J. Alvarez, E. Riveras, and E. Vidal, roots, The Plant Journal, vol.39, issue.1, pp.1-13, 2014.
DOI : 10.1093/nar/gkq1120

URL : https://hal.archives-ouvertes.fr/hal-01417731

V. Araus, E. Vidal, T. Puelma, S. Alamos, D. Mieulet et al., Members of BTB gene family of scaffold proteins suppress nitrate uptake and nitrogen use efficiency, Plant Physiology, vol.171, pp.1523-1532, 2016.

T. Araya, M. Miyamoto, and J. Wibowo, CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner, Proceedings of the National Academy of Sciences, pp.2029-2034, 2014.
DOI : 10.1104/pp.99.1.263

E. Bouguyon, F. Brun, and D. Meynard, Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nature Plants 1, p.15015, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137861

E. Bouguyon, A. Gojon, and P. Nacry, Nitrate sensing and signaling in plants, Seminars in Cell & Developmental Biology, vol.23, issue.6, pp.648-654, 2012.
DOI : 10.1016/j.semcdb.2012.01.004

URL : https://hal.archives-ouvertes.fr/hal-00776101

E. Bouguyon, F. Perrine-walker, and M. Pervent, Nitrate controls root development through posttranscriptional regulation of the NRT1.1/ NPF6.3 transporter/sensor, Plant Physiology, vol.172, pp.1237-1248, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01360480

K. Brzezinka, S. Altmann, and H. Czesnick, Author response, eLife, vol.9, 2016.
DOI : 10.7554/eLife.17061.037

J. Canales, T. Moyano, E. Villarroel, and R. Gutiérrez, Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments, Frontiers in Plant Science, vol.5, p.22, 2014.
DOI : 10.3389/fpls.2014.00022

L. Castaings, A. Camargo, and D. Pocholle, The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis, The Plant Journal, vol.279, issue.3, pp.426-435, 2009.
DOI : 10.1099/00221287-108-1-71

V. Chellamuthu, E. Ermilova, T. Lapina, J. Lüddecke, E. Minaeva et al., A Widespread Glutamine-Sensing Mechanism in the Plant Kingdom, Cell, vol.159, issue.5, pp.1188-1199, 2014.
DOI : 10.1016/j.cell.2014.10.015

X. Chen, Q. Yao, X. Gao, C. Jiang, N. Harberd et al., Shoot-to-Root Mobile Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition, Current Biology, vol.26, issue.5, pp.640-646, 2016.
DOI : 10.1016/j.cub.2015.12.066

C. Clement, M. Hopper, and L. Jones, from Flowing Nutrient Solution, Journal of Experimental Botany, vol.29, issue.2, pp.453-464, 1978.
DOI : 10.1093/jxb/29.2.453

H. Cooper and D. Clarkson, Cycling of Amino-Nitrogen and other Nutrients between Shoots and Roots in Cereals???A Possible Mechanism Integrating Shoot and Root in the Regulation of Nutrient Uptake, Journal of Experimental Botany, vol.40, issue.7, pp.753-762, 1989.
DOI : 10.1093/jxb/40.7.753

M. De-jong, G. George, V. Ongaro, L. Williamson, B. Willetts et al., Auxin and Strigolactone Signaling Are Required for Modulation of Arabidopsis Shoot Branching by Nitrogen Supply, Plant Physiology, vol.166, issue.1, pp.384-395, 2014.
DOI : 10.1104/pp.114.242388

S. Fan, C. Lin, P. Hsu, S. Lin, and Y. Tsay, The Arabidopsis Nitrate Transporter NRT1.7, Expressed in Phloem, Is Responsible for Source-to-Sink Remobilization of Nitrate, THE PLANT CELL ONLINE, vol.21, issue.9, pp.2750-2761, 2009.
DOI : 10.1105/tpc.109.067603

B. Forde, Annual Review of Plant Biology, vol.53, issue.1, pp.203-224, 2002.
DOI : 10.1146/annurev.arplant.53.100301.135256

B. Forde, S. Cutler, N. Zaman, and P. Krysan, Glutamate signalling via a MEKK1 kinase-dependent pathway induces changes in Arabidopsis root architecture, The Plant Journal, vol.147, issue.1, pp.1-10, 2013.
DOI : 10.1038/sj.bjp.0706444

URL : http://onlinelibrary.wiley.com/doi/10.1111/tpj.12201/pdf

J. Franco-zorrilla, A. Martin, R. Solano, V. Rubio, and A. Leyva,

J. Ares, Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis, The Plant Journal, vol.32, pp.353-360, 2002.

Y. Gan, S. Filleur, A. Rahman, S. Gotensparre, and B. Forde, Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana, Planta, vol.17, issue.4, pp.730-742, 2005.
DOI : 10.1128/MCB.19.6.4028

X. Gansel, S. Muños, P. Tillard, and A. Gojon, Differential regulation of the NO3- and NH4+ transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant, The Plant Journal, vol.17, issue.2, pp.143-155, 2001.
DOI : 10.1046/j.1365-313X.1999.00396.x

M. Gifford, A. Dean, R. Gutierrez, G. Coruzzi, and K. Birnbaum,

, Cell-specific nitrogen responses mediate developmental plasticity, Proceedings of the National Academy of Sciences, pp.803-808

T. Girin, . El-kafafi-el-s, T. Widiez, A. Erban, H. Hubberten et al., Identification of Arabidopsis Mutants Impaired in the Systemic Regulation of Root Nitrate Uptake by the Nitrogen Status of the Plant, PLANT PHYSIOLOGY, vol.153, issue.3, pp.1250-1260, 2010.
DOI : 10.1104/pp.110.157354

URL : https://hal.archives-ouvertes.fr/hal-00507517

T. Girin, L. Lejay, J. Wirth, T. Widiez, P. Palenchar et al., promoter involved in the regulation of gene expression by the N and C status of the plant, Plant, Cell & Environment, vol.17, issue.11, pp.1366-1380, 2007.
DOI : 10.1046/j.1365-313X.1999.00396.x

URL : https://hal.archives-ouvertes.fr/hal-00191105

P. Guan, R. Wang, P. Nacry, G. Breton, S. Kay et al., Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway, Proceedings of the National Academy of Sciences, pp.15267-15272, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01118806

F. Guo, J. Young, and N. Crawford, The Nitrate Transporter AtNRT1.1 (CHL1) Functions in Stomatal Opening and Contributes to Drought Susceptibility in Arabidopsis, THE PLANT CELL ONLINE, vol.15, issue.1, pp.107-117, 2003.
DOI : 10.1105/tpc.006312

R. Gutiérrez, Systems Biology for Enhanced Plant Nitrogen Nutrition, Science, vol.434, issue.7037, pp.1673-1675, 2012.
DOI : 10.1038/nature03461

R. Gutierrez, T. Stokes, and K. Thum, Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1, Proceedings of the National Academy of Sciences, pp.4939-4944, 2008.
DOI : 10.1177/074873049701200302

C. Hervé, P. Dabos, C. Bardet, A. Jauneau, M. Auriac et al., In Vivo Interference with AtTCP20 Function Induces Severe Plant Growth Alterations and Deregulates the Expression of Many Genes Important for Development, PLANT PHYSIOLOGY, vol.149, issue.3, pp.1462-1477, 2009.
DOI : 10.1104/pp.108.126136

C. Ho, S. Lin, H. Hu, and Y. Tsay, CHL1 Functions as a Nitrate Sensor in Plants, Cell, vol.138, issue.6, pp.1184-1194, 2009.
DOI : 10.1016/j.cell.2009.07.004

P. Hsu and Y. Tsay, Two Phloem Nitrate Transporters, NRT1.11 and NRT1.12, Are Important for Redistributing Xylem-Borne Nitrate to Enhance Plant Growth, PLANT PHYSIOLOGY, vol.163, issue.2, pp.844-856, 2013.
DOI : 10.1104/pp.113.226563

N. Huang, C. Chiang, N. Crawford, and Y. Tsay, CHL1 Encodes a Component of the Low-Affinity Nitrate Uptake System in Arabidopsis and Shows Cell Type-Specific Expression in Roots, THE PLANT CELL ONLINE, vol.8, issue.12, pp.2183-2191, 1996.
DOI : 10.1105/tpc.8.12.2183

J. Imsande and B. Touraine, N Demand and the Regulation of Nitrate Uptake, Plant Physiology, vol.105, issue.1, pp.3-7, 1994.
DOI : 10.1104/pp.105.1.3

T. Kiba, A. Feria-bourrellier, and F. Lafouge, The Arabidopsis Nitrate Transporter NRT2.4 Plays a Double Role in Roots and Shoots of Nitrogen-Starved Plants, The Plant Cell, vol.24, issue.1, pp.245-258, 2012.
DOI : 10.1105/tpc.111.092221

URL : https://hal.archives-ouvertes.fr/hal-01204108

T. Kiba and A. Krapp, Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture, Plant and Cell Physiology, vol.45, issue.4, pp.707-714, 2016.
DOI : 10.1111/j.1469-8137.2011.03647.x

URL : https://hal.archives-ouvertes.fr/hal-01531685

T. Kiba, T. Kudo, M. Kojima, and H. Sakakibara, Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin, Journal of Experimental Botany, vol.17, issue.4, pp.1399-1409, 2011.
DOI : 10.1046/j.1365-313X.1999.00396.x

M. Konishi and S. Yanagisawa, Arabidopsis NIN-like transcription factors have a central role in nitrate signalling, Nature Communications, vol.45, issue.1, 1617.
DOI : 10.1016/j.plaphy.2007.05.001

A. Krapp, R. Berthomé, and M. Orsel, Arabidopsis Roots and Shoots Show Distinct Temporal Adaptation Patterns toward Nitrogen Starvation, PLANT PHYSIOLOGY, vol.157, issue.3, pp.1255-1282, 2011.
DOI : 10.1104/pp.111.179838

URL : https://hal.archives-ouvertes.fr/hal-01001248

G. Krouk, Hormones and nitrate: a two-way connection, Plant Molecular Biology, vol.5, issue.6, pp.599-606, 2016.
DOI : 10.1093/mp/ssr104

URL : https://hal.archives-ouvertes.fr/hal-01321091

G. Krouk, P. Mirowski, Y. Lecun, D. Shasha, and G. Coruzzi, Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate, Genome Biology, vol.11, issue.12, p.123, 2010.
DOI : 10.1186/gb-2010-11-12-r123

URL : https://hal.archives-ouvertes.fr/hal-00553899

G. Krouk, P. Tillard, and A. Gojon, Regulation of the High-Affinity NO3- Uptake System by NRT1.1-Mediated NO3- Demand Signaling in Arabidopsis, PLANT PHYSIOLOGY, vol.142, issue.3, pp.1075-1086, 2006.
DOI : 10.1104/pp.106.087510

URL : https://hal.archives-ouvertes.fr/hal-00124930

L. Lejay, P. Tillard, M. Lepetit, O. Fd, S. Filleur et al., Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants, The Plant Journal, vol.239, issue.5, pp.509-519, 1999.
DOI : 10.1104/pp.91.3.947

S. Léran, K. Edel, and M. Pervent, are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid, Science Signaling, vol.37, issue.375, p.43, 2015.
DOI : 10.1186/gb-2010-11-12-r123

L. Lezhneva, T. Kiba, A. Feria-bourrellier, F. Lafouge, S. Boutet-mercey et al., The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition Transcriptional regulation of nitrogen responses in the Arabidopsis root, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204108

, and remobilization in nitrogen-starved plants, The Plant Journal, vol.80, pp.230-241

G. Li, P. Tillard, A. Gojon, and C. Maurel, Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1, Plant and Cell Physiology, vol.1840, issue.4, pp.733-742, 2016.
DOI : 10.1046/j.1365-313X.1999.00396.x

URL : https://hal.archives-ouvertes.fr/hal-01321089

L. Li, H. Ye, H. Guo, and Y. Yin, Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression, Proceedings of the National Academy of Sciences, pp.3918-3923, 2010.
DOI : 10.1126/science.1074950

W. Li, Y. Oono, and J. Zhu, The Arabidopsis NFYA5 Transcription Factor Is Regulated Transcriptionally and Posttranscriptionally to Promote Drought Resistance, THE PLANT CELL ONLINE, vol.20, issue.8, pp.2238-2251, 2008.
DOI : 10.1105/tpc.108.059444

G. Liang, A. Q. Yu, and D. , Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis, Scientific Reports, vol.3, issue.1, 2015.
DOI : 10.1186/1746-4811-3-12

G. Liang, H. He, and D. Yu, Identification of Nitrogen Starvation-Responsive MicroRNAs in Arabidopsis thaliana, PLoS ONE, vol.18, issue.11, p.48951, 2012.
DOI : 10.1371/journal.pone.0048951.s005

L. López-maury, S. Marguerat, and J. Bähler, Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation, Nature Reviews Genetics, vol.8, issue.8, pp.583-593, 2008.
DOI : 10.1152/physiolgenomics.00034.2002

Q. Ma, R. Tang, X. Zheng, S. Wang, and S. Luan, The calcium sensor CBL7 modulates plant responses to low nitrate in Arabidopsis, Biochemical and Biophysical Research Communications, vol.468, issue.1-2, pp.59-65, 2015.
DOI : 10.1016/j.bbrc.2015.10.164

C. Marchive, F. Roudier, L. Castaings, V. Bréhaut, E. Blondet et al., Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants, Nature Communications, vol.112, issue.1, 1713.
DOI : 10.1104/pp.112.2.685

URL : https://hal.archives-ouvertes.fr/hal-01190574

Y. Matsubayashi, Posttranslationally Modified Small-Peptide Signals in Plants, Annual Review of Plant Biology, vol.65, issue.1, pp.385-413, 2014.
DOI : 10.1146/annurev-arplant-050312-120122

A. Medici and G. Krouk, The Primary Nitrate Response: a multifaceted signalling pathway, Journal of Experimental Botany, vol.279, issue.19, pp.5567-5576, 2014.
DOI : 10.1126/science.279.5349.407

URL : https://hal.archives-ouvertes.fr/hal-01118903

A. Medici, A. Marshall-colon, and E. Ronzier, AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip, Nature Communications, vol.126, issue.1, p.6274, 2015.
DOI : 10.1016/j.cell.2006.05.050

URL : https://hal.archives-ouvertes.fr/hal-01141023

S. Muños, C. Cazettes, C. Fizames, F. Gaymard, P. Tillard et al., Transcript Profiling in the chl1-5 Mutant of Arabidopsis Reveals a Role of the Nitrate Transporter NRT1.1 in the Regulation of Another Nitrate Transporter, NRT2.1, THE PLANT CELL ONLINE, vol.16, issue.9, pp.2433-2447, 2004.
DOI : 10.1105/tpc.104.024380

P. Nacry, E. Bouguyon, and A. Gojon, Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource, Plant and Soil, vol.17, issue.8, pp.1-29, 2013.
DOI : 10.1046/j.1365-313X.1999.00396.x

URL : https://hal.archives-ouvertes.fr/hal-00921012

M. Nath and N. Tuteja, NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress, Protoplasma, vol.116, issue.41, pp.767-786, 2016.
DOI : 10.1104/pp.116.3.879

P. Nazoa, J. Vidmar, T. Tranbarger, K. Mouline, I. Damiani et al., Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage, Plant Molecular Biology, vol.52, issue.3, pp.689-703, 2003.
DOI : 10.1023/A:1024899808018

G. Nguyen, S. Rothstein, G. Spangenberg, and S. Kant, Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions, Frontiers in Plant Science, vol.178, issue.208, p.629, 2015.
DOI : 10.1016/j.plantsci.2009.09.011

O. 'brien, J. Vega, A. Bouguyon, E. Krouk, G. Gojon et al., Nitrate Transport, Sensing, and Responses in Plants, Molecular Plant, vol.9, issue.6, pp.837-856, 2016.
DOI : 10.1016/j.molp.2016.05.004

URL : https://hal.archives-ouvertes.fr/hal-01595480

M. Obertello, G. Krouk, M. Katari, S. Runko, and G. Coruzzi, Modeling the global effect of the basic-leucine zipper transcription factor 1 (bZIP1) on nitrogen and light regulation in Arabidopsis, BMC Systems Biology, vol.4, issue.1, p.111, 2010.
DOI : 10.1186/1752-0509-4-111

URL : https://hal.archives-ouvertes.fr/hal-00533076

B. Pant, M. Musialak-lange, P. Nuc, P. May, A. Buhtz et al., Identification of Nutrient-Responsive Arabidopsis and Rapeseed MicroRNAs by Comprehensive Real-Time Polymerase Chain Reaction Profiling and Small RNA Sequencing, PLANT PHYSIOLOGY, vol.150, issue.3, pp.1541-1555, 2009.
DOI : 10.1104/pp.109.139139

A. Para, Y. Li, and A. Marshall-colon, Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis, Proceedings of the National Academy of Sciences, pp.10371-10376, 2014.
DOI : 10.1038/nmeth.1985

URL : https://hal.archives-ouvertes.fr/hal-01053035

M. Peng, Y. Bi, T. Zhu, and S. Rothstein, Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA, Plant Molecular Biology, vol.6, issue.6, pp.775-797, 2007.
DOI : 10.1093/oxfordjournals.pcp.a029057

T. Remans, P. Nacry, M. Pervent, T. Girin, P. Tillard et al., A Central Role for the Nitrate Transporter NRT2.1 in the Integrated Morphological and Physiological Responses of the Root System to Nitrogen Limitation in Arabidopsis, PLANT PHYSIOLOGY, vol.140, issue.3, pp.909-921, 2006.
DOI : 10.1104/pp.105.075721

URL : https://hal.archives-ouvertes.fr/hal-00087065

E. Riveras, J. Alvarez, E. Vidal, C. Oses, A. Vega et al., The Calcium Ion Is a Second Messenger in the Nitrate Signaling Pathway of Arabidopsis, Plant Physiology, vol.169, issue.2, pp.1397-1404, 2015.
DOI : 10.1104/pp.15.00961

F. Roudier, I. Ahmed, and C. Bérard, Integrative epigenomic mapping defines four main chromatin states in Arabidopsis, The EMBO Journal, vol.39, issue.10, pp.1928-1938, 2011.
DOI : 10.1038/ng1929

URL : https://hal.archives-ouvertes.fr/hal-00999846

G. Rubin, T. Tohge, F. Matsuda, K. Saito, and W. Scheible, Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis, The Plant Cell, vol.21, issue.11, pp.3567-3584, 2009.
DOI : 10.1105/tpc.109.067041

S. Ruffel, A. Gojon, and L. Lejay, Signal interactions in the regulation of root nitrate uptake, Journal of Experimental Botany, vol.17, issue.5, pp.5509-5517, 2014.
DOI : 10.1046/j.1365-313X.1999.00396.x

URL : https://hal.archives-ouvertes.fr/hal-01137627

S. Ruffel, G. Krouk, D. Ristova, D. Shasha, K. Birnbaum et al., Nitrogen economics of root foraging: Transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand, Proceedings of the National Academy of Sciences, pp.18524-18529, 2011.
DOI : 10.1073/pnas.0900060106

URL : https://hal.archives-ouvertes.fr/hal-00662610

S. Ruffel, A. Poitout, G. Krouk, G. Coruzzi, and B. Lacombe, Long-distance nitrate signaling displays cytokinin dependent and independent branches, Journal of Integrative Plant Biology, vol.28, issue.3, pp.226-229, 2016.
DOI : 10.1046/j.1365-313x.2001.01185.x

URL : https://hal.archives-ouvertes.fr/hal-01321526

H. Sakakibara, K. Takei, and N. Hirose, Interactions between nitrogen and cytokinin in the regulation of metabolism and development, Trends in Plant Science, vol.11, issue.9, pp.440-448, 2006.
DOI : 10.1016/j.tplants.2006.07.004

E. Sani, P. Herzyk, G. Perrella, V. Colot, and A. Amtmann, Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome, Genome Biology, vol.28, issue.6, 2013.
DOI : 10.1038/nbt.1621

, Genome Biology, vol.14, p.59

J. Santiago and M. Tegeder, Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids, Plant Physiology, vol.171, issue.1, pp.508-521, 2016.
DOI : 10.1104/pp.16.00244

M. Séguéla, J. Briat, G. Vert, and C. Curie, Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway, The Plant Journal, vol.15, issue.2, pp.289-300, 2008.
DOI : 10.1104/pp.110.1.217

L. Signora, D. Smet, I. Foyer, C. Zhang, and H. , ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis, The Plant Journal, vol.51, issue.6, pp.655-662, 2001.
DOI : 10.1093/jxb/51.342.51

A. Smith, A. Jain, R. Deal, V. Nagarajan, M. Poling et al., Histone H2A.Z Regulates the Expression of Several Classes of Phosphate Starvation Response Genes But Not as a Transcriptional Activator, PLANT PHYSIOLOGY, vol.152, issue.1, pp.217-225, 2010.
DOI : 10.1104/pp.109.145532

R. Tabata, K. Sumida, T. Yoshii, K. Ohyama, H. Shinohara et al., Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling, Science, vol.32, issue.2, pp.343-346, 2014.
DOI : 10.1046/j.1365-313X.2002.01419.x

C. Thieme, M. Rojas-triana, and E. Stecyk, Endogenous Arabidopsis messenger RNAs transported to distant tissues Nature Plants 1, 15025 Are phloem amino acids involved in the shoot to root control of NO 3 ? uptake in Ricinus communis plants, Journal of Experimental Botany, vol.49, pp.1371-1379, 1998.

S. Tisné, Y. Serrand, and L. Bach, Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity, The Plant Journal, vol.2, issue.3, pp.534-544, 2013.
DOI : 10.1534/g3.111.001487

E. Vidal, J. Álvarez, T. Moyano, and R. Gutiérrez, Transcriptional networks in the nitrate response of Arabidopsis thaliana, Current Opinion in Plant Biology, vol.27, pp.125-132, 2015.
DOI : 10.1016/j.pbi.2015.06.010

E. Vidal, V. Araus, C. Lu, G. Parry, P. Green et al., Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana, Proceedings of the National Academy of Sciences, pp.4477-4482, 2010.
DOI : 10.1046/j.1365-313X.2002.01251.x

E. Vidal, T. Moyano, G. Krouk, M. Katari, M. Tanurdzic et al., Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots, BMC Genomics, vol.14, issue.1, p.701, 2013.
DOI : 10.1093/nar/30.1.207

URL : https://hal.archives-ouvertes.fr/hal-00921251

E. Vidal, T. Moyano, E. Riveras, O. Contreras-lopez, and R. Gutierrez, Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots, Proceedings of the National Academy of Sciences, pp.12840-12845, 2013.
DOI : 10.1104/pp.107.108944

R. Wang, X. Xing, Y. Wang, A. Tran, and N. Crawford, A Genetic Screen for Nitrate Regulatory Mutants Captures the Nitrate Transporter Gene NRT1.1, PLANT PHYSIOLOGY, vol.151, issue.1, pp.472-478, 2009.
DOI : 10.1104/pp.109.140434

T. Widiez, E. Kafafi, E. Girin, and T. , uptake is associated with changes in histone methylation, Proceedings of the National Academy of Sciences, pp.13329-13334, 2011.
DOI : 10.1046/j.1365-313X.2002.01419.x

URL : https://hal.archives-ouvertes.fr/hal-00623176

N. Xu, R. Wang, and L. Zhao, The Arabidopsis NRG2 Protein Mediates Nitrate Signaling and Interacts with and Regulates Key Nitrate Regulators, The Plant Cell, vol.28, issue.2, pp.485-504, 2016.
DOI : 10.1105/tpc.15.00567

D. Yan, V. Easwaran, and V. Chau, NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis, Nature Communications, vol.2003, 2016.
DOI : 10.1093/bioinformatics/btp612

A. Zamboni, S. Astolfi, S. Zuchi, Y. Pii, K. Guardini et al.,

, Nitrate induction triggers different transcriptional changes in a high and a low nitrogen use efficiency maize inbred line, Journal of Integrative Plant Biology, vol.56, pp.1080-1094

H. Zhang and B. Forde, An Arabidopsis MADS Box Gene That Controls Nutrient-Induced Changes in Root Architecture, Science, vol.279, issue.5349, pp.407-409, 1998.
DOI : 10.1126/science.279.5349.407

H. Zhang, A. Jennings, P. Barlow, and B. Forde, Dual pathways for regulation of root branching by nitrate, Proceedings of the National Academy of Sciences, pp.6529-6534, 1999.
DOI : 10.1111/j.1399-3054.1991.tb02958.x

L. Zhang, M. Garneau, R. Majumdar, J. Grant, and M. Tegeder, Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids, The Plant Journal, vol.22, issue.1, pp.134-146, 2015.
DOI : 10.1105/tpc.110.073833

M. Zhao, H. Ding, J. Zhu, F. Zhang, and W. Li, Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis, New Phytologist, vol.279, issue.4, pp.906-915, 2011.
DOI : 10.1126/science.279.5349.407

D. Zhuo, M. Okamoto, J. Vidmar, and A. Glass, Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots ofArabidopsis thaliana, The Plant Journal, vol.88, issue.5, pp.563-568, 1999.
DOI : 10.1073/pnas.88.1.204

A. M. , C. F. , E. C. , F. R. , I. Bap-department-to et al., was 433 the recipient of a PhD fellowship from INRA BAP department. We thank M, p.434

. Brady and . Proclf, CFP:CLF;clf-29) and T. Kiba (ProNRT2.1:GFP) for materials. We thank C, p.435

T. Alcon and . Montpellier, Rio Imaging platform, and the Plant Histocytology and cell imaging 436 (PHIV) platform for microscopy observations and histocytology. The authors declare no 437 conflict of interests, p.438

, regulation of macromolecule biosynthetic process 50794 6.9346E-6 6.4260E-4 108 2448 650 22304 regulation of cellular process 19219 1.1347E-5 9.4637E-4 74 1527 650 22304 regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 22414 1.4620E-5 1.1084E-3 50 911 650 22304 reproductive process 51171 1.6887E-5 1.1736E-3 74 1545 650 22304 regulation of nitrogen compound metabolic process 80090 1.8642E-5 1.1960E-3 76 1604 650 22304 regulation of primary metabolic process 48856 2 regulation of transcription, DNA-dependent regulation of RNA metabolic process 32502 regulation of macromolecule metabolic process 48569, References X N Description 48608 1.0806E-6 6.4260E-4 46 735 650 22304 reproductive structure development 45449 2.8497E-6 6.4260E-4 74 1468 650 22304 regulation of transcription 31326 4.4750E-6 6.4260E-4 76 1540 650 22304 regulation of cellular biosynthetic process 9889, 0344.

, 650 22304 triglyceride catabolic process 44269 2.4948E-3 4, pp.9392-9394

, 650 22304 glycerol ether catabolic process 46461 2.4948E-3 4, pp.9392-9394

, 650 22304 neutral lipid catabolic process 46464 2.4948E-3 4, pp.9392-9394

, 650 22304 acylglycerol catabolic process 46503 2.4948E-3 4, pp.9392-9394

, 650 22304 glycerolipid catabolic process

L. Lezhneva, T. Kiba, A. B. Feria-bourrellier, and F. Lafouge,

H. Sakakibara, F. Daniel-vedele, and A. Krapp, The Arabidopsis nitrate 515 transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen- 516 starved plants, Plant J, vol.80, pp.230-241, 2014.

J. Liu, S. Deng, H. Wang, J. Ye, H. W. Wu et al., CURLY 518 LEAF Regulates Gene Sets Coordinating Seed Size and Lipid Biosynthesis, 2016.

, Physiol, vol.171, pp.424-436

G. Makarevich, O. Leroy, U. Akinci, D. Schubert, O. Clarenz et al., Different Polycomb group complexes regulate common target genes in Arabidopsis, EMBO reports, vol.22, issue.9, pp.947-952, 2006.
DOI : 10.1038/nature02195

R. Margueron, R. , and D. , The Polycomb complex PRC2 and its mark in life, Nature, vol.6, issue.7330, p.524, 2011.
DOI : 10.1016/j.stem.2010.04.013

, Nature, vol.469, pp.343-349

A. Mari-ordonez, A. Marchais, M. Etcheverry, A. Martin, V. Colot et al., , 2013.

, Reconstructing de novo silencing of an active plant retrotransposon, Nat Genet, vol.45, pp.1029-527

M. M. Marques-bueno, A. K. Morao, A. Cayrel, M. P. Platre, M. Barberon et al., , p.529

V. Colot, Y. Jaillais, F. Roudier, and G. Vert, A versatile Multisite Gateway- 530 compatible promoter and transgenic line collection for cell type-specific functional 531 genomics in Arabidopsis, Plant J, vol.85, pp.320-333, 2016.

I. Mozgova and L. Hennig, The polycomb group protein regulatory network Annu 533, 2015.

, Rev Plant Biol, vol.66, pp.269-296

P. Nacry, E. Bouguyon, and A. Gojon, Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource, Plant and Soil, vol.17, issue.8, p.536, 2013.
DOI : 10.1046/j.1365-313X.1999.00396.x

URL : https://hal.archives-ouvertes.fr/hal-00921012

, Plant and Soil, vol.370, pp.1-29

P. Nazoa, J. J. Vidmar, T. J. Tranbarger, K. Mouline, I. Damiani et al., Regulation of the nitrate transporter gene AtNRT2, 2003.

, Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage, p.540

, Plant Molecular Biology, vol.52, pp.689-703

M. Orsel, K. Eulenburg, A. Krapp, and F. Daniel-vedele, Disruption of the nitrate 542 transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate 543 concentration, Planta, vol.219, pp.714-721, 2004.

A. R. Pengelly, O. Copur, H. Jackle, A. Herzig, and J. Muller, A histone mutant 545 reproduces the phenotype caused by loss of histone-modifying factor Polycomb, p.546, 2013.

, Science, vol.339, pp.698-699

F. Roudier, I. Ahmed, C. Berard, and A. Sarazin,

E. Caillieux, E. Duvernois-berthet, and L. Al-shikhley, Integrative 549 epigenomic mapping defines four main chromatin states in Arabidopsis, EMBO J 550, vol.30, pp.1928-1938, 2011.

J. Sequeira-mendes, I. Araguez, R. Peiro, R. Mendez-giraldez, and X. Zhang,

U. Bastolla and C. Gutierrez, The Functional Topography of the Arabidopsis 553, 2014.

, Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States

, Cell, vol.555

F. Turck, F. Roudier, S. Farrona, M. L. Martin-magniette, and E. Guillaume,

S. Gagnot, R. A. Martienssen, G. Coupland, C. , and V. , Arabidopsis 557, 2007.

, TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 558 lysine 27, PLoS Genet, vol.3, pp.86-559

A. Veluchamy, T. Jegu, F. Ariel, D. Latrasse, K. G. Mariappan et al., LHP1 Regulates H3K27me3 Spreading 561 and Shapes the Three-Dimensional Conformation of the Arabidopsis Genome, 2016.

, One, vol.11, p.158936

H. Wang, C. Liu, J. Cheng, J. Liu, L. Zhang et al., Arabidopsis Flower and Embryo Developmental Genes are Repressed, p.565, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01258883

, Seedlings by Different Combinations of Polycomb Group Proteins in Association with 566

, Distinct Sets of Cis-regulatory Elements, PLoS Genet, vol.12, pp.1005771-567

T. Widiez, E. S. Kafafi, T. Girin, A. Berr, S. Ruffel et al., , 2011.

, HNI9)-mediated systemic repression of root NO3-uptake is associated with changes 570 in histone methylation, Proceedings of the National Academy of Sciences, vol.108, pp.13329-571

L. Xu and W. H. Shen, Polycomb Silencing of KNOX Genes Confines Shoot Stem Cell Niches in Arabidopsis, Current Biology, vol.18, issue.24, pp.1966-1971, 2008.
DOI : 10.1016/j.cub.2008.11.019

H. Yang, M. Howard, and C. Dean, Antagonistic Roles for H3K36me3 and 575, 2014.

, H3K27me3 in the Cold-Induced Epigenetic Switch at Arabidopsis FLC, Curr Biol, vol.576, issue.24, pp.1793-1797

X. Zhang, S. Germann, B. J. Blus, S. Khorasanizadeh, V. Gaudin et al., , 2007.

, The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation, p.579

, Nature structural & molecular biology, vol.14, pp.869-871

A. Atp, protein serine/threonine kinase AT1G51840 protein kinase-related AT1G52410 TSA1,TSA1 (TSK-ASSOCIATING PROTEIN 1),TSA1 (TSK-ASSOCIATING PROTEIN 1); calcium ion binding / protein binding AT1G52820 2-oxoglutarate-dependent dioxygenase

, AT1G60470

A. , A. Synthase, and I. Glucosinolate-o-methyltransferase, transferase, transferring glycosyl groups / transferase, transferring hexosyl groups AT1G62480 vacuolar calcium-binding protein-related AT1G64370 unknown protein AT1G68500 unknown protein AT1G70890 MLP43,major latex protein-related / MLP-related AT1G72180 leucine-rich repeat transmembrane protein kinase, C-TERMINALLY ENCODED PEPTIDE RECEPTOR 2, CEPR2 AT1G73780 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein AT1G74670 gibberellin-responsive protein, GA-STIMULATED, p.1

, SAM) domain-containing protein AT2G03470 myb family transcription factor / ELM2 domain-containing protein AT2G16005 MD-2-related lipid recognition domain-containing protein / ML domain-containing protein Annexes, AT1G80520 Sterile alpha motif

E. Aichinger, C. B. Villar, D. Mambro, R. Sabatini, S. Köhler et al., The CHD3 Chromatin Remodeler PICKLE and Polycomb Group Proteins Antagonistically Regulate Meristem Activity in the Arabidopsis Root, The Plant Cell, vol.23, issue.3, pp.1047-1060, 2011.
DOI : 10.1105/tpc.111.083352

A. Angel, J. Song, C. Dean, and M. Howard, A Polycomb-based switch underlying quantitative epigenetic memory, Nature, vol.5, issue.7358, pp.476-105, 2011.
DOI : 10.1371/journal.pbio.0050129

F. Ariel, T. Jegu, D. Latrasse, N. Romero-barrios, A. Christ et al., Noncoding Transcription by Alternative RNA Polymerases Dynamically Regulates an Auxin-Driven Chromatin Loop, Molecular Cell, vol.55, issue.3, pp.55-383, 2014.
DOI : 10.1016/j.molcel.2014.06.011

URL : https://doi.org/10.1016/j.molcel.2014.06.011

F. Bellegarde, A. Gojon, and A. Martin, Signals and players in the transcriptional regulation of root responses by local and systemic N signaling in Arabidopsis thaliana, Journal of Experimental Botany, vol.17, issue.10, pp.68-2553, 2017.
DOI : 10.1046/j.1365-313X.1999.00396.x

URL : https://hal.archives-ouvertes.fr/hal-01534644

S. Berry, M. Hartley, T. S. Olsson, C. Dean, and M. Howard, Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. eLife, p.7205, 2015.
DOI : 10.7554/elife.07205

URL : https://cdn.elifesciences.org/articles/07205/elife-07205-v2.pdf

N. P. Blackledge, A. M. Farcas, T. Kondo, H. W. King, J. F. Mcgouran et al., Variant PRC1 Complex-Dependent H2A Ubiquitylation Drives PRC2 Recruitment and Polycomb Domain Formation, Cell, vol.157, issue.6, pp.157-1445, 2014.
DOI : 10.1016/j.cell.2014.05.004

URL : https://doi.org/10.1016/j.cell.2014.05.004

O. C. Bockman, O. Kaarstad, O. H. Lie, and I. Richards, Agriculture and Fertilizers. Agricultural Group, Norsk Hydro a.s, 1990.

A. Bortvin and F. Winston, Evidence That Spt6p Controls Chromatin Structure by a Direct Interaction with Histones, Science, vol.272, issue.5267, pp.2721473-1476, 1996.
DOI : 10.1126/science.272.5267.1473

E. Bouguyon, F. Perrine-walker, M. Pervent, J. Rochette, C. Cuesta et al., Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1, 2016.
DOI : 10.1104/pp.16.01047

URL : https://hal.archives-ouvertes.fr/hal-01360480

/. Transporter and . Sensor, Plant Physiol, vol.172, issue.2, pp.1237-1248

D. Bouyer, F. Roudier, M. Heese, E. D. Andersen, D. Gey et al., Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition, PLoS Genetics, vol.136, issue.3, p.1002014, 2011.
DOI : 10.1371/journal.pgen.1002014.s017

D. Tonoplast and D. Protein, AT3G15090 oxidoreductase, zinc-binding dehydrogenase family protein AT3G16240 AQP1, 316470.

, AT3G27200 Cupredoxin superfamily protein AT3G29780 RALF-LIKE 27, RALFL27 AT3G43960 Encodes a putative cysteine proteinase. Mutants exhibit shorter root hairs under phosphatedeficient conditions

A. Cep3 and C. Endopeptidase,

A. , P. , A. , A. , A. Dynamin-like-4 et al., DYNAMIN-RELATED PROTEIN 1E, EDR3, ENHANCED DISEASE RESISTANCE 3

A. Ucc3,

A. Protein-3, A. , and P. Protein, PRP3 AT4G00780 TRAF-like family protein AT4G03330 ATSYP123, SYNTAXIN OF PLANTS, p.123

F. Bratzel, G. Lopez-torrejon, M. Koch, D. Pozo, J. C. Calonje et al., Keeping Cell Identity in Arabidopsis Requires PRC1 RING-Finger Homologs that Catalyze H2A Monoubiquitination, Current Biology, vol.20, issue.20, pp.1853-1859, 2010.
DOI : 10.1016/j.cub.2010.09.046

D. M. Buzas, M. Robertson, E. J. Finnegan, and C. A. Helliwell, Transcriptiondependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLC, Plant J, issue.6, pp.65-872, 2011.

M. Cerezo, P. Tillard, S. Filleur, S. Munos, F. Daniel-vedele et al., Major Alterations of the Regulation of Root NO3- Uptake Are Associated with the Mutation of Nrt2.1 and Nrt2.2 Genes in Arabidopsis, PLANT PHYSIOLOGY, vol.127, issue.1, pp.262-271, 2001.
DOI : 10.1104/pp.127.1.262

N. N. Chandrika, K. Sundaravelpandian, S. M. Yu, and W. Schmidt, , 2013.

, is involved in root hair elongation during phosphate deficiency in Arabidopsis

, New Phytol, vol.198, issue.3, pp.709-720

Y. Chanvivattana, A. Bishopp, D. Schubert, C. Stock, Y. H. Moon et al., Interaction of Polycomb-group proteins controlling flowering in Arabidopsis, Development, vol.131, issue.21, pp.131-5263, 2004.
DOI : 10.1242/dev.01400

S. Chen, J. Ma, F. Wu, L. J. Xiong, H. Ma et al., The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation, Genes & Development, vol.26, issue.12, pp.1364-1375, 2012.
DOI : 10.1101/gad.186056.111

C. Y. Chen, K. Wu, and W. Schmidt, The histone deacetylase HDA19 controls root cell elongation and modulates a subset of phosphate starvation responses in Arabidopsis, Scientific Reports, vol.16, issue.1, p.15708, 2015.
DOI : 10.1105/tpc.104.022830

X. Chen, Q. Yao, X. Gao, C. Jiang, N. P. Harberd et al., Shoot-to-Root Mobile Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition, Current Biology, vol.26, issue.5, pp.640-646, 2016.
DOI : 10.1016/j.cub.2015.12.066

F. Chopin, J. Wirth, M. F. Dorbe, L. Lejay, A. Krapp et al., , 2007.

A. Thearabidopsisnitrate, 1 is targeted to the root plasma membrane, Plant Physiol. Biochem, vol.45, issue.8, pp.630-635

F. K. Choudhury, R. M. Rivero, E. Blumwald, and R. Mittler, Reactive oxygen species, AT5G48880 3-KETO-ACYL-COENZYME A THIOLASE 5, 2017.

A. Beta-galactosidase-4, B. At5g57220-"-cytochrome-p450, and S. F. , CYP81F2 AT5G57630 CBL-INTERACTING PROTEIN KINASE 21, CIPK21, SNF1-RELATED PROTEIN KINASE 3.4 AT5G60100 PRR3, PSEUDO-RESPONSE REGULATOR 3

A. Agamous-like-42, A. Forever, and Y. Flower,

V. C. Collin, F. Eymery, B. Genty, P. Rey, and M. Havaux, Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress, Plant, Cell & Environment, vol.48, issue.0, pp.31-244, 2008.
DOI : 10.1104/pp.105.062430

S. Cooper, M. Dienstbier, R. Hassan, L. Schermelleh, J. Sharif et al., Targeting Polycomb to Pericentric Heterochromatin in Embryonic Stem Cells Reveals a Role for H2AK119u1 in PRC2 Recruitment, Cell Reports, vol.7, issue.5, pp.1456-1470, 2014.
DOI : 10.1016/j.celrep.2014.04.012

N. M. Crawford and A. D. Glass, Molecular and physiological aspects of nitrate uptake in plants, Trends in Plant Science, vol.3, issue.10, pp.389-395, 1998.
DOI : 10.1016/S1360-1385(98)01311-9

P. Crevillén, H. Yang, X. Cui, C. Greeff, M. Trick et al., , 2014.

, Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state, Nature, issue.7528, pp.515-587

D. Angeli, A. Monachello, D. Ephritikhine, G. Frachisse, J. M. Thomine et al., The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles, Nature, vol.207, issue.7105, pp.442-939, 2006.
DOI : 10.1016/0076-6879(92)07008-C

URL : https://hal.archives-ouvertes.fr/hal-00119917

M. De-lucas, L. Pu, G. Turco, A. Gaudinier, A. K. Morao et al., Transcriptional Regulation of Arabidopsis Polycomb Repressive Complex 2 Coordinates Cell-Type Proliferation and Differentiation, The Plant Cell, vol.28, issue.10, pp.28-2616, 2016.
DOI : 10.1105/tpc.15.00744

J. Dechorgnat, C. T. Nguyen, P. Armengaud, M. Jossier, E. Diatloff et al.,

F. Vedele, From the soil to the seeds: the long journey of nitrate in plants, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00855468

, J. Exp.Bot, vol.62, issue.4, pp.1349-1359

M. Derkacheva and L. Hennig, Variations on a theme: Polycomb group proteins in plants, Journal of Experimental Botany, vol.63, issue.10, pp.2769-2784, 2014.
DOI : 10.1093/jxb/ers157

M. Derkacheva, Y. Steinbach, T. Wildhaber, I. Mozgova, W. Mahrez et al., Arabidopsis MSI1 connects LHP1 to PRC2 complexes, The EMBO Journal, vol.16, issue.14, pp.32-2073, 2013.
DOI : 10.1104/pp.104.046367

D. Dietrich, L. Pang, A. Kobayashi, J. A. Fozard, V. Boudolf et al., , 2017.

, AT1G18870|AT5G42600

, Annexes

E. S. Gan, Y. Xu, J. Y. Wong, J. G. Goh, B. Sun et al., , 2014.

, Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis, Nat. Commun, vol.5, p.5098

A. V. Gendrel, Z. Lippman, C. Yordan, V. Colot, and R. A. Martienssen, Dependence of Heterochromatic Histone H3 Methylation Patterns on the Arabidopsis Gene DDM1, Science, vol.297, issue.5588, pp.297-1871, 2002.
DOI : 10.1126/science.1074950

M. B. Gerstein, Z. J. Lu, E. L. Van-nostrand, C. Cheng, B. I. Arshinoff et al., Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project, Science, vol.38, issue.suppl_1, pp.330-1775, 2010.
DOI : 10.1093/nar/gkp952

T. Girin, L. Lejay, J. Wirth, T. Widiez, P. M. Palenchar et al., Identification of a 150 bp cis-acting element of the AtNRT2.1 promoter involved in the regulation of gene expression by the N and C status of the plant, Plant Cell Environ, issue.11, pp.30-1366, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00191105

T. Girin, E. S. El-kafafi, T. Widiez, A. Erban, H. M. Hubberten et al., Identification of Arabidopsis Mutants Impaired in the Systemic Regulation of Root Nitrate Uptake by the Nitrogen Status of the Plant, PLANT PHYSIOLOGY, vol.153, issue.3, 2010.
DOI : 10.1104/pp.110.157354

URL : https://hal.archives-ouvertes.fr/hal-00507517

, Plant Physiol, vol.153, issue.3, pp.1250-1260

A. Gojon, G. Krouk, F. Perrine-walker, and E. Laugier, Nitrate transceptor(s) in plants, Journal of Experimental Botany, vol.17, issue.5, pp.2299-2308, 2011.
DOI : 10.1046/j.1365-313X.1999.00396.x

URL : https://hal.archives-ouvertes.fr/hal-00589335

D. Grimanelli and F. Roudier, Epigenetics and Development in Plants, Curr. Top. Dev. Biol, vol.104, pp.189-222, 2013.
DOI : 10.1016/B978-0-12-416027-9.00006-1

X. Gu, T. Xu, and Y. He, A Histone H3 Lysine-27 Methyltransferase Complex Represses Lateral Root Formation in Arabidopsis thaliana, Molecular Plant, vol.7, issue.6, pp.977-988, 2014.
DOI : 10.1093/mp/ssu035

L. Guo, Y. Yu, J. A. Law, and X. Zhang, SET DOMAIN GROUP2 is the major histone H3 lysine (corrected) 4 trimethyltransferase in Arabidopsis, Proc. Natl, 2010.

, Acad. Sci. USA, vol.107, issue.43, pp.18557-18562

S. Guyomarc-'h, M. Lucas, and L. Laplaze, , 2010.

I. Gy, V. Gasciolli, D. Lauressergues, J. B. Morel, J. Gombert et al., Arabidopsis FIERY1, XRN2, and XRN3 Are Endogenous RNA Silencing Suppressors, THE PLANT CELL ONLINE, vol.19, issue.11, pp.19-3451, 2007.
DOI : 10.1105/tpc.107.055319

S. K. Han, M. F. Wu, S. Cui, and D. Wagner, Roles and activities of chromatin remodeling ATPases in plants, The Plant Journal, vol.49, issue.1, pp.62-77, 2015.
DOI : 10.1016/j.molcel.2012.11.011

D. L. Hartl and E. W. Jones, Genetics Principles and Analysis, 1997.

G. A. Hartzog, T. Wada, H. Handa, and F. Winston, Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces??cerevisiae, Genes & Development, vol.12, issue.3, pp.357-369, 1998.
DOI : 10.1101/gad.12.3.357

J. Haseloff, K. R. Siemering, D. C. Prasher, and S. Hodge, Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly, Proc. Natl. Acad. Sci. USA, pp.94-2122, 1997.
DOI : 10.1002/anie.199414151

C. He, X. Chen, H. Huang, and L. Xu, Reprogramming of H3K27me3 Is Critical for Acquisition of Pluripotency from Cultured Arabidopsis Tissues, PLoS Genetics, vol.8, issue.8, p.1002911, 2012.
DOI : 10.1371/journal.pgen.1002911.s010

C. H. Ho, S. H. Lin, H. C. Hu, and Y. F. Tsay, CHL1 Functions as a Nitrate Sensor in Plants, Cell, vol.138, issue.6, pp.138-1184, 2009.
DOI : 10.1016/j.cell.2009.07.004

S. Holec and F. Berger, Polycomb Group Complexes Mediate Developmental Transitions in Plants, PLANT PHYSIOLOGY, vol.158, issue.1, pp.35-43, 2012.
DOI : 10.1104/pp.111.186445

M. Ikeuchi, A. Iwase, B. Rymen, H. Harashima, M. Shibata et al., PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis, Nature Plants, vol.3, issue.7, p.15089, 2015.
DOI : 10.1371/journal.pgen.1000396

A. Jacquot, Z. Li, A. Gojon, W. Sculze, and L. Lejay, Post-translational regulation of nitrogen transporters in plants and microorganisms, Journal of Experimental Botany, vol.466, issue.10, pp.68-2567, 2017.
DOI : 10.1016/S0014-5793(00)01085-1

URL : https://hal.archives-ouvertes.fr/hal-01595539

G. Jander, S. R. Norris, S. D. Rounsley, D. F. Bush, I. M. Levin et al., , 2002.

, Arabidopsis map-based cloning in the post-genome era, Plant Physiol, vol.129, issue.2, pp.440-450

J. Finnegan, E. Bond, D. M. Buzas, D. M. Goodrich, J. Helliwell et al., Polycomb proteins regulate the quantitative induction of VERNALIZATION INSENSITIVE 3 in response to low temperatures, The Plant Journal, vol.7, issue.3, pp.382-391, 2011.
DOI : 10.1038/ncb1329

D. Jiang, Y. Wang, and Y. He, Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb Repressive Complex 2 Components, PLoS ONE, vol.125, issue.10, p.3404, 2008.
DOI : 10.1371/journal.pone.0003404.s002

R. Kalb, S. Latwiel, H. I. Baymaz, P. W. Jansen, C. W. Müller et al., Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression, Nature Structural & Molecular Biology, vol.1, issue.6, pp.569-571, 2014.
DOI : 10.7554/eLife.00005

A. Kanazawa, M. O-'dell, R. P. Hellens, E. Hitchin, and M. Metzlaff, Mini-scale method for nuclear run-on transcription assay in plants, Plant Molecular Biology Reporter, vol.2, issue.4, pp.377-383, 2000.
DOI : 10.1105/tpc.2.4.291

P. V. Kharchenko, A. A. Alekseyenko, Y. B. Schwartz, A. Minoda, N. C. Riddle et al., Comprehensive analysis of the chromatin landscape in Drosophila melanogaster, Nature, vol.97, issue.7339, pp.471-480, 2011.
DOI : 10.1073/pnas.110149597

T. Kiba, A. B. Feria-bourrellier, F. Lafouge, L. Lezhneva, S. Boutet-mercey et al., The Arabidopsis Nitrate Transporter NRT2.4 Plays a Double Role in Roots and Shoots of Nitrogen-Starved Plants, The Plant Cell, vol.24, issue.1, pp.245-258, 2012.
DOI : 10.1105/tpc.111.092221

URL : https://hal.archives-ouvertes.fr/hal-01204108

J. M. Kim, T. K. To, J. Ishida, A. Matsui, H. Kimura et al., Transition of Chromatin Status During the Process of Recovery from Drought Stress in Arabidopsis thaliana, Plant and Cell Physiology, vol.72, issue.5, pp.847-856, 2012.
DOI : 10.1007/s11103-009-9594-7

S. Y. Kim, J. Lee, L. Eshed-willams, D. Zilberman, and Z. R. Sung, EMF1 and PRC2 Cooperate to Repress Key Regulators of Arabidopsis Development, PLoS Genetics, vol.135, issue.3, p.1002512, 2012.
DOI : 10.1371/journal.pgen.1002512.s011

T. Kinoshita, J. J. Harada, R. B. Goldberg, and R. L. Fischer, Polycomb repression of flowering during early plant development, Proc. Natl. Acad. Sci. USA, pp.98-14156, 2001.
DOI : 10.1057/palgrave.development.1110241

Z. Kotur and A. D. Glass, Plant, Cell & Environment, vol.17, issue.D1, pp.38-1490, 2015.
DOI : 10.1046/j.1365-313X.1999.00396.x

T. Kotake, S. Takada, K. Nakahigashi, M. Ohto, and K. Goto, Arabidopsis TERMINAL FLOWER 2 Gene Encodes a Heterochromatin Protein 1 Homolog and Represses both FLOWERING LOCUS T to Regulate Flowering Time and Several Floral Homeotic Genes, Plant and Cell Physiology, vol.44, issue.6, pp.555-564, 2003.
DOI : 10.1105/tpc.13.11.2471

T. Kouzarides, Chromatin Modifications and Their Function, Cell, vol.128, issue.4, pp.693-705, 2007.
DOI : 10.1016/j.cell.2007.02.005

A. Krapp, R. Berthomé, M. Orsel, S. Mercey-boutet, A. Yu et al., Arabidopsis Roots and Shoots Show Distinct Temporal Adaptation Patterns toward Nitrogen Starvation, PLANT PHYSIOLOGY, vol.157, issue.3, pp.1255-1258, 2011.
DOI : 10.1104/pp.111.179838

URL : https://hal.archives-ouvertes.fr/hal-01001248

A. Krapp, L. C. David, C. Chardin, T. Girin, A. Marmagne et al., Nitrate transport and signalling in Arabidopsis, Journal of Experimental Botany, vol.584, issue.3, pp.789-798, 2014.
DOI : 10.1016/j.febslet.2009.12.042

URL : https://hal.archives-ouvertes.fr/hal-01204040

G. Krouk, B. Lacombe, A. Bielach, F. Perrine-walker, K. Malinska et al., Nitrate-Regulated Auxin Transport by NRT1.1 Defines a Mechanism for Nutrient Sensing in Plants, Developmental Cell, vol.18, issue.6, pp.18-927, 2010.
DOI : 10.1016/j.devcel.2010.05.008

URL : https://hal.archives-ouvertes.fr/hal-00508268

H. F. Kuo, T. Y. Chang, S. F. Chiang, W. D. Wang, Y. Y. Charng et al., , 2014.

, Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level, Plant J, vol.80, issue.3, pp.503-515

M. Lafos, P. Kroll, M. L. Hohenstatt, F. L. Thorpe, O. Clarenz et al., , 2011.

, Dynamic Regulation of H3K27 Trimethylation during Arabidopsis Differentiation, PLoS Genet, vol.7, issue.4, p.1002040

L. Lejay, P. Tillard, M. Lepetit, F. Olive, S. Filleur et al., , 1999.

, Molecular and functional regulation of two NO3-uptake systems by N-and Cstatus of Arabidopsis plants, Plant J, vol.18, issue.5, pp.509-519

L. Lejay, X. Gansel, M. Cerezo, P. Tillard, C. Müller et al.,

F. Vedele and A. Gojon, Regulation of Root Ion Transporters by Photosynthesis: Functional Importance and Relation with Hexokinase, Plant Cell, vol.15, issue.9, pp.2218-2232, 2003.

L. Lejay, J. Wirth, M. Pervent, J. M. Cross, P. Tillard et al., Oxidative Pentose Phosphate Pathway-Dependent Sugar Sensing as a Mechanism for Regulation of Root Ion Transporters by Photosynthesis, PLANT PHYSIOLOGY, vol.146, issue.4, pp.2036-2053, 2008.
DOI : 10.1104/pp.107.114710

URL : https://hal.archives-ouvertes.fr/hal-00275686

S. Léran, K. Varala, J. C. Boyer, M. Chiurazzi, N. Crawford et al.,

M. Halkier, B. A. Harris, J. M. Hedrich, R. Limami, A. M. Rentsch et al., A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants, Trends Plant Sci, vol.19, issue.1, pp.5-9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00945664

L. Lezhneva, T. Kiba, A. B. Feria-bourrellier, F. Lafouge, S. Boutet-mercey et al., The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants, The Plant Journal, vol.63, issue.2, pp.230-241, 2014.
DOI : 10.1111/j.1365-313X.2010.04278.x

URL : https://hal.archives-ouvertes.fr/hal-01204108

W. Li, Y. Wang, M. Okamoto, N. M. Crawford, M. Y. Siddiqi et al., , 2007.

, 1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster, Dissection of the AtNRT2, pp.425-433

L. Li, H. Ye, H. Guo, and Y. Yin, Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression, Proc. Natl. Acad. Sci. USA, pp.107-3918, 2010.
DOI : 10.1126/science.1074950

D. Y. Little, H. Rao, S. Oliva, F. Daniel-vedele, A. Krapp et al., The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues, Proc. Natl. Acad. Sci. USA, pp.102-13693, 2005.
DOI : 10.1016/j.mib.2004.10.002

C. L. Liu, T. Kaplan, M. Kim, S. Buratowski, S. L. Schreiber et al., Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae, PLoS Biology, vol.57, issue.10, p.328, 2005.
DOI : 10.1371/journal.pbio.0030328.sg007

F. Lu, X. Cui, S. Zhang, T. Jenuwein, and X. Cao, Arabidopsis REF6 is a histone H3 lysine 27 demethylase, Nature Genetics, vol.128, issue.7, pp.715-721, 2011.
DOI : 10.1038/nmeth.1226

J. Malamy and P. Benfey, Organization and cell differentiation in lateral roots of Arabidopsis thaliana, Development, vol.124, issue.1, pp.33-44, 1997.

J. Malapeira, L. C. Khaitova, and P. Mas, Ordered changes in histone modifications at the core of the Arabidopsis circadian clock, Proc. Natl. Acad. Sci. USA, pp.109-21540, 2012.
DOI : 10.1038/nature02163

R. Margueron and D. Reinberg, Chromatin structure and the inheritance of epigenetic information, Nature Reviews Genetics, vol.136, issue.4, pp.285-296, 2010.
DOI : 10.1128/MCB.6.11.3862

M. M. Marquès-bueno, A. K. Morao, A. Cayrel, M. P. Platre, M. Barberon et al., A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis, The Plant Journal, vol.10, issue.2, pp.320-333, 2016.
DOI : 10.1046/j.1365-313X.1996.10050835.x

C. Masclaux-daubresse, F. Daniel-vedele, J. Dechorgnat, F. Chardon, L. Gaufichon et al., Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture, Annals of Botany, vol.10, issue.7, pp.1141-1157, 2010.
DOI : 10.1104/pp.106.093237

URL : https://hal.archives-ouvertes.fr/hal-01203920

N. Mehterov, S. Balazadeh, J. Hille, V. Toneva, B. Mueller-roeber et al., Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes, Plant Physiology and Biochemistry, vol.59, pp.20-29, 2012.
DOI : 10.1016/j.plaphy.2012.05.024

L. Meng and P. G. Lemaux, A simple and rapid method for nuclear run-on transcription assays in plants, Plant Molecular Biology Reporter, vol.143, issue.2, pp.65-71, 2003.
DOI : 10.1210/en.143.2.587

R. Merret, J. Descombin, Y. T. Juan, J. J. Favory, M. C. Carpentier et al., XRN4 and LARP1 Are Required for a Heat-Triggered mRNA Decay Pathway Involved in Plant Acclimation and Survival during Thermal Stress, Cell Reports, vol.5, issue.5, pp.1279-1293, 2013.
DOI : 10.1016/j.celrep.2013.11.019

URL : https://hal.archives-ouvertes.fr/hal-01217835

A. J. Miller, X. Fan, M. Orsel, S. J. Smith, and D. M. Wells, Nitrate transport and signalling, Journal of Experimental Botany, vol.58, issue.9, pp.2297-2306, 2007.
DOI : 10.1093/jxb/erm066

R. Mittler, ROS Are Good, Trends in Plant Science, vol.22, issue.1, pp.11-19, 2017.
DOI : 10.1016/j.tplants.2016.08.002

A. K. Morao, D. Bouyer, and F. Roudier, Emerging concepts in chromatin-level regulation of plant cell differentiation: timing, counting, sensing and maintaining, Current Opinion in Plant Biology, vol.34, pp.27-34, 2016.
DOI : 10.1016/j.pbi.2016.07.010

URL : https://hal.archives-ouvertes.fr/hal-01602506

J. F. Morot-gaudry, Assimilation de l'azote chez les plantes: Aspects physiologique, 1997.

I. Mozgova and L. Hennig, The Polycomb Group Protein Regulatory Network, Annual Review of Plant Biology, vol.66, issue.1, pp.269-296, 2015.
DOI : 10.1146/annurev-arplant-043014-115627

S. Muños, C. Cazettes, C. Fizames, F. Gaymard, P. Tillard et al., Transcript Profiling in the chl1-5 Mutant of Arabidopsis Reveals a Role of the Nitrate Transporter NRT1.1 in the Regulation of Another Nitrate Transporter, NRT2.1, THE PLANT CELL ONLINE, vol.16, issue.9, pp.2433-2447, 2004.
DOI : 10.1105/tpc.104.024380

P. Nacry, E. Bouguyon, and A. Gojon, Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource, Plant and Soil, vol.17, issue.8, pp.1-29, 2013.
DOI : 10.1046/j.1365-313X.1999.00396.x

URL : https://hal.archives-ouvertes.fr/hal-00921012

T. Näsholm, K. Kielland, and U. Ganeteg, Uptake of organic nitrogen by plants, New Phytologist, vol.279, issue.1, pp.31-48, 2009.
DOI : 10.1126/science.279.5349.407

P. Newsholme, V. Cruzat, K. Keane, R. Carlessi, and P. De-bittencourt, Molecular mechanisms of ROS production and oxidative stress in diabetes, Biochemical Journal, vol.473, issue.24, pp.473-4527, 2016.
DOI : 10.1042/BCJ20160503C

M. Okamoto, J. J. Vidmar, and A. D. Glass, Regulation of NRT1 and NRT2 Gene Families of Arabidopsis thaliana: Responses to Nitrate Provision, Plant and Cell Physiology, vol.44, issue.3, pp.304-317, 2003.
DOI : 10.1046/j.1365-313X.1999.00396.x

M. Orsel, F. Chopin, O. Leleu, S. J. Smith, A. Krapp et al., Characterization of a Two-Component High-Affinity Nitrate Uptake System in Arabidopsis, Physiology and Protein-Protein Interaction. Plant Physiol, vol.142, issue.3, pp.1304-1317, 2006.

I. Ottenschläger, P. Wolff, C. Wolverton, R. P. Bhalerao, G. Sandberg et al.,

&. Palme and K. , Gravity-regulated differential auxin transport from columella to lateral root cap cells, Proc. Natl. Acad. Sci. USA, pp.2987-2991, 2003.

G. Patrone, F. Puppo, R. Cusano, M. Scaranari, I. Ceccherini et al., Nuclear run-on assay using biotin labeling, magnetic bead capture and analysis by fluorescence-based RT-PCR, Biotechniques, issue.5, pp.29-1012, 2000.

B. Péret, B. De-rybel, I. Casimiro, E. Benková, R. Swarup et al., Arabidopsis lateral root development: an emerging story, Trends in Plant Science, vol.14, issue.7, pp.399-408, 2009.
DOI : 10.1016/j.tplants.2009.05.002

L. Pu and Z. R. Sung, PcG and trxG in plants ??? friends or foes, Trends in Genetics, vol.31, issue.5, pp.31-252, 2015.
DOI : 10.1016/j.tig.2015.03.004

L. Pu, M. S. Liu, S. Y. Kim, L. F. Chen, and J. C. Fletcher, & Sung Z. R, 2013.

, EMBRYONIC FLOWER1 and ULTRAPETALA1 act antagonistically on Arabidopsis development and stress response, Plant Physiol, vol.162, issue.2, pp.812-830

L. Quadrana, B. Silveira, A. Mathew, G. F. Leblanc, C. Martienssen et al., The Arabidopsis thaliana mobilome and its impact at the species level. eLife, p.15716, 2016.

T. Remans, P. Nacry, M. Pervent, T. Girin, P. Tillard et al., A Central Role for the Nitrate Transporter NRT2.1 in the Integrated Morphological and Physiological Responses of the Root System to Nitrogen Limitation in Arabidopsis, PLANT PHYSIOLOGY, vol.140, issue.3, pp.909-921, 2006.
DOI : 10.1104/pp.105.075721

URL : https://hal.archives-ouvertes.fr/hal-00087065

T. Remans, P. Nacry, M. Pervent, S. Filleur, E. Diatloff et al., The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches, Proc. Natl, 2006.
DOI : 10.2307/2441475

URL : https://hal.archives-ouvertes.fr/hal-00124948

, Acad. Sci. USA, vol.103, issue.50, pp.19206-19211

F. Roudier, I. Ahmed, C. Berard, A. Sarazin, T. Mary-huard et al., Integrative epigenomic mapping defines four main chromatin states in Arabidopsis, The EMBO Journal, vol.39, issue.10, pp.30-1928, 2011.
DOI : 10.1038/ng1929

URL : https://hal.archives-ouvertes.fr/hal-00999846

D. Secco, J. Whelan, H. Rouached, and R. Lister, Nutrient stress-induced chromatin changes in plants, Current Opinion in Plant Biology, vol.39, pp.1-7, 2017.
DOI : 10.1016/j.pbi.2017.04.001

URL : https://hal.archives-ouvertes.fr/hal-01594549

J. Sequeira-mendes, I. Araguez, R. Peiro, R. Mendez-giraldez, X. Zhang et al., The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States, The Plant Cell, vol.26, issue.6, pp.2351-2366, 2014.
DOI : 10.1105/tpc.114.124578

A. P. Smith, A. Jain, R. B. Deal, V. K. Nagarajan, M. D. Poling et al., Histone H2A.Z Regulates the Expression of Several Classes of Phosphate Starvation Response Genes But Not as a Transcriptional Activator, PLANT PHYSIOLOGY, vol.152, issue.1, pp.217-225, 2010.
DOI : 10.1104/pp.109.145532

F. K. Teixeira and V. Colot, Gene body DNA methylation in plants: a means to an end or an end to a means?, The EMBO Journal, vol.28, issue.8, pp.997-998, 2009.
DOI : 10.1038/ng1929

H. Tschoep, Y. Gibon, P. Carillo, P. Armengaud, M. Szecowka et al., Plant, Cell & Environment, vol.145, issue.3, pp.300-318, 2009.
DOI : 10.1146/annurev.pp.30.060179.001445

H. Tsukagoshi, W. Busch, and P. N. Benfey, Transcriptional Regulation of ROS Controls Transition from Proliferation to Differentiation in the Root, Cell, vol.143, issue.4, pp.606-616, 2010.
DOI : 10.1016/j.cell.2010.10.020

F. Turck, F. Roudier, S. Farrona, M. L. Martin-magniette, E. Guillaume et al., Arabidopsis TFL2/LHP1 Specifically Associates with Genes Marked by Trimethylation of Histone H3 Lysine 27, PLoS Genetics, vol.95, issue.6, p.86, 2007.
DOI : 10.1371/journal.pgen.0030086.st011

S. V. Veiseth, M. A. Rahman, K. L. Yap, A. Fischer, W. Egge-jacobsen et al., The SUVR4 Histone Lysine Methyltransferase Binds Ubiquitin and Converts H3K9me1 to H3K9me3 on Transposon Chromatin in Arabidopsis, PLoS Genetics, vol.2, issue.3, p.1001325, 2011.
DOI : 10.1371/journal.pgen.1001325.s009

A. Veluchamy, T. Jegu, F. Ariel, D. Latrasse, K. G. Mariappan et al., LHP1 Regulates H3K27me3 Spreading and Shapes the Three-Dimensional Conformation of the Arabidopsis Genome, pp.11-0158936, 2016.

S. Venkatesh and J. L. Workman, Histone exchange, chromatin structure and the regulation of transcription, Nature Reviews Molecular Cell Biology, vol.8, issue.3, pp.178-189, 2015.
DOI : 10.1038/cr.2014.30

X. Wang, Y. Zhang, Q. Ma, Z. Zhang, Y. Xue et al., SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis, The EMBO Journal, vol.7, issue.7, pp.1934-1941, 2007.
DOI : 10.1038/sj.emboj.7601647

A. H. Wang, H. Zare, K. Mousavi, C. Wang, C. E. Moravec et al., The histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis, The EMBO Journal, vol.32, issue.8, pp.32-1075, 2013.
DOI : 10.1093/bioinformatics/btp340

X. L. Wang, J. Chen, Z. Xie, S. Liu, T. Nolan et al., Histone Lysine Methyltransferase SDG8 Is Involved in Brassinosteroid-Regulated Gene Expression in Arabidopsis thaliana, Molecular Plant, vol.7, issue.8, pp.7-1303, 2014.
DOI : 10.1093/mp/ssu056

H. Wang, C. Liu, J. Cheng, J. Liu, L. Zhang et al., Arabidopsis Flower and Embryo Developmental Genes are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of Cis-regulatory Elements, PLOS Genetics, vol.96, issue.1, p.1005771, 2016.
DOI : 10.1371/journal.pgen.1005771.s025

C. Whittaker and C. Dean, Locus: A Platform for Discoveries in Epigenetics and Adaptation, Annual Review of Cell and Developmental Biology, vol.33, issue.1, pp.555-575, 2017.
DOI : 10.1146/annurev-cellbio-100616-060546

T. Widiez, E. S. Kafafi, T. Girin, A. Berr, S. Ruffel et al., uptake is associated with changes in histone methylation, Proc. Natl. Acad. Sci. USA, pp.13329-13334, 2011.
DOI : 10.1046/j.1365-313X.2002.01419.x

URL : https://hal.archives-ouvertes.fr/hal-00623176

J. Wirth, F. Chopin, V. Santoni, G. Viennois, P. Tillard et al.,

&. Gojon and A. , Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana, J. Biol. Chem, vol.282, issue.32, pp.23541-23552, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00168099

J. Xiao and D. Wagner, Polycomb repression in the regulation of growth and development in Arabidopsis, Current Opinion in Plant Biology, vol.23, pp.15-24, 2015.
DOI : 10.1016/j.pbi.2014.10.003

J. Xing, T. Wang, Z. Liu, J. Xu, Y. Yao et al., Contributes to Iron Homeostasis in Arabidopsis, Plant Physiology, vol.168, issue.4, pp.1309-1320, 2015.
DOI : 10.1104/pp.15.00397

C. R. Xu, C. Liu, Y. L. Wang, L. C. Li, W. Q. Chen et al., Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis, Proc. Natl. Acad. Sci. USA, pp.102-14469, 2005.
DOI : 10.1126/science.1090022

L. Xu and W. H. Shen, Polycomb Silencing of KNOX Genes Confines Shoot Stem Cell Niches in Arabidopsis, Current Biology, vol.18, issue.24, pp.1966-1971, 2008.
DOI : 10.1016/j.cub.2008.11.019

Y. Yan, L. Shen, Y. Chen, S. Bao, Z. Thong et al., A MYB-Domain Protein EFM Mediates Flowering Responses to Environmental Cues in Arabidopsis, Developmental Cell, vol.30, issue.4, pp.437-448, 2014.
DOI : 10.1016/j.devcel.2014.07.004

C. Yang, F. Bratzel, N. Hohmann, M. Koch, F. Turck et al., VAL- and AtBMI1-Mediated H2Aub Initiate the Switch from Embryonic to Postgerminative Growth in Arabidopsis, Current Biology, vol.23, issue.14, pp.1324-1329, 2013.
DOI : 10.1016/j.cub.2013.05.050

H. Yang, M. Howard, and C. Dean, Antagonistic Roles for H3K36me3 and H3K27me3 in the Cold-Induced Epigenetic Switch at Arabidopsis FLC, Current Biology, vol.24, issue.15, 2014.
DOI : 10.1016/j.cub.2014.06.047

, Biol, vol.24, issue.15, pp.1793-1797

S. M. Yoh, J. S. Lucas, and K. A. Jones, The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation, Genes & Development, vol.22, issue.24, pp.22-3422, 2008.
DOI : 10.1101/gad.1720008

X. Yu, L. Li, L. Li, M. Guo, J. Chory et al., Modulation of brassinosteroidregulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis, Proc. Natl. Acad. Sci. USA, pp.7618-7623, 2008.

X. Zhang, S. Germann, B. J. Blus, S. Khorasanizadeh, V. Gaudin et al., , 2007.

, The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation

, Nat. Struct. Mol. Biol, vol.14, issue.9, pp.869-871

L. Zhang, A. G. Fletcher, V. Cheung, F. Winston, and L. A. Stargell, Spn1 Regulates the Recruitment of Spt6 and the Swi/Snf Complex during Transcriptional Activation by RNA Polymerase II, Molecular and Cellular Biology, vol.28, issue.4, pp.1393-1403, 2008.
DOI : 10.1128/MCB.01733-07

M. Zhao, H. Ding, J. K. Zhu, F. Zhang, and W. X. Li, Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis, New Phytologist, vol.279, issue.4, pp.906-915, 2011.
DOI : 10.1126/science.279.5349.407

D. Zilberman, D. Coleman-derr, T. Ballinger, and S. Henikoff, Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks, Nature, vol.15, issue.7218, pp.456-125, 2008.
DOI : 10.1016/j.bbaexp.2007.01.009