, Liste des publications et communications internationales Publication

, Xylitol hydrogenolysis over Ru-based catalysts: effect of alkaline promoter and basic oxide modified catalysts. Maxime Rivière, ChemCatChem, vol.2017, issue.9, pp.2145-2159

, Communications, vol.orales

, High-selective hydrogenolysis of xylitol on Ru-based catalyst in absence of base. Maxime Rivière, pp.27-31, 2017.

, Hydrogenolysis over Ru-based catalysts: neutral or alkaline conditions and basic oxide promoted catalysts

M. Rivière, N. Perret, A. Cabiac, D. Delcroix, C. Pinel et al., International Symposium of Green Chemistry (ISGC), pp.15-19, 2017.

, Hydrogenolysis of sugar polyols to short-chain C2-C3 polyols over Ru/C and Ru-basic oxide/C catalysts in the absence or presence of Ca(OH)2. Maxime Rivière, st French Conference of Catalysis (FCCats), pp.23-27, 2016.

C. Selective and C. , hydrogenolysis of sugar polyols to C2-C3 polyols or partially dehydroxylated products, 16th International Catalysis Conference (ICC), pp.3-8, 2016.

, Hydrogenolysis of sugar polyols to short chain C2-C3 polyols over Ru/C and Ru basic oxide/C catalysts in the presence or not of base, Maxime Rivière, Chinese Conference on green Chemistry (FC2G), pp.9-13, 2016.

, Hydrogenolysis of sugar polyols to short chain C2-C3 polyols over Ru/C and Ru basic oxide/C catalysts in the presence or not of base, Maxime Rivière, pp.12-2016

R. Bibliographiques, Energy Information Administration, International Energy Outlook 2016, [2] 21eme Conférence des Parties, pp.5588-617, 2011.

]. P. Basu, Biomass Gasification, Pyrolysis and Torrefaction, 2013.

G. Petersen and T. Werpy, Top Value Added Chemicals from Biomass: Results of Screening for Potential Candidates from Sugars and Synthesis Gas, Ind. Eng. Chem, vol.50, pp.1125-1126, 1958.

R. F. Dye, Haynes, CRC Handbook of Chemistry and Physics Online, Boca Raton Chem. Soc. Rev. Korean J. Chem. Eng, vol.18, pp.2016-2017, 2001.

M. M. Moore, S. G. Kanekar, and R. Dhamija, Case Reports, RE-CORD, WUR, From the Sugar Platform to Biofuels and Biochemicals Int. J. Therm. Sci, vol.3, issue.50, pp.122-1615, 2008.

]. A. Díaz, R. Katsarava, and J. Puiggalí, Int. J. Mol. Sci, vol.2014, issue.15, pp.7064-123

]. A. Serov and C. Kwak, Recent achievements in direct ethylene glycol fuel cells (DEGFC), Applied Catalysis B: Environmental, vol.97, issue.1-2, pp.1-12, 2010.
DOI : 10.1016/j.apcatb.2010.04.011

]. R. Perrin, J. Schraff, C. Industrielle, S. Namuangruk, T. Nanok et al., J. Phys. Chem. C, vol.1, issue.112, pp.12914-12920, 1993.

]. M. Altiokka and S. Akyalc?-in, Kinetics of the Hydration of Ethylene Oxide in the Presence of Heterogeneous Catalyst, Industrial & Engineering Chemistry Research, vol.48, issue.24, pp.10840-10844, 2009.
DOI : 10.1021/ie901037w

, Catal. Surv. from Asia, vol.14, pp.111-115, 2010.

J. W. Van-hal, J. S. Ledford, and X. Zhang, Investigation of three types of catalysts for the hydration of ethylene oxide (EO) to monoethylene glycol (MEG), Catalysis Today, vol.123, issue.1-4, pp.310-315, 2007.
DOI : 10.1016/j.cattod.2007.02.015

, Catal. Commun, vol.11, pp.447-450, 2010.

]. L. Kim and S. O. Compagny, Catalytic Hydration of Ethylene Oxide to Ethylene Glycol, US4165440, Catal. Letters, vol.95, pp.163-166, 1977.

]. N. Bonnard, M. Brondeau, M. Falcy, D. Jargot, O. Schneider et al., , pp.1-7, 2010.

W. Guo, K. Dai, G. Fan, P. Chem, J. Bruijnincx et al., Catal. Today, vol.11, issue.239, pp.31-37, 2009.

S. Amada, Y. Koso, K. Nakagawa, and . Tomishige, , pp.728-764, 2010.

P. N. Vennestrøm, C. M. Osmundsen, C. H. Christensen, and E. Taarning, Beyond Petrochemicals: The Renewable Chemicals Industry, Angewandte Chemie International Edition, vol.12, issue.45, pp.10502-10511, 2011.
DOI : 10.1039/b922014c

C. M. Osmundsen, K. Egeblad, and E. Taarning, , pp.73-89, 2013.

T. A. Nijhuis, M. Makkee, J. A. Moulijn, and B. M. Weckhuysen, The Production of Propene Oxide:?? Catalytic Processes and Recent Developments, Industrial & Engineering Chemistry Research, vol.45, issue.10, pp.3447-3459, 2006.
DOI : 10.1021/ie0513090

R. N. Cochran and W. S. Dubner, Propylene Oxide-Styrene Monomer Process US 5, pp.268-277, 1992.

S. M. Sadrameli, Fuel, vol.2016, issue.173, pp.285-297

]. R. Rinaldi and F. Schüth, Energy Environ. Sci, vol.35, issue.2, p.610, 2009.

]. E. Sjöström, Wood Chemistry: Fundamentals and Applications, Bioprocess. Technol. Biorefinery Sustain. Prod. Fuels, Chem. Polym, pp.91-109, 1993.

S. K. Maity, Opportunities, recent trends and challenges of integrated biorefinery: Part I, Renewable and Sustainable Energy Reviews, vol.43, pp.1427-1445, 2015.
DOI : 10.1016/j.rser.2014.11.092

]. P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production, Industrial & Engineering Chemistry Research, vol.48, issue.8, pp.3713-3729, 2009.
DOI : 10.1021/ie801542g

T. Y. Loow, K. A. Wu, Y. S. Tan, L. F. Lim, J. M. Siow et al., Recent Advances in the Application of Inorganic Salt Pretreatment for Transforming Lignocellulosic Biomass into Reducing Sugars, Journal of Agricultural and Food Chemistry, vol.63, issue.38, pp.8349-63, 2015.
DOI : 10.1021/acs.jafc.5b01813

]. E. Privas, Matériaux Ligno-Cellulosiques : Elaboration et Caractérisation, Thèse de l'Ecole National Supérieuse des mines de Paris, 2013.

A. M. Galletti and C. Antonetti, Biorefinery from Biomass to Chem. Fuels, pp.101-117, 2012.

J. C. Ogier, J. P. Leygue, D. Ballerini, J. Pourquie, and L. , Production d'??thanol a partir de biomasse lignocellulosique, Oil & Gas Science and Technology, vol.54, issue.1, pp.67-94, 2006.
DOI : 10.2516/ogst:1999004

M. J. Taherzadeh and K. Karimi, Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review, International Journal of Molecular Sciences, vol.42, issue.86, pp.1621-51, 2008.
DOI : 10.1111/j.1472-765X.2006.01858.x

]. A. Singh, S. Tuteja, N. Singh, and N. R. Bishnoi, Enhanced saccharification of rice straw and hull by microwave???alkali pretreatment and lignocellulolytic enzyme production, Bioresource Technology, vol.102, issue.2, pp.1773-82, 2011.
DOI : 10.1016/j.biortech.2010.08.113

]. C. Cara, E. Ruiz, M. Ballesteros, P. Manzanares, M. J. Negro et al., , pp.692-700, 2008.

]. D. Ballerini, J. P. Desmarquest, J. Pourquié, F. Nativel, and M. Rebeller, Ethanol production from lignocellulosics: Large scale experimentation and economics, Bioresource Technology, vol.50, issue.1, pp.17-23, 1994.
DOI : 10.1016/0960-8524(94)90215-1

]. S. Kim and M. T. Holtzapple, Effect of structural features on enzyme digestibility of corn stover, Bioresource Technology, vol.97, issue.4, pp.583-591, 2006.
DOI : 10.1016/j.biortech.2005.03.040

]. F. Parisi, , pp.53-87, 1989.

S. C. Yat, A. Berger, and D. R. Shonnard, Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass, Bioresource Technology, vol.99, issue.9, pp.3855-63, 2008.
DOI : 10.1016/j.biortech.2007.06.046

]. W. Brenner, B. Rugg, J. Arnon, M. Cleland, and C. Rogers, Radiat. Phys. Chem, vol.14, pp.299-308, 1979.

A. K. Kumar, S. Sharma, and . Bioresour, , 2007.

]. P. Collins, R. Ferrier, M. J. Greeley, and M. Mavrikakis, Busca, Heterogeneous Catalytic Materials J. Phys. Chem. B, vol.109, pp.3460-71, 1995.

, nutrition Aps, Hydrogenation Process for the Production of a Sugar Alcohol US 8, Appl. Catal. A Gen, vol.816, pp.68-318, 2007.

]. A. Perrard, P. Gallezot, J. Joly, R. Durand, C. Baljou et al., Highly efficient metal catalysts supported on activated carbon cloths: A catalytic application for the hydrogenation of d-glucose to d-sorbitol, Applied Catalysis A: General, vol.331, pp.100-104, 2007.
DOI : 10.1016/j.apcata.2007.07.033

URL : https://hal.archives-ouvertes.fr/hal-00186540

]. J. Liu, P. Bai, and X. S. Zhao, Ruthenium nanoparticles embedded in mesoporous carbon microfibers: preparation, characterization and catalytic properties in the hydrogenation of d-glucose, Phys. Chem. Chem. Phys., vol.17, issue.9, pp.3758-63, 2011.
DOI : 10.1021/cm051094k

D. K. Mishra and J. Hwang, Selective hydrogenation of d-mannose to d-mannitol using NiO-modified TiO2 (NiO-TiO2) supported ruthenium catalyst, Applied Catalysis A: General, vol.453, pp.13-19, 2013.
DOI : 10.1016/j.apcata.2012.11.042

M. J. Climent, A. Corma, S. Iborra, and G. Chem, Green Chem, vol.13, issue.17, pp.40-71, 2011.

A. M. Ruppert, K. Weinberg, and R. Palkovits, Hydrogenolysis Goes Bio: From Carbohydrates and Sugar Alcohols to Platform Chemicals, Angewandte Chemie International Edition, vol.3, issue.11, pp.2564-601, 2012.
DOI : 10.1055/s-1994-25643

]. J. Pan, J. Li, and C. Wang, Multi-wall carbon nanotubes supported ruthenium for glucose hydrogenation to sorbitol, Reaction Kinetics and Catalysis Letters, vol.15, issue.95, pp.233-242, 2007.
DOI : 10.1007/s11144-007-4989-4

]. P. Gallezot, N. Nicolaus, G. Flèche, P. Fuertes, and A. Perrard, Glucose Hydrogenation on Ruthenium Catalysts in a Trickle-Bed Reactor, Journal of Catalysis, vol.180, issue.1, pp.51-55, 1998.
DOI : 10.1006/jcat.1998.2261

URL : https://hal.archives-ouvertes.fr/hal-00006760

E. Crezee, B. W. Hoffer, R. Berget, J. , M. Makkee et al., Three-phase hydrogenation of ?-glucose over a carbon supported ruthenium catalyst???mass transfer and kinetics, Applied Catalysis A: General, vol.251, issue.1, pp.1-17, 2003.
DOI : 10.1016/S0926-860X(03)00587-8

]. M. Makkee, A. P. Kieboom, and H. Van-bekkum, Hydrogenation of d-fructose and d-fructose/d-glucose mixtures, Carbohydrate Research, vol.138, issue.2, pp.225-236, 1985.
DOI : 10.1016/0008-6215(85)85106-5

G. M. Lari, O. G. Gröninger, Q. Li, C. Mondelli, N. López et al., ChemSusChem, vol.2016

M. C. Castoldi, L. D. Câmara, R. S. Monteiro, A. M. Constantino, L. Camacho et al., Experimental and theoretical studies on glucose hydrogenation to produce sorbitol, Reaction Kinetics and Catalysis Letters, vol.102, issue.103, pp.341-352, 2007.
DOI : 10.1007/s11144-007-5147-8

]. M. Janvier, S. Moebs-sanchez, and F. Popowycz, European J. Org. Chem, pp.2308-2318, 2016.

]. M. Besson, P. Gallezot, and C. Pinel, Chem. Rev, vol.2014, issue.114, pp.1827-70

]. L. Vilcocq, A. Cabiac, C. Especel, S. Lacombe, and D. Duprez, New insights into the mechanism of sorbitol transformation over an original bifunctional catalytic system, Journal of Catalysis, vol.320, pp.16-25, 2014.
DOI : 10.1016/j.jcat.2014.09.012

URL : https://hal.archives-ouvertes.fr/hal-01138563

]. C. Montassier, J. C. Ménézo, L. C. Hoang, C. Renaud, and J. Barbier, Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium, Journal of Molecular Catalysis, vol.70, issue.1, pp.99-110, 1991.
DOI : 10.1016/0304-5102(91)85008-P

]. K. Wang, M. C. Hawley, and T. D. Furney, Mechanism Study of Sugar and Sugar Alcohol Hydrogenolysis Using 1,3-Diol Model Compounds, Industrial & Engineering Chemistry Research, vol.34, issue.11, pp.3766-3770, 1995.
DOI : 10.1021/ie00038a012

K. L. Deutsch, D. G. Lahr, B. H. Shanks, and G. Chem, , pp.1635-1642, 2012.

P. J. Hausoul, L. Negahdar, K. Schute, and R. Palkovits, ChemSusChem, vol.2015, issue.9, pp.3323-3330

F. Van-der-klis, L. Gootjes, J. Van-haveren, D. S. Van-es, J. H. Bitter et al., , pp.3900-3909, 2015.

]. J. Tendam and U. Hanefeld, Renewable Chemicals: Dehydroxylation of Glycerol and Polyols, ChemSusChem, vol.13, issue.8, pp.1017-1034, 2011.
DOI : 10.1039/c1gc15152e

]. J. Sun, H. Liu, and G. Chem, Jia, H. Liu, Catal. Sci. Technol. 2016, vol.13, issue.6, pp.7042-7052, 2011.

P. J. Hausoul, A. K. Beine, L. Neghadar, and R. Palkovits, Kinetics study of the Ru/C-catalysed hydrogenolysis of polyols ??? insight into the interactions with the metal surface, Catalysis Science & Technology, vol.137, issue.410, pp.56-63, 2017.
DOI : 10.1021/jacs.5b05361

]. L. Ye, X. Duan, H. Lin, and Y. Yuan, Improved performance of magnetically recoverable Ce-promoted Ni/Al2O3 catalysts for aqueous-phase hydrogenolysis of sorbitol to glycols, Catalysis Today, vol.183, issue.1, pp.65-71, 2012.
DOI : 10.1016/j.cattod.2011.08.006

A. H. Zacher, J. G. Frye-jr, T. A. Werpy, and D. J. Miller, Chem. Ind, vol.104, pp.165-173, 2005.

]. J. Zhang, F. Lu, W. Yu, J. Chen, S. Chen et al., Selective hydrogenative cleavage of C???C bonds in sorbitol using Ni???Re/C catalyst under nitrogen atmosphere, Catalysis Today, vol.234, pp.107-112, 2014.
DOI : 10.1016/j.cattod.2014.03.021

M. Banu, S. Sivasanker, T. M. Sankaranarayanan, and P. Venuvanalingam, Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY, Catalysis Communications, vol.12, issue.7, pp.673-677, 2011.
DOI : 10.1016/j.catcom.2010.12.026

]. T. Soták, T. Schmidt, and M. Hronec, Hydrogenolysis of polyalcohols in the presence of metal phosphide catalysts, Applied Catalysis A: General, vol.459, pp.26-33, 2013.
DOI : 10.1016/j.apcata.2013.04.006

]. R. Ooms, M. Dusselier, J. A. Geboers, B. Op-de-beeck, R. Verhaeven et al., , p.695, 2014.

]. J. Sun and H. Liu, Catal. Today, vol.88, issue.234, pp.75-82, 2014.

, Chem. Rev, vol.110, pp.2217-2266, 2010.

]. X. Chen, X. Wang, S. Yao, and X. Mu, Hydrogenolysis of biomass-derived sorbitol to glycols and glycerol over Ni-MgO catalysts, Catalysis Communications, vol.39, pp.86-89, 2013.
DOI : 10.1016/j.catcom.2013.05.012

URL : http://ir.qibebt.ac.cn/bitstream/337004/6048/1/Hydrogenolysis%20of%20biomass-derived%20sorbitol%20to%20glycols%20and%20glycerol%20over%20Ni-MgO%20catalysts.pdf

]. F. Cavani, F. Trifirò, and A. Vaccari, Hydrotalcite-type anionic clays: Preparation, properties and applications., Catalysis Today, vol.11, issue.2, pp.173-301, 1991.
DOI : 10.1016/0920-5861(91)80068-K

W. C. Du, L. P. Zheng, J. J. Shi, and S. X. Xia, Production of C 2 and C 3 polyols from d -sorbitol over hydrotalcite-like compounds mediated bi-functional Ni???Mg???Al???Ox catalysts, Fuel Processing Technology, vol.139, pp.86-90, 2015.
DOI : 10.1016/j.fuproc.2015.08.008

J. C. Chao, D. T. Huibers94-]-r, T. M. Vijaya-shanthi, R. Sankaranarayanan, S. Mahalakshmy et al., Catalytic Hydrogenolysis of Alditols to Product Glycerol and Polyols US4, J. Environ. Chem. Eng, vol.366332, issue.3, pp.1752-1757, 1981.

]. K. Tajvidi, P. J. Hausoul, and R. Palkovits, , pp.1311-1318, 2014.

]. B. Blanc, A. Bourrel, P. Gallezot, T. Haas, P. Taylor et al., , pp.89-91, 2000.

]. Z. Zhou, X. Li, T. Zeng, W. Hong, Z. Cheng et al., Kinetics of Hydrogenolysis of Glycerol to Propylene Glycol over Cu-ZnO-Al2O3 Catalysts, Chinese Journal of Chemical Engineering, vol.18, issue.3, pp.384-390, 2010.
DOI : 10.1016/S1004-9541(10)60235-2

]. X. Wang, F. Wu, S. Yao, Y. Jiang, J. Guan et al., Ni???Cu/ZnO-catalyzed Hydrogenolysis of Cellulose for the Production of 1,2-Alkanediols in Hot Compressed Water, Chemistry Letters, vol.41, issue.5, pp.476-478, 2012.
DOI : 10.1246/cl.2012.476

]. Z. Huang, J. Chen, Y. Jia, H. Liu, C. Xia et al., Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over copper catalysts, Applied Catalysis B: Environmental, vol.147, pp.377-386, 2014.
DOI : 10.1016/j.apcatb.2013.09.014

H. Liu, Z. Huang, C. Xia, Y. Jia, J. Chen et al., , pp.2918-2928, 2014.

Y. Jia, H. Liu, and C. J. Catal, , pp.1552-1559, 2015.

X. Jin, J. Shen, W. Yan, M. Zhao, P. S. Thapa et al., , pp.6545-6558, 2015.

X. Jin, B. Subramaniam, and R. V. Chaudhari, Novel Materials for Catalysis and Fuels Processing

S. Wang, K. Yin, Y. Zhang, and H. Liu, , pp.2112-2121, 2013.

W. C. Ketchie, E. P. Maris, and R. J. Davis, In-situ X-ray Absorption Spectroscopy of Supported Ru Catalysts in the Aqueous Phase, Chemistry of Materials, vol.19, issue.14, pp.3406-3411, 2007.
DOI : 10.1021/cm0702868

I. Leo, M. López-granados, J. L. Fierro, and R. , Appl. Catal. B Environ, vol.185, pp.141-149, 2016.

I. M. Leo, M. L. Granados, J. L. Fierro, R. Mariscal, and C. J. Catal, , pp.614-621, 2014.

L. Zhao, J. H. Zhou, Z. J. Sui, and X. G. Zhou, Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst, Chemical Engineering Science, vol.65, issue.1, pp.30-35, 2010.
DOI : 10.1016/j.ces.2009.03.026

J. Zhou, G. Liu, Z. Sui, X. Zhou, and W. Yuan, J. Catal, vol.35, pp.692-702, 2014.

F. Auneau, M. Berchu, G. Aubert, C. Pinel, M. Besson et al., Exploring the reaction conditions for Ru/C catalyzed selective hydrogenolysis of xylitol alkaline aqueous solutions to glycols in a trickle-bed reactor, Catalysis Today, vol.234, pp.100-106, 2014.
DOI : 10.1016/j.cattod.2013.12.039

URL : https://hal.archives-ouvertes.fr/hal-01057462

R. A. Sheldon and G. Chem, , p.1273, 2007.

R. A. Sheldon and J. P. Sanders, Toward concise metrics for the production of chemicals from renewable biomass, Catalysis Today, vol.239, pp.3-6, 2015.
DOI : 10.1016/j.cattod.2014.03.032

B. Zhang, Y. Zhu, G. Ding, H. Zheng, Y. Li et al., , pp.14-3402, 2012.

T. Tsuchida, J. Kubo, T. Yoshioka, S. Sakuma, T. Takeguchi et al., Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst, Journal of Catalysis, vol.259, issue.2, pp.183-189, 2008.
DOI : 10.1016/j.jcat.2008.08.005

Y. Sun, H. Fu, D. Zhang, R. Li, H. Chen et al., Complete hydrogenation of quinoline over hydroxyapatite supported ruthenium catalyst, Catalysis Communications, vol.12, issue.3, pp.188-192, 2010.
DOI : 10.1016/j.catcom.2010.09.005

F. Nea?u, N. Petrea, R. Petre, V. Somoghi, M. Florea et al., Oxidation of 5-hydroxymethyl furfural to 2,5-diformylfuran in aqueous media over heterogeneous manganese based catalysts, Catalysis Today, vol.278, pp.66-73, 2016.
DOI : 10.1016/j.cattod.2016.03.031

D. Li, R. Li, M. Lu, X. Lin, Y. Zhan et al., Appl. Catal. B, pp.566-577, 0200.

K. S. Sing, D. H. Everett, R. A. Haul, L. Moscou, R. A. Pierotti et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and Applied Chemistry, vol.57, issue.4, pp.603-619, 1985.
DOI : 10.1351/pac198557040603

J. Jae, G. A. Tompsett, A. J. Foster, K. D. Hammond, S. M. Auerbach et al., Investigation into the shape selectivity of zeolite catalysts for biomass conversion, Journal of Catalysis, vol.279, issue.2, pp.257-268, 2011.
DOI : 10.1016/j.jcat.2011.01.019

T. Trinh, J. De-hemptinne, R. Lugo, N. Ferrando, and J. Passarello, Hydrogen Solubility in Hydrocarbon and Oxygenated Organic Compounds, Journal of Chemical & Engineering Data, vol.61, issue.1, pp.19-34, 2016.
DOI : 10.1021/acs.jced.5b00119

A. Torres, D. Roy, B. Subramaniam, and R. V. Chaudhari, Kinetic Modeling of Aqueous-Phase Glycerol Hydrogenolysis in a Batch Slurry Reactor, Industrial & Engineering Chemistry Research, vol.49, issue.21, pp.10826-10835, 2010.
DOI : 10.1021/ie100553b

J. W. Shabaker, G. W. Huber, R. R. Davda, R. D. Cortright, and J. A. Dumesic, Catalysis Letters, vol.88, issue.1/2, pp.1-8, 2003.
DOI : 10.1023/A:1023538917186

E. Ruiz-agudo, K. Kud?acz, C. V. Putnis, A. Putnis, and C. Rodriguez-navarro, ] Single Crystals, Environmental Science & Technology, vol.47, issue.19, pp.11342-11349, 2013.
DOI : 10.1021/es402061c

K. Vance, G. Falzone, I. Pignatelli, M. Bauchy, M. Balonis et al., : Implications for Carbon-Neutral Cementation, Industrial & Engineering Chemistry Research, vol.54, issue.36, pp.8908-8918, 2015.
DOI : 10.1021/acs.iecr.5b02356

X. Jin, P. S. Thapa, B. Subramaniam, R. V. Chaudhari, and . Acs-sustain, Chem. Eng, vol.4, pp.6037-6047, 2016.

J. Zhang, F. Lu, W. Yu, R. Lu, and J. Xu, J. Catal, vol.37, pp.177-183, 2016.

M. Ishikawa, M. Tamura, Y. Nakagawa, and K. Tomishige, Appl. Catal. B Environ, vol.2016, issue.182, pp.193-203

C. Liu, C. Zhang, S. Sun, K. Liu, S. Hao et al., , pp.4612-4623, 2015.

T. Deng, H. Liu, and G. Chem, , pp.116-124, 2013.

A. M. Frey, J. Yang, C. Feche, N. Essayem, D. R. Stellwagen et al., Influence of base strength on the catalytic performance of nano-sized alkaline earth metal oxides supported on carbon nanofibers, Journal of Catalysis, vol.305, pp.1-6, 2013.
DOI : 10.1016/j.jcat.2013.04.019

URL : https://hal.archives-ouvertes.fr/hal-01277435

S. G. Wettstein, J. Q. Bond, D. M. Alonso, H. N. Pham, A. K. Datye et al., Appl. Catal. B Environ, vol.2012, pp.117-118

M. A. Alvarez-merino, F. Carrasco-marín, J. L. Fierro, and C. Moreno-castilla, Tungsten catalysts supported on activated carbonI. Preparation and characterization after their heat treatments in inert atmosphere, Journal of Catalysis, vol.192, issue.2, pp.363-373, 2000.
DOI : 10.1006/jcat.2000.2842

E. I. Ross-medgaarden and I. E. Wachs, Structural Determination of Bulk and Surface Tungsten Oxides with UV???vis Diffuse Reflectance Spectroscopy and Raman Spectroscopy, The Journal of Physical Chemistry C, vol.111, issue.41, pp.15089-15099, 2007.
DOI : 10.1021/jp074219c

A. C. Silva, A. P. De-sousa, J. D. Ardisson, H. G. Siebald, E. Moura et al., N. D. S. Mohallem, R. M. Lago, Mater. Res, vol.6, pp.137-144, 2003.

D. L. Hoang, S. A. Farrage, J. Radnik, M. Pohl, M. Schneider et al., A comparative study of zirconia and alumina supported Pt and Pt???Sn catalysts used for dehydrocyclization of n-octane, Applied Catalysis A: General, vol.333, issue.1, pp.67-77, 2007.
DOI : 10.1016/j.apcata.2007.09.003

J. Hem, , p.71

E. R. Stobbe, B. A. De-boer, and J. W. Geus, The reduction and oxidation behaviour of manganese oxides, Catalysis Today, vol.47, issue.1-4, pp.161-167, 1999.
DOI : 10.1016/S0920-5861(98)00296-X

C. Hu, Y. Wu, and K. Chang, and MnOOH Single Crystals: Determinant Influence of Oxidants, Chemistry of Materials, vol.20, issue.9, pp.2890-2894, 2008.
DOI : 10.1021/cm703245k

A. Navrotsky, C. Ma, K. Lilova, and N. Birkner, Nanophase Transition Metal Oxides Show Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria, Science, vol.88, issue.6001, pp.199-201, 2010.
DOI : 10.2138/am-2003-5-613

N. Birkner and A. Navrotsky, Am. Mineral, vol.2012, issue.97, pp.1291-1298

J. Mikkola, T. Salmi, R. Sjöholm, and J. , Effects of solvent polarity on the hydrogenation of xylose, Journal of Chemical Technology & Biotechnology, vol.1, issue.1, pp.90-100, 2001.
DOI : 10.1002/aic.690010222

G. Zhao, M. Zheng, R. Sun, Z. Tai, J. Pang et al., Ethylene glycol production from glucose over W-Ru catalysts: Maximizing yield by kinetic modeling and simulation, AIChE Journal, vol.251, issue.6, pp.2072-2080, 2017.
DOI : 10.1016/S0926-860X(03)00587-8

C. Liu, C. Zhang, S. Hao, S. Sun, K. Liu et al., WO x modified Cu/Al 2 O 3 as a high-performance catalyst for the hydrogenolysis of glucose to 1,2-propanediol, Catalysis Today, vol.261, pp.116-127, 2015.
DOI : 10.1016/j.cattod.2015.06.030

Y. Hirano, K. Sagata, and Y. Kita, Selective transformation of glucose into propylene glycol on Ru/C catalysts combined with ZnO under low hydrogen pressures, Applied Catalysis A: General, vol.502, pp.1-7, 2015.
DOI : 10.1016/j.apcata.2015.05.008

P. A. Lazaridis, S. Karakoulia, A. Delimitis, S. M. Coman, V. I. Parvulescu et al., d -Glucose hydrogenation/hydrogenolysis reactions on noble metal (Ru, Pt)/activated carbon supported catalysts, Catalysis Today, vol.257, pp.281-290, 2015.
DOI : 10.1016/j.cattod.2014.12.006

C. Liu, C. Zhang, K. Liu, Y. Wang, G. Fan et al., Aqueous-phase hydrogenolysis of glucose to??value-added chemicals and biofuels: A comparative study of active metals, Biomass and Bioenergy, vol.72, pp.189-199, 2015.
DOI : 10.1016/j.biombioe.2014.11.005

J. Mikkola, T. Salmi, R. Sjöholm, and J. , Modelling of kinetics and mass transfer in the hydrogenation of xylose over Raney nickel catalyst, Journal of Chemical Technology & Biotechnology, vol.1, issue.7, pp.655-662, 1999.
DOI : 10.1002/aic.690010222

G. Zhao, M. Zheng, J. Zhang, A. Wang, and T. Zhang, Catalytic Conversion of Concentrated Glucose to Ethylene Glycol with Semicontinuous Reaction System, Industrial & Engineering Chemistry Research, vol.52, issue.28, pp.9566-9572, 2013.
DOI : 10.1021/ie400989a

R. O. Neill, M. N. Ahmad, L. Vanoye, and F. Aiouache, Ind. Eng. Chem. Res, vol.48, pp.4300-4306, 2009.

C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 1990.

F. P. Byrne, S. Jin, G. Paggiola, T. H. Petchey, J. H. Clark et al.,

L. Shuai and J. Luterbacher, ChemSusChem, vol.2016, issue.9, pp.133-155

A. Bienholz, F. Schwab, P. Claus, and G. Chem, , pp.290-295, 2010.

C. Wang, H. Jiang, C. Chen, R. Chen, and W. Xing, Solvent effect on hydrogenolysis of glycerol to 1,2-propanediol over Cu???ZnO catalyst, Chemical Engineering Journal, vol.264, pp.344-350, 2015.
DOI : 10.1016/j.cej.2014.11.113

C. Capello, U. Fischer, K. Hungerbühler, and G. Chem, , pp.927-934, 2007.

C. Hammond and G. Chem, , pp.2711-2728, 2017.

R. Garcia-muelas, Q. Li, and N. López, , pp.1027-1036, 2015.

N. Sieffert, R. Réocreux, P. Lorusso, D. J. Cole-hamilton, M. Bühl et al., J, vol.20, pp.4141-4155, 2014.

D. Loffreda, C. Michel, F. Delbecq, and P. Sautet, Tuning catalytic reactivity on metal surfaces: Insights from DFT, Journal of Catalysis, vol.308, pp.374-385, 2013.
DOI : 10.1016/j.jcat.2013.08.011

URL : https://hal.archives-ouvertes.fr/hal-01116788

N. K. Sinha and M. Neurock, J. Catal, vol.2012, issue.295, pp.31-44

J. Iglesias, J. A. Melero, G. Morales, M. Paniagua, and B. Hernandez, , pp.2089-2099, 2016.

N. Perret, A. Grigoropoulos, M. Zanella, T. D. Manning, J. B. Claridge et al., ChemSusChem, vol.2016, pp.1-12

M. Ibáñez, M. Artetxe, G. Lopez, G. Elordi, J. Bilbao et al., Appl. Catal. B Environ, vol.2014, pp.148-149

I. Kozhevnikov, S. Holmes, and M. R. Siddiqui, Coking and regeneration of H3PW12O40/SiO2 catalysts, Applied Catalysis A: General, vol.214, issue.1, pp.47-58, 2001.
DOI : 10.1016/S0926-860X(01)00469-0

G. M. Van-druten and V. Ponec, Hydrogenation of carbonylic compounds, Applied Catalysis A: General, vol.191, issue.1-2, pp.153-162, 2000.
DOI : 10.1016/S0926-860X(99)00316-6

G. M. Van-druten and V. Ponec, Hydrogenation of carbonylic compounds, Applied Catalysis A: General, vol.191, issue.1-2, pp.163-176, 2000.
DOI : 10.1016/S0926-860X(99)00317-8

R. Alcalá, J. Greeley, M. Mavrikakis, and J. A. Dumesic, Density-functional theory studies of acetone and propanal hydrogenation on Pt(111), The Journal of Chemical Physics, vol.13, issue.20, pp.8973-8980, 2002.
DOI : 10.1016/S0926-860X(01)00844-4

C. Michel, J. Zaffran, A. M. Ruppert, J. Matras-michalska, M. J. ?-drzejczyk et al., Chem. Commun, vol.50, pp.2014-12450

V. Rekha, N. Raju, C. Sumana, S. Douglas, and N. Lingaiah, Selective Hydrogenolysis of Glycerol Over Cu???ZrO2???MgO Catalysts, Catalysis Letters, vol.49, issue.8, pp.1487-1496, 2016.
DOI : 10.1021/ie100553b

W. Du, L. Zheng, X. Li, J. Fu, and X. Lu, Plate-like Ni???Mg???Al layered double hydroxide synthesized via a solvent-free approach and its application in hydrogenolysis of D-sorbitol, Applied Clay Science, vol.123, pp.166-172, 2016.
DOI : 10.1016/j.clay.2016.01.032

E. Girard, D. Delcroix, and A. Cabiac, glycols by dual association of a homogeneous metallic salt and a perovskite-supported platinum catalyst, Catalysis Science & Technology, vol.59, issue.149, pp.5534-5542
DOI : 10.1021/jo00092a017

URL : https://hal.archives-ouvertes.fr/hal-01397785

S. Zhu, X. Gao, Y. Zhu, Y. Li, and G. Chem, , pp.782-791, 2016.

H. Abimanyu, C. S. Kim, B. S. Ahn, and K. S. Yoo, Synthesis of dimethyl carbonate by transesterification with various MgO???CeO2 mixed oxide catalysts, Catalysis Letters, vol.106, issue.1-2, pp.30-35, 2007.
DOI : 10.1016/S1387-1811(98)00099-7

V. R. Choudhary and V. H. Rane, Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons, Journal of Catalysis, vol.130, issue.2, pp.411-422, 1991.
DOI : 10.1016/0021-9517(91)90124-M

S. Bancquart, C. Vanhove, Y. Pouilloux, and J. Barrault, Glycerol transesterification with methyl stearate over solid basic catalysts, Applied Catalysis A: General, vol.218, issue.1-2, pp.1-11, 2001.
DOI : 10.1016/S0926-860X(01)00579-8

S. Sato, R. Takahashi, M. Kobune, and H. Gotoh, Basic properties of rare earth oxides, Applied Catalysis A: General, vol.356, issue.1, pp.57-63, 2009.
DOI : 10.1016/j.apcata.2008.12.019

B. Yeong, X. Junmin, and J. Wang, Mechanochemical Synthesis of Hydroxyapatite from Calcium Oxide and Brushite, Journal of the American Ceramic Society, vol.77, issue.1-4, pp.465-467, 2001.
DOI : 10.2109/jcersj1950.95.1103_741

S. Miyata, Clays Clay Miner, pp.50-56, 1980.

D. G. Cantrell, L. J. Gillie, A. F. Lee, and K. Wilson, Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis, Applied Catalysis A: General, vol.287, issue.2, pp.183-190, 2005.
DOI : 10.1016/j.apcata.2005.03.027

Y. Lin, M. O. Adebajo, R. L. Frost, and J. T. Kloprogge, Thermogravimetric analysis of hydrotalcites based on the takovite formula NixZn6-xAl2(OH)16(CO3)??4H2O, Journal of Thermal Analysis and Calorimetry, vol.81, issue.1, pp.83-89, 2005.
DOI : 10.1007/s10973-005-0749-8

K. Rozov, U. Berner, C. Taviot-gueho, F. Leroux, G. Renaudin et al., Synthesis and characterization of the LDH hydrotalcite???pyroaurite solid-solution series, Cement and Concrete Research, vol.40, issue.8, pp.1248-1254, 2010.
DOI : 10.1016/j.cemconres.2009.08.031

W. Xie, H. Peng, and L. Chen, Calcined Mg???Al hydrotalcites as solid base catalysts for methanolysis of soybean oil, Journal of Molecular Catalysis A: Chemical, vol.246, issue.1-2, pp.24-32, 2006.
DOI : 10.1016/j.molcata.2005.10.008

Y. Wang, K. Yu, D. Lei, W. Si, Y. Feng et al., Chem. Eng, vol.4, pp.4752-4761, 2016.

S. Aisawa, H. Hirahara, H. Uchiyama, S. Takahashi, and E. Narita, Synthesis and Thermal Decomposition of Mn???Al Layered Double Hydroxides, Journal of Solid State Chemistry, vol.167, issue.1, pp.152-159, 2002.
DOI : 10.1006/jssc.2002.9637

D. M. Robinson, Y. B. Go, M. Mui, G. Gardner, Z. Zhang et al., Photochemical Water Oxidation by Crystalline Polymorphs of Manganese Oxides: Structural Requirements for Catalysis, Journal of the American Chemical Society, vol.135, issue.9, pp.3494-3501, 2013.
DOI : 10.1021/ja310286h

T. Gao, P. Norby, F. Krumeich, H. Okamoto, R. Nesper et al., Nanorods, The Journal of Physical Chemistry C, vol.114, issue.2, pp.922-928, 2010.
DOI : 10.1021/jp9097606

D. Jeong, K. Jin, S. E. Jerng, H. Seo, D. Kim et al., , pp.4624-4628, 2015.

V. Mazzieri, F. Coloma-pascual, A. Arcoya, P. C. L-'argentière, and N. S. Figoli, XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts, Applied Surface Science, vol.210, issue.3-4, pp.222-230, 2003.
DOI : 10.1016/S0169-4332(03)00146-6

M. Manr?quez, T. López, R. Gómez, and J. Navarrete, Preparation of TiO2???ZrO2 mixed oxides with controlled acid???basic properties, Journal of Molecular Catalysis A: Chemical, vol.220, issue.2, pp.229-237, 2004.
DOI : 10.1016/j.molcata.2004.06.003

T. Sugimoto, X. Zhou, and A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel???sol method, Journal of Colloid and Interface Science, vol.259, issue.1, pp.43-52, 2003.
DOI : 10.1016/S0021-9797(03)00036-5

S. Mahshid, M. Askari, M. S. Ghamsari, and J. Mater, Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution, Journal of Materials Processing Technology, vol.189, issue.1-3, pp.296-300, 2007.
DOI : 10.1016/j.jmatprotec.2007.01.040

M. Watanabe, Y. Aizawa, T. Iida, R. Nishimura, and H. Inomata, Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473K: Relationship between reactivity and acid???base property determined by TPD measurement, Applied Catalysis A: General, vol.295, issue.2, pp.150-156, 2005.
DOI : 10.1016/j.apcata.2005.08.007

S. Wang and H. Liu, Selective hydrogenolysis of glycerol to propylene glycol on Cu???ZnO catalysts, Catalysis Letters, vol.14, issue.1-2, pp.62-67, 2007.
DOI : 10.1007/s10562-007-9106-9

N. C. Nelson, J. S. Manzano, and I. I. Slowing, Deactivation of Ceria Supported Palladium through C???C Scission during Transfer Hydrogenation of Phenol with Alcohols, The Journal of Physical Chemistry C, vol.120, issue.49, pp.28067-28073, 2016.
DOI : 10.1021/acs.jpcc.6b09828

M. Rivière, N. Perret, A. Cabiac, D. Delcroix, C. Pinel et al., ChemCatChem, vol.2017, issue.9, pp.2145-2159

L. Foppa and J. Dupont, Chem. Soc. Rev. 2015, vol.44, pp.1886-1897

J. Zhang, B. Hou, A. Wang, Z. Li, H. Wang et al., AIChE J, vol.2014, issue.60, pp.3804-3813

N. Paksung, R. Nagano, and Y. Matsumura, Energy & Fuels, vol.2016, issue.30, pp.7930-7936

P. W. Menezes, A. Indra, P. Littlewood, M. Schwarze, C. Göbel et al., , pp.2202-2213, 2014.

H. Xiong, H. N. Pham, and A. K. Datye, A facile approach for the synthesis of niobia/carbon composites having improved hydrothermal stability for aqueous-phase reactions, Journal of Catalysis, vol.302, pp.93-100, 2013.
DOI : 10.1016/j.jcat.2013.03.007