I. Abaeva, T. Pestova, and C. Hellen, Attachment of ribosomal complexes and retrograde scanning during initiation on the Halastavi ??rva virus IRES, Nucleic Acids Research, vol.65, issue.5, pp.2362-2377, 2016.
DOI : 10.1016/j.virusres.2008.07.017

I. Ali, L. Mckendrick, S. Morley, and R. Jackson, Activity of the Hepatitis A Virus IRES Requires Association between the Cap-Binding Translation Initiation Factor (eIF4E) and eIF4G, Journal of Virology, vol.75, issue.17, pp.7854-7863, 2001.
DOI : 10.1128/JVI.75.17.7854-7863.2001

R. Amorim, S. Costa, N. Cavaleiro, E. Da-silva, and L. Da-costa, HIV-1 Transcripts Use IRES-Initiation under Conditions Where Cap-Dependent Translation Is Restricted by Poliovirus 2A Protease, PLoS ONE, vol.8, issue.2, p.88619, 2014.
DOI : 10.1371/journal.pone.0088619.g008

J. Angulo, N. Ulryck, J. Deforges, N. Chamond, M. Lopez-lastra et al., LOOP IIId of the HCV IRES is essential for the structural rearrangement of the 40S-HCV IRES complex, Nucleic Acids Research, vol.262, issue.3, pp.1309-1325, 2016.
DOI : 10.1093/bioinformatics/btp250

L. Balvay, M. Lastra, B. Sargueil, J. Darlix, and T. Ohlmann, Translational control of retroviruses, Nature Reviews Microbiology, vol.108, issue.2, pp.128-140, 2007.
DOI : 10.1083/jcb.108.2.229

URL : https://hal.archives-ouvertes.fr/hal-00136396

A. Bansal, J. Carlson, J. Yan, O. Akinsiku, M. Schaefer et al., , p.8, 2010.

, T cell response and evolutionary pressure to HIV-1 cryptic epitopes derived from antisense transcription, The Journal of experimental medicine, vol.207, pp.51-59

F. Baudin, R. Marquet, C. Isel, J. Darlix, B. Ehresmann et al., Functional Sites in the 5??? Region of Human Immunodeficiency Virus Type 1 RNA Form Defined Structural Domains, Journal of Molecular Biology, vol.229, issue.2, pp.382-397, 1993.
DOI : 10.1006/jmbi.1993.1041

C. Berger, J. Carlson, C. Brumme, K. Hartman, Z. Brumme et al., Viral adaptation to immune selection pressure by HLA class I???restricted CTL responses targeting epitopes in HIV frameshift sequences, The Journal of Experimental Medicine, vol.70, issue.1, pp.61-75, 2010.
DOI : 10.1128/JVI.80.6.3122-3125.2006

B. Berkhout, Structure and Function of the Human Immunodeficiency Virus Leader RNA, Prog Nucleic Acid Res Mol Biol, vol.54, pp.1-34, 1996.
DOI : 10.1016/S0079-6603(08)60359-1

B. Berkhout and F. Van-hemert, The unusual nucleotide content of the HIV RNA genome results in a biased amino acid composition of HIV proteins, Nucleic Acids Research, vol.22, issue.9, pp.1705-1711, 1994.
DOI : 10.1093/nar/22.9.1705

C. Bolinger, A. Sharma, D. Singh, L. Yu, and K. Boris-lawrie, RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions, Nucleic Acids Research, vol.74, issue.5, pp.1686-1696, 2010.
DOI : 10.1128/JVI.74.17.8111-8118.2000

A. Borman, Y. Michel, and K. Kean, Detailed Analysis of the Requirements of Hepatitis A Virus Internal Ribosome Entry Segment for the Eukaryotic Initiation Factor Complex eIF4F, Journal of Virology, vol.75, issue.17, pp.7864-7871, 2001.
DOI : 10.1128/JVI.75.17.7864-7871.2001

A. Brasey, M. Lopez-lastra, T. Ohlmann, N. Beerens, B. Berkhout et al., The Leader of Human Immunodeficiency Virus Type 1 Genomic RNA Harbors an Internal Ribosome Entry Segment That Is Active during the G2/M Phase of the Cell Cycle, Journal of Virology, vol.77, issue.7, pp.3939-3949, 2003.
DOI : 10.1128/JVI.77.7.3939-3949.2003

C. Buck, X. Shen, M. Egan, T. Pierson, C. Walker et al., The Human Immunodeficiency Virus Type 1 gag Gene Encodes an Internal Ribosome Entry Site, Journal of Virology, vol.75, issue.1, pp.181-191, 2001.
DOI : 10.1128/JVI.75.1.181-191.2001

C. Caceres, N. Contreras, J. Angulo, J. Vera-otarola, C. Pino-ajenjo et al., Polypyrimidine tract-binding protein binds to the 5'untranslated region of the mouse mammary tumor virus mRNA and stimulates capindependent translation initiation, The FEBS journal, 2016.

S. Cardinaud, G. Consiglieri, R. Bouziat, A. Urrutia, S. Graff-dubois et al., CTL Escape Mediated by Proteasomal Destruction of an HIV-1 Cryptic Epitope, PLoS Pathogens, vol.108, issue.12, p.1002049, 2011.
DOI : 10.1371/journal.ppat.1002049.s003

URL : https://hal.archives-ouvertes.fr/pasteur-01372493

S. Cardinaud, A. Moris, M. Fevrier, P. Rohrlich, L. Weiss et al., Identification of Cryptic MHC I???restricted Epitopes Encoded by HIV-1 Alternative Reading Frames, The Journal of Experimental Medicine, vol.157, issue.8, pp.1053-1063, 2004.
DOI : 10.1126/science.1089553

URL : https://hal.archives-ouvertes.fr/pasteur-01372661

F. Carvajal, M. Vallejos, B. Walters, N. Contreras, M. Hertz et al., Structural domains within the HIV-1 mRNA and the ribosomal protein S25 influence cap-independent translation initiation, The FEBS Journal, vol.50, issue.Suppl 5, pp.2508-2527, 2016.
DOI : 10.1038/nprot.2007.132

N. Chamond, J. Deforges, N. Ulryck, and B. Sargueil, 40S recruitment in the absence of eIF4G/4A by EMCV IRES refines the model for translation initiation on the archetype of Type II IRESs, Nucleic Acids Research, vol.41, issue.16, pp.10373-10384, 2014.
DOI : 10.1093/nar/gkt632

URL : https://hal.archives-ouvertes.fr/hal-01067767

N. Chamond, N. Locker, and B. Sargueil, The different pathways of HIV genomic RNA translation, Biochemical Society Transactions, vol.38, issue.6, pp.1548-1552, 2010.
DOI : 10.1042/BST0381548

URL : http://www.biochemsoctrans.org/content/ppbiost/38/6/1548.full.pdf

B. Chesebro, K. Wehrly, J. Nishio, and S. Perryman, Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism, J Virol, vol.66, pp.6547-6554, 1992.

D. Costantino, J. Pfingsten, R. Rambo, and J. Kieft, tRNA???mRNA mimicry drives translation initiation from a viral IRES, Nature Structural & Molecular Biology, vol.276, issue.1, pp.57-64, 2008.
DOI : 10.1261/rna.7214405

URL : http://europepmc.org/articles/pmc2748805?pdf=render

C. Daude, D. Decimo, M. Trabaud, P. Andre, T. Ohlmann et al., HIV-1 sequences isolated from patients promote expression of shorter isoforms of the Gag polyprotein In vitro studies reveal that different modes of initiation on HIV-1 mRNA have different levels of requirement for eIF4F, Arch Virol de Breyne S The FEBS journal, vol.279, pp.3098-3111, 2012.

S. De-breyne, R. Soto-rifo, M. Lopez-lastra, and T. Ohlmann, Translation initiation is driven by different mechanisms on the HIV-1 and HIV-2 genomic RNAs, Virus Research, vol.171, issue.2, pp.366-381, 2013.
DOI : 10.1016/j.virusres.2012.10.006

URL : https://hal.archives-ouvertes.fr/hal-00965625

S. De-breyne, Y. Yu, A. Unbehaun, T. Pestova, and C. Hellen, Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites, Proceedings of the National Academy of Sciences, vol.168, issue.2, pp.9197-9202, 2009.
DOI : 10.1016/0042-6822(89)90259-6

J. Deforges, N. Chamond, and B. Sargueil, Structural investigation of HIV-1 genomic RNA dimerization process reveals a role for the Major Splice-site Donor stem loop, Biochimie, vol.94, issue.7, pp.1481-1489, 2012.
DOI : 10.1016/j.biochi.2012.02.009

A. Dirac, H. Huthoff, J. Kjems, and B. Berkhout, Regulated HIV-2 RNA dimerization by means of alternative RNA conformations, Nucleic Acids Research, vol.30, issue.12, pp.2647-2655, 2002.
DOI : 10.1093/nar/gkf381

URL : https://academic.oup.com/nar/article-pdf/30/12/2647/7053308/gkf381.pdf

S. Dmitriev, A. Pisarev, M. Rubtsova, Y. Dunaevsky, and I. Shatsky, Conversion of 48S translation preinitiation complexes into 80S initiation complexes as revealed by toeprinting, FEBS Letters, vol.11, issue.1, pp.99-104, 2003.
DOI : 10.1101/gad.11.18.2396

URL : http://onlinelibrary.wiley.com/doi/10.1016/S0014-5793(02)03776-6/pdf

Y. Dorokhov, M. Skulachev, P. Ivanov, S. Zvereva, L. Tjulkina et al., Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry, Proceedings of the National Academy of Sciences, vol.9, issue.5, pp.5301-5306, 2002.
DOI : 10.1105/tpc.9.5.809

URL : http://www.pnas.org/content/99/8/5301.full.pdf

I. Fernandez, X. Bai, G. Murshudov, S. Scheres, and V. Ramakrishnan, Initiation of Translation by Cricket Paralysis Virus IRES Requires Its Translocation in the Ribosome, Cell, vol.157, issue.4, pp.823-831, 2014.
DOI : 10.1016/j.cell.2014.04.015

K. Gendron, G. Ferbeyre, N. Heveker, and L. Brakier-gingras, The activity of the HIV-1 IRES is stimulated by oxidative stress and controlled by a negative regulatory element, Nucleic Acids Research, vol.31, issue.3, pp.902-912, 2011.
DOI : 10.1093/nar/gkg595

W. Gilbert, K. Zhou, T. Butler, and J. Doudna, Cap-Independent Translation Is Required for Starvation-Induced Differentiation in Yeast, Science, vol.144, issue.3, pp.1224-1227, 2007.
DOI : 10.1038/sj.onc.1207551

S. Guerrero, J. Batisse, C. Libre, S. Bernacchi, R. Marquet et al., HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus, Viruses, vol.267, issue.1, pp.199-218, 2015.
DOI : 10.1038/nsmb.1838

URL : http://www.mdpi.com/1999-4915/7/1/199/pdf

Y. Hashem, A. Georges, V. Dhote, R. Langlois, H. Liao et al., Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit, Nature, vol.1, issue.7477, pp.539-543, 2013.
DOI : 10.1002/jcc.540040211

URL : http://europepmc.org/articles/pmc4106463?pdf=render

L. Hellman and M. Fried, Electrophoretic mobility shift assay (EMSA) for detecting protein???nucleic acid interactions, Nature Protocols, vol.82, issue.8, pp.1849-1861, 2007.
DOI : 10.1074/jbc.M000266200

URL : http://europepmc.org/articles/pmc2757439?pdf=render

C. Herbreteau, L. Weill, D. Decimo, D. Prevot, J. Darlix et al., , 2005.

, genomic RNA contains a novel type of IRES located downstream of its initiation codon, Nat Struct Mol Biol, vol.12, pp.1001-1007

I. Hofacker, RNA secondary structure analysis using the Vienna RNA package. Current protocols in bioinformatics, pp.12-12, 2009.
DOI : 10.1002/0471250953.bi1202s04

R. Jackson, C. Hellen, and T. Pestova, The mechanism of eukaryotic translation initiation and principles of its regulation, Nature Reviews Molecular Cell Biology, vol.4, issue.2, pp.113-127, 2009.
DOI : 10.1128/MCB.16.12.6870

G. Miele, A. Mouland, G. Harrison, E. Cohen, and A. Lever, The human immunodeficiency virus type 1 5' packaging signal structure affects translation but does not function as an internal ribosome entry site structure, J Virol, vol.70, pp.944-951, 1996.

A. Monette, F. Valiente-echeverria, M. Rivero, E. Cohen, M. Lopez-lastra et al., Dual Mechanisms of Translation Initiation of the Full-Length HIV-1 mRNA Contribute to Gag Synthesis, PLoS ONE, vol.20, issue.7, p.68108, 2013.
DOI : 10.1371/journal.pone.0068108.s001

S. Mortimer and K. Weeks, A Fast-Acting Reagent for Accurate Analysis of RNA Secondary and Tertiary Structure by SHAPE Chemistry, Journal of the American Chemical Society, vol.129, issue.14, pp.4144-4145, 2007.
DOI : 10.1021/ja0704028

M. Nicholson, S. Rue, J. Clements, and S. Barber, An internal ribosome entry site promotes translation of a novel SIV Pr55(Gag) isoform, Virology, 2006.

E. Olivares, D. Landry, C. Caceres, K. Pino, F. Rossi et al., The 5' Untranslated Region of the Human T-Cell Lymphotropic Virus Type 1 mRNA Enables Cap-Independent Translation Initiation, Journal of Virology, vol.88, issue.11, pp.5936-5955, 2014.
DOI : 10.1128/JVI.00279-14

Z. Othman, M. Sulaiman, M. Willcocks, N. Ulryck, D. Blackbourn et al., Functional analysis of Kaposi's sarcoma???associated herpesvirus vFLIP expression reveals a new mode of IRES-mediated translation, RNA, vol.20, issue.11, pp.1803-1814, 2014.
DOI : 10.1261/rna.045328.114

N. Parkin, E. Cohen, A. Darveau, C. Rosen, W. Haseltine et al., Mutational analysis of the 5' non-coding region of human immunodeficiency virus type 1: effects of secondary structure on translation, EMBO J, vol.7, pp.2831-2837, 1988.

J. Pelletier and N. Sonenberg, Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA, Nature, vol.334, issue.6180, pp.320-325, 1988.
DOI : 10.1038/334320a0

T. Pestova, I. Shatsky, S. Fletcher, R. Jackson, and C. Hellen, A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initation of hepatitis C and classical swine fever virus??RNAs, Genes & Development, vol.12, issue.1, pp.67-83, 1998.
DOI : 10.1101/gad.12.1.67

T. Pestova, I. Shatsky, and C. Hellen, Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes., Molecular and Cellular Biology, vol.16, issue.12, pp.6870-6878, 1996.
DOI : 10.1128/MCB.16.12.6870

T. Plank, J. Whitehurst, and J. Kieft, Cell type specificity and structural determinants of IRES activity from the 5??? leaders of different HIV-1 transcripts, Nucleic Acids Research, vol.39, issue.13, pp.6698-6714, 2013.
DOI : 10.1093/nar/gkr045

S. Pyronnet and N. Sonenberg, Cell-cycle-dependent translational control, Current Opinion in Genetics & Development, vol.11, issue.1, pp.13-18, 2001.
DOI : 10.1016/S0959-437X(00)00150-7

N. Quade, D. Boehringer, M. Leibundgut, J. Van-den-heuvel, and N. Ban, Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-?? resolution, Nature Communications, vol.515, issue.1, p.7646, 2015.
DOI : 10.1038/nmeth.2727

E. Ricci, C. Herbreteau, D. Decimo, A. Schaupp, S. Datta et al., In vitro expression of the HIV-2 genomic RNA is controlled by three distinct internal ribosome entry segments that are regulated by the HIV protease and the Gag polyprotein, RNA, vol.14, issue.7, pp.1443-1455, 2008.
DOI : 10.1261/rna.813608

E. Ricci, S. Rifo, R. Herbreteau, C. Decimo, D. Ohlmann et al., Lentiviral RNAs can use different mechanisms for translation initiation, Biochemical Society Transactions, vol.36, issue.4, pp.690-693, 2008.
DOI : 10.1042/BST0360690

B. Rojas-araya, T. Ohlmann, and R. Soto-rifo, Translational Control of the HIV Unspliced Genomic RNA, Viruses, vol.68, issue.8, pp.4326-4351, 2015.
DOI : 10.1128/JVI.02596-05

URL : https://hal.archives-ouvertes.fr/hal-01911126

S. Ryder, M. Recht, and J. Williamson, Quantitative Analysis of Protein-RNA Interactions by Gel Mobility Shift, Methods Mol Biol, vol.488, pp.99-115, 2008.
DOI : 10.1007/978-1-60327-475-3_7

A. Sharma, A. Yilmaz, K. Marsh, A. Cochrane, and K. Boris-lawrie, Thriving under Stress: Selective Translation of HIV-1 Structural Protein mRNA during Vpr-Mediated Impairment of eIF4E Translation Activity, PLoS Pathogens, vol.7, issue.3, p.1002612, 2012.
DOI : 10.1371/journal.ppat.1002612.s003

N. Shirokikh and A. Spirin, Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors, Proceedings of the National Academy of Sciences, vol.430, issue.19, pp.10738-10743, 2008.
DOI : 10.1016/S0076-6879(07)30007-4

N. Siegfried, S. Busan, G. Rice, J. Nelson, and K. Weeks, RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP), Nature Methods, vol.63, issue.9, pp.959-965, 2014.
DOI : 10.1093/bioinformatics/btr507

V. Smirnova, I. Terenin, A. Khutornenko, D. Andreev, S. Dmitriev et al., , 2016.

, HIV-1 mRNA 5'-untranslated region bear an internal ribosome entry site?, Biochimie, vol.121, pp.228-237

K. Sobczak, G. Michlewski, M. De-mezer, J. Krol, and W. Krzyzosiak, Trinucleotide repeat system for sequence specificity analysis of RNA structure probing reagents, Analytical Biochemistry, vol.402, issue.1, pp.40-46, 2010.
DOI : 10.1016/j.ab.2010.03.021

R. Soto-rifo, P. Rubilar, T. Limousin, S. De-breyne, D. Decimo et al., DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs, The EMBO Journal, vol.119, issue.18, pp.3745-3756, 2012.
DOI : 10.1016/j.cell.2004.09.029

URL : http://emboj.embopress.org/content/31/18/3745.full.pdf

R. Soto-rifo, P. Rubilar, and T. Ohlmann, The DEAD-box helicase DDX3 substitutes for the cap-binding protein eIF4E to promote compartmentalized translation initiation of the HIV-1 genomic RNA, Nucleic Acids Research, vol.16, issue.12, pp.6286-6299, 2013.
DOI : 10.1093/nar/16.18.8953

URL : https://hal.archives-ouvertes.fr/hal-00972286

K. Steen, G. Rice, and K. Weeks, Fingerprinting Noncanonical and Tertiary RNA Structures by Differential SHAPE Reactivity, Journal of the American Chemical Society, vol.134, issue.32, pp.13160-13163, 2012.
DOI : 10.1021/ja304027m

URL : http://europepmc.org/articles/pmc3425954?pdf=render

Y. Svitkin, A. Pause, and N. Sonenberg, La autoantigen alleviates translational repression by the 5' leader sequence of the human immunodeficiency virus type 1 mRNA, J Virol, vol.68, pp.7001-7007, 1994.

T. Sweeney, I. Abaeva, T. Pestova, and C. Hellen, The mechanism of translation initiation on Type 1 picornavirus IRESs, The EMBO Journal, vol.80, issue.1, pp.76-92, 2014.
DOI : 10.1099/0022-1317-80-9-2299

I. Terenin, S. Dmitriev, D. Andreev, E. Royall, G. Belsham et al., A Cross-Kingdom Internal Ribosome Entry Site Reveals a Simplified Mode of Internal Ribosome Entry, Molecular and Cellular Biology, vol.25, issue.17, pp.7879-7888, 2005.
DOI : 10.1128/MCB.25.17.7879-7888.2005

K. Toohey, K. Wehrly, J. Nishio, S. Perryman, and B. Chesebro, Human Immunodeficiency Virus Envelope V1 and V2 Regions Influence Replication Efficiency in Macrophages by Affecting Virus Spread, Virology, vol.213, issue.1, pp.70-79, 1995.
DOI : 10.1006/viro.1995.1547

URL : https://doi.org/10.1006/viro.1995.1547

M. Vallejos, J. Deforges, T. Plank, A. Letelier, P. Ramdohr et al., Activity of the human immunodeficiency virus type 1 cell cycle-dependent internal ribosomal entry site is modulated by IRES trans-acting factors, Nucleic Acids Research, vol.150, issue.2, pp.6186-6200, 2011.
DOI : 10.1083/jcb.150.2.349

M. Vallejos, P. Ramdohr, F. Valiente-echeverria, K. Tapia, F. Rodriguez et al., The 5'-untranslated region of the mouse mammary tumor virus mRNA exhibits cap-independent translation initiation, Nucleic Acids Research, vol.28, issue.3, pp.618-632, 2010.
DOI : 10.1016/j.molcel.2007.10.019

J. Watts, K. Dang, R. Gorelick, C. Leonard, J. Bess et al., Architecture and secondary structure of an entire HIV-1 RNA genome, Nature, vol.14, issue.7256, pp.711-716, 2009.
DOI : 10.1038/nature08237

URL : http://europepmc.org/articles/pmc2724670?pdf=render

K. Wehrly and B. Chesebro, p24 Antigen Capture Assay for Quantification of Human Immunodeficiency Virus Using Readily Available Inexpensive Reagents, Methods, vol.12, issue.4, pp.288-293, 1997.
DOI : 10.1006/meth.1997.0481

L. Weill, L. James, N. Ulryck, N. Chamond, C. Herbreteau et al., A new type of IRES within gag coding region recruits three initiation complexes on HIV-2 genomic RNA, Nucleic Acids Research, vol.32, issue.4, pp.1367-1381, 2010.
DOI : 10.1093/nar/gkh835

K. Wilkinson, R. Gorelick, S. Vasa, N. Guex, A. Rein et al., High-Throughput SHAPE Analysis Reveals Structures in HIV-1 Genomic RNA Strongly Conserved across Distinct Biological States, PLoS Biology, vol.45, issue.4, p.96, 2008.
DOI : 10.1371/journal.pbio.0060096.sg001

URL : https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0060096&type=printable

K. Wilkinson, E. Merino, and K. Weeks, Selective 2???-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution, Nature Protocols, vol.101, issue.3, pp.1610-1616, 2006.
DOI : 10.1038/nprot.2006.249

J. Wilson, T. Pestova, C. Hellen, and P. Sarnow, Initiation of Protein Synthesis from the A Site of the Ribosome, Cell, vol.102, issue.4, pp.511-520, 2000.
DOI : 10.1016/S0092-8674(00)00055-6

Z. Xu and D. Mathews, Secondary Structure Prediction of Single Sequences Using RNAstructure, Methods Mol Biol, vol.12, pp.15-34, 2016.
DOI : 10.1186/1471-2105-12-108

H. Yamamoto, A. Unbehaun, J. Loerke, E. Behrmann, M. Collier et al., Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA, Nature Structural & Molecular Biology, vol.483, issue.8, pp.721-727, 2014.
DOI : 10.1093/bioinformatics/bti770

A. Yilmaz, C. Bolinger, and K. Boris-lawrie, Retrovirus Translation Initiation: Issues and Hypotheses Derived from Study of HIV-1, Current HIV Research, vol.4, issue.2, pp.131-139, 2006.
DOI : 10.2174/157016206776055039

URL : http://europepmc.org/articles/pmc4863997?pdf=render

I. S. Abaeva, T. V. Pestova, and C. U. Hellen, Attachment of ribosomal complexes and retrograde scanning during initiation on the Halastavi árva virus IRES. Nucleic Acids Res44, pp.2362-2377, 2016.
DOI : 10.1093/nar/gkw016

URL : https://academic.oup.com/nar/article-pdf/44/5/2362/17438150/gkw016.pdf

L. G. Abrahamyan, L. Chatel-chaix, L. Ajamian, M. P. Milev, A. Monette et al., Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA, Journal of Cell Science, vol.123, issue.3, pp.369-383, 2010.
DOI : 10.1242/jcs.055897

URL : http://jcs.biologists.org/content/joces/123/3/369.full.pdf

C. E. Aitken and J. R. Lorsch, A mechanistic overview of translation initiation in eukaryotes, Nature Structural & Molecular Biology, vol.16, issue.6, pp.568-576, 2012.
DOI : 10.1186/1752-0509-5-131

I. K. Ali, L. Mckendrick, S. J. Morley, and R. J. Jackson, Activity of the Hepatitis A Virus IRES Requires Association between the Cap-Binding Translation Initiation Factor (eIF4E) and eIF4G, Journal of Virology, vol.75, issue.17, pp.7854-7863, 2001.
DOI : 10.1128/JVI.75.17.7854-7863.2001

E. Alvarez, A. Castelló, L. Menéndez-arias, and L. Carrasco, HIV protease cleaves poly(A)-binding protein, Biochemical Journal, vol.396, issue.2, pp.219-226, 2006.
DOI : 10.1042/BJ20060108

URL : https://hal.archives-ouvertes.fr/hal-00478519

E. C. Anderson and A. M. Lever, Human Immunodeficiency Virus Type 1 Gag Polyprotein Modulates Its Own Translation, Journal of Virology, vol.80, issue.21, pp.10478-10486, 2006.
DOI : 10.1128/JVI.02596-05

URL : http://jvi.asm.org/content/80/21/10478.full.pdf

J. Angulo, N. Ulryck, J. Deforges, N. Chamond, M. Lopez-lastra et al., LOOP IIId of the HCV IRES is essential for the structural rearrangement of the 40S-HCV IRES complex, Nucleic Acids Res44, pp.1309-1325, 2016.
DOI : 10.1093/bioinformatics/btp250

Y. Ariumi, Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection, Frontiers in Genetics, vol.8, issue.e65040, 2014.
DOI : 10.1371/journal.pone.0065040

URL : http://journal.frontiersin.org/article/10.3389/fgene.2014.00423/pdf

Y. Ariumi, M. Kuroki, K. Abe, H. Dansako, M. Ikeda et al., , 2007.

D. Dead-box, RNA Helicase Is Required for Hepatitis C Virus RNA Replication, J Virol81, pp.13922-13926

S. J. Arrigo and I. S. Chen, Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs., Genes & Development, vol.5, issue.5, pp.808-819, 1991.
DOI : 10.1101/gad.5.5.808

URL : http://genesdev.cshlp.org/content/5/5/808.full.pdf

B. W. Baer and R. D. Kornberg, Repeating structure of cytoplasmic poly(A)-ribonucleoprotein., Proceedings of the National Academy of Sciences, vol.77, issue.4, pp.1890-1892, 1980.
DOI : 10.1073/pnas.77.4.1890

L. Balvay, R. Soto-rifo, E. P. Ricci, D. Decimo, and T. Ohlmann, Structural and functional diversity of viral IRESes, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1789, issue.9-10, pp.542-557, 2009.
DOI : 10.1016/j.bbagrm.2009.07.005

J. Banroques, O. Cordin, M. Doère, P. Linder, and N. K. Tanner, Analyses of the Functional Regions of DEAD-Box RNA ???Helicases??? with Deletion and Chimera Constructs Tested In Vivo and In Vitro, Journal of Molecular Biology, vol.413, issue.2, pp.451-472, 2011.
DOI : 10.1016/j.jmb.2011.08.032

URL : https://hal.archives-ouvertes.fr/hal-00698927

F. Barré-sinoussi, J. C. Chermann, F. Rey, M. T. Nugeyre, S. Chamaret et al., , 1983.

, Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science220, pp.868-871

G. J. Belsham, G. M. Mcinerney, and N. Ross-smith, Foot-and-Mouth Disease Virus 3C Protease Induces Cleavage of Translation Initiation Factors eIF4A and eIF4G within Infected Cells, Journal of Virology, vol.74, issue.1, pp.272-280, 2000.
DOI : 10.1128/JVI.74.1.272-280.2000

URL : https://jvi.asm.org/content/74/1/272.full.pdf

B. Berkhout and J. L. Van-wamel, The leader of the HIV-1 RNA genome forms a compactly folded tertiary structure, RNA, vol.6, issue.2, pp.282-295, 2000.
DOI : 10.1017/S1355838200991684

B. Berkhout, K. Arts, and T. E. Abbink, Ribosomal scanning on the 5'- untranslated region of the human immunodeficiency virus RNA genome. Nucleic Acids Res39, pp.5232-5244, 2011.

K. E. Berry, S. Waghray, and J. A. Doudna, The HCV IRES pseudoknot positions the initiation codon on the 40S ribosomal subunit. RNA16, pp.1559-1569, 2010.

D. Boehringer, R. Thermann, A. Ostareck-lederer, J. D. Lewis, and H. Stark, , 2005.

, Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure13, pp.1695-1706

I. Boeras, Z. Song, A. Moran, J. Franklin, W. C. Brown et al.,

K. Lawrie and X. Heng, DHX9/RHA Binding to the PBS-Segment of the Genomic RNA during HIV-1 Assembly Bolsters Virion Infectivity, J Mol Biol428, pp.2418-2429, 2016.

C. Bolinger, A. Sharma, D. Singh, L. Yu, and K. Boris-lawrie, RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions. Nucleic Acids Res38, pp.1686-1696, 2010.

S. Bonnal, F. Pileur, C. Orsini, F. Parker, F. Pujol et al., Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA, J Biol, vol.280, pp.4144-4153, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00307810

K. L. Borden, B. Culjkovic-kraljacic, and L. Volpon, EIF4E (eukaryotic translation initiation factor 4E) Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2011.

A. M. Borman, Y. M. Michel, and K. M. Kean, Biochemical characterisation of cappoly(A ) synergy in rabbit reticulocyte lysates: the eIF4G-PABP interaction increases the functional affinity of eIF4E for the capped mRNA 5'-end. Nucleic Acids Res28, pp.4068-4075, 2000.

A. M. Borman, Y. M. Michel, and K. M. Kean, Detailed Analysis of the Requirements of Hepatitis A Virus Internal Ribosome Entry Segment for the Eukaryotic Initiation Factor Complex eIF4F, Journal of Virology, vol.75, issue.17, pp.7864-7871, 2001.
DOI : 10.1128/JVI.75.17.7864-7871.2001

P. Bossi, V. Martinez, C. Strady, and F. Bricaire, Actualit??s sur les traitements antir??troviraux, La Revue de M??decine Interne, vol.22, issue.1, pp.42-52, 2001.
DOI : 10.1016/S0248-8663(00)00284-8

G. W. Both, Y. Furuichi, S. Muthukrishnan, and A. J. Shatkin, Ribosome binding to reovirus mRNA in protein synthesis requires 5' terminal 7- methylguanosine. Cell6, pp.185-195, 1975.
DOI : 10.1016/0092-8674(75)90009-4

M. Bouvet, F. Ferron, I. Imbert, L. Gluais, B. Selisko et al., [Capping strategies in RNA viruses, Med Sci, vol.28, pp.423-429, 2012.

H. A. Bowers, P. A. Maroney, M. E. Fairman, and B. Kastner,

W. Jankowsky and E. , Discriminatory RNP remodeling by the DEAD-box protein DED1, pp.903-912, 2006.

M. Braddock, A. M. Thorburn, A. Chambers, G. D. Elliott, G. J. Anderson et al., A nuclear translational block imposed by the HIV-1 U3 region is relieved by the Tat-TAR interaction, Cell, vol.62, issue.6, pp.1123-1133, 1990.
DOI : 10.1016/0092-8674(90)90389-V

M. Braddock, R. Powell, A. D. Blanchard, A. J. Kingsman, and S. Kingsman,

M. , HIV-1 TAR RNA-binding proteins control TAT activation of translation in Xenopus oocytes, pp.214-222, 1993.

A. Brai, R. Fazi, C. Tintori, C. Zamperini, F. Bugli et al., Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents, Proceedings of the National Academy of Sciences, vol.73, issue.4, pp.5388-5393, 2016.
DOI : 10.3109/03602538608998295

URL : http://www.pnas.org/content/113/19/5388.full.pdf

A. Brasey, M. Lopez-lastra, T. Ohlmann, N. Beerens, B. Berkhout et al., The leader of human immunodeficiency virus type 1, 2003.

, genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle, J, vol.77, pp.3939-3949

S. De-breyne, N. Chamond, D. Décimo, M. Trabaud, P. André et al., studies reveal that different modes of initiation on HIV-1 mRNA have different levels of requirement for eukaryotic initiation factor???4F, FEBS Journal, vol.460, issue.17, pp.3098-3111, 2012.
DOI : 10.1038/nature08237

URL : https://hal.archives-ouvertes.fr/hal-00965629

S. De-breyne, R. Soto-rifo, M. López-lastra, and T. Ohlmann, Translation initiation is driven by different mechanisms on the HIV-1 and HIV-2 genomic RNAs, Virus Research, vol.171, issue.2, pp.366-381, 2013.
DOI : 10.1016/j.virusres.2012.10.006

URL : https://hal.archives-ouvertes.fr/hal-00965625

J. A. Briggs and H. Kräusslich, The Molecular Architecture of HIV, Journal of Molecular Biology, vol.410, issue.4, pp.491-500, 2011.
DOI : 10.1016/j.jmb.2011.04.021

J. Bruchfeld, M. Correia-neves, and G. Källenius, Tuberculosis and HIV Coinfection. Cold Spring Harb Perspect Med5, 2015.

N. J. Buchkovich, Y. Yu, C. A. Zampieri, and J. C. Alwine, The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K???Akt???mTOR signalling pathway, Nature Reviews Microbiology, vol.15, issue.4, pp.266-275, 2008.
DOI : 10.1099/0022-1317-80-6-1471

C. B. Buck, X. Shen, M. A. Egan, T. C. Pierson, C. M. Walker et al., The Human Immunodeficiency Virus Type 1 gag Gene Encodes an Internal Ribosome Entry Site, Journal of Virology, vol.75, issue.1, pp.181-191, 2001.
DOI : 10.1128/JVI.75.1.181-191.2001

URL : https://jvi.asm.org/content/75/1/181.full.pdf

M. Bushell, M. Stoneley, Y. W. Kong, T. L. Hamilton, K. A. Spriggs et al., Polypyrimidine Tract Binding Protein Regulates IRES-Mediated Gene Expression during Apoptosis, Molecular Cell, vol.23, issue.3, pp.401-412, 2006.
DOI : 10.1016/j.molcel.2006.06.012

URL : https://doi.org/10.1016/j.molcel.2006.06.012

V. Camerini, D. Decimo, L. Balvay, M. Pistello, M. Bendinelli et al., A Dormant Internal Ribosome Entry Site Controls Translation of Feline Immunodeficiency Virus, Journal of Virology, vol.82, issue.7, pp.3574-3583, 2008.
DOI : 10.1128/JVI.02038-07

A. Cammas, F. Pileur, S. Bonnal, S. M. Lewis, N. Lévêque et al., Cytoplasmic Relocalization of Heterogeneous Nuclear Ribonucleoprotein A1 Controls Translation Initiation of Specific mRNAs, Molecular Biology of the Cell, vol.100, issue.12, pp.5048-5059, 2007.
DOI : 10.1073/pnas.1432696100

E. M. Campbell and T. J. Hope, HIV-1 capsid: the multifaceted key player in HIV-1 infection, Nature Reviews Microbiology, vol.23, issue.8, pp.471-483, 2015.
DOI : 10.1016/j.tcb.2013.09.004

URL : http://europepmc.org/articles/pmc4876022?pdf=render

J. M. Caruthers, E. R. Johnson, and D. B. Mckay, Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase, Proceedings of the National Academy of Sciences, vol.277, issue.13, pp.13080-13085, 2000.
DOI : 10.1016/S0076-6879(97)77028-9

URL : http://www.pnas.org/content/97/24/13080.full.pdf

F. Carvajal, M. Vallejos, B. A. Walters, N. Contreras, M. I. Hertz et al., Structural domains within the HIV-1 mRNA and the ribosomal protein S25 influence capindependent translation initiation, Letelier, A. & other authors. FEBS J, 2016.
DOI : 10.1111/febs.13756

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1111/febs.13756

D. R. Cavener and S. C. Ray, Eukaryotic start and stop translation sites. Nucleic Acids Res19, pp.3185-3192, 1991.
DOI : 10.1093/nar/19.12.3185

URL : http://europepmc.org/articles/pmc328309?pdf=render

H. S. Chahar, S. Chen, and N. Manjunath, P-body components LSM1, GW182, DDX3, DDX6 and XRN1 are recruited to WNV replication sites and positively regulate viral replication, Virology, vol.436, issue.1, pp.1-7, 2013.
DOI : 10.1016/j.virol.2012.09.041

URL : https://doi.org/10.1016/j.virol.2012.09.041

N. Chamond, N. Locker, and B. Sargueil, The different pathways of HIV genomic RNA translation, Biochemical Society Transactions, vol.38, issue.6, pp.1548-1552, 2010.
DOI : 10.1042/BST0381548

N. Chamond, J. Deforges, N. Ulryck, and B. Sargueil, 40S recruitment in the absence of eIF4G/4A by EMCV IRES refines the model for translation initiation on the archetype of Type II IRESs, Nucleic Acids Res42, pp.10373-10384, 2014.
DOI : 10.1093/nar/gkt632

URL : https://hal.archives-ouvertes.fr/hal-01075147

S. A. Chappell, G. M. Edelman, and V. P. Mauro, A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity, Proceedings of the National Academy of Sciences, vol.10, issue.5, pp.1536-1541, 2000.
DOI : 10.1016/S0958-1669(99)00010-5

J. Charbonneau, K. Gendron, G. Ferbeyre, and L. Brakier-gingras, The 5' UTR of HIV-1 full-length mRNA and the Tat viral protein modulate the programmed -1, 2012.

, ribosomal frameshift that generates HIV-1 enzymes, pp.519-529

N. Charnay, R. Ivanyi-nagy, R. Soto-rifo, T. Ohlmann, M. López-lastra et al., Mechanism of HIV-1 Tat RNA translation and its activation by the Tat protein, Retrovirology, vol.6, issue.1, p.74, 2009.
DOI : 10.1186/1742-4690-6-74

URL : https://hal.archives-ouvertes.fr/inserm-00663616

L. Chatel-chaix, K. Boulay, A. J. Mouland, and L. Desgroseillers, The host protein Staufen1 interacts with the Pr55Gag zinc fingers and regulates HIV-1 assembly via its N-terminus, Retrovirology, vol.5, issue.1, p.41, 2008.
DOI : 10.1186/1742-4690-5-41

URL : https://retrovirology.biomedcentral.com/track/pdf/10.1186/1742-4690-5-41

S. Chatterjee and J. K. Pal, Role of 5???- and 3???-untranslated regions of mRNAs in human diseases, Biology of the Cell, vol.26, issue.5, pp.251-262, 2009.
DOI : 10.1128/MCB.26.9.3353-3364.2006

S. Cho and D. W. Hoffman, Structure of the beta subunit of translation initiation factor 2 from the archaeon Methanococcus jannaschii: a representative of the eIF2beta/eIF5 family of proteins, pp.5730-5742, 2002.

H. S. Christensen, A. Daher, K. J. Soye, L. B. Frankel, M. R. Alexander et al., Small Interfering RNAs against the TAR RNA Binding Protein, TRBP, a Dicer Cofactor, Inhibit Human Immunodeficiency Virus Type 1 Long Terminal Repeat Expression and Viral Production, Journal of Virology, vol.81, issue.10, pp.5121-5131, 2007.
DOI : 10.1128/JVI.01511-06

URL : https://hal.archives-ouvertes.fr/hal-00166174

R. Y. Chuang, P. L. Weaver, Z. Liu, and T. H. Chang, Requirement of the DEAD-Box Protein Ded1p for Messenger RNA Translation, Science, vol.275, issue.5305, pp.1468-1471, 1997.
DOI : 10.1126/science.275.5305.1468

F. Clavel, M. Guyader, D. Guétard, M. Sallé, L. Montagnier et al., Molecular cloning and polymorphism of the human immune deficiency virus type 2. Nature324, pp.691-695, 1986.

G. Clerzius, J. Gélinas, and A. Gatignol, Multiple levels of PKR inhibition during HIV-1 replication, Reviews in Medical Virology, vol.7, issue.1, pp.42-53, 2011.
DOI : 10.1186/1741-7015-7-48

L. C. Cobbold, L. A. Wilson, K. Sawicka, H. A. King, A. V. Kondrashov et al., Upregulated c-myc expression in multiple myeloma by internal ribosome entry results from increased interactions with and expression of PTB-1 and YB-1, Oncogene, vol.13, issue.19, pp.2884-2891, 2010.
DOI : 10.1074/jbc.M803682200

A. W. Cochrane, K. S. Jones, S. Beidas, P. J. Dillon, A. M. Skalka et al., Identification and characterization of intragenic sequences which repress human immunodeficiency virus structural gene expression, J Virol65, pp.5305-5313, 1991.

S. Cordes, Y. Kusov, T. Heise, and V. Gauss-müller, La autoantigen suppresses IRES-dependent translation of the hepatitis A virus, Biochemical and Biophysical Research Communications, vol.368, issue.4, pp.1014-1019, 2008.
DOI : 10.1016/j.bbrc.2008.01.163

O. Cordin, N. K. Tanner, M. Doère, P. Linder, and J. Banroques, The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity, The EMBO Journal, vol.1, issue.13, pp.2478-2487, 2004.
DOI : 10.1126/science.288.5463.88

D. Agostino, D. M. Felber, B. K. Harrison, J. E. Pavlakis, and G. N. , The Rev protein of human immunodeficiency virus type 1 promotes polysomal association and translation of gag/pol and vpu/env mRNAs., Molecular and Cellular Biology, vol.12, issue.3, pp.1375-1386, 1992.
DOI : 10.1128/MCB.12.3.1375

A. Daher, M. Longuet, D. Dorin, F. Bois, E. Segeral et al., Two Dimerization Domains in the Trans-activation Response RNA-binding Protein (TRBP) Individually Reverse the Protein Kinase R Inhibition of HIV-1 Long Terminal Repeat Expression, Journal of Biological Chemistry, vol.11, issue.36, pp.33899-33905, 2001.
DOI : 10.1074/jbc.272.2.1291

D. Leys, R. Vanderborght, B. Vanden-haesevelde, M. Heyndrickx, L. Van-geel et al., , 1990.

, Isolation and partial characterization of an unusual human immunodeficiency retrovirus from two persons of west-central African origin, J, vol.64, pp.1207-1216

E. Decroly, F. Ferron, J. Lescar, and B. Canard, Conventional and unconventional mechanisms for capping viral mRNA, Nature Reviews Microbiology, vol.1, issue.1, pp.51-65, 2012.
DOI : 10.1016/j.tibs.2007.05.001

S. G. Deeks, Antiretroviral treatment of HIV infected adults, BMJ, vol.332, issue.7556, 1489.
DOI : 10.1136/bmj.332.7556.1489

URL : http://europepmc.org/articles/pmc1482340?pdf=render

J. Deforges, N. Locker, and B. Sargueil, mRNAs that specifically interact with eukaryotic ribosomal subunits, Biochimie, vol.114, pp.48-57, 2015.
DOI : 10.1016/j.biochi.2014.12.008

URL : https://doi.org/10.1016/j.biochi.2014.12.008

M. A. Devaney, V. N. Vakharia, R. E. Lloyd, E. Ehrenfeld, and M. J. Grubman, , 1988.

, Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex, J, vol.62, pp.4407-4409

A. D. Frankel and J. A. Young, HIV-1: Fifteen Proteins and an RNA, Annual Review of Biochemistry, vol.67, issue.1, pp.1-25, 1998.
DOI : 10.1146/annurev.biochem.67.1.1

C. S. Fraser and J. A. Doudna, Structural and mechanistic insights into hepatitis C viral translation initiation, Nature Reviews Microbiology, vol.6, issue.1, pp.29-38, 2007.
DOI : 10.1038/nrm1618

E. O. Freed, HIV-1 replication. Somat Cell Mol Genet26, pp.13-33, 2001.

D. Frisby, M. Eaton, and P. Fellner, Absence of 5' terminal capping in encephalomyocarditis virus RNA. Nucleic Acids Res3, pp.2771-2787, 1976.

A. Fröhlich, B. Rojas-araya, C. Pereira-montecinos, A. Dellarossa, D. Toro-ascuy et al., DEAD-box RNA helicase DDX3 connects CRM1-dependent nuclear export and translation of the HIV-1 unspliced mRNA through its N-terminal domain, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1859, issue.5, pp.719-730, 2016.
DOI : 10.1016/j.bbagrm.2016.03.009

R. C. Gallo, P. S. Sarin, E. P. Gelmann, M. Robert-guroff, E. Richardson et al., Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS) Science220, E. & other authors, pp.865-867, 1983.

B. K. Ganser-pornillos, M. Yeager, and O. Pornillos, Assembly and Architecture of HIV, pp.441-465, 2012.
DOI : 10.1007/978-1-4614-0980-9_20

F. Gao, E. Bailes, D. L. Robertson, Y. Chen, C. M. Rodenburg et al., Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes, Nature, vol.4, issue.6718, pp.436-441, 1999.
DOI : 10.1093/nar/25.24.4876

A. Garbelli, M. Radi, F. Falchi, S. Beermann, S. Zanoli et al., Targeting the Human DEAD-Box Polypeptide 3 (DDX3) RNA Helicase as a Novel Strategy to Inhibit Viral Replication, Current Medicinal Chemistry, vol.18, issue.20, pp.3015-3027, 2011.
DOI : 10.2174/092986711796391688

A. Garbelli, S. Beermann, G. D. Cicco, U. Dietrich, and G. Maga, A Motif Unique to the Human Dead-Box Protein DDX3 Is Important for Nucleic Acid Binding, RNA/DNA Unwinding and HIV-1 Replication. PLOS ONE6, 2011.

J. L. Garrey, Y. Lee, H. H. Au, M. Bushell, and E. Jan, Host and Viral Translational Mechanisms during Cricket Paralysis Virus Infection, Journal of Virology, vol.84, issue.2, pp.1124-1138, 2010.
DOI : 10.1128/JVI.02006-09

A. Gatignol, A. Buckler-white, B. Berkhout, and K. T. Jeang, Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science251, pp.1597-1600, 1991.

A. Gatignol, C. Buckler, and K. T. Jeang, Relatedness of an RNA-binding motif in human immunodeficiency virus type 1 TAR RNA-binding protein TRBP to human P1/dsI kinase and Drosophila staufen., Molecular and Cellular Biology, vol.13, issue.4, pp.2193-2202, 1993.
DOI : 10.1128/MCB.13.4.2193

R. Geissler, R. P. Golbik, and S. Behrens, The DEAD-box helicase DDX3 supports the assembly of functional 80S ribosomes. Nucleic Acids Res40, pp.4998-5011, 2012.

H. R. Gelderblom, E. H. Hausmann, M. Ozel, G. Pauli, and M. A. Koch, Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins, pp.171-176, 1987.

K. Gendron, G. Ferbeyre, N. Heveker, and L. Brakier-gingras, The activity of the HIV-1 IRES is stimulated by oxidative stress and controlled by a negative regulatory element. Nucleic Acids Res39, pp.902-912, 2011.

A. Des-georges, V. Dhote, L. Kuhn, C. U. Hellen, T. V. Pestova et al., Structure of mammalian eIF3 in the context of the 43S preinitiation complex, Nature, vol.4, issue.7570, pp.491-495, 2015.
DOI : 10.1002/jcc.540040211

S. Giraud, A. Greco, M. Brink, J. J. Diaz, and P. Delafontaine, Translation Initiation of the Insulin-like Growth Factor I Receptor mRNA Is Mediated by an Internal Ribosome Entry Site, Journal of Biological Chemistry, vol.18, issue.8, pp.5668-5675, 2001.
DOI : 10.1074/jbc.M002887200

URL : https://hal.archives-ouvertes.fr/hal-00180277

E. Goldman, Transfer RNA, Encyclopedia of Life Sciences, 2008.

A. E. Gorbalenya and E. V. Koonin, Helicases: amino acid sequence comparisons and structure-function relationships. Current Opinion in Structural Biology3, pp.419-429, 1993.
DOI : 10.1016/s0959-440x(05)80116-2

N. K. Gray and M. W. Hentze, Regulation of protein synthesis by mRNA structure, Molecular Biology Reports, vol.75, issue.3, 1994.
DOI : 10.1007/BF00986961

, Mol Biol, vol.19, pp.195-200

J. K. Grohman, D. Campo, M. Bhaskaran, H. Tijerina, P. Lambowitz et al., Biochemistry, vol.46, issue.11, pp.3013-3022, 2007.
DOI : 10.1021/bi0619472

H. C. Groom, E. C. Anderson, J. A. Dangerfield, and A. M. Lever, Rev regulates translation of human immunodeficiency virus type 1 RNAs, Journal of General Virology, vol.135, issue.1, pp.1141-1147, 2009.
DOI : 10.1083/jcb.135.1.9

URL : http://jgv.microbiologyresearch.org/deliver/fulltext/jgv/90/5/1141.pdf?itemId=/content/journal/jgv/10.1099/vir.0.007963-0&mimeType=pdf&isFastTrackArticle=

R. Groppo and J. D. Richter, Translational control from head to tail, Current Opinion in Cell Biology, vol.21, issue.3, pp.444-451, 2009.
DOI : 10.1016/j.ceb.2009.01.011

URL : http://europepmc.org/articles/pmc4354865?pdf=render

J. D. Gross, N. J. Moerke, T. Von-der-haar, A. A. Lugovskoy, A. B. Sachs et al., Ribosome Loading onto the mRNA Cap Is Driven by Conformational Coupling between eIF4G and eIF4E, Cell, vol.115, issue.6, pp.739-750, 2003.
DOI : 10.1016/S0092-8674(03)00975-9

URL : https://doi.org/10.1016/s0092-8674(03)00975-9

Z. Grossman, M. Meier-schellersheim, W. E. Paul, and L. J. Picker, , 2006.

, Pathogenesis of HIV infection: what the virus spares is as important as what it destroys, pp.289-295

A. Grundhoff and D. Ganem, Mechanisms Governing Expression of the v-FLIP Gene of Kaposi's Sarcoma-Associated Herpesvirus, Journal of Virology, vol.75, issue.4, pp.1857-1863, 2001.
DOI : 10.1128/JVI.75.4.1857-1863.2001

T. Von-der-haar, J. D. Gross, G. Wagner, and J. E. Mccarthy, The mRNA cap-binding protein eIF4E in post-transcriptional gene expression, Nature Structural & Molecular Biology, vol.107, issue.1, pp.503-511, 2004.
DOI : 10.1016/S0092-8674(01)00592-X

T. R. Hartman, S. Qian, C. Bolinger, S. Fernandez, D. R. Schoenberg et al., RNA helicase A is necessary for translation of selected messenger RNAs, Nature Structural & Molecular Biology, vol.317, issue.6, pp.509-516, 2006.
DOI : 10.1016/j.virol.2003.08.037

Y. Hashem, A. Des-georges, V. Dhote, R. Langlois, H. Y. Liao et al., HCV-like IRESs displace eIF3 to gain access to the 40S subunit. Nature503, pp.539-543, 2013.

C. U. Hellen, IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1789, issue.9-10, pp.558-570, 2009.
DOI : 10.1016/j.bbagrm.2009.06.001

C. H. Herbreteau, L. Weill, D. Décimo, D. Prévôt, J. Darlix et al., HIV-2 genomic RNA contains a novel type of IRES located downstream of its initiation codon, Nature Structural & Molecular Biology, vol.32, issue.Suppl. 5, pp.1001-1007, 2005.
DOI : 10.1093/nar/gkh835

G. Hernández, Was the initiation of translation in early eukaryotes IRES-driven? Trends Biochem Sci33, pp.58-64, 2008.

A. Hilliker, Z. Gao, E. Jankowsky, and R. Parker, The DEAD-Box Protein Ded1 Modulates Translation by the Formation and Resolution of an eIF4F-mRNA Complex, Molecular Cell, vol.43, issue.6, pp.962-972, 2011.
DOI : 10.1016/j.molcel.2011.08.008

A. G. Hinnebusch, eIF3: a versatile scaffold for translation initiation complexes, Trends in Biochemical Sciences, vol.31, issue.10, pp.553-562, 2006.
DOI : 10.1016/j.tibs.2006.08.005

A. G. Hinnebusch, T. E. Dever, and K. Asano, Chapter 9 Mechanism of Translation Initiation in the Yeast Saccharomyces cerevisiae, from the book Translational Control in Biology, 2007.

N. Mathews, J. W. Sonenberg, and . Hershey,

A. G. Hinnebusch, Molecular Mechanism of Scanning and Start Codon Selection in Eukaryotes, Microbiology and Molecular Biology Reviews, vol.75, issue.3, pp.434-467, 2011.
DOI : 10.1128/MMBR.00008-11

A. G. Hinnebusch, The Scanning Mechanism of Eukaryotic Translation Initiation, Annual Review of Biochemistry, vol.83, issue.1, 2014.
DOI : 10.1146/annurev-biochem-060713-035802

, Annu Rev Biochem83, pp.779-812

A. G. Hinnebusch, I. P. Ivanov, and N. Sonenberg, Translational control by 5?- untranslated regions of eukaryotic mRNAs. Science352, pp.1413-1416, 2016.
DOI : 10.1126/science.aad9868

V. M. Hirsch, R. A. Olmsted, and M. Murphey-corb,

R. , An African primate lentivirus (SIVsm) closely related to HIV-2, 1989.

, Nature339, pp.389-392

D. D. Ho and P. D. Bieniasz, HIV-1 at 25. Cell133, pp.561-565, 2008.
DOI : 10.1016/j.cell.2008.05.003

URL : https://doi.org/10.1016/j.cell.2008.05.003

M. Högbom, R. Collins, S. Van-den-berg, R. Jenvert, T. Karlberg et al., Crystal Structure of Conserved Domains 1 and 2 of the Human DEAD-box Helicase DDX3X in Complex with the Mononucleotide AMP, Journal of Molecular Biology, vol.372, issue.1, pp.150-159, 2007.
DOI : 10.1016/j.jmb.2007.06.050

S. Hoshino, M. Imai, T. Kobayashi, N. Uchida, and T. Katada, The Eukaryotic Polypeptide Chain Releasing Factor (eRF3/GSPT) Carrying the Translation Termination Signal to the 3???-Poly(A) Tail of mRNA, Journal of Biological Chemistry, vol.15, issue.24, pp.16677-16680, 1999.
DOI : 10.1016/S0092-8674(00)80268-8

M. C. Hu, P. Tranque, G. M. Edelman, and V. P. Mauro, rRNA-complementarity in the 5' untranslated region of mRNA specifying the Gtx homeodomain protein: Evidence that base- pairing to 18S rRNA affects translational efficiency, Proceedings of the National Academy of Sciences, vol.65, issue.1, pp.1339-1344, 1999.
DOI : 10.1146/annurev.bi.65.070196.003401

S. Hua, C. Lécuroux, A. Sáez-cirión, G. Pancino, I. Girault et al., Sinet, M. & other authors. (2014). Potential Role for HIV-Specific CD38 ? /HLA-DR + CD8 + T Cells in Viral Suppression and Cytotoxicity in HIV Controllers. PLOS ONE9, 101920.

H. Imataka and N. Sonenberg, Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A., Molecular and Cellular Biology, vol.17, issue.12, pp.6940-6947, 1997.
DOI : 10.1128/MCB.17.12.6940

URL : https://mcb.asm.org/content/17/12/6940.full.pdf

I. Iost, M. Dreyfus, and P. Linder, Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase, J Biol, vol.274, pp.17677-17683, 1999.

R. J. Jackson, C. U. Hellen, and T. V. Pestova, The mechanism of eukaryotic translation initiation and principles of its regulation, Nature Reviews Molecular Cell Biology, vol.4, issue.2, pp.113-127, 2010.
DOI : 10.1128/MCB.16.12.6870

E. Jan, S. R. Thompson, J. E. Wilson, T. V. Pestova, C. U. Hellen et al., Initiator Met-tRNA-independent Translation Mediated by an Internal Ribosome Entry Site Element in Cricket Paralysis Virus-like Insect Viruses, Cold Spring Harb Symp Quant Biol66, pp.285-292, 2001.
DOI : 10.1128/MCB.20.14.4990-4999.2000

E. Jan and P. Sarnow, Factorless Ribosome Assembly on the Internal Ribosome Entry Site of Cricket Paralysis Virus, Journal of Molecular Biology, vol.324, issue.5, pp.889-902, 2002.
DOI : 10.1016/S0022-2836(02)01099-9

S. K. Jang, H. G. Kräusslich, M. J. Nicklin, G. M. Duke, A. C. Palmenberg et al., A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation, J, vol.62, pp.2636-2643, 1988.

S. K. Jang, Internal initiation: IRES elements of picornaviruses and hepatitis c virus, Virus Research, vol.119, issue.1, pp.2-15, 2006.
DOI : 10.1016/j.virusres.2005.11.003

I. Jarmoskaite and R. Russell, RNA Helicase Proteins as Chaperones and Remodelers, Annual Review of Biochemistry, vol.83, issue.1, pp.697-725, 2014.
DOI : 10.1146/annurev-biochem-060713-035546

URL : http://europepmc.org/articles/pmc4143424?pdf=render

M. D. Jennings and G. D. Pavitt, eIF5 has GDI activity necessary for translational control by eIF2 phosphorylation. Nature465, pp.378-381, 2010.
DOI : 10.1038/nature09003

URL : http://europepmc.org/articles/pmc2875157?pdf=render

C. P. Joshi, H. Zhou, X. Huang, and V. L. Chiang, Context sequences of translation initiation codon in plants, pp.993-1001, 1997.

A. Kaminski, M. T. Howell, and R. J. Jackson, Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism, pp.3753-3759, 1990.

L. D. Kapp and J. R. Lorsch, The Molecular Mechanics of Eukaryotic Translation, Annual Review of Biochemistry, vol.73, issue.1, 2004.
DOI : 10.1146/annurev.biochem.73.030403.080419

, Annu Rev Biochem73, pp.657-704

L. D. Kapp and J. R. Lorsch, GTP-dependent Recognition of the Methionine Moiety on Initiator tRNA by Translation Factor eIF2, Journal of Molecular Biology, vol.335, issue.4, pp.923-936, 2004.
DOI : 10.1016/j.jmb.2003.11.025

L. D. Kapp, S. E. Kolitz, and J. R. Lorsch, Yeast initiator tRNA identity elements cooperate to influence multiple steps of translation initiation, RNA, vol.12, issue.5, pp.751-764, 2006.
DOI : 10.1261/rna.2263906

URL : http://rnajournal.cshlp.org/content/12/5/751.full.pdf

M. M. Karim, Y. V. Svitkin, A. Kahvejian, G. De-crescenzo, M. Costa-mattioli et al., A mechanism of translational repression by competition of Paip2 with eIF4G for poly(A) binding protein (PABP) binding, Proceedings of the National Academy of Sciences, vol.39, issue.31, pp.9494-9499, 2006.
DOI : 10.1021/bi992987r

J. C. Kenyon, L. J. Prestwood, L. Grice, S. F. Lever, and A. M. , In-gel probing of individual RNA conformers within a mixed population reveals a dimerization structural switch in the HIV-1 leader, Nucleic Acids Res41, p.174, 2013.
DOI : 10.1073/pnas.0800509105

H. Khatter, A. G. Myasnikov, S. K. Natchiar, and B. P. Klaholz, Structure of the human 80S ribosome. Nature520, pp.640-645, 2015.

J. S. Kieft, K. Zhou, R. Jubin, and J. A. Doudna, Mechanism of ribosome recruitment by hepatitis C IRES RNA, RNA, vol.7, issue.2, pp.194-206, 2001.
DOI : 10.1017/S1355838201001790

J. S. Kieft, Viral IRES RNA structures and ribosome interactions, Trends in Biochemical Sciences, vol.33, issue.6, pp.274-283, 2008.
DOI : 10.1016/j.tibs.2008.04.007

URL : http://europepmc.org/articles/pmc2706518?pdf=render

J. H. Kim, S. M. Park, J. H. Park, S. J. Keum, and S. K. Jang, eIF2A mediates translation of hepatitis C viral mRNA under stress conditions, The EMBO Journal, vol.277, issue.12, pp.2454-2464, 2011.
DOI : 10.1074/jbc.M207109200

URL : http://emboj.embopress.org/content/30/12/2454.full.pdf

Y. S. Kim, S. G. Lee, S. H. Park, and K. Song, Gene structure of the human DDX3 and chromosome mapping of its related sequences, pp.209-214, 2001.

S. R. Kimball, Eukaryotic initiation factor eIF2, The International Journal of Biochemistry & Cell Biology, vol.31, issue.1, pp.25-29, 1999.
DOI : 10.1016/S1357-2725(98)00128-9

E. Klann and T. E. Dever, Biochemical mechanisms for translational regulation in synaptic plasticity, Nature Reviews Neuroscience, vol.23, issue.12, pp.931-942, 2004.
DOI : 10.1016/j.neuron.2004.07.022

D. C. Koh, D. X. Liu, and S. Wong, A Six-Nucleotide Segment within the 3' Untranslated Region of Hibiscus Chlorotic Ringspot Virus Plays an Essential Role in Translational Enhancement, Journal of Virology, vol.76, issue.3, pp.1144-1153, 2002.
DOI : 10.1128/JVI.76.3.1144-1153.2002

V. G. Kolupaeva, A. Unbehaun, I. B. Lomakin, and C. Hellen,

V. , Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA11, pp.470-486, 2005.

M. Kozak, Influence of mRNA secondary structure on binding and migration of 40S ribosomal subunits, Cell, vol.19, issue.1, pp.79-90, 1980.
DOI : 10.1016/0092-8674(80)90390-6

M. Kozak, Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell44, pp.283-292, 1986.
DOI : 10.1016/0092-8674(86)90762-2

M. Kozak, An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res15, pp.8125-8148, 1987.

M. Kozak, At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells, Journal of Molecular Biology, vol.196, issue.4, pp.947-950, 1987.
DOI : 10.1016/0022-2836(87)90418-9

M. Kozak, A short leader sequence impairs the fidelity of initiation by eukaryotic ribosomes, Gene, vol.1, pp.111-115, 1991.

M. Kozak, Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6, The EMBO Journal, vol.105, issue.9, pp.2482-2492, 1997.
DOI : 10.1016/0378-1119(91)90514-C

J. Krol, I. Loedige, and W. Filipowicz, The widespread regulation of microRNA biogenesis, function and decay, Nature Reviews Genetics, vol.36, issue.9, pp.597-610, 2010.
DOI : 10.1038/nrg2843

N. M. Kuyumcu-martinez, M. Joachims, and R. E. Lloyd, Efficient Cleavage of Ribosome-Associated Poly(A)-Binding, pp.2062-2074, 2002.
DOI : 10.1128/jvi.76.5.2062-2074.2002

URL : http://europepmc.org/articles/pmc135927?pdf=render

N. M. Kuyumcu-martinez, M. E. Van-eden, P. Younan, and R. E. Lloyd, , 2004.

, Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff, Mol Cell Biol24, pp.1779-1790

M. Lai, W. Chang, S. Shieh, and W. Tarn, DDX3 Regulates Cell Growth through Translational Control of Cyclin E1, Molecular and Cellular Biology, vol.30, issue.22, pp.5444-5453, 2010.
DOI : 10.1128/MCB.00560-10

URL : https://mcb.asm.org/content/30/22/5444.full.pdf

M. Lai, S. Wang, and L. Cheng, , 2013.

, Human DDX3 interacts with the HIV-1 Tat protein to facilitate viral mRNA translation, p.68665

E. Laletina, D. Graifer, A. Malygin, A. Ivanov, I. Shatsky et al., , 2006.

, Proteins surrounding hairpin IIIe of the hepatitis C virus internal ribosome entry site on the human 40S ribosomal subunit. Nucleic Acids Res34, pp.2027-2036

O. Lambotte, F. Boufassa, Y. Madec, A. Nguyen, C. Goujard et al., HIV Controllers: A Homogeneous Group of HIV-1--Infected Patients with Spontaneous Control of Viral Replication, Clinical Infectious Diseases, vol.7, issue.4, pp.1053-1056, 2005.
DOI : 10.1016/j.mib.2004.06.002

B. A. Larder and S. D. Kemp, Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science246, pp.1155-1158, 1989.
DOI : 10.1126/science.2479983

C. Lee, A. P. Dias, M. Jedrychowski, A. H. Patel, J. L. Hsu et al., , 2008.

, Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res36, pp.4708-4718

C. Lee, A. P. Dias, M. Jedrychowski, A. H. Patel, J. L. Hsu et al., , 2008.

, Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Research36, pp.4708-4718

A. K. Lefebvre, N. L. Korneeva, M. Trutschl, U. Cvek, R. D. Duzan et al., Translation Initiation Factor eIF4G-1 Binds to eIF3 through the eIF3e Subunit, Journal of Biological Chemistry, vol.78, issue.32, pp.22917-22932, 2006.
DOI : 10.1016/S0300-9084(97)86738-7

C. Li, L. Ge, P. Li, Y. Wang, J. Dai et al., Cellular DDX3 regulates Japanese encephalitis virus replication by interacting with viral un-translated regions, Virology, vol.449, pp.70-81, 2014.
DOI : 10.1016/j.virol.2013.11.008

URL : https://doi.org/10.1016/j.virol.2013.11.008

Q. Li, V. Pène, S. Krishnamurthy, H. Cha, and T. J. Liang, Hepatitis C virus infection activates an innate pathway involving IKK-?? in lipogenesis and viral assembly, Nature Medicine, vol.46, issue.6, pp.722-729, 2013.
DOI : 10.1002/hep.21853

URL : http://europepmc.org/articles/pmc3676727?pdf=render

P. Linder, P. F. Lasko, M. Ashburner, P. Leroy, P. J. Nielsen et al., , pp.121-122, 1989.

P. Linder, DEAD-box proteins, Current Biology, vol.10, issue.24, pp.4168-4180, 2006.
DOI : 10.1016/S0960-9822(00)00857-5

P. Linder and E. Jankowsky, From unwinding to clamping ??? the DEAD box RNA helicase family, Nature Reviews Molecular Cell Biology, vol.97, issue.8, pp.505-516, 2011.
DOI : 10.1073/pnas.97.24.13080

F. Liu, A. Putnam, and E. Jankowsky, ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding, Proceedings of the National Academy of Sciences, vol.294, issue.5545, pp.20209-20214, 2008.
DOI : 10.1126/science.1062023

F. Liu, A. A. Putnam, and E. Jankowsky, DEAD-box helicases form nucleotidedependent , long-lived complexes with RNA. Biochemistry53, pp.423-433, 2014.

J. L. Llácer, T. Hussain, L. Marler, C. E. Aitken, A. Thakur et al., Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex. Mol Cell59, pp.399-412, 2015.

N. Locker, L. E. Easton, and P. J. Lukavsky, HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly, The EMBO Journal, vol.102, issue.3, pp.795-805, 2007.
DOI : 10.1128/MCB.16.12.6859

N. Locker, N. Chamond, and B. Sargueil, A conserved structure within the HIV gag open reading frame that controls translation initiation directly recruits the 40S subunit and eIF3, Nucleic Acids Research, vol.16, issue.6, pp.2367-2377, 2011.
DOI : 10.1016/j.molcel.2004.10.017

J. R. Lorsch and T. E. Dever, Molecular View of 43 S Complex Formation and Start Site Selection in Eukaryotic Translation Initiation, Journal of Biological Chemistry, vol.12, issue.28, pp.21203-21207, 2010.
DOI : 10.1073/pnas.0604165103

G. Lozano, N. Fernandez, and E. Martinez-salas, Modeling Three-Dimensional Structural Motifs of Viral IRES, RNA Structural Modeling and Design 428, pp.767-776, 2016.
DOI : 10.1016/j.jmb.2016.01.005

K. Lu, X. Heng, L. Garyu, S. Monti, E. L. Garcia et al., NMR Detection of Structures in the HIV-1 5'-Leader RNA That Regulate Genome Packaging, Science, vol.31, issue.13, 2011.
DOI : 10.1093/nar/gkg595

. Science334, , pp.242-245

S. Lucas and A. M. Nelson, HIV and the spectrum of human disease, The Journal of Pathology, vol.38, issue.2, pp.229-241, 2015.
DOI : 10.1111/ced.12028

A. J. Lyons and H. D. Robertson, Detection of tRNA-like Structure through RNase P Cleavage of Viral Internal Ribosome Entry Site RNAs Near the AUG Start Triplet, Journal of Biological Chemistry, vol.LXVI, issue.29, pp.26844-26850, 2003.
DOI : 10.1128/JVI.74.7.3074-3081.2000

D. Maag, M. A. Algire, and J. R. Lorsch, Communication between Eukaryotic Translation Initiation Factors 5 and 1A within the Ribosomal Pre-initiation Complex Plays a Role in Start Site Selection, Journal of Molecular Biology, vol.356, issue.3, pp.724-737, 2006.
DOI : 10.1016/j.jmb.2005.11.083

D. G. Macejak and P. Sarnow, Internal initiation of translation mediated by the 5??? leader of a cellular mRNA, Nature, vol.353, issue.6339, pp.90-94, 1991.
DOI : 10.1038/353090a0

M. Stoltzfus and C. , Chapter 1 Regulation of HIV-1 Alternative RNA Splicing and Its Role in Virus Replication, pp.1-40, 2009.

Y. Martineau, M. C. Derry, X. Wang, A. Yanagiya, J. J. Berlanga et al., Poly(A)-Binding Protein-Interacting Protein 1 Binds to Eukaryotic Translation Initiation Factor 3 To Stimulate Translation, Molecular and Cellular Biology, vol.28, issue.21, pp.6658-6667, 2008.
DOI : 10.1128/MCB.00738-08

D. Matsuda and V. P. Mauro, Base pairing between hepatitis C virus RNA and 18S rRNA is required for IRES-dependent translation initiation in vivo, Proceedings of the National Academy of Sciences, vol.5, issue.11, pp.15385-15389, 2014.
DOI : 10.1371/journal.pone.0015057

N. A. Mcmillan, R. F. Chun, D. P. Siderovski, J. Galabru, W. M. Toone et al., , 1995.

, HIV-1 Tat directly interacts with the interferon-induced, double-stranded RNAdependent kinase, PKR. Virology213, pp.413-424

M. Medina, E. Domingo, J. K. Brangwyn, and G. J. Belsham, The Two Species of the Foot-and-Mouth Disease Virus Leader Protein, Expressed individually, Exhibit the Same Activities, Virology, vol.194, issue.1, pp.355-359, 1993.
DOI : 10.1006/viro.1993.1267

Z. Meng, N. L. Jackson, O. D. Shcherbakov, H. Choi, and S. W. Blume, The human IGF1R IRES likely operates through a Shine-Dalgarno-like interaction with the G961 loop (E-site) of the 18S rRNA and is kinetically modulated by a naturally polymorphic polyU loop, J Cell Biochem110, pp.531-544, 2010.

Y. M. Michel, D. Poncet, M. Piron, K. M. Kean, and A. M. Borman, Cap-Poly(A) synergy in mammalian cell-free extracts. Investigation of the requirements for poly(A)-mediated stimulation of translation initiation, J Biol, vol.275, pp.32268-32276, 2000.

S. Millevoi and S. Vagner, Molecular mechanisms of eukaryotic pre-mRNA 3' end processing regulation. Nucleic Acids Res38, pp.2757-2774, 2010.

A. Monette, L. Ajamian, M. López-lastra, and A. J. Mouland, Human Immunodeficiency Virus Type 1 (HIV-1) Induces the Cytoplasmic Retention of Heterogeneous Nuclear Ribonucleoprotein A1 by Disrupting Nuclear Import, Journal of Biological Chemistry, vol.110, issue.45, pp.31350-31362, 2009.
DOI : 10.1128/JVI.80.1.130-137.2006

A. Monette, F. Valiente-echeverría, M. Rivero, É. A. Cohen, M. Lopez-lastra et al., Dual Mechanisms of Translation Initiation of the Full-Length HIV-1 mRNA Contribute to Gag Synthesis, PLoS ONE, vol.20, issue.7, 2013.
DOI : 10.1371/journal.pone.0068108.s001

P. Morlat,

D. R. Morris and A. P. Geballe, Upstream Open Reading Frames as Regulators of mRNA Translation, Molecular and Cellular Biology, vol.20, issue.23, pp.8635-8642, 2000.
DOI : 10.1128/MCB.20.23.8635-8642.2000

A. J. Mouland, J. Mercier, M. Luo, L. Bernier, L. Desgroseillers et al., The Double-Stranded RNA-Binding Protein Staufen Is Incorporated in Human Immunodeficiency Virus Type 1: Evidence for a Role in Genomic RNA Encapsidation, Journal of Virology, vol.74, issue.12, pp.5441-5451, 2000.
DOI : 10.1128/JVI.74.12.5441-5451.2000

S. Nisole and A. Saïb, Early steps of retrovirus replicative cycle, 2004.

A. Nomoto, Y. F. Lee, and E. Wimmer, The 5' end of poliovirus mRNA is not capped with m7G(5')ppp(5')Np., Proceedings of the National Academy of Sciences, vol.73, issue.2, pp.375-380, 1976.
DOI : 10.1073/pnas.73.2.375

I. Novoa and L. Carrasco, in HeLa Cells: Effects on Gene Expression, Molecular and Cellular Biology, vol.19, issue.4, pp.2445-2454, 1999.
DOI : 10.1128/MCB.19.4.2445

S. Oda, M. Schröder, and A. R. Khan, Structural Basis for Targeting of Human RNA Helicase DDX3 by Poxvirus Protein K7, Structure, vol.17, issue.11, pp.1528-1537, 2009.
DOI : 10.1016/j.str.2009.09.005

T. Ohlmann, M. Lopez-lastra, and J. L. Darlix, An Internal Ribosome Entry Segment Promotes Translation of the Simian Immunodeficiency Virus Genomic RNA, Journal of Biological Chemistry, vol.40, issue.16, pp.11899-11906, 2000.
DOI : 10.1073/pnas.73.4.1154

T. Ohlmann, D. Prévôt, D. Décimo, F. Roux, J. Garin et al., In Vitro Cleavage of eIF4GI but not eIF4GII by HIV-1 Protease and its Effects on Translation in the Rabbit Reticulocyte Lysate System, Journal of Molecular Biology, vol.318, issue.1, pp.9-20, 2002.
DOI : 10.1016/S0022-2836(02)00070-0

T. Ohlmann, C. Mengardi, and M. López-lastra, Translation initiation of the HIV- 1 mRNA, Translation, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01911131

C. L. Ong, J. C. Thorpe, P. R. Gorry, S. Bannwarth, A. Jaworowski et al., Low TRBP Levels Support an Innate Human Immunodeficiency Virus Type 1 Resistance in Astrocytes by Enhancing the PKR Antiviral Response, Journal of Virology, vol.79, issue.20, pp.12763-12772, 2005.
DOI : 10.1128/JVI.79.20.12763-12772.2005

O. Elroy-stein-;-william and C. Merrick, Translation Initiation Via Cellular Internal Ribosome Entry Sites, 2007.

J. W. Sonenberg and . Hershey,

Z. Othman, M. K. Sulaiman, M. M. Willcocks, N. Ulryck, D. J. Blackbourn et al., Functional analysis of Kaposi's sarcoma?associated herpesvirus vFLIP expression reveals a new mode of IRESmediated translation, pp.1803-1814, 2014.

G. A. Otto, P. J. Lukavsky, A. M. Lancaster, P. Sarnow, and . Puglisi, J. D, 2002.

, Ribosomal proteins mediate the hepatitis C virus IRES-HeLa 40S interaction, pp.913-923

A. R. Öze?, K. Feoktistova, B. C. Avanzino, and C. S. Fraser, Duplex unwinding and ATPase activities of the DEAD-box helicase eIF4A are coupled by eIF4G and eIF4B, J Mol, vol.412, pp.674-687, 2011.

A. R. Öze?, K. Feoktistova, B. C. Avanzino, E. P. Baldwin, and . Fraser, C. S, 2014.

, Real-time fluorescence assays to monitor duplex unwinding and ATPase activities of helicases, pp.1645-1661

J. C. Paillart, E. Skripkin, B. Ehresmann, C. Ehresmann, and R. Marquet, A loop-loop "kissing" complex is the essential part of the dimer linkage of genomic HIV-1 RNA., Proceedings of the National Academy of Sciences, vol.93, issue.11, pp.5572-5577, 1996.
DOI : 10.1073/pnas.93.11.5572

J. Paillart, M. Shehu-xhilaga, R. Marquet, and J. Mak, Dimerization of retroviral RNA genomes: an inseparable pair, Nature Reviews Microbiology, vol.198, issue.6, pp.461-472, 2004.
DOI : 10.1006/viro.1994.1037

H. Park, M. V. Davies, J. O. Langland, H. W. Chang, Y. S. Nam et al., TAR RNAbinding protein is an inhibitor of the interferon-induced protein kinase PKR, Proc Natl Acad Sci, pp.4713-4717, 1994.

S. H. Park, S. G. Lee, Y. Kim, and K. Song, Assignment of a human putative RNA helicase gene, DDX3, to human X chromosome bands p11, Cytogenet Cell, vol.23, issue.81, pp.3-11, 1998.

S. S. Patel and K. M. Picha, Structure and Function of Hexameric Helicases, Annual Review of Biochemistry, vol.69, issue.1, pp.651-697, 2000.
DOI : 10.1146/annurev.biochem.69.1.651

J. Pelletier and N. Sonenberg, Insertion mutagenesis to increase secondary structure within the 5' noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell40, pp.515-526, 1985.

J. Pelletier and N. Sonenberg, Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature334, pp.320-325, 1988.

T. V. Pestova, I. N. Shatsky, S. P. Fletcher, R. J. Jackson, and C. U. Hellen, A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initation of hepatitis C and classical swine fever virus??RNAs, Genes & Development, vol.12, issue.1, pp.67-83, 1998.
DOI : 10.1101/gad.12.1.67

T. V. Pestova, J. R. Lorsch, H. , and C. U. , The mechanism of translation initiation in eukaryotes, 2007.

J. W. Sonenberg and . Hershey,

T. V. Pestova and V. G. Kolupaeva, The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection, Genes & Development, vol.16, issue.22, pp.2906-2922, 2002.
DOI : 10.1101/gad.1020902

T. V. Pestova, S. De-breyne, A. V. Pisarev, I. S. Abaeva, and C. U. Hellen, eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II, The EMBO Journal, vol.14, issue.7, pp.1060-1072, 2008.
DOI : 10.1038/emboj.2008.49

J. S. Pfingsten, D. A. Costantino, and J. S. Kieft, Structural Basis for Ribosome Recruitment and Manipulation by a Viral IRES RNA, Science, vol.314, issue.5804, pp.1450-1454, 2006.
DOI : 10.1126/science.1133281

B. M. Pickering, S. A. Mitchell, K. A. Spriggs, M. Stoneley, and A. E. Willis, , 2004.

, Bag-1 internal ribosome entry segment activity is promoted by structural changes mediated by poly(rC) binding protein 1 and recruitment of polypyrimidine tract binding protein 1, Mol Cell, vol.24, pp.5595-5605

A. V. Pisarev, V. G. Kolupaeva, V. P. Pisareva, W. C. Merrick, C. U. Hellen et al., Specific functional interactions of nucleotides at key -3 and +4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex, Genes & Development, vol.20, issue.5, pp.624-636, 2006.
DOI : 10.1101/gad.1397906

A. V. Pisarev, C. U. Hellen, and T. V. Pestova, Recycling of eukaryotic posttermination ribosomal complexes. Cell131, pp.286-299, 2007.

T. M. Plank, J. T. Whitehurst, and J. S. Kieft, Cell type specificity and structural determinants of IRES activity from the 5' leaders of different HIV-1 transcripts. Nucleic Acids Res41, pp.6698-6714, 2013.

J. Plantier, M. Leoz, J. E. Dickerson, D. Oliveira, F. Cordonnier et al., A new human immunodeficiency virus derived from gorillas, Nature Medicine, vol.24, issue.8, pp.871-872, 2009.
DOI : 10.1038/nm.2016

C. G. Proud, eIF2 and the control of cell physiology, Seminars in Cell & Developmental Biology, vol.16, issue.1, pp.3-12, 2005.
DOI : 10.1016/j.semcdb.2004.11.004

A. A. Putnam and E. Jankowsky, AMP Sensing by DEAD-Box RNA Helicases, Journal of Molecular Biology, vol.425, issue.20, pp.3839-3845, 2013.
DOI : 10.1016/j.jmb.2013.05.006

A. A. Putnam, Z. Gao, F. Liu, H. Jia, Q. Yang et al., Division of Labor in an Oligomer of the DEAD-Box RNA Helicase Ded1p. Molecular Cell59, pp.541-552, 2015.

N. Quade, D. Boehringer, M. Leibundgut, J. Van-den-heuvel, and N. Ban, , 2015.

. Cryo-em, structure of Hepatitis C virus IRES bound to the human ribosome at 3.9- Å resolution

S. Rocak and P. Linder, DEAD-box proteins: the driving forces behind RNA metabolism, Nature Reviews Molecular Cell Biology, vol.81, issue.3, pp.232-241, 2004.
DOI : 10.1016/S0888-7543(03)00049-1

B. Rojas-araya, T. Ohlmann, and R. Soto-rifo, Translational Control of the HIV Unspliced Genomic RNA. Viruses7, pp.4326-4351, 2015.

F. Rozen, I. Edery, K. Meerovitch, T. E. Dever, W. C. Merrick et al., Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F., Molecular and Cellular Biology, vol.10, issue.3, pp.1134-1144, 1990.
DOI : 10.1128/MCB.10.3.1134

A. Sáez-cirión, G. Pancino, M. Sinet, A. Venet, and O. Lambotte, HIV controllers: how do they tame the virus? Trends Immunol28, pp.532-540, 2007.

J. Sasaki and N. Nakashima, Translation initiation at the CUU codon is mediated by the internal ribosome entry site of an insect picorna-like virus in vitro, J, vol.73, pp.1219-1226, 1999.

E. Schmitt, M. Naveau, and Y. Mechulam, Eukaryotic and archaeal translation initiation factor 2: A heterotrimeric tRNA carrier, FEBS Letters, vol.20, issue.2, pp.405-412, 2010.
DOI : 10.1101/gad.1397906

URL : https://hal.archives-ouvertes.fr/hal-00498253

R. Schneider, M. Campbell, G. Nasioulas, B. K. Felber, and G. N. Pavlakis, , 1997.

, Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/protease and particle formation, J Virol71, pp.4892-4903

R. J. Schneider and I. Mohr, Translation initiation and viral tricks, Trends in Biochemical Sciences, vol.28, issue.3, pp.130-136, 2003.
DOI : 10.1016/S0968-0004(03)00029-X

D. R. Schoenberg and L. E. Maquat, Regulation of cytoplasmic mRNA decay, Nature Reviews Genetics, vol.133, issue.4, pp.246-259, 2012.
DOI : 10.1016/j.cell.2008.02.031

M. Schröder, Viruses and the human DEAD-box helicase DDX3: inhibition or exploitation?: Figure 1, Biochemical Society Transactions, vol.73, issue.2, pp.679-683, 2011.
DOI : 10.1021/jm800332m

M. Schüler, S. R. Connell, A. Lescoute, J. Giesebrecht, M. Dabrowski et al., Structure of the ribosome-bound cricket paralysis virus IRES RNA, Nature Structural & Molecular Biology, vol.277, issue.12, pp.1092-1096, 2006.
DOI : 10.1016/S0076-6879(97)77012-5

S. Schwartz, B. K. Felber, E. M. Fenyö, and G. N. Pavlakis, Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs, J, vol.64, pp.5448-5456, 1990.

S. Schwartz, B. K. Felber, and G. N. Pavlakis, Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs., Molecular and Cellular Biology, vol.12, issue.1, 1992.
DOI : 10.1128/MCB.12.1.207

, Mol Cell Biol12, pp.207-219

S. Schwartz, B. K. Felber, and G. N. Pavlakis, Distinct RNA sequences in the gag region of human immunodeficiency virus type 1 decrease RNA stability and inhibit expression in the absence of Rev protein, J, vol.66, pp.150-159, 1992.

D. N. Sengupta and R. H. Silverman, Activation of interferon-regulated, dsRNAdependent enzymes by human immunodeficiency virus-1 leader RNA. Nucleic Acids Res17, pp.969-978, 1989.

D. N. Sengupta, B. Berkhout, A. Gatignol, A. M. Zhou, and R. H. Silverman, , 1990.

, Direct evidence for translational regulation by leader RNA and Tat protein of human immunodeficiency virus type 1, Proc Natl Acad Sci, vol.87, pp.7492-7496

A. Sharma, A. Yilmaz, K. Marsh, A. Cochrane, and K. Boris-lawrie, Thriving under Stress: Selective Translation of HIV-1 Structural Protein mRNA during Vpr-Mediated Impairment of eIF4E Translation Activity, PLoS Pathogens, vol.7, issue.3, 2012.
DOI : 10.1371/journal.ppat.1002612.s003

D. Sharma and E. Jankowsky, The Ded1/DDX3 subfamily of DEAD-box RNA helicases, Critical Reviews in Biochemistry and Molecular Biology, vol.91, issue.4, pp.343-360, 2014.
DOI : 10.1099/vir.0.020552-0

Z. Shen and J. S. Malter, Regulation of AU-Rich Element RNA Binding Proteins by Phosphorylation and the Prolyl Isomerase Pin1, Biomolecules, vol.8, issue.2, pp.412-434, 2015.
DOI : 10.4049/jimmunol.166.3.2090

J. Shih, W. Wang, and . Tsai, , 2012.

, Critical roles of RNA helicase DDX3 and its interactions with eIF4E/PABP1 in stress granule assembly and stress response, Biochemical, vol.441, pp.119-129

J. Shih, T. Tsai, C. Chao, and Y. Wu-lee, Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein, Oncogene, vol.73, issue.5, pp.700-714, 2008.
DOI : 10.1038/nature01031

URL : https://www.nature.com/articles/1210687.pdf

B. Shin, J. Kim, S. E. Walker, J. Dong, J. R. Lorsch et al., , 2011.

, Initiation factor eIF2? promotes eIF2-GTP-Met-tRNAi(Met) ternary complex binding to the 40S ribosome, Nat Struct Mol Biol18, pp.1227-1234

J. Shine and L. Dalgarno, The 3'-Terminal Sequence of Escherichia coli 16S Ribosomal RNA: Complementarity to Nonsense Triplets and Ribosome Binding Sites, Proceedings of the National Academy of Sciences, vol.71, issue.4, 1974.
DOI : 10.1073/pnas.71.4.1342

, Proc Natl Acad Sci, vol.71, pp.1342-1346

S. Shuman, Structure, mechanism, and evolution of the mRNA capping apparatus, Prog Nucleic Acid Res Mol Biol66, pp.1-40, 2000.
DOI : 10.1016/S0079-6603(00)66025-7

S. Sierra, B. Kupfer, and R. Kaiser, Basics of the virology of HIV-1 and its replication, Journal of Clinical Virology, vol.34, issue.4, pp.233-244, 2005.
DOI : 10.1016/j.jcv.2005.09.004

F. Simon, P. Mauclère, P. Roques, I. Loussert-ajaka, M. C. Müller-trutwin et al., Identification of a new human immunodeficiency virus type 1 distinct from group M and group O, Nature Medicine, vol.10, issue.9, pp.1032-1037, 1998.
DOI : 10.1089/aid.1994.10.1317

M. R. Singleton, M. S. Dillingham, and D. B. Wigley, Structure and Mechanism of Helicases and Nucleic Acid Translocases, Annual Review of Biochemistry, vol.76, issue.1, pp.23-50, 2007.
DOI : 10.1146/annurev.biochem.76.052305.115300

B. Siridechadilok, C. S. Fraser, R. J. Hall, J. A. Doudna, and E. Nogales, , 2005.

, Structural Roles for Human Translation Factor eIF3 in Initiation of Protein Synthesis, pp.1513-1515

M. A. Skabkin, O. V. Skabkina, V. Dhote, A. A. Komar, C. U. Hellen et al., Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling, Genes & Development, vol.24, issue.16, pp.1787-1801, 2010.
DOI : 10.1101/gad.1957510

N. Sonenberg and T. E. Dever, Eukaryotic translation initiation factors and regulators. Current Opinion in Structural Biology13, pp.56-63, 2003.

N. Sonenberg and A. G. Hinnebusch, Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets, Cell, vol.136, issue.4, pp.731-745, 2009.
DOI : 10.1016/j.cell.2009.01.042

R. Soto-rifo, P. S. Rubilar, and T. Ohlmann, The DEAD-box helicase DDX3 substitutes for the cap-binding protein eIF4E to promote compartmentalized translation initiation of the HIV-1 genomic RNA, Nucleic Acids Research, vol.16, issue.12, pp.6286-6299, 2013.
DOI : 10.1093/nar/16.18.8953

URL : https://hal.archives-ouvertes.fr/hal-00972286

R. Soto-rifo and T. Ohlmann, The role of the DEAD-box RNA helicase DDX3 in mRNA metabolism, Wiley Interdisciplinary Reviews: RNA, vol.6, issue.4, pp.369-385, 2013.
DOI : 10.1002/cmdc.201100166

URL : https://hal.archives-ouvertes.fr/hal-00972287

R. Soto-rifo, T. Limousin, P. S. Rubilar, E. P. Ricci, D. Décimo et al., Different effects of the TAR structure on HIV-1 and HIV-2 genomic RNA translation. Nucleic Acids Res40, pp.2653-2667, 2012.

R. Soto-rifo, P. S. Rubilar, T. Limousin, S. De-breyne, D. Décimo et al., DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs, The EMBO Journal, vol.119, issue.18, pp.3745-3756, 2012.
DOI : 10.1016/j.cell.2004.09.029

R. Soto-rifo, P. S. Rubilar, T. Limousin, S. De-breyne, D. Décimo et al., DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs, The EMBO Journal, vol.119, issue.18, pp.3745-3756, 2012.
DOI : 10.1016/j.cell.2004.09.029

R. Soto-rifo, P. S. Rubilar, and T. Ohlmann, The DEAD-box helicase DDX3 substitutes for the cap-binding protein eIF4E to promote compartmentalized translation initiation of the HIV-1 genomic RNA, Nucleic Acids Research, vol.16, issue.12, pp.6286-6299, 2013.
DOI : 10.1093/nar/16.18.8953

URL : https://hal.archives-ouvertes.fr/hal-00972286

C. M. Spahn, J. S. Kieft, R. A. Grassucci, P. A. Penczek, K. Zhou et al., Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit, pp.1959-1962, 2001.

C. M. Spahn, E. Jan, A. Mulder, R. A. Grassucci, P. Sarnow et al., , 2004.

. Cryo-em, visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell118, pp.465-475

M. Stoneley, T. Subkhankulova, J. P. Le-quesne, M. J. Coldwell, C. L. Jopling et al., Analysis of the c-myc IRES; a potential role for cell-type specific trans-acting factors and the nuclear compartment, Nucleic Acids Res28, pp.687-694, 2000.
DOI : 10.1093/nar/28.3.687

R. M. Story and T. A. Steitz, Structure of the recA protein-ADP complex. Nature355, present within the Gag open reading frame negatively impacts on the activity of the HIV-1 IRES. PLoS ONE8, pp.374-376, 1992.

F. Valiente-echeverría, M. A. Hermoso, and R. Soto-rifo, RNA helicase DDX3: at the crossroad of viral replication and antiviral immunity, Reviews in Medical Virology, vol.6, issue.8, pp.286-299, 2015.
DOI : 10.1002/cmdc.201100166

M. Vallejos, J. Deforges, T. M. Plank, A. Letelier, P. Ramdohr et al., , 2011.

, Activity of the human immunodeficiency virus type 1 cell cycle-dependent internal ribosomal entry site is modulated by IRES trans-acting factors. Nucleic Acids Res39, pp.6186-6200

M. Vallejos, F. Carvajal, K. Pino, C. Navarrete, M. Ferres et al., Functional and Structural Analysis of the Internal Ribosome Entry Site Present in the mRNA of Natural Variants of the HIV-1, PLoS ONE, vol.322, issue.4, 2012.
DOI : 10.1371/journal.pone.0035031.t001

O. Plos,

I. Ventoso, S. E. Macmillan, J. W. Hershey, and L. Carrasco, Poliovirus 2A proteinase cleaves directly the eIF-4G subunit of eIF-4F complex. FEBS Lett435, pp.79-83, 1998.

I. Ventoso, R. Blanco, C. Perales, and L. Carrasco, HIV-1 protease cleaves eukaryotic initiation factor 4G and inhibits cap-dependent translation, Proceedings of the National Academy of Sciences, vol.15, issue.6, pp.12966-12971, 2001.
DOI : 10.1128/MCB.16.12.6870

URL : https://www.pnas.org/content/pnas/98/23/12966.full.pdf

A. Waysbort, S. Bonnal, S. Audigier, J. P. Estève, and A. C. Prats, Pyrimidine tract binding protein and La autoantigen interact differently with the 5??? untranslated regions of lentiviruses and oncoretrovirus mRNAs, FEBS Letters, vol.12, issue.1-2, pp.54-58, 2001.
DOI : 10.1128/MCB.12.10.4796

C. M. Wei and B. Moss, Methylated nucleotides block 5'-terminus of vaccinia virus messenger RNA., Proceedings of the National Academy of Sciences, vol.72, issue.1, pp.318-322, 1975.
DOI : 10.1073/pnas.72.1.318

L. Weill, L. James, N. Ulryck, N. Chamond, C. H. Herbreteau et al., A new type of IRES within gag coding region recruits three initiation complexes on HIV-2 genomic RNA. Nucleic Acids Research38, pp.1367-1381, 2010.

S. Weingarten-gabbay, S. Elias-kirma, R. Nir, A. A. Gritsenko, N. Stern-ginossar et al., Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes, 2016.

C. B. Wilen, J. C. Tilton, and R. W. Doms, HIV: Cell Binding and Entry, Cold Spring Harbor Perspectives in Medicine, vol.2, issue.8, 2012.
DOI : 10.1101/cshperspect.a006866

URL : http://perspectivesinmedicine.cshlp.org/content/2/8/a006866.full.pdf

J. E. Wilson, M. J. Powell, S. E. Hoover, and P. Sarnow, Naturally Occurring Dicistronic Cricket Paralysis Virus RNA Is Regulated by Two Internal Ribosome Entry Sites, Molecular and Cellular Biology, vol.20, issue.14, pp.4990-4999, 2000.
DOI : 10.1128/MCB.20.14.4990-4999.2000

URL : https://mcb.asm.org/content/20/14/4990.full.pdf

J. E. Wilson, T. V. Pestova, C. U. Hellen, and P. Sarnow, Initiation of Protein Synthesis from the A Site of the Ribosome, Cell, vol.102, issue.4, pp.511-520, 2000.
DOI : 10.1016/S0092-8674(00)00055-6

K. Woolaway, K. Asai, A. Emili, and A. Cochrane, hnRNP E1 and E2 have distinct roles in modulating HIV-1 gene expression, Retrovirology, vol.4, issue.1, 2007.
DOI : 10.1186/1742-4690-4-28

URL : https://doi.org/10.1186/1742-4690-4-28

A. Yanagiya, Y. V. Svitkin, S. Shibata, S. Mikami, H. Imataka et al., Requirement of RNA Binding of Mammalian Eukaryotic Translation Initiation Factor 4GI (eIF4GI) for Efficient Interaction of eIF4E with the mRNA Cap, Molecular and Cellular Biology, vol.29, issue.6, 2009.
DOI : 10.1128/MCB.01187-08

, Mol Cell Biol29, pp.1661-1669

Q. Yang and E. Jankowsky, Biochemistry, vol.44, issue.41, 2005.
DOI : 10.1021/bi0508946

, Biochemistry44, pp.13591-13601

Q. Yang and E. Jankowsky, The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases, Nature Structural & Molecular Biology, vol.430, issue.11, pp.981-986, 2006.
DOI : 10.1038/nature02704

Q. Yang, D. Campo, M. Lambowitz, A. M. Jankowsky, and E. , DEAD-Box Proteins Unwind Duplexes by Local Strand Separation, Molecular Cell, vol.28, issue.2, pp.253-263, 2007.
DOI : 10.1016/j.molcel.2007.08.016

URL : https://doi.org/10.1016/j.molcel.2007.08.016

V. S. Yedavalli, C. Neuveut, Y. Chi, L. Kleiman, and K. Jeang, Requirement of DDX3 DEAD Box RNA Helicase for HIV-1 Rev-RRE Export Function, Cell, vol.119, issue.3, pp.381-392, 2004.
DOI : 10.1016/j.cell.2004.09.029

URL : https://doi.org/10.1016/j.cell.2004.09.029

|. Le-sida-en-chiffres-2015 and . Onusida,