E. Gil, Y. André, M. R. Ramdani, C. Fontaine, A. Trassoudaine et al., Record high-aspect-ratio GaAs nano-grating lines grown by Hydride Vapor Phase Epitaxy (HVPE), Journal of Crystal Growth, vol.380, pp.93-98, 2013.
DOI : 10.1016/j.jcrysgro.2013.05.019

E. Gil, Record Pure Zincblende Phase in GaAs Nanowires down to 5 nm in Radius, Nano Letters, vol.14, issue.7, pp.3938-3944, 2014.
DOI : 10.1021/nl501239h

URL : https://hal.archives-ouvertes.fr/hal-01727364

D. W. Shaw, Influence of Substrate Temperature on GaAs Epitaxial Deposition Rates, Journal of The Electrochemical Society, vol.115, issue.4, p.405, 1968.
DOI : 10.1149/1.2411231

D. W. Shaw, Epitaxial GaAs Kinetic Studies: {001} Orientation, Journal of The Electrochemical Society, vol.117, issue.5, p.683, 1970.
DOI : 10.1149/1.2407604

J. R. Knight, D. Effer, and P. R. Evans, The preparation of high purity gallium arsenide by vapour phase epitaxial growth, Solid-State Electronics, vol.8, issue.2, pp.178-180, 1965.
DOI : 10.1016/0038-1101(65)90050-X

L. Hollan and C. Schiller, ??tude de l'anisotropie de la croissance ??pitaxiale de GaAs en phase vapeur, Journal of Crystal Growth, vol.13, issue.14, pp.13-14, 1972.
DOI : 10.1016/0022-0248(72)90177-7

L. Hollan, Influence of the Growth Parameters in GaAs Vapor Phase Epitaxy, Journal of The Electrochemical Society, vol.124, issue.1, p.135, 1977.
DOI : 10.1149/1.2133227

M. Takikawa, Two-dimensional electron gas in a selectively doped InP/In0, p.53

. Ga0, 47As heterostructure grown by chloride transport vapor phase epitaxy, Appl. Phys. Lett, vol.43, issue.3, p.280, 1983.

C. Guedon, J. L. Bris, and J. L. Gentner, Control of interface formation during growth of InGaAs/InP heterostructures by chloride vapour phase epitaxy, Journal of Crystal Growth, vol.79, issue.1-3, pp.1-3, 1986.
DOI : 10.1016/0022-0248(86)90571-3

V. S. Ban, K. Woodruff, M. Lange, G. H. Olsen, and K. A. Jones, Comparison of InGaAs/InP p-i-n detectors grown by hydride and organometallic vapor phase epitaxy, IEEE Transactions on Electron Devices, vol.37, issue.3, pp.814-816, 1990.
DOI : 10.1109/16.47794

M. Cadoret, L. Chaput, H. Banvillet, A. Porte, C. Pariset et al., Kinetic processes in epitaxy of Gaxn1???xAs on InP(100) by hydride vapour phase epitaxy, Thin Solid Films, vol.192, issue.2, pp.343-350, 1990.
DOI : 10.1016/0040-6090(90)90078-R

J. R. Flemish, Altering the Composition of InGaAsP Grown by the Hydride Technique by Introducing HCl Downstream, Journal of The Electrochemical Society, vol.138, issue.5, p.1427, 1991.
DOI : 10.1149/1.2085801

A. T. Macrander, X-Ray, Photoluminescence, Stoichiometry, and Thickness Mapping of In[sub 1???x]Ga[sub x]As[sub y]P[sub 1???y], Journal of The Electrochemical Society, vol.138, issue.4, p.1147, 1991.
DOI : 10.1149/1.2085732

C. Park, V. S. Ban, G. H. Olsen, T. J. Anderson, and K. P. Quinlan, Process characterization and evaluation of hydride VPE grown Ga x In1???x As using a Ga/In alloy source, Journal of Electronic Materials, vol.2, issue.4, pp.447-454, 1992.
DOI : 10.1007/BF02660410

N. Gopalakrishnan, R. Dhanasekaran, and S. Lourdudoss, Compositional analysis on quaternary GaxIn1 ??? xAsyP1 ??? y vapour phase epitaxy: a comparison between theory and experiment, Materials Chemistry and Physics, vol.50, issue.1, pp.70-75, 1997.
DOI : 10.1016/S0254-0584(97)80186-1

C. Guedon, J. L. Bris, and J. L. Gentner, Control of interface formation during growth of InGaAs/InP heterostructures by chloride vapour phase epitaxy, Journal of Crystal Growth, vol.79, issue.1-3, pp.1-3, 1986.
DOI : 10.1016/0022-0248(86)90571-3

R. Kobayashi, Y. Jin, F. Hasegawa, A. Koukitu, and H. Seki, Low temperature growth of GaAs and AlAs by direct reaction between GaCl3, AlCl3 and AsH3, Journal of Crystal Growth, vol.113, issue.3-4, pp.3-4, 1991.
DOI : 10.1016/0022-0248(91)90084-I

J. Leitner, J. Stejskal, V. Flemr, and P. Vo?ka, Thermodynamic aspects of the preparation of AlAs and Ga1???xAlxAs epitaxial layers in hydride and chloride systems, Journal of Crystal Growth, vol.144, issue.1-2, pp.1-8, 1994.
DOI : 10.1016/0022-0248(94)90002-7

K. Grüter, M. Deschler, H. Jürgensen, R. Beccard, and P. Balk, Deposition of high quality GaAs films at fast rates in the LP-CVD system, Journal of Crystal Growth, vol.94, issue.3, pp.607-612, 1989.
DOI : 10.1016/0022-0248(89)90082-1

K. L. Schulte, Metalorganic vapor phase growth of quantum well structures on thick metamorphic buffer layers grown by hydride vapor phase epitaxy, Journal of Crystal Growth, vol.370, pp.293-298, 2013.
DOI : 10.1016/j.jcrysgro.2012.08.053

T. Earles, Low-strain, quantum-cascade-laser active regions grown on metamorphic buffer layers for emission in the 3.0?4.0 ?m wavelength region, IET Optoelectron, vol.8, issue.2, pp.25-32, 2014.

J. Simon, D. Young, and A. Ptak, Low-cost III–V solar cells grown by hydride vapor-phase epitaxy, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), pp.538-0541, 2014.
DOI : 10.1109/PVSC.2014.6924977

S. Lourdudoss, Heteroepitaxy and selective area heteroepitaxy for silicon photonics, Current Opinion in Solid State and Materials Science, vol.16, issue.2, pp.91-99, 2012.
DOI : 10.1016/j.cossms.2012.01.003

K. L. Schulte, W. L. Rance, R. C. Reedy, A. J. Ptak, D. L. Young et al., Controlled formation of GaAs pn junctions during hydride vapor phase epitaxy of GaAs, Journal of Crystal Growth, vol.352, issue.1, pp.253-257, 2012.
DOI : 10.1016/j.jcrysgro.2011.11.013

M. Harrous, L. Chaput, A. Bendraoui, M. Cadoret, C. Pariset et al., Phosphine and arsine decomposition in CVD reactors for InP and InGaAs growth, Journal of Crystal Growth, vol.92, issue.3-4
DOI : 10.1016/0022-0248(88)90027-9

, J. Cryst. Growth, vol.92, pp.423-431, 1988.

F. Lassalle, A. Porte, J. L. Laporte, C. Pariset, and M. Cadoret, Growth of GaInAs/InP by the vapor phase epitaxy hydride method, Materials Research Bulletin, vol.23, issue.9, pp.1285-1297, 1988.
DOI : 10.1016/0025-5408(88)90116-X

E. Gil-lafon, J. Napierala, A. Pimpinelli, R. Cadoret, A. Trassoudaine et al., Direct condensation modelling for a two-particle growth system: application to GaAs grown by hydride vapour phase epitaxy, Journal of Crystal Growth, vol.258, issue.1-2, pp.14-25, 2003.
DOI : 10.1016/S0022-0248(03)01311-3

A. Pimpinelli, R. Cadoret, E. Gil-lafon, J. Napierala, and A. Trassoudaine, Two-particle surface diffusion-reaction models of vapour-phase epitaxial growth on vicinal surfaces, Journal of Crystal Growth, vol.258, issue.1-2, pp.1-13, 2003.
DOI : 10.1016/S0022-0248(03)01310-1

URL : https://hal.archives-ouvertes.fr/hal-00272617

G. B. Stringfellow, Fundamental aspects of vapor growth and epitaxy, Journal of Crystal Growth, vol.115, issue.1-4, pp.1-11, 1991.
DOI : 10.1016/0022-0248(91)90706-B

G. B. Stringfellow, Organometallic vapor-phase epitaxy: theory and practice, 2, 1999.

E. Gil-lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret et al., Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies, Journal of Crystal Growth, vol.222, issue.3, pp.482-496, 2001.
DOI : 10.1016/S0022-0248(00)00961-1

O. Mizuno and H. Watanabe, Vapor growth kinetics of III???V compounds in a hydrogen-inert gas mixed carrier system, Journal of Crystal Growth, vol.30, issue.2, pp.240-248, 1975.
DOI : 10.1016/0022-0248(75)90095-0

L. Chaput, R. Cadoret, and M. Mihailovic, Experimental and theoretical study of InP homoepitaxy by chemical vapour deposition from gaseous indium chloride and hydrogen diluted phosphine, Journal of Crystal Growth, vol.112, issue.4, pp.691-698, 1991.
DOI : 10.1016/0022-0248(91)90125-O

E. Kaldis, Current Topics in Materials Science, Journal of The Electrochemical Society, vol.127, issue.7, p.283, 1980.
DOI : 10.1149/1.2129974

A. Pimpinelli, A. Videcoq, and M. Vladimirova, Kinetic surface patterning in twoparticle models of epitaxial growth, Appl. Surf. Sci, pp.175-176, 2001.

E. Gil-lafon, J. Napierala, A. Pimpinelli, R. Cadoret, A. Trassoudaine et al., Direct condensation modelling for a two-particle growth system: application to GaAs grown by hydride vapour phase epitaxy, Journal of Crystal Growth, vol.258, issue.1-2, pp.14-25, 2003.
DOI : 10.1016/S0022-0248(03)01311-3

R. Cadoret and E. Gil-lafon, M??canismes de croissance des faces {001} exactes et d??sorient??es de GaAs par la m??thode aux chlorures sous H2 : diffusion superficielle, croissance par spirale, m??canismes de d??sorption HCl et GaCl3, Journal de Physique I, vol.7, issue.7, pp.889-907, 1997.
DOI : 10.1051/jp1:1997208

R. Cadoret, Growth mechanisms of (00.1)GaN substrates in the hydride vapour-phase method: surface diffusion, spiral growth, H2 and GaCl3 mechanisms, Journal of Crystal Growth, vol.205, issue.1-2, pp.123-135, 1999.
DOI : 10.1016/S0022-0248(99)00251-1

M. R. Ramdani, Croissance sélective HVPE et VLS-HVPE d'objets et de structures GaAs à morphologie contrôlée à l'échelle sub-micrométrique et nanométrique, 2010.

M. Yao, Facile Five-Step Heteroepitaxial Growth of GaAs Nanowires on Silicon Substrates and the Twin Formation Mechanism, ACS Nano, vol.10, issue.2, pp.2424-2435, 2016.
DOI : 10.1021/acsnano.5b07232

D. W. Shaw, Mechanisms in Vapour Epitaxy of Semiconductors, pp.1-48, 1974.
DOI : 10.1007/978-1-4757-1272-8_1

M. Akiyama, Y. Kawarada, and K. Kaminishi, Growth of GaAs on Si by MOVCD, Journal of Crystal Growth, vol.68, issue.1, pp.21-26, 1984.
DOI : 10.1016/0022-0248(84)90391-9

F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires, Physical Review B, vol.77, issue.12, 2006.
DOI : 10.1063/1.1608486

E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures, Journal of Applied Physics, vol.737, issue.11, p.114325, 2005.
DOI : 10.1063/1.98667

C. Chuang, III-V Nanowires and Nanoneedles on Lattice Mismatched Substrates for Optoelectronic Device Applications, 2009.

M. Heiss, Self-assembled quantum dots in a nanowire system for quantum photonics, Nature Materials, vol.12, issue.5, pp.439-444, 2013.
DOI : 10.1107/S0021889811038970

URL : https://infoscience.epfl.ch/record/189186/files/Heiss-NatMat2013.pdf

H. E. Jeong, I. Kim, P. Karam, H. Choi, and P. Yang, Bacterial Recognition of Silicon Nanowire Arrays, Nano Letters, vol.13, issue.6, pp.2864-2869, 2013.
DOI : 10.1021/nl401205b

F. Qian, H. Wang, Y. Ling, G. Wang, M. P. Thelen et al., and a Hematite Nanowire Photoanode, Nano Letters, vol.14, issue.6, pp.3688-3693, 2014.
DOI : 10.1021/nl501664n

R. S. Wagner and W. C. Ellis, VAPOR???LIQUID???SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, vol.33, issue.5, pp.89-90, 1964.
DOI : 10.1063/1.1777195

R. S. Wagner and W. C. Ellis, Vapor-liquid-solid mechanism of crystal growth and its application to silicon, Trans. Mettalurgic Soc. Aime, issue.233, p.1053, 1965.
DOI : 10.1063/1.1753975

E. I. Givargizov, Oriented growth of whiskers of AIIIBV compounds by VLS-mechanism, Kristall und Technik, vol.36, issue.5, pp.473-484, 1975.
DOI : 10.1016/0022-0248(71)90109-6

T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons et al., Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth, Science, vol.270, issue.5243, pp.1791-1794, 1995.
DOI : 10.1126/science.270.5243.1791

A. M. Morales, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science, vol.10, issue.5348, pp.208-211, 1998.
DOI : 10.1016/0009-2614(93)89073-Q

B. D. Joyce and J. A. Baldrey, Selective Epitaxial Deposition of Silicon, Nature, vol.106, issue.4840, pp.485-486, 1962.
DOI : 10.1002/j.1538-7305.1959.tb03907.x

F. W. Tausch and A. G. Lapierre, A Novel Crystal Growth Phenomenon: Single Crystal GaAs Overgrowth onto Silicon Dioxide, Journal of The Electrochemical Society, vol.112, issue.7, p.706, 1965.
DOI : 10.1149/1.2423670

D. W. Shaw, Selective Epitaxial Deposition of Gallium Arsenide in Holes, Journal of The Electrochemical Society, vol.113, issue.9, p.904, 1966.
DOI : 10.1149/1.2424153

J. Takeda, M. Akabori, J. Motohisa, and T. Fukui, Formation of AlxGa1???xAs periodic array of micro-hexagonal pillars and air holes by selective area MOVPE, Applied Surface Science, vol.190, issue.1-4, pp.236-241, 2002.
DOI : 10.1016/S0169-4332(01)00886-8

R. Azoulay, N. Bouadma, J. C. Bouley, and L. Dugrand, Selective MOCVD epitaxy for optoelectronic devices, Journal of Crystal Growth, vol.55, issue.1, pp.229-234, 1981.
DOI : 10.1016/0022-0248(81)90292-X

Y. Takahashi, S. Sakai, and M. Umeno, Selective MOCVD growth of GaAlAs on partly masked substrates and its application to optoelectronic devices, Journal of Crystal Growth, vol.68, issue.1, pp.206-213, 1984.
DOI : 10.1016/0022-0248(84)90418-4

K. Kamon, M. Shimazu, K. Kimura, M. Mihara, and M. Ishii, Selective growth of AlxGa1???xAs embedded in etched grooves on GaAs by low-pressure OMVPE, Journal of Crystal Growth, vol.77, issue.1-3, pp.1-3, 1986.
DOI : 10.1016/0022-0248(86)90315-5

K. Yamaguchi, M. Ogasawara, and K. Okamoto, Surface???diffusion model in selective metalorganic chemical vapor deposition, Journal of Applied Physics, vol.28, issue.12, p.5919, 1992.
DOI : 10.1016/0022-0248(86)90290-3

J. J. Coleman, R. M. Lammert, M. L. Osowski, and A. M. Jones, Progress in InGaAs-GaAs selective-area MOCVD toward photonic integrated circuits, IEEE Journal of Selected Topics in Quantum Electronics, vol.3, issue.3, pp.874-884, 1997.
DOI : 10.1109/2944.640641

K. Tomioka, Y. Kobayashi, J. Motohisa, S. Hara, and T. Fukui, Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core???shell nanowires on Si(111) substrate, Nanotechnology, vol.20, issue.14, p.145302, 2009.
DOI : 10.1088/0957-4484/20/14/145302

K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, III???V Nanowires on Si Substrate: Selective-Area Growth and Device Applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.17, issue.4, pp.1112-1129, 2011.
DOI : 10.1109/JSTQE.2010.2068280

J. A. Hutchby, G. I. Bourianoff, V. V. Zhirnov, and J. E. Brewer, Extending the road beyond CMOS, IEEE Circuits and Devices Magazine, vol.18, issue.2, pp.28-41, 2002.
DOI : 10.1109/101.994856

R. Chau, Benchmarking Nanotechnology for High-Performance and Low-Power Logic Transistor Applications, IEEE Transactions On Nanotechnology, vol.4, issue.2, pp.153-158, 2005.
DOI : 10.1109/TNANO.2004.842073

K. Volz, W. Stolz, A. Dadgar, and A. Krost, Growth of III/Vs on Silicon, Handbook of Crystal Growth, pp.1249-1300, 2015.
DOI : 10.1016/B978-0-444-63304-0.00031-7

Y. B. Bolkhovityanov and O. P. Pchelyakov, GaAs epitaxy on Si substrates: modern status of research and engineering, Physics-Uspekhi, vol.51, issue.5, pp.437-456, 2008.
DOI : 10.1070/PU2008v051n05ABEH006529

A. Larrue, C. Wilhelm, G. Vest, S. Combrié, A. De-rossi et al., Monolithic integration of III-V nanowire with photonic crystal microcavity for vertical light emission, Optics Express, vol.20, issue.7, p.7758, 2012.
DOI : 10.1364/OE.20.007758

D. Spirkoska, C. Colombo, M. Heiß, M. Heigoldt, G. Abstreiter et al., Growth Methods and Properties of High Purity III-V Nanowires by Molecular Beam Epitaxy, Advances in Solid State Physics, pp.13-26, 2009.
DOI : 10.1007/978-3-540-85859-1_2

S. D. Brotherton and J. E. Lowther, Electron and Hole Capture at Au and Pt Centers in Silicon, Physical Review Letters, vol.45, issue.9, pp.606-609, 1980.
DOI : 10.1063/1.1663501

J. Tersoff, Stable Self-Catalyzed Growth of III???V Nanowires, Nano Letters, vol.15, issue.10, pp.6609-6613, 2015.
DOI : 10.1021/acs.nanolett.5b02386

D. E. Perea, J. E. Allen, S. J. May, B. W. Wessels, D. N. Seidman et al., Three-Dimensional Nanoscale Composition Mapping of Semiconductor Nanowires, Nano Letters, vol.6, issue.2, pp.181-185, 2006.
DOI : 10.1021/nl051602p

A. Fontcuberta-i-morral, C. Colombo, G. Abstreiter, J. Arbiol, and J. R. Morante, Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires, Applied Physics Letters, vol.92, issue.6, p.63112, 2008.
DOI : 10.1063/1.2364121

C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Fontcuberta, Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy, Physical Review B, vol.45, issue.15, 2008.
DOI : 10.1103/PhysRevB.76.153401

F. Matteini, G. Tütüncüoglu, H. Potts, F. Jabeen, and A. Fontcuberta, and Its Impact on GaAs Nanowire Growth, Crystal Growth & Design, vol.15, issue.7, p.150529153811003, 2015.
DOI : 10.1021/acs.cgd.5b00374

G. Priante, S. Ambrosini, V. G. Dubrovskii, A. Franciosi, and S. Rubini, Stopping and Resuming at Will the Growth of GaAs Nanowires, Crystal Growth & Design, vol.13, issue.9, pp.3976-3984, 2013.
DOI : 10.1021/cg400701w

V. G. Dubrovskii, G. E. Cirlin, N. V. Sibirev, F. Jabeen, J. C. Harmand et al., New Mode of Vapor???Liquid???Solid Nanowire Growth, Nano Letters, vol.11, issue.3, pp.1247-1253, 2011.
DOI : 10.1021/nl104238d

V. G. Dubrovskii and N. V. Sibirev, Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires, Physical Review B, vol.1, issue.3, 2008.
DOI : 10.1103/PhysRevLett.95.146104

N. V. Sibirev, M. A. Timofeeva, A. D. Bol-'shakov, M. V. Nazarenko, and V. G. Dubrovski?, Surface energy and crystal structure of nanowhiskers of III???V semiconductor compounds, Physics of the Solid State, vol.601, issue.12, pp.1531-1538, 2010.
DOI : 10.1103/PhysRevE.70.031604

G. E. Cirlin, Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy, Physical Review B, vol.52, issue.3, 2010.
DOI : 10.1103/PhysRevB.79.205316

URL : http://dro.dur.ac.uk/7553/1/7553.pdf

P. Krogstrup, R. Popovitz-biro, E. Johnson, M. H. Madsen, J. Nygård et al., Structural Phase Control in Self-Catalyzed Growth of GaAs Nanowires on Silicon (111), Nano Letters, vol.10, issue.11, pp.4475-4482, 2010.
DOI : 10.1021/nl102308k

F. Matteini, G. Tütüncüo?lu, D. Rüffer, E. Alarcón-lladó, and A. Fontcuberta, Ga-assisted growth of GaAs nanowires on silicon, comparison of surface SiOx of different nature, Journal of Crystal Growth, vol.404, pp.246-255, 2014.
DOI : 10.1016/j.jcrysgro.2014.07.034

B. , Au-Free Epitaxial Growth of InAs Nanowires, Nano Lett, vol.6, issue.8, pp.1817-1821, 2006.

S. Ermez, E. J. Jones, S. C. Crawford, and S. Grade?ak, Self-Seeded Growth of GaAs Nanowires by Metal???Organic Chemical Vapor Deposition, Crystal Growth & Design, vol.15, issue.6, pp.2768-2774, 2015.
DOI : 10.1021/acs.cgd.5b00131

S. Breuer, F. Karouta, H. H. Tan, and C. Jagadish, MOCVD growth of GaAs nanowires using Ga droplets, COMMAD 2012, pp.39-40
DOI : 10.1109/COMMAD.2012.6472349

F. Glas, M. R. Ramdani, G. Patriarche, and J. Harmand, Predictive modeling of self-catalyzed III-V nanowire growth, Physical Review B, vol.88, issue.19, 2013.
DOI : 10.1021/j100798a505

F. Matteini, V. G. Dubrovskii, D. Rüffer, G. Tütüncüo?lu, Y. Fontana et al., Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon, Nanotechnology, vol.26, issue.10, p.105603, 2015.
DOI : 10.1088/0957-4484/26/10/105603

A. M. Munshi, Position-Controlled Uniform GaAs Nanowires on Silicon using Nanoimprint Lithography, Nano Letters, vol.14, issue.2, pp.960-966, 2014.
DOI : 10.1021/nl404376m

V. G. Dubrovskii, Length Distributions of Nanowires Growing by Surface Diffusion, Crystal Growth & Design, vol.16, issue.4, pp.2167-2172, 2016.
DOI : 10.1021/acs.cgd.5b01832

V. G. Dubrovskii, Self-Equilibration of the Diameter of Ga-Catalyzed GaAs Nanowires, Nano Letters, vol.15, issue.8, pp.5580-5584, 2015.
DOI : 10.1021/acs.nanolett.5b02226

URL : https://hal.archives-ouvertes.fr/hal-01713077

G. Koblmüller, Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy, Nanotechnology, vol.21, issue.36, p.365602, 2010.
DOI : 10.1088/0957-4484/21/36/365602

T. Grap, T. Rieger, C. Blömers, T. Schäpers, D. Grützmacher et al., Self-catalyzed VLS grown InAs nanowires with twinning superlattices, Nanotechnology, vol.24, issue.33, p.335601, 2013.
DOI : 10.1088/0957-4484/24/33/335601

X. Wang, W. Du, X. Yang, X. Zhang, and T. Yang, Self-catalyzed growth mechanism of InAs nanowires and growth of InAs/GaSb heterostructured nanowires on Si substrates, Journal of Crystal Growth, vol.426, pp.287-292, 2015.
DOI : 10.1016/j.jcrysgro.2015.05.023

W. M. Haynes, CRC Handbook of Chemistry and Physics, 2014.

C. Chatillon and D. Chatain, Congruent vaporization of GaAs(s) and stability of Ga(l) droplets at the GaAs(s) surface, Journal of Crystal Growth, vol.151, issue.1-2, pp.91-101, 1995.
DOI : 10.1016/0022-0248(95)00044-5

URL : https://hal.archives-ouvertes.fr/hal-01786369

V. G. Dubrovskii, Role of nonlinear effects in nanowire growth and crystal phase, Physical Review B, vol.150, issue.20, p.205305, 2009.
DOI : 10.1134/1.2142881

M. R. Ramdani, Fast Growth Synthesis of GaAs Nanowires with Exceptional Length, Nano Letters, vol.10, issue.5, pp.1836-1841, 2010.
DOI : 10.1021/nl100557d

URL : https://hal.archives-ouvertes.fr/hal-01541624

E. Gil, Y. André, R. Cadoret, and A. Trassoudaine, Hydride Vapor Phase Epitaxy for??Current III???V and Nitride Semiconductor Compound Issues, Handbook of Crystal Growth, pp.51-93, 2015.
DOI : 10.1016/B978-0-444-63304-0.00002-0

J. F. Watts and J. Wolstenholme, An introduction to surface analysis by XPS and AES, 2003.
DOI : 10.1002/0470867930

S. Bietti, Self-assisted GaAs nanowires with selectable number density on Silicon without oxide layer, Journal of Physics D: Applied Physics, vol.47, issue.39, p.394002, 2014.
DOI : 10.1088/0022-3727/47/39/394002

W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Oxide-assisted growth and optical characterization of gallium-arsenide nanowires, Applied Physics Letters, vol.78, issue.21, p.3304, 2001.
DOI : 10.1063/1.105453

R. Zhang, Y. Lifshitz, and S. Lee, Oxide-Assisted Growth of Semiconducting Nanowires, Advanced Materials, vol.15, issue.78, pp.635-640, 2003.
DOI : 10.1002/adma.200301641

V. G. Dubrovskii, Group V sensitive vapor???liquid???solid growth of Au-catalyzed and self-catalyzed III???V nanowires, Journal of Crystal Growth, vol.440, pp.62-68, 2016.
DOI : 10.1016/j.jcrysgro.2016.01.019

M. T. Robson, V. G. Dubrovskii, and R. R. Lapierre, /Si(111) substrates, Nanotechnology, vol.26, issue.46, p.465301, 2015.
DOI : 10.1088/0957-4484/26/46/465301

V. G. Dubrovskii, Theory of VLS Growth of Compound Semiconductors, Semiconductors and Semimetals, pp.1-78, 2015.
DOI : 10.1016/bs.semsem.2015.09.002

V. G. Dubrovskii, Mono- and polynucleation, atomistic growth, and crystal phase of III-V nanowires under varying group V flow, The Journal of Chemical Physics, vol.142, issue.20, p.204702, 2015.
DOI : 10.1016/0040-6090(80)90228-x

V. G. Dubrovskii, Influence of the group V element on the chemical potential and crystal structure of Au-catalyzed III-V nanowires, Applied Physics Letters, vol.104, issue.5, p.53110, 2014.
DOI : 10.1134/1.2142881

V. G. Dubrovskii, Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires, Physical Review B, vol.1, issue.20, 2009.
DOI : 10.1103/PhysRevLett.99.146101

URL : https://hal.archives-ouvertes.fr/hal-00473095

V. G. Dubrovskii, Nucleation Theory and Growth of Nanostructures, 2014.
DOI : 10.1007/978-3-642-39660-1

C. Chu, Nanoscale Growth of GaAs on Patterned Si(111) Substrates by Molecular Beam Epitaxy, Crystal Growth & Design, vol.14, issue.2, pp.593-598, 2014.
DOI : 10.1021/cg401423d

C. Renard, Growth of high quality micrometer scale GaAs/Si crystals from (001) Si nano-areas in SiO2, Journal of Crystal Growth, vol.401, pp.554-558, 2014.
DOI : 10.1016/j.jcrysgro.2014.01.065

URL : https://hal.archives-ouvertes.fr/hal-01721160

C. Renard, from (001) Si nano-areas, Applied Physics Letters, vol.102, issue.19, p.191915, 2013.
DOI : 10.1063/1.1512967

URL : https://hal.archives-ouvertes.fr/hal-00931323

R. Memming and G. Schwandt, Anodic dissolution of silicon in hydrofluoric acid solutions, Surface Science, vol.4, issue.2, pp.109-124, 1966.
DOI : 10.1016/0039-6028(66)90071-9

V. Lehmann and U. Gösele, Porous silicon formation: A quantum wire effect, Applied Physics Letters, vol.27, issue.8, p.856, 1991.
DOI : 10.1149/1.2086525

M. Kawabe and T. Ueda, Self-Annihilation of Antiphase Boundary in GaAs on Si(100) Grown by Molecular Beam Epitaxy, Japanese Journal of Applied Physics, vol.26, issue.Part 2, No. 6, pp.944-946, 1987.
DOI : 10.1143/JJAP.26.L944

W. Kaminsky, program, Journal of Applied Crystallography, vol.40, issue.2, pp.382-385, 2007.
DOI : 10.1107/S0021889807003986

Y. Arakawa, Multidimensional quantum well laser and temperature dependence of its threshold current, Applied Physics Letters, vol.17, issue.11, p.939, 1982.
DOI : 10.1098/rspa.1952.0056

M. Sugawara, Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers, Physical Review B, vol.13, issue.23, 2004.
DOI : 10.1088/0957-0233/13/11/305

A. Nozik, Quantum dot solar cells, Physica E: Low-dimensional Systems and Nanostructures, vol.14, issue.1-2, pp.115-120, 2002.
DOI : 10.1016/S1386-9477(02)00374-0

Y. T. Sun, G. Omanakuttan, and S. Lourdudoss, An InP/Si heterojunction photodiode fabricated by self-aligned corrugated epitaxial lateral overgrowth, Applied Physics Letters, vol.106, issue.21, p.213504, 2015.
DOI : 10.1039/B809257E

H. Yoshida, K. Inaba, and N. Sato, X-ray diffraction reciprocal space mapping study of the thin film phase of pentacene, Applied Physics Letters, vol.43, issue.18, p.181930, 2007.
DOI : 10.1021/j100389a010

G. Avit, GaN Rods Grown on Si by SAG-HVPE toward GaN HVPE/InGaN MOVPE Core/Shell Structures, Crystal Growth & Design, vol.16, issue.5, pp.2509-2513, 2016.
DOI : 10.1021/acs.cgd.5b01244

, References References

F. Akdeniz, A. Ça?lar, and D. Güllü, Recent energy investigations on fossil and alternative nonfossil resources in Turkey, Energy Conversion and Management, vol.43, issue.4, pp.575-589, 2002.
DOI : 10.1016/S0196-8904(01)00036-X

S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, Review of the proton exchange membranes for fuel cell applications, International Journal of Hydrogen Energy, vol.35, issue.17, pp.9349-9384, 2010.
DOI : 10.1016/j.ijhydene.2010.05.017

M. Rahimnejad, A. A. Ghoreyshi, G. Najafpour, and T. Jafary, Power generation from organic substrate in batch and continuous flow microbial fuel cell operations, Applied Energy, vol.88, issue.11, pp.3999-4004, 2011.
DOI : 10.1016/j.apenergy.2011.04.017

M. C. Potter, Electrical Effects Accompanying the Decomposition of Organic Compounds, Proceedings of the Royal Society B: Biological Sciences, vol.84, issue.571, pp.260-276, 1911.
DOI : 10.1098/rspb.1911.0073

B. H. Kim, D. H. Park, P. K. Shin, I. S. Chang, and H. J. Kim, Mediator-less biofuel cell. Google Patents, 1999.

H. J. Kim, S. H. Moon, and H. K. Byung, A Microbial Fuel Cell Type Lactate Biosensor Using a Metal-Reducing Bacterium, Shewanella putrefaciens, J. Microbiol. Biotechnol, vol.9, issue.3, pp.365-367, 1999.

N. Mokhtana, W. R. Daud, M. Rahimnejad, and G. D. Najafpouv, Bioelectricity generation in biological fuel cell with and without mediators, World Appl. Sci. J, vol.18, issue.4, pp.559-567, 2012.

K. Rabaey and W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends in Biotechnology, vol.23, issue.6, pp.291-298, 2005.
DOI : 10.1016/j.tibtech.2005.04.008

R. K. Thauer, K. Jungermann, and K. Decker, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev, vol.41, issue.1, p.100, 1977.

B. E. Logan, Microbial fuel cells, 2008.
DOI : 10.1002/9780470258590

M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, and S. Oh, Microbial fuel cell as new technology for bioelectricity generation: A review, Alexandria Engineering Journal, vol.54, issue.3, pp.745-756, 2015.
DOI : 10.1016/j.aej.2015.03.031

B. E. Logan, Environmental Science & Technology, vol.40, issue.17, pp.5181-5192, 2006.
DOI : 10.1021/es0605016

Y. Sharma and B. Li, The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs), Bioresource Technology, vol.101, issue.6, pp.1844-1850, 2010.
DOI : 10.1016/j.biortech.2009.10.040

L. Huang, R. J. Zeng, and I. Angelidaki, Electricity production from xylose using a mediator-less microbial fuel cell, Bioresource Technology, vol.99, issue.10, pp.4178-4184, 2008.
DOI : 10.1016/j.biortech.2007.08.067

S. Wijeyekoon, T. Mino, H. Satoh, and T. Matsuo, Effects of substrate loading rate on biofilm structure, Water Research, vol.38, issue.10, pp.2479-2488, 2004.
DOI : 10.1016/j.watres.2004.03.005

R. D. Cusick, Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater, Applied Microbiology and Biotechnology, vol.43, issue.21, pp.2053-2063, 2011.
DOI : 10.1021/es901631p

B. Logan, S. Cheng, V. Watson, and G. Estadt, Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells, Environmental Science & Technology, vol.41, issue.9, pp.3341-3346, 2007.
DOI : 10.1021/es062644y

, Biocompatibility of GaAs nanowires and fabrication of a Microbial Fuel Cell (MFC) Prototype 132, Chapter

Y. Zuo, S. Cheng, D. Call, and B. E. Logan, Tubular Membrane Cathodes for Scalable Power Generation in Microbial Fuel Cells, Environmental Science & Technology, vol.41, issue.9, pp.3347-3353, 2007.
DOI : 10.1021/es0627601

B. Min and B. E. Logan, Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell Environ
DOI : 10.1021/es0491026

. Sci, , pp.5809-5814, 2004.

L. J. Casarett, C. D. Klaassen, and J. B. Watkins, Casarett and Doull's essentials of toxicology, 2003.

P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, Biofilms as Complex Differentiated Communities Annu. Rev. Microbiol, vol.56, issue.1, pp.187-209, 2002.

S. Debuy, Développement de cathodes microbiennes catalysant la réduction du dioxygène, 2015.

H. E. Jeong, I. Kim, P. Karam, H. Choi, and P. Yang, Bacterial Recognition of Silicon Nanowire Arrays, Nano Letters, vol.13, issue.6, pp.2864-2869, 2013.
DOI : 10.1021/nl401205b

F. Qian, H. Wang, Y. Ling, G. Wang, M. P. Thelen et al., and a Hematite Nanowire Photoanode, Nano Letters, vol.14, issue.6, pp.3688-3693, 2014.
DOI : 10.1021/nl501664n

A. J. Bard, R. Parsons, and J. Jordan, Standard potentials in aqueous solution, 1985.

R. A. Sinton and A. Cuevas, Contactless determination of current???voltage characteristics and minority???carrier lifetimes in semiconductors from quasi???steady???state photoconductance data, Applied Physics Letters, vol.15, issue.17, p.2510, 1996.
DOI : 10.1063/1.117723

M. R. Ramdani, Fast Growth Synthesis of GaAs Nanowires with Exceptional Length, Nano Letters, vol.10, issue.5, pp.1836-1841, 2010.
DOI : 10.1021/nl100557d

URL : https://hal.archives-ouvertes.fr/hal-01541624

E. Gil, Record Pure Zincblende Phase in GaAs Nanowires down to 5 nm in Radius, Nano Letters, vol.14, issue.7, pp.3938-3944, 2014.
DOI : 10.1021/nl501239h

URL : https://hal.archives-ouvertes.fr/hal-01727364

E. Gil, Y. André, R. Cadoret, and A. Trassoudaine, Hydride Vapor Phase Epitaxy for??Current III???V and Nitride Semiconductor Compound Issues, Handbook of Crystal Growth, pp.51-93, 2015.
DOI : 10.1016/B978-0-444-63304-0.00002-0

W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich et al., Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis, Energy & Environmental Science, vol.24, issue.5, pp.1404-1427, 2015.
DOI : 10.1002/adfm.201401077

A. Lvarez-lueje, M. Prez, and C. Zapat, Electrochemical Methods for the In Vitro Assessment of Drug Metabolism, Topics on Drug Metabolism, 2012.
DOI : 10.5772/28647

K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer, Applied and Environmental Microbiology, vol.70, issue.9, pp.5373-5382, 2004.
DOI : 10.1128/AEM.70.9.5373-5382.2004

J. P. Busalmen, A. Esteve-nuñez, and J. M. Feliu, Whole Cell Electrochemistry of Electricity-Producing Microorganisms Evidence an Adaptation for Optimal Exocellular Electron Transport, Environmental Science & Technology, vol.42, issue.7, pp.2445-2450, 2008.
DOI : 10.1021/es702569y

M. I. Montenegro, M. A. Queirós, and J. L. Daschbach, Microelectrodes: Theory and Applications, 1991.

N. S. Ramaraja and P. Ramasamy, Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization, Journal of Microbial & Biochemical Technology, 2013.
DOI : 10.4172/1948-5948.S6-004

C. Gabrielli, Méthodes électrochimiques: Mesures d'impédances, 1998.

J. S. Daniels and N. Pourmand, Label-Free Impedance Biosensors: Opportunities and Challenges, Electroanalysis, vol.20, issue.112, pp.1239-1257, 2007.
DOI : 10.1002/3527608192

A. Bonanni and M. Valle, Use of nanomaterials for impedimetric DNA sensors: A review, Analytica Chimica Acta, vol.678, issue.1, pp.7-17, 2010.
DOI : 10.1016/j.aca.2010.08.022

X. Luo and J. J. Davis, Electrical biosensors and the label free detection of protein disease biomarkers, Chemical Society Reviews, vol.8, issue.13, p.5944, 2013.
DOI : 10.1021/nl080094r

E. Katz and I. Willner, Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors, Electroanalysis, vol.15, issue.11, pp.913-947, 2003.
DOI : 10.1002/elan.200390114

H. Cai, Y. Xu, N. Zhu, P. He, and Y. Fang, An electrochemical DNA hybridization detection assay based on a silver nanoparticle label, The Analyst, vol.127, issue.6, pp.803-808, 2002.
DOI : 10.1039/b200555g

B. Ketterer, Raman Spectroscopy of GaAs Nanowires: Doping Mechanisms and Fundamental Properties, 2011.

F. Yang, Zn-doping of GaAs nanowires grown by Aerotaxy, Journal of Crystal Growth, vol.414, 2014.
DOI : 10.1016/j.jcrysgro.2014.09.051

J. Jadczak, Unintentional High-Density p-Type Modulation Doping of a GaAs/AlAs Core???Multishell Nanowire, Nano Letters, vol.14, issue.5, pp.2807-2814, 2014.
DOI : 10.1021/nl500818k

URL : https://hal.archives-ouvertes.fr/hal-01048651

K. L. Schulte, Metalorganic vapor phase growth of quantum well structures on thick metamorphic buffer layers grown by hydride vapor phase epitaxy, Journal of Crystal Growth, vol.370, pp.293-298, 2013.
DOI : 10.1016/j.jcrysgro.2012.08.053

T. Earles, Low-strain, quantum-cascade-laser active regions grown on metamorphic buffer layers for emission in the 3.0?4.0 ?m wavelength region, IET Optoelectron, vol.8, issue.2, pp.25-32, 2014.

J. Simon, D. Young, and A. Ptak, Low-cost IIIx/V solar cells grown by hydride vapor-phase epitaxy, pp.538-0541, 2014.
DOI : 10.1109/pvsc.2014.6924977

S. Lourdudoss, Heteroepitaxy and selective area heteroepitaxy for silicon photonics, Current Opinion in Solid State and Materials Science, vol.16, issue.2, pp.91-99, 2012.
DOI : 10.1016/j.cossms.2012.01.003

M. Takikawa, Two-dimensional electron gas in a selectively doped InP/In0, p.53

. Ga0, 47As heterostructure grown by chloride transport vapor phase epitaxy, Appl. Phys. Lett, vol.43, issue.3, p.280, 1983.

C. Guedon, J. L. Bris, and J. L. Gentner, Control of interface formation during growth of InGaAs/InP heterostructures by chloride vapour phase epitaxy, Journal of Crystal Growth, vol.79, issue.1-3, pp.1-3, 1986.
DOI : 10.1016/0022-0248(86)90571-3

D. W. Shaw, Influence of Substrate Temperature on GaAs Epitaxial Deposition Rates, Journal of The Electrochemical Society, vol.115, issue.4, p.405, 1968.
DOI : 10.1149/1.2411231

D. W. Shaw, Epitaxial GaAs Kinetic Studies: {001} Orientation, Journal of The Electrochemical Society, vol.117, issue.5, p.683, 1970.
DOI : 10.1149/1.2407604

K. Grüter, M. Deschler, H. Jürgensen, R. Beccard, and P. Balk, Deposition of high quality GaAs films at fast rates in the LP-CVD system, Journal of Crystal Growth, vol.94, issue.3, pp.607-612, 1989.
DOI : 10.1016/0022-0248(89)90082-1

E. Gil-lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret et al., Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies, Journal of Crystal Growth, vol.222, issue.3, pp.482-496, 2001.
DOI : 10.1016/S0022-0248(00)00961-1

N. D. Nguyen, (Invited) Selective Epitaxial Growth of III-V Semiconductor Heterostructures on Si Substrates for Logic Applications, pp.933-939, 2010.
DOI : 10.1149/1.3487625

URL : http://orbi.ulg.ac.be/bitstream/2268/69092/1/Nguyen_ECST_33_933_2010.pdf

K. Tomioka, Y. Kobayashi, J. Motohisa, S. Hara, and T. Fukui, Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core???shell nanowires on Si(111) substrate, Nanotechnology, vol.20, issue.14, p.145302, 2009.
DOI : 10.1088/0957-4484/20/14/145302

K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, III???V Nanowires on Si Substrate: Selective-Area Growth and Device Applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.17, issue.4, pp.1112-1129, 2011.
DOI : 10.1109/JSTQE.2010.2068280

K. L. Schulte, W. L. Rance, R. C. Reedy, A. J. Ptak, D. L. Young et al., Controlled formation of GaAs pn junctions during hydride vapor phase epitaxy of GaAs, Journal of Crystal Growth, vol.352, issue.1, pp.253-257, 2012.
DOI : 10.1016/j.jcrysgro.2011.11.013

M. Harrous, L. Chaput, A. Bendraoui, M. Cadoret, C. Pariset et al., Phosphine and arsine decomposition in CVD reactors for InP and InGaAs growth, Journal of Crystal Growth, vol.92, issue.3-4, pp.3-4, 1988.
DOI : 10.1016/0022-0248(88)90027-9

F. Lassalle, A. Porte, J. L. Laporte, C. Pariset, and M. Cadoret, Growth of GaInAs/InP by the vapor phase epitaxy hydride method, Materials Research Bulletin, vol.23, issue.9, pp.1285-1297, 1988.
DOI : 10.1016/0025-5408(88)90116-X

E. Gil-lafon, J. Napierala, A. Pimpinelli, R. Cadoret, A. Trassoudaine et al., Direct condensation modelling for a two-particle growth system: application to GaAs grown by hydride vapour phase epitaxy, Journal of Crystal Growth, vol.258, issue.1-2, pp.14-25, 2003.
DOI : 10.1016/S0022-0248(03)01311-3

A. Pimpinelli, R. Cadoret, E. Gil-lafon, J. Napierala, and A. Trassoudaine, Two-particle surface diffusion-reaction models of vapour-phase epitaxial growth on vicinal surfaces, Journal of Crystal Growth, vol.258, issue.1-2, pp.1-13, 2003.
DOI : 10.1016/S0022-0248(03)01310-1

URL : https://hal.archives-ouvertes.fr/hal-00272617

J. Leitner, J. Stejskal, V. Flemr, and P. Vo?ka, Thermodynamic aspects of the preparation of AlAs and Ga1???xAlxAs epitaxial layers in hydride and chloride systems, Journal of Crystal Growth, vol.144, issue.1-2, pp.1-8, 1994.
DOI : 10.1016/0022-0248(94)90002-7

A. Fontcuberta-i-morral, C. Colombo, G. Abstreiter, J. Arbiol, and J. R. Morante, Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires, Applied Physics Letters, vol.92, issue.6, p.63112, 2008.
DOI : 10.1063/1.2364121

C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Fontcuberta, Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy, Physical Review B, vol.45, issue.15, 2008.
DOI : 10.1103/PhysRevB.76.153401

V. G. Dubrovskii, G. E. Cirlin, N. V. Sibirev, F. Jabeen, J. C. Harmand et al., New Mode of Vapor???Liquid???Solid Nanowire Growth, Nano Letters, vol.11, issue.3, pp.1247-1253, 2011.
DOI : 10.1021/nl104238d

G. Omanakuttan, S. Stergiakis, A. Sahgal, I. Sychugov, S. Lourdudoss et al., Epitaxial lateral overgrowth of GaxIn1?xP towards coherent GaxIn1?xP/Si heterojunction by hydride vapor phase epitaxy, pp.1-2, 2016.

F. Glas, M. R. Ramdani, G. Patriarche, and J. Harmand, Predictive modeling of self-catalyzed III-V nanowire growth, Physical Review B, vol.88, issue.19, 2013.
DOI : 10.1021/j100798a505

F. Matteini, G. Tütüncüo?lu, D. Rüffer, E. Alarcón-lladó, and A. Fontcuberta, Ga-assisted growth of GaAs nanowires on silicon, comparison of surface SiOx of different nature, Journal of Crystal Growth, vol.404, pp.246-255, 2014.
DOI : 10.1016/j.jcrysgro.2014.07.034

F. Matteini, G. Tütüncüoglu, H. Potts, F. Jabeen, and A. Fontcuberta, and Its Impact on GaAs Nanowire Growth, Crystal Growth & Design, vol.15, issue.7, p.150529153811003, 2015.
DOI : 10.1021/acs.cgd.5b00374

G. Koblmüller, Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy, Nanotechnology, vol.21, issue.36, p.365602, 2010.
DOI : 10.1088/0957-4484/21/36/365602

T. Grap, T. Rieger, C. Blömers, T. Schäpers, D. Grützmacher et al., Self-catalyzed VLS grown InAs nanowires with twinning superlattices, Nanotechnology, vol.24, issue.33, p.335601, 2013.
DOI : 10.1088/0957-4484/24/33/335601

X. Wang, W. Du, X. Yang, X. Zhang, and T. Yang, Self-catalyzed growth mechanism of InAs nanowires and growth of InAs/GaSb heterostructured nanowires on Si substrates, Journal of Crystal Growth, vol.426, pp.287-292, 2015.
DOI : 10.1016/j.jcrysgro.2015.05.023

B. , Au-Free Epitaxial Growth of InAs Nanowires, Nano Lett, vol.6, issue.8, pp.1817-1821, 2006.

W. M. Haynes, CRC Handbook of Chemistry and Physics, 2014.

C. Chatillon and D. Chatain, Congruent vaporization of GaAs(s) and stability of Ga(l) droplets at the GaAs(s) surface, Journal of Crystal Growth, vol.151, issue.1-2, pp.91-101, 1995.
DOI : 10.1016/0022-0248(95)00044-5

URL : https://hal.archives-ouvertes.fr/hal-01786369

S. Breuer, F. Karouta, H. H. Tan, and C. Jagadish, MOCVD growth of GaAs nanowires using Ga droplets, COMMAD 2012, pp.39-40
DOI : 10.1109/COMMAD.2012.6472349

A. M. Munshi, Position-Controlled Uniform GaAs Nanowires on Silicon using Nanoimprint Lithography, Nano Letters, vol.14, issue.2, pp.960-966, 2014.
DOI : 10.1021/nl404376m

URL : https://brage.bibsys.no/xmlui/bitstream/11250/2370953/1/723841_FULLTEXT01.pdf

S. Ermez, E. J. Jones, S. C. Crawford, and S. Grade?ak, Self-Seeded Growth of GaAs Nanowires by Metal???Organic Chemical Vapor Deposition, Crystal Growth & Design, vol.15, issue.6, pp.2768-2774, 2015.
DOI : 10.1021/acs.cgd.5b00131

P. Krogstrup, R. Popovitz-biro, E. Johnson, M. H. Madsen, J. Nygård et al., Structural Phase Control in Self-Catalyzed Growth of GaAs Nanowires on Silicon (111), Nano Letters, vol.10, issue.11, pp.4475-4482, 2010.
DOI : 10.1021/nl102308k

S. Bietti, Self-assisted GaAs nanowires with selectable number density on Silicon without oxide layer, Journal of Physics D: Applied Physics, vol.47, issue.39, p.394002, 2014.
DOI : 10.1088/0022-3727/47/39/394002

G. Priante, S. Ambrosini, V. G. Dubrovskii, A. Franciosi, and S. Rubini, Stopping and Resuming at Will the Growth of GaAs Nanowires, Crystal Growth & Design, vol.13, issue.9, pp.3976-3984, 2013.
DOI : 10.1021/cg400701w

V. G. Dubrovskii, Group V sensitive vapor???liquid???solid growth of Au-catalyzed and self-catalyzed III???V nanowires, Journal of Crystal Growth, vol.440, pp.62-68, 2016.
DOI : 10.1016/j.jcrysgro.2016.01.019

G. Avit, GaN Rods Grown on Si by SAG-HVPE toward GaN HVPE/InGaN MOVPE Core/Shell Structures, Crystal Growth & Design, vol.16, issue.5, pp.2509-2513, 2016.
DOI : 10.1021/acs.cgd.5b01244

W. Kaminsky, program, Journal of Applied Crystallography, vol.40, issue.2, pp.382-385, 2007.
DOI : 10.1107/S0021889807003986

M. Rahimnejad, A. A. Ghoreyshi, G. Najafpour, and T. Jafary, Power generation from organic substrate in batch and continuous flow microbial fuel cell operations, Applied Energy, vol.88, issue.11, pp.3999-4004, 2011.
DOI : 10.1016/j.apenergy.2011.04.017

K. Rabaey and W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends in Biotechnology, vol.23, issue.6, pp.291-298, 2005.
DOI : 10.1016/j.tibtech.2005.04.008

K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer, Applied and Environmental Microbiology, vol.70, issue.9, pp.5373-5382, 2004.
DOI : 10.1128/AEM.70.9.5373-5382.2004

URL : http://aem.asm.org/content/70/9/5373.full.pdf

J. P. Busalmen, A. Esteve-nuñez, and J. M. Feliu, Whole Cell Electrochemistry of Electricity-Producing Microorganisms Evidence an Adaptation for Optimal Exocellular Electron Transport, Environmental Science & Technology, vol.42, issue.7, pp.2445-2450, 2008.
DOI : 10.1021/es702569y

N. S. Ramaraja and P. Ramasamy, Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization, Journal of Microbial & Biochemical Technology, 2013.
DOI : 10.4172/1948-5948.S6-004

C. Gabrielli, Méthodes électrochimiques: Mesures d'impédances, 1998.