form (6.28), this will
definitely be higher due to the matrix multiplications. This plays a significant role in the
null-space computation step. In a numerical approach to be discussed later, this would
mean the computation of the null-space for a degree 1 polynomial.

Step 2: Computation of null-space Once a set of algebraic equations are formulated, the
next step is to eliminate the state variables and their derivatives. This is achieved if the left
null-space of O(θ) is computed, that is, to find a matrix Ω(θ), such that,

ΩT (θ)O(θ) = 0

For a given O(θ), the null-space Ω(θ), if it exists, can be computed using symbolic computations
such as under the symbolic computation toolbox under MATLAB. The existence of the null-
space is directly related to the output and the state matrices which populate O(θ)

Step 3: Formulation of the Input-Output-Parameter (I-O-P) equations Once the
null-space has been obtained, then one can compute,

ΩT (θ) (Y0 + G(θ)) = 0 (6.29)

which can alternatively represented as,

Ψ(θ, y, · · · , y(w), u, · · · , u(w)) = 0 (6.30)

where Ψ(.) is termed as Input-Output-Parameter (I-O-P) equations to signify its dependence on
inputs, outputs and parameters, and their derivatives.

Step 4: Identifiability evaluation Once the I-O-P equations are obtained, the verification
of identifiability is achieved through one of the following approaches:

• Following the final step in the DAISY package [119]:

– Extract the coefficients of Ψ(.) considering it as polynomials in inputs, outputs, and
their derivatives. Those coefficients that depend on the parameters θ form the ex-
haustive summary Π(θ)

– Assign symbolic values for each of the parameters {θ1, · · · , θq} and evaluate the ex-
haustive summary to obtain Π̃(θ̃). For large scale problems, symbolic values can be
replaced with numerical values.

– Apply Buchberger algorithm on Π̃(θ̃) to obtain all the solutions. Depending upon
the number of solutions Π̃(θ̃) admits, identifiability can be evaluated using Definition
2. In case of numerical approach, the last two steps are repeated several times. Since
the results are generic, that is, valid for almost all numerical values except for a set
of measure zero. This repetition would help to avoid reaching conclusions based on
possibly choosing a numerical value of this set of measure zero.

• Compute the Jacobian of Ψ(.) with respect to the parameters θ, that is,

rank
(
∂Ψ
∂θ

)
= q

If the rank is q, then local identifiability is verified.
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6.4.2 Illustrative examples

In this section, several examples are given to show the steps and the effectiveness of the parity-
space approach. The results obtained from the parity-space approach is validated by comparing
it with that of DAISY, STRIKE-GOLDD and genSSI software packages. Further, the exhaustive
summary obtained using the parity-space method is compared with that obtained using DAISY.

Example 10. This example is used to show all the steps of the proposed approach. Further, it
also concerns a model which is not identifiable. Consider the second order nonlinear model,

ẋ1 = θ1x1 + θ2x2u,

ẋ2 = θ3x1 − x2,

y = x1u,

A quasi-LPV equivalent form with x = [x1 x2]T and ρ(t) = u(t) is,

ẋ =
[
θ1 θ2u
θ3 −1

]
x and y =

[
u 0

]
x

Based on the specifications of the model structure required, the genSSI software cannot handle
this example. Using the parity-space approach with output up to y(2), we obtain the following
representation to that in (6.27),

y
ẏ
ÿ
0
0
0
0


=



u 0 0 0 0 0
u̇ 0 u 0 0 0
ü 0 2u̇ 0 u 0
−θ1 −θ2u 1 0 0 0
−θ3 1 0 1 0 0

0 −θ2u̇ −θ1 −θ2u 1 0
0 0 −θ3 1 0 1





x1
x2
ẋ1
ẋ2
ẍ1
ẍ2



The left null-space of the matrix O(θ) is given by,

ΩT (θ) =



(uu̇+ uü+ θ1u
2 − 3u̇2 + θ2θ3u

3 − 2θ1uu̇)/u3

(3u̇− u+ θ1u0)/u2

−1/u
(u− u̇)/u

θ2u
1
0



T

which leads to the I-O-P equation as follows,

Ψ(.) = θ1u
2y − 3u̇2y − u2ÿ − u2ẏ + θ1u

2ẏ + uu̇y + 3uu̇ẏ + uüy − 2θ1uu̇y + θ2θ3u
3y

And the exhaustive summary obtained by extracting the coefficients considering Ψ(.) as a poly-
nomial in inputs, outputs and their derivatives. Considering only those coefficients that depend
on θ, the following is obtained,

Π(θ) = {1− 2θ1, θ1 − 1, θ1, θ2θ3} (6.31)
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To verify the number of solutions admitted by this exhaustive summary, a Gröbner basis analysis
is performed. One strategy is to assign symbolic values for for each of the parameter (θ̃1 = a,
θ̃2 = b, θ̃3 = c) and evaluate the exhaustive summary to obtain the specific exhaustive summary,

{2θ1 − 2a, θ1 − a, θ1 − a, θ2θ3 − bc}

For this simple example, it is straightforward to see that only θ1 is identifiable as it admits a
unique solution and the other two parameters can have several solutions. Hence the model is
not identifiable. To formally verify this, these polynomial equations were given as input to the
Buchberger algorithm implemented in MuPAD CAS under MATLAB. The Gröbner basis for
this set is given by,

{θ1 − a, θ2θ3 − bc}

which, if the equations admit a unique solution should have returned θi = θ̃i for i = 1, 2, 3.

Comparison with DAISY The normalized input-output equation obtained through the
DAISY package is given by,

Γ = üu4y − 3u̇2u3y + 3u̇ẏu4 + u̇u4y(−2θ1 + 1)− ÿu5 + ẏu5(θ1 − 1) + u6yθ2θ3 + u5yθ1

which has the same set of exhaustive summary as given in (6.31). The DAISY package results
also verify those inferred above.

Example 11. In this example, the case of local identifiability is illustrated.

ẋ1 = θ1x1 + θ2x2u,

ẋ2 = θ2x1 − θ3x2,

y = x1u,

Using parity-space approach, the I-O-P equation obtained is

Ψ(.) = θ1u
2ẏ − u2ÿ − 3u̇2y − θ3u

2ẏ + θ2
2u

3y + 3uu̇ẏ + uüy − 2θ1uu̇y + θ3uu̇y + θ1θ3u
2y

which has the exhaustive summary of,

Π(θ) = {θ3 − 2θ1, θ1 − θ3, θ1θ3, θ
2
2}

The Gröbner for this summary with the symbolic assignment of θ̃1 = a, θ̃2 = b and θ̃3 = c was
obtained as,

{θ1 − a, θ3 − c, θ2
2 − b2}

which indicates that while θ1 and θ3 are identifiable, θ2 is only locally identifiable. The results
and the exhaustive summary compares with that obtained from DAISY.

Example 12 (Air Handling Unit). Consider a simple model of a heat exchanger that was dis-
cussed in Sec. 2.2.3. The model has been simplified by considering that the inlet air temperature
and water temperature are known and constant. A quasi-LPV representation of that model is
given by, [

ẋ1
ẋ2

]
=
[
−θ1u1 − θ2 θ2

θ4 −θ3u2 − θ4

] [
x1
x2

]
+
[
θ1 0
0 5θ3

] [
u1
u2

]

y =
[
1 0

] [x1
x2

]
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The exhaustive summary obtained for this model is
Π(θ) = {3− θ4 − θ2, θ2 + θ4 − 2, θ1, −θ1, 5θ2θ3, −θ3,

θ3 − θ2θ3, θ1θ4,−θ1, 2θ1 − θ1θ4, θ1θ3, −θ1θ3}

By choosing the numerical values, θ̃1 = 1, θ̃2 = 2, θ̃3 = 3, θ̃4 = 5, the specific instance of the
exhaustive summary was obtained and the Gröbner basis obtained is

{θ2 − 2, θ4 − 5, θ3 − 3, θ1 − 1}

indicating that the model is globally identifiable. And these results verify with those obtained by
DAISY both for the exhaustive summary and the eventual identifiability interpretation. Because
a numerical value was used, the results are not representative, though, as suggested in [119],
several set of numerical values be chosen to gain confidence on the obtained results.

6.5 Parameter identifiability for discrete-time models
In practical scenarios, parameter estimation involves discrete-time models. Hence it is vital to
consider the identifiability of system models in discrete-time. In this section, a brief outline to
extend the parity-space method to discrete-time quasi-LPV models is given. It is to be noted
that the effect of discretization on the identifiability is not treated here. Consider a discrete-time
quasi-LPV model of the form,

xk+1 = A(ρk, θ)xk +B(ρk, θ)
yk = C(ρk, θ)uk +D(ρk, θ) (6.32)

For this type of model, the procedure for parameter identifiability follows a similar trajectory.
The key difference is in the first step where the set of algebraic equations are obtained in a
different way. For the sake of simplicity, in the following, Ak would be used in place of A(ρk, θ)
and similarly for other matrices.

For the discrete-time case, the algebraic equations take a far simpler structure compared to
that in the continuous-time case. The continuous-time algebraic equations in (6.21) is rewritten
for the discrete-time case as: [

Yk
0w×n

]
+
[
−Dk
Bk

]
Uk =

[
Ck
Ak

]
Xk (6.33)

where,
Yk =

[
yTk yTk+1 · · · yTk+w

]T
Uk =

[
uTk uTk+1 · · · uTk+w

]T
Xk =

[
xTk xTk+1 · · · xTk+w

]T
(6.34)

and

Bk =


Bk 0 0 · · · 0 0
0 Bk+1 0 · · · 0 0
0 0 Bk+2 · · · 0 0
...

... . . . ...
0 0 0 · · · Bk+w−1 0

 (6.35)

121



Chapter 6. Parameter identifiability

Dk =


Dk 0 0 · · · 0 0
0 Dk+1 0 · · · 0 0
0 0 Dk+2 · · · 0 0
...

... . . . ...
0 0 0 · · · 0 Dk+w

 (6.36)

Ak =


−Ak In 0 0 · · · 0 0

0 −Ak+1 In 0 · · · 0 0
0 0 −Ak+2 In · · · 0 0
...

...
... . . . ...

0 0 0 0 · · · Ak+w−1 In

 (6.37)

Ck =


Ck 0 0 · · · 0 0
0 Ck+1 0 · · · 0 0
0 0 Ck+2 · · · 0 0
...

... . . . ...
0 0 0 · · · 0 Ck+w

 (6.38)

The other three steps in this case follow that of the continuous time approach with the
derivatives replaced with time shifts.

Illustrative examples

All the software packages in the literature are available only for continuous-time models. Hence,
comparison of results is not feasible. The illustrative examples here compare the results obtained
by parity-space methods with the results in the work from which the example is adapted.

Example 13. This is an example of the Henon map adapted from [91]

x1,k+1 = θ1x
2
1,k + θ2x2,k + uk

x2,k+1 = θ3x1,k + θ4uk

yk = x1,k

The exhaustive summary obtained using the parity-space approach is:

Π(θ) = {θ1, θ2θ4, θ2θ3}

The identifiability results verify with that from [91] that only the parameter θ1 is identifiable.

Example 14. This is also an example from [91] of Burgers map

x1,k+1 = (1 + θ1)x1,k + x1,kx2,k + uk

x2,k+1 = (1− θ2)x2,k − x2
1,kuk

yk = x1,k

The exhaustive summary obtained for this example is:

Π(θ) = {θ1, θ2, θ1 − θ2 − θ1θ2}

It is easy to see that the model is identifiable and agrees with the results in [91].
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6.6. Systematic formulation of the proposed method

6.6 Systematic formulation of the proposed method
The next step in the identifiability analysis is to obtain a systematic algorithm using the pro-
posed steps. In this section, some details that would aid to develop a systematic algorithm
for identifiability analysis based on the parity-space approach is given. Further, algorithmic
steps for sample scenarios (including those for the illustrative example in the previous section)
are given. Even though these algorithms are yet to be completely realized, they provide the
necessary directions for the future implementation. These formulations are for both continuous-
time and discrete-time models with appropriate modifications, though the discussion focuses on
continuous-time models.

6.6.1 The choice on the number of derivatives

The discussion in the preceding sections did not explicitly talk about w, the number of derivatives
(or shifts in discrete-time) for which the null-space ΩT (θ) exists and hence the I-O-P equations
and the exhaustive summary that follow. This corresponds to the observability index of the
system model. A detailed discussion on observability index of a nonlinear system could be
referred to in [89] though a brief idea is given below. Consider a SISO system of the form (6.1)
and the observability index of this model is defined as w > 0, if in the neighbourhood of x0,

rank
[
Lw−1
f h, Lw−2

f h, · · · , L0
fh
]

= w

and rank
[
Lwf h, L

w−1
f h, · · · , L0

fh
]

= w

where, Lfh corresponds to the Lie derivative of h over f , that is,

Lfh ,
∂h(x, u, θ)

∂x
f(x, u, θ)

and Lifh refers to ith successive application of the Lie derivative. Essentially it means that,
locally, the dimension of the space spanned by the model does not grow after (w−1) derivatives.
For MIMO systems, the observability index is defined for each output. A discrete-time version
of this is briefly discussed in Chapter 5 of [123].

This means that for a SISO system, using w derivatives would guarantee that ΩT (θ) exists
and hence would provide the I-O-P equation corresponding to the output. The next question is to
know whether the observability index has been connected to the system dimensions theoretically.
That is, is it possible to obtain the index without verifying the rank condition. For linear systems,
this is equal to the number of states that is easy to verify using Cayley-Hamilton theorem. For
nonlinear systems, for the following two classes:

• models of the form (6.1) where the functions are rational

• models in a control affine form (6.4) with analytical functions

it has been shown that, locally, the observability index has an upper bound, equal to the number
of states in the system n. That is n derivatives of outputs are sufficient to guarantee that the null-
space ΩT (θ) exists. For a more detailed discussion, see [124]. This is an upper bound because:
one, the model may not be minimal and has unobservable spaces and hence the observability
index is less than n. Second, for MIMO systems, each output would have different observability
indices and hence the total number of derivatives required to span the entire observability space
can be less than n.
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Consequently, for single output systems, n derivatives of output would guarantee that the
null-space ΩT (θ) exists. Hence w = n for SISO systems. For MIMO systems, this is further
complicated. Each output’s observability index has an upper bound of n, but is more likely to
be lower than n. A systematic approach to handle this scenario is discussed later in this section.

6.6.2 Higher order derivatives of system matrices

One aspect of the algorithm that is not discussed is obtaining the matrices A(n), n > 0, that
is symbolically computing the higher order derivatives of the elements in a matrix. In the
examples implemented, these were computed manually. This process is simple partly because
the derivatives are computed with respect to an independent parameter t and hence is easier
to perform (in the examples, it is about introducing new symbols). Even for large models,
this step would not be cumbersome, though a systematic implementation is pending. The
simplicity of this step relies on the nonlinear embedding procedure that performs the task of
finding an appropriate quasi-LPV model. The systematic procedure for generating quasi-LPV
models such as that proposed in works like [23], [27] should be included if the procedure has to
evaluate identifiability of nonlinear models. Further, for the case when the quasi-LPV model
has unmeasured premise variables, this step needs to be amended.

6.6.3 Algorithm for parameter identifiability

The algorithm that was used for the analysis of identifiability for the illustrative examples
discussed in the previous section is summarized in Algo. 1. The implementation was done
on the MATLAB computing environment with the use of symbolic computation toolbox and
MuPAD computer algebra systems (CAS). Once the set of I-O-P equations are obtained and the
exhaustive summary extracted, the Gröbner basis evaluation is performed through the MuPAD
CAS scripts. Hence, at this moment, there are components of the algorithms that require
manual intervention. The first step in the algorithm chooses the upper bound on the number
of derivatives to be n. While this is applicable for the models chosen for illustrative example,
this is not in general other than the models specified before. Further, for MIMO systems, since
the observability index depend on individual outputs, a step by step analysis starting from 0
derivatives is considered. Further optimization is envisaged in this respect.

Analyzing outputs independently One of the assumptions that is part of the problem
specifications (and adopted from [96]) is,

rank
(
∂h(x, u, θ)

∂x

)
= p

That is, the outputs are at least locally independent. This provides an opening to develop local
structural identifiability analysis methods that can provide the following advantages:

• Obtain the local identifiability results through Jacobian analysis instead of the Buchberger
algorithm to obtain the Gröbner basis.

• As suggested in [119], there are p normalized input-output equations. By considering one
input at a time, the exit criterion for the algorithm could be set as one I-O-P equation per
output by considering the system with one output at a time.

This is realized as an algorithm in Algo. 2.
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Algorithm 1 An algorithm for parameter identifiability
1: The upper bound on the number of derivatives w = n
2: Evaluate the matrices and their higher order derivatives (element-wise)
3: for w = 0 to n do
4: Formulate Y0 + G(θ)U = O(θ)X as in (6.27)
5: Compute ΩT (θ), the left null-space of O(θ) using symbolic computation
6: Obtain the I-O-P equations Ψ(.) and extract the coefficients to obtain the exhaustive

summary Π(θ).
7: for j = 1 to NbIter do
8: Choose random values for the parameters θ1, · · · , θq
9: Evaluate Gröbner basis and verify the number of solutions admitted by the exhaustive

summary
10: end for
11: if Global or Local identifiability verified then
12: END
13: end if
14: end for

A numerical approach The STRIKE-GOLDD toolbox [112] offers to evaluate identifiability
either numerically or symbolically. In the numerical approach, a random set of initial conditions
are chosen for the states and random values are associated for inputs and their derivatives
(these random values are chosen as prime numbers to avoid undesirable cancellations). This
significantly reduces the computational effort required to compute the Jacobian. It is to be
noted that numerical approach here is not completely numerical. It still requires computing
symbolically the Lie derivatives to set up the Observability-Identifiability matrix.

A prominent work in the semi-numerical analysis was proposed in [125], where a polynomial-
time algorithm to test local algebraic observability is proposed. The theoretical concept under-
lying the approach is the differential geometric approach in [93] and used by STRIKE-GOLDD.
To avoid symbolic effort, the authors choose to assign random integer values to the initial states
as discussed above. Further, they approximate the Lie derivative computation by computing
the power series expansion of the partial derivatives with respect to the initial states x(0) and
parameters θ. This method was used in [126] to implement a structural identifiability analysis
method for large scale models.

The same set of ideas could be incorporated in the Jacobian computation step of the parity-
space approach. However, this requires further scrutiny and understanding and left as per-
spectives. The realization of this semi-numerical scenario with the parity-space approach is
illustrated in Algo. 3 which is essentially the same as Algo. 2 except for

• the initial assignments step

• the null-space computation step

• the Jacobian computation step

The numerical approach reduces the symbolic effort both at the null-space computation step and
the Jacobian step. In practical scenarios, an approximate value of the initial conditions of states
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Algorithm 2 An algorithm for local structural identifiability
1: The maximum value for observability index for each output (w1, · · · , wp) is n.
2: Evaluate the matrices and their higher order derivatives (element-wise)
3: for i = 1 to p (for each output) do
4: for w = 0 to n do
5: Formulate Y0 + G(θ)U = O(θ)X as in (6.27)
6: Compute ΩT (θ), the left null-space of O(θ) using symbolic computation
7: Obtain the I-O-P equation ψi(.)
8: if 1 I-O-P equation obtained then
9: Calculation ends for output i

10: end if
11: end for
12: Add the I-O-P for output to the overall I-O-P, Ψ(.) = {Ψ(.), ψi(.)}
13: end for
14: Evaluate ∂Ψ

∂θ and compute the rank
15: if rank ∂Ψ

∂θ = q then
16: Model is Locally structurally identifiable
17: else
18: Not Identifiable
19: end if

are known. Further, an approximate range over which the parameter values exist is also known.
Hence, for practical scenarios, this approach simplifies the structural identifiability verification.
Using numerical values also allows to completely forego the symbolic null-space computation in
favour of the polynomial null-space computation approach proposed in [85] which can realize the
null-space computation step through stable numerical techniques. The polynomial null-space
computation idea is briefly outlined in the next section.

6.7 Discussion
In this section, some relevant concepts and details of the proposed method omitted in the
previous sections are discussed.

Rigorous analysis of the algorithm steps

In the previous sections, the steps of the algorithms and some formalizing them were presented.
To make a case for the algorithm, some rigorous analysis of the algorithmic steps and the math-
ematical underpinnings is required. It is known that the I-O-P equations are not unique because
the null-space ΩT (θ) is only a basis to the null-space. In the DAISY software, a normalization
of the characteristic set is required before obtaining the Input-Output equations from which the
exhaustive summary is extracted. In this context, the following question arises:

• What are the conditions under which the I-O-P equations obtained from parity-space are
equivalent to the normalized Input-Output equations obtained by DAISY?

That is, conditions for Ψ = Γ (or Ψ = Φ)15. The subsequent and a more relevant question
follows:

15The equality sign represents a comparison between the two sets.
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Algorithm 3 An algorithm for local structural identifiability semi-numerically
1: Assign random prime numbers (or random integers) to initial states and the inputs and their

higher order derivatives.
2: The maximum value for observability index for each output (w1, · · · , wp) is n.
3: Evaluate the matrices and their higher order derivatives (element-wise). Assign chosen

numerical values where appropriate.
4: for i = 1 to p (for each output) do
5: for wi = 0 to n do
6: Formulate Y0 + G(θ)U = O(θ)X as in (6.27)
7: Compute null-space ΩT (θ) using a symbolic approach or a numerical approach.
8: Obtain the I-O-P equation ψi(.)
9: if 1 I-O-P equation obtained then

10: Calculation ends for output i
11: end if
12: end for
13: Add the I-O-P for output to the overall I-O-P, Ψ(.) = {Ψ(.), ψi(.)}
14: end for
15: Evaluate ∂Ψ

∂θ and compute the rank
16: if rank ∂Ψ

∂θ = q then
17: Model is Locally structurally identifiable
18: else
19: Model is not Identifiable
20: end if

• What are the conditions that guarantee that the exhaustive summary obtained by the
parity-space approach and that from DAISY would be the same.

This has been observed in the examples and has intuitive sense that this should be true. However,
it still remains to be shown rigorously. For instance, in [109], the authors note that to guarantee
uniqueness of the characteristic set, the controllability of the model is assumed. This is clearly
pointed out in [121] and is attributed to special initial conditions. While this has been addressed
in Assumption 9, it would still be interesting to investigate the scenarios which results in the
parity-space approach resulting in non-unique I-O-P equations and hence some effect on the
exhaustive summary.

Polynomial null-space computation

In the Algorithm 3, a numerical approach for local structural identifiability is proposed which
uses a polynomial null-space computation approach as an alternative. Polynomial null-space
computation through a matrix pencil approach was initiated in [127]. Further, non-pencil ap-
proaches such as those exploiting the Toeplitz structure ([85], [86]) or those using the generalized
resultant approach ([128]) have also been developed in the last few decades. To illustrate the
connection between the null-space computation requirement in the thesis and that of the poly-
nomial null-space computation, consider the discrete-time system model with scalar parameter,

xk+1 = (A0,k + θĀk)xk + (B0,k + θĀk)uk
yk = (C0,k + θC̄k)xk
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The matrix O(θ) in (6.27) can be written as,

O(θ) = O0 + θO1 (6.39)

and for w = 2,

O0 =


C0,k 0 0

0 C0,k+1 0
−A0,k I 0

0 −A0,k+1 I

 , O1 =


C̄k 0 0
0 C̄k+1 0
−Āk 0 0

0 −Āk+1 0


The null-space Ω(θ) can be parametrized as a matrix polynomial in θ of degree s as,

Ω(θ) = Ω0 + θΩ1 + · · ·+ θsΩs (6.40)

Considering the null-space definition, ΩT (θ)O(θ) = 0 and comparing the coefficient matrices of
θj , j = 0, · · · , s on either side would give,[

ΩT
0 ΩT

1 · · · ΩT
s

]
P = 0 (6.41)

where,

P =


O0 O1 0 0 0 · · · 0
0 O0 O1 0 0 · · · 0
0 0 O0 O1 0 · · · 0

· · · . . . · · · . . . ...
0 0 0 · · · 0 O0 O1


where the matrix P has s block rows. And the polynomial null-space computation problem is
now converted to finding the left null-space of the matrix P. This has a Toeplitz matrix structure
and as shown in [85] and [86], the minimal null-space basis for the original polynomial matrix
can be obtained through an iterative procedure. The iterative nature of the procedure is due to
the lack of prior knowledge of the degree s of the null-space polynomial.

Hence the polynomial null-space computation is suitable for the problem of interest. How-
ever, polynomial null-space computation results concern only univariate polynomials. However,
the extension to multi-variate polynomial is possible and an outline of the direction is discussed
in the perspectives.

Computational complexity and efficiency

The computational complexity analysis of the proposed algorithm would be a topic of future in-
terest once the implementation is realized completely in a computational environment like MAT-
LAB. This would include analysing the relative efficiencies of deploying Buchberger algorithm
for Gröbner basis computation versus the Jacobian evaluation for local structural identifiability.

Another related interest is the computational comparison with other methods. The DAISY
software package envisioned to reduce the computational complexity of the approach in [90]
by a choice of differential ring that does not contain θ. This works well for biological systems
with a number of parameters and a small number of states. However, in engineering systems
(for instance, the building energy system), one often encounters a model with large number of
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states and a relatively few parameters. An application such as DAISY suffers from the same
type of computational overhead as [90] had for biological systems. It is to be analyzed whether
the parity-space approach can bring in any specific advantages. Similarly to analyze the same
type of models for same characteristics, the parity-space approach should also be compared with
genSSI and STRIKE-GOLDD toolboxes.
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Perspectives

The thesis presented contributions to quasi-LPV models in two broad categories: estimation of
states and parameters, and parameter identifiability. For the estimation part, adaptive observers
were proposed using Takagi-Sugeno polytopic techniques to jointly estimate the states and the
parameters. This contribution took two different paths for the continuous-time and discrete-
time models, but both used the quadratic Lyapunov functions. While the continuous-time case
could achieve asymptotic convergence when there was no noise, the discrete-time case provided
a bound on the estimation error. For a class of discrete-time quasi-LPV models, a brief of
a decoupled state and parameter estimation strategy was also proposed. This investigation
was limited by several factors one of which was expanded into an independent contribution:
parameter identifiability of quasi-LPV models. Steps towards developing a systematic procedure
to verify parameter identifiability of quasi-LPV models was given. The parity-space strategy
deploying null-space computation formed the core of this approach applicable to models with
measured or known premise variables.

In this chapter, an outline of the open ends from the contributions that are of immediate
future interests. These perspectives are split into three parts, that mimics the thesis contribu-
tions.

Observer design

In Chapter 3, the fundamental assumption in the proposed continuous-time T-S observer design
is that the parameters are constant. Nevertheless, it was shown that, for practical purposes,
slowly time-varying parameters can also be estimated. However, this capability has not been
rigorously proven. In the unknown input estimation literature, the following strategy is often
followed: assume that the parameter θ is a polynomial function of time of degree (dθ− 1). That
is, θ̇ 6= 0 and the higher order derivatives up to dθ − 1 are non-zero such that θ(dθ) = 0. With
this, the authors in the unknown input estimation literature use a proportional multiple integral
(PMI) structure for parameter estimation equation which fits well into the Lyapunov analysis.
This, however, does not directly translate to the results in Chapter 3 for one key reason: the
structure for parameter estimation equation is not a priori fixed, but obtained as a consequence
of the choice of the Lyapunov function. This makes it difficult to adopt the choice of PMI
structure for parameter estimation as in literature difficult. Initial investigation to formally
handle time-varying θ through similar and alternative means did not yield useful results. This
is an open end for future investigation.
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An important class of quasi-LPV models consists of those which have unmeasured premise
variables. The approach proposed in Chapter 3 works only for models with measured premise
variables. The case for unmeasured premise variable would bring about a discrepancy between
the weighting functions µi(z) of the system model and that of µi(ẑ) of the observer model and
hence their differences in the analysis of the error dynamics. A straightforward method to handle
unmeasured premise variables is the Lipschitz approach, that is to consider that the extra terms
arising out of the discrepancy in weighting functions as bounded by a known Lipschitz constant.
The approach is used in several works, for example, see Sec. 7.4 in [20], where it is applied for
adaptive observers. The Lipschitz approach is restrictive in the sense that the Lipschitz constant
has to be known a priori. Another approach is that used in the Chapter 2 for continuous-time
models and in Chapter 4 for discrete-time models. The idea here is to bound the extra terms
arising out of the weighting functions’ discrepancy by exploiting the convex sum property of the
weighting functions. This strategy, as was discussed in the earlier chapters leads to complex LMIs
and conservative conditions. There are other approaches to handle unmeasured premise variables
as discussed in [129], where the idea of immersion is introduced for this task. This approach
is yet to be extended to cases when the system model has unknown parameters. Further, the
impact of the immersion procedure on the observability and the parameter identifiability also
needs to be investigated. This approach has been extended to the discrete-time case in [130]
and can be explored as an alternative to the complex LMI conditions obtained in Chapter 4.
These are avenues for future investigations.

Decoupled state and parameter estimation

Chapter 5 provided a brief on decoupling the state and parameter estimation through the use
of parity-space. However, this was not sufficiently developed due to the focus on one of the
requirements for the decoupled state and parameter estimation, that is, parameter identifiability.
The proposed approach can be, in practice, be used for less complex models where the parameters
can be represented as a function of inputs and outputs. This is performed a priori using null-space
computation in this thesis. The parity-space approach does not guarantee that the parameter
can be represented as a function of inputs and outputs. A differential algebra based approach
using Ritt’s algorithm, as proposed in [90] can be deployed to arrive at the I-O-P equation
which has a linear regression structure. This would make the step of representing parameters
as a function of inputs, outputs and their derivatives a trivial affair. A brief illustration of this
for discrete-time models can be referred to in [91].

An FMO observer strategy was used in Chapter 5 for state estimation. This could, however,
be replaced with a polytopic observer for the state estimation as postulated in [82]. These steps
need to be formalized and this would be an immediate future work in this direction.

As noted in Sec. 5.6, the FMO strategy is capable of providing an estimate for parameters
which are time-varying under certain circumstances. This needs to be developed further from
an implementation point of view. As discussed in the works such as [80], the effect of noise
in the measurement can be suppressed for the state estimation through well-known methods.
This is not straightforward for the parameter estimation case. A simple strategy could be to
consider a larger size of the finite memory beyond the minimum required to guarantee parameter
estimation (that is, larger than the observability index for applicable models). The parameter
shall be estimated several times within this larger memory and an average of these estimates
used as the estimated parameter value. This needs to be studied further and formalized.
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Parameter identifiability results in Chapter 6 are only the starting point for a complete identifi-
ability analysis algorithm for quasi-LPV models. In this regard, several extensions to the works
in this thesis can be envisaged.

Developing a systematic implementation

A systematic and complete implementation of all the steps discussed in Chapter 6 is an immedi-
ate future work. The realization could be in the form of a toolbox in MATLAB similar to those
such as [97] or [112]. That is a detailed strategy for input methods, options for different methods
to evaluate the identifiability and the final display of the results and relevant information. In
this regard, an evaluation of the computational complexity and comparison with other methods
is also due.

This systematic development also should look to include some methods that have been used
in other identifiability analysis tools. For example, identifiability tableau of [101] has been
integrated in the genSSI toolbox [97]. This would provide better insights into understanding the
unidentifiable parameters.

Another notable work to consider is the numerical Jacobian computation approach proposed
in [125]. In this work, the authors develop a numerical approximation to compute the Jaco-
bian of a large matrix with careful choice of numerical values and characteristics of the inputs.
The authors use this algorithm to verify state observability and parameter identifiability of a
nonlinear model. This has been implemented for large-scale models in works such as [126].

A related open problem, but in a different domain, is the multivariate polynomial null-space
computation which should extend the works such as in [128], [85] to multivariate case.

Extending results to newer class of system models

The results in Chapter 6 left out some of the extensions possible. It was noted that the parity-
space approach would work well for polynomial parametrization as well. This should be formally
extended. The initial conditions in Chapter 6 were considered arbitrary. However, there are
cases where such assumption can be detrimental as pointed earlier, such as Example 4 in [94]
and Example 2 in [122]. These cases need to be carefully handled in the implementation to cover
a larger spectrum of models and initial conditions. Further, the case of known initial conditions
and partially known initial conditions shall also be handled in this extension.

The results were restricted to measured or known premise variables. The first step in the
accommodation of some models with unmeasured premise variables could be through the idea
of immersion discussed above, using the ideas outlined in [129]. This would require rigorous
analysis of the effect of the immersion procedure on the identifiability properties of the original
model.

Sensor placement and optimization

One of the motivations taken out of the project deals with placing sensors for maintenance ac-
tivities such as fault detection, degradation estimation etc. In this context, the identifiability
verification procedure in Chapter 6 can be envisaged as a component to resolve the problem
of sensor placement. Graph based approaches are quite popular in the sensor placement opti-
mization problems in linear systems. In [131] the authors provide a procedure to place sensors
in chemical plants based on a fault diagnostics observability criteria. Similar strategies have
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also been developed for parameter identification [132]. Relevant recent works could be referred
to in, [133], [134]. However, these works focus on fault diagnosis and hence do not generalize
for parameter estimation/identification. An interesting recent work in this direction is in [135]
where the authors provide a graph based characterization of parameter identifiability. It is still
an open work to use this characterization for optimizing the sensor placement following the
works of [133]. In this context, the question that comes up is, whether the insight obtained in
parameter identifiability characterization in Chapter 6 can help to extend sensor optimization
results for some LPV and quasi-LPV models. For a starting point, consider quasi-LPV models
with constant output matrix. Here, the structure associated with the matrix O(θ) in (6.21) is

O(θ) =
[
C
A

]

Given that the matrix A would remain the same with sensor addition, it is interesting to explore
if the effect of modifying the measurements could be understood better by analysing the changes
in the rank of the matrix O(θ) (and hence the null-space and the I-O-P equations). This can
help towards establishing constraints for an optimization procedure leading to optimising sensor
placement.
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Résumé
Dans cette thèse, deux problèmes liés aux approches basées sur des modèles pour le di-

agnostic de défauts et l’estimation du niveau de dégradation des équipements dans un bâti-
ment sont étudiés: la conception d’observateurs adaptatifs pour l’estimation de l’état et des
paramètres, et l’analyse de l’identifiabilité des paramètres. La classe des modèles considérés
est celle des modèles quasi-linéaires à paramètres variants dans le temps (quasi-LPV) avec
paramétrisation affine des matrices d’état. Utilisant l’approche polytopique de Takagi-Sugeno
(T-S), deux types d’observateurs sont proposés, un pour des systèmes en temps continu et l’autre
pour des systèmes en temps discret. La structure de Luenberger (correction de la dynamique
à l’aide de l’erreur d’estimation de la sortie) est choisie pour la partie d’estimation d’état de
l’observateur pour les deux et leur conception s’appuie sur l’approche de Lyapunov. Pour la par-
tie d’estimation des paramètres, une structure originale est proposée en temps continu et une
structure proportionnelle-intégrale (PI) est utilisée en temps discret. La troisième contribution
présente succinctement une méthode d’estimation d’état et des paramètres de façon découplée.
Elle utilise conjointement l’approche de l’espace de parité et un observateur à mémoire finie.
Pour la quatrième contribution relative à l’identifiabilité des paramètres, les états du système
sont tout d’abord éliminés en utilisant une approche de type espace de parité. Cela permet
d’extraire le ‘résumé exhaustif’ du modèle qui aide à établir l’identifiabilité du modèle. Tous les
résultats sont illustrés à l’aide d’exemples.

Mots-clés: modèle de Takagi-Sugeno, observateurs polytopiques, estimation conjointe des états
et des paramètres, identifiabilité paramétrique, espace de parité

Abstract
Two problems relevant to the model-based approaches to fault diagnosis and degradation

estimation in commissioned buildings are investigated in this thesis: adaptive observers for
state and parameter estimation, and parameter identifiability. The system models considered are
the quasi-LPV models with affine parameterization. Using the Takagi-Sugeno (T-S) polytopic
approach, two observer designs, one for continuous-time models and another for discrete-time
models are provided. Both models use a Luenberger structure for the state estimation part and
deploy the Lyapunov design approach. An innovative non-linear estimation model is obtained
through the design process for the continuous-time parameter estimation whereas a proportional-
integral (PI) structure is used for discrete-time. A brief third contribution is a decoupled state
and parameter estimation that makes use of the parity-space approach and realized using a finite
memory observer strategy. For the fourth contribution of parameter identifiability, a parity-space
formulation using null-space computation is used for the elimination of states of the model from
which the exhaustive summary of the model is extracted and the identifiability of the model
verified. All the results are illustrated using examples.

Keywords: Takagi-Sugeno modeling, Polytopic observers, Joint state and parameter estima-
tion, Parameter Identifiability, Parity-space
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