R. 1. Mcdonald and J. N. Thermoforming, Encyclopedia of Polymer Science en

M. Engineering, H. F. Bikales, N. M. Overberger, C. G. Menges, G. Kroschwitz et al., Thermoplastic polymer. In Encyclopedia of Polymer Science and Engineering, pp.807-832, 1989.

H. F. Bikales, N. M. Overberger, C. G. Menges, G. Kroschwitz, and J. , , p.833, 1989.

M. Kihlman, O. Wallberg, L. Stigsson, and U. Germgård, Dissolution of dissolving pulp in alkaline solvents after steam explosion pretreatments, Holzforschung, vol.17, issue.4, pp.613-617, 2011.
DOI : 10.1295/polymj.32.866

E. Alfthan, A. De-ruvo, and W. Brown,

, Polymer, vol.14, issue.7, pp.329-330, 1973.

L. Szcze?niak, A. Rachocki, and J. Tritt-goc, Glass transition temperature and thermal decomposition of cellulose powder, Cellulose, vol.46, issue.12, pp.445-451, 2008.
DOI : 10.1021/bk-1977-0048.ch011

K. K. Chee, Dependence of glass transition temperature on chain flexibility and intermolecular interactions in polymers, Journal of Applied Polymer Science, vol.43, issue.6, pp.1205-1208, 1991.
DOI : 10.1002/app.1991.070430622

J. H. Gibbs and E. A. Dimarzio, Nature of the Glass Transition and the Glassy State, The Journal of Chemical Physics, vol.235, issue.3, pp.373-383, 1958.
DOI : 10.1002/pol.1957.1202310305

S. B. Nordin, J. O. Nyren, and E. L. Back, Note on molten cellulose produced by a laser beam, Svensk Papperstidning, vol.76, pp.609-610, 1973.

J. R. Pear, Y. Kawagoe, W. E. Schreckengost, and D. P. Delmer, Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase., Proceedings of the National Academy of Sciences, pp.93-12637, 1996.
DOI : 10.1073/pnas.93.22.12637

V. Menon, M. Rao, and A. Dufresne, Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept Progress in Energy and Combustion Science Cellulosic Bionanocomposites: a review of preparation, properties and applications, Siqueira, G.; Bras, J Polymers, vol.38, issue.24, pp.522-550, 2010.

M. Kaushik, C. Fraschini, G. Chauve, J. Putaux, A. Moores et al., Transmission electron microscopy for the characterization of cellulose nanocrystals Experimental determination of the elastic modulus of crystalline regions in oriented polymers, The transmission Electron Microscopy Intech: 2015. 13. Sakurada, I.; Nukushina, pp.57-651, 1962.

V. Favier, H. Chanzy, and J. Y. Cavaille, Polymer Nanocomposites Reinforced by Cellulose Whiskers, Macromolecules, vol.28, issue.18, pp.6365-6367, 1995.
DOI : 10.1021/ma00122a053

URL : https://hal.archives-ouvertes.fr/hal-00310722

A. Dufresne, Polysaccharide nano crystal reinforced nanocomposites, Canadian Journal of Chemistry, vol.68, issue.6, pp.484-494, 2008.
DOI : 10.1016/j.carbpol.2006.07.021

A. Dufresne, Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals, Molecules, vol.15, issue.6, pp.4111-4128, 2010.
DOI : 10.3390/molecules15064111

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chemical Reviews, vol.110, issue.6, pp.3479-3500, 2010.
DOI : 10.1021/cr900339w

D. France, K. J. Hoare, T. Cranston, E. D. French, A. D. Johnson et al., Review of hydrogels and aerogels containing nanocellulose Fluorinated cellobiose and maltose as stand-ins for energy surface calculations Crystal structure and hydrogen-bonding system in cellulose I? from synchrotron X-ray and neutron fiber diffreaction, Chemistry of Materials Tetrahedron: Asymmetry Journal of the American Chemical Society, vol.2017, issue.2131, pp.4609-4631, 2002.

B. G. Rånby, Aqueous Colloidal Solutions of Cellulose Micelles., Structure and polymolecularity of cellulose. Svensk Papperstidning, pp.649-650, 1949.
DOI : 10.3891/acta.chem.scand.03-0649

S. Elazzouzi-hafraoui, Y. Nishiyama, J. Putaux, L. Heux, F. Dubreuil et al., The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose, Biomacromolecules, vol.9, issue.1, pp.57-65, 2008.
DOI : 10.1021/bm700769p

URL : https://hal.archives-ouvertes.fr/hal-00303876

K. Kamide and M. Saito, Thermal analysis of cellulose acetate solids with total degrees of substitution of 0, Polymer Journal, issue.8, pp.17-919, 1985.

C. Bao, Cellulose acetate / plasticizer systems : structure, morphology and dynamics, 2015.
DOI : 10.1016/j.carbpol.2014.07.078

URL : https://hal.archives-ouvertes.fr/tel-01186696

T. Heinze and K. Röttig, Synthesis of 2,3-O-carboxymethylcellulose, Macromolecular Rapid Communications, vol.15, issue.4, pp.311-317, 1994.
DOI : 10.1002/marc.1994.030150403

L. Landoll, Nonionic polymer surfactants, Journal of Polymer Science, vol.20, issue.2, pp.443-455, 1982.
DOI : 10.1002/pol.1982.170200625

URL : http://onlinelibrary.wiley.com/doi/10.1002/pol.1982.170200625/pdf

T. Heinze and T. Liebert, Unconventional methods in cellulose functionalization, Progress in Polymer Science, vol.26, issue.9
DOI : 10.1016/S0079-6700(01)00022-3

P. A. Mcgee, W. F. Fowler, C. C. Unruh, W. O. Kenyon, A. C. Besemer et al., Journal of the American Chemical Society, vol.70, issue.8, pp.2700-2705, 1948.
DOI : 10.1021/ja01188a024

A. Isogai and Y. Kato, Preparation of polyuronic acid from cellulose by TEMPOmediated oxidation, Cellulose, vol.5, issue.3, pp.153-164, 1998.
DOI : 10.1023/A:1009208603673

M. , Tempo-mediated oxidation of pullulan and influence of ionic strength and linear charge density on the dimensions of the obtained polyelectrolyte chains, Macromolecules, issue.20, pp.29-6541, 1996.

S. Fujisawa, T. Isogai, and A. Isogai, Temperature and pH stability of cellouronic acid, Cellulose, vol.45, issue.3, pp.607-615, 2010.
DOI : 10.1007/s10570-005-9021-4

A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, vol.23, issue.10, pp.71-85
DOI : 10.1021/la063118n

A. Isogai, Structural Characterization and Modifications of Surface-oxidized Cellulose Nanofiber, Journal of the Japan Petroleum Institute, vol.58, issue.6, pp.365-375
DOI : 10.1627/jpi.58.365

T. Saito, Y. Nishiyama, J. Putaux, M. Vignon, and A. Isogai, Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose, Biomacromolecules, vol.7, issue.6, pp.1687-1691, 2006.
DOI : 10.1021/bm060154s

URL : https://hal.archives-ouvertes.fr/hal-00305809

J. Araki, M. Wada, and S. Kuga, Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting, Langmuir, vol.17, issue.1, pp.21-27, 2001.
DOI : 10.1021/la001070m

F. Azzam, L. Heux, J. L. Putaux, and B. Jean, Preparation By Grafting Onto, Characterization, and Properties of Thermally Responsive Polymer-Decorated Cellulose Nanocrystals, Biomacromolecules, vol.11, issue.12, pp.11-3652, 2010.
DOI : 10.1021/bm101106c

URL : https://hal.archives-ouvertes.fr/hal-00546464

P. Schützenberger, Action de l'acide acétique anhydre sur la cellulose, l'amidon, les sucres, la mannite et ses congènères

, Comptes Rendus Hebdomadaire de l'académie des Sciences 1865, pp.485-486

. Abel, Imray Manufacture of cellulose ester silk. 1928. 42. Drefus, C. Perfectionnements aux produits obtenus en partant des dérivés organiques de la cellulose, 1928.

C. R. Fordyce and I. W. Meyer, Plasticizers for cellulose acetate and cellulose acetate butyrate. Industrial and Engneering Chemistry The dependence of properties of cellulose acetate propionate on molecular weight and the level of plasticizer, Journal of Applied Polymer Science, vol.32, issue.40, pp.1053-10605, 1940.

H. Kano, Thermo-Plasticization of Cellulose and Application for Fiber Manufacturing by Melt Spinning Process, KOBUNSHI RONBUNSHU, vol.68, issue.8, pp.570-578, 2011.
DOI : 10.1295/koron.68.570

C. M. Buchanan, S. C. Gedon, A. W. White, and M. D. Wood, Cellulose acetate propionate and poly(tetramethyene glutarate) blends, Macromolecules, issue.11, pp.26-2963, 1993.

W. G. Glasser, G. Samaranayake, M. Dumay, and V. Davé,

I. , Thermal analysis of mixed esters with butyric and hexanoic acid, Journal of Polymer Science: part B, vol.33, issue.14, pp.2045-2054, 1995.

T. Ohno and Y. Nishio, Cellulose alkyl ester/vinyl polymer blends: effects of butyryl substitution and intramolecular copolymer composition on the miscibility Structure and properties of composites of polyethylene or maleated polyethylene and cellulose or cellulose esters, Cellulose Journal of Applied Polymer Science, vol.13, issue.1031, pp.245-259, 2006.

T. Ohno and Y. Nishio, Estimation of miscibility and interaction for cellulose acetate and butyrate blends with N-vinylpyrrolidone copolymers. Macromolecular Chemistry and Physics, pp.622-634, 2007.

Y. Cao, H. Li, and J. Y. Zhang, Homogeneous synthesis and characterization of cellulose acetate butyrate (CAB) in 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid. Industrial and Engneering Chemistry Research Functional thermoplastic materials from derivatives of cellulose and related structural polysaccharides, Encyclopedia of Polymer Science and, pp.7808-7814, 2011.

M. Engineering, H. F. Bikales, N. M. Overberger, C. G. Menges, G. Kroschwitz et al., , pp.568-647, 1989.

M. L. Macht and D. A. Fletcher, Cellulose acetate molding compositions, 1937.

W. M. Kluwe, J. K. Haseman, J. E. Huff, E. Konduracka, K. Krzemieniecki et al., The carcinogenicity of d1(2ethylhexyl) phthalate (dehp) in perspective Relationship between everyday use cosmetics and female breast cancer. Polish Archives of Internal Medicine European Chemicals Agency List of REACH restricted chemicals. https://echa.europa.eu/substances-restricted-under-reach. 58 Glycol-cleavage oxidation, Directive 95/2/CE du parlement européen et du conseil du 20 février 1995 concernant les additifs alimentaires autres que les colorants et les édulcorants 60. Head, F. S. H., Effect of light on the reaction between periodates and alpha-glycols, pp.159-169, 1983.

, Nature, vol.165, issue.4189, pp.236-237, 1950.

M. C. Symons, Evidence for formation of free-radial intermediates in some reactions involving periodate, Jounal of the Chemical Society, issue.0, pp.2794-2796, 1955.

Z. Sabzalian, M. N. Alam, and T. G. Van-de-ven, Hydrophobization and characterization of internally crosslink-reinforced cellulose fibers, Cellulose, vol.114, issue.2, pp.1381-1393
DOI : 10.1016/j.foodchem.2008.10.053

E. Maekawa, T. Kosaki, and T. Koshijima, Periodate oxidation of mercerized cellulose and regenerated cellulose, pp.73-117, 1986.

U. Kim, S. Kuga, M. Wada, T. Okano, and T. Kondo, Periodate Oxidation of Crystalline Cellulose, Biomacromolecules, vol.1, issue.3, pp.488-492, 2000.
DOI : 10.1021/bm0000337

I. J. Goldstein, G. W. Hay, B. A. Lewis, . Smith, R. L. Whistler et al., Controlled degradation of polysaccharides by periodate oxidation, reduction, and hydrolysis Periodate oxidation of polysaccharides: General procedures, Methods in Carbohydrate Chemistry, Methods in Carbohydrate Chemistry, pp.361-370, 1965.

M. L. Wolfrom, G. W. Hay, B. A. Lewis, . Smith, and J. N. Bemiller, Determination of the average chain length of polysaccharides, Methods in Carbohydrate Chemistry, pp.357-361, 1965.

M. L. Wolfrom and A. Mihranyan, Preparation of porous cellulose beads via introduction of diamine spacers, Lindh, J.; Ruan, C Langmuir, vol.5, issue.201622, pp.377-380, 1965.

C. Ruan, M. Strømme, and J. Lindh, A green and simple method for preparation of an efficient palladium adsorbent based on cysteine functionalized 2,3-dialdehyde cellulose, Cellulose, vol.104, issue.4, pp.2627-2638
DOI : 10.1002/app.26034

U. Kim, M. Wada, and S. Kuga,

, Carbohydr Polym, vol.56, issue.1, pp.7-10, 2004.

J. Sirviö, U. Hyvakko, H. Liimatainen, J. Niinimaki, and O. Hormi, Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators, Carbohydrate Polymers, vol.83, issue.3, pp.1293-1297, 2011.
DOI : 10.1016/j.carbpol.2010.09.036

J. A. Sirviö, A. Kolehmainen, M. Visanko, H. Liimatainen, J. Niinimäki et al., Strong, self-standing oxygen barrier films from nanocelluloses modified with

, Rregioselective oxidative treatments. ACS applied materials and interfaces 2014, pp.14384-14390

J. A. Sirviö, T. Hasa, J. Ahola, H. Liimatainen, J. Niinimäki et al., Phosphonated nanocelluloses from sequential oxidative-reductive treatment

, Physicochemical characteristics and thermal properties, Carbohydr Polym, vol.2015, issue.133, pp.524-532

O. Laitinen, R. Hartmann, J. A. Sirviö, H. Liimatainen, and M. Rudolph,

M. Illikainen, Alkyl aminated nanocelluloses in selective flotation of aluminium oxide and quartz, Chemical Engineering Science, vol.2016, issue.144, pp.260-266

J. A. Sirviö, M. Visanko, J. P. Heiskanen, and H. Liimatainen, UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films, Journal of Materials Chemistry A, vol.406, issue.17, pp.6368-6375
DOI : 10.1038/35017595

J. A. Sirviö, M. Visanko, O. Laitinen, A. Ämmälä, and H. Liimatainen, Aminomodified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination, Carbohydr Polym, vol.2016, pp.136-581

T. Suopajärvi, J. A. Sirviö, and H. Liimatainen, Cationic nanocelluloses in dewatering of municipal activated sludge, Journal of Environmental Chemical Engineering, vol.5, issue.1, pp.86-92
DOI : 10.1016/j.jece.2016.11.021

, Polymer Degradation and Stability, vol.77, issue.1, pp.25-27, 2002.

U. Kim, S. Kuga, A. Potthast, M. Kostic, S. Schiehser et al., Ion-exchange chromatography by dicarboxyl cellulose gel, Journal of Chromatography A, vol.919, issue.1, pp.29-37, 2001.
DOI : 10.1016/S0021-9673(01)00800-7

E. Maekawa, Analysis of oxidized moiety of partially periodate-oxidized cellulose by NMR spectroscopy, Journal of Applied Polymer Science, vol.43, issue.3, pp.417-422, 1991.
DOI : 10.1002/app.1991.070430301

E. Maekawa and T. Koshijima, Properties of 2,3-dicarboxy cellulose combined with various metallic ions, Journal of Applied Polymer Science, vol.29, issue.7, pp.2289-2297, 1984.
DOI : 10.1002/app.1984.070290705

E. Maekawa and T. Koshijima, Preparation and structural consideration of nitrogen-containing derivatives obtained from dialdehyde celluloses, Journal of Applied Polymer Science, vol.42, issue.1, pp.169-178, 1991.
DOI : 10.1002/app.1991.070420120

U. J. Kim and S. Kuga, Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives, Thermochimica Acta, vol.369, issue.1-2, pp.79-85, 2001.
DOI : 10.1016/S0040-6031(00)00734-6

M. L. Malaprade, Oxydation de quelques polyalcools par l'acide periodique

. Applications, Comptes Rendus Hebdomadaire de l'académie des Sciences, pp.382-383, 1928.

E. L. Jackson and C. S. Hudson, The structure of the products of the periodic acid oxidation of starch and cellulose, pp.989-991, 1938.

H. A. Rutherford, F. W. Minor, A. R. Martin, and M. Harris, Oxidation of cellulose

L. Hough, The reaction of cellulose with periodic acid Periodate oxidation of neutral polysaccharides: Oxidation to formaldehyde, Journal of Research of the National Bureau of Standards, vol.29, issue.89, pp.131-141, 1942.

R. L. Whistler, Methods in Carbohydrate Chemistry

J. W. Green, J. N. Bemiller, and R. L. , Determination of reducing endgroups by periodate oxidation, Methods in Carbohydrate Chemistry, pp.370-377, 1965.

J. N. Bemiller, M. L. Wolfrom, G. W. Hay, B. A. Lewis, and F. Smith, Determination of sugar residues in partially oxidized polysaccharides The Barry degradation, Methods in Carbohydrate Chemistry Methods in Carbohydrate Chemistry, pp.251-253, 1965.

R. L. Whistler and J. Bemiller, , pp.382-392, 1965.

A. Codou, N. Guigo, L. Heux, and N. Sbirrazzuoli, Partial periodate oxidation and thermal cross-linking for the processing of??thermoset??all-cellulose composites, Composites Science and Technology, vol.117, issue.117, pp.54-61
DOI : 10.1016/j.compscitech.2015.05.022

URL : https://hal.archives-ouvertes.fr/hal-01240006

J. Henschen, P. A. Larsson, J. Illergård, M. Ek, and L. Wågberg, Bacterial adhesion to polyvinylamine-modified nanocellulose films, Colloids and Surfaces B: Biointerfaces, vol.151, pp.151-224
DOI : 10.1016/j.colsurfb.2016.12.018

R. Hollertz, V. López-durán, P. A. Larsson, and L. Wågberg, Chemically modified cellulose micro- and nanofibrils as paper-strength additives, Cellulose, vol.69, issue.9, pp.3883-3899
DOI : 10.1016/j.colsurfb.2008.11.011

B. Casu, V. Meille, A. Naggi, P. Su, G. Torri et al., Communications from research groups: Structure and conformation of polyalcohols and polyacids obtained from periodate oxyamylose and oxycellulose, Carbohydrate Polymers, vol.2, issue.4, pp.283-287, 1982.
DOI : 10.1016/0144-8617(82)90032-7

B. Casu, A. Naggi, G. Torri, G. Allegra, S. V. Meille et al., Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose, Macromolecules, vol.18, issue.12, pp.18-2762, 1985.
DOI : 10.1021/ma00154a068

W. Kasai, T. Morooka, and M. Ek, Mechanical properties of films made from dialcohol cellulose prepared by homogeneous periodate oxidation Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils, Cellulose Biomacromolecules, vol.2014, issue.20146, pp.769-776

P. A. Larsson, L. A. Berglund, and L. Wågberg, Highly ductile fibres and sheets by coreshell structuring of the cellulose nanofibrils, Cellulose, vol.2014, issue.211, pp.323-333

K. Rahn and T. Heinze, New cellulosic polymers by subsequent modification of 2,3- dialdehyde cellulose, Cellulose Chemistry and Technology, vol.32, issue.3, pp.173-183, 1998.

L. Durán, V. Larsson, P. A. Wågberg, and L. , On the relationship between fibre composition and material properties following periodate oxidation and borohydride reduction of lignocellulosic fibres, Cellulose, vol.2016, issue.236, pp.3495-3510

P. A. Larsson and L. Wagberg, Towards natural-fibre-based thermoplastic films produced by conventional papermaking, Green Chemistry, vol.7, issue.11, pp.3324-3333
DOI : 10.1039/c1sm05325f

A. J. Varma and V. B. Chavan, A study of crystallinity changes in oxidised celluloses, Polymer Degradation and Stability, vol.49, issue.2
DOI : 10.1016/0141-3910(95)87006-7

, Polymer Degradation and Stability, vol.49, issue.2, pp.245-250, 1995.

A. J. Varma, V. B. Chavan, P. R. Rajmohanan, and S. Ganapathy, Some observations on the high-resolution solid-state CP-MAS 13C-NMR spectra of periodate-oxidised cellulose, Polymer Degradation and Stability, vol.58, issue.3
DOI : 10.1016/S0141-3910(97)00049-9

, Polymer Degradation and Stability, vol.58, issue.3, pp.257-260, 1997.

H. Yang, M. N. Alam, and T. G. Van-de-ven, Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers, Cellulose, vol.114, issue.20, pp.1865-1875
DOI : 10.1016/j.foodchem.2008.10.053

J. A. Sirviö, H. Liimatainen, M. Visanko, and J. Niinimäki, Optimization of dicarboxylic acid cellulose synthesis: Reaction stoichiometry and role of hypochlorite scavengers, Carbohydrate Polymers, vol.114, issue.114, pp.73-77
DOI : 10.1016/j.carbpol.2014.07.081

S. F. Plappert, J. Nedelec, H. Rennhofer, H. C. Lichtenegger, and F. W. Liebner, Strain Hardening and Pore Size Harmonization by Uniaxial Densification: A Facile Approach toward Superinsulating Aerogels from Nematic Nanofibrillated 2,3-Dicarboxyl Cellulose, Chemistry of Materials, vol.29, issue.16, pp.29-6630
DOI : 10.1021/acs.chemmater.7b00787

L. Durán, V. Larsson, P. A. Wågberg, and L. , Chemical modification of celluloserich fibers to clarify the influence of the chemical structure on the physical and mechanical properties of cellulose fibers and thereof made sheets, Carbohydr Polym, pp.182-183, 2018.

F. Azzam, M. Galliot, J. Putaux, L. Heux, and B. Jean, Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers, Cellulose, vol.8, issue.6, pp.22-3701
DOI : 10.1023/A:1015866104055

H. Yang, D. Chen, and T. G. Van-de-ven, Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers, Cellulose, vol.20, issue.4, pp.1743-1752
DOI : 10.1007/s10570-013-9966-7

R. M. Fitch and . Colloids, In Encyclopedia of Polymer Science and ENgineering, vol.3, 1985.

W. Van-nieuwenhuyzen and B. F. Szuhaj, Effects of lecithins and proteins on the stability of emulsions, Lipid - Fett, vol.100, issue.7, pp.282-291, 1998.
DOI : 10.1002/(SICI)1521-4133(199807)100:7<282::AID-LIPI282>3.0.CO;2-W

J. D. Clogston and A. K. Patri, Zeta Potential Measurement In Characterization of nanoparticles intended for drug delivery, Methods in Molecular Biology, vol.70, 2011.

J. Araki, Electostatic or steric? -preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of cristalline polysaccharides, Soft Matter, vol.2013, issue.916, pp.4125-4141

J. Araki, M. Wada, S. Kuga, and T. Okano, Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.142, issue.1, pp.75-82, 1998.
DOI : 10.1016/S0927-7757(98)00404-X

R. H. Marchessault, F. F. Morehead, and N. M. Walter, Liquid Crystal Systems from Fibrillar Polysaccharides, Nature, vol.10, issue.4686, pp.632-633, 1959.
DOI : 10.1085/jgp.25.1.111

X. M. Dong, J. Revol, and D. G. Gray, Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose, Cellulose, vol.5, issue.1, pp.19-32, 1998.
DOI : 10.1023/A:1009260511939

M. Hasani, E. D. Cranston, G. Westman, and D. G. Gray, Cationic surface functionalization of cellulose nanocrystals, Soft Matter, vol.30, issue.11, pp.2238-2244, 2008.
DOI : 10.1678/rheology.30.27

J. Araki, M. Wada, S. Kuga, and T. Okano, Influence of surface charge on viscosity behavior of cellulose microcrystal suspension, Journal of Wood Science, vol.65, issue.3, pp.258-261, 1999.
DOI : 10.1002/(SICI)1097-4628(19970711)65:2<373::AID-APP18>3.0.CO;2-0

J. Araki, M. Wada, S. Kuga, and T. Okano, Birefringent Glassy Phase of a Cellulose Microcrystal Suspension, Langmuir, vol.16, issue.6, pp.2413-2415, 2000.
DOI : 10.1021/la9911180

S. Montanari, M. Roumani, L. Heux, and M. R. Vignon, Topochemistry of Carboxylated Cellulose Nanocrystals Resulting from TEMPO-Mediated Oxidation, Macromolecules, vol.38, issue.5, pp.1665-1671, 2005.
DOI : 10.1021/ma048396c

URL : https://hal.archives-ouvertes.fr/hal-00305974

Y. Habibi, H. Chanzy, and M. R. Vignon, TEMPO-mediated surface oxidation of cellulose whiskers, Cellulose, vol.122, issue.6, pp.679-687, 2006.
DOI : 10.2115/fiber.32.8_T326

URL : https://hal.archives-ouvertes.fr/hal-00305786

M. Nordenström, A. Fall, G. Nyström, and L. Wågberg, Formation of Colloidal Nanocellulose Glasses and Gels, Langmuir, vol.33, issue.38, pp.9772-9780
DOI : 10.1021/acs.langmuir.7b01832

F. Azzam, E. Siqueira, S. Fort, R. Hassaini, and F. Pignon, Travelet, C.; Putaux, J.-L

B. Jean, Tunable aggregation and gelation of thermoresponsive suspensions of polymergrafted cellulose nanocrystals, Biomacromolecules, vol.2016, issue.176, pp.2112-2119
URL : https://hal.archives-ouvertes.fr/hal-02006286

L. Heux, G. Chauve, and C. Bonini, Nonflocculating and chiral nematic self ordering of cellulose nanocrystals in nonpolar solvents, Langmuir, vol.16, issue.21, pp.8310-8212, 2000.

C. Bonini, L. Heux, J. Y. Cavaille, P. Lindner, C. Dewhurst et al., Rodlike Cellulose Whiskers Coated with Surfactant: A Small-Angle Neutron Scattering Characterization, Langmuir, vol.18, issue.8, pp.18-3311, 2002.
DOI : 10.1021/la015511t

URL : https://hal.archives-ouvertes.fr/hal-00307337

S. Elazzouzi-hafraoui, J. Putaux, and L. Heux, Self-assembling and chiral nematic properties of organoplilic cellulose nanocrystals, The Journal of Physical Chemistry B, issue.32, pp.113-11069, 2009.
DOI : 10.1021/jp900122t

C. Miao and W. Y. Hamad, Cellulose reinforced polymer composites and nanocomposites: a critical review, Cellulose, vol.30, issue.2, pp.2221-2262
DOI : 10.1016/j.jcis.2010.09.035

M. Mariano, N. Kissi, and A. Dufresne, Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges, Journal of Polymer Science Part B: Polymer Physics, vol.9, issue.25, pp.791-806
DOI : 10.1166/jnn.2009.dk24

URL : http://onlinelibrary.wiley.com/doi/10.1002/polb.23490/pdf

J. F. Revol, H. Bradford, J. Giasson, R. H. Marchessault, and D. G. Gray, Helicoidal self-ordering of cellulose microfibrils in aqueous suspension, International Journal of Biological Macromolecules, vol.14, issue.3, pp.170-172, 1992.
DOI : 10.1016/S0141-8130(05)80008-X

M. Khandelwal and A. H. Windle, Self-assembly of bacterial and tunicate cellulose nanowhiskers, Polymer, vol.54, issue.19, pp.5199-5206
DOI : 10.1016/j.polymer.2013.07.033

A. G. Dumanli, H. M. Van-der-kooij, G. Kamita, and E. Reisner, J. J

U. Steiner and S. Vignolini, Digital color in cellulose nanocrystals, ACS applied materials and interfaces 2014, pp.12302-12306

J. Sugiyama, H. Chanzy, and G. Maret, Orientation of cellulose microcrystals by strong magnetic fields, Macromolecules, vol.25, issue.16, pp.25-4232, 1992.
DOI : 10.1021/ma00042a032

URL : https://hal.archives-ouvertes.fr/hal-00310342

B. Frka-petesic, J. Sugiyama, S. Kimura, H. Chanzy, and G. Maret, Negative Diamagnetic Anisotropy and Birefringence of Cellulose Nanocrystals, Macromolecules, vol.48, issue.24, pp.48-8844
DOI : 10.1021/acs.macromol.5b02201

D. Bordel, J. Putaux, and L. Heux, Orientation of Native Cellulose in an Electric Field, Langmuir, vol.22, issue.11, pp.4899-4901, 2006.
DOI : 10.1021/la0600402

URL : https://hal.archives-ouvertes.fr/hal-00305810

B. Frka-petesic, H. Radavidson, B. Jean, and L. Heux, Dynamically Controlled Iridescence of Cholesteric Cellulose Nanocrystal Suspensions Using Electric Fields, Advanced Materials, vol.22, issue.11, p.29
DOI : 10.1007/s10570-014-0513-y

J. Lindh, D. O. Carlsson, M. Strømme, and A. Mihranyan, Convenient One-Pot Formation of 2,3-Dialdehyde Cellulose Beads via Periodate Oxidation of Cellulose in Water, Biomacromolecules, vol.15, issue.5, pp.1928-1932
DOI : 10.1021/bm5002944

T. P. Nevell, R. L. Green, J. W. Bemiller, and J. , Determination of reducing end-groups, Methods in Carbohydrate Chemistry Vol III Cellulose, pp.43-48, 1963.

U. Kim and S. Kuga, Reactive interaction of aromatic amines with dialdehyde cellulose gel, Cellulose, vol.7, issue.3, pp.287-297, 2000.
DOI : 10.1023/A:1009252124465

T. Aimin, Z. Hongwei, C. Gang, X. Guohui, and L. Wenzhi, Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose, Ultrasonics Sonochemistry, vol.12, issue.6, pp.467-472, 2005.
DOI : 10.1016/j.ultsonch.2004.07.003

P. Roychowdhury and V. Kumar, Fabrication and evaluation of porous 2,3-dialdehydecellulose membrane as a potential biodegradable tissue-engineering scaffold, Journal of Biomedical Materials Research Part A, vol.82, issue.2
DOI : 10.1016/S0096-5332(08)60261-1

, Journal of Biomedical Materials Research, vol.76, issue.2, pp.300-309, 2006.

H. Amer, T. Nypelö, I. Sulaeva, M. Bacher, U. Henniges et al., Synthesis and Characterization of Periodate-Oxidized Polysaccharides: Dialdehyde Xylan (DAX), Biomacromolecules, vol.17, issue.9, pp.2972-2980
DOI : 10.1021/acs.biomac.6b00777

H. Zhao and N. D. Heindel, Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method, Pharmaceutical Research, vol.08, issue.3, pp.400-402, 1991.
DOI : 10.1023/A:1015866104055

P. A. Larsson, M. Gimåker, and L. Wågberg, The influence of periodate oxidation on the moisture sorptivity and dimensional stability of paper, Cellulose, vol.8, issue.9, pp.837-847, 2008.
DOI : 10.1007/s10570-008-9243-3

N. T. Cervin, E. Johansson, P. A. Larsson, and L. Wågberg, Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying, ACS Applied Materials & Interfaces, vol.8, issue.18, pp.11682-11689
DOI : 10.1021/acsami.6b00924

M. Siller, H. Amer, M. Bacher, W. Roggenstein, T. Rosenau et al., Effects of periodate oxidation on cellulose polymorphs, Cellulose, vol.87, issue.3, pp.2245-2261
DOI : 10.4028/www.scientific.net/AMR.197-198.1201

I. Sulaeva, K. M. Klinger, H. Amer, U. Henniges, T. Rosenau et al., Determination of molar mass distributions of highly oxidized dialdehyde cellulose by size exclusion chromatography and asymmetric flow field-flow fractionation, Cellulose, vol.107, issue.6, pp.22-3569
DOI : 10.1385/ABAB:107:1-3:505

L. Falcoz-vigne, Y. Ogawa, S. Molina-boisseau, and Y. Nishiyama,

M. Conil, K. Mazeau, and L. Heux, Quantification of a tightly adsorbed monolayer of xylan on cellulose surface, Cellulose, vol.2017, issue.249, pp.3725-3739

M. Pääkkö, M. Ankerfors, H. Kosonen, and A. Nykänen, Ahola, S

J. Ruokolainen, J. Laine, P. T. Larsson, O. Ikkala, and T. Lindström, Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels, Biomacromolecules, vol.8, issue.6, pp.1934-1941, 2007.

J. W. Green, R. L. Green, J. W. Bemiller, and J. , Determination of carbonyl groups, Methods in Carbohydrate Chemistry Vol III Cellulose, pp.49-54, 1963.

V. Ströle and U. , Bestimmung der Carbonylgruppen in oxydierter Cellulose, Die Makromolekulare Chemie, vol.20, issue.1
DOI : 10.1002/macp.1956.020200102

, Macromolecular Chemistry and Physics, vol.20, issue.1, pp.19-36, 1956.

M. Cantley, L. Hough, and A. O. Pittet, 465. The non-malapradian oxidation of carbohydrates and related compounds by periodate, Journal of the Chemical Society (Resumed), pp.2527-2535, 1963.
DOI : 10.1039/jr9630002527

L. Münster, J. Vícha, J. Klofá?, M. Masa?, P. Kucharczyk et al., Stability and aging of solubilized dialdehyde cellulose, Cellulose, vol.294, issue.7, pp.24-2753
DOI : 10.1007/978-3-540-73934-0_6

M. Fumagalli, D. Ouhab, S. Molina-boisseau, and L. Heux, Versatile Gas-Phase Reactions for Surface to Bulk Esterification of Cellulose Microfibrils Aerogels, Biomacromolecules, vol.14, issue.9, pp.3246-3255
DOI : 10.1021/bm400864z

URL : https://hal.archives-ouvertes.fr/hal-00903477

M. Fumagalli, F. Sanchez, S. M. Boisseau, and L. Heux, Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents, Soft Matter, vol.28, issue.47, pp.11309-11317
DOI : 10.1021/la2035449

URL : https://hal.archives-ouvertes.fr/hal-01066778

A. J. Benítez and A. Walther, Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space, Journal of Materials Chemistry A, vol.125, issue.31, pp.16003-16024
DOI : 10.1016/j.carbpol.2015.02.059

H. Matsumura, J. Sugiyama, and W. G. Glasser,

, Thermally deformable cellulose hexonoates from heterogeneous reaction, Journal of Applied Polymer Science, vol.78, issue.13, pp.2242-2253, 2000.

J. Leguy, Y. Nishiyama, B. Jean, and L. Heux, Accurate degree of oxidation measurement of periodate oxidized cellulose by CP/MAS 13C NMR, ACS Sustainable Chemistry and Engineering, 2018.

U. Kim, S. Kuga, M. Wada, T. Okano, and T. Kondo, Periodate Oxidation of Crystalline Cellulose, Biomacromolecules, vol.1, issue.3, pp.488-492, 2000.
DOI : 10.1021/bm0000337

P. A. Larsson, L. A. Berglund, and L. Wågberg, Highly ductile fibres and sheets by core-shell structuring of the cellulose nanofibrils, Cellulose, vol.8, issue.3, pp.323-333, 2014.
DOI : 10.1023/A:1015866104055

K. Schmidt-rohr and H. W. Spiess, Multidimensional solid-state NMR and polymers

K. Schmidt-rohr and H. W. Spiess, Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy, Macromolecules, vol.25, issue.12, pp.3273-3277, 1992.
DOI : 10.1021/ma00038a037

K. Landfester, C. Boeffel, M. Lambla, and H. W. Spiess, Characterization of Interfaces in Core???Shell Polymers by Advanced Solid-State NMR Methods, Macromolecules, vol.29, issue.18, pp.29-5972, 1996.
DOI : 10.1021/ma960095i

D. Radloff, C. Boeffel, and H. W. Spiess, Cellulose and Cellulose/Poly(vinyl alcohol) Blends. 2. Water Organization Revealed by Solid-State NMR Spectroscopy, Macromolecules, vol.29, issue.5, pp.1528-1534, 1996.
DOI : 10.1021/ma950405h

J. Leguy, A. Diallo, J. Putaux, Y. Nishiyama, L. Heux et al., Periodate oxidation followed by NaBH4 reduction converts microfibrillated cellulose into stericallystabilized neutral cellulose nanorod suspensions, Langmuir, 2018.

J. Berriot, H. Montes, F. Lequeux, D. Long, and P. Sotta, Evidence for the shift of the glass transtion near the particles in silica-filled elastomers, Macromolecules, issue.26, pp.35-9756, 2002.

M. Molberg, D. Crespy, P. Rupper, F. Nüesch, J. E. Månson et al., High Breakdown Field Dielectric Elastomer Actuators Using Encapsulated Polyaniline as High Dielectric Constant Filler, Advanced Functional Materials, vol.106, issue.340, pp.20-3280, 2010.
DOI : 10.1007/b100115

X. Huang and P. Jiang, Core?shell structured high-k polymer nanocomposites for energy storage and dielectric applications, Advanced Materials, vol.2015, issue.273, pp.546-554

D. Klemm, F. Kramer, S. Moritz, T. Lindstrom, M. Ankerfors et al., Nanocelluloses: A New Family of Nature-Based Materials, Angewandte Chemie International Edition, vol.21, issue.543, pp.50-5438, 2011.
DOI : 10.1002/app.30829

R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Reviews, vol.10, issue.250, pp.40-3941, 2011.
DOI : 10.1016/S0079-6700(01)00025-9

S. J. Eichhorn, Cellulose nanowhiskers: promising materials for advanced applications, Soft Matter, vol.112, issue.2, pp.303-315, 2011.
DOI : 10.1021/bm100684k

F. Cherhal, F. Cousin, and I. Capron, Structural Description of the Interface of Pickering Emulsions Stabilized by Cellulose Nanocrystals, Biomacromolecules, vol.17, issue.2, pp.496-502
DOI : 10.1021/acs.biomac.5b01413

I. Kalashnikova, H. Bizot, B. Cathala, and I. Capron, New Pickering Emulsions Stabilized by Bacterial Cellulose Nanocrystals, Langmuir, vol.27, issue.12, pp.7471-7479, 2011.
DOI : 10.1021/la200971f

B. Frka-petesic, B. Jean, and L. Heux, First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals, EPL (Europhysics Letters), vol.107, issue.2, pp.28006-28007
DOI : 10.1209/0295-5075/107/28006

URL : https://hal.archives-ouvertes.fr/hal-01066713

D. France, K. J. Yager, K. G. Hoare, T. Cranston, and E. D. , Cooperative Ordering and Kinetics of Cellulose Nanocrystal Alignment in a Magnetic Field, Langmuir, vol.32, issue.30, pp.32-7564
DOI : 10.1021/acs.langmuir.6b01827

B. Frka-petesic, G. Guidetti, G. Kamita, and S. Vignolini, Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets, Advanced Materials, vol.22, issue.32, p.29
DOI : 10.1007/s10570-014-0513-y

J. P. Lagerwall, C. Schutz, M. Salajkova, J. Noh, and J. H. Park,

L. Bergstrom, Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films, Npg Asia Materials, vol.2014, issue.680, pp.1-12

G. Chauve, C. Fraschini, and B. Jean, Separation of cellulose nanocrystals. In Handbook of green materials: 1 Bionanomaterials: separation processes, characterization and properties, pp.73-87, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01017610

Q. Zhou, H. Brumer, and T. T. Teeri, Self-Organization of Cellulose Nanocrystals Adsorbed with Xyloglucan Oligosaccharide???Poly(ethylene glycol)???Polystyrene Triblock Copolymer, Macromolecules, vol.42, issue.15, pp.42-5430, 2009.
DOI : 10.1021/ma901175j

N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux et al., New Nanocomposite Materials Reinforced with Cellulose Whiskers in Atactic Polypropylene:?? Effect of Surface and Dispersion Characteristics, Biomacromolecules, vol.6, issue.5, pp.2732-3739, 2005.
DOI : 10.1021/bm050222v

URL : https://hal.archives-ouvertes.fr/hal-00305936

N. Ljungberg, J. Y. Cavaillé, and L. Heux, Nanocomposites of isotactic polypropylene reinforces with rod-like cellulose whiskers, Polymer, issue.18, pp.47-6285, 2006.
DOI : 10.1016/j.polymer.2006.07.013

H. T. Winter, C. Cerclier, N. Delorme, H. Bizot, B. Quemener et al., Improved Colloidal Stability of Bacterial Cellulose Nanocrystal Suspensions for the Elaboration of Spin-Coated Cellulose-Based Model Surfaces, Biomacromolecules, vol.11, issue.11, pp.11-3144, 2010.
DOI : 10.1021/bm100953f

A. Dammak, B. Quémener, E. Bonnin, C. Alvarado, and B. Bouchet,

C. Moreau and B. Cathala, Exploring architecture of xyloglucan cellulose nanocrystal complexes through enzyme susceptibility at different adsorption regimes, Biomacromolecules, vol.2015, issue.162, pp.589-596

J. Araki and S. Mishima, Steric Stabilization of ???Charge-Free??? Cellulose Nanowhiskers by Grafting of Poly(ethylene glycol), Molecules, vol.48, issue.1, pp.169-184
DOI : 10.1002/pol.1969.160071009

Y. Habibi, A. Goffin, N. Schiltz, E. Duquesne, P. Dubois et al., Bionanocomposites based on poly([varepsilon]-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization, Journal of Materials Chemistry, issue.41, pp.18-5002, 2008.

H. Lonnberg, L. Fogelstrom, M. Berglund, E. Malmstrom, and A. Hult, Surface grafting of microfibrillated cellulose with poly(epsilon-caprolactone) -Synthesis and characterization, European Polymer Journal, issue.9, pp.44-2991, 2008.

C. Goussé, H. Chanzy, G. Excoffier, L. Soubeyrand, and E. Fleury, Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents, Polymer, vol.43, issue.9, pp.2645-2651, 2002.
DOI : 10.1016/S0032-3861(02)00051-4

A. Sheikhi and T. G. Van-de-ven, Colloidal aspects of Janus-like hairy cellulose nanocrystalloids, Current Opinion in Colloid & Interface Science, vol.29, issue.29, pp.21-31
DOI : 10.1016/j.cocis.2017.02.001

M. Shimizu, T. Saito, Y. Nishiyama, S. Iwamoto, H. Yano et al., Fast and Robust Nanocellulose Width Estimation Using Turbidimetry, Macromolecular Rapid Communications, vol.6, issue.19, pp.37-1581
DOI : 10.1002/pol.1968.160061005

R. Tanaka, T. Kuribayashi, Y. Ogawa, T. Saito, A. Isogai et al., Ensemble evaluation of polydisperse nanocellulose dimensions: rheology, electron microscopy, X-ray scattering and turbidimetry, Cellulose, vol.19, issue.6, pp.24-3231
DOI : 10.1007/s10570-012-9774-5

A. C. Corrêa, E. De-morais-teixeira, L. A. Pessan, and L. H. Mattoso, Cellulose nanofibers from curaua fibers, Cellulose, vol.69, issue.3, pp.1183-1192, 2010.
DOI : 10.1080/15421401003722955

Y. Navon, H. Radavidson, J. Putaux, B. Jean, and L. Heux, pH-Sensitive Interactions between Cellulose Nanocrystals and DOPC Liposomes, Biomacromolecules, vol.18, issue.9, pp.2918-2927
DOI : 10.1021/acs.biomac.7b00872

URL : https://hal.archives-ouvertes.fr/hal-02106210

R. F. Borch, M. D. Bernstein, and H. D. Durst, Cyanohydridoborate anion as a selective reducing agent, Journal of the American Chemical Society, vol.93, issue.12, pp.93-2897, 1971.
DOI : 10.1021/ja00741a013

W. Chimpibul, T. Nagashima, F. Hayashi, N. Nakajima, S. Hyon et al., Dextran oxidized by a malaprade reaction shows main chain scission through a maillard reaction triggered by schiff base formation between aldehydes and amines, Journal of Polymer Science Part A: Polymer Chemistry, vol.43, issue.14, pp.54-2254, 2016.
DOI : 10.1021/jf00053a009

K. Matsumura, N. Nakajima, H. Sugai, and S. Hyon, Self-degradation of tissue adhesive based on oxidized dextran and poly-l-lysine, Carbohydrate Polymers, vol.113, issue.113, pp.32-38
DOI : 10.1016/j.carbpol.2014.06.073

H. Wang, H. Qian, and W. Yao, Melanoidins produced by the Maillard reaction: Structure and biological activity, Food Chemistry, vol.128, issue.3, pp.573-584, 2011.
DOI : 10.1016/j.foodchem.2011.03.075

T. Huang, A. A. Soliman, R. T. Rosen, and C. Ho, Studies on the Maillard browning reaction between aspartame and glucose, Food Chemistry, vol.24, issue.3, pp.187-196, 1987.
DOI : 10.1016/0308-8146(87)90150-6

J. Leguy, Y. Nishiyama, B. Jean, and L. Heux, Synthesis an characterization of allcellulose thermoplastics, Macromolecules, 2018.