A. S. Mathuriya and J. V. Yakhmi, Microbial fuel cells ??? Applications for generation of electrical power and beyond, Critical Reviews in Microbiology, vol.31, issue.1, pp.127-143, 2016.
DOI : 10.1016/j.elecom.2008.11.023

K. Rabaey and R. A. , Microbial electrosynthesis ??? revisiting the electrical route for microbial production, Nature Reviews Microbiology, vol.12, issue.10, pp.706-716, 2010.
DOI : 10.1016/S0723-2020(86)80034-0

M. D. Lorenzo, T. P. Curtis, I. M. Head, and K. Scott, A single-chamber microbial fuel cell as a biosensor for wastewaters, Water Research, vol.43, issue.13, pp.3145-3154, 2009.
DOI : 10.1016/j.watres.2009.01.005

J. D. Jang, J. P. Barford, R. Lindawati, and . Renneberg, Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system, Biosensors and Bioelectronics, vol.19, issue.8, pp.805-812, 2004.
DOI : 10.1016/j.bios.2003.08.009

M. Kim, Practical field application of a novel BOD monitoring system, Journal of Environmental Monitoring, vol.5, issue.4, pp.640-643, 2003.
DOI : 10.1039/b304583h

I. Ieropoulos, J. Greenman, and C. Melhuish, Imitating metabolism: Energy autonomy in biologically inspired robots, Proceedings of the AISB, pp.191-195, 2003.

S. Wilkinson, Gastrobots'?Benefits and Challenges of Microbial Fuel Cells in FoodPowered Robot Applications, Autonomous Robots, vol.9, issue.2, pp.99-111, 2000.
DOI : 10.1023/A:1008984516499

C. Melhuish, I. Ieropoulos, J. Greenman, and I. Horsfield, Energetically autonomous robots: Food for thought, Autonomous Robots, vol.28, issue.3, pp.187-198, 2006.
DOI : 10.1007/s10514-006-6574-5

C. Bettin, Applicability and feasibility of incorporating microbial fuel cell technology into implantable biomedical devices, 2006.

T. Song, Y. Xu, Y. Ye, Y. Chen, and S. Shen, Electricity generation from terephthalic acid using a microbial fuel cell, Journal of Chemical Technology & Biotechnology, vol.40, issue.3, pp.356-360, 2009.
DOI : 10.1080/10934520600966284

H. Pham, N. Boon, M. Marzorati, and W. Verstraete, Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia, Water Research, vol.43, issue.11, pp.2936-2946, 2009.
DOI : 10.1016/j.watres.2009.04.004

J. M. Morris, S. Jin, B. Crimi, and A. Pruden, Microbial fuel cell in enhancing anaerobic biodegradation of diesel, Chemical Engineering Journal, vol.146, issue.2, pp.161-167, 2009.
DOI : 10.1016/j.cej.2008.05.028

J. M. Morris and S. Jin, Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater, Journal of Environmental Science and Health, Part A, vol.62, issue.1, pp.18-23, 2008.
DOI : 10.1038/372455a0

K. B. Gregory, D. R. Bond, and D. R. Lovley, Graphite electrodes as electron donors for anaerobic respiration, Environmental Microbiology, vol.22, issue.6, pp.596-604, 2004.
DOI : 10.1093/nar/22.22.4673

A. Xue, Z. Shen, B. Zhao, and H. Zhao, Arsenite removal from aqueous solution by a microbial fuel cell???zerovalent iron hybrid process, Journal of Hazardous Materials, vol.261, pp.621-627, 2013.
DOI : 10.1016/j.jhazmat.2013.07.072

E. Y. Ryu, Characterization of Microbial Fuel Cells Enriched Using Cr(VI)-Containing Sludge, Journal of Microbiology and Biotechnology, vol.21, issue.2, pp.187-191, 2011.
DOI : 10.4014/jmb.1008.08019

S. A. , Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber, Bioresource Technology, vol.100, issue.21, pp.5132-5139, 2009.

S. Venkata-mohan, G. Mohanakrishna, and P. N. Sarma, Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell, Bioresource Technology, vol.101, issue.3, pp.970-976, 2010.
DOI : 10.1016/j.biortech.2009.09.005

Y. Feng, X. Wang, B. E. Logan, and H. Lee, Brewery wastewater treatment using air-cathode microbial fuel cells, Applied Microbiology and Biotechnology, vol.41, issue.9, pp.873-880, 2008.
DOI : 10.1007/s00253-008-1360-2

M. Sun, L. Zhai, W. Li, and H. Yu, Harvest and utilization of chemical energy in wastes by microbial fuel cells, Chemical Society Reviews, vol.46, issue.236, pp.2847-2870, 2016.
DOI : 10.1016/j.procs.2015.01.015

B. E. Logan, Exoelectrogenic bacteria that power microbial fuel cells, Nature Reviews Microbiology, vol.2, issue.5, pp.375-381, 2009.
DOI : 10.1038/nbt716

, Cadre réglementaire -Réglementation française des déchets Available: http://www.ademe.fr/expertises/dechets/elements-contexte/politique-vigueur/dossier/cadrereglementaire/reglementation-francaise-dechets . [Accessed: 27, ADEME. [Online], 2017.

M. C. Potter, Electrical Effects Accompanying the Decomposition of Organic Compounds, Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, pp.260-276, 1911.
DOI : 10.1098/rspb.1911.0073

J. B. Davis and H. F. Yarbrough, Preliminary Experiments on a Microbial Fuel Cell, Science, vol.137, issue.3530, pp.615-616, 1962.
DOI : 10.1126/science.137.3530.615

M. , D. Duca, and J. Fuscoe, Thermodynamics and applications of bioelectro-chemical energy conversion systems, 1964.

J. Canfield, B. Goldner, and R. Lutwack, Utilization of human wastes as electrochemical fuels, pp.615-616, 1963.

H. P. Bennetto, J. L. Stirling, K. Tanaka, and C. A. Vega, Anodic reactions in microbial fuel cells, Biotechnology and Bioengineering, vol.5, issue.2, pp.559-568, 1983.
DOI : 10.1042/bj0291130

J. L. Stirling, Microbial fuel cells, Biochemical Society Transactions, vol.11, issue.4, pp.451-453, 1983.
DOI : 10.1042/bst0110451

S. D. Roller, H. P. Bennetto, G. M. Delaney, J. R. Mason, J. L. Stirling et al., Electron-transfer coupling in microbial fuel cells: 1. comparison of redox-mediator reduction rates and respiratory rates of bacteria, Journal of Chemical Technology and Biotechnology. Biotechnology, vol.36, issue.1, pp.3-12, 1984.
DOI : 10.5962/bhl.title.4516

G. M. Delaney, H. P. Bennetto, J. R. Mason, S. D. Roller, J. L. Stirling et al., Electron-transfer coupling in microbial fuel cells. 2. performance of fuel cells containing selected microorganism-mediator-substrate combinations, Journal of Chemical Technology and Biotechnology. Biotechnology, vol.2, issue.1, pp.13-27, 1984.
DOI : 10.1002/jctb.280340104

B. H. Kim, H. J. Kim, M. S. Hyun, and D. H. Park, Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens, THE KOREAN SOCIETY FOR APPLIED MICROBIOLOGY, vol.9, pp.127-131, 1999.

B. H. Kim, Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors, Biotechnology Techniques, vol.13, issue.7, pp.475-478, 1999.
DOI : 10.1023/A:1008993029309

H. S. Park, A Novel Electrochemically Active and Fe(III)-reducing Bacterium Phylogenetically Related to Clostridium butyricum Isolated from a Microbial Fuel Cell, Anaerobe, vol.7, issue.6, pp.297-306, 2001.
DOI : 10.1006/anae.2001.0399

D. R. Bond and D. R. Lovley, Electricity Production by Geobacter sulfurreducens Attached to Electrodes, Applied and Environmental Microbiology, vol.69, issue.3, pp.1548-1555, 2003.
DOI : 10.1128/AEM.69.3.1548-1555.2003

H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim et al., A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme and Microbial Technology, vol.30, issue.2, pp.145-152, 2002.
DOI : 10.1016/S0141-0229(01)00478-1

Y. A. Gorby, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, Proceedings of the National Academy of Sciences, pp.11358-11363, 2006.
DOI : 10.1021/ac60289a016

G. Reguera, K. P. Nevin, J. S. Nicoll, S. F. Covalla, T. L. Woodard et al., Biofilm and Nanowire Production Leads to Increased Current in Geobacter sulfurreducens Fuel Cells, Applied and Environmental Microbiology, vol.72, issue.11, pp.7345-7348, 2006.
DOI : 10.1128/AEM.01444-06

E. Afkar, G. Reguera, M. Schiffer, and D. R. Lovley, A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe (III) and Mn (IV) oxides in Geobacter sulfurreducens, BMC Microbiology, vol.5, issue.1, p.41, 2005.
DOI : 10.1186/1471-2180-5-41

H. Richter, K. P. Nevin, H. Jia, D. A. Lowy, D. R. Lovley et al., Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer, Energy & Environmental Science, vol.102, issue.7, pp.506-516, 2009.
DOI : 10.1016/S0022-0728(81)80420-2

O. Bretschger, Current Production and Metal Oxide Reduction by Shewanella oneidensis MR-1 Wild Type and Mutants, Applied and Environmental Microbiology, vol.73, issue.21, pp.7003-7012, 2007.
DOI : 10.1128/AEM.01087-07

Z. He and L. T. Angenent, Application of Bacterial Biocathodes in Microbial Fuel Cells, Electroanalysis, vol.41, issue.19-20, pp.2009-2015, 2006.
DOI : 10.1002/jctb.280420307

K. Rabaey, Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells, The ISME Journal, vol.30, issue.5, pp.519-527, 2008.
DOI : 10.1021/es060332p

M. Tandukar, S. J. Huber, T. Onodera, and S. G. Pavlostathis, Biological Chromium(VI) Reduction in the Cathode of a Microbial Fuel Cell, Environmental Science & Technology, vol.43, issue.21, pp.8159-8165, 2009.
DOI : 10.1021/es9014184

A. Ter-heijne, H. V. Hamelers, and C. J. Buisman, Microbial Fuel Cell Operation with Continuous Biological Ferrous Iron Oxidation of the Catholyte, Environmental Science & Technology, vol.41, issue.11, pp.4130-4134, 2007.
DOI : 10.1021/es0702824

L. Huang, X. Chai, X. Quan, B. E. Logan, and G. Chen, Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells, Bioresource Technology, vol.111, pp.167-174, 2012.
DOI : 10.1016/j.biortech.2012.01.171

B. Min, S. Cheng, and B. E. Logan, Electricity generation using membrane and salt bridge microbial fuel cells, Water Research, vol.39, issue.9, pp.1675-1686, 2005.
DOI : 10.1016/j.watres.2005.02.002

S. Oh and B. E. Logan, Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells, Applied Microbiology and Biotechnology, vol.4, issue.2, pp.162-169, 2006.
DOI : 10.1007/s00253-005-0066-y

B. Logan, S. Cheng, V. Watson, and G. Estadt, Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells, Environmental Science & Technology, vol.41, issue.9, pp.3341-3346, 2007.
DOI : 10.1021/es062644y

K. Scott, G. A. Rimbu, K. P. Katuri, K. K. Prasad, and I. M. Head, Application of Modified Carbon Anodes in Microbial Fuel Cells, Process Safety and Environmental Protection, vol.85, issue.5, pp.481-488, 2007.
DOI : 10.1205/psep07018

Z. He, N. Wagner, S. D. Minteer, and L. T. Angenent, Environmental Science & Technology, vol.40, issue.17, pp.5212-5217, 2006.
DOI : 10.1021/es060394f

S. Cheng, H. Liu, and B. E. Logan, Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing, Environmental Science & Technology, vol.40, issue.7, pp.2426-2432, 2006.
DOI : 10.1021/es051652w

H. Liu, S. Cheng, and B. E. Logan, Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration, Environmental Science & Technology, vol.39, issue.14, pp.5488-5493, 2005.
DOI : 10.1021/es050316c

B. Min and B. E. Logan, Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell, Environmental Science & Technology, vol.38, issue.21, pp.5809-5814, 2004.
DOI : 10.1021/es0491026

M. A. Rodrigo, P. Cañizares, J. Lobato, R. Paz, C. Sáez et al., Production of electricity from the treatment of urban waste water using a microbial fuel cell, Journal of Power Sources, vol.169, issue.1, pp.198-204, 2007.
DOI : 10.1016/j.jpowsour.2007.01.054

H. Rismani-yazdi, A. D. Christy, B. A. Dehority, M. Morrison, Z. Yu et al., Electricity generation from cellulose by rumen microorganisms in microbial fuel cells, Biotechnology and Bioengineering, vol.8, issue.6, pp.1398-1407, 2007.
DOI : 10.1023/A:1020858910646

B. E. Logan, Environmental Science & Technology, vol.40, issue.17, pp.5181-5192, 2006.
DOI : 10.1021/es0605016

H. Liu and B. E. Logan, Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane, Environmental Science & Technology, vol.38, issue.14, pp.4040-4046, 2004.
DOI : 10.1021/es0499344

M. Stern and A. L. Geary, Electrochemical Polarization, Journal of The Electrochemical Society, vol.104, issue.1, pp.56-63, 1957.
DOI : 10.1149/1.2428496

O. F. Devereux, Polarization Curve-Fitting by Computer Modelling, CORROSION, vol.35, issue.3, pp.125-129, 1979.
DOI : 10.5006/0010-9312-35.3.125

N. S. Malvankar, T. Mester, M. T. Tuominen, and D. R. Lovley, Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria, ChemPhysChem, vol.332, issue.2, pp.463-468, 2012.
DOI : 10.1002/0471716243

C. Koch and F. Harnisch, Is there a Specific Ecological Niche for Electroactive Microorganisms?, ChemElectroChem, vol.462, issue.9, pp.1282-1295, 2016.
DOI : 10.1038/nature08656

G. Sturm, K. Dolch, K. Richter, M. Rautenberg, and J. Gescher, Metal Reducers and Reduction Targets. A Short Survey About the Distribution of Dissimilatory Metal Reducers and the Multitude of Terminal Electron Acceptors, pp.129-159, 2013.
DOI : 10.1007/978-3-642-32867-1_6

A. S. Commault, G. Lear, and R. J. Weld, Maintenance of Geobacter -dominated biofilms in microbial fuel cells treating synthetic wastewater, Bioelectrochemistry, vol.106, pp.150-158, 2015.
DOI : 10.1016/j.bioelechem.2015.04.011

S. Jung and J. M. Regan, Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors, Applied Microbiology and Biotechnology, vol.20, issue.8, pp.393-402, 2007.
DOI : 10.1038/nbt716

D. Ki, J. Park, J. Lee, and K. Yoo, Microbial diversity and population dynamics of activated sludge microbial communities participating in electricity generation in microbial fuel cells, Water Science and Technology, vol.58, issue.11, p.2195, 2008.
DOI : 10.2166/wst.2008.577

J. P. Stratford, N. J. Beecroft, R. C. Slade, A. Grüning, and C. Avignone-rossa, Anodic microbial community diversity as a predictor of the power output of microbial fuel cells, Bioresource Technology, vol.156, pp.84-91, 2014.
DOI : 10.1016/j.biortech.2014.01.041

Y. Sun, J. Wei, P. Liang, and X. Huang, Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials, Bioresource Technology, vol.102, issue.23, pp.10886-10891, 2011.
DOI : 10.1016/j.biortech.2011.09.038

M. D. Yates, Convergent development of anodic bacterial communities in microbial fuel cells, The ISME Journal, vol.74, issue.11, pp.2002-2013, 2012.
DOI : 10.1128/AEM.02732-07

D. M. Hodgson, Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade, Frontiers in Microbiology, vol.106, issue.e98425, 2016.
DOI : 10.1016/j.biortech.2011.11.019

A. Paitier, A. Godain, D. Lyon, N. Haddour, T. M. Vogel et al., Microbial fuel cell anodic microbial population dynamics during MFC start-up, Biosensors and Bioelectronics, vol.92, pp.357-363, 2017.
DOI : 10.1016/j.bios.2016.10.096

URL : https://hal.archives-ouvertes.fr/hal-01588970

S. Falkow, E. Rosenberg, K. Schleifer, and E. Stackebrandt, The Prokaryotes, 2006.

G. Sezonov, D. Joseleau-petit, and R. D. Ari, Escherichia coli Physiology in Luria-Bertani Broth, Journal of Bacteriology, vol.189, issue.23, pp.8746-8749, 2007.
DOI : 10.1128/JB.01368-07

URL : https://hal.archives-ouvertes.fr/hal-00184125

D. E. Holmes, ABSTRACT, Applied and Environmental Microbiology, vol.79, issue.5, pp.1646-1653, 2013.
DOI : 10.1128/AEM.03263-12

C. I. Torres, A. K. Marcus, P. Parameswaran, and B. E. Rittmann, Kinetic Experiments for Evaluating the Nernst???Monod Model for Anode-Respiring Bacteria (ARB) in a Biofilm Anode, Environmental Science & Technology, vol.42, issue.17, pp.6593-6597, 2008.
DOI : 10.1021/es800970w

J. Wei, P. Liang, X. Cao, and X. Huang, in Microbial Fuel Cells Based on Energy Viewpoint, Environmental Science & Technology, vol.44, issue.8, pp.3187-3191, 2010.
DOI : 10.1021/es903758m

F. Kracke, I. Vassilev, and J. O. Krömer, Microbial electron transport and energy conservation ???????? the foundation for optimizing bioelectrochemical systems, Frontiers in Microbiology, vol.9, issue.201, 2015.
DOI : 10.1016/j.elecom.2006.09.025

URL : http://journal.frontiersin.org/article/10.3389/fmicb.2015.00575/pdf

J. M. Dantas, Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies, Frontiers in Microbiology, vol.24, 2015.
DOI : 10.1016/j.bios.2009.05.004

T. C. Santos, M. A. Silva, L. Morgado, J. M. Dantas, and C. A. Salgueiro, Diving into the redox properties of Geobacter sulfurreducens cytochromes: a model for extracellular electron transfer, Dalton Transactions, vol.288, issue.20, pp.9335-9344, 2015.
DOI : 10.1074/jbc.M113.498527

C. E. Levar, C. L. Hoffman, A. J. Dunshee, B. M. Toner, and D. R. Bond, Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens, The ISME Journal, vol.107, issue.3, pp.741-752, 2017.
DOI : 10.1016/j.bioelechem.2015.08.003

URL : https://www.biorxiv.org/content/early/2016/09/16/043059.1.full.pdf

D. R. Bond, S. M. Strycharz-glaven, L. M. Tender, and C. I. Torres, On Electron Transport through Geobacter Biofilms ChemSusChem, vol.5, issue.6, pp.1099-1105, 2012.

C. H. Chan, C. E. Levar, F. Jiménez-otero, and D. R. Bond, ABSTRACT, Journal of Bacteriology, vol.199, issue.19, pp.340-357, 2017.
DOI : 10.1128/JB.00340-17

URL : https://hal.archives-ouvertes.fr/hal-01377942

L. A. Zacharoff, D. Morrone, and D. R. Bond, Geobacter sulfurreducens extracellular multiheme cytochrome PgcA facilitates respiration to Fe(III) oxides but not electrodes, p.172775, 2017.
DOI : 10.3389/fmicb.2017.02481

URL : https://www.frontiersin.org/articles/10.3389/fmicb.2017.02481/pdf

C. E. Levar, C. H. Chan, M. G. Mehta-kolte, and D. R. Bond, An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors, mBio, vol.5, issue.6, p.2034, 2014.
DOI : 10.1073/pnas.1834303100

URL : http://mbio.asm.org/content/5/6/e02034-14.full.pdf

L. Zacharoff, C. H. Chan, and D. R. Bond, Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens, Bioelectrochemistry, vol.107, pp.7-13, 2016.
DOI : 10.1016/j.bioelechem.2015.08.003

J. R. Lloyd, Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens, Biochemical Journal, vol.369, issue.1, pp.153-161, 2003.
DOI : 10.1042/bj20020597

N. S. Malvankar, Structural Basis for Metallic-Like Conductivity in Microbial Nanowires, mBio, vol.6, issue.2, pp.84-99, 2015.
DOI : 10.1128/mBio.00084-15

URL : http://mbio.asm.org/content/6/2/e00084-15.full.pdf

D. E. Holmes, Y. Dang, D. J. Walker, and D. R. Lovley, The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer, Microbial Genomics, vol.115, issue.8, 2016.
DOI : 10.1038/ismej.2010.117

C. Leang, X. Qian, T. Mester, and D. R. Lovley, Alignment of the c-Type Cytochrome OmcS along Pili of Geobacter sulfurreducens, Applied and Environmental Microbiology, vol.76, issue.12, pp.4080-4084, 2010.
DOI : 10.1128/AEM.00023-10

K. P. Nevin, Anode Biofilm Transcriptomics Reveals Outer Surface Components Essential for High Density Current Production in Geobacter sulfurreducens Fuel Cells, PLoS ONE, vol.4, issue.5, p.5628, 2009.
DOI : 10.1371/journal.pone.0005628.t004

URL : https://doi.org/10.1371/journal.pone.0005628

E. D. Brutinel and J. A. Gralnick, Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella, Applied Microbiology and Biotechnology, vol.99, issue.1, pp.41-48, 2012.
DOI : 10.1073/pnas.212628899

D. Coursolle and J. A. Gralnick, Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1, Molecular Microbiology, vol.128, issue.4, pp.995-1008, 2010.
DOI : 10.1111/j.1365-2958.2010.07266.x

D. E. Ross, J. M. Flynn, D. B. Baron, J. A. Gralnick, and D. R. Bond, Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism, PLoS ONE, vol.100, issue.2, 2011.
DOI : 10.1371/journal.pone.0016649.t001

J. A. Gralnick, On conducting electron traffic across the periplasm: Figure 1, Biochemical Society Transactions, vol.3, issue.6, pp.1178-1180, 2012.
DOI : 10.3389/fmicb.2012.00056

URL : http://www.biochemsoctrans.org/content/ppbiost/40/6/1178.full.pdf

S. Pirbadian, Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components, pp.12883-12888, 2014.
DOI : 10.1073/pnas.1410551111

URL : http://www.pnas.org/content/111/35/12883.full.pdf

N. J. Kotloski and J. A. Gralnick, Flavin Electron Shuttles Dominate Extracellular Electron Transfer by Shewanella oneidensis, mBio, vol.4, issue.1, pp.553-565, 2013.
DOI : 10.1128/mBio.00553-12

URL : http://mbio.asm.org/content/4/1/e00553-12.full.pdf

B. A. Methé, Genome of Geobacter sulfurreducens: Metal Reduction in Subsurface Environments, Science, vol.302, issue.5652, pp.1967-1969, 2003.
DOI : 10.1126/science.1088727

E. J. Verwey, Theory of the Stability of Lyophobic Colloids., The Journal of Physical and Colloid Chemistry, vol.51, issue.3, pp.631-636, 1947.
DOI : 10.1021/j150453a001

M. Hermansson, The DLVO theory in microbial adhesion, Colloids and Surfaces B: Biointerfaces, vol.14, issue.1-4, pp.105-119, 1999.
DOI : 10.1016/S0927-7765(99)00029-6

A. Kato-marcus, C. I. Torres, and B. E. Rittmann, Conduction-based modeling of the biofilm anode of a microbial fuel cell, Biotechnology and Bioengineering, vol.95, issue.6, pp.1171-1182, 2007.
DOI : 10.1002/0471228230

H. V. Hamelers, A. Ter-heijne, N. Stein, R. A. Rozendal, and C. J. Buisman, Butler???Volmer???Monod model for describing bio-anode polarization curves, Bioresource Technology, vol.102, issue.1, pp.381-387, 2011.
DOI : 10.1016/j.biortech.2010.06.156

C. Picioreanu, I. M. Head, K. P. Katuri, M. C. Van-loosdrecht, and K. Scott, A computational model for biofilm-based microbial fuel cells, Water Research, vol.41, issue.13, pp.2921-2940, 2007.
DOI : 10.1016/j.watres.2007.04.009

R. P. Pinto, B. Srinivasan, M. Manuel, and B. Tartakovsky, A two-population bio-electrochemical model of a microbial fuel cell, Bioresource Technology, vol.101, issue.14, pp.5256-5265, 2010.
DOI : 10.1016/j.biortech.2010.01.122

C. I. Torres, A. K. Marcus, and B. E. Rittmann, Kinetics of consumption of fermentation products by anode-respiring bacteria, Applied Microbiology and Biotechnology, vol.17, issue.3, pp.689-697, 2007.
DOI : 10.1002/0471228230

A. Torrents, N. Godino, F. J. Del-campo, F. X. Muñoz, and J. Mas, Influence of pH and Carbonate Buffering on the Performance of a Lactate Microbial Fuel Cell

C. I. Torres, Selecting Anode-Respiring Bacteria Based on Anode Potential: Phylogenetic, Electrochemical, and Microscopic Characterization, Environmental Science & Technology, vol.43, issue.24, pp.9519-9524, 2009.
DOI : 10.1021/es902165y

C. Picioreanu, M. C. Van-loosdrecht, T. P. Curtis, and K. Scott, Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance, Bioelectrochemistry, vol.78, issue.1, pp.8-24, 2010.
DOI : 10.1016/j.bioelechem.2009.04.009

A. E. Franks, K. P. Nevin, H. Jia, M. Izallalen, T. L. Woodard et al., Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm, Energy Environ. Sci., vol.189, issue.1, pp.113-119, 2008.
DOI : 10.1128/JB.01284-06

N. S. Malvankar, M. T. Tuominen, and D. R. Lovley, Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells, Energy & Environmental Science, vol.435, issue.2, p.5790, 2012.
DOI : 10.1002/cphc.201100865

N. S. Malvankar, J. Lau, K. P. Nevin, A. E. Franks, M. T. Tuominen et al., ABSTRACT, Applied and Environmental Microbiology, vol.78, issue.16, pp.5967-5971, 2012.
DOI : 10.1128/AEM.01803-12

A. Persat, The Mechanical World of Bacteria, Cell, vol.161, issue.5, pp.988-997, 2015.
DOI : 10.1016/j.cell.2015.05.005

P. Thomen, J. Robert, A. Monmeyran, A. Bitbol, C. Douarche et al., Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing, PLOS ONE, vol.18, issue.7, p.175197, 2017.
DOI : 10.1371/journal.pone.0175197.s014

URL : https://hal.archives-ouvertes.fr/hal-01509809

M. Lemos, F. Mergulhão, L. Melo, and M. Simões, The effect of shear stress on the formation and removal of Bacillus cereus biofilms, Food and Bioproducts Processing, vol.93, pp.242-248, 2015.
DOI : 10.1016/j.fbp.2014.09.005

Y. Liu and J. Tay, Metabolic response of biofilm to shear stress in fixed-film culture, Journal of Applied Microbiology, vol.7, issue.3, pp.337-342, 2001.
DOI : 10.1080/08927019309386244

A. Rochex, J. Godon, N. Bernet, and R. Escudie, Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities, Water Research, vol.42, issue.20, pp.4915-4922, 2008.
DOI : 10.1016/j.watres.2008.09.015

H. T. Pham, High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell, Microbial Biotechnology, vol.9, issue.6, pp.487-496, 2008.
DOI : 10.1002/jctb.503291107

P. S. Stewart, Mini-review: Convection around biofilms, Biofouling, vol.30, issue.2, pp.187-198, 2012.
DOI : 10.1016/S0144-8609(00)00071-6

A. Park, H. Jeong, J. Lee, K. P. Kim, and C. Lee, Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel, BioChip Journal, vol.37, issue.3, p.236, 2011.
DOI : 10.1007/s10439-009-9671-8

U. , The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems, Water Research, vol.127, pp.211-222, 2017.

H. Fang, Y. Chen, L. Huang, and G. He, Analysis of biofilm bacterial communities under different shear stresses using size-fractionated sediment, Scientific Reports, vol.75, issue.1, 2017.
DOI : 10.1186/1471-2105-12-35

N. Islam, Y. Kim, J. M. Ross, and M. R. Marten, Proteomic analysis of Staphylococcus aureus biofilm cells grown under physiologically relevant fluid shear stress conditions, Proteome Science, vol.12, issue.1, p.21, 2014.
DOI : 10.1002/(SICI)1522-2683(19990301)20:3<601::AID-ELPS601>3.0.CO;2-6

V. Oliveira, T. Carvalho, L. Melo, A. Pinto, and M. Simões, EFFECTS OF HYDRODYNAMIC STRESS AND FEED RATE ON THE PERFORMANCE OF A MICROBIAL FUEL CELL, Environmental Engineering and Management Journal, vol.15, issue.11, pp.2497-2504, 2016.
DOI : 10.30638/eemj.2016.273

F. F. Ajayi, K. Kim, K. Chae, M. Choi, and I. S. Kim, Effect of hydrodymamic force and prolonged oxygen exposure on the performance of anodic biofilm in microbial electrolysis cells, International Journal of Hydrogen Energy, vol.35, issue.8, pp.3206-3213, 2010.
DOI : 10.1016/j.ijhydene.2010.01.057

J. R. Kim, Porous anodes with helical flow pathways in bioelectrochemical systems: The effects of fluid dynamics and operating regimes, Journal of Power Sources, vol.213, pp.382-390, 2012.
DOI : 10.1016/j.jpowsour.2012.03.040

S. Cheng and W. Liu, How to make Cathodes with a diffusion layer for single-chamber microbial fule cells, 2008.

S. Lorthois, P. Schmitz, D. Houi, and E. Angles-cano, Experimental Study of Fibrin Embolization Under Shear Flow, The Journal of Adhesion, vol.58, issue.2, pp.229-239, 2000.
DOI : 10.1016/S0006-3495(90)82357-2

S. Lorthois, P. Schmitz, and E. Anglés-cano, Experimental Study of Fibrin/Fibrin-Specific Molecular Interactions Using a Sphere/Plane Adhesion Model, Journal of Colloid and Interface Science, vol.241, issue.1, pp.52-62, 2001.
DOI : 10.1006/jcis.2001.7679

M. E. , A sphere in contact with a plane wall in a slow linear shear flow, Chemical Engineering Science, vol.23, issue.11, pp.1293-1298, 1968.
DOI : 10.1016/0009-2509(68)89039-6

. Illumina, 16S Sample Preparation Guide

T. H. Pham, N. Boon, K. D. Maeyer, M. Höfte, K. Rabaey et al., Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation, Applied Microbiology and Biotechnology, vol.9, issue.2, pp.985-993, 2008.
DOI : 10.1007/s00253-008-1619-7

E. Marsili, D. B. Baron, I. D. Shikhare, D. Coursolle, J. A. Grainick et al., Shewanella secretes flavins that mediate extracellular electron transfer, Proceedings of the National Academy of Sciences, vol.74, issue.3, pp.3968-3973, 2008.
DOI : 10.1128/AEM.01387-07

H. Von-canstein, J. Ogawa, S. Shimizu, and J. R. Lloyd, Secretion of Flavins by Shewanella Species and Their Role in Extracellular Electron Transfer, Applied and Environmental Microbiology, vol.74, issue.3, pp.615-623, 2008.
DOI : 10.1128/AEM.01387-07

T. R. De-kievit, biofilms, Environmental Microbiology, vol.3, issue.2, pp.279-288, 2009.
DOI : 10.1128/9781555817718.ch7

L. E. Dietrich, A. Price-whelan, A. Petersen, M. Whiteley, and D. K. Newman, The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa, Molecular Microbiology, vol.196, issue.5, pp.1308-1321, 2006.
DOI : 10.1038/35101627

L. S. Thomashow and D. M. Weller, Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici., Journal of Bacteriology, vol.170, issue.8, pp.3499-3508, 1988.
DOI : 10.1128/jb.170.8.3499-3508.1988

J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, The ImageJ ecosystem: An open platform for biomedical image analysis, Molecular Reproduction and Development, vol.15, issue.7-8, pp.7-8, 2015.
DOI : 10.1038/nmeth.2089

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.2144/000112257

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.27, issue.7, pp.676-682, 2012.
DOI : 10.1093/bioinformatics/btr390

R. C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.22, issue.19, pp.2460-2461, 2010.
DOI : 10.1093/bioinformatics/btl158

A. P. Masella, A. K. Bartram, J. M. Truszkowski, D. G. Brown, and J. D. Neufeld, PANDAseq: paired-end assembler for illumina sequences, BMC Bioinformatics, vol.13, issue.1, p.31, 2012.
DOI : 10.1093/bioinformatics/btl158

Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy, Applied and Environmental Microbiology, vol.73, issue.16, pp.5261-5267, 2007.
DOI : 10.1128/AEM.00062-07

R. Development and C. Team, R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, 2008.

J. Oksanen, vegan: Community Ecology Package, 2016.

F. A. Armstrong, H. A. Heering, and J. Hirst, Reaction of complex metalloproteins studied by protein-film voltammetry, Chemical Society Reviews, vol.26, issue.3, pp.169-179, 1997.
DOI : 10.1039/cs9972600169

J. R. Cole, Ribosomal Database Project: data and tools for high throughput rRNA analysis, Nucleic Acids Research, vol.4, issue.D1, pp.633-642, 2014.
DOI : 10.1128/AEM.01043-13

URL : https://academic.oup.com/nar/article-pdf/42/D1/D633/16952330/gkt1244.pdf

S. Freguia, S. Tsujimura, and K. Kano, Electron transfer pathways in microbial oxygen biocathodes, Electrochimica Acta, vol.55, issue.3, pp.813-818, 2010.
DOI : 10.1016/j.electacta.2009.09.027

S. Parot, Catalysis of the electrochemical reduction of oxygen by bacteria isolated from electro-active biofilms formed in seawater, Bioresource Technology, vol.102, issue.1, pp.304-311, 2011.
DOI : 10.1016/j.biortech.2010.06.157

S. Chen, X. Jing, J. Tang, Y. Fang, and S. Zhou, Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms, Biosensors and Bioelectronics, vol.97, pp.369-376, 2017.
DOI : 10.1016/j.bios.2017.06.024

D. Y. Lyon, F. Buret, T. M. Vogel, and J. Monier, Is resistance futile? Changing external resistance does not improve microbial fuel cell performance, Bioelectrochemistry, vol.78, issue.1, pp.2-7, 2010.
DOI : 10.1016/j.bioelechem.2009.09.001

URL : https://hal.archives-ouvertes.fr/hal-00417880

K. P. Katuri, K. Scott, I. M. Head, C. Picioreanu, and T. P. Curtis, Microbial fuel cells meet with external resistance, Bioresource Technology, vol.102, issue.3, pp.2758-2766, 2011.
DOI : 10.1016/j.biortech.2010.10.147

H. Rismani-yazdi, A. D. Christy, S. M. Carver, Z. Yu, B. A. Dehority et al., Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells, Bioresource Technology, vol.102, issue.1, pp.278-283, 2011.
DOI : 10.1016/j.biortech.2010.05.012

L. Zhang, X. Zhu, J. Li, Q. Liao, and D. Ye, Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances, Journal of Power Sources, vol.196, issue.15, pp.6029-6035, 2011.
DOI : 10.1016/j.jpowsour.2011.04.013

G. Guillemot, S. Lorthois, P. Schmitz, and M. Mercier-bonin, Evaluating the Adhesion Force Between Saccharomyces Cerevisiae Yeast Cells and Polystyrene From Shear-Flow Induced Detachment Experiments, Chemical Engineering Research and Design, vol.85, issue.6, pp.800-807, 2007.
DOI : 10.1205/cherd06082

J. E. Duddridge, C. A. Kent, and J. F. Laws, Effect of surface shear stress on the attachment ofPseudomonas fluorescens to stainless steel under defined flow conditions, Biotechnology and Bioengineering, vol.85, issue.1, pp.153-164, 1982.
DOI : 10.4159/harvard.9780674423350

W. W. Baldwin, R. Myer, N. Powell, E. Anderson, and A. L. Koch, Buoyant density of Escherichia coli is determined solely by the osmolarity of the culture medium, Archives of Microbiology, vol.164, issue.2, pp.155-157, 1995.
DOI : 10.1007/s002030050248

J. M. Martel and M. Toner, Inertial Focusing in Microfluidics, Annual Review of Biomedical Engineering, vol.16, issue.1, pp.371-396, 2014.
DOI : 10.1146/annurev-bioeng-121813-120704

URL : http://europepmc.org/articles/pmc4467210?pdf=render

C. Gutfinger, D. Pnueli, L. Moldavsky, K. Shuster, and M. Fichman, Particle Motion in Simple Shear Flow with Gravity, Aerosol Science and Technology, vol.37, issue.10, pp.841-845, 2003.
DOI : 10.1080/02786820300936

URL : http://www.tandfonline.com/doi/pdf/10.1080/02786820300936?needAccess=true

J. Zhang, Fundamentals and applications of inertial microfluidics: a review, Lab on a Chip, vol.12, issue.1, pp.10-34, 2015.
DOI : 10.1039/c2lc40147a

URL : http://ro.uow.edu.au/cgi/viewcontent.cgi?article=5877&context=eispapers

N. Li, R. Kakarla, and B. Min, Effect of influential factors on microbial growth and the correlation between current generation and biomass in an air cathode microbial fuel cell, International Journal of Hydrogen Energy, vol.41, issue.45, 2016.
DOI : 10.1016/j.ijhydene.2016.09.094

J. A. Cornejo, Surface Modification for Enhanced Biofilm Formation and Electron Transport in Shewanella Anodes, Journal of The Electrochemical Society, vol.2, issue.9, pp.597-603, 2015.
DOI : 10.1149/2.001401jes

URL : http://jes.ecsdl.org/content/162/9/H597.full.pdf

L. Kiseleva, Summary, Journal of Integrative Bioinformatics, vol.12, issue.3, p.273, 2015.
DOI : 10.1515/jib-2015-273

Y. Zhang, J. Jiang, Q. Zhao, K. Wang, and H. Yu, Analysis of functional genomes from metagenomes: Revealing the accelerated electron transfer in microbial fuel cell with rhamnolipid addition, Bioelectrochemistry, vol.119, pp.59-67, 2018.
DOI : 10.1016/j.bioelechem.2017.08.010

. Illumina, Nextera XT DNA Library Prep Kit -Reference Guide, Illumina, 2017.

, Fast and sensitive protein alignment using DIAMOND | Nature Methods Available: https://www.nature.com/articles/nmeth.3176, 2017.

Y. S. Cao and G. J. Alaerts, Influence of reactor type and shear stress on aerobic biofilm morphology, population and kinetics, Water Research, vol.29, issue.1, pp.107-118, 1995.
DOI : 10.1016/0043-1354(94)00136-U

Y. Liu and J. Tay, The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge, Water Research, vol.36, issue.7, pp.1653-1665, 2002.
DOI : 10.1016/S0043-1354(01)00379-7

B. E. Rittman, The effect of shear stress on biofilm loss rate, Biotechnology and Bioengineering, vol.23, issue.2, pp.501-506, 1982.
DOI : 10.1002/bit.260240219

B. M. Peyton and W. G. Characklis, A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm detachment, Biotechnology and Bioengineering, vol.28, issue.7, pp.728-735, 1993.
DOI : 10.1002/bit.260410707

B. M. Peyton, Effects of shear stress and substrate loading rate on Pseudomonas aeruginosa biofilm thickness and density, Water Research, vol.30, issue.1, pp.29-36, 1996.
DOI : 10.1016/0043-1354(95)00110-7

L. G. Raguin, M. Shannon, and J. G. Georgiadis, Dispersion radiale et axiale dans les ??coulements tourbillonnaires de Taylor???Couette et Poiseuille, International Journal of Heat and Mass Transfer, vol.44, issue.17, pp.3295-3306, 2001.
DOI : 10.1016/S0017-9310(00)00358-6

G. Baier, M. D. Graham, and E. N. Lightfoot, Mass transport in a novel two-fluid taylor vortex extractor, AIChE Journal, vol.80, issue.12, pp.2395-2407, 2000.
DOI : 10.1016/0376-7388(93)85130-O

S. J. Curran and R. A. Black, Oxygen transport and cell viability in an annular flow bioreactor: Comparison of laminar Couette and Taylor-vortex flow regimes, Biotechnology and Bioengineering, vol.4, issue.7, pp.766-774, 2005.
DOI : 10.1098/rspa.1936.0216

B. Haut, H. Ben-amor, L. Coulon, A. Jacquet, and V. Halloin, Hydrodynamics and mass transfer in a Couette???Taylor bioreactor for the culture of animal cells, Chemical Engineering Science, vol.58, issue.3-6, pp.777-784, 2003.
DOI : 10.1016/S0009-2509(02)00607-3

R. J. Campero and R. D. Vigil, Axial dispersion during low Reynolds number Taylor-Couette flow: intra-vortex mixing effects, Chemical Engineering Science, vol.52, issue.19, pp.3303-3310, 1997.
DOI : 10.1016/S0009-2509(97)00151-6

N. Barbouche, Réponse biologique de cellules animales à des contraintes hydrodynamiques : simulation numérique, expérimentation et modélisation en bioréacteurs de laboratoire, 2008.

Y. Takeda, Quasi-periodic state and transition to turbulence in a rotating Couette system, Journal of Fluid Mechanics, vol.389, pp.81-99, 1999.
DOI : 10.1017/S0022112099005091

C. Wang, Flow Control in Microbial Fuel Cells, p.2014
DOI : 10.5772/58346

S. Cheng, H. Liu, and B. E. Logan, Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells, Environmental Science & Technology, vol.40, issue.1, pp.364-369, 2006.
DOI : 10.1021/es0512071

E. A. Zielke, Numerical analysis of a one dimensional diffusion equation for a single chamber microbial fuel cell using a linked simulation optimization (LSO) technique, Advanced Numerical Methods E, vol.521, 2006.

C. Picioreanu, K. P. Katuri, M. C. Van-loosdrecht, I. M. Head, and K. Scott, Modelling microbial fuel cells with suspended cells and added electron transfer mediator, Journal of Applied Electrochemistry, vol.17, issue.7, pp.151-162, 2010.
DOI : 10.1002/jctb.280340103

C. Picioreanu, M. C. Van-loosdrecht, K. P. Katuri, K. Scott, and I. M. Head, Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion, Water Science and Technology, vol.57, issue.7, p.965, 2008.
DOI : 10.2166/wst.2008.095

K. J. Martin, C. Picioreanu, and R. Nerenberg, Multidimensional modeling of biofilm development and fluid dynamics in a hydrogen-based, membrane biofilm reactor (MBfR), Water Research, vol.47, issue.13, pp.4739-4751, 2013.
DOI : 10.1016/j.watres.2013.04.031

A. K. Marcus, C. I. Torres, and B. E. Rittmann, Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model, Bioresource Technology, vol.102, issue.1, pp.253-262, 2011.
DOI : 10.1016/j.biortech.2010.03.100

S. Dong, Direct numerical simulation of turbulent Taylor???Couette flow, Journal of Fluid Mechanics, vol.118, pp.373-393, 2007.
DOI : 10.1103/PhysRevLett.68.1515

, References

K. Rabaey and W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends in Biotechnology, vol.23, issue.6, pp.291-298, 2005.
DOI : 10.1016/j.tibtech.2005.04.008

Z. Du, H. Li, and T. Gu, A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy, Biotechnology Advances, vol.25, issue.5, pp.464-482, 2007.
DOI : 10.1016/j.biotechadv.2007.05.004

B. E. Logan, Environmental Science & Technology, vol.40, issue.17, pp.5181-5192, 2006.
DOI : 10.1021/es0605016

B. E. Logan, Exoelectrogenic bacteria that power microbial fuel cells, Nature Reviews Microbiology, vol.2, issue.5, pp.375-381, 2009.
DOI : 10.1038/nbt716

H. S. Park, A Novel Electrochemically Active and Fe(III)-reducing Bacterium Phylogenetically Related to Clostridium butyricum Isolated from a Microbial Fuel Cell, Anaerobe, vol.7, issue.6, pp.297-306, 2001.
DOI : 10.1006/anae.2001.0399

Y. A. Gorby, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, Proceedings of the National Academy of Sciences, pp.11358-11363, 2006.
DOI : 10.1021/ac60289a016

K. Chae, M. Choi, J. Lee, K. Kim, and I. S. Kim, Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells, Bioresource Technology, vol.100, issue.14, pp.3518-3525, 2009.
DOI : 10.1016/j.biortech.2009.02.065

D. H. Huson, MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data, PLOS Computational Biology, vol.3, issue.1, p.1004957, 2016.
DOI : 10.1371/journal.pcbi.1004957.t001

P. Aelterman, S. Freguia, J. Keller, W. Verstraete, and K. Rabaey, The anode potential regulates bacterial activity in microbial fuel cells, Applied Microbiology and Biotechnology, vol.41, issue.5, pp.409-418, 2008.
DOI : 10.1007/s00253-007-1327-8

D. A. Finkelstein, L. M. Tender, and J. G. Zeikus, Effect of Electrode Potential on Electrode-Reducing Microbiota, Environmental Science & Technology, vol.40, issue.22, pp.6990-6995, 2006.
DOI : 10.1021/es061146m

C. I. Torres, Selecting Anode-Respiring Bacteria Based on Anode Potential: Phylogenetic, Electrochemical, and Microscopic Characterization, Environmental Science & Technology, vol.43, issue.24, pp.9519-9524, 2009.
DOI : 10.1021/es902165y

X. Wang, Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential, Electrochimica Acta, vol.54, issue.3, pp.1109-1114, 2009.
DOI : 10.1016/j.electacta.2008.07.085

J. Wei, P. Liang, X. Cao, and X. Huang, A New Insight into Potential Regulation on Growth and Power Generation of Geobacter sulfurreducens in Microbial Fuel Cells Based on Energy Viewpoint

. Sci, , pp.3187-3191, 2010.

P. Aelterman, M. Versichele, M. Marzorati, N. Boon, and W. Verstraete, Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes, Bioresource Technology, vol.99, issue.18, pp.8895-8902, 2008.
DOI : 10.1016/j.biortech.2008.04.061

L. Zhang, X. Zhu, J. Li, Q. Liao, and D. Ye, Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances, Journal of Power Sources, vol.196, issue.15, pp.6029-6035, 2011.
DOI : 10.1016/j.jpowsour.2011.04.013

D. Y. Lyon, F. Buret, T. M. Vogel, and J. Monier, Is resistance futile? Changing external resistance does not improve microbial fuel cell performance, Bioelectrochemistry, vol.78, issue.1, pp.2-7, 2010.
DOI : 10.1016/j.bioelechem.2009.09.001

URL : https://hal.archives-ouvertes.fr/hal-00417880

V. Fedorovich, M. C. Knighton, E. Pagaling, F. B. Ward, A. Free et al., Novel Electrochemically Active Bacterium Phylogenetically Related to Arcobacter butzleri, Isolated from a Microbial Fuel Cell, Applied and Environmental Microbiology, vol.75, issue.23, pp.7326-7334, 2009.
DOI : 10.1128/AEM.01345-09

URL : http://aem.asm.org/content/75/23/7326.full.pdf

H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim et al., A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme and Microbial Technology, vol.30, issue.2, pp.145-152, 2002.
DOI : 10.1016/S0141-0229(01)00478-1

J. Niessen, U. Schröder, and F. Scholz, Exploiting complex carbohydrates for microbial electricity generation ? a bacterial fuel cell operating on starch, Electrochemistry Communications, vol.6, issue.9, pp.955-958, 2004.
DOI : 10.1016/j.elecom.2004.07.010

C. A. Pham, , isolated from a microbial fuel cell, FEMS Microbiology Letters, vol.18, issue.1, pp.129-134, 2003.
DOI : 10.1016/S0956-5663(02)00110-0

T. H. Pham, N. Boon, K. D. Maeyer, M. Höfte, K. Rabaey et al., Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation, Applied Microbiology and Biotechnology, vol.9, issue.2, pp.985-993, 2008.
DOI : 10.1007/s00253-008-1619-7

S. A. , Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber, Bioresource Technology, vol.100, issue.21, pp.5132-5139, 2009.

A. S. Commault, G. Lear, and R. J. Weld, Maintenance of Geobacter -dominated biofilms in microbial fuel cells treating synthetic wastewater, Bioelectrochemistry, vol.106, pp.150-158, 2015.
DOI : 10.1016/j.bioelechem.2015.04.011

S. Jung and J. M. Regan, Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors, Applied Microbiology and Biotechnology, vol.20, issue.8, pp.393-402, 2007.
DOI : 10.1038/nbt716

D. Ki, J. Park, J. Lee, and K. Yoo, Microbial diversity and population dynamics of activated sludge microbial communities participating in electricity generation in microbial fuel cells, Water Science and Technology, vol.58, issue.11, p.2195, 2008.
DOI : 10.2166/wst.2008.577

J. P. Stratford, N. J. Beecroft, R. C. Slade, A. Grüning, and C. Avignone-rossa, Anodic microbial community diversity as a predictor of the power output of microbial fuel cells, Bioresource Technology, vol.156, pp.84-91, 2014.
DOI : 10.1016/j.biortech.2014.01.041

Y. Sun, J. Wei, P. Liang, and X. Huang, Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials, Bioresource Technology, vol.102, issue.23, pp.10886-10891, 2011.
DOI : 10.1016/j.biortech.2011.09.038

M. D. Yates, Convergent development of anodic bacterial communities in microbial fuel cells, The ISME Journal, vol.74, issue.11, pp.2002-2013, 2012.
DOI : 10.1128/AEM.02732-07

A. Paitier, A. Godain, D. Lyon, N. Haddour, T. M. Vogel et al., Microbial fuel cell anodic microbial population dynamics during MFC start-up, Biosensors and Bioelectronics, vol.92, pp.357-363, 2017.
DOI : 10.1016/j.bios.2016.10.096

URL : https://hal.archives-ouvertes.fr/hal-01588970

L. Kiseleva, Taxonomic and functional metagenomic analysis of anodic communities in two pilotscale microbial fuel cells treating different industrial wastewaters, Journal of integrative bioinformatics, vol.12, issue.1, p.273, 2015.

P. Maron, L. Ranjard, C. Mougel, and P. Lemanceau, Metaproteomics: A New Approach for Studying Functional Microbial Ecology, Microbial Ecology, vol.13, issue.3, pp.486-493, 2007.
DOI : 10.1080/02648725.1996.10647923

URL : https://hal.archives-ouvertes.fr/hal-01000599

D. H. Leary, Metaproteomic evidence of changes in protein expression following a change in electrode potential in a robust biocathode microbiome, PROTEOMICS, vol.41, issue.20, pp.3486-3496, 2015.
DOI : 10.1093/nar/gks1262

S. Cheng and W. Liu, How to make Cathodes with a diffusion layer for single-chamber microbial fule cells, 2008.

N. C. Verberkmoes, under Its Major Metabolic States, Journal of Proteome Research, vol.5, issue.2, pp.287-298, 2006.
DOI : 10.1021/pr0503230

A. P. Masella, A. K. Bartram, J. M. Truszkowski, D. G. Brown, and J. D. Neufeld, PANDAseq: paired-end assembler for illumina sequences, BMC Bioinformatics, vol.13, issue.1, p.31, 2012.
DOI : 10.1093/bioinformatics/btl158

J. G. Caporaso, QIIME allows analysis of high-throughput community sequencing data, Nature Methods, vol.8, issue.5, pp.335-336, 2010.
DOI : 10.1038/nmeth.f.303

URL : http://europepmc.org/articles/pmc3156573?pdf=render

, Fast and sensitive protein alignment using DIAMOND | Nature Methods Available: https://www.nature.com/articles/nmeth.3176, 2017.

R. Development and C. Team, R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, 2008.

D. Charif and J. R. Lobry, SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis, Structural Approaches to Sequence Evolution, pp.207-232, 2007.
DOI : 10.1007/978-3-540-35306-5_10

URL : https://hal.archives-ouvertes.fr/hal-00434576

D. H. Parks, G. W. Tyson, P. Hugenholtz, and R. G. Beiko, STAMP: statistical analysis of taxonomic and functional profiles, Bioinformatics, vol.5, issue.21, pp.3123-3124, 2014.
DOI : 10.1371/journal.pcbi.1000352

S. H. Hassan, Y. S. Kim, and S. Oh, Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell, Enzyme and Microbial Technology, vol.51, issue.5, pp.269-273, 2012.
DOI : 10.1016/j.enzmictec.2012.07.008

A. P. Borole, C. Y. Hamilton, T. Vishnivetskaya, D. Leak, and C. Andras, Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems, Biochemical Engineering Journal, vol.48, issue.1, pp.71-80, 2009.
DOI : 10.1016/j.bej.2009.08.008

Y. Sun, J. Wei, P. Liang, and X. Huang, Microbial community analysis in biocathode microbial fuel cells packed with different materials, AMB Express, vol.2, issue.1, p.21, 2012.
DOI : 10.1016/j.jpowsour.2011.01.012

J. E. Butler, N. D. Young, and D. R. Lovley, Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes, BMC Genomics, vol.11, issue.1, p.40, 2010.
DOI : 10.1186/1471-2164-11-40

M. V. Coppi, The hydrogenases of Geobacter sulfurreducens: a comparative genomic perspective, Microbiology, vol.151, issue.4, pp.1239-1254, 2005.
DOI : 10.1099/mic.0.27535-0

M. B. Miller and B. L. Bassler, Quorum Sensing in Bacteria, Annual Review of Microbiology, vol.55, issue.1, pp.165-199, 2001.
DOI : 10.1146/annurev.micro.55.1.165

C. M. Waters and B. L. Bassler, QUORUM SENSING: Cell-to-Cell Communication in Bacteria, Annual Review of Cell and Developmental Biology, vol.21, issue.1, pp.319-346, 2005.
DOI : 10.1146/annurev.cellbio.21.012704.131001

C. I. Torres, A. K. Marcus, H. Lee, P. Parameswaran, R. Krajmalnik-brown et al., A kinetic perspective on extracellular electron transfer by anode-respiring bacteria, FEMS Microbiology Reviews, vol.34, issue.1, pp.3-17, 2010.
DOI : 10.2175/106143008X325647

R. J. Ram, Community Proteomics of a Natural Microbial Biofilm, Science, vol.308, issue.5730, pp.1915-1920, 2005.
DOI : 10.1126/science. 1109070