R. N. Gunn, Duplex families and applications: A review Part 3: The lean duplex grades », présenté à Stainless Steel World Duplex Stainless Steels: Microstructure, Properties and Applications El Alami, « Influence de la déformation plastique sur la réactivité du nickel dans la Réaction d'Evolution de l'Hydrogène en milieu acide : approche cinétique et thermodynamique », Duplex stainless steel international conference & exhibition Effet de la déformation plastique du nickel monocristallin sur l'état d'équilibre de l'hydrogène en surface et subsurface », pp.13-15, 1997.

M. Sahal, Influence d'une pré-déformation plastique sur la réactivité anodique du nickel polycristallin dans le milieu acide sulfurique Mechanochemistry of solid surfaces, 1994.

C. David, F. Ruel, F. Krajcarz, S. Saedlou, and E. V. Vignal, Effect of grain size on the corrosion resistance of lean duplex UNS 32202 austenitic-ferritic stainless steel », Corrosion, Under submission

C. Lekbir, J. Creus, and R. Sabot, Influence of plastic strain on the hydrogen evolution reaction on nickel (100) single crystal surfaces to improve hydrogen embrittlement, Materials Science and Engineering: A, vol.578, pp.24-34, 2013.
DOI : 10.1016/j.msea.2013.04.052

W. D. Callister, Materials science and engineering: an introduction, 2007.

, Norme internationale AFNOR Matériaux métalliques -essai de traction, p.2016

P. Kelly, Engineering solid mechanics », in Solid mechanics, continuum mechanics and finite elements, 2017.

W. Soboyejo, Mechanical properties of engineered materials, Marcel Dekker, 2003.

A. , Gourgues-Lorenzon, « Introduction, structure, défauts, Matériaux pour l'ingénieur, p.236, 2008.

Y. , Mécanismes physiques de la déformation Matériaux pour l'ingénieur, p.236, 2008.

F. R. Nabarro and J. P. Hirth, Dislocations in solids, 2004.

J. Collet, « Les mécanismes de déformation d'un acier TWIP FeMnC: une étude par diffraction des rayons X », 2009.

H. , Defects in crystals, 2015.

N. Meyer, Etude de la recristallisation d'un acier inoxydable ferritique au niobium, Conséquences sur les propriétés magnétiques en régime statique et dynamique. », Institut Polytechnique de Grenoble, 2008.

E. Rauch, Etude de l'écrouissage des métaux -Aspects microstructuraux et lois de comportement, 1993.

G. B. Olson and M. Cohen, « A mechanism for the strain-induced nucleation of martensitic transformations* », Journal of the less-common metals, pp.107-118, 1972.

J. A. , Venables, « On dislocation pole models for twinning », Philosophical magazine, pp.1165-1169, 2006.

H. Idrissi, L. Ryelandt, M. Véron, D. Schryvers, and P. J. Jacques, Is there a relationship between the stacking fault character and the activated mode of plasticity of Fe???Mn-based austenitic steels?, Scripta Materialia, pp.941-944, 2009.
DOI : 10.1016/j.scriptamat.2009.01.040

URL : https://hal.archives-ouvertes.fr/hal-00437166

A. Guillotin, Etude de la rugosité de surface induite par la déformation plastique de tôles minces en alliage d'aluminium AA6016 », ENS Mines de Saint-Etienne, 2010.

K. Osakada and M. Oyane, « On the roughening of free surface in deformation process, Bulletin of JSME, pp.171-177, 1971.

W. Long, L. G. Hector, H. Weiland, and L. F. Wieserman, In-situ surface characterization of a binary aluminum alloy during tensile deformation, Scripta Materialia, vol.36, issue.11, pp.1339-1344, 1997.
DOI : 10.1016/S1359-6462(97)00024-9

Y. S. Choi, H. R. Piehler, and A. D. Rollett, Introduction and application of modified surface roughness parameters based on the topographical distributions of peaks and valleys, Materials Characterization, vol.58, issue.10, pp.901-908, 2007.
DOI : 10.1016/j.matchar.2006.09.003

P. S. Lee, H. R. Piehler, B. L. Adams, G. Jarvis, H. Hampel et al., Influence of surface texture on orange peel in aluminum, pp.315-319, 1998.

C. Guangnan, S. Huan, and H. Shiguang, Roughening of the free surfaces of metallic sheets during stretch forming, Materials Science and Engineering: A, vol.128, issue.1, pp.33-38, 1990.
DOI : 10.1016/0921-5093(90)90093-I

Y. Choi, « Surface roughening of 6022-T4 Aluminum sheets deformed in plane strain tension, 2001.

H. R. Piehler and G. W. Jarvis, « Distributed lineal localizations in mechanically textured aluminum alloy sheets subjected to biaxial straining », présenté à Proceedings of plasticity, pp.827-830, 1999.

P. S. Lee, G. W. Jarvis, A. D. Rollett, H. R. Piehler, and B. L. , Adams, « Observation of through-thickness deformation bands in an aluminum 6111 alloy deformed in plane strain tension, The Minerals, Metals and Materials Society, pp.161-169, 2000.

K. Yamaguchi and P. B. Mellor, Thickness and grain size dependence of limit strains in sheet metal stretching, International Journal of Mechanical Sciences, vol.18, issue.2, pp.85-90, 1976.
DOI : 10.1016/0020-7403(76)90055-2

N. Kawai and T. Nakamura, Ukai, « Surface roughening mechanism of polycrystalline metal sheet during plastic deformation, Bulletin of JSME, pp.1337-1343, 1986.

W. R. Wilson and W. Lee, Mechanics of Surface Roughening in Metal Forming Processes, Mechanics of Surface Roughening in Metal Forming Processes, p.279, 2001.
DOI : 10.1016/0020-7403(88)90002-1

F. P. Chiang, « On the mechanism of plastic deformation induced surface roughness, J. Eng. Mater. Technol, vol.114, p.433, 1992.

M. R. Stoudt and R. E. Ricker, The relationship between grain size and the surface roughening behavior of Al-Mg alloys, Metallurgical and Materials Transactions A, vol.80, issue.1, pp.2883-2889, 2002.
DOI : 10.1179/095066094790151017

L. Delannay, M. A. Melchior, J. W. Signorelli, J. Remacle, and E. T. Kuwabara, Influence of grain shape on the planar anisotropy of rolled steel sheets ??? evaluation of three models, Computational Materials Science, vol.45, issue.3, pp.739-743, 2009.
DOI : 10.1016/j.commatsci.2008.06.013

W. B. Hutchinson, K. Ushioda, and E. G. Runnsjö, Anisotropy of tensile behaviour in a duplex stainless steel sheet, Materials Science and Technology, vol.11, issue.9, pp.728-736, 1985.
DOI : 10.1179/030716984803275124

W. B. Hutchinson, U. V. Schlippenbach, and E. J. Jonsson, The Netherlands, Textures and anisotropy in duplex stainless steel SS 2377 », présenté à Duplex Stainless Steel, pp.326-330, 1986.

A. Ul-haq, H. Weiland, and H. Bunge, Textures and microstructures in duplex stainless steel, Textures and microstructures in duplex stainless steel, pp.289-298, 1994.
DOI : 10.1155/TSM.1.157

A. Mateo, Anisotropy effects on the fatigue behaviour of rolled duplex stainless steels, International Journal of Fatigue, vol.25, issue.6, pp.481-488, 2003.
DOI : 10.1016/S0142-1123(02)00173-1

G. Fargas, N. Akdut, M. Anglada, and E. A. Mateo, Microstructural Evolution during Industrial Rolling of a Duplex Stainless Steel, Microstructural evolution during industrial rolling of a duplex stainless steel, pp.1596-1602, 2008.
DOI : 10.2355/isijinternational.48.1596

S. Wro?ski, J. Tarasiuk, B. Bacroix, A. Baczma?ski, and E. C. Braham, Investigation of plastic deformation heterogeneities in duplex steel by EBSD, Investigation of plastic deformation heterogeneities in duplex steel by EBSD », pp.52-60
DOI : 10.1016/j.matchar.2012.07.016

S. Fréchard, F. Martin, C. Clément, and E. J. Cousty, AFM and EBSD combined studies of plastic deformation in a duplex stainless steel, Materials Science and Engineering: A, vol.418, issue.1-2, pp.312-319, 2006.
DOI : 10.1016/j.msea.2005.11.047

N. Tsuchida, T. Kawahata, E. Ishimaru, A. Takahashi, H. Suzuki et al., Static Tensile Deformation Behavior of a Lean Duplex Stainless Steel Studied by In Situ Neutron Diffraction and Synchrotron Radiation White X-rays, ISIJ International, vol.53, issue.7, pp.1260-1267, 2013.
DOI : 10.2355/isijinternational.53.1260

A. Bartali, Strain heterogeneities between phases in a duplex stainless steel. Comparison between measures and simulation, Procedia Engineering, vol.2, issue.1, pp.2229-2237, 2010.
DOI : 10.1016/j.proeng.2010.03.239

URL : https://hal.archives-ouvertes.fr/hal-00761238

J. Ry?, Zieli?ska-Lipiec, « Structural Aspects of Ferrite and Austenite Co-Deformation in Duplex Stainless Steel », Solid State Phenom, pp.28-33, 2013.

J. Y. Choi, J. H. Ji, S. W. Hwang, and K. Park, Strain induced martensitic transformation of Fe???20Cr???5Mn???0.2Ni duplex stainless steel during cold rolling: Effects of nitrogen addition, Materials Science and Engineering: A, vol.528, issue.18, pp.18-6012, 2011.
DOI : 10.1016/j.msea.2011.04.038

S. Harjo, In situ neutron diffraction study of ??????? Fe???Cr???Ni alloys under tensile deformation, Acta Materialia, vol.49, issue.13, pp.2471-2479, 2001.
DOI : 10.1016/S1359-6454(01)00147-1

W. Zieli?ski, W. ?wi?tnicki, M. Barstch, and E. U. Messerschmidt, Non-uniform distribution of plastic strain in duplex steel during TEM in situ deformation, Materials Chemistry and Physics, vol.81, issue.2-3, pp.476-479, 2003.
DOI : 10.1016/S0254-0584(03)00059-2

S. Hashimoto, S. Kato, T. Mimaki, and E. S. Miura, FORMATION OF THE (??/??) - INTERPHASE BOUNDARIES IN FeCrNi ALLOYS BY A DIFFUSION BONDING METHOD, Le Journal de Physique Colloques, vol.51, issue.C1, pp.1-831, 1990.
DOI : 10.1051/jphyscol:19901130

URL : https://hal.archives-ouvertes.fr/jpa-00230040

J. J. Moverare and M. Odén, Deformation behaviour of a prestrained duplex stainless steel, Materials Science and Engineering: A, vol.337, issue.1-2, pp.25-38, 2002.
DOI : 10.1016/S0921-5093(02)00022-9

I. Serre, D. Salazar, and J. Vogt, Atomic force microscopy investigation of surface relief in individual phases of deformed duplex stainless steel, Materials Science and Engineering: A, vol.492, issue.1-2, pp.428-433, 2008.
DOI : 10.1016/j.msea.2008.04.060

P. Marcus, Corrosion Mechanisms in Theory and Practice
DOI : 10.1201/9780203909188

. Éd, , 2016.

B. Baroux, La corrosion des métaux -Passivité et corrosion localisée, 2014.

B. Normand, R. Oltra, and E. N. Pébère, Mesure de la corrosion: De la conceptualisation à la méthodologie, 2016.

C. Gabrielli and H. Takenouti, Methodes Electrochimiques Appliquees a la Corrosion, 2010.

M. Sahal, J. Creus, and R. Sabot, Consequences of plastic strain on the dissolution process of polycrystalline nickel in H2SO4 solution, Scripta Materialia, vol.51, issue.9, pp.869-873, 2004.
DOI : 10.1016/j.scriptamat.2004.07.004

M. Sahal, J. Creus, and R. Sabot, The effects of dislocation patterns on the dissolution process of polycrystalline nickel, Acta Materialia, vol.54, issue.8, pp.2157-2167, 2006.
DOI : 10.1016/j.actamat.2006.01.006

D. Large, R. Sabot, and E. X. Feaugas, Influence of stress???strain field on the dissolution process of polycrystalline nickel in H2SO4 solution: An original in situ method, Electrochimica Acta, vol.52, issue.27, pp.27-7746, 2007.
DOI : 10.1016/j.electacta.2006.12.064

H. El-alami and J. Creus, Feaugas, « Influence of the plastic strain on the hydrogen evolution reaction on polycrystalline nickel electrodes in H2S04, Electrochimica Acta, vol.51, pp.22-4716, 2006.

H. El-alami and J. Creus, Feaugas, « Thermodynamic parameters evolution versus plastic strain during HER on nickel in sulphuric acid, Electrochimica Acta, vol.52, pp.12-4004, 2007.

G. Kresse and J. Hafner, First-principles study of the adsorption of atomic H on Ni (111), (100) and (110), Surface Science, vol.459, issue.3, pp.287-302, 2000.
DOI : 10.1016/S0039-6028(00)00457-X

D. A. Baranov, M. A. Lunichkina, and A. I. Nesterova, « The effect of rolling on the corrosion resistance of high-strength cast iron, Protection of Metals, vol.39, issue.4, pp.377-380, 2003.
DOI : 10.1023/A:1024955700700

D. A. Baranov, I. V. Leirikh, and E. S. Myznikova, Corrosion Resistance of Strained, High-Strength Cast Iron in Aqueous Media, Protection of Metals, vol.40, issue.3, pp.254-256, 2004.
DOI : 10.1023/B:PROM.0000028918.77543.5b

D. A. Baranov, On the mechanism of the effect of plastic deformation on the corrosion resistance of high-strength cast iron, Protection of Metals, vol.40, issue.3, pp.50-53, 2007.
DOI : 10.1134/S0033173207010067

H. W. Choi, K. Lee, S. J. Park, R. Wang, J. Kim et al., Effects of plastic strain of diamond-like carbon coated stainless steel on the corrosion behavior in simulated body fluid environment, Surface and Coatings Technology, vol.202, issue.12, pp.12-2632, 2008.
DOI : 10.1016/j.surfcoat.2007.09.046

S. Yamazaki, Z. Lu, Y. Ito, Y. Takeda, and E. T. Shoji, The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water, Corrosion Science, vol.50, issue.3, pp.835-846, 2008.
DOI : 10.1016/j.corsci.2007.07.012

G. A. Zhang and Y. F. Cheng, Micro-electrochemical characterization of corrosion of pre-cracked X70 pipeline steel in a concentrated carbonate/bicarbonate solution, Corrosion Science, vol.52, issue.3, pp.960-968, 2010.
DOI : 10.1016/j.corsci.2009.11.019

L. Y. Xu and Y. F. Cheng, An experimental investigation of corrosion of X100 pipeline steel under uniaxial elastic stress in a near-neutral pH solution, Corrosion Science, vol.59, pp.103-109, 2012.
DOI : 10.1016/j.corsci.2012.02.022

L. Y. Xu and Y. F. Cheng, Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution, Corrosion Science, vol.64, pp.145-152
DOI : 10.1016/j.corsci.2012.07.012

H. Krawiec, V. Vignal, and J. Loch, Influence of plastic deformation on the microstructure and corrosion behaviour of Ti???10Mo???4Zr and Ti???6Al???4V alloys in the Ringer???s solution at 37??C, Corrosion Science, vol.96, pp.160-170, 2015.
DOI : 10.1016/j.corsci.2015.04.006

H. Krawiec, Z. Szklarz, and E. V. Vignal, Influence of applied strain on the microstructural corrosion of AlMg2 as-cast aluminium alloy in sodium chloride solution, Corrosion Science, vol.65, pp.387-396
DOI : 10.1016/j.corsci.2012.08.047

URL : https://hal.archives-ouvertes.fr/hal-00769499

H. Krawiec, V. Vignal, E. Schwarzenboeck, and E. J. Banas, Role of plastic deformation and microstructure in the micro-electrochemical behaviour of Ti???6Al???4V in sodium chloride solution, Electrochimica Acta, vol.104, pp.400-406, 2013.
DOI : 10.1016/j.electacta.2012.12.029

B. Mazza, Relationship Between the Electrochemical and Corrosion Behavior and the Structure of Stainless Steels Subjected to Cold Plastic Deformation, Journal of The Electrochemical Society, vol.123, issue.8, pp.1157-1163, 1976.
DOI : 10.1149/1.2133026

B. Mazza, P. Pedeferri, D. Sinigaglia, A. Cigada, and G. Fumagalli, Electrochemical and corrosion behaviour of work-hardened commercial austenitic stainless steels in acid solutions, Corrosion Science, vol.19, issue.11, pp.907-921, 1979.
DOI : 10.1016/S0010-938X(79)80112-2

P. Sadler, N. C. Pruitt, T. S. Sudarshan, and M. R. Louthan, Importance of microstructure in determining environmental susceptibility of stainless steels, Importance of microstructure in determining environmental susceptibility of stainless steels, pp.151-156, 1987.
DOI : 10.5006/0010-9312-25.1.1

K. M. Kim, J. H. Park, H. S. Kim, J. H. Kim, Y. Y. Lee et al., Effect of plastic deformation on the corrosion resistance of??ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuel cells, International Journal of Hydrogen Energy, vol.37, issue.10, pp.8459-8464, 2012.
DOI : 10.1016/j.ijhydene.2012.02.127

T. Balusamy, T. S. Sankara-narayanan, K. Ravichandran, I. S. Park, and M. H. Lee, Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel, Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel, pp.332-344, 2013.
DOI : 10.1016/j.corsci.2013.04.056

X. Feng, X. Lu, Y. Zuo, and E. D. Chen, The passive behaviour of 304 stainless steels in saturated calcium hydroxide solution under different deformation, Corrosion Science, vol.82, pp.347-355, 2014.
DOI : 10.1016/j.corsci.2014.01.039

A. A. Ahmed, M. Mhaede, M. Wollmann, and E. L. Wagner, Effect of surface and bulk plastic deformations on the corrosion resistance and corrosion fatigue performance of AISI 316L, Surface and Coatings Technology, vol.259, pp.448-455
DOI : 10.1016/j.surfcoat.2014.10.052

L. Peguet, B. Malki, and E. B. Baroux, Influence of cold working on the pitting corrosion resistance of stainless steels, Corros. Sci, vol.49, issue.4, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00149013

L. Peguet, Influence d'un écrouissage sur la résistance à la corrosion par piqûres d'aciers inoxydables, 2005.

W. Y. Lai, W. Z. Zhao, Z. F. Yin, and E. J. Zhang, Electrochemical and XPS studies on corrosion behaviours of AISI 304 and AISI 316 stainless steels under plastic deformation in sulphuric acid solution, Surface and Interface Analysis, vol.50, issue.5, pp.505-512, 2012.
DOI : 10.1016/j.corsci.2007.11.004

Y. Huang, F. Xuan, and S. Tu, Effects of hydrogen and surface dislocation on active dissolution of deformed 304 austenitic stainless steel in acid chloride solution, Materials Science and Engineering: A, vol.528, issue.3, pp.1882-1888
DOI : 10.1016/j.msea.2010.10.055

J. Yang, Q. Wang, and E. K. Guan, Effect of stress and strain on corrosion resistance of duplex stainless steel, International Journal of Pressure Vessels and Piping, vol.110, pp.72-76
DOI : 10.1016/j.ijpvp.2013.04.025

N. C. Renton, A. M. Elhoud, and W. F. Deans, Effect of Plastic Deformation on the Corrosion Behavior of a Super-Duplex Stainless Steel, Journal of Materials Engineering and Performance, vol.341, issue.1662, pp.436-444
DOI : 10.1098/rsta.1992.0114

A. M. Elhoud, N. C. Renton, and W. F. Deans, The effect of manufacturing variables on the corrosion resistance of a super duplex stainless steel, The International Journal of Advanced Manufacturing Technology, vol.38, issue.5???6, 2011.
DOI : 10.1007/s00170-007-1222-6

G. Martin, Hot workability of duplex stainless steels, 2011.

J. Johansson, Residual stresses and fatigue in a duplex stainless steel, Linköping: Univ, 1999.

A. Lechartier, Influence de la transformation martensitique induite par la déformation sur le comportement mécanique d'aciers inoxydables duplex, 2015.

A. D. Schino, M. Barteri, and J. M. Kenny, « Grain size dependence of mechanical, corrosion and tribological properties of high nitrogen stainless steels, J. Mater. Sci, vol.38, pp.15-3257, 2003.

A. D. Schino, M. Barteri, and J. M. Kenny, « Effects of grain size on the properties of a low nickel austenitic stainless steel, Journal of Materials Science, vol.38, issue.23, pp.4725-4733, 2003.
DOI : 10.1023/A:1027470917858

A. , D. Schino, and J. M. Kenny, « Effects of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steels, J. Mater. Sci. Lett, vol.21, pp.20-1631, 2002.

M. Yeganeh, M. Eskandari, S. R. Alavi-zaree, and «. A. , A Comparison Between Corrosion Behaviors of Fine-Grained and Coarse-Grained Structures of High-Mn Steel in NaCl Solution, Journal of Materials Engineering and Performance, vol.55, issue.642, pp.2484-2490, 2017.
DOI : 10.1016/j.electacta.2009.09.001

H. Wang, Effect of Grain Size on Corrosion Properties of Low Alloy Steel under H2S/CO2 Environment, pp.4327-4340, 2017.

Y. L. Wang, Q. Wang, H. J. Liu, C. L. Zengli, and K. Na, Effect of grain refinement on the corrosion of Ni-Cr alloys in molten (Li,Na,K)F, Corrosion Science, vol.109, pp.43-49, 2016.
DOI : 10.1016/j.corsci.2016.03.027

M. Guérin, Identification of the metallurgical parameters explaining the corrosion susceptibility in a 2050 aluminium alloy, Corrosion Science, vol.102, pp.291-300
DOI : 10.1016/j.corsci.2015.10.020

Y. Lu, A. R. Bradshaw, Y. L. Chiu, and I. P. Jones, Effects of secondary phase and grain size on the corrosion of biodegradable Mg???Zn???Ca alloys, Materials Science and Engineering: C, vol.48, pp.480-486, 2015.
DOI : 10.1016/j.msec.2014.12.049

Y. Liu, D. Liu, C. You, and M. Chen, Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification, Frontiers of Materials Science, vol.59, issue.15, pp.247-253, 2015.
DOI : 10.1016/j.actamat.2011.06.033

J. Liao and M. Hotta, Atmospheric corrosion behavior of field-exposed magnesium alloys: Influences of chemical composition and microstructure, Corrosion Science, vol.100, pp.353-364
DOI : 10.1016/j.corsci.2015.08.021

M. I. Aal and M. M. Sadawy, Influence of ECAP as grain refinement technique on microstructure evolution, mechanical properties and corrosion behavior of pure aluminum, Trans. Nonferrous Met. Soc. China, vol.25, pp.12-3865

G. R. Argade, S. K. Panigrahi, and R. S. Mishra, Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium, Corrosion Science, vol.58, pp.145-151, 2012.
DOI : 10.1016/j.corsci.2012.01.021

M. Hoseini, A. Shahryari, S. Omanovic, and J. A. Szpunar, Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing, Corrosion Science, vol.51, issue.12, pp.12-3064, 2009.
DOI : 10.1016/j.corsci.2009.08.017

K. D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: A Review, CORROSION, vol.66, issue.7, pp.75005-075005, 2010.
DOI : 10.5006/1.3462912

K. D. Ralston, N. Birbilis, and C. H. Davies, Revealing the relationship between grain size and corrosion rate of metals, Scripta Materialia, vol.63, issue.12, p.12, 2010.
DOI : 10.1016/j.scriptamat.2010.08.035

L. Jinlong, L. Tongxiang, and W. Chen, Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel, Materials Science and Engineering: C, vol.62, pp.558-563, 2016.
DOI : 10.1016/j.msec.2016.02.008

E. Martinez-lombardia, Scanning electrochemical microscopy to study the effect of crystallographic orientation on the electrochemical activity of pure copper, Electrochimica Acta, vol.116, pp.89-96
DOI : 10.1016/j.electacta.2013.11.048

A. Schreiber, C. Rosenkranz, and M. M. , Grain-dependent anodic dissolution of iron, Electrochimica Acta, vol.52, issue.27, pp.27-7738, 2007.
DOI : 10.1016/j.electacta.2006.12.062

A. Schreiber, J. W. Schultze, M. M. Lohrengel, F. Kármán, and E. E. Kálmán, Grain dependent electrochemical investigations on pure iron in acetate buffer pH 6.0, Electrochimica Acta, vol.51, issue.13, pp.13-2625, 2006.
DOI : 10.1016/j.electacta.2005.07.052

G. Song and Z. Xu, Crystal orientation and electrochemical corrosion of polycrystalline Mg, Corrosion Science, vol.63, pp.100-112
DOI : 10.1016/j.corsci.2012.05.019

B. J. Wang, D. K. Xu, and J. H. Dong, Effect of the crystallographic orientation and twinning on the corrosion resistance of an as-extruded Mg???3Al???1Zn (wt.%) bar, Scripta Materialia, vol.88, pp.5-8
DOI : 10.1016/j.scriptamat.2014.06.015

Y. Estrin, H. Mecking, and «. A. , A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metallurgica, vol.32, issue.1, pp.57-70, 1984.
DOI : 10.1016/0001-6160(84)90202-5

J. Rivoal and C. Frétigny, Microscopie à force atomique (AFM) », Tech. Ing. Mes. Contrô, n o R1394, 2005.

M. Hélie, , 2015.

P. Cunat, « Aciers inoxydables -Propriétés. Résistance à la corrosion », Techniques de l'ingénieur. Editions T.I, 2000.

B. Normand, N. Pébère, C. Richard, and E. M. Wery, Prévention et lutte contre la corrosion -Une approche scientifique et technique, Presses Polytechniques et Universitaires Romandes (PPUR), 2004.

D. Landolt, Corrosion and surface chemistry of metals, 1, 2007.
DOI : 10.1201/9781439807880

L. Gao and B. E. Conway, Absorption and desorption of H in the H2 evolution reaction and the effects of the co-adsorbed poisons, Electrochimica Acta, pp.1681-1693, 1994.

D. A. Harrington and B. E. Conway, Kinetic theory of the open-circuit potential decay method for evaluation of behaviour of adsorbed intermediates, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.221, issue.1-2, pp.1-21, 1987.
DOI : 10.1016/0022-0728(87)80242-5

J. P. Popi?, D. M. Dra?i?, and . Electrochemistry, Electrochimica Acta, vol.49, issue.27, pp.4877-4891, 2004.

V. I. Vigdorovich, T. P. D-'yachkova, O. L. Pupkova, and L. E. Tsygankova, « Interrelation between kinetics of the hydrogen ion reduction on iron and the hydrogen diffusion flux into carbon steel in acidic solutions, Russ. J. Electrochem, vol.37, pp.12-1249, 2001.

A. N. Correia and S. A. Machado, Hydrogen evolution on electrodeposited Ni and Hg ultramicroelectrodes, pp.367-373, 1998.

J. G. Highfield and E. Claude, Oguro, « Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: a new model, Electrochimica Acta, pp.2805-2814, 1999.
DOI : 10.1016/s0013-4686(98)00403-4

J. P. Popic and D. M. Drazic, Electrochemistry of active chromium, part III: Effects of temperature, Journal of the Serbian Chemical Society, vol.68, issue.11, pp.871-881, 2003.
DOI : 10.2298/JSC0311871P

URL : https://doi.org/10.2298/jsc0311871p

M. C. Tavares, S. A. Machado, and L. H. Mazo, Study of hydrogen evolution reaction in acid medium on Pt microelectrodes, Electrochimica Acta, vol.46, issue.28, pp.28-4359, 2001.
DOI : 10.1016/S0013-4686(01)00726-5

URL : http://www.phchem.uni-essen.de/F-Praktikum/literatur_echemie/tavares_mazo_2001_electrochimica_acta_46_4359.pdf

L. M. Vra?ar and D. M. Dra?i?, Anomalous temperature dependence of the hydrogen evolution reaction on iron, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.265, issue.1-2, pp.171-178, 1989.
DOI : 10.1016/0022-0728(89)80187-1

X. Cheng, H. Ma, S. Chen, X. Chen, and E. Z. Yao, Corrosion of nickel in acid solutions with hydrogen sulphide, pp.299-311, 2000.

M. C. Petit, A. Casanova, and E. A. Jouanneau, Rôle et influence des ions HSO4-sur la corrosion du nickel en milieu sulfurique », Materials Chemistry, pp.67-86, 1979.

F. Ruel, Contribution électrochimique à l'étude de la corrosion sous contrainte des aciers inoxydables lean duplex en milieu purement chloruré et sous présence de sulfure d'hydrogène, Ecole des Mines de Saint-Etienne, 2014.

F. Ruel, D. Tite, A. Gaugain, S. Saedlou, and E. K. Wolski, On the Depassivation Mechanism of Lean Duplex Stainless Steels and the Influence of the Partitioning of the Alloying Elements », Corrosion, pp.636-642, 2014.

B. E. Conway and G. Jerkiewicz, « Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the 'volcano curve'for cathodic H 2 evolution kinetics, Electrochimica Acta, vol.45, pp.25-4075, 2000.

S. Trasatti, « Work function, electronegativity, and electrochemical behaviour of metals III. Electrolytic hydrogen evolution in acid solutions », Electroanalytical chemistry and interfacial electrochemistry, pp.163-184, 1972.

O. A. Petrii and G. A. Tsirlina, Electrocatalytic activity prediction for hydrogen electrode reaction: intuition, art, science, Electrochimica Acta, vol.39, issue.11-12, pp.1739-1747, 1994.
DOI : 10.1016/0013-4686(94)85159-X

C. Marliere and . Structure, propriétés électriques et travail de sortie de couches doubles indium, 1985.

E. P. Wigner and J. Bardeen, Theory of the Work Functions, p.398, 2013.

J. Bardeen, Theory of the Work Function. II. The Surface Double Layer, Physical Review, vol.46, issue.9, p.653, 1936.
DOI : 10.1103/PhysRev.46.1002

A. R. Zeradjanin, J. Grote, G. Polymeros, and K. J. Mayrhofer, A Critical Review on Hydrogen Evolution Electrocatalysis: Re-exploring the Volcano-relationship, Electroanalysis, vol.5, issue.137, p.p
DOI : 10.1021/acscatal.5b01779

2. and O. , , 2016.

W. Li and D. Y. Li, Influence of surface morphology on corrosion and electronic behavior, Acta Materialia, vol.54, issue.2, pp.445-452, 2006.
DOI : 10.1016/j.actamat.2005.09.017

H. Krawiec, V. Vignal, and E. R. Akid, Numerical modelling of the electrochemical behaviour of 316 stainless steel based upon static and dynamic experimental microcapillary-based techniques: effect of electrolyte flow and capillary size, Surface and Interface Analysis, vol.594, issue.3-4, pp.315-319, 2008.
DOI : 10.5006/1.3585142

H. Krawiec, V. Vignal, and E. R. Akid, Numerical modelling of the electrochemical behaviour of 316L stainless steel based upon static and dynamic experimental microcapillary-based techniques, Electrochimica Acta, vol.53, issue.16, pp.16-5252, 2008.
DOI : 10.1016/j.electacta.2008.02.063

H. Krawiec, V. Vignal, and E. R. Oltra, Use of the electrochemical microcell technique and the SVET for monitoring pitting corrosion at MnS inclusions, Electrochemistry Communications, vol.6, issue.7, pp.655-660, 2004.
DOI : 10.1016/j.elecom.2004.05.001

N. Mary, V. Vignal, R. Oltra, and E. L. Coudreuse, Advances in local mechanoelectrochemistry for detecting pitting corrosion in duplex steels, Journal of Materials Research, vol.21, issue.12, pp.12-3688, 2004.
DOI : 10.1016/0921-5093(95)80059-4

V. Rault, V. Vignal, H. Krawiec, and E. F. Dufour, Quantitative assessment of local misorientations and pitting corrosion behaviour of pearlitic steel using electron backscattered diffraction and microcapillary techniques, Corrosion Science, vol.100, pp.667-671
DOI : 10.1016/j.corsci.2015.08.002

V. Vignal, H. Krawiec, O. Heintz, and E. R. Oltra, The use of local electrochemical probes and surface analysis methods to study the electrochemical behaviour and pitting corrosion of stainless steels, Electrochimica Acta, vol.52, issue.15, pp.15-4994, 2007.
DOI : 10.1016/j.electacta.2007.01.079

P. Erazmus-vignal, V. Vignal, S. Saedlou, and E. F. Krajcarz, Corrosion behaviour of sites containing (Cr, Fe)2N particles in thermally aged duplex stainless steel studied using capillary techniques, atomic force microscopy and potentiostatic pulse testing method, Corrosion Science, vol.99, pp.194-204
DOI : 10.1016/j.corsci.2015.07.005

H. Krawiec, V. Vignal, and E. J. Banas, « Local electrochemical impedance measurements on inclusioncontaining stainless steels using microcapillary-based techniques, Electrochimica Acta, vol.54, p.25
DOI : 10.1016/j.electacta.2008.12.022

6. and O. , , 2009.

H. Krawiec, V. Vignal, and E. Z. Szklarz, Local electrochemical studies of the microstructural corrosion of AlCu4Mg1 as-cast aluminium alloy and influence of applied strain, Journal of Solid State Electrochemistry, vol.290, issue.484, pp.1181-1191, 2009.
DOI : 10.1098/rspa.1966.0046

V. Vignal, H. Krawiec, O. Heintz, and E. D. Mainy, Passive properties of lean duplex stainless steels after long-term ageing in air studied using EBSD, AES, XPS and local electrochemical impedance spectroscopy, Corrosion Science, vol.67, pp.109-117
DOI : 10.1016/j.corsci.2012.10.009

S. Fletcher, Tafel slopes from first principles, Journal of Solid State Electrochemistry, vol.50, issue.4, pp.537-549, 2009.
DOI : 10.1007/s10008-008-0670-8

M. Saied, Experimental and numerical modeling of the dissolution of delta ferrite in the Fe-Cr-Ni system: application to the austenitic stainless steels, pp.2016-225
URL : https://hal.archives-ouvertes.fr/tel-01337983

, ANNEXE, vol.1

A. Chimique and «. Beraha,

D. De, . De, . Bandes, . Dans-l-'epaisseur, and . De, Afin que l'attaque soit de bonne qualité, il est fortement conseillé qu'un polissage miroir (1 µm) de la surface à attaquer soit réalisé au maximum quelques heures avant. La composition de la solution d'attaque est la suivante : -0,3 g de bisulfite de potassium HKSO? -20 mL d'acide chlorydrique HCl -100 mL d'eau déionisée H 2 O La procédure d'attaque consiste à placer la solution dans un bécher et, avec une pince, venir tremper la surface à révéler quelques secondes. La durée d'attaque est très variable, même pour un même type d'échantillon. Il est important d'observer attentivement et la surface de l'échantillon dès lors que celui-ci est immergé. La fin de l'attaque est marquée par un changement de couleur de la surface, qui devient très légèrement jaunâtre. Il est conseillé de toujours préparer plusieurs échantillons pour l'attaque, et de réaliser des tests en observant la surface au microscope optique immédiatement après attaque

. Après-l-'attaque-beraha-réalisée-sur-la-tranche, six images sont acquises en microscopie optique : deux proches de la surface, deux à coeur de la tôle, et deux à quart d'épaisseur. Ensuite, une analyse par différence de niveaux de gris à l'aide du logiciel Stream Essentials d'Olympus est réalisée

, Cette méthode fait partie d'un savoir-faire en termes de caractérisations du centre de recherche d'Aperam. Pour davantage de détails