J. Seo, H. Chung, M. Kim, J. Lee, I. Choi et al., Development of Water-Soluble SingleCrystalline TiO2 Nanoparticles for Photocatalytic Cancer-Cell Treatment Mesoporous- Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy Quantum Dot-based Energy Transfer: Perspectives and Potential for Applications in Photodynamic Therapy, Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts, pp.850-853, 2006.

]. H. Technol, C. Tsao, T. Yi, J. Moehl, S. M. Yum et al., Cyclopentadithiophene Bridged Donor? Acceptor Dyes Achieve High Power Conversion Efficiencies in Dye- Sensitized Solar Cells Based on the trisCobalt Bipyridine Redox Couple Enhancement of Incident Photon-to-Current Conversion Efficiency for Phthalocyanine-Sensitized Solar Cells by 3D Molecular Structuralization Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency, ] L. Honglin, L. Yingbo, L. Jinzhu, Y. Ke, First-principles study of p-type conductivity of N-Al/Ga Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, An. J. Logsdail, S, pp.726-728, 1998.

M. Woodley, C. R. Catlow, M. J. Powell, and R. G. Palgrave,

W. Watson, T. W. Keal, P. Sherwood, A. Walsh, A. A. Sokol et al., Strategies of making TiO2 and ZnO visible light active Photocatalytic degradation of organic dyes with manganesedoped ZnO nanoparticles The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension, Nature Materials Journal of Hazardous Materials Journal of Hazardous Materials Applied Surface Science Journal of Molecular Catalysis A: Chemical, vol.122223, issue.266, pp.798-801, 2004.

H. Chang-]-x, L. Qiu, J. Li, J. Zheng, X. Liu et al., Origin of the Enhanced Photocatalytic Activities of Semiconductors: A Case Study of ZnO Doped with Mg 2+, Preparation, characterization and photocatalytic activity of Co-doped ZnO powders, pp.98-104, 2007.

]. S. Liu, C. Li, J. Yu, Q. Xiang, S. Kumar et al., Costeffective and eco-friendly synthesis of novel and stable N-doped ZnO/g- C3N4 core?shell nanoplates with excellent visible-light responsive photocatalysis Electrodeposition of hierarchical ZnO/Cu2O nanorod films for highly efficient visiblelight-driven photocatalytic applications High Photocatalytic Activity of ZnO-Carbon Nanofiber Heteroarchitectures Visible-light photocatalysis in nitrogen-doped titanium The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity Daylight Photocatalysis by Carbon-Modified Titanium Dioxide, Cong, J L. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity, pp.2533-2541, 2001.

K. Sumita, ]. T. Asai, T. Yamaki, S. Sumita, and Y. J. Ma, Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies Formation of TiO2-xFx compounds in fluorine-implanted TiO2, Journal of Applied Physics Journal of Materials Science Letters, vol.93938, issue.1, pp.5156-5160, 2002.

A. Liu, J. W. Zaleska, E. Sobczak, J. Grabowska, ]. M. Hupka et al., Sol?gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders Effective Visible Light-Activated B-Doped and B,N-Codoped TiO2 Photocatalysts Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light Preparation and photocatalytic activity of ZnO/Fe2O3 nanotube composites, Preparation, characterization and photocatalytic activity of Co-doped ZnO powders Network Structured SnO2/ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity Ordered Mesoporous BiVO4 through Nanocasting: A Superior Visible Light-Driven Photocatalyst Nanostructured stars of ZnO microcrystals with intense stimulated emission, pp.1548-1552, 2000.

]. L. Ding, H. Zhou, S. Lou, J. Ding, D. Zhang et al., Simulated Sunlight-Driven Degradation of Rhodamine B by Porous Peanut-Like TiO2/BiVO4 Composite Size-and density-controlled synthesis of TiO2 nanodots on a substrate by phase-separation-induced self-assembly Aligned TiO2 Nanorods and Nanowalls Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their antirecombination in photocatalytic applications Self-Assembly of ZnO: From Nanodots to Nanorods Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property, Sensors and Actuators Preparation of Transparent TiO2 Thin Film Photocatalyst and Its Photocatalytic Activity The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition, Thermally Stable Nanocrystalline TiO2 Photocatalysts Synthesized via Sol-Gel Methods Modified with Ionic Liquid and Surfactant Molecules Raty, G. Galli, C. Bostedt, T.W. van Buuren, L.J. Terminello, Quantum Confinement and Fullerenelike Surface Reconstructions in Nanodiamonds, pp.8244-8253, 1188.

K. J. Park, K. S. Mcdonald, ]. Choi, S. Suarez, N. Hernández et al., Progress in bismuth vanadate photoanodes for use in solar water oxidation BiVO4 as photocatalyst for solar fuels production through water splitting: A short review Applied Catalysis A: General Energetics of bismuth vanadate, Progress in bismuth vanadate photoanodes for use in solar water oxidation, pp.2321-2337, 2013.

I. D. Yano, T. Sharp, X. Liu, M. Zhou, C. Dupuis et al., The nature of photogenerated charge separation among different crystal facets of BiVO4 studied by a density functional theory Monoclinic BiVO4 micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities Effects of citric acid and urea on the structural and morphological characteristics of BiVO4 synthesized by the sol?gel combustion method Promoted Photo-oxidation Reactivity of Particulate BiVO4 Photocatalyst Prepared by a Photoassisted Sol-gel Method Synthesis of monoclinic BiVO4 microribbons by sol?gel combined with electrospinning process and photocatalytic degradation performances Additive-free controllable fabrication of bismuth vanadates and their photocatalytic activity toward dye degradation, Electronic Structure of Monoclinic BiVO4 Morphology-controlled growth of BiVO4 crystals by hydrothermal method assisted with ethylene glycol and ethylenediamine and their photocatalytic activity, Materials Chemistry and Physics 2015 [99] S. Hernandez, G. Barbero, G. Saracco, A.L. Alexe-Ionescu, Considerations on Oxygen Bubble Formation and Evolution on BiVO4 Porous Anodes Used in Water Splitting Photoelectrochemical Cells, pp.5365-5373, 2005.

H. Jiang, H. Dai, X. Meng, K. Ji, L. Zhang et al., Porous olive-like BiVO4: Alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol, Applied Catalysis B: Environmental, vol.105, issue.3-4, pp.326-334, 2011.
DOI : 10.1016/j.apcatb.2011.04.026

M. Ge, L. Liu, W. Chen, and Z. Zhou, Sunlight-driven degradation of Rhodamine B by peanut-shaped porous BiVO4 nanostructures in the H2O2-containing system, pp.1038-1044, 2012.

H. Jiang, X. Meng, H. Dai, J. Deng, Y. Liu et al., High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination, Journal of Hazardous Materials, vol.217, issue.218, pp.217-218
DOI : 10.1016/j.jhazmat.2012.02.073

T. Tsoncheva, L. Ivanova, J. Rosenholm, and M. Linden, Cobalt oxide species supported on SBA-15, KIT-5 and KIT-6 mesoporous silicas for ethyl acetate total oxidation, Applied Catalysis B: Environmental, vol.89, issue.3-4, pp.365-374, 2009.
DOI : 10.1016/j.apcatb.2008.12.015

A. Martínez-de-la-cruz, U. M. García-pérez, and S. Sepúlveda-guzmán, Characterization of the visible-light-driven BiVO4 photocatalyst synthesized via a polymer-assisted hydrothermal method, Research on Chemical Intermediates, vol.104, issue.747, pp.881-894, 2013.
DOI : 10.1021/cr030027b

U. M. García-pérez, S. Sepúlveda-guzmán, A. Martínez-de-la, and C. , Nanostructured BiVO4 photocatalysts synthesized via a polymer-assisted coprecipitation method and their photocatalytic properties under visible-light irradiation, Solid State Sciences, pp.293-298, 2012.

Z. Wang, W. Luo, S. Yan, J. Feng, Z. Zhao et al., BiVO4 nano???leaves: Mild synthesis and improved photocatalytic activity for O2 production under visible light irradiation, CrystEngComm, vol.256, issue.29???30, pp.2500-2504, 2011.
DOI : 10.1016/j.apsusc.2009.09.076

M. Zhou, H. B. Wu, J. Bao, L. Liang, X. W. Lou et al., Architectures with Controllable Dual Porosity for Efficient Solar Water Splitting, Angewandte Chemie International Edition, vol.5, issue.33, pp.8579-8583, 2013.
DOI : 10.1039/c2ee03461a

D. Ressnig, R. Kontic, and G. R. Patzke, Morphology control of BiVO4 photocatalysts: pH optimization vs. self-organization, Materials Chemistry and Physics, vol.135, issue.2-3, pp.457-466, 2012.
DOI : 10.1016/j.matchemphys.2012.05.008

Q. Wu, P. Chen, L. Zhao, J. Wu, X. Qi et al., Photocatalytic behavior of BiVO4 immobilized on silica fiber via a combined alcohol-thermal and carbon nanofibers template route, Catalysis Communications, vol.49, pp.29-33, 2014.
DOI : 10.1016/j.catcom.2014.02.002

S. Sarkar and K. K. Chattopadhyay, Visible light photocatalysis and electron emission from porous hollow spherical BiVO4 nanostructures synthesized by a novel route, Physica E: Low-dimensional Systems and Nanostructures 2014, pp.52-58
DOI : 10.1016/j.physe.2013.11.014

L. Dong, X. Zhang, X. Dong, X. Zhang, C. Ma et al., Structuring porous ???sponge-like??? BiVO4 film for efficient photocatalysis under visible light illumination, Journal of Colloid and Interface Science, vol.393, pp.126-129, 2013.
DOI : 10.1016/j.jcis.2012.11.009

S. Kohtani, S. Makino, A. Kudo, K. Tokumura, Y. Ishigaki et al., Photocatalysts, Chemistry Letters, vol.31, issue.7, pp.660-661, 2002.
DOI : 10.1246/cl.2002.660

J. Yu and A. Kudo, Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4, Advanced Functional Materials, vol.117, issue.16, pp.2163-2169, 2006.
DOI : 10.1107/S0567740876006869

C. A. Kudo, Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties, Chem. Mater, vol.13, pp.4624-4628, 2001.

C. F. Abdi, R. Van-de-krol, R. Liu, Z. Huang, and H. , J. Lewerenz, B. Dam, M

A. H. Zeman and . Smets, Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells, pp.2832-2838, 2014.

K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe et al., Thin-Film Electrodes under Visible Light and Significant Effect of Ag Ion Treatment, The Journal of Physical Chemistry B, vol.110, issue.23, pp.11352-11360, 2006.
DOI : 10.1021/jp057539+

Y. Qiu, W. Liu, W. Chen, W. Chen, G. Zhou et al., Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells, Sci, pp.1501764-1501772, 2006.
DOI : 10.1126/sciadv.1501764

URL : https://doi.org/10.1126/sciadv.1501764

D. Ke, T. Peng, L. Ma, P. Cai, and P. Jiang, Photocatalytic water splitting for O2 production under visible-light irradiation on BiVO4 nanoparticles in different sacrificial reagent solutions, Applied Catalysis A: General, vol.350, issue.1, pp.111-117
DOI : 10.1016/j.apcata.2008.08.003

J. Yu, Y. Zhang, and A. Kudo, Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process, Journal of Solid State Chemistry, vol.182, issue.2, pp.223-228, 2009.
DOI : 10.1016/j.jssc.2008.10.021

H. Jiang, H. Endo, H. Natori, M. Nagai, and K. Kobayashi, Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method, Journal of the European Ceramic Society, vol.28, issue.15, pp.2955-2962, 2008.
DOI : 10.1016/j.jeurceramsoc.2008.05.002

H. Liu, H. Hou, F. Gao, X. Yao, and W. Yang, Nanofibers and Their Visible-Light Photocatalytic Activities, ACS Applied Materials & Interfaces, vol.8, issue.3, pp.1929-1936, 2016.
DOI : 10.1021/acsami.5b10086

W. Yin, W. Wang, L. Zhou, S. Sun, and L. Zhang, CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation, Journal of Hazardous Materials, vol.173, issue.1-3, pp.194-199, 2010.
DOI : 10.1016/j.jhazmat.2009.08.068

L. Zhou, W. Wang, L. Zhang, H. Xu, and W. Zhu, Microtubes with Square Cross-Sections:??? Microstructure, Growth Mechanism, and Photocatalytic Property, The Journal of Physical Chemistry C, vol.111, issue.37, pp.13659-13664, 2007.
DOI : 10.1021/jp065155t

L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu et al., A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst, Journal of Molecular Catalysis A: Chemical, vol.252, issue.1-2, pp.120-124, 2006.
DOI : 10.1016/j.molcata.2006.01.052

H. Li, G. Liu, and X. Duan, Monoclinic BiVO4 with regular morphologies: Hydrothermal synthesis, characterization and photocatalytic properties, Materials Chemistry and Physics, vol.115, issue.1, pp.9-13, 2009.
DOI : 10.1016/j.matchemphys.2009.01.014

W. H. Zhang and W. D. Zhang, Fabrication of SnO2???ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes, Sensors and Actuators B: Chemical, vol.134, issue.2, pp.403-408, 2008.
DOI : 10.1016/j.snb.2008.05.015

M. Yan, H. Zhang, S. Li, X. Ma, M. Wang et al., A selective NH3 gas sensor based on Fe2O3?ZnO nanocomposites at room temperature, Sensors and Actuators B: Chemical, vol.114, issue.2, pp.910-915, 2006.

T. Lu, L. Pan, H. Li, G. Zhu, T. Lv et al., Microwave-assisted synthesis of graphene???ZnO nanocomposite for electrochemical supercapacitors, Journal of Alloys and Compounds, vol.509, issue.18, pp.5488-5492, 2011.
DOI : 10.1016/j.jallcom.2011.02.136

Y. Zhang, Z. R. Tang, X. Fu, and Y. J. Xu, ???Carbon Composite Materials?, ACS Nano, vol.4, issue.12, pp.7303-7314, 2010.
DOI : 10.1021/nn1024219

L. Jiang and L. Gao, Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity, Materials Chemistry and Physics, vol.91, issue.2-3, pp.2-3, 2005.
DOI : 10.1016/j.matchemphys.2004.11.028

R. Josel, A. Kumar, V. Thavasi, and S. Ramakrishna, Conversion efficiency versus sensitizer for electrospun TiO2 nanorod electrodes in dye-sensitized solar cells, pp.424004-424011, 2008.

X. Yin, Z. Xue, L. Wang, Y. Cheng, and B. Liu, and Organic Dye, ACS Applied Materials & Interfaces, vol.4, issue.3, pp.1709-1715, 2012.
DOI : 10.1021/am201842n

K. Miyoshi, M. Numao, M. Ikegami, and T. Miyasaka, Effect of Thin TiO2 Buffer Layer on the Performance of Plastic-based Dye-sensitized Solar Cells Using Indoline Dye, Electrochemistry, vol.76, issue.2, pp.158-160, 2008.
DOI : 10.5796/electrochemistry.76.158

S. C. Liufu, H. N. Xiao, and Y. P. Li, Thermal analysis and degradation mechanism of polyacrylate/ZnO nanocomposites, Polymer Degradation and Stability, vol.87, issue.1, pp.103-110, 2005.
DOI : 10.1016/j.polymdegradstab.2004.07.011

Y. Ooyama, S. Inoue, T. Nagano, K. Kushimoto, J. Ohshita et al., Dye-Sensitized Solar Cells Based On Donor-Acceptor ??-Conjugated Fluorescent Dyes with a Pyridine Ring as an Electron-Withdrawing Anchoring Group, Angewandte Chemie, vol.103, issue.32, pp.7567-7571, 2011.
DOI : 10.1016/j.micromeso.2007.01.052

N. Hirata, J. J. Lagref, E. J. Palomares, J. R. Durrant, M. K. Nazeeruddin et al., Supramolecular Control of Charge-Transfer Dynamics on Dye-sensitized Nanocrystalline TiO2 Films, Chemistry - A European Journal, vol.10, issue.3, pp.595-602, 2004.
DOI : 10.1002/chem.200305408

S. Haid, M. Marszalek, A. Mishra, M. Wielopolski, J. Teuscher et al., Significant Improvement of Dye-Sensitized Solar Cell Performance by Small Structural Modification in ??-Conjugated Donor-Acceptor Dyes, Advanced Functional Materials, vol.13, issue.6, pp.1291-1302, 2012.
DOI : 10.1007/s00894-007-0214-7

K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo et al., Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells, New Journal of Chemistry, vol.27, issue.5, pp.783-785, 2003.
DOI : 10.1039/b300694h

H. Tian, X. Yang, R. Chen, Y. Pan, L. Li et al., Phenothiazine derivatives for efficient organic dye-sensitized solar cells, Chemical Communications, vol.33, issue.36, pp.3741-3743, 2007.
DOI : 10.1039/b707485a

L. Schmidt-mende, U. Bach, R. Humphry-baker, T. Horiuchi, H. Miura et al., Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells, Advanced Materials, vol.86, issue.7, pp.813-815, 2005.
DOI : 10.1063/1.1406148

M. Saito and S. Fujihara, Large photocurrent generation in dye-sensitized ZnO solar cells, Energy & Environmental Science, vol.516, issue.2, pp.280-283, 2008.
DOI : 10.1039/b806096g

A. Fattori, L. M. Peter, K. L. Mccall, N. Robertson, and F. Marken, Adsorption and redox chemistry of cis-RuLL'(SCN)2 with L=4,4???-dicarboxylic acid-2,2???-bipyridine and L'=4,4???-dinonyl-2,2???-bipyridine (Z907) at FTO and TiO2 electrode surfaces, Journal of Solid State Electrochemistry, vol.38, issue.10, pp.1929-1936, 2010.
DOI : 10.1007/s10008-010-1034-8

A. Mishra, M. K. Fischer, and P. Buerle, Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules, Angewandte Chemie International Edition, vol.130, issue.14, pp.2474-2499, 2009.
DOI : 10.1142/9781848161542_0008

I. N. Obotowo, I. B. Obot, and U. J. Ekpe, Organic sensitizers for dye-sensitized solar cell (DSSC): Properties from computation, progress and future perspectives, Journal of Molecular Structure, vol.1122, pp.80-87, 2016.
DOI : 10.1016/j.molstruc.2016.05.080

D. Kuang, S. Uchida, R. Humphry-baker, S. M. Zakeeruddin, and M. , Organic Dye-Sensitized Ionic Liquid Based Solar Cells: Remarkable Enhancement in Performance through Molecular Design of Indoline Sensitizers, Angewandte Chemie International Edition, vol.629, issue.10, pp.1923-1927, 2008.
DOI : 10.1002/anie.200705225

M. Liang, W. Xu, F. Cai, P. Chen, B. Peng et al., New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, vol.111, issue.11, pp.4465-4472, 2007.
DOI : 10.1021/jp067930a

K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga et al., Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain, Chemical Communications, issue.13
DOI : 10.1039/b001517m

, Commun, pp.1173-1174, 2000.

K. Woan, G. Pyrgiotakis, and W. Sigmund, Composites, Advanced Materials, vol.244, issue.21, pp.2233-2239, 2009.
DOI : 10.1016/j.msec.2007.10.002

L. O. Jay, H. Kim, Y. Saad, and J. R. Chelikowsky, Electronic structure calculations using plane wave codes without diagonalization

. Comm, , pp.21-30, 1999.

]. E. Kaxiras, Atomic and electronic structure of solid, pp.87-95
DOI : 10.1017/CBO9780511755545

J. Linderberg and Y. Öhrn, Derivation and Analysis of the Pariser?Parr?

P. Model, The Journal of Chemical Physics Electron Interaction In Unsaturated Hydrocarbons, pp.7161375-1385, 1953.

J. A. Pople, D. L. Beveridge-]-k, ·. G. Ramachandran, ·. K. Deepa, and . Namboori, Approximate Molecular Orbital Theory, Computational Chemistry and Molecular Modeling Principles and Applications, p.141, 1970.

K. B. Lipkowitz and D. B. Boyd, Approximate Self-Consistent Molecular-Orbital Theory, Reviews in Computational Chemistry, vol.17, 2001.

, Intermediate Neglect of Differential Overlap J. Chem. Phys, vol.47, issue.6, 1961.

M. J. Dewar and W. Thiel, Ground States of Molecules. The MNDO Method. Approximations and Parameters Optimization of Parameters for Semiempirical Methods I, J Am Chem Soc J.J.P. Stewart, vol.9915, pp.4907-4917, 1977.

J. Method, ]. J. Comp-chem, and . Stewart, Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements, J Mol Model, vol.10, issue.13, pp.209-220, 1989.

Z. Bojarski, M. Gigla, K. Stró?, M. Surowiec, W. Krystalografia et al., Wst?p do fizyki cia?a sta?ego, Wydawnictwo Naukowe PWN, Warszawa 1976 [3] A. Guinier, X-Ray Diffraction in Crystals, imperfect crystals and amorphous Bodies, W. H. Freeman and company, ?asi?ska: Skaningowa mikroskopia elektronowa w badaniach kryminalistycznych, Materia?y szkoleniowe, pp.2013-930, 1963.

T. Kruk, Mikroskopia Si? Atomowych (AFM), Nanonauka 2014, pp.46-50

E. Meyer, ]. W. Melitz, J. Shena, A. C. Kummel, S. Lee et al., Atomic Force Microscopy Scanning Probe Microscopes: Applications in Science and Technology Kelvin probe force microscopy and its application High-resolution Kelvin probe force microscopy of active nanoelectronic devices, ETH Zurich Research Collection 2016, 23290 [13] T. Owen, Fundamentals of modern UV-visible spectroscopy, Agilent Technologies Tissue, Ultraviolet And Visible Absorption Spectroscopy] I. ?ak, Chemia medyczna/Analiza instrumentalna, ?l?ska Akademia Medyczna, Progress in Surface ScienceDinh, Handbook of Spectroscopy Charge Carrier Trapping and Recombination Dynamics in Small Semiconductor Particles, pp.3-49, 1985.

]. P. Pichat, Y. Nosaka, and A. Y. Nosaka, Photocatalysis and Water Purification From Fundamentals to Recent Applications

G. A. Kgaa, H. Houas, M. Lachheb, E. Ksibi, C. Elaloui et al., Photocatalytic degradation pathway of methylene blue in water Photocatalytic degradation of an azo reactive dye, Reactive Yellow 84, in water using an industrial titanium dioxide coated media Ait-Ichou, Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel) Comparative studies of photocatalytic activity in water purification, Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dye in the presence of TiO2 doped with selective transition metals, pp.2013-145, 1995.

R. Red, H. Lachheb, E. Puzenat, A. Houas, M. Ksibi et al., Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania, Dyes and Pigments Applied Catalysis B: Environmental, vol.7727, issue.1, pp.31-38, 2002.

R. Black-5-in-uv-/-tio2, U. /. Oxidant, and U. Tio2, oxidant systems: A comparative study, The Chemical Engineering Journal Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process, Dyes and Pigments, pp.578-583, 2006.

, The process proceeds by excitation of an electrons from the HOMO (-5.07 eV) to LUMO (-2.36 eV) level of the dye molecule and then transfer them to the semiconductor conduction band (-4

, Figure 5.2.1.5. Topography (A, A') and surface potential distribution of the BiVO4 thin films

, without illumination (B and B') and under illumination (C and C'). The histograms BP, CP, B'P, C'P represent the population of the charge, BiVO4 with anchored D149 molecules

, As a result of combining the inorganic and organic components in the BiVO4/D149 system a new Fermi pinning level (EFD-A) is created. It is located above the Fermi level (EF) of pure BiVO4 and extends to the whole heterojunction system, Electronic structure and optical properties of monoclinic clinobisvanite BiVO4, pp.4746-4753, 2011.

M. E. Grillo, J. W. Andzelm, N. Govind, G. Fitzgerald, and K. B. Stark, Lecture Notes in Physics10 Computational Materials Science with Materials Studio: Applications in Catalysis, pp.207-221

M. D. Segall, P. J. Lindan, M. J. Probert, and C. Pickard, J.; Hasnip, P. J

S. J. Clark and M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Cond. Matter, pp.14-2717, 2002.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.80, issue.18, pp.3865-3868, 1996.
DOI : 10.1063/1.446965

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol.10, issue.12, pp.5188-5192, 1976.
DOI : 10.1016/0021-9991(72)90046-0

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, vol.9, issue.3, pp.1758-1775, 1999.
DOI : 10.1103/PhysRevB.55.13479

P. Armand, J. Ch, and S. Gilbert, A BFGS-IP algorithm for solving strongly convex optimization problems with feasibility enforced by an exact penalty approach, Mathematical Programming, vol.92, pp.393-424, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00072546

J. Ma and L. Wang, The role of the isolated 6s states in BiVO4 on the electronic and atomic structures, Applied Physics Letters, vol.105, issue.17, pp.172102-172103, 2014.
DOI : 10.1016/j.cattod.2010.04.027

]. Z. Zhao, Z. Li, Z. Zou-]-k, B. Ding, Y. Chen et al., Electronic structure and optical properties of monoclinic clinobisvanite BiVO4, Comparative density functional theory study on the electronic and optical properties of BiMO4 (M ¼ V Mater.Chem. A 2014 Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features, pp.4746-4753, 2011.
DOI : 10.1016/0025-5408(72)90227-9

]. J. Phys13, S. Cooper, F. M. Gul, L. Toma, J. W. Chen et al., Indirect bandgap and optical properties of monoclinic bismuth vanadate Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress Density functional theory study of doping effects in monoclinic clinobisvanite BiVO4, Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals, pp.842-848, 2009.

L. F. Smith and . Piper, The nature of electron lone pairs in BiVO4

. Lett, , pp.212110-212111, 2011.

]. L. Ren, L. Ma, L. Jin, J. Wang, M. Qiu et al., and their photocatalytic activity for the degradation of rhodamine B under visible light, Nanotechnology, vol.20, issue.40, pp.405602-405611, 2009.
DOI : 10.1088/0957-4484/20/40/405602

G. Cheeseman, V. Scalmani, B. Barone, G. A. Mennucci, and . Petersson,

M. Nakatsuji, X. Caricato, H. P. Li, and A. F. Hratchian,

J. L. Zheng, M. Sonnenberg, M. Hada, K. Ehara, R. Toyota et al.,

M. Hasegawa, T. Ishida, Y. Nakajima, O. Honda, H. Kitao et al.,

K. N. Brothers, V. N. Kudin, R. Staroverov, J. Kobayashi, and K. Normand,

A. Raghavachari, J. C. Rendell, S. S. Burant, J. Iyengar, M. Tomasi et al.,

J. M. Rega, M. Millam, J. E. Klene, J. B. Knox, V. Cross et al.,

C. Cammi, J. W. Pomelli, R. L. Ochterski, K. Martin, and V. G. Morokuma,

G. A. Zakrzewski, P. Voth, J. J. Salvador, S. Dannenberg, and A. Dapprich,

Ö. Daniels, J. B. Farkas, J. V. Foresman, J. Ortiz, D. J. Cioslowski et al., Exploring Chemistry with Electronic Structure Methods, Second Edition. U. S. A.: Gaussian, Inc. 1993 [22] B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules Understanding the Structure and Formation of Uranyl Peroxide Nanoclusters by Quantum Chemical Calculations, Th. Maschmeyer, Fully Coordinated Silica Nanoclusters: (SiO2)N Molecular Rings, pp.508-517, 1990.

]. R. Poteau, F. Spiegelmannjanusik, O. Gladii, A. Kassiba, J. Boucle et al., Calculation of the Electronic Spectrum of Li2 Using Effective Core Pseudopotentials and l -Dependent Core Polarization Potentials, Journal of Molecular Spectroscopy, vol.171, issue.2, pp.299-308, 1995.
DOI : 10.1006/jmsp.1995.1120

K. V. Prasad and K. B. Varma, Dielectric, thermal and pyroelectric properties of ferroelectric bismuth vanadate single crystals, Materials Chemistry and Physics, vol.38, issue.4
DOI : 10.1016/0254-0584(94)90222-4

]. O. Phys29, M. Kharissova, M. S. Osorio, B. I. Vázquez, S. Kharisov et al., Computational chemistry calculations of stability for bismuth nanotubes, fullerene-like structures and hydrogen-containing nanostructures Size-dependent optical and dielectric properties of BiVO4 nanocrystals, Phys Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering, Solid State Sci Shapecontrolled synthesis of BiVO4 hierarchical structures with unique naturalsunlight-driven photocatalytic activity Highly ordered mesoporous BiVO4: Controllable ordering degree and super photocatalytic ability under visible light Morphology- Dependent Photocatalytic Performance of Monoclinic BiVO4 for Methyl Orange Degradation under Visible-Light Irradiation, Chin, Microporous and Mesoporous Materials 2013 Liu, Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites, pp.406-410, 1994.

, Chem. Phys, vol.125, pp.59-65, 2011.

S. Ager, W. Sun, D. Wang, L. Li, D. Zhang et al., Solar Light Driven Pure Water Splitting on Quantum Sized BiVO4 without any Cocatalyst Russo Elucidation of important parameters of BiVO4 responsible for photocatalytic O2 evolution and insights about the rate of the catalytic process The effect of hydrothermal temperature on the synthesis of monoclinic bismuth vanadate powders, Phys. Chem. Chem. Phys. ACS Catal Chemical Engineering Journal Materials Science, vol.16, issue.27, pp.1651-1657, 2009.

]. T. Ohno, T. Tsubota, K. Nishijima, and Z. Miyamoto, Photocatalysts under Visible Light, Gao, New Method to Prepare Nitrogen-Doped Titanium Dioxide and Its Photocatalytic Activities Irradiated by Visible Light, J. Am. Ceram, pp.750-75, 2004.
DOI : 10.1246/cl.2004.750

R. Soc, R. López, and . Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol?gel and commercial TiO2: a comparative study, J Sol- Gel Sci Technol, vol.879, issue.61, pp.1803-1805, 2004.

]. C. Karunakaran, S. Kalaivani, P. Vinayagamoorthy, and S. , Dash, Electrical, optical and visible light-photocatalytic properties of monoclinic BiVO4 nanoparticles synthesized hydrothermally at different pH

. P. Semicond, A. Ng, A. Iwase, R. Kudo, C. J. Seong et al., Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting, J. Mater. Sci. Lett, vol.211, pp.122-131, 2010.

]. W. Sung46, L. Yu, W. Qu, X. Guo, M. Peng et al., Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals Vibrational density of states in silicon carbide nanoparticles: experiments and numerical simulations, situ grown in silicon nitride films, pp.5355-5357, 2003.

. Janusik, Vibrational and electronic peculiarities of NiTiO3 nanostructures inferred from first principle calculations, RSC Adv, pp.17396-17404, 2015.

M. Zalas, A. Makowska-janusik, B. El-ghayoury, . J. Sahraoui50-]-j, K. Stewart et al., Zinc induced a dramatic enhancement of the non-linear optical properties of an azo-based iminopyridine ligand Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements Introduction to Computational Chemistry Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells, Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts Burfeindt, W. Storck, F. Willig, Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ru-Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2 Film, pp.7545-75531173, 2003.

. Phys and . Chem, , pp.6799-6802, 1997.

M. Caruso, . D. Graetzel-]-i, J. K. Sharp, F. M. Cooper, R. Toma et al., Bismuth Vanadate as a Platform for Accelerating Discovery and Development of Complex Transition- Metal Oxide Photoanodes ACS Energy Lett Enhanced Surface Reaction Kinetics and Charge Separation of p?n Heterojunction Co3O4/BiVO4 Photoanodes, Theoretical Studies of Electronic Structure and Photophysical Properties of a Series of Indoline Dyes with Triphenylamine Ligand, pp.4420-4425, 2010.

]. K. Kakiage, Y. Aoyama, T. Yano, T. Otsuka, T. Kyomen et al.,

G. Hanaya, K. Chen, X. Zheng, D. Mo, Q. Sun et al., An achievement of over 12 percent efficiency in an organic dyesensitized solar cell Metal-free indoline dye sensitized zinc oxide nanowires solar cell, Brocks, Modeling charge transfer at organic donor-acceptor semiconductor interfaces, pp.6379-6381, 2010.

. Phys and . Lett, , pp.203302-203303, 2012.

L. R. Hobbs, A. Fonseca, V. Knizhnik, and . Dhandapani, Fermi-Level Pinning at the Polysilicon/Metal Oxide Interface-Part I Contact engineering for organic semiconductor devices via Fermi level depinning at the metal-organic interface, IEEE Transactions On Electron Devices Physical Review B, vol.5163, issue.82, pp.971-977, 2004.

H. Peisert, A. Petr, L. Dunsch, T. Chass, and M. Knupfer, Interface Fermi Level Pinning at Contacts Between PEDOT:???PSS and Molecular Organic Semiconductors, Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers, pp.386-390, 2007.
DOI : 10.1002/cphc.200600542