, Oscillatory Machine: Comprehensive Modeling for transients with Validation by Experiments, IEEE, pp.278-324, 2008.

]. A. Bao&al08, B. Baoquan-kou, C. L. Hongxing, and . Li, The Thrust Characteristics Investigation of Double-side Plate Permanent Magnet Linear Synchronous Motor for EML, pp.978-979, 2008.

]. A. Bao&al15, Y. Baoquan-kou, H. Lin, L. Zhang, H. Zhang et al., Nonlinear Analytical Modeling of Hybrid-Excitation Double-sided Linear Eddycurrent Brake, IEEE Transactions on Magnetics, vol.51, issue.11, 2015.

]. S. Jan&al02, S. Jang, and . Lee, Comparison of two Types of PM Linear Synchronous Servo and Miniature Motor with Air-Cored Film Coil, IEEE Transactions on Magnetics, vol.38, issue.5, 2002.

]. Liy&al11, M. Li, A. Ma, Q. Kou, and . Chen, Analysis and Design of Moving-Magnet-Type Linear Synchronous Motor for Electromagnetic Launch System, IEEE Transactions on Plasma Science, vol.39, issue.1, 2011.

]. B. Rez&al07, S. Rezaeealam, and . Yamada, Development of a Self-Excited Linear Induction Generator for Free-Piston Generator, 2007.

]. J. Gar&al07, J. Garcia-alzorriz, R. Grau, J. Cordoba, and . Muela, A novel double-sided flat rectangular linear permanent magnets synchronous generator for sea wave energy application, 2007.

H. Lemraniorg92 and ]. A. Organ, Modélisation énergétique des moteurs Stirling, Thermodynamics and Gas Dynamics of the Stirling Cycle Machine, 1992.

]. S. Bac&al99, G. W. Backhaus, and . Swift, A thermoacoustic stirling heat engine, Nature, vol.399, pp.335-338, 1999.

]. S. Bac&al04, E. Backhaus, M. Tward, and . Patach, Traveling-Wave thermoacoutic electric generator, Applied Physics Letters, vol.85, p.1085, 2004.

]. L. Ste&al00, G. Steven, and S. Blackhaus, The Power of Sound, American Scientist, vol.88, 2000.

]. A. Tom95 and . Tominaga, Thermodynamic aspects of thermoacoustic theory, REFERENCES BIBLIOGRAPHIQUES, p.91

I. , , p.98

L. and .. , , p.98

H. , , p.98

E. Effets-industriels, , p.99

.. Analyse-du-guidage-de-la-génératrice-Électrique-linéaire-plane-À-double-stator, , p.100

S. Topographie-des, , p.101

.. Tribologie-du-guidage-de-la-génératrice-Électrique-linéaire-plane-À-double-stator, , p.102

.. ,

V. ,

.. ,

E. ,

P. and .. , , p.104

.. Et-mobile, Les aspects mécaniques et thermiques du contact entre les parties fixes, p.104

.. Et-mobile, , p.104

.. Action-de-contact-sans-frottement, , p.105

.. Action-de-contact-avec-frottement, , p.105

L. De and F. , , p.107

.. La-thermique-du-contact, La température superficielle des parties fixes

L. and .. ,

L. and .. , , p.109

.. Les-catégories-de-lubrifiant, , p.109

.. La-courbe-de-stribeck, , p.111

.. Les-régimes-de-lubrification, , p.112

S. , , p.113

.. Le-régime-Élasto-hydrodynamique, , p.113

O. Le-régime, , p.114

.. La-conception-des-plaques-lisses, , p.116

P. Matériaux-des, , p.116

.. , , p.116

.. Epaisseur-minimale-du-film-de-lubrifiant, , p.117

.. Modélisation-et-compensation-des-frottements, , p.118

F. Modélisation-des, , p.118

S. Le-domaine, , p.118

D. Le-domaine, , p.119

F. Compensation-des, , p.120

.. Solutions-industrielles, , p.121

C. , , p.124

D. Hannes and B. Alfredsson, Modelling of Surface Initiated Rolling Contact Fatigue Damage, Procedia engineering 66, pp.766-774, 2013.
DOI : 10.1016/j.proeng.2013.12.130

T. Wanheim, N. Bay, and A. S. Petersen, A theoretically determined model for friction in metal working processes, Wear, vol.28, issue.2, pp.28-251, 1974.
DOI : 10.1016/0043-1648(74)90165-3

K. Kato, classification of wear mechanisms/models, Proc Instn Mech Engrs Part J: J Engineering Tribology, vol.216, 2002.

K. Shinohara, R. Takaki, and T. Akita, Dynamic Contact Problem for Slide Hinge, Open Journal of Applied Sciences, vol.02, issue.04, 2012.
DOI : 10.4236/ojapps.2012.24B020

J. Peter and . Blau, Embedding Wear Models into Friction Models, Tribol Lett, vol.34, pp.75-79, 2009.

H. C. Meng and K. Ludema, Wear models and predictive equations: their form and content, Wear, vol.181, issue.183, 1995.
DOI : 10.1016/0043-1648(95)90158-2

N. Saka, A. M. Eleiche, and N. P. Suh, Wear of metals at high sliding speeds, Wear, vol.44, issue.1, pp.44-109, 1977.
DOI : 10.1016/0043-1648(77)90089-8

N. Saka, J. Pamies-teixeira, and N. P. Suh, Wear of two-phase metals, wear, pp.44-77, 1977.

M. Braunovic, V. V. Konchits, and N. K. Myshkin, Electrical Contacts: Fundamentals, Applications and Technology, 2006.
DOI : 10.1201/9780849391088

R. Steven, B. J. Schmid, B. O. Hamroch, and . Jacobson, Fundamental of Machine Elements, 2014.

H. Czichos, Fundamentals and Application to Structures and Systems, 2013.

H. Czichos, Tribology: A systems approach to the Science and Technology of friction, lubrication and wear, Tribology International, vol.11, issue.4, 1978.
DOI : 10.1016/0301-679X(78)90209-8

]. T. Sto90 and . Stolarski, Tribology in Machine Design, 1990.

. Ham&al04, J. Bernard, S. R. Hamrock, B. O. Schmid, and . Jacobson, Fundamentals of Fluid Film Lubrication, 2004.

]. G. Dro&al86, M. Droun, P. Gou, R. Thiry, and . Vinet, , 1986.

]. J. Hal78 and . Halling, Principles of Tribology, 1978.

[. Takadoum, Materials and Surface Engineering in Tribology, 2008.

[. Mathieu, E. Bergmann, and R. Gras, Analyse et Technologie des Surfaces : Couches minces et tribologie, Presses Polytechniques et Universitaires Romandes, 2003.

P. E. Dupont, Friction Modeling in Dynamic Robot Simulation, CH2876-1/90, IEEE, issue.0000, 1370.

[. Wang, Q. Li, and A. , Tracking of stribeck friction based on second-order linear extended state observer, 2016 Chinese Control and Decision Conference (CCDC), pp.978-979, 2016.
DOI : 10.1109/CCDC.2016.7531746

]. K. Ver&al16, R. Verbert, R. Tóth, and . Baku?ka, Adaptive Friction Compensation: A Globally Stable Approach, IEEE/ASME Transactions on Mechatronics, vol.21, issue.1, 2016.

[. Lee and J. Kim, Robust Adaptive Stick-Slip Friction Compensation, IEEE Transactions on Industrial Electronics, vol.42, issue.5

]. Y. Zha&al02, G. Zhang, A. A. Liu, and . Goldenberg, Friction Compensation with Estimated Velocity, IEEE, pp.0-7803, 2002.

]. H. Ols&al98, K. J. Olsson, C. Åström, M. Canudas-de-wit, P. Gäfvert et al., Friction Models and Friction Compensation, European Journal of Control, vol.4, pp.176-195, 1998.

J. Swevers, F. Al-bender, C. G. Ganseman, and T. Prajogo, An integrated friction model structure with improved presliding behavior for accurate friction compensation, IEEE Transactions on Automatic Control, vol.45, issue.4, 2000.
DOI : 10.1109/9.847103

A. Al-bender and V. L. Swevers, The generalized Maxwell-slip model: a novel model for friction Simulation and compensation, IEEE Transactions on Automatic Control, vol.50, issue.11, 2005.
DOI : 10.1109/TAC.2005.858676

]. C. Can&al95, H. Canudas-de-wit, and A. Olsson, A New Model for Control of Systems with Friction, IEEE Transactions on Automation Control, vol.40, issue.3, 1995.

[. Armstrong-hélouvry, , p.131

, Présentation du circuit magnétique de la génératrice électrique linéaire plane à double stator à structure polyentrefer à lames guidées ou frottantes, p.131

.. La-structure, , p.131

.. Fabrication-du-circuit-magnétique, , p.133

.. Le-montage-d-'assemblage-de-tôles, , p.135

.. Influence-humaine, , p.135

L. and .. , , p.135

.. Plaque-mobile, , p.138

, Le modèle thermique de la génératrice électrique linéaire plane à double stator, p.141

T. Le-transfert, , p.141

.. , , p.141

.. , , p.142

.. Les-sources-de-chaleur, , p.148

L. Pertes-fer-dans-le-circuit-magnétique and .. , , p.149

L. Pertes and A. , , p.150

L. and M. , , p.151

L. Pertes-dans-l-'aimant-permanent and .. , , p.151

, Déplacement linéaire de la plaque mobile, p.153

.. , , p.154

.. Dimensionnement-du-ressort-magnétique, , p.155

, Principe de guidage de la plaque mobile. 156 4.4.1 Structure de la génératrice électrique linéaire à double stator sans technique de guidage, p.157

.. De-guidage, Structure de la génératrice électrique linéaire plane à double stator avec technique, p.158

/. Mode-de-contrôle and .. , , p.159

R. Compensation-par, , p.159

N. , , p.159

, Expérimentation, p.161

.. Présentation-de-la-plateforme-d-'essais, , p.161

.. Objectifs-de-l-'étude-expérimentale, , p.161

.. Spécifications-de-la-plateforme-d-'essais, , p.162

.. Mesure-des-paramètres-Électriques, , p.163

.. Evaluation-expérimentale, , p.163

.. Réglage-du-dispositif-de-guidage, , p.164

, REFERENCES BIBLIOGRAPHIQUES, vol.167

, ANNEXE : PUBLICATIONS SCIENTIFIQUES, p.176

, R : résistance d'une phase ; I : courant efficace d'une phase ; J : densité du courant ; V Al : volume total utilisé ; Õ Ö× : résistivité de l'aluminium ; É : coefficient de température. V Ö× : conductivité spécifique de l'aluminium, Ö× : densité de l'aluminium

, Les pertes fer dans le circuit magnétique

, Les pertes fer sont réparties dans tout le circuit magnétique laminé et dépendent essentiellement de la forme d'onde de la densité de flux, qui varie d'un point à l'autre de la section transversale. Les pertes fer se résument en pertes par hystérésis et par courants de Foucault

, Les pertes par hystérésis sont dues à la non-linéarité entre la densité de flux B et le champ magnétique H dans un matériau, causées par les retards de magnétisation ou de démagnétisation du matériau (elles résultent de la "réticence" du circuit magnétique à modifier son état magnétique) Elles sont proportionnelles à l'aire du cycle d'hystérésis illustré par la figure 4.20 et peuvent être mises sous la forme suivante

K. , Coefficient de pertes par hystérésis ; m : masse du matériau, f et B respectivement la fréquence et l'induction magnétique

, Les pertes par courants de Foucault naissent avec la variation du flux dans le matériau

B. Elles-sont-proportionnelles-au-carré-de-l-'induction and . Au-carré-de-la-fréquence,

P. , =. K. , *. , and J. *. ,

, Figure 4.20 : Cycle d'hystérésis

Y. B. Zulin, Theory of Periodic Conjugate Heat Transfer, 2017.

]. P. Ken&al17b, D. Kenfack, P. Matt, M. Enrici, and . François, Impact of Mechanical Stresses on Flat double sided Linear Electric Motor Multi-air gap Structure guided or Friction Plates, IEEE International Magnetics Conference, pp.24-28, 2017.

P. Kenfack, D. Matt, and P. Enrici, Mover Guide in a Linear Electric Generator with Double -Sided Stationary Stators, th International Conference on Power, Electronics, Machines and Drives, pp.17-19, 2018.

[. Zohuri, Compact Heat Exchangers: Selection, Application, Design and Evaluation, 2017.
DOI : 10.1007/978-3-319-29835-1

R. W. Serth and T. G. Lestina, Process Heat Transfer: Principles, Applications and Rules of Thumb, 2014.

A. Bejan, Convection Heat Transfer, 2013.
DOI : 10.1002/9781118671627

, Kuppan Thulukkanam, Heat Exchanger Design Handbook, LLC, 2013.

[. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer, Cengage Learning, 2011.

T. L. Bergman, A. S. Lavine, and A. , Fundamentals of Heat and Mass Transfer, 2011.

S. William and . Janna, Engineering Heat Transfer, 2000.

]. M. Pod&al98, H. Podhorsky, and . Krips, Heat Exchangers: A Practical Approach to Mechanical Construction, Design, and Calculations, 1998.

]. W. Kay&al93, M. E. Kays, and . Crawford, Convection Heat and Mass Transfer, 1993.

. Sin&al84, P. Krishana, A. I. Singh, and . Soler, Mechanical Design of Heat Exchangers and Pressure Vessel Components, 1984.

]. I. Bol&al96 and S. A. Boldea, Nasar and AL, New linear reciprocating machine with stationary permanent magnets, 0-7803-3544-9/96$5.00, IEEE, 1996.

. Actuator, R. Static, . Short-stroke-electromechanical, I. /. Systems, . Asme et al., , 2001.

A. Saiful, . Zulkifli, N. Mohd, A. Karsiti, A. Rashid et al.,

, Free-Piston Linear Engine-Generator by Mechanical Resonance and Rectangular Current Commutation, IEE Vehicle Power and Propulsion Conference (VPPC), 2008.

]. H. Min&al15, D. R. Chen, and . Delbalzo, Electromagnetic Spring for Sliding Wave Energy Converter

[. Ummaneni, R. Nilssen, and . J. Brennvall, Demonstration model of a linear permanent magnet actuator with gas springs, 2008 18th International Conference on Electrical Machines
DOI : 10.1109/ICELMACH.2008.4800228

A. Amara, G. Barakat, and B. Dakyo, Analytical Prediction of Eddy-Current Loss in Flat Permanent Magnet Linear Machines, 14 th International Power Electronics and Motion Control Conference

Y. Huang, J. Dong, and A. , Core Loss Modeling for Permanent-Magnet Motor Based on Flux Variation Locus and Finite-Element Method, IEEE Transactions on Magnetics, vol.48, issue.2, 2012.
DOI : 10.1109/TMAG.2011.2174201

]. F. Rin13 and . Rinderknecht, Iron losses of a linear generator for hybrid vehicle concept, th International Conference on Power Engineering, Energy and Electrical Drives, pp.13-17, 2013.

]. A. Jas&al10, H. Jassal, and A. Polinder, Comparison of Analytical and Finite Element Calculation of Eddy-Current Losses in PM Machines, XIX International Conference on Electrical Machines ? ICEM 2010

[. Mi, G. R. Slemon, and R. Bonert, Modeling of Iron Losses of Permanent-Magnet Synchronous Motors, IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, vol.39, issue.3, 2003.

[. Ummaneni, C. Jaillot, and A. , Experimental characterisation of linear permanent magnet actuator with gas springs, 2009 IEEE International Electric Machines and Drives Conference, 2009.
DOI : 10.1109/IEMDC.2009.5075232

]. J. Wan&al98, W. Wang, and A. Wang, Design and experimental characterisation of a linear reciprocating generator, IEEE Proc, Electr. Power Appl, vol.145, issue.6, 1998.

[. Pompermaier, K. Flavio, A. , S. Linear, and P. Motor, Magnetic Circuit Modeling Corrected by Axisymmetric 2-D FEM and Experimental Characterization, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol.59, issue.3, 2012.
DOI : 10.1109/tie.2011.2161650

[. Di, G. Sigalotti, J. Klapp, and A. , Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment, 2014.

J. Anthony, A. R. Wheeler, and . Ganji, Introduction to Engineering Experimentation, Pearson Higher Education, 2010.

[. Poltschak and P. Ebetshuber, Design of Integrated Magnetic Springs for Linear Oscillatory Actuators, 2016.
DOI : 10.1109/icelmach.2016.7732607

[. Wang, K. Atallah, and W. Wang, Analysis of a Magnetic Screw for High Force Density Linear Electromagnetic Actuators, IEEE Transactions on Magnetics, vol.47, issue.10, pp.18-9464, 2011.
DOI : 10.1109/TMAG.2011.2157464

R. C. Holehouse, K. Atallah, and J. Wang, Design and Realization of a Linear Magnetic Gear, IEEE Transactions on Magnetics, vol.47, issue.10, pp.18-9464, 2011.
DOI : 10.1109/TMAG.2011.2157101

R. C. Holehouse, K. Atallah, J. Wang, . Linear-magnetic, and . Gear, , 2012.

[. Boubaker, Étude des pertes atypiques dans les machines synchrones à aimants à hautes performances pour applications aéronautiques, 2016.

C. Mon&al12-]-ryan-montagne, K. Bingham, and . Atallah, Servo Control of Magnetic Gears, pp.1083-4435, 2011.

, Articles présentés dans des conférences internationales avec comité de lecture

P. Kenfack, D. Matt, and P. Enrici, Mover Guide in a Linear Electric Generator with Double -Sided Stationary Stators, th International Conference on Power, Electronics, Machines and Drives, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02007184

P. Kenfack, D. Matt, and P. Enrici, Designing a Permanent Magnet Linear Generator Multi Air-gap Structure using the Finite Element Method, th International Conference on Electrical and Electronics Engineering, 2002.

P. Kenfack, D. Matt, P. Enrici, and M. François, Impact of mechanical stresses on flat double sided linear electric motor multi-air gap structure guided or friction plates, 2017 IEEE International Magnetics Conference (INTERMAG), pp.24-28, 2017.
DOI : 10.1109/INTMAG.2017.8007998

URL : https://hal.archives-ouvertes.fr/hal-01907752

P. Enrici, F. Dumas, N. Ziegler, J. Jac, N. Bekka et al., Formalism and finite element study of actuator with toothed coupling, 2017 IEEE International Magnetics Conference (INTERMAG), pp.24-28, 2017.
DOI : 10.1109/INTMAG.2017.8007802

URL : https://hal.archives-ouvertes.fr/hal-01907755