Contrôle optimal de quelques phénomènes de diffusion en domaines pollués
Sihem Mahoui

To cite this version:

HAL Id: tel-01840878
https://tel.archives-ouvertes.fr/tel-01840878
Submitted on 16 Jul 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Thèse en cotutelle entre :

L’Université des Sciences et de la Technologie Houari Boumediene et
l’Université de Guyane

Présentée pour l’obtention du diplôme de Doctorat
en : MATHEMATIQUES APPLIQUÉES

Spécialité : Equations aux dérivées partielles et applications

Par :

MAHOUI Sihem

Sujet

Contrôle optimal de quelques phénomènes de diffusion en domaines pollués

Soutenue publiquement le 01/07/2018 devant le jury composé de :

M. D. Teniou Professeur USTHB Examinateur
M. M. S. Moulay Professeur USTHB Co-Directeur de thèse
M. A. Omrane Professeur Université de Guyane Co-Directeur de thèse
M. T. Z. Boumezaoud MCF-HDR Université de Versailles Rapporteur
M. B. Ainseba Professeur Université de Bordeaux Rapporteur
M. O. Zair Professeur USTHB Examinatrice.
A ma famille,

et plus particulièrement à mes parents et ma soeur.
Résumé

Dans ce travail, on s’intéresse à l’analyse mathématique et au contrôle optimal pour des problèmes de diffusion relevant de certains domaines comme l’écologie ou l’environnement et comportant des termes de pollution inconnus en général. De plus, on souhaite agir sur le système en un seul point du domaine considéré pour des raisons de coût. La modélisation de ces problèmes se traduit généralement par un système de type parabolique avec donnée manquante (initiale ou aux limites) représentant la pollution, et où l’on introduit une fonction de contrôle de ce système. La méthode suivie pour résoudre ces problèmes est celle du contrôle à moindres regrets développée par J.-L. Lions et bien adaptée aux problèmes à données manquantes.

Plus précisément, on est concerné par des problèmes de type parabolique qui décrivent la diffusion d’un fluide (eau) contaminé dans un domaine (une lagune ou un estuaire) par une pollution ayant son origine sur une partie du bord. De plus, on considère que la fonction source (le contrôle) est localisée en un point, c’est ce qu’on appelle le contrôle ponctuel. On cherche alors le (ou les) contrôle(s) qui peuvent améliorer la situation au lieu de la laisser à l’abandon (sans contrôle).

Les solutions ne sont pas des fonctions régulières et ne peuvent être considérées qu’au sens faible. Deux méthodes sont utilisées : la première est la méthode de transposition de Lions-Magenes, détaillée au chapitre 3 de la thèse, et la deuxième méthode consiste à régulariser la masse de Dirac (le support du contrôle est un point) présentée au chapitre 4. Pour les deux méthodes, on montre l’existence d’une solution faible et on établit un système d’optimalité singulier (SOS) du contrôle ponctuel à moindres regrets.

Un dernier chapitre est consacré aux schémas numériques associés au problème de contrôle ponctuel à moindres regrets, où l’on obtient des estimations d’erreur par la méthode des éléments finis.
Mots clés :
Problèmes paraboliques, problème adjoint, contrôle à moindres regrets, contrôle ponctuel, donnée manquante, système d’optimalité singulier, éléments finis.
Abstract

In this thesis, we are interested in mathematical analysis and optimal control of diffusion problems where there are pollution terms. In addition, we want to act on the system in a single point of the domain for cost reasons. The systems being studied are parabolic with missing (initial or boundary) data representing pollution, where we introduce a control function. The method of low-regret control of J.-L. Lions, used here for the first time to the pointwise control, seems to be well suited. We then look for the control which can improve the situation instead of doing nothing (no control).

Solutions are not regular functions and can only be considered in the weak sense. Two methods are used here: the first one is the method of transposition of Lions-Magenes, detailed in Chapter 3 of the thesis, and the second method consists in regularizing the Dirac mass, presented in chapter 4. Each one of the two methods offers a new point of view. In particular, the functional spaces where the existence of a solution is obtained are different. For both methods, however, a singular optimality system is established for the low-regret pointwise control.

A final chapter is devoted to the numerical schemes associated to the low-regret pointwise optimal control, where we obtain error estimates using finite elements method (FEM).

Keywords:
Parabolic problems, adjoint problem, low-regret control, pointwise control, missing data, singular optimality system, finite elements.
Remerciement

Les recherches qui font l’objet de cette thèse ont été réalisées sur deux sites : en Algérie au sein du Laboratoire d’Analyse Mathématique et Numérique des Équations aux Dérivées Partielles (AMNEDP) et en Guyane dans le laboratoire UMR 228 Espace-Dev implanté à l’IRD.

Les travaux décrits dans ce manuscrit n’auraient pas vu le jour sans le soutien aussi bien scientifique qu’humain que m’ont apporté mes directeurs de thèse, Messieurs Mohamed Said Moulay et Abdennabi Omrane. Leurs compétences, leur sympathie, leur patience avec laquelle ils m’ont encadré, m’ont été indispensables pour mener à bien ce travail. Ils ont par ailleurs œuvré pour que cette thèse se passe dans de bonnes conditions et m’ont encouragé à voyager afin de rencontrer des scientifiques, ceci m’a permis d’exposer mes travaux en dehors de mes universités.

Je tiens à remercier les membres de mon jury de thèse pour l’intérêt qu’ils ont porté à ce travail et pour les remarques constructives qu’ils ont faits sur mon manuscrit de thèse.

Je remercie Monsieur le professeur D. Teniou d’avoir bien voulu accepter de présider le jury d’examen de mon travail.

J’adresse mes vifs remerciements à Monsieur T. Z. Boulmezaoud et Monsieur B. Ainséba pour avoir accepté d’être rapporteurs de ce travail. Je tiens également à remercier Madame O. Zair de m’avoir fait l’honneur de participer à ce jury de thèse.
J'exprime toute ma reconnaissance à Monsieur S. Bouroubi pour son aide précieuse avec laquelle j'ai pu avancer dans la rédaction de mon manuscrit de thèse.

Je remercie également tous les membres du laboratoire AMNEDP et du laboratoire UMR Espace-Dev, qui m'ont accueilli chaleureusement durant la préparation de ma thèse et qui m'ont appris beaucoup de choses.

Les mots les plus simples étant les plus forts, j'adresse toute mon affection à ma famille d'avoir eu confiance en moi et de m'avoir soutenu dans la voie que j'ai choisie. J'exprime ma profonde reconnaissance à mes parents Rabah et Oum Elkheir et à ma sœur Asma, de m'avoir encouragée et accompagnée depuis le début et être à mes côtés aux moments difficiles de cette thèse avec beaucoup d'amour et de compréhension, je vous adore!

Une pensée pour mes chères tantes Zhor, Aicha, Djamila et mes grands-parents qui m’encourageaient et me souhaitaient toujours la réussite, ainsi pour mon extraordinaire oncle Bentaiba Mahmoudi, qui n’a pas vu l’aboutissement de ce travail mais je sais qu’il aurait été très fier de sa nièce.

Pour terminer, je tiens à remercier mon amie Manuella Jacob pour son soutien et sa aide, ainsi que toutes les bonnes personnes que j’ai rencontrées en Guyane, et qui grâce à eux mon séjour fut très agréable et énormément instructif. Je remercie aussi mes très chères amies Dahila MAHFOUDIA, Imen KERNANI et Fatima ZIANE pour leur amitié sincère et surtout pour les moments inoubliables qu’on a passés ensemble durant cette thèse.
Table des matières

Introduction

1 Préliminaires

1.1 Espaces de Sobolev ... 19
1.2 Théorème de traces ... 21
1.3 Théorème de représentation de Riesz 22
1.4 Problèmes de contrôle optimal en dimension infinie 22

2 Introduction au contrôle optimal à moindres regrets 25

2.1 Position du problème .. 25
2.2 Existence d'une solution faible 26
2.3 Contrôle optimal ... 28
2.4 Définition et construction du contrôle à moindres regrets 31
2.5 Existence et caractérisation du contrôle à moindres regrets 32
2.5.1 Caractérisation du contrôle à moindres regrets 35
2.6 Cas où les données aux limites sont manquantes 39

3 Contrôle ponctuel par la méthode de transposition 41

3.1 Position du problème .. 41
3.2 Existence d'une solution par la méthode de transposition 42
3.3 Problème de contrôle ponctuel sans donnée manquante 45
3.4 Problème de contrôle ponctuel avec donnée manquante 47
3.4.1 Caractérisation du contrôle ponctuel à moindres regrets 49

4 Contrôle ponctuel par la méthode de régularisation 53

4.1 Problème de contrôle ponctuel avec donnée manquante 54
4.1.1 Caractérisation du contrôle à moindres regrets (S.O.S) 55
4.1.2 Estimations a priori et passage à la limite 55
5 Schémas numériques pour le contrôle ponctuel à moindres regrets 65
 5.1 Position du problème ... 65
 5.2 Approximation par éléments finis du problème de contrôle optimal avec
 donnée manquante ... 67
 5.2.1 Discrétisation du problème de contrôle optimal 70
 5.3 Analyse d’erreur pour le contrôle optimal ponctuel à moindres regrets ... 72

Conclusion et perspectives 81

Bibliographie 83
Notations

- \mathbb{R}^d : l'espace Euclidien de dimension $d = 2, 3$.
- Si $x, y \in \mathbb{R}^d$ alors $x \cdot y$ est le produit scalaire dans \mathbb{R}^d, c.-à-d :

 $x = (x_1, ..., x_d)$ et $y = (y_1, ..., y_d)$ alors $x \cdot y = \sum_{i=1}^{d} x_i \cdot y_i$.
- Si $x \in \mathbb{R}^d$, $|x| = \left(\sum_{i=1}^{d} x_i^2 \right)^{1/2}$.
- $\alpha = (\alpha_1, ..., \alpha_d) \in \mathbb{N}^d$ est un multi-indice.
- $D^\alpha = \frac{\partial^{|\alpha|}}{\partial_{x_1}^{\alpha_1} \cdots \partial_{x_d}^{\alpha_d}}$.
- ∂_x dérivée partielle $\frac{\partial}{\partial x}$.
- $\nabla u = (\partial_x u, ..., \partial_{x_d} u)^t$ est le gradient de la fonction $u : \mathbb{R}^d \to \mathbb{R}$.
- $\Delta u = \sum_{i=1}^{d} \frac{\partial^2 u}{\partial x_i^2} = \text{div}(\nabla u)$ est le laplacien de la fonction $u : \mathbb{R}^d \to \mathbb{R}$.
- δ_a la masse de Dirac au point a.
- X' dual topologique de l'espace de Banach X.
- $X \hookrightarrow Y$ injection continue de l'espace de Banach X dans l'espace de Banach Y.
- $X \subseteq Y$ injection compacte de l'espace de Banach X dans l'espace de Banach Y.
- Ω un ouvert borné de \mathbb{R}^d.
- $\overline{\Omega}$ la fermeture de Ω.
- $\partial \Omega$ le bord de Ω.
- $\nu = (\nu_1, ..., \nu_d)$ normale extérieure et unitaire au bord d’un ouvert de \mathbb{R}^d.
- $d\sigma$ mesure superficielle sur le bord d’un ouvert de \mathbb{R}^d.
- $\langle ., . \rangle_{X', X}$: crochet de dualité entre X et X'.
- $\mathcal{C}^k(\Omega)$ est l’espace des fonctions $f : \Omega \to \mathbb{R}$, k fois continûment différentiables.
- $\mathcal{C}_c(\Omega)$ est l’espace des fonctions continues sur Ω à support compact.
- $\mathcal{D}(\Omega)$ est l’espace des fonctions indéfiniment différentiables à support compact dans Ω.
- $\mathcal{D}'(\Omega)$ est l’espace des distributions sur Ω.
- \(L^p(\Omega)\) est l’espace de Lebesgue.
- \(L^p_{\text{loc}}\) est l’espaces des fonctions localement \(L^p\) dans \(\mathbb{R}^d\).
- \(\|\cdot\|_{L^p(\Omega)}\) designe la norme dans \(L^p(\Omega)\).
- \(W^{m,p}(\Omega), \, H^m(\Omega)\) est l’espaces de Sobolev.
- \(W^{m,p}_0(\Omega), \, H^m_0(\Omega)\) est l’adhérence de \(\mathcal{D}(\Omega)\) dans \(W^{m,p}(\Omega)\) respectivement dans \(H^m(\Omega)\).
- \(\mathcal{L}(X,Y)\) est l’espace des opérateurs linéaires continus de \(X\) dans \(Y\).
Introduction

Des problèmes relatifs à l’écologie, l’environnement et au climat préoccupent de très nombreux secteurs dans la société en général et les scientifiques en particulier. Un de ces problèmes majeurs est celui de la pollution. De nombreuses recherches scientifiques, dans plusieurs domaines sont menées pour lutter contre ce fléau pour au moins diminuer ses effets sinon l’éradiquer.

Les scientifiques s’activent à déterminer les meilleures solutions à ce problème. Cependant ils ne sauraient réussir leur pari sans une coopération interdisciplinaire qui permet à la fois d’analyser des données observées par les écologistes, de considérer les expertises faites par des ingénieurs, de formuler des modèles mathématiques et établir des méthodes de résolution analytiques et numériques.

En général dans la nature il y a plusieurs types de pollution dont chacun nécessite un traitement particulier, ce qui rend la lutte très couteuse pour la sauvegarde de la planète contre ces divers fléaux.

La pollution de la source de vie, à savoir l’eau, est de loin la plus importante et peut avoir diverses origines, parmi lesquelles on peut citer :

- L’industrie, dont les sous-produits sont une source de pollution de l’eau parmi les plus importantes. Il s’agit essentiellement des produits chimiques de toute sorte, notamment ceux provenant des hydrocarbures et des phénomènes de dégazage.
- L’agriculture, dont l’utilisation excessive de produits chimiques conduit à la pollution soit des nappes phréatiques, soit des cours d’eau par ruissellement.
- L’automobile, dont les rejets d’hydrocarbures (carburant imbrulés, huile, etc...) finissent dans les cours d’eau s’ils ne sont pas captés et recyclés correctement.
- Les eaux usées si elles ne sont pas traitées correctement.
La modélisation de ces problèmes conduit généralement à des systèmes d’équations différentielles avec une donnée manquante qui est justement la pollution elle-même et qui demeure inconnue dont la mesure où elle provient de sources disparates et indéterminées.

On cherche alors à contrôler la concentration de la pollution dans l’eau, à moindres coûts. Cela conduit généralement à une famille de problèmes de contrôle optimal avec donnée manquante.

En fait, les problèmes à donnée manquante ne concernent pas uniquement la pollution. Celle-ci n’est qu’un cas parmi tant d’autres, comme on peut le voir à titre d’exemple dans le travail [19] qui traite un problème de dynamique de population où la donnée manquante considérée est celle des nouveau-nés.

Dans ce cadre, plusieurs méthodes ont été développées. Parmi celles-ci on peut citer plus particulièrement la méthode du "contrôle à moindres regrets" introduite par J. L. Lions [24]. Elle consiste à diminuer les effets néfastes de la pollution, à l’aide d’un contrôle, dans des situations données plutôt que de laisser ces dernières à l’abandon. Autrement dit : on adopte une démarche avec le moins de regrets possible ; d’où le nom de la méthode mentionnée ci-dessus.

Plusieurs auteurs ont depuis lors contribué à l’étude de ce genre de problèmes en utilisant la méthode en question (par exemple : [10] et [33]).

D’autre part les configurations géométriques des eaux polluées sont de plusieurs formes comme celles des lagunes, des estuaires et des étangs.

Dans ce travail, on considère une configuration géométrique qui est celle d’un étang avec un îlot à l’intérieur.

La diffusion de la pollution est modélisée par l’équation de la diffusion (l’équation de la chaleur).

Plus précisément, l’environnement pollué est représenté par un domaine Ω de \mathbb{R}^d ($d=2$ ou 3) borné, avec deux frontières Γ_0 et Γ_1 de classe C^1 avec $\partial\Omega := \Gamma_0 \cup \Gamma_1$ et vérifiant $\bar{\Gamma}_0 \cap \bar{\Gamma}_1 = \emptyset$.
La pollution est représentée par une fonction $g := g(t,x)$ où $t \in [0,T]$ et $x \in \Omega$. On
note par \(Q :=]0, T[\times \Omega, \Sigma_0 :=]0, T[\times \Gamma_0 et \Sigma_1 :=]0, T[\times \Gamma_1. On note également par \(A = \frac{\partial}{\partial t} - \Delta \) l’opérateur de diffusion et par \(A^* = -\frac{\partial}{\partial t} - \Delta \) son opérateur adjoint. Alors l’état \(z := z(t, x; g) \), qui représente la concentration du fluide pollué est donné par :

\[
A z = f \quad \text{dans } Q \tag{0.0.1}
\]

où \(f := f(t, x) \) est une fonction dans \(L^2(Q) \).

On a deux conditions aux limites. La première est celle qui représente le flux de la pollution dans l’eau, donné par la condition de Neumann suivante :

\[
\partial_\nu z = h \quad \text{sur } \Sigma_0, \tag{0.0.2}
\]

où \(h \) est donnée dans \(L^2(\Sigma_0) \).

La seconde condition aux limites explique que la pollution ne sort pas du domaine sur lequel on fait notre étude qui est aussi une condition de Neumann :

\[
\partial_\nu z = 0 \quad \text{sur } \Sigma_1. \tag{0.0.3}
\]

On considère que l’environnement est propre tout au début de son observation, ceci se traduit par la donnée initiale :

\[
z(0, x) = 0 \quad \text{dans } \Omega. \tag{0.0.4}
\]

On désigne par \(v \) la fonction contrôle destinée à contrôler l’état du système \(z := z(t, x; v, g) \), où \(v := v(t, x) \) (dépendance par rapport au temps et à l’espace), ou bien \(v := v(t) \) (dépendance uniquement par rapport au temps).

Avec ces notations, les problèmes suivants sont considérés :

1. Contrôle frontière :

\[
f := g, h := v(t, x). \tag{0.0.5}
\]

2. Contrôle à l’intérieur du domaine :

\[
f := v(t, x), h := g. \tag{0.0.6}
\]

3. Contrôle ponctuel :

\[
f := v(t)\delta_b, h := g, \text{ où } \delta_b \text{ est la masse de Dirac au point } b \in \Omega. \tag{0.0.7}
\]
Dans ces différents problèmes on examine l’existence et l’unicité des solutions, et notamment le contrôle optimal associé.

Ceci nous conduit dans chacun de ces cas à la caractérisation des contrôles par un système d’optimalité.

Pour l’existence et l’unicité des deux premiers cas ci-dessus on utilise la méthode de résolution standard des problèmes d’évolution. Par contre pour le dernier cas on utilise deux méthodes : celle de la transposition telle qu’elle est définie par Lions et Magenes, et celle de la régularisation de la masse de Dirac.

Pour le contrôle v, la méthode utilisée est celle du contrôle à moindres regrets qui est bien adaptée à l’étude des problèmes à donné manquante. Le contrôle est finalement caractérisé par l’exhibition d’un système d’optimalité.

En dernier lieu, on fait une étude numérique du problème de contrôle ponctuel, et à l’aide d’un schéma numérique approprié on établit des estimations d’erreur sur l’approximation de l’état du système $(z := z(t, x; v, g))$ et du contrôle v.

Organisation de la thèse

Le manuscrit est divisé en cinq chapitres :

Chapitre 1 : "Préliminaires"

Ce chapitre est consacré à des préliminaires et des rappels.

Chapitre 2 : "Introduction au contrôle à moindres regrets"

Le but de ce chapitre est d’expliquer en détails la méthode du contrôle à moindres regrets. Pour cela on considère à titre d’exemple le problème avec contrôle frontière $(0.0.5)$.

On rappelle d’abord que ce problème admet une solution grâce au théorème de Lions pour les problèmes d’évolution.

Ensuite on aborde la question du contrôle optimal avec donnée manquante en intro-
duisant une fonction coût à minimiser. Pour la résolution, on applique la méthode du contrôle à moindres regrets et on montre comment cette dernière permet de passer à l'étude d'un problème de contrôle optimal classique (i.e. la fonction coût ne dépend pas de la donnée manquante). On montre ensuite l'existence du contrôle par la technique des suites minimisantes et on donne une caractérisation.

En dernier lieu, on examine la résolution du problème (0.0.6) en suivant les mêmes étapes précédentes.

Chapitre 3 : "Contrôle ponctuel par la méthode de transposition"

Dans ce chapitre on suppose qu'on peut agir sur le système en un seul point du domaine Ω, c'est ce qu'on appelle : "le contrôle ponctuel". On est donc amené à résoudre le problème (0.0.7).

On montre d'abord que le problème (0.0.7) admet une solution unique $z \in L^2(Q)$ par la méthode de transposition. Cette méthode est basée sur la prise en compte du problème adjoint. En effet, l'analyse mathématique est difficile à cause de la singularité du problème direct (masse de Dirac), mais l'étude du problème adjoin offre plus de régularité.

Pour l'étude du contrôle optimal, on introduit une fonction coût à minimiser de telle sorte que l'état z soit proche de certaines mesures expérimentales données au cours du temps t et dans un espace de contrôle défini de manière adéquate.

Finalement, on donne la caractérisation de l'unique contrôle ponctuel à moindres regrets par un système d'optimalité singulier (S.O.S).

Chapitre 4 : "Contrôle ponctuel par la méthode de régularisation"

On considère dans ce chapitre le même problème introduit dans le chapitre 3 et on utilise une autre méthode pour montrer l'existence et l'unicité de la solution, il s'agit de:
"la méthode de régularisation".
Cette dernière est basée sur l’approximation de la masse de Dirac par une suite régularisante dans $L^2(\Omega)$. Ceci nous permet d’avoir un problème approché avec second membre régulier, qui admet une solution approchée régulière.

Ensuite, pour trouver le contrôle optimal ponctuel, on introduit une suite de fonctions coût approchées, que l’on minimise de telle sorte que l’état associé soit proche d’une donnée expérimentale durant tout le temps t. La résolution de ce problème nous permet d’obtenir une caractérisation du contrôle ponctuel approché par un système d’optimalité et par passage à la limite, on obtient une caractérisation du contrôle optimal exact, après avoir établi des estimations a priori.

Chapitre 5 : "Schémas numériques"

Pour discrétiser le problème de contrôle optimal avec donnée manquante, on suit la démarche de Gong et al. dans [15] en utilisant une discrétisation variationnelle avec des éléments finis affines par morceaux pour la discrétisation en espace de l’état du système et on utilise le schéma d’Euler rétrograde pour la discrétisation en temps.

On établit ensuite une estimation d’erreur entre les solutions discrétisées et les solutions théoriques du problème de contrôle ponctuel avec donnée manquante examiné aux chapitres 3 et 4.

Enfin, on achève ce travail par une conclusion, des perspectives et une bibliographie.
Chapitre 1

Préliminaires

Dans ce chapitre on rappelle brièvement quelques définitions et outils d’analyse dont on fera usage fréquemment dans les chapitres qui suivent.

1.1 Espaces de Sobolev

Soit Ω un ouvert de \mathbb{R}^d.

Définition 1.1.1. [4] Soit $p \in \mathbb{R}$ avec $1 \leq p < \infty$. L’espace de Sobolev $W^{1,p}$ est défini par

$$W^{1,p} = \{ u \in L^p(\Omega) \text{ tels que } \partial_x u \in L^p(\Omega), \forall i = 1, ..., d \}$$

où les dérivées sont considérées au sens des distributions.

On pose $H^1(\Omega) = W^{1,2}(\Omega)$.

Théorème 1.1. [4] L’espace de Sobolev $W^{1,p}(\Omega)$, muni de la norme

$$\|u\|_{W^{1,p}(\Omega)} = \left(\|u\|_{L^p(\Omega)}^p + \sum_{i=1}^d \|\partial_x u\|_{L^p(\Omega)}^p \right)$$

est un espace de Banach pour $1 \leq p \leq \infty$. Il est de plus séparable pour $1 \leq p < \infty$ et réflexif pour $1 < p < \infty$.

Lemme 1.2. [4] Soit $f \in L^1_{\text{loc}}(\Omega)$ tel que :

$$\int f u = 0 \quad \forall u \in \mathcal{C}_c(\Omega).$$

Alors $f = 0$ p.p sur Ω.
Inégalités de Sobolev

Pour $1 \leq p < \infty$, on note par p' le conjugué de Hölder donné par

$$\frac{1}{p} + \frac{1}{p'} = 1,$$

et par p^* le conjugué de Sobolev de p donné par

$$p^* = \frac{dp}{d-p},$$

d étant la dimension de l’espace.

Pour la suite on considère Ω un ouvert borné de \mathbb{R}^d de classe C^1 et de bord Γ.

Théorème 1.3 (Injections de Sobolev). [4]-[12] On a les injections continues suivantes :

Si $1 \leq p < d$, alors $W^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega)$, (inégalité de Gagliardo-Nirenberg).

Si $p = d$, alors $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$, $\forall q \in [p, +\infty[$.

Si $p > d$, alors $W^{1,p}(\Omega) \hookrightarrow L^{\infty}(\Omega)$.

(1.1.1)

De plus on a les injections compactes suivantes

Si $p < d$, alors $W^{1,p}(\Omega) \subset \subset L^q(\Omega)$, $\forall q \in [1, p^*[$ et $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{d}$.

Si $p = d$, alors $W^{1,p}(\Omega) \subset \subset L^q(\Omega)$, $\forall q \in [p, +\infty[$.

Si $p > d$, alors $W^{1,p}(\Omega) \subset \subset C(\Omega)$.

En particulier si $m - \frac{d}{p} > 0$ n’est pas entier, alors

$$W^{m,p}(\Omega) \subset \subset C^k(\Omega) \quad \text{où} \quad k = m - \frac{d}{p}.$$

Théorème 1.4 (Inégalité de Poincaré). [4]-[6] Pour $1 \leq p < \infty$, il existe une constante $C(\Omega, p)$ telle que

$$\|u\|_{L^p(\Omega)} \leq C(\Omega, p)\|\nabla u\|_{L^p(\Omega)}, \forall u \in W^{1,p}_0(\Omega).$$

Théorème 1.5 (Inégalité de Young). [12] Soit $1 < p, q < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$. Alors :

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}, \quad (a, b > 0).$$

(1.1.2)

On a aussi :

$$ab \leq \varepsilon a^p + C(\varepsilon)b^q, \quad (a, b > 0, \varepsilon > 0),$$

(1.1.3)

pour $C(\varepsilon) = (\varepsilon p)^{-q/p}q^{-1}$.

20
Théorème 1.6. [4]-[12]-[20] Soit $1 \leq p, q, r \leq \infty$ tels que $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$. Pour $f \in L^p(\Omega)$ et $g \in L^q(\Omega)$, on a $fg \in L^r(\Omega)$ et on a l’inégalité de Hölder :
\[\|fg\|_{L^r(\Omega)} \leq \|f\|_{L^p(\Omega)} \|g\|_{L^q(\Omega)}. \]

Si $p = q = 2$, on obtient l’inégalité de Cauchy-Schwarz.

On a aussi l’inégalité de Cauchy-Bunjakovski-Schwarz, donnée par :
\[\left| \int_{\Omega} \sum_i f_i g_i dx \right| \leq \left(\int_{\Omega} \sum_i f_i^2 dx \right)^{\frac{1}{2}} \cdot \left(\int_{\Omega} \sum_i g_i^2 dx \right)^{\frac{1}{2}}. \]

1.2 Théorème de traces

Théorème 1.7. [30] Soit Ω un ouvert borné de \mathbb{R}^d, de frontière Γ assez régulière (de classe $C^m(\Omega)$). Alors, l’application :
\[\gamma_j : D(\Omega) \rightarrow (D(\Gamma))^m \]
\[u \mapsto \gamma_j u = \frac{\partial^j u}{\partial \nu^j} \big|_{\Gamma} \]

(où $j = 0, 1, \ldots, m - 1$ et $\frac{\partial^j u}{\partial \nu^j}$ est la dérivée normale d’ordre j), se prolonge par continuité en une application linéaire et continue de :
\[H^m(\Omega) \rightarrow \prod_{j=0}^{m-1} H^{m-j-\frac{1}{2}}(\Gamma). \]

Cette application est surjective et il existe un relèvement linéaire continu
\[\bar{g} = \{g_j\} \rightarrow \mathcal{R}\bar{g} \text{ de } \prod_{j=0}^{m-1} H^{m-j-\frac{1}{2}}(\Gamma) \rightarrow H^m(\Omega), \]
tel que
\[\frac{\partial^j}{\partial \nu^j} \mathcal{R}\bar{g} = g_j, \quad 0 \leq j \leq m - 1. \tag{1.2.1} \]

Remarque 1.2.1. En particulier, pour $m = 1$, l’application :
\[\gamma_0 : H^1(\Omega) \rightarrow L^2(\Gamma) \]
\[y \mapsto \gamma_0 y = y \big|_{\Gamma} \]
est linéaire et continue, et on a :
\[\|\gamma_0 y\|_{L^2(\Gamma)} \leq C\|y\|_{H^1(\Omega)}. \]

Définition 1.2.1 (Formule de Green). Soit Ω un ouvert borné de \mathbb{R}^d de classe C^1, de frontière Γ, et $\nu(x)$ la normale extérieure. Si u et v sont des fonctions de $H^2(\Omega)$ elles vérifient :
\[\int_{\Omega} (\Delta u)v dx = -\int_{\Omega} \nabla u \nabla v + \int_{\Gamma} (\partial_{\nu} u)v d\nu. \tag{1.2.2} \]
1.3 Théorème de représentation de Riesz

Théorème 1.8. [4] Soit $1 < p < \infty$ et soit $\varphi \in (L^p)'$. Alors il existe $u \in L^{p'}$ unique tel que :

$$
(\varphi, f) = \int u f \quad \forall f \in L^p.
$$

(1.3.1)

De plus on a :

$$
\|u\|_{L^{p'}} = \|\varphi\|_{(L^p)'}.
$$

(1.3.2)

1.4 Problèmes de contrôle optimal en dimension infinie

Dans cette section on rappel certains résultats relatives aux problèmes de contrôle optimal des EDP, qu’on appelle aussi systèmes de contrôle optimal en dimension infinie. On va présenter les concepts de base ainsi que les conditions nécessaires d’optimalité données par un système d’équations aux dérivées partielles.

Soit Y et F deux espaces de Hilbert, et soit A un opérateur différentiel partiel linéaire continu de Y dans F. De plus on suppose que l’opérateur A est un isomorphisme de Y dans F.

Soit U un espace de Hilbert qui est l’espace de contrôles, et soit U_{ad} un sous espace convexe fermé non vide de U qui est l’espace des contrôles admissibles. Soit $B \in \mathcal{L}(U, F)$ et pour tout $v \in U$, on considère le problème aux limites donné sous la forme abstraite comme suit :

$$
Az(v) = f + Bv.
$$

(1.4.1)

Soit Z un espace de Hilbert qui est l’espace des observations, et soit $C \in \mathcal{L}(Y, Z)$ l’opérateur des observations. On considère la fonction coût :

$$
J(v) = \|Cz(v) - z_d\|^2_Z + \langle Nz, v\rangle_U,
$$

(1.4.2)

où z_d est donné dans Z, et $N \in \mathcal{L}(U, U)$ est un opérateur symétrique défini positif. Le problème de contrôle optimal consiste à déterminer u qui minimise J sur U_{ad}, i.e.,

$$
J(u) = \inf J(v), \quad \forall v \in U_{ad}
$$

(1.4.3)

Théorème 1.9. [23] Si J est différentiable, alors le contrôle optimal u est caractérisé par :

$$
\langle Cz(u) - z_d, C(z(v) - z(u)) \rangle_Z + \langle Nu, v - u\rangle_U \geq 0, \quad \forall v \in U_{ad}
$$

(1.4.4)
Conditions nécessaires d’optimalité

Soit $C^* \in \mathcal{L}(\mathcal{Z}; Y)$ l’opérateur adjoint de C et soit l’état adjoint $p = p(u)$, défini par

$$\mathcal{A}^* p = C^*(Cz(u) - z_d),$$

(1.4.5)

où \mathcal{A}^* est l’opérateur adjoint de \mathcal{A}.
Alors

$$\langle C^*(Cz(u) - z_d), z(v) - z(u) \rangle_{\mathcal{Z}} = \langle Cz(u) - z_d, C(z(v) - z(u)) \rangle_{\mathcal{Z}},$$

$$= \langle \mathcal{A}^* p, z(v) - z(u) \rangle_{\mathcal{Z}},$$

$$= \langle p, A z(v) - A z(u) \rangle_{\mathcal{Z}},$$

$$= \langle p, B(v - u) \rangle_{\mathcal{U}} = \langle B^* p, v - u \rangle_{\mathcal{U}}.$$ (1.4.6)

Donc l’inéquation (1.4.4) est équivalente à :

$$\langle B^* p + Nu, v - u \rangle_{\mathcal{U}} \geq 0, \forall v \in \mathcal{U}_{ad}. \quad (1.4.7)$$

Par conséquent, le contrôle u est donné par la résolution des conditions d’optimalité suivantes :

$$Az = f + Bu,$$

$$\mathcal{A}^* p = C^*(Cz - z_d),$$

$$u \in \mathcal{U}_{ad},$$

$$\langle B^* p + Nu, v - u \rangle_{\mathcal{U}} \geq 0, \forall v \in \mathcal{U}_{ad}. \quad (1.4.8)$$

Dans la suite, afin de compléter des résultats relatifs au contrôle optimal, on rappelle quelques résultats d’existence et d’unicité d’extrema de fonctionnelles linéaires.

Minimisation de fonctionnelles linéaires

Considérons un espace de Hilbert réel \mathcal{U} muni du produit scalaire $\langle ., . \rangle$, et la norme induite sur \mathcal{U} par le produit scalaire est notée par $\| u \| = \sqrt{\langle u, u \rangle}$.

On rappelle d’abord la définition suivante.

Définition 1.4.1. [4] On dit qu’une forme bilinéaire $\pi : \mathcal{U} \times \mathcal{U} \to \mathbb{R}$ est :
i) continue s’il existe une constante c tel que :

$$|\pi(u, v)| \leq c\|u\||v|, \forall u, v \in \mathcal{U},$$

(1.4.9)

ii) coercive s’il existe une constante α telle que :

$$\pi(v, v) \geq \alpha\|v\|^2, \forall v \in \mathcal{U}. \quad (1.4.10)$$
Considérons maintenant :
i) Une forme bilinéaire π sur \mathcal{U} continue, symétrique et coercive.
ii) Une forme linéaire continue sur \mathcal{U} : $u \mapsto G(u)$.
iii) Un sous-ensemble convexe fermé \mathcal{U}_{ad} de \mathcal{U},
et considérons le problème suivant :

$$\min J(u) = \pi(u, u) - 2G(u), \ u \in \mathcal{U}_{ad}. \quad (1.4.11)$$

Théorème 1.10. [22] Soit π une forme bilinéaire coercive symétrique sur \mathcal{U}. Alors il existe un élément $u \in \mathcal{U}_{ad}$ tel que :

$$J(u) = \inf J(v), \ \forall v \in \mathcal{U}_{ad}. \quad (1.4.12)$$
de plus,
i) la fonction $u \in \mathcal{U}_{ad}$ satisfait l'inégalité variationnelle

$$\pi(u, v - u) \geq G(v - u), \ \forall v \in \mathcal{U}_{ad}. \quad (1.4.13)$$

ii) Si $\mathcal{U}_{ad} = \mathcal{U}$, u satisfait l'équation d'Euler associé au problème (1.4.12)

$$\pi(u, v - u) = G(v - u), \ \forall v \in \mathcal{U}. \quad (1.4.14)$$

iii) Si \mathcal{U}_{ad} est un convexe fermé de sommet 0, alors u satisfait :

$$\pi(u, v) \geq G(v), \ \forall v \in \mathcal{U}_{ad} \ et \ \pi(u, u) = G(u). \quad (1.4.15)$$
Chapitre 2

Introduction au contrôle optimal à moindres regrets

Dans ce chapitre, on présente sur un exemple de problème de diffusion, la méthode de résolution adoptée dans la présente étude, c'est-à-dire la méthode du contrôle à moindres regrets.

Plus précisément, on examine le problème de contrôle frontière associé à l'état d'un système de diffusion avec conditions de Neumann et avec donnée manquante.

Bien que cet exemple est classique, il diffère de ceux traités auparavant comme dans [24] où la condition aux limites considérée est de type Dirichlet et dans [19] où la donnée manquante est celle de la condition initiale.

L'approche développée ci-après résume en grande partie la méthode utilisée dans l'étude principale de notre travail et qui sera présentée dans les chapitres suivants.

2.1 Position du problème

On considère un modèle linéaire qui décrit un phénomène de diffusion durant un temps t dans un milieu pollué Ω, qui est un ouvert borné de $\mathbb{R}^d (d = 2, 3)$ de frontière régulière $\partial \Omega = \Gamma_0 \cup \Gamma_1$ où $\Gamma_0 \cap \Gamma_1 = \emptyset$. Par exemple : $\Omega = B_R \setminus B_r$ avec $0 < r < R$, et où $B_s = B(0, s)$ est la boule de centre 0 et de rayon s, $s > 0$; ou encore un étang occupé au centre par un îlot.

On note par :

\[Q:=]0, T[\times \Omega , \quad & \Sigma_0 :=]0, T[\times \Gamma_0 , \quad & \Sigma_1 :=]0, T[\times \Gamma_1, \]

où $]0, T[$ est l'intervalle de temps. Egalement on note par $A = \partial / \partial t - \Delta$, l'opérateur de diffusion qu'on considère, et par $A^* = -\partial / \partial t - \Delta$ l'opérateur adjoint.

Alors $z := z(t, x)$ qui représente la concentration de l'eau polluée au temps t, localisée en
$x \in \Omega$, est décrite par l’équation aux dérivées partielles de type chaleur suivante :

$$\begin{cases}
Az = g & \text{dans } Q, \\
z(0, x) = 0 & \text{dans } \Omega, \\
\partial_{\nu}z = v & \text{sur } \Sigma_0, \\
\partial_{\nu}z = 0 & \text{sur } \Sigma_1,
\end{cases} \tag{2.1.1}$$

où $g := g(t, x)$ parcourt l’ensemble G et représente la pollution qui est inconnue (donnée manquante), avec

$$G \text{ un sous-espace vectoriel fermé de } L^2(Q) \text{ muni de la norme } L^2(Q). \tag{2.1.2}$$

La fonction $v := v(t, x)$ représente le contrôle, que l’on veut choisir de telle sorte que la fonction d’état z du problème (2.1.1) soit proche d’une mesure expérimentale z_d donnée par observation.

L’objectif consiste alors à minimiser par rapport à v, la fonction coût quadratique suivante :

$$J(v, g) := \|z(v, g) - z_d\|_{L^2(Q)}^2 + N\|v\|_{L^2(\Sigma_0)}^2, \tag{2.1.3}$$

avec $N > 0$ un nombre fixé,

$$z(v, g) := z(t, x; v, g), \tag{2.1.4}$$

et v choisi dans l’espace des contrôles admissibles suivant :

$$U_{ad} := L^2(\Sigma_0) := \mathcal{U}. \tag{2.1.5}$$

On commence tout d’abord par l’étude de l’existence et l’unicité du problème (2.1.1).

2.2 Existence d’une solution faible

On introduit la définition de solution faible suivante.

Définition 2.2.1. Soit $g \in L^2(Q)$ et $v \in L^2(\Sigma_0)$ données. Une solution faible z de (2.1.1) est une fonction $z \in L^2([0, T[, H^1(\Omega)) \cap C([0, T], L^2(\Omega))$ vérifiant :

$$\begin{cases}
\frac{d}{dt} \int_\Omega z\varphi \ dx + a(z, \varphi) = L(\varphi) & \text{p.p } t \in [0, T], \ \forall \varphi \in H^1(\Omega), \\
z(0, x) = 0,
\end{cases} \tag{2.2.1}$$

où,

$$a(z, \varphi) = \int_\Omega \nabla z \nabla \varphi \ dx \quad \text{et où} \quad L(\varphi) = \int_\Omega g \varphi \ dx + \int_{\Gamma_0} v \varphi \ d\Gamma_0.$$
Remarque 2.2.1. On vérifie qu’une solution classique de (2.1.1) est solution faible.

En effet, soit \(z \) une solution classique (i.e \(z \) ainsi que ses dérivées d’ordre un en \(t \) et d’ordre inférieur ou égal à deux en \(x \) sont dans \(L^2(Q) \)). On multiplie la première équation du problème (2.1.1) par une fonction \(\varphi \in D(\Omega) \) et on intègre par parties :

\[
\int_{\Omega} \left(\frac{\partial z}{\partial t} - \Delta z \right) \varphi \, dx = \int_{\Omega} g \varphi \, dx.
\]

D’où :

\[
\frac{d}{dt} \int_{\Omega} z \varphi \, dx + \int_{\Omega} \nabla z \nabla \varphi \, dx - \int_{\Gamma_0 \cup \Gamma_1} \partial_n z \varphi \, dS(\Gamma_0 \cup \Gamma_1) = \int_{\Omega} g \varphi \, dx,
\]

et donc :

\[
\frac{d}{dt} \int_{\Omega} z \varphi \, dx + \int_{\Omega} \nabla z \nabla \varphi \, dx = \int_{\Omega} g \varphi \, dx + \int_{\Gamma_0} v \varphi \, dS_0.
\]

Ce qui veut dire que \(z \) est solution de (2.2.1).

Théorème 2.1. Le problème (2.2.1) admet une solution faible unique.

Voici une brève démonstration de ce théorème (pour les détails voir Lions-Magenes [30] ou Brezis [4])

i) Continuité de la forme bilinéaire \(a \) :
À l’aide de l’inégalité de Cauchy-Schwarz on a :

\[
|a(z; \varphi)| \leq \|\nabla z\|_{L^2(\Omega)} \|\nabla \varphi\|_{L^2(\Omega)} \leq \|z\|_{H^1(\Omega)} \|\varphi\|_{H^1(\Omega)},
\]

ce qui donne la continuité de la forme bilinéaire \(a \) dans \(H^1(\Omega) \).

ii) Coercivité de la forme bilinéaire \(a \) :
\(z(t, x) \) étant nulle sur \(\{0\} \times \Omega \subset Q \), on peut établir (l’inégalité de Poincaré par rapport à \(x \) [6]) que : \(\|z\|_{L^2(\Omega)} \leq C(\Omega) \|\nabla z\|_{L^2(\Omega)} \) où \(C(\Omega) \) est la constante de Poincaré.
Ainsi, on a :

\[
\|\nabla z\|^2_{L^2(\Omega)} \leq \|z\|^2_{H^1(\Omega)} = \|z\|_{L^2(\Omega)}^2 + \|\nabla z\|^2_{L^2(\Omega)} \leq (1 + C(\Omega)) \|\nabla z\|^2_{L^2(\Omega)}
\]

Donc :

\[
a(z, z) = \|\nabla z\|^2_{L^2(\Omega)} \simeq \|z\|^2_{H^1(\Omega)} \quad \forall z \in H^1(\Omega).
\]

iii) Continuité de la forme linéaire \(L \) : On a,

\[
|L(\varphi)| \leq \int_{\Omega} |g \varphi| \, dx + \int_{\Gamma_0} |v \varphi| \, dS_0,
\]

\[
\leq \|g\|_{L^2(\Omega)} \|\varphi\|_{L^2(\Omega)} + \|v\|_{L^2(\Gamma_0)} \|\varphi\|_{L^2(\Gamma_0)},
\]

27
ainsi, on a d’après le théorème de trace (voir chapitre 1, théorème 1.7) qu’il existe $\beta = \beta(\Omega) > 0$ tel que :

$$\|\varphi\|_{L^2(\Gamma_0)} \leq \beta \|\varphi\|_{H^1(\Omega)}.$$

On obtient donc :

$$|L(t; \varphi)| \leq (\|g\|_{L^2(\Omega)} + \beta \|v\|_{L^2(\Gamma_0)}) \|\varphi\|_{H^1(\Omega)}.$$ \hspace{1cm} (2.2.4)

Alors $L(t; \varphi)$ est continue sur $H^1(\Omega)$.

Par suite, les hypothèses du théorème de Lions étant bien vérifiées, il existe une unique solution faible $z \in L^2([0,T[; H^1(\Omega)) \cap C([0,T]; L^2(\Omega))$ du système (2.1.1).

2.3 Contrôle optimal

On est concerné par le problème de contrôle optimal du système (2.1.1) muni de la fonction coût définie dans (2.1.3), c’est à dire résoudre le problème de minimisation suivant :

$$\inf_{v \in \mathcal{U}} J(v, g) \quad \forall g \in \mathbf{G},$$

où \mathbf{G} est défini par (2.1.2).

Puisque g parcourt le sous-espace vectoriel \mathbf{G} (infini), le problème de minimisation ci-dessus n’a pas de sens.

Pour cela, on est naturellement tenté de résoudre le problème inf.sup (ou minmax) suivant :

$$\inf_{v \in \mathcal{U}} \left(\sup_{g \in \mathbf{G}} J(v, g) \right).$$ \hspace{1cm} (2.3.1)

Autrement dit, on cherche à contrôler la pollution la plus catastrophique, c’est-à-dire la pire des situations. Mais ceci n’est pas réaliste car en général :

$$\sup_{g \in \mathbf{G}} J(v, g) = +\infty.$$

Il est alors nécessaire d’envisager une autre méthode, comme celle qui a été développée par J.-L. Lions : "la méthode du contrôle sans regret".

Pour cela, soit $z(0, g)$ l’état du système avec un contrôle nul, c’est-à-dire un état laissé à l’abandon.

On cherche alors v tel que :

$$J(v, g) \leq J(0, g), \quad \forall g \in \mathbf{G}.$$

Ce qui veut dire que l’on cherche à contrôler le système (2.1.1) d’une façon ou d’une autre, mieux que de le laisser à l’état d’abandon. C’est un procédé "sans regret".
On est amené alors à remplacer (2.3.1) par la condition suivante :

\[\inf_{v \in \mathcal{U}} \left(\sup_{g \in G} \left(J(v, g) - J(0, g) \right) \right). \]

Autrement dit, on cherche à trouver les contrôles, s’ils existent, qui peuvent améliorer la situation. On donne alors la définition suivante du contrôle sans regret.

Définition 2.3.1. On dit que \(u \in \mathcal{U} \) est un contrôle sans regret de (2.1.1)-(2.1.3) s’il est solution du problème suivant :

\[\inf_{v \in \mathcal{U}} \left(\sup_{g \in G} \left(J(v, g) - J(0, g) \right) \right). \]
(2.3.2)

Grâce à la linéarité, il est facile de voir que :

\[z(v, g) = z(v, 0) + z(0, g). \]
(2.3.3)

Remarque 2.3.1. \(z(0, 0) = 0 \) est la solution triviale grâce au théorème 3.1.

Lemme 2.2. On a :

\[J(v, g) - J(0, g) = J(v, 0) - J(0, 0) + 2 \langle z(v, 0), z(0, g) \rangle_{L^2(Q)}. \]
(2.3.4)

Preuve. On a :

\[J(v, g) - J(0, g) = \| z(v, g) - z_d \|^2_{L^2(Q)} + N \| v \|^2_{L^2(\Sigma_0)} - \| z(0, g) - z_d \|^2_{L^2(Q)}. \]

Grâce à (2.3.3), on obtient :

\[J(v, g) - J(0, g) = \| z(v, 0) + z(0, g) - z_d \|^2_{L^2(Q)} + N \| v \|^2_{L^2(\Sigma_0)} - \| z(0, g) - z_d \|^2_{L^2(Q)} \]
\[= \| z(v, 0) \|^2_{L^2(Q)} + \| z(0, g) - z_d \|^2_{L^2(Q)} + 2 \langle z(v, 0), z(0, g) - z_d \rangle_{L^2(Q)} \]
\[+ N \| v \|^2_{L^2(\Sigma_0)} - \| z(0, g) - z_d \|^2_{L^2(Q)} \]
\[= \| z(v, 0) - z_d \|^2_{L^2(Q)} - \| z_d \|^2_{L^2(Q)} + 2 \langle z(v, 0) - z_d, z_d \rangle_{L^2(Q)} + N \| v \|^2_{L^2(\Sigma_0)} \]
\[= J(v, 0) - J(0, 0) \]
\[+ 2 \langle z(v, 0) - z_d, z_d \rangle_{L^2(Q)} + 2 \langle z(v, 0), z(0, g) - z_d \rangle_{L^2(Q)}, \]

or, le dernier crochet s’écrit :

\[2J(0, 0) + 2 \langle z(v, 0) - z_d, z_d \rangle_{L^2(Q)} + 2 \langle z(v, 0), z(0, g) - z_d \rangle_{L^2(Q)} \]
\[= 2 \langle z_d, z_d \rangle_{L^2(Q)} + 2 \langle z(v, 0) - z_d, z_d \rangle_{L^2(Q)} + 2 \langle z(v, 0), z(0, g) - z_d \rangle_{L^2(Q)} \]
\[= 2 \langle z(v, 0), z_d \rangle_{L^2(Q)} + 2 \langle z(v, 0), z(0, g) - z_d \rangle_{L^2(Q)} \]
\[= 2 \langle z(v, 0), z(0, g) \rangle_{L^2(Q)}. \]
On obtient donc :

\[J(v, g) - J(0, g) = J(v, 0) - J(0, 0) + 2\langle z(v, 0), z(0, g)\rangle_{L^2(Q)}. \]

Ceci achève la preuve.

Remarque 2.3.2. \(J(0, 0) \) étant une constante fixée, on peut sans restreindre la généralité, supposer que \(J(0, 0) = 0 \). Ce qui donne la formule suivante :

\[J(v, g) - J(0, g) = J(v, 0) + 2\langle z(v, 0), z(0, g)\rangle_{L^2(Q)}. \] (2.3.5)

Cependant, dans le terme de droite de (2.3.5) la donnée manquante \(g \) apparaît implicitement dans l’état du système, i.e. : \(z(0, g) \).

Pour avoir une expression explicite, on introduit le :

Problème adjoint :

Soit \(\xi(v, 0) := \xi(t, x, v, 0) \) la solution du problème adjoint suivant :

\[
\begin{align*}
A^*\xi(v, 0) & = z(v, 0) \text{ dans } Q, \\
\xi(T, x) & = 0 \text{ dans } \Omega, \\
\partial_\nu \xi & = 0 \text{ sur } \Sigma_0 \cup \Sigma_1.
\end{align*}
\] (2.3.6)

avec \(\xi \in L^2(0, T; H^2(\Omega)) \cap H^1(0, T; L^2(\Omega)) \) (la preuve est similaire à celle du théorème 2.1, basée sur le théorème de Lions, voir [30]-[4]).

On a alors :

\[
\langle z(v, 0), z(0, g)\rangle_{L^2(Q)} = \int_Q A^*\xi(v, 0)z(0, g)dtdx
\]

\[
= \int_Q \xi(v, 0)Az(0, g)dtdx - \int_\Omega [z(t = T)\xi(t = T) - z(t = 0)\xi(t = 0)] dx
\]

\[
- \int_{\Sigma_0 \cup \Sigma_1} [\xi(v, 0)\partial_\nu z(0, g) - z(0, g)\partial_\nu \xi(v, 0)] d\nu
\]

\[
= \int_Q \xi(t, x, v, 0)g(t, x)dtdx
\]

\[
= \langle \xi(v, 0), g\rangle_{L^2(Q)}.
\]

Finalement, on obtient :

\[J(v, g) - J(v, 0) = J(v, 0) + 2\langle \xi(v, 0), g\rangle_{L^2(Q)}. \] (2.3.7)

En conséquence on a la :

30
Remarque 2.3.3. En utilisant (2.3.7) l’expression (2.3.2) qui définit le contrôle sans regret devient :

$$\inf_{v \in \mathcal{U}} \left(J(v, 0) + 2 \sup_{g \in \mathcal{G}} \langle \xi(v, 0), g \rangle_{L^2(Q)} \right).$$

(2.3.8)

On a alors les deux cas suivants :
- ou bien g est orthogonal à $\xi(v, 0)$ auquel cas on a :

$$\sup_{g \in \mathcal{G}} \langle \xi(v, 0), g \rangle_{L^2(Q)} = 0.$$

(2.3.9)

- ou bien g est quelconque dans \mathcal{G} et non orthogonal à $\xi(v, 0)$, dans ce cas on peut avoir :

$$\sup_{g \in \mathcal{G}} \langle \xi(v, 0), g \rangle_{L^2(Q)} = +\infty.$$

(2.3.10)

Par conséquent pour éviter d’être dans la situation (2.3.10) on peut envisager dans un premier temps de se limiter au cas (2.3.9), c’est-à-dire on pourrait considérer l’espace des contrôles admissibles suivant :

$$\mathcal{U} = \left\{ v \in \mathcal{U}, \text{ telle que } \xi(v, 0) \text{ est orthogonal à } \mathcal{G} \right\}.$$

Or, dans ce cas de figure le contrôle sans regret est difficile à caractériser. C’est alors que l’on définit le contrôle à moindres regrets de la manière suivante.

2.4 Définition et construction du contrôle à moindres regrets

Définition 2.4.1. Soit $\gamma > 0$ suffisamment petit. Le contrôle à moindres regrets $u_\gamma \in \mathcal{U}$ du problème (2.1.1)-(2.1.3) est défini par la solution de :

$$\inf_{v \in \mathcal{U}} \left(\sup_{g \in \mathcal{G}} \left(J(v, g) - J(0, g) - \gamma \| g \|_{L^2(Q)}^2 \right) \right).$$

(2.4.1)

Remarque 2.4.1. Avec le contrôle à moindres regrets nous admettons la possibilité de faire un choix de contrôles v légèrement moins catastrophique que l’état d’abandon ($v = 0$), avec une marge d’erreur ne dépassant pas $\gamma \| g \|_{L^2(Q)}^2$.

En utilisant (2.3.7) le problème (2.6.3) s’écrit comme suit :

$$\inf_{v \in \mathcal{U}} \left[J(v, 0) + \sup_{g \in \mathcal{G}} \left(2 \langle \xi(v, 0), g \rangle_{L^2(Q)} - \gamma \| g \|_{L^2(Q)}^2 \right) \right],$$

31
or, on a :

$$
\sup_{g \in G} \left(2\langle \xi(v, 0), g \rangle_{L^2(Q)} - \gamma \|g\|^2_{L^2(Q)} \right) = \gamma \sup_{g \in G} \left(- \|g - \frac{1}{\gamma} \xi(v, 0)\|^2_{L^2(Q)} + \frac{1}{\gamma} \|\xi(v, 0)\|^2_{L^2(Q)} \right) \\
= \frac{1}{\gamma} \|\xi(v, 0)\|^2_{L^2(Q)}.
$$

(2.4.2)

Donc finalement on est amené à résoudre la suite de problèmes de contrôle classiques suivants :

$$
\inf_{v \in U} \mathcal{J}^\gamma(v), \quad \gamma > 0
$$

(2.4.3)

où,

$$
\mathcal{J}^\gamma(v) = J(v, 0) + \frac{1}{\gamma} \|\xi(v, 0)\|^2_{L^2(Q)}.
$$

(2.4.4)

2.5 Existence et caractérisation du contrôle à moindres regrets

Proposition 2.3. Pour $\gamma > 0$ fixé, il existe un unique contrôle à moindres regrets noté $u_\gamma \in U := L^2(\Sigma_0)$ solution du problème de minimisation (2.4.3).

Preuve. On a $\mathcal{J}^\gamma(v) \geq 0$, $\forall v \in U$. Donc $\inf_{v \in U} \mathcal{J}^\gamma(v)$ existe.

Soit (v^n_γ) une suite minimisante telle que : $d_\gamma = \lim_{n \to +\infty} \mathcal{J}^\gamma(v^n_\gamma)$.

On a, à partir d’un certain rang entier n_0, pour tout $n \geq n_0$:

$$
0 \leq \mathcal{J}^\gamma(v^n_\gamma) = J(v^n_\gamma, 0) + \frac{1}{\gamma} \|\xi(v^n_\gamma, 0)\|^2_{L^2(Q)} \leq d_\gamma + 1.
$$

En remplaçant $J(v^n_\gamma, 0)$ par sa valeur (2.1.3) on obtient :

$$
\|z(v^n_\gamma, 0) - z_d\|^2_{L^2(Q)} + N\|v^n_\gamma\|^2_{L^2(\Sigma_0)} + \frac{1}{\gamma} \|\xi(v^n_\gamma, 0)\|^2_{L^2(Q)} \leq d_\gamma + 1,
$$

On en déduit les estimations suivantes :

$$
\begin{cases}
\|z(v^n_\gamma, 0)\|_{L^2(Q)} & \leq c_\gamma, \\
\|v^n_\gamma\|_{L^2(\Sigma_0)} & \leq c_\gamma, \\
\frac{1}{\sqrt{\gamma}} \|\xi(v^n_\gamma, 0)\|_{L^2(Q)} & \leq c_\gamma,
\end{cases}
$$

(2.5.1)
où \(c_n = \max \left\{ \sqrt{d_n + 1}, \sqrt{\frac{d_n + 1}{N}}, \sqrt{2(d_n + 1 - \|z_d\|_{L^2(Q)}} \right\}, \) qui est une constante positive indépendante de \(n. \)

Par suite, à une sous-suite près notée encore \(v^n, \) on a les convergences faibles suivantes :

\[
v^n \rightharpoonup u_\gamma \text{ dans } L^2(\Sigma_0), \]
\[
z(v^n, 0) \rightharpoonup \eta \text{ dans } L^2(Q), \tag{2.5.2}
\]
\[
\xi(v^n, 0) \rightharpoonup \mu \text{ dans } L^2(Q).
\]

D’autre part, en multipliant la première équation du problème (2.1.1) par \(\varphi \in \mathcal{D}(Q) \) telle que \(\partial\nu \varphi = 0 \) sur \(\Sigma_0 \cup \Sigma_1, \) et en intégrant par parties sur \(Q, \) on obtient :

\[
0 = \int_Q A z(v^n, 0) \varphi \, dt \, dx = \int_Q z(v^n, 0) A^* \varphi \, dt \, dx - \int_{\Sigma_0} \varphi v^n, \tag{2.5.3}
\]

Grâce à (2.5.2) et par passage à la limite sur \(n \) dans (2.5.3), on a :

\[
\int_Q \eta A^* \varphi \, dt \, dx = \int_{\Sigma_0} \varphi u_\gamma. \tag{2.5.4}
\]

En particulier :

\[
\langle \eta, A^* \varphi \rangle = \langle A\eta, \varphi \rangle = 0 \quad \forall \varphi \in \mathcal{D}(Q), \tag{2.5.5}
\]

où \(\langle ., . \rangle \) désigne ici le crochet de dualité entre \(\mathcal{D}'(Q) \) et \(\mathcal{D}(Q). \)

Ce qui donne :

\[
A\eta = 0 \quad \text{dans } \mathcal{D}'(Q). \tag{2.5.6}
\]

D’autre part \(z := z(u_\gamma, 0) \) étant une solution faible de (2.1.1) et régulière (voir théorème 4.3 de [30], page 30), vérifie :

\[
A z(u_\gamma, 0) = 0 \quad \text{dans } \mathcal{D}'(Q), \tag{2.5.7}
\]

on peut alors montrer que

\[
\eta = z(u_\gamma, 0) \quad \text{dans } \mathcal{D}'(Q) \text{ et dans } L^2(Q).
\]

En effet,

\[
\langle A z(u_\gamma, 0), \varphi \rangle = \langle z(u_\gamma, 0), A^* \varphi \rangle - \int_{\Sigma_0} u_\gamma \varphi, \quad \forall \varphi \in \mathcal{D}(Q) \text{ tel que } \partial\nu \varphi = 0 \text{ sur } \Sigma_0 \cup \Sigma_1, \tag{2.5.8}
\]

par suite :

\[
\langle A z(u_\gamma, 0), \varphi \rangle = \langle z(u_\gamma, 0), A^* \varphi \rangle \forall \varphi \in \mathcal{D}(Q). \tag{2.5.9}
\]

On déduit de (2.5.5) et (2.5.9) :

\[
\langle z(u_\gamma, 0) - \eta, A^* \varphi \rangle = 0 \quad \forall \varphi \in \mathcal{D}(Q). \tag{2.5.10}
\]
De plus, pour tout \(\psi \in \mathcal{D}(Q) \), le problème :

\[\mathcal{A}^* \varphi = \psi \quad (2.5.11) \]

admet une solution unique \(\varphi \) dans \(\mathcal{D}(Q) \).

Alors on déduit de (2.5.10), (2.5.11) et en vertu d’un résultat classique d’analyse fonctionnelle (voir [4], lemme IV.2, page 61) que :

\[z(u_\gamma, 0) = \eta \quad \text{p.p. dans} \; Q. \quad (2.5.12) \]

Or \(z(u_\gamma, 0) \), la solution du problème (2.1.1), est suffisamment régulière (voir [30], théorème 4.3, page 30).

Par suite, grâce à (2.5.6), (2.5.12) et par intégration par parties on a pour tout \(\varphi \in \mathcal{D}(\overline{Q}) \) tel que \(\partial_\nu \varphi = 0 \) sur \(\Sigma_1 \) :

\[0 = \int_Q \mathcal{A} \eta = \int_Q \eta \mathcal{A}^* \varphi - \int_{\Sigma_0 \cup \Sigma_1} \partial_\nu \eta \varphi = \int_Q z(u_\gamma, 0) \mathcal{A}^* \varphi - \int_{\Sigma_0 \cup \Sigma_1} \partial_\nu \eta \varphi. \quad (2.5.13) \]

Par comparaison de (2.5.4) et (2.5.13) on a :

\[\int_Q z(u_\gamma, 0) \mathcal{A}^* \eta = \int_{\Sigma_0 \cup \Sigma_1} \partial_\nu \eta \varphi \]

\[= \int_{\Sigma_0} u_\gamma \varphi, \quad \text{(grâce à (2.5.8))} \]

ce qui donne :

\[\int_{\Sigma_0} \partial_\nu \eta \varphi + \int_{\Sigma_1} \partial_\nu \eta \varphi = \int_{\Sigma_0} u_\gamma \varphi. \quad (2.5.15) \]

- Premier cas : pour \(\varphi = 0 \) sur un voisinage de \(\Sigma_0 \), on a \(\partial_\nu \eta = 0 \) sur \(\Sigma_1 \).

- Deuxième cas : pour \(\varphi = 0 \) sur un voisinage de \(\Sigma_1 \), on déduit \(\partial_\nu \eta = u_\gamma \) sur \(\Sigma_0 \).

Par suite, grâce à l’unicité de la solution du problème (2.1.1) on a :

\[\eta = \eta(u_\gamma, 0) := z(u_\gamma, 0). \quad (2.5.16) \]

D’où,

\[z(v_\gamma^n, 0) \rightharpoonup z(u_\gamma, 0) \quad \text{dans} \; L^2(Q). \quad (2.5.17) \]

De même, en multipliant la première équation du problème adjoint (2.3.6) par \(\varphi \in \mathcal{D}(Q) \), et en intégrant par parties sur \(Q \), on obtient :

\[\int_Q \xi(v_\gamma^n, 0) \mathcal{A} \varphi \; dt dx = \int_Q z(v_\gamma^n, 0) \varphi \; dt dx. \quad (2.5.18) \]
Grâce à (2.5.2), (2.5.17) et par passage à la limite sur n dans (2.5.18), on a :

$$\int_Q \mu A \varphi \ dtdx = \int_Q z(u_\gamma, 0) \varphi \ dtdx. \quad (2.5.19)$$

En particulier,

$$\langle \mu, A \varphi \rangle = \langle A^* \mu, \varphi \rangle = \langle z(u_\gamma, 0), \varphi \rangle \ \forall \varphi \in \mathcal{D}(Q),$$

où $\langle ., . \rangle$ désigne ici le crochet de dualité entre $\mathcal{D}(Q)$ et $\mathcal{D}'(Q)$.

D'où,

$$A^* \mu = z(u_\gamma, 0) \ \text{dans} \ \mathcal{D}'(Q). \quad (2.5.20)$$

D'autre part $\xi := \xi(u_\gamma, 0)$ étant une solution faible de (2.3.6) et régulière (voir théorème 4.3 de Lions et Magenes [30], page 30), vérifie :

$$A^* \xi(u_\gamma, 0) = z(u_\gamma, 0) \ \text{dans} \ \mathcal{D}'(Q). \quad (2.5.21)$$

Grâce à (2.5.20), (2.5.21) et en procédant de la même manière que la preuve de (2.5.16), on obtient :

$$\mu = \mu(u_\gamma, 0) := \xi(u_\gamma, 0).$$

D'où,

$$\xi(v_\gamma^n, 0) \to \xi(u_\gamma, 0) \ \text{dans} \ \text{L}^2(Q). \quad (2.5.22)$$

On a donc :

$$\lim_{n \to +\infty} \mathcal{J}(v_\gamma^n) = \mathcal{J}(u_\gamma) = J(u_\gamma, 0) + \frac{1}{\gamma} \| \xi(u_\gamma, 0) \|_{L^2(Q)}^2 \leq \inf_{n \in \mathbb{N}} \left[J(v_\gamma^n, 0) + \frac{1}{\gamma} \| \xi(v_\gamma^n, 0) \|_{L^2(Q)}^2 \right] = d_\gamma. \quad \text{(2.5.23)}$$

Alors $\mathcal{J}(u_\gamma) = \inf_{n \in \mathbb{N}} \mathcal{J}(v_\gamma^n)$.

On conclut alors que u_γ est une solution du problème de minimisation $\inf_{n \in \mathbb{N}} \mathcal{J}(v_\gamma^n)$. De plus grâce à la stricte convexité de \mathcal{J} cette solution est unique.

2.5.1 Caractérisation du contrôle à moindres regrets

On donne maintenant la caractérisation suivante du contrôle à moindres regrets du problème (2.1.1)-(2.1.3).

Proposition 2.4. Le contrôle à moindres regrets $u_\gamma \in \text{L}^2(\Sigma_0)$ défini dans la proposition 2.3 est caractérisé par le quadruplet $(z_\gamma, \xi_\gamma, \sigma_\gamma, \pi_\gamma) \in \left(\text{L}^2(Q) \right)^4$, solution unique du système
d’optimalité suivant :

\[
\begin{align*}
A\gamma &= 0 \\
A^*\xi \gamma &= z \gamma \\
A^*\pi \gamma &= z \gamma - z_d + \sigma \gamma \\
\text{dans } Q, \\
\sigma \gamma(0) &= 0 \\
\xi \gamma(T) &= 0 \\
\text{dans } \Omega, \\
\partial_{\nu}z \gamma &= u \gamma \\
\partial_{\nu}\xi \gamma &= 0 \\
\text{sur } \Sigma_0, \\
\partial_{\nu}\sigma \gamma &= 0 \\
\partial_{\nu}\pi \gamma &= 0 \\
\text{sur } \Sigma_1,
\end{align*}
\]

(2.5.23)

avec l’équation de l’état adjoint :

\[
\pi \gamma + Nu \gamma = 0 \text{ sur } \Sigma_0,
\]

(2.5.24)

où \(z \gamma := z(t, x; u \gamma, 0); \xi \gamma := \xi(t, x; u \gamma, 0) \); et où \(\sigma \gamma \) et \(\pi \gamma \) sont respectivement des fonctions \(\sigma \) et \(\pi \) telles que : \(\sigma \gamma := \sigma(t, x; u \gamma, 0) \); \(\pi \gamma := \pi(t, x; u \gamma, 0) \).

Preuve. On pose \(w = v - u \gamma, v \in L^2(\Sigma_0) \) arbitraire.

La condition nécessaire d’Euler-Lagrange satisfaite par \(u \gamma \) :

\[
\lim_{\lambda \to 0} \left(\frac{J^{\gamma}(u \gamma + \lambda w) - J^{\gamma}(u \gamma)}{\lambda} \right) \geq 0 \quad \forall w \in U,
\]

donne :

\[
\langle z \gamma - z_d, z(w, 0) \rangle_{L^2(Q)} + N\langle u \gamma, w \rangle_{L^2(\Sigma_0)} + \frac{1}{\gamma} \langle \xi \gamma, \xi(w, 0) \rangle_{L^2(Q)} \geq 0, \quad \forall w \in U, \tag{2.5.25}
\]

où \(z \gamma = z(t, x; u \gamma, 0) \), \(\xi \gamma = \xi(t, x; u \gamma, 0) \).

Avant de continuer la démonstration de la proposition 2.4, on montre d’abord comment on a obtenu l’équation (2.5.25). On a :

\[
J^{\gamma}(v) = J(v, 0) + \frac{1}{\gamma} \|\xi(v, 0)\|_{L^2(Q)}^2,
\]

et

\[
J(v, g) = \|z(v, g) - z_d\|_{L^2(Q)}^2 + N\|v\|_{L^2(\Sigma_0)}^2.
\]
Donc :

\[J'(u_\gamma + \lambda w) - J'(u_\gamma) = J(u_\gamma + \lambda w, 0) + \frac{1}{\gamma} \| \xi(u_\gamma + \lambda w, 0) \|^2_{L^2(Q)} \]

\[- J(u_\gamma, 0) - \frac{1}{\gamma} \| \xi_\gamma \|^2_{L^2(Q)} \]

\[= \| z(u_\gamma + \lambda w, 0) - z_d \|^2_{L^2(Q)} + N \| u_\gamma + \lambda w \|^2_{L^2(\Sigma_0)} \]

\[- \| z_\gamma - z_d \|^2_{L^2(Q)} - N \| u_\gamma \|^2_{L^2(\Sigma_0)} \]

\[+ \frac{1}{\gamma} \left[\| \xi(u_\gamma + \lambda w, 0) \|^2_{L^2(Q)} - \| \xi(u_\gamma, 0) \|^2_{L^2(Q)} \right] \]

\[= \| z_\gamma + \lambda z(w, 0) - z_d \|^2_{L^2(Q)} - \| z_\gamma - z_d \|^2_{L^2(Q)} \]

\[+ N \left[\| u_\gamma + \lambda w \|^2_{L^2(\Sigma_0)} - \| u_\gamma \|^2_{L^2(\Sigma_0)} \right] \]

\[+ \frac{1}{\gamma} \left[\| \xi_\gamma + \lambda \xi(w, 0) \|^2_{L^2(Q)} - \| \xi_\gamma \|^2_{L^2(Q)} \right] \]

\[= \lambda^2 \left[\| z(w, 0) \|^2_{L^2(Q)} + N \| w \|^2_{L^2(\Sigma_0)} + \frac{1}{\gamma} \| \xi(w, 0) \|^2_{L^2(Q)} \right] \]

\[+ 2\lambda \left[\langle z_\gamma - z_d, z(w, 0) \rangle_{L^2(Q)} + N \langle u_\gamma, w \rangle_{L^2(\Sigma_0)} \right] \]

\[+ \frac{1}{\gamma} \langle \xi_\gamma, \xi(w, 0) \rangle_{L^2(Q)}. \]

Donc :

\[\lim_{\lambda \to 0} \left(\frac{J'(u_\gamma + \lambda w) - J'(u_\gamma)}{\lambda} \right) = 2 \left[\langle z_\gamma - z_d, z(w, 0) \rangle_{L^2(Q)} + N \langle u_\gamma, w \rangle_{L^2(\Sigma_0)} \right] \]

\[+ \frac{1}{\gamma} \langle \xi_\gamma, \xi(w, 0) \rangle_{L^2(Q)} \geq 0. \]

Revenons maintenant à la démonstration de la proposition 2.4.
Soit \(\sigma_\gamma := \sigma(t, x; u_\gamma, 0) \) la solution du problème suivant :

\[
\begin{align*}
\mathcal{A} \sigma_\gamma &= \frac{1}{\gamma} \xi_\gamma \quad \text{dans } Q, \\
\sigma_\gamma(0, x) &= 0 \quad \text{dans } \Omega, \\
\partial_\nu \sigma_\gamma &= 0 \quad \text{sur } \Sigma_0 \cup \Sigma_1.
\end{align*}
\]

On multiplie la première équation du problème (2.3.6) par \(\sigma_\gamma \) et on intègre par parties :

\[\int_Q \sigma_\gamma \mathcal{A}^* \xi(w, 0) \, dt \, dx = \int_Q \sigma_\gamma z(w, 0) \, dt \, dx. \]

Alors,

\[\int_Q \mathcal{A} \sigma_\gamma \xi(w, 0) \, dt \, dx - \int_{\Omega} [\xi(t = T) \sigma_\gamma(t = T) - \xi(t = 0) \sigma_\gamma(t = 0)] \, dx \]

\[- \int_{\Sigma_0 \cup \Sigma_1} [\sigma_\gamma \partial_\nu \xi - \xi \partial_\nu \sigma_\gamma] \, d\nu = \int_Q \sigma_\gamma z(w, 0) \, dt \, dx. \]
Puis, compte tenu des conditions aux limites, on obtient :

\[\int_Q \mathcal{A} \sigma_\gamma \xi(w,0) dtdx = \int_Q \sigma_\gamma z(w,0) dtdx, \]

Par suite, on a :

\[\left\langle \frac{1}{\gamma} \xi_\gamma, \xi(w,0) \right\rangle_{L^2(Q)} = \left\langle \sigma_\gamma, z(w,0) \right\rangle_{L^2(Q)}. \]

Donc, l’équation (2.5.25) devient :

\[\left\langle z_\gamma - z_d + \sigma_\gamma, z(w,0) \right\rangle_{L^2(Q)} \geq 0. \] (2.5.26)

Finalement, pour trouver l’état adjoint, on introduit \(\pi_\gamma \) := \(\pi(t,x;u_\gamma,0) \) la solution du problème adjoint suivant :

\[
\begin{aligned}
A^* \pi_\gamma &= z_\gamma - z_d + \sigma_\gamma \quad \text{dans } Q, \\
\pi_\gamma(T,x) &= 0 \quad \text{dans } \Omega, \\
\partial_\nu \pi_\gamma &= 0 \quad \text{sur } \Sigma_0 \cup \Sigma_1.
\end{aligned}
\]

On multiplie la première équation du problème (2.1.1) par \(\pi_\gamma \) et on intègre par parties, ce qui donne :

\[
\int_Q \left(z(w,0) A^* \pi_\gamma \right) dtdx - \int_\Omega \left[z(T) \pi_\gamma(T) - z(0) \pi_\gamma(0) \right] dx - \int_{\Sigma_0 \cup \Sigma_1} \left[z \partial_\nu \pi_\gamma - \partial_\nu z \pi_\gamma \right] d\nu = 0,
\]

e et donc,

\[\left\langle A^* \pi_\gamma, z(w,0) \right\rangle_{L^2(Q)} = \left\langle \pi_\gamma, w \right\rangle_{L^2(\Sigma_0)}. \]

Alors,

\[\left\langle z_\gamma - z_d + \sigma_\gamma, z(w,0) \right\rangle_{L^2(Q)} = \left\langle \pi_\gamma, w \right\rangle_{L^2(\Sigma_0)}. \] (2.5.27)

Donc, d’après (2.5.27), l’équation (2.5.26) devient :

\[\left\langle \pi_\gamma + Nu_\gamma, w \right\rangle_{L^2(\Sigma_0)} \geq 0, \quad \forall w \in \mathcal{U} = L^2(\Sigma_0), \]

et comme \(\mathcal{U} \) est un espace de Hilbert, on a aussi :

\[\left\langle \pi_\gamma + Nu_\gamma, w \right\rangle_{L^2(\Sigma_0)} \leq 0, \quad \forall w \in \mathcal{U} = L^2(\Sigma_0). \]

Donc on a immédiatement l’égalité variationnelle : \(\pi_\gamma + Nu_\gamma = 0 \) sur \(\Sigma_0 \). Ceci achève la preuve.
2.6 Cas où les données aux limites sont manquantes

On considère ici un problème de diffusion avec contrôle distribué à l’intérieur du domaine \(\Omega\) et une donnée aux limites manquante. Ce problème se modélise par l’EDP de type chaleur suivante :

\[
\begin{aligned}
\mathcal{A}z &= v \text{ dans } Q, \\
z(0, x) &= 0 \text{ dans } \Omega, \\
\partial_\nu z &= g \text{ sur } \Sigma_0, \\
\partial_\nu z &= 0 \text{ sur } \Sigma_1,
\end{aligned}
\]
(2.6.1)

où \(v := v(t, x)\) est la fonction contrôle qui est dans \(L^2(Q)\), et où \(g := g(t, x)\) représente la donnée manquante qui est dans \(G\) tel que :

\(G\) est un sous espace vectoriel fermé de \(L^2(\Sigma_0)\).

On veut trouver le contrôle optimal \(u\) associé au problème (2.6.1), i.e. minimiser la fonction coût suivante :

\[
\inf_{v \in \mathcal{U}_1} J(v, g) = \inf_{v \in \mathcal{U}_1} \left(\|z(v, g) - z_0\|^2_{L^2(Q)} + N \|v\|^2_{\mathcal{U}_1} \right) \quad \forall g \in G,
\]
(2.6.2)

avec \(\mathcal{U}_1 := L^2(Q)\) est l’espace des contrôles admissibles.

Le problème (2.6.1)-(2.6.2) se résout par la méthode du contrôle à moindres regrets vue précédemment car il contient une donnée manquante.

On rappelle d’abord la définition du contrôle à moindres regrets associée au problème (2.6.1)-(2.6.2).

Définition 2.6.1. Soit \(\gamma > 0\) suffisamment petit. Le contrôle à moindres regrets \(u_\gamma \in \mathcal{U}_1\) du problème (2.6.1)-(2.6.2) est défini par la solution de :

\[
\inf_{v \in \mathcal{U}_1} \left(\sup_{g \in G} \left(J(v, g) - J(0, g) - \gamma \|g\|^2_{L^2(\Sigma_0)} \right) \right).
\]
(2.6.3)

On introduit maintenant \(\xi := \xi(t, x, v, 0)\), où \(\xi\) est la solution du problème adjoint suivant :

\[
\begin{aligned}
\mathcal{A}^\ast \xi(v, 0) &= z(v, 0) \text{ dans } Q, \\
\xi(T, x) &= 0 \text{ dans } \Omega, \\
\partial_\nu \xi &= 0 \text{ sur } \Sigma_0,
\end{aligned}
\]
(2.6.4)

alors, en appliquant la définition 2.6.1, le problème (2.6.2) s’écrit comme suit :

\[
\inf_{v \in \mathcal{U}_1} \left[J(v, 0) + \sup_{g \in G} \left(2 \langle \xi(v, 0), g \rangle_{L^2(\Sigma_0)} - \gamma \|g\|^2_{L^2(\Sigma_0)} \right) \right].
\]
Or,
\[
\sup_{g \in G} \left(2 \langle \xi(v,0), g \rangle_{L^2(\Sigma_0)} - \gamma \|g\|_{L^2(\Sigma_0)}^2 \right) = \frac{1}{\gamma} \|\xi(v,0)\|_{L^2(\Sigma_0)}^2.
\]
On obtient donc le problème classique de contrôle optimal suivant :
\[
\inf_{v \in U_1} \mathcal{J}^\gamma(v) \quad \text{où} \quad \mathcal{J}^\gamma(v) = J(v,0) + \frac{1}{\gamma} \|\xi(v,0)\|_{L^2(\Sigma_0)}^2.
\]

Proposition 2.5. Le contrôle à moindres regrets \(u_\gamma \in U_1 \) associé au problème (2.6.1)-(2.6.2) est caractérisé par le quadruplet \((z_\gamma, \xi_\gamma, \sigma_\gamma, \pi_\gamma) \in (L^2(Q))^4\), solution unique du système d’optimalité suivant :

\[
\begin{cases}
\mathcal{A}z_\gamma = u_\gamma & \mathcal{A}^*\xi_\gamma = z_\gamma \\
\mathcal{A}\sigma_\gamma = 0 & \mathcal{A}^*\pi_\gamma = z_\gamma - z_d + \sigma_\gamma \quad \text{dans} \quad Q, \\
z_\gamma(0) = 0 & \xi_\gamma(T) = 0 \\
\sigma_\gamma(0) = 0 & \pi_\gamma(T) = 0 \quad \text{dans} \quad \Omega, \\
\partial_\nu z_\gamma = 0 & \partial_\nu \xi_\gamma = 0 \\
\partial_\nu \sigma_\gamma = \frac{1}{\gamma} \xi_\gamma & \partial_\nu \pi_\gamma = 0 \quad \text{sur} \quad \Sigma_0, \\
\partial_\nu z_\gamma = 0 & \partial_\nu \xi_\gamma = 0 \\
\partial_\nu \sigma_\gamma = 0 & \partial_\nu \pi_\gamma = 0 \quad \text{sur} \quad \Sigma_1,
\end{cases}
\]

avec l’égalité d’état adjoint :

\[
\pi_\gamma + Nu_\gamma = 0 \quad \text{sur} \quad Q,
\]

où \(z_\gamma := z(t, x; u_\gamma, 0); \xi_\gamma := \xi(t, x; u_\gamma, 0) \); et où \(\sigma_\gamma \) et \(\pi_\gamma \) sont respectivement des fonctions \(\sigma \) et \(\pi \) telles que : \(\sigma_\gamma := \sigma(t, x; u_\gamma, 0); \pi_\gamma := \pi(t, x; u_\gamma, 0) \).
Chapitre 3

Contrôle ponctuel par la méthode de transposition

3.1 Position du problème

On étudie ici un problème de contrôle optimal avec une fonction contrôle qui dépend uniquement du temps, et on se concentre sur un point b du domaine Ω, c'est le contrôle ponctuel.

Ce dernier n'a jamais été appliqué à des problèmes avec données manquantes.

Considérons un point b dans Ω (Ω ouvert borné de \mathbb{R}^d, $d = 2, 3$, de classe C^∞) et $v := v(t)$ la fonction contrôle définie sur $[0, T]$. Egalement on note par $A = \partial_t - \Delta$ l'opérateur de diffusion, et par $A^* = -\partial_t - \Delta$ son adjoint. L'état $z := z(t, x, v, g)$ est une solution du système suivant :

$$
\begin{align*}
\mathcal{A}z &= v(t)\delta(x - b) \quad \text{dans } Q, \\
z(0, x) &= 0 \quad \text{dans } \Omega, \\
\partial_\nu z &= g \quad \text{sur } \Sigma_0, \\
\partial_\nu z &= 0 \quad \text{sur } \Sigma_1.
\end{align*}
$$

où $\delta(x - b)$ est la masse de Dirac de support b, c'est-à-dire :

$$(\delta(x - b), \varphi)_{\mathcal{D}', \mathcal{D}} = \varphi(b) \quad \forall \varphi \in \mathcal{D}(\Omega).$$
3.2 Existence d’une solution par la méthode de transposition

On montre l’existence et l’unicité de la solution du problème (3.1.1), en utilisant la méthode de transposition [30]. Cette dernière repose sur le passage au problème adjoint et sur l’utilisation du théorème de Riesz [4].

D’abord on donne la définition de la solution faible du problème (3.1.1) par transposition.

Définition 3.2.1. Soit \(v \in L^2(0,T) \) et \(g \in L^2(\Sigma_0) \). Une solution faible \(z \) du problème (3.1.1), définie par la méthode de transposition, est une fonction \(z \in L^2(Q) \) vérifiant :

\[
\int_Q z(t,x)\psi(t,x)dtdx = \int_0^T v(t)\varphi(t,b)dt + \int_{\Sigma_0} \varphi(t,\sigma)g(t,\sigma)d\sigma, \quad \forall \psi \in L^2(Q),
\]

(3.2.1)

où \(\varphi := \varphi(t,x) \) est la solution du problème rétrograde suivant :

\[
\begin{cases}
A^*\varphi = \psi & \text{dans } Q, \\
\varphi(T,x) = 0 & \text{dans } \Omega, \\
\partial_\nu \varphi = 0 & \text{sur } \Sigma_0 \cup \Sigma_1.
\end{cases}
\]

(3.2.2)

Remarque 3.2.1. On vérifie qu’une solution régulière de (3.1.1) est solution faible au sens de la méthode de transposition précédente.

En effet, en notant par \(\langle ., . \rangle \) le crochet de dualité entre \(D'(Q) \) et \(D(Q) \) et en multipliant par \(\varphi \in D(Q) \) les deux membres de la première équation du problème (3.1.1), on a :

\[
\int_Q A\overline{z}\varphi \, dtdx = (A\overline{z},\varphi) = (v(t)\delta(x-b),\varphi(t,x)) = \int_0^T v(t)\varphi(t,b)dt.
\]

(3.2.3)

Soit maintenant \(\varphi \) la solution du problème (3.2.2). Alors :

\[
\varphi \in H^1(0,T;L^2(\Omega)) \cap L^2(0,T;H^2(\Omega)) := H
\]

et

\[
\|\varphi\|_{L^2(0,T;H^2(\Omega))} \leq C\|\psi\|_{L^2(Q)},
\]

(3.2.4)

cela d’après des résultats de régularité standards en analyse fonctionnelle (cf. [30], chapitre 4, théorème 4.3, p. 30).

Par densité de \(D(Q) \) dans \(H := H^1(0,T;L^2(\Omega)) \cap L^2(0,T;H^2(\Omega)) \) et grâce à (3.2.3), on a :

\[
\int_Q A\overline{z}\varphi \, dtdx = \int_Q zA^*\varphi \, dtdx + \int_{\Sigma_0 \cup \Sigma_1} (z\partial_\nu \varphi - \partial_\nu z\varphi)d\sigma.
\]

(3.2.5)
Soient ψ et φ les fonctions considérées dans le problème (3.2.2). On déduit de (3.2.3) et (3.2.5) :

$$
\int_{Q} z(t,x)\psi(t,x)dt = \int_{0}^{T} v(t)\varphi(t,b)dt + \int_{\Sigma_0} \varphi(t,x)g(t,x)dtd\sigma,
$$

pour tout $\psi \in L^2(Q)$ et φ solution de (3.2.2).

Par suite la définition 3.2.1 est bien justifiée.

Dans la suite, on désignera par $z := z(t,x;v,g)$ la solution de (3.1.1) au sens de la méthode de transposition (Définition 3.2.1). On peut obtenir l’existence et l’unicité de la solution z du problème (3.1.1), grâce au théorème de Riesz, comme suit :

Théorème 3.1. Etant donné $\psi \in L^2(Q)$, on note par $\varphi := \varphi(t,x)$ la solution de (3.2.2) avec second membre ψ. Soit $v \in L^2(0,T)$ et $g \in L^2(\Sigma_0)$ données. L’application :

$$
\tau : L^2(Q) \rightarrow \mathbb{R}
$$

$$
\psi \mapsto \tau(\psi) = \int_{0}^{T} v(t)\varphi(t,b)dt + \int_{\Sigma_0} \varphi(t,\sigma)g(t,\sigma)dtd\sigma
$$

est linéaire continue. De plus, il existe un unique $z \in L^2(Q)$ tel que $\forall \psi \in L^2(Q) :

$$
\tau(\psi) = \langle z,\psi \rangle_{L^2(Q)}.
$$

Preuve. Puisque ψ est le second membre de la première équation du problème (3.2.2) et grâce à l’unicité de φ solution de (3.2.2), l’application $\psi \mapsto \varphi(t,b)$ est bien définie, ainsi l’application $\psi \mapsto \tau(\psi)$ est bien définie.

i) Linéarité de l’application τ

L’application $\psi \mapsto \varphi(t,b)$ est linéaire grâce à l’unicité de φ, solution du problème adjoint (3.2.2), ainsi l’application $\psi \mapsto \tau(\psi)$ est linéaire.

ii) Continuité de l’application τ

Pour montrer la continuité de l’application $\psi \mapsto \tau(\psi)$, il faut montrer que :

$$
\left| \int_{0}^{T} v(t)\varphi(t,b)dt + \int_{\Sigma_0} \varphi(t,\sigma)g(t,\sigma)dtd\sigma \right| \leq C \|\psi\|_{L^2(Q)} \text{ où } C \text{ est une constante.}
$$

On a :

$$
\left| \int_{0}^{T} v(t)\varphi(t,b)dt + \int_{\Sigma_0} \varphi(t,\sigma)g(t,\sigma)dtd\sigma \right| \leq \left| \int_{0}^{T} v(t)\varphi(t,b)dt \right| + \left| \int_{\Sigma_0} \varphi(t,x)g(t,x)dtdx \right|.
$$
On montre d’abord que \[\left| \int_0^T v(t) \varphi(t,b) dt \right| \leq C_1 \| \psi \|_{L^2(0,T;L^2(\Omega))}, \quad \text{où } C_1 \in \mathbb{R}. \]

On a :

\[\left| \int_0^T v(t) \varphi(t,b) dt \right| \leq \| v \|_{L^2(0,T)} \| \varphi(.,b) \|_{L^2(0,T)} \leq \| v \|_{L^2(0,T)} \| \varphi \|_{L^2(0,T;L^\infty(\Omega))}. \]

Or, d’après l’injection de Sobolev (voir chapitre 1, théorème 1.3), on a :

\[
L^2(0,T;H^2(\Omega)) \hookrightarrow L^2(0,T;C^0(\overline{\Omega})), \quad Q \subset \mathbb{R} \times \mathbb{R}^n, \quad n \leq 3
\]

et \[\| \varphi \|_{L^2(0,T;L^\infty(\Omega))} \leq \alpha \| \varphi \|_{L^2(0,T;H^2(\Omega))}, \quad \alpha \in \mathbb{R}. \]

On a alors grâce à (3.2.4) et (3.2.6) :

\[
\left| \int_0^T v(t) \varphi(t,b) dt \right| \leq C_1 \| \psi \|_{L^2(0,T;L^2(\Omega))} \quad \text{où } C_1 = \alpha C_2 \| v \|_{L^2(0,T)}. \]

Maintenant on montre que \[\left| \int_{\Sigma_0} \varphi(t,\sigma)g(t,\sigma) d\sigma d\sigma \right| \leq C_3 \| \psi \|_{L^2(Q)}, \quad \text{où } C_3 \in \mathbb{R}. \]

On a en utilisant l’inégalité de Cauchy-Schwarz :

\[
\left| \int_{\Sigma_0} \varphi(t,\sigma)g(t,\sigma) d\sigma d\sigma \right| \leq \int_{\Sigma_0} |\varphi(t,\sigma)||g(t,\sigma)| d\sigma d\sigma \leq \| \varphi \|_{L^2(\Sigma_0)} \| g \|_{L^2(\Sigma_0)}.
\]

Or, à l’aide du théorème de traces (voir chapitre 1, théorème 1.7) on a :

\[\| \varphi \|_{L^2(\Sigma_0)} \leq C_4 \| \varphi \|_{L^2(0,T;H^1(\Omega))} \quad \text{avec } C_4 \in \mathbb{R}^*_+.
\]

D’où :

\[
\left| \int_{\Sigma_0} \varphi(t,\sigma)g(t,\sigma) d\sigma d\sigma \right| \leq C_4 \| g \|_{L^2(\Sigma_0)} \| \varphi \|_{L^2(0,T;H^1(\Omega))} \leq C_4 \| g \|_{L^2(\Sigma_0)} \| \varphi \|_{L^2(0,T;H^2(\Omega))},
\]

et d’après (3.2.4), on obtient :

\[
\left| \int_{\Sigma_0} \varphi(t,\sigma)g(t,\sigma) d\sigma d\sigma \right| \leq C_3 \| \psi \|_{L^2(0,T;L^2(\Omega))}, \quad \text{avec } C_3 = C_2 C_4 \| g \|_{L^2(\Sigma_0)}. \]

Finalement, de (3.2.7) et (3.2.9) on déduit que l’application \(\tau \) est continue de \(L^2(Q) \) dans \(\mathbb{R} \).

Alors d’après le théorème de Riesz (voir chapitre 1, théorème 3.1) :

\[\exists ! \; z \in L^2(Q) \; \text{tel que } \forall \psi \in L^2(Q), \quad \tau(\psi) = \langle z, \psi \rangle_{L^2(Q)}.
\]

Ce qui achève la preuve du théorème.
3.3 Problème de contrôle ponctuel sans donnée manquante

Dans cette partie on caractérise le contrôle optimal ponctuel \(u_b \), associé au problème (3.1.1), par la solution d’un système d’optimalité (S.O), et cela en considérant que \(g \) n’est pas une donnée manquante, c’est-à-dire \(g = 0 \). On examinera dans le paragraphe suivant la même question avec une donnée manquante.

Soit \(U \) un convexe fermé non vide de \(L^2(0, T) \), l’espace des contrôles admissibles, i.e):

\[
 U_{ad} := U
\]

et

\[
 J(v) := \|z(v) - z_d\|_{L^2(Q)}^2 + N\|v\|_{L^2([0,T])}^2.
\]

où

\[
 z(v) := z(t, x; v), \quad \forall v \in U.
\]

On cherche à trouver :

\[
 \inf_{v \in U} J(v).
\]

On montre que le problème (3.3.4) admet un unique contrôle optimal \(u_b \in U \) en procédant de façon similaire à la preuve de la proposition 3.3 (chapitre 3).

Proposition 3.2. Le contrôle optimal \(u_b = \inf_{v \in U} J(v) \) est caractérisé par le couplet \((z, \pi) \in (L^2(Q))^2 \) solution du système d’optimalité suivant :

\[
\begin{align*}
 & A z = u_b(t) \delta(x - b) \quad A^* \pi = z(u_b) - z_d \quad \text{dans} \quad Q, \\
 & z(0) = 0 \quad \pi(T) = 0 \quad \text{dans} \quad \Omega, \\
 & \partial_{\nu} z = 0 \quad \partial_{\nu} \pi = 0 \quad \text{sur} \quad \Sigma_0 \cup \Sigma_1,
\end{align*}
\]

avec :

\[
 \xi(., b) + Nu_b \geq 0 \quad \text{sur} \quad [0, T],
\]

où \(z \) est la solution du problème (3.1.1).

Preuve. Une condition nécessaire d’Euler-Lagrange satisfaite par \(u_b \) est la suivante :

\[
 \lim_{\lambda \to 0} \left(\frac{J(u_b + \lambda w) - J(u_b)}{\lambda} \right) \geq 0 \quad \forall w \in U.
\]

On en déduit :

\[
 \langle z(u_b) - z_d, z(w) \rangle_{L^2(Q)} + N \langle u_b, w \rangle_{L^2([0,T])} \geq 0 \quad \forall w \in U,
\]
où \(w = v - u_b, \ v \in U \).

En effet, on a :

\[
J(u_b + \lambda w) - J(u_b) = \| z(u_b + \lambda w) - z_d \|_{L^2(Q)}^2 + N \| u_b + \lambda w \|_{L^2([0,T])}^2 \\
- \| z(u_b) - z_d \|_{L^2(Q)}^2 - N \| u_b \|_{L^2([0,T])}^2 \\
= \| z(u_b) + \lambda z(w) \|_{L^2(Q)}^2 - 2 \langle z(u_b) + \lambda z(w), z_d \rangle_{L^2(Q)} \\
+ N\lambda^2 \| w \|_{L^2([0,T])}^2 + 2N \langle u_b, w \rangle_{L^2([0,T])} \\
- \| z(u_b) \|_{L^2(Q)}^2 + 2 \langle z(u_b), z_d \rangle_{L^2(Q)} \\
+ 2N\lambda \langle u_b, w \rangle_{L^2([0,T])} + N\lambda^2 \| z(w) \|_{L^2(Q)}^2 \\
= \lambda^2 \| z(w) \|_{L^2(Q)}^2 + N\lambda^2 \| w \|_{L^2([0,T])}^2 + 2\lambda \langle z(u_b), z(w) \rangle_{L^2(Q)} \\
+ 2N \langle u_b, w \rangle_{L^2([0,T])} - 2\langle z(w), z_d \rangle_{L^2(Q)}.
\]

Donc :

\[
\lim_{\lambda \to 0} \left(\frac{J(u_b + \lambda w) - J(u_b)}{\lambda} \right) = 2 \langle z(u_b), z(w) \rangle_{L^2(Q)} + 2N \langle u_b, w \rangle_{L^2([0,T])} \\
- 2 \langle z(w), z_d \rangle_{L^2(Q)} \geq 0,
\]

ce qui donne (3.3.7).

Revenons maintenant à la démonstration de la proposition 3.2.

Soit \(\pi := \pi(t, x, u_b) \) la solution du problème adjoint suivant :

\[
\begin{align*}
\mathbf{A}^* \pi &= z(u_b) - z_d \quad \text{dans } Q, \\
\pi(T) &= 0 \quad \text{dans } \Omega, \\
\partial_n \pi &= 0 \quad \text{sur } \Sigma_0 \cup \Sigma_1.
\end{align*}
\]

Soit \(z(w) := z(t, x; w, 0) \) l’état du système (3.1.1). Ainsi on désigne par (...) le crochet de dualité entre \(\mathcal{D}'(Q) \) et \(\mathcal{D}(Q) \).

En effet, en multipliant la première équation du problème (3.1.1) par \(\pi \in \mathcal{D}(Q) \), on a :

\[
\int_Q \mathbf{A}z(w) \pi \, dt \, dx = (\mathbf{A}z, \pi) = (w(t)\delta(x - b), \pi(t, x)) = \int_0^T w(t)\pi(t, b) \, dt.
\]

Soit maintenant \(\pi \) la solution du problème (3.3.8). Alors

\[
\begin{align*}
\pi &\in H^1(0, T; L^2(\Omega)) \cap L^2(0, T; H^2(\Omega)) := H \\
\| \pi \|_{L^2(0, T; H^2(\Omega))} &\leq C \| z - z_d \|_{L^2(Q)},
\end{align*}
\]

(3.3.10)
cela d’après des résultats de régularité standards en analyse fonctionnelle (cf. [30], chapitre 4, théorème 4.3, p. 30).
Par densité de \(\mathcal{D}(Q) \) dans \(H := H^1(0, T; L^2(\Omega)) \cap L^2(0, T; H^2(\Omega)) \) et grâce à (3.3.9), on a :

\[
\int_Q A \pi \, dt \, dx = \int_Q z A^* \pi \, dt \, dx + \int_{\Omega} [z(t = T)\pi(t = T) - z(t = 0)\pi(t = 0)] \, dx \\
- \int_{\Sigma_0} (z \partial_\nu \pi - \pi \partial_\nu z) \, d\sigma - \int_{\Sigma_1} (z \partial_\nu \pi - \pi \partial_\nu z) \, d\sigma \\
= \int_Q (z(u_b) - z_d) z(w) \, dt \, dx.
\]

Donc :

\[
\langle z(u_b) - z_d, z(w) \rangle_{L^2(Q)} = \langle \pi(., b), w \rangle_{L^2([0, T])},
\]

Alors, l’équation (3.3.7) devient :

\[
\langle \pi(., b) + Nu_b, w \rangle_{L^2([0, T])} \geq 0, \quad \forall w \in U.
\]

Ainsi, on obtient l’inégalité de l’état adjoint \(\pi(., b) + Nu_b \geq 0 \) sur \([0, T]\).

3.4 Problème de contrôle ponctuel avec donnée manquante

On suppose ici que la pollution \(g \) est manquante. On aura donc un problème de contrôle ponctuel avec donnée manquante à résoudre. Pour cela on utilise la méthode du contrôle à moindres regrets vue au chapitre 2.

On introduit la fonction coût suivante :

\[
J(v, g) := \left\| z(v, g) - z_d \right\|_{L^2(Q)}^2 + N \left\| v \right\|_{L^2([0, T])}^2,
\]

et on cherche à trouver :

\[
\inf_{v \in U} J(v, g) \quad \forall g \in G,
\]

où

\(G \) est un sous espace vectoriel fermé de \(L^2(\Sigma_0) \),

et où

\(U \) un convexe fermé de \(L^2(0, T) \),

est l’espace des contrôles admissibles.
Remarque 3.4.1. Pour obtenir des résultats plus optimales, on peut choisir une fonction coût définie avec un état z pris au temps final T, i.e.

$$J(v, g) := \|z(T; v, g) - z_d\|_{L^2(\Omega)}^2 + N \|v\|_{L^2([0, T])}^2,$$

et on considère l'espace des contrôles admissibles suivant :

$$U = \{v \in L^2(0, T); z(T, x; v, g) \in L^2(\Omega)\}, \quad (3.4.5)$$

que l'on muni de la norme $L^2(0, T)$.

Lemme 3.3. L'espace U défini par (3.4.5) est un convexe fermé de $L^2(0, T)$.

Preuve. i) Convexité de U :

Pour chaque v_1 associé à une solution $z_1(T, x; v, g) \in L^2(\Omega)$ et v_2 associé à $z_2(T, x; v, g) \in L^2(\Omega)$, on a pour $\alpha \in]0, 1[$:

$$\alpha z_1(T, x; v, g) + (1 - \alpha) z_2(T, x; v, g) \in L^2(\Omega),$$

d'où U est convexe.

ii) U fermé :

Soit $(v_n) \in U$ qui converge vers v dans $L^2(0, T)$.

Soit z_n la solution associée à v_n et z la solution associée à v.

Pour que U soit fermé, il faut que $z_n(T, x; v, g)$ converge vers $z(T, x; v, g)$ dans $L^2(\Omega)$.

En effet, pour tout n, il existe $z_n \in L^2(Q)$ telle que :

$$\int_Q z_n \psi \, dt \, dx = \int_0^T v_n(t) \varphi(t, b) \, dt - \int_{\Sigma_0} \varphi g \, d\nu, \quad \forall \psi \in L^2(Q), \quad (3.4.6)$$

où φ est la solution du problème adjoint (3.2.2).

Par passage à la limite, lorsque n tend vers l'infini, dans (3.4.6), on a :

$$\int_Q z_n \psi \, dt \, dx \rightarrow l_1 = \int_0^T v(t) \varphi(t, b) \, dt - \int_{\Sigma_0} \varphi g \, d\nu.$$

Soit maintenant z la solution (définie par transposition) associée à φ, i.e.

$$\int_Q z \psi \, dt \, dx = \int_0^T v(t) \varphi(t, b) \, dt - \int_{\Sigma_0} \varphi g \, d\nu, \quad \forall \psi \in L^2(Q) \text{ et } \varphi \text{ solution de (3.2.2)}.$$
On a donc par unicité de la limite :
\[\int_{Q} z_n \psi dt dx \rightarrow \int_{Q} z \psi dt dx, \text{ i.e.} \]
\[z_n \rightharpoonup z \quad \text{dans} \quad L^2(Q). \quad (3.4.7) \]

On pose maintenant \(\psi = z_n \) et \(\varphi_n \) la solution du problème adjoint associé. On a grâce aux résultats standards de régularité :
\[\| \varphi \|_{H^{1,2}} \leq C \| z \|_{L^2(Q)}, \]
or, d’après (3.4.7) \(\| z_n \|_{L^2(Q)} \) est bornée, donc :
\[\| \varphi \|_{H^{1,2}} \leq C, \]
il existe alors une sous-suite notée encore \(\varphi_n \) telle que :
\[\varphi_n \rightharpoonup \varphi \quad \text{dans} \quad H^{1,2}, \]
et par injection compacte, on a aussi :
\[\varphi_n \rightarrow \varphi \quad \text{dans} \quad L^2(Q). \quad (3.4.8) \]

En remplaçant alors \(\psi \) par \(z_n \) dans (3.4.6), on a :
\[\int_{Q} z_n^2 dt dx = \int_{0}^{T} v_n(t) \varphi_n(t,b) dt - \int_{\Sigma_0} \varphi_n g d\nu \quad \forall z_n \in L^2(Q), \quad (3.4.9) \]
et par passage à la limite et grâce à (3.4.7) et (3.4.8) on a :
\[\int_{Q} z_n^2 dt dx \rightarrow \int_{Q} z^2 dt dx, \]
d’où,
\[z_n \rightharpoonup z \quad \text{dans} \quad L^2(Q), \]
et par suite :
\[z_n(T,x;v,g) \rightarrow z(T,x;v,g) \quad \text{p.p dans} \quad L^2(\Omega). \]

Ce qui achève la démonstration.

3.4.1 Caractérisation du contrôle ponctuel à moindres regrets

Comme la fonction coût dépend de la donnée manquante \(g \in G \), on applique la méthode du contrôle à moindres regrets au problème (3.1.1)-(3.4.2) pour trouver le contrôle
optimal associé. Cela nous conduit à considérer la suite de problèmes de contrôle classiques suivants :

$$\inf_{v \in U} J^\gamma(v) \text{ où } J^\gamma(v) = J(v, 0) + \frac{1}{\gamma} \| \xi(v, 0) \|^2_{L^2(\Sigma_0)},$$

(3.4.10)

avec $\xi(v, 0) := \xi(t, x, v, 0)$ la solution du problème adjoint suivant :

$$\begin{cases}
A^*\xi(v, 0) = z(v, 0) \text{ dans } Q,

\xi(T) = 0 \text{ dans } \Omega,

\partial_\nu \xi = 0 \text{ sur } \Sigma_0 \cup \Sigma_1,
\end{cases}$$

(3.4.11)

et où $z(v, 0)$ est la solution de (3.1.1).

Caractérisation du contrôle à moindres regrets (S.O.S)

On a la caractérisation suivante du contrôle à moindres regrets pour le problème (3.1.1)-(3.4.2).

Proposition 3.4. Le contrôle ponctuel à moindres regrets $u_{b_\gamma} \in U$ solution du problème de minimisation (3.4.10) est caractérisé par le quadruplet $(\xi_\gamma, z_\gamma, \sigma_\gamma, \pi_\gamma) \in (L^2(Q))^4$, solution unique du système d’optimalité singulier (S.O.S) suivant :

$$\begin{cases}
A z_\gamma = u_{b_\gamma} \delta(x - b) \quad A^*\xi_\gamma = z_\gamma

A \sigma_\gamma = 0 \quad A^*\pi_\gamma = z_\gamma - z_d + \sigma_\gamma \text{ dans } Q,

z_\gamma(0) = 0 \quad \xi_\gamma(T) = 0

\sigma_\gamma(0) = 0 \quad \pi_\gamma(T) = 0 \quad \text{ dans } \Omega,

\partial_\nu z_\gamma = 0 \quad \partial_\nu \xi_\gamma = 0

\partial_\nu \sigma_\gamma = \frac{1}{\gamma} \xi_\gamma \quad \partial_\nu \pi_\gamma = 0 \quad \text{ sur } \Sigma_0,

\partial_\nu z_\gamma = 0 \quad \partial_\nu \xi_\gamma = 0

\partial_\nu \sigma_\gamma = 0 \quad \partial_\nu \pi_\gamma = 0 \quad \text{ sur } \Sigma_1,
\end{cases}$$

(3.4.12)

avec l’inéquation de l’état adjoint :

$$\pi_\gamma(\cdot, b) + Nu_{b_\gamma} \geq 0 \text{ dans } [0, T],$$

(3.4.13)

où $z_\gamma := z(t, x; u_{b_\gamma}, 0)$; $\xi_\gamma := \xi(t, x; u_{b_\gamma}, 0)$; et où σ_γ et π_γ sont respectivement des fonctions σ et π telles que $\sigma_\gamma := \sigma(t, x; u_{b_\gamma}, 0)$; $\pi_\gamma := \pi(t, x; u_{b_\gamma}, 0)$.

Preuve. La condition nécessaire d’Euler-Lagrange satisfaite par u_{b_γ} est :

$$\lim_{\lambda \to 0} \left(\frac{J^\gamma(u_{b_\gamma} + \lambda w)}{\lambda} - J^\gamma(u_{b_\gamma}) \right) \geq 0 \quad \forall w \in U.$$

Ceci donne :

$$\langle z_\gamma - z_d, z(w, 0) \rangle_{L^2(Q)} + N\langle w, u_{b_\gamma} \rangle_{L^2([0, T])} + \frac{1}{\gamma} \langle \xi_\gamma, \xi(w, 0) \rangle_{L^2(\Sigma_0)} \geq 0, \quad \forall w \in U,$$

(3.4.14)
où \(z_\gamma := z(t, x; u_{b_t}, 0) \), \(\xi_\gamma := \xi(t, x; u_{b_t}, 0) \) et où \(w = v - u_{b_t}, \forall v \in U \).

On considère maintenant \(\sigma_\gamma := \sigma(t, x; u_{b_t}, 0) \) la solution du problème suivant :

\[
\begin{align*}
A\sigma_\gamma &= 0 \text{ dans } Q, \\
\sigma_\gamma(0) &= 0 \text{ dans } \Omega, \\
\partial_v \sigma_\gamma &= \frac{1}{\gamma} \xi_\gamma \text{ sur } \Sigma_0, \\
\partial_v \sigma_\gamma &= 0 \text{ sur } \Sigma_1.
\end{align*}
\]

On a, en multipliant la première équation du problème (3.4.11) par \(\sigma_\gamma \) :

\[
\int_Q \sigma_\gamma A^\ast \xi(w, 0) dtdx = 0,
\]

et en utilisant la formule de Green, on obtient :

\[
\int_Q \sigma_\gamma A^\ast \xi(w, 0) dtdx = \int_Q A\sigma_\gamma \xi(w, 0) dtdx - \int_\Omega \left[\xi(T)\sigma_\gamma(T) - \xi(0)\sigma_\gamma(0) \right] dx
\]

\[
\quad - \int_{\Sigma_0 \cup \Sigma_1} \left[\sigma_\gamma \partial_v \xi - \xi \partial_v \sigma_\gamma \right] d\nu
\]

\[
= \int_{\Sigma_0} \xi(w) \frac{1}{\gamma} \xi_\gamma d\nu.
\]

D’où :

\[
\left\langle \frac{1}{\gamma} \xi_\gamma, \xi(w, 0) \right\rangle_{L^2(\Sigma_0)} = \left\langle \sigma_\gamma, z(w, 0) \right\rangle_{L^2(Q)}.
\] (3.4.15)

Donc d’après (3.4.15), l’équation (3.4.14) devient :

\[
\left\langle z_\gamma - z_d + \sigma_\gamma, z(w, 0) \right\rangle_{L^2(Q)} + N(u_{b_t}, w)_{L^2([0, T])} \geq 0, \quad \forall w \in L^2(0, T).
\] (3.4.16)

Finalement pour trouver l’état adjoint, on introduit \(\pi_\gamma := \pi(t, x; u_{b_t}, 0) \) la solution du problème adjoint suivant :

\[
\begin{align*}
A^\ast \pi_\gamma &= z_\gamma - z_d + \sigma_\gamma \text{ dans } Q, \\
\pi_\gamma(T) &= 0 \text{ dans } \Omega, \\
\partial_v \pi_\gamma &= 0 \text{ sur } \Sigma_0 \cup \Sigma_1.
\end{align*}
\] (3.4.17)

On multiplie la première équation du problème (3.1.1) par \(\pi_\gamma \in D(Q) \), il vient :

\[
\int_Q A\pi_\gamma(w, 0) dtdx = (Az(w, 0), \pi_\gamma)_{D' \times D} = (w(t)\delta(x-b), \pi_\gamma)_{D' \times D} = \int_0^T w(t)\pi_\gamma(t, b) dt.
\] (3.4.18)

Soit maintenant \(\pi_\gamma \) la solution du problème (3.4.17). Alors

\[
\begin{align*}
\pi_\gamma &\in H^1(0, T; L^2(\Omega)) \cap L^2(0, T; H^2(\Omega)) := H \\
&\quad \text{et} \\
\| \pi_\gamma \|_{L^2(0, T; H^2(\Omega))} &\leq C \| z_\gamma - z_d + \sigma_\gamma \|_{L^2(Q)}.
\end{align*}
\] (3.4.19)
cela d’après des résultats standards de régularité en analyse fonctionnelle (cf. [30], chapitre 4, théorème 4.3, p. 30).

Par densité de $D(Q)$ dans $H := H^1(0, T; L^2(\Omega)) \cap L^2(0, T; H^2(\Omega))$ et grâce à (3.4.18), on a :

\[
\int_Q A z(w, 0) \pi, dtdx = \int_Q z(w, 0) A^* \pi, dtdx \\
+ \int_\Omega [z(T) \pi, - z(0) \pi, 0)] d\tau - \int_{\Sigma_0} \left[z \partial_\nu \pi, - \partial_\nu z \pi, \right] d\nu \\
= \int_Q z(w, 0) A^* \pi, dtdx.
\]

(Ici on a tenu compte du fait que dans (3.4.10) on a $g = 0$.
D’où alors de (3.4.18) et (3.4.20) on obtient :

\[
\langle A^* \pi, z(w, 0) \rangle_{L^2(Q)} = \langle \pi, (., b), w \rangle_{L^2([0, T])}.
\]

Enfin :

\[
\langle z, z - z_d + \sigma, z(w, 0) \rangle_{L^2(Q)} = \langle \pi, (., b), w \rangle_{L^2([0, T])}.
\]

(3.4.21)

Donc, d’après (3.4.21), (3.4.16) devient :

\[
\langle \pi, (., b) + N u_b, w \rangle_{L^2([0, T])} \geq 0, \quad \forall w \in U.
\]

(3.4.22)

On a alors immédiatement l’inégalité variationnelle : $\pi, (., b) + N u_b \geq 0$ dans $[0, T]$.
Chapitre 4

Contrôle ponctuel par la méthode de régularisation

Dans ce chapitre on examine de nouveau le problème de diffusion de pollution avec contrôle ponctuel (3.1.1) considéré dans le chapitre précédent, mais cette fois en utilisant une approche différente à celle utilisée dans le chapitre 3. Il s’agit d’appliquer la méthode de régularisation, en approchant la masse de Dirac par une suite régularisante dans $L^2(\Omega)$.

On obtient alors une suite de problèmes sans donnée mesure et qui sont déjà examinés au chapitre 2.

Ensuite, toute l’étude est concentrée sur celle du passage à la limite pour obtenir finalement une caractérisation par un système d’optimalité singulier, du contrôle ponctuel.

Soit χ une fonction C^∞ telle que :

$$supp \chi = [-1, 1] \text{ et } \int_\Omega \chi(x)dx = 1.$$

Soit $(\chi_\varepsilon)_{\varepsilon > 0}$ une suite régularisante qui approche $\delta_b(x) = \delta_0(x - b)$ dans $\mathcal{D}'(\Omega)$, avec :

$$\chi_\varepsilon(x) = \frac{1}{\varepsilon} \chi \left(\frac{x}{\varepsilon} \right),$$

où $\varepsilon > 0$ destinée à tendre vers 0. En particulier, χ_ε est choisie à support dans la boule de centre b et de rayon ε.

53
On considère alors le problème suivant :

\[
\begin{cases}
\frac{\partial z}{\partial t} - \Delta z = f_\varepsilon \quad \text{dans } Q, \\
z(0, x) = 0 \quad \text{dans } \Omega, \\
\partial_\nu z = g \quad \text{sur } \Sigma_0, \\
\partial_\nu z = 0 \quad \text{sur } \Sigma_1,
\end{cases}
\]

(4.0.1)

où \(f_\varepsilon(t, x) = v(t)\chi_\varepsilon(x) \in L^2(Q) \) et où \(g \in L^2(\Sigma_0) \).

Le système (4.0.1) admet une solution faible \(z_\varepsilon \in L^2([0, T]; H^1(\Omega)) \cap C([0, T]; L^2(\Omega)) \), (voir chapitre 2, section 2.2, théorème 2.1).

4.1 Problème de contrôle ponctuel avec donnée manquante

On suppose ici que la pollution \(g \) est manquante et que la fonction coût dépend de cette dernière. On est donc devant un problème de contrôle optimal ponctuel avec donnée manquante, auquel on applique la méthode du contrôle à moindres regrets, vue au chapitre 2.

On définit la fonction coût comme suit :

\[
J_\varepsilon(v, g) = \| z_\varepsilon(t, x; v, g) - z_\delta \|^2_{L^2(Q)} + N \| v \|^2_{L^2([0, T])},
\]

(4.1.1)

et on cherche à résoudre le problème :

\[
\inf_{v \in U} J_\varepsilon(v),
\]

(4.1.2)

où \(U := L^2([0, T]) \) est l’espace des contrôles admissibles.

On rappelle d’abord la définition du contrôle à moindres regrets associée au problème (4.1.2) :

Définition 4.1.1. Soit \(\gamma > 0 \) suffisamment petit. Le contrôle à moindres regrets du problème à données manquantes (4.0.1)-(4.1.2) est défini par la solution de :

\[
\inf_{v \in L^2([0, T])} \left(\sup_{g \in G} \left(J_\varepsilon(v, g) - J_\varepsilon(0, g) - \gamma \| g \|^2_{L^2(\Sigma_0)} \right) \right).
\]

(4.1.3)

Alors en utilisant (4.1.3) et en adoptant le même procédé développé dans le chapitre 2, on se ramène au problème de contrôle optimal classique suivant :

\[
\inf_{v \in L^2([0, T])} \mathcal{J}_\gamma^\varepsilon(v), \quad \gamma > 0,
\]

(4.1.4)
avec
\[\mathcal{J}_\varepsilon^\gamma(v) = J_\varepsilon(v,0) + \frac{1}{\gamma} \|\xi_\varepsilon(v,0)\|^2_{L^2(\Sigma_0)}, \]
où \(\xi_\varepsilon(v,0) := \xi_\varepsilon(t,x,v,0) \) est la solution du problème adjoint suivant :
\[
\begin{cases}
\mathcal{A}^\ast \xi_\varepsilon(v,0) = z_\varepsilon(v,0) & \text{dans } Q, \\
\xi_\varepsilon(T) = 0 & \text{dans } \Omega, \\
\partial_\nu \xi_\varepsilon = 0 & \text{sur } \Sigma_0 \cup \Sigma_1,
\end{cases}
\] (4.1.5)
et où \(z_\varepsilon(v,0) := z_\varepsilon(t,x,v,0) \) est la solution de (4.0.1).

Le contrôle optimal à moindres regrets approché, noté \(u_\varepsilon^r \), existe et il est unique (voir chapitre 2, proposition 2.3).

4.1.1 Caractérisation du contrôle à moindres regrets (S.O.S) :

Proposition 4.1. Le problème de contrôle optimal (4.0.1)-(4.1.2) admet un unique contrôle à moindres regrets approché \(u_\varepsilon^r \in L^2([0,T]) \), qui est caractérisé par le système d’optimalité suivant :
\[
\begin{cases}
\mathcal{A}z_\varepsilon^r = u_\varepsilon^r\chi_\varepsilon & \mathcal{A}^\ast \xi_\varepsilon^r = z_\varepsilon^r \\
A\sigma_\varepsilon^r = 0 & \mathcal{A}^\ast \pi_\varepsilon^r = z_\varepsilon^r - z_d + \sigma_\varepsilon^r \quad \text{dans } Q, \\
z_\varepsilon^r(0) = 0 & \xi_\varepsilon^r(T) = 0 \\
\sigma_\varepsilon^r(0) = 0 & \pi_\varepsilon^r(T) = 0 \\
\partial_\nu z_\varepsilon^r = 0 & \partial_\nu \xi_\varepsilon^r = 0 \\
\partial_\nu \sigma_\varepsilon^r = \frac{1}{\gamma} \xi_\varepsilon^r & \partial_\nu \pi_\varepsilon^r = 0 \quad \text{sur } \Sigma_0, \\
\partial_\nu z_\varepsilon^r = 0 & \partial_\nu \xi_\varepsilon^r = 0 \\
\partial_\nu \sigma_\varepsilon^r = 0 & \partial_\nu \pi_\varepsilon^r = 0 \quad \text{sur } \Sigma_1,
\end{cases}
\] (4.1.6)
avec l’équation de l’état adjoint
\[
\int_\Omega \chi_\varepsilon(x)\pi_\varepsilon^r(.,x)dx + Nu_\varepsilon^r = 0 \quad \text{sur } [0,T],
\]
où \(z_\varepsilon^r := z_\varepsilon(t,x,u_\varepsilon^r,0) \); \(\xi_\varepsilon^r := \xi_\varepsilon(t,x,u_\varepsilon^r,0) \); et où \(\sigma_\varepsilon^r \) et \(\pi_\varepsilon^r \) sont respectivement des fonctions \(\sigma_\varepsilon \) et \(\pi_\varepsilon \) telles que : \(\sigma_\varepsilon^r := \sigma_\varepsilon(t,x,u_\varepsilon^r,0) \); \(\pi_\varepsilon^r := \pi_\varepsilon(t,x,u_\varepsilon^r,0) \).

Preuve. La preuve est similaire à celle de la proposition 3.4, chapitre 3.

4.1.2 Estimations a priori et passage à la limite

Dans la section précédente, on a construit une suite \(u_\varepsilon^r \) de contrôles associés au problème (4.0.1). On établit dans cette partie la limite quand \(\varepsilon \to 0 \) de la suite des solutions
des problèmes approchés (4.0.1) et on caractérise le contrôle obtenu à la limite.

On établit d’abord les estimations suivantes.

Proposition 4.2. Il existe une constante positive C indépendante de ε, telle que :
\[
\|u_\varepsilon\|_{L^2(0,T)} \leq C, \quad \|z_\varepsilon\|_{L^2(Q)} \leq C, \quad \frac{1}{\sqrt{\gamma}} \|\xi_\varepsilon\|_{L^2(\Sigma_0)} \leq C, \quad \|\sigma_\varepsilon\|_{L^2(0,T;H^1(\Omega))} \leq C,
\]
\[
\|\pi_\varepsilon\|_{L^2(0,T;H^1(\Omega))} \leq C.
\]

Preuve. Étape 1 :

On a :
\[
\mathcal{J}_\varepsilon^\gamma(v) = J_\varepsilon(v,0) + \frac{1}{\gamma} \|\xi_\varepsilon(v,0)\|_{L^2(\Sigma_0)}^2
\]
et
\[
\mathcal{J}_\varepsilon^\gamma(u_\varepsilon) = \inf_{v \in L^2(0,T)} \mathcal{J}_\varepsilon^\gamma(v).
\]

Comme $\mathcal{J}_\varepsilon^\gamma(u_\varepsilon) \leq \mathcal{J}_\varepsilon^\gamma(v)$, $\forall v \in L^2([0,T])$, on obtient pour le cas particulier $v=0$,
\[
\mathcal{J}_\varepsilon^\gamma(0) = J_\varepsilon(0,0) = \|z_d\|_{L^2(Q)}^2
\]
et donc,
\[
J_\varepsilon(u_\varepsilon,0) + \frac{1}{\gamma} \|\xi_\varepsilon\|_{L^2(\Sigma_0)}^2 \leq \|z_d\|_{L^2(Q)}^2 = C^2,
\]
car $\xi(t,x,0,0) = z(t,x,0,0) = 0$ dans Q.

Par suite :
\[
\|z_\varepsilon^\gamma - z_d\|_{L^2(Q)}^2 + N \|u_\varepsilon\|_{L^2([0,T])}^2 + \frac{1}{\gamma} \|\xi_\varepsilon\|_{L^2(\Sigma_0)}^2 \leq C^2.
\]
et on a :
\[
\|z_\varepsilon^\gamma\|_{L^2(Q)} \leq \|z_\varepsilon^\gamma - z_d\|_{L^2(Q)} + \|z_d\|_{L^2(Q)}
\]

On en déduit que :
\[
\begin{align*}
\|z_\varepsilon^\gamma\|_{L^2(Q)} & \leq C, \\
\|u_\varepsilon\|_{L^2([0,T])} & \leq C, \\
\frac{1}{\sqrt{\gamma}} \|\xi_\varepsilon\|_{L^2(\Sigma_0)} & \leq C,
\end{align*}
\]

avec : $C = C\{N, \|z_d\|_{L^2(Q)}\}$.

Étape 2 :

Il reste à trouver les estimations pour $\sigma_\varepsilon^\gamma$ et π_ε^γ.

Pour cela on a :
\[
\frac{1}{2} ((\sigma_\varepsilon^\gamma)^2(t,x) - (\sigma_\varepsilon^\gamma)^2(0,x)) = \frac{1}{2} \int_0^t \frac{\partial}{\partial t} (\sigma_\varepsilon^\gamma)^2 ds = \int_0^t \sigma_\varepsilon^\gamma \frac{\partial (\sigma_\varepsilon^\gamma)^2}{\partial t} ds = \int_0^t \sigma_\varepsilon^\gamma \Delta (\sigma_\varepsilon^\gamma), \quad \forall t \in [0,T],
\]

56
en utilisant la formule de Green, ceci donne :

\[
\frac{1}{2} \int_{\Omega} (\sigma^2_\gamma(t,x))^2 \, dx + \int_0^t \int_{\Omega} |\nabla \sigma^2_\gamma|^2 \, ds \, dx = \frac{1}{\gamma} \int_0^t \int_{\Gamma_1} \sigma^2_\gamma \xi^2 \, ds \, dx.
\]

Donc :

\[
\int_{\Omega} (\sigma^2_\gamma(t,x))^2 \, dx \leq \frac{2}{\gamma} \|\sigma^2_\gamma\|_{L^2(\Omega)} \|\xi^2_\gamma\|_{L^2(\Omega)} \quad \forall \ t \in [0,T],
\]

ce qui donne :

\[
\int_0^T \int_{\Omega} (\sigma^2_\gamma)^2(t,x) \, dt \, dx \leq \frac{2T}{\gamma} \|\sigma^2_\gamma\|_{L^2(\Omega)} \|\xi^2_\gamma\|_{L^2(\Omega)}.
\]

Et on a aussi :

\[
\int_0^t \int_{\Omega} |\nabla \sigma^2_\epsilon|^2 \, ds \, dx \leq \frac{1}{\gamma} \|\sigma^2_\epsilon\|_{L^2(\Omega)} \|\xi^2_\epsilon\|_{L^2(\Omega)} \quad \forall \ t \in [0,T],
\]

d'où,

\[
\|\nabla \sigma^2_\epsilon\|_{L^2(Q)} \leq \frac{1}{\gamma} \|\sigma^2_\epsilon\|_{L^2(\Omega)} \|\xi^2_\epsilon\|_{L^2(\Omega)}.
\]

Alors, on obtient :

\[
\|\sigma^2_\epsilon\|_{L^2(0,T;H^1(\Omega))}^2 \leq \left(\frac{1 + 2T}{\gamma} \right) \|\sigma^2_\epsilon\|_{L^2(\Omega)} \|\xi^2_\epsilon\|_{L^2(\Omega)} \leq C \left(\frac{1 + 2T}{\gamma} \right) \|\sigma^2_\epsilon\|_{L^2(\Omega)}.
\]

On a utilisé dans la dernière inégalité ci-dessus (4.1.7).

D'après le théorème de traces (voir chapitre 1, théorème 1.7), on a :

\[
\|\sigma^2_\epsilon\|_{L^2(\Omega)} \leq C \|\sigma^2_\epsilon\|_{L^2(0,T;H^1(\Omega))},
\]

C n'étant pas la même constante à chaque fois. On obtient :

\[
\left\{ \begin{array}{l}
\sigma^2_\epsilon \in L^2(0,T;H^1(\Omega)) \\
\text{et}
\|\sigma^2_\epsilon\|_{L^2(0,T;H^1(\Omega))} \leq C.
\end{array} \right.
\]

(4.1.8)

Maintenant pour estimer \(\pi^2_\gamma\), on multiplie la première équation du problème en \(\pi^2_\gamma\) dans le système d'optimalité (4.1.6) par \(\pi^\gamma\), et on intègre par parties sur \(Q_t := [t,T] \times \Omega\), \(\forall \ 0 \leq t \leq T\).

Ce qui donne :

\[
\frac{1}{2} \int_{\Omega} (\pi^2_\gamma)^2(t,x) \, dx + \int_{Q_t} |\nabla \pi^2_\gamma|^2 \, ds \, dx = \int_{Q_t} (\pi^2_\gamma - \pi^2_\gamma + \sigma^2_\gamma) \pi^2_\gamma \, ds \, dx
\]

\[
\leq \|\pi^2_\gamma - \pi^2_\gamma\|_{L^2(Q_t)} \|\pi^2_\gamma\|_{L^2(Q_t)}
\]

\[
\leq C \|\pi^2_\gamma\|_{L^2(Q_t)}, \quad \text{(grâce à (4.1.7) et (4.1.8)).}
\]

57
On en déduit :
\[\frac{1}{2} \int_{\Omega} (\pi_{\varepsilon}^\gamma)^2(t, x) \, dx \leq C \| \pi_{\varepsilon}^\gamma \|_{L^2(Q_t)}, \quad \forall \, t \in [0, T], \]
on intègre par rapport à t on obtient :
\[\frac{1}{2} \| \pi_{\varepsilon}^\gamma \|_{L^2(Q)}^2 \leq TC \| \pi_{\varepsilon}^\gamma \|_{L^2(Q)}, \]
et donc :
\[\| \pi_{\varepsilon}^\gamma \|_{L^2(Q)} \leq 2TC \cong C. \]

De même, on a :
\[\int_{Q_t} |\nabla \pi_{\varepsilon}^\gamma|^2 \, ds \, dx \leq C \| \pi_{\varepsilon}^\gamma \|_{L^2(Q_t)} \quad \forall \, t \in [0, T]. \]
D'où :
\[\| \nabla \pi_{\varepsilon}^\gamma \|_{L^2(Q)}^2 \leq C \| \pi_{\varepsilon}^\gamma \|_{L^2(Q)} \leq 2TC^2 \cong C. \]

Finalement on obtient :
\[
\begin{cases}
\pi_{\varepsilon}^\gamma \in L^2(0, T; H^1(\Omega)) \\
\| \pi_{\varepsilon}^\gamma \|_{H^1(Q_t)} \leq C.
\end{cases}
\]

On a également des estimations pour \(\xi_{\varepsilon}^\gamma \) dans \(L^2(0, T; H^1(\Omega)) \). En effet, en multipliant l'équation du problème en \(\xi_{\varepsilon}^\gamma \) et en intégrant par parties sur \(Q_t \), on obtient :
\[\frac{1}{2} \int_{\Omega} (\xi_{\varepsilon}^\gamma)^2(t, x) \, dx + \int_{Q_t} |\nabla \xi_{\varepsilon}^\gamma|^2 \, ds \, dx = \int_{Q_t} z_{\varepsilon}^\gamma \xi_{\varepsilon}^\gamma \, ds \, dx \leq C \| \xi_{\varepsilon}^\gamma \|_{L^2(Q_t)}, \quad \forall \, t \in [0, T]. \]
En procédant de la même façon que pour \(\pi_{\varepsilon}^\gamma \), on obtient :
\[\| \xi_{\varepsilon}^\gamma \|_{L^2(Q)} \leq C \]
et
\[\| \nabla \xi_{\varepsilon}^\gamma \|_{L^2(Q)} \leq C. \]
Finalement, on trouve :
\[
\begin{cases}
\xi_{\varepsilon}^\gamma \in L^2(0, T; H^1(\Omega)) \\
\| \xi_{\varepsilon}^\gamma \|_{L^2(0, T; H^1(\Omega))} \leq C.
\end{cases}
\]

Étape 3 :
Grâce aux estimations précédentes on peut établir le résultat suivant.
Théorème 4.3. Le contrôle à moindres regrets u^γ du problème (3.1.1) est caractérisé par l’unique solution $\{u^\gamma, z^\gamma, \xi^\gamma, \sigma^\gamma, \pi^\gamma\} \in L^2([0,T]) \times (L^2(0,T; H^1(\Omega)))^4$ du système d’optimalité singulier (S.O.S) :

$$
\begin{cases}
A z^\gamma = u^\gamma \delta(x-b) & A^* \xi^\gamma = z^\gamma \\
A \sigma^\gamma = 0 & A^* \pi^\gamma = z^\gamma - z_d + \sigma^\gamma \text{ dans } Q, \\
z^\gamma(0) = 0 & \xi^\gamma(T) = 0 \\
\sigma^\gamma(0) = 0 & \pi^\gamma(T) = 0 \quad \text{dans } \Omega, \\
\partial_\nu z^\gamma = 0 & \partial_\nu \xi^\gamma = 0 \quad \text{sur } \Sigma_0, \\
\partial_\nu \sigma^\gamma = \frac{1}{\gamma} \xi^\gamma & \partial_\nu \pi^\gamma = 0 \\
\partial_\nu z^\gamma = 0 & \partial_\nu \xi^\gamma = 0 \\
\partial_\nu \sigma^\gamma = 0 & \partial_\nu \pi^\gamma = 0 \quad \text{sur } \Sigma_1,
\end{cases}
$$

(4.1.11)

avec l’égalité de l’état adjoint :

$$
\pi^\gamma(., b) + Nu^\gamma = 0 \text{ sur } [0,T].
$$

Preuve. De (4.1.7) on en déduit qu’il existe u^γ, z^γ et η^γ et des sous-suites encore notées $(u^\gamma_\ell), (z^\gamma_\ell)$ et (ξ^γ_ℓ) telles qu’on ait les convergences faibles suivantes :

$$
\begin{align*}
u^\gamma_\ell & \rightharpoonup u^\gamma \text{ faiblement dans } L^2([0,T]), \\
z^\gamma_\ell & \rightharpoonup z^\gamma \text{ faiblement dans } L^2(Q), \\
\frac{1}{\sqrt{\gamma}} \xi^\gamma_\ell & \rightharpoonup \frac{1}{\sqrt{\gamma}} \eta^\gamma \text{ faiblement dans } L^2(\Sigma_0).
\end{align*}
$$

(4.1.12)

De même, de (4.1.8)-(4.1.9) et (4.1.10) on en déduit qu’il existe $\sigma^\gamma, \pi^\gamma$ et ξ^γ et des sous-suites encore notées $(\sigma^\gamma_\ell), (\pi^\gamma_\ell)$ et (ξ^γ_ℓ) telles qu’on ait les convergences faibles suivantes :

$$
\begin{align*}
\sigma^\gamma_\ell & \rightharpoonup \sigma^\gamma \text{ faiblement dans } L^2(Q), \\
\pi^\gamma_\ell & \rightharpoonup \pi^\gamma \text{ faiblement dans } L^2(Q), \\
\xi^\gamma_\ell & \rightharpoonup \xi^\gamma \text{ faiblement dans } L^2(Q).
\end{align*}
$$

(4.1.13)

Remarque 4.1.1. On a aussi de (4.1.7), (4.1.8)-(4.1.9) et (4.1.10) et grâce aux résultats standards de régularité de la solution de l’équation de la chaleur (cf. : [12], théorème 5, chapitre 7, p. 360) il existe une constante C indépendante de ε telle que :

$$
\begin{align*}
\|\xi^\gamma_\ell\|_{H^1(Q)} & \leq C \\
\|\sigma^\gamma_\ell\|_{H^1(Q)} & \leq C \\
\|\pi^\gamma_\ell\|_{H^1(Q)} & \leq C.
\end{align*}
$$
On en déduit l’existence de sous-suites notées encore ξ^γ_ε, $\sigma^\gamma_\varepsilon$ et π^γ_ε qui convergent faiblement dans $H^1(Q)$ vers respectivement ξ^γ, σ^γ et π^γ.

Par suite, grâce aux résultats de compacité on a :

\[\begin{align*}
\sigma^\gamma_\varepsilon &\to \sigma^\gamma \text{ fortement dans } L^2(Q), \\
\pi^\gamma_\varepsilon &\to \pi^\gamma \text{ fortement dans } L^2(Q), \\
\xi^\gamma_\varepsilon &\to \xi^\gamma \text{ fortement dans } L^2(Q).
\end{align*}\]

(4.1.14)

Remarque 4.1.2. Soit $H := H^{1,2}(Q) = L^2(0, T; H^2(\Omega)) \cap H^1(0, T; L^2(\Omega))$ l’espace de Sobolev anisotrope. Les résultats de régularité de la solution de l’équation de la chaleur, signalés dans la remarque précédente, montrent en fait qu’on a les estimations suivantes : il existe C indépendantes de ε telle que :

\[\left\{ \begin{array}{l}
\|\xi^\gamma_\varepsilon\|_H \leq C \\
\|\sigma^\gamma_\varepsilon\|_H \leq C \\
\|\pi^\gamma_\varepsilon\|_H \leq C.
\end{array} \right.\]

Commençons d’abord par examiner le :

1- **Passage à la limite dans le problème en z^γ_ε** :

i) **Passage à la limite pour l’équation** $A z^\gamma_\varepsilon = u^\gamma_\varepsilon(t) \chi_\varepsilon$:

Soit $\varphi \in \mathcal{D}(Q)$. On note pour simplifier $\mathcal{D} = \mathcal{D}(Q)$ et $\mathcal{D}' = \mathcal{D}'(Q)$. On a :

D’après (4.1.7), il existe $z^\gamma \in L^2(Q)$ telle que :

\[z^\gamma \to z^\gamma \text{ dans } L^2(Q) \text{ et donc aussi dans } \mathcal{D}'.\]

Par suite :

\[(Az^\gamma_\varepsilon, \varphi)_{\mathcal{D}' \times \mathcal{D}} = (z^\gamma_\varepsilon, A^* \varphi)_{\mathcal{D}' \times \mathcal{D}} \to (z^\gamma, A^* \varphi)_{\mathcal{D}' \times \mathcal{D}} = (Az^\gamma, \varphi)_{\mathcal{D}' \times \mathcal{D}}.\]

(4.1.15)

Pour le second membre de notre équation, on considère $\varphi \in \mathcal{D}([0, T])$ et $\psi \in \mathcal{D}(\Omega)$. Ce qui donne :

\[\begin{align*}
(u^\gamma_\varepsilon(t) \otimes \chi_\varepsilon(x), \varphi(t) \psi(x))_{\mathcal{D}'([0, T]) \otimes \mathcal{D}(\Omega), \mathcal{D}([0, T]) \times \mathcal{D}(\Omega)} \\
= (u^\gamma_\varepsilon(t), \varphi(t))_{\mathcal{D}'([0, T]), \mathcal{D}([0, T])} \times (\chi_\varepsilon(x), \psi(x))_{\mathcal{D}'(\Omega), \mathcal{D}(\Omega)};
\end{align*}\]

et en faisant tendre ε vers 0, on obtient :

\[\begin{align*}
(u^\gamma_\varepsilon(t), \varphi(t))_{\mathcal{D}'([0, T]), \mathcal{D}([0, T])} \times (\chi_\varepsilon(x), \psi(x))_{\mathcal{D}'(\Omega), \mathcal{D}(\Omega)} \\
\to (u^\gamma(t), \varphi(t))_{\mathcal{D}'([0, T]), \mathcal{D}([0, T])} \times (\delta(x - b), \psi(x))_{\mathcal{D}'(\Omega), \mathcal{D}(\Omega)}.
\]
Or,
\[(u^\gamma(t), \varphi(t))_{D'(\Omega)} \times (\delta(x-b), \psi(x))_{D'(\Omega)} \]
\[= (u^\gamma(t) \otimes \delta(x-b), \varphi(t)\psi(x))_{D'(\Omega) \otimes D'(\Omega)}, \]
d'où,
\[(u^\gamma_x(t) \otimes \chi_x(x), \varphi(t)\psi(x))_{D'(\Omega) \otimes D'(\Omega)} \]
\[\longrightarrow (u^\gamma \otimes \delta(x-b), \varphi(t)\psi(x))_{D'(\Omega) \otimes D'(\Omega) \times D'(\Omega)}. \]
Alors, par densité de \(D([0,T]) \otimes D(\Omega) \) dans \(D(Q) \), on obtient :
\[u^\gamma_x \chi \rightarrow u^\gamma \delta(x-b) \quad \text{dans} \quad D'(Q). \quad (4.1.16) \]
Finalement, de \((4.1.15)\) et \((4.1.16)\) on obtient :
\[A\zeta_\gamma = u^\gamma \delta(x-b) \quad \text{dans} \quad D'(Q). \]

2-Passage à la limite dans le problème en \(\xi_\gamma \) :

i) Passage à la limite pour l'équation \(A^*\xi_\gamma = z_\gamma \) :
Soit \(\varphi \in D(Q) \), on a en notant \(\mathcal{D} = D(Q) \) et \(\mathcal{D}' = D'(Q) \):
\[(A^*\xi_\gamma, \varphi)_{\mathcal{D}', \mathcal{D}} = (z_\gamma, \varphi)_{\mathcal{D}', \mathcal{D}}. \]
D'après \((4.1.10)\), il existe \(\xi_\gamma \in L^2(Q) \) telle que :
\[\xi_\gamma \rightarrow \xi_\gamma \quad \text{dans} \quad L^2(Q) \quad \text{et aussi dans} \quad \mathcal{D}'(Q). \]
On a alors :
\[(A^*\xi_\gamma, \varphi)_{\mathcal{D}', \mathcal{D}} = (\xi_\gamma, A\varphi)_{\mathcal{D}', \mathcal{D}} \rightarrow (\xi_\gamma, A\varphi)_{\mathcal{D}', \mathcal{D}} = (A^*\xi_\gamma, \varphi)_{\mathcal{D}', \mathcal{D}} \]
et
\[(z_\gamma, \varphi)_{\mathcal{D}', \mathcal{D}} \rightarrow (z_\gamma, \varphi)_{\mathcal{D}', \mathcal{D}}. \]
Par suite, on a par passage à la limite :
\[A^*\xi_\gamma = z_\gamma \quad \text{dans} \quad \mathcal{D}'(Q). \]

3-Passage à la limite dans le problème en \(\sigma_\gamma \) :

i) Passage à la limite pour l'équation \(A\sigma_\gamma = 0 \) :
Soit \(\varphi \in D(Q) \). On note pour simplifier \(\mathcal{D} = D(Q) \) et \(\mathcal{D}' = D'(Q) \). On a :
\[(A\sigma_\gamma, \varphi)_{\mathcal{D}', \mathcal{D}} = 0. \]
D’après (4.1.8), il existe $\sigma^\gamma \in L^2(Q)$ telle que :

$$\sigma^\gamma_\varepsilon \rightharpoonup \sigma^\gamma \text{ dans } L^2(Q) \text{ et donc aussi dans } \mathcal{D}' .$$

Par suite :

$$(A\sigma^\gamma_\varepsilon, \varphi)_{\mathcal{D}' \times \mathcal{D}} = (\sigma^\gamma_\varepsilon, A^\ast \varphi)_{\mathcal{D}' \times \mathcal{D}} \to (\sigma^\gamma, A^\ast \varphi)_{\mathcal{D}' \times \mathcal{D}} = (A\sigma^\gamma, \varphi)_{\mathcal{D}' \times \mathcal{D}} .$$

Finalement, on obtient :

$$A\sigma^\gamma = 0 \text{ dans } \mathcal{D}'(Q) .$$

\textbf{ii) Passage à la limite pour la condition au bord $\partial_\nu \sigma^\gamma_\varepsilon$ sur $\Sigma_0 \cup \Sigma_1$} :

D’après la remarque 4.1.2, il existe une sous-suite notée encore $\sigma^\gamma_\varepsilon$ telle que :

$$\sigma^\gamma_\varepsilon \rightharpoonup \sigma^\gamma \text{ dans } H := H^{1,2}(Q) .$$

Grâce à la continuité de la trace, on a :

$$\partial_\nu \sigma^\gamma_\varepsilon \rightharpoonup \partial_\nu \sigma^\gamma \text{ dans } L^2(\Sigma_0) .$$

De la même façon on montre grâce à la remarque 4.1.2 :

$$\xi^\gamma_\varepsilon \rightharpoonup \xi^\gamma \text{ dans } L^2(\Sigma_0) .$$

Par unicité de la limite, on obtient :

$$\partial_\nu \sigma^\gamma = \frac{1}{\gamma} \xi^\gamma \text{ sur } \Sigma_0 .$$

De la même façon, on a également :

$$\partial_\nu \sigma^\gamma = 0 \text{ sur } \Sigma_1 .$$

\textbf{4-Passage à la limite dans le problème en π^γ_ε} :

\textbf{i) Passage à la limite pour l’équation $A^\ast \pi^\gamma_\varepsilon = z^\gamma_\varepsilon - z_\varepsilon + \sigma^\gamma_\varepsilon$} :

Soit $\varphi \in \mathcal{D}(Q)$, on a en notant $\mathcal{D} = \mathcal{D}(Q)$ et $\mathcal{D}' = \mathcal{D}'(Q)$:

$$(A^\ast\pi^\gamma_\varepsilon, \varphi)_{\mathcal{D}' \times \mathcal{D}} = (z^\gamma_\varepsilon - z_\varepsilon + \sigma^\gamma_\varepsilon, \varphi)_{\mathcal{D}' \times \mathcal{D}} .$$

D’après (4.1.9), il existe $\pi^\gamma_\varepsilon \in L^2(Q)$ telle que :

$$\pi^\gamma_\varepsilon \rightharpoonup \pi^\gamma \text{ dans } L^2(Q) \text{ et aussi dans } \mathcal{D}'(Q) .$$

On a alors :

$$(A^\ast\pi^\gamma_\varepsilon, \varphi)_{\mathcal{D}' \times \mathcal{D}} = (\pi^\gamma_\varepsilon, A\varphi)_{\mathcal{D}' \times \mathcal{D}} \to (\pi^\gamma, A\varphi)_{\mathcal{D}' \times \mathcal{D}} = (A^\ast\pi^\gamma, \varphi)_{\mathcal{D}' \times \mathcal{D}} .$$
Pour le second membre de notre équation, on sait que z_γ^\ast converge faiblement vers z^γ dans $L^2(Q) \subset \mathcal{D}'(Q)$, ainsi que σ_γ^\ast (d’après (4.1.12) et (4.1.14)).
Finalement, on obtient :

$$A^*\pi^\gamma = z^\gamma - z_d + \sigma^\gamma \quad \text{dans} \quad \mathcal{D}'(Q).$$

D’autre part, grâce aux résultats de régularité et le théorème de traces, on montre de manière similaire à la preuve de (4.1.21), que :

$$\begin{align*}
\partial_\nu z_\gamma^\ast &\to \partial_\nu z^\gamma \quad \text{dans} \quad L^2(\Sigma_0 \cup \Sigma_1), \\
\partial_\nu \xi_\gamma^\ast &\to \partial_\nu \xi^\gamma \quad \text{dans} \quad L^2(\Sigma_0 \cup \Sigma_1), \\
\partial_\nu \pi_\gamma^\ast &\to \partial_\nu \pi^\gamma \quad \text{dans} \quad L^2(\Sigma_0 \cup \Sigma_1),
\end{align*}$$

et puisque :

$$\partial_\nu z_\gamma^\ast = \partial_\nu \xi_\gamma^\ast = \partial_\nu \pi_\gamma^\ast = 0 \quad \text{sur} \quad \Sigma_0 \cup \Sigma_1,$$

on a :

$$\partial_\nu z^\gamma = \partial_\nu \xi^\gamma = \partial_\nu \pi^\gamma = 0 \quad \text{sur} \quad \Sigma_0 \cup \Sigma_1.$$

De même pour la convergence des conditions initiales $\langle z_\gamma^\ast(0), \xi_\gamma^\ast(T), \sigma_\gamma^\ast(0), \pi_\gamma^\ast(T) \rangle$, comme elles sont toutes nulles, alors on peut montrer aussi comme précédemment qu’elles convergent vers $\langle z^\gamma(0), \xi^\gamma(T), \sigma^\gamma(0), \pi^\gamma(T) \rangle$ qui sont nulles aussi.
Ceci achève la démonstration.
Chapitre 5

Schémas numériques pour le contrôle ponctuel à moindres regrets

On commence dans ce chapitre par rappeler le problème du contrôle optimal ponctuel vu dans les chapitres 3 et 4, et on rappelle aussi les résultats d’existence et de caractérisation du contrôle optimal associé. Ensuite on présente une approximation par éléments finis de l’état du système et du contrôle optimal correspondant, on établit également une estimation de stabilité pour le schéma discret. La dernière partie est consacrée aux estimations d’erreur pour l’équation d’état et une analyse d’erreur pour le problème de contrôle optimal.

5.1 Position du problème

Soit Ω un ouvert borné convexe polygonal de \mathbb{R}^d, $d=\text{ord}(\Omega)$ avec une frontière assez régulière $\partial\Omega = \Gamma_0 \cup \Gamma_1$, $\bar{\Gamma}_0 \cap \bar{\Gamma}_1 = \emptyset$.

Le problème parabolique du contrôle ponctuel, étudié dans le chapitre 3, est le suivant :

\[
\begin{array}{ll}
A z & = v(t)\delta(x-b) \quad \text{dans} \quad Q, \\
z(0, x) & = 0 \quad \text{dans} \quad \Omega, \\
\partial_\nu z & = g \quad \text{sur} \quad \Sigma_0, \\
\partial_\nu z & = 0 \quad \text{sur} \quad \Sigma_1,
\end{array}
\tag{5.1.1}
\]

et on garde les mêmes définitions des notations que dans le chapitre 3.

On introduit la forme bilinéaire associée à l’opérateur A sur Ω et Q suivante :

\[
a(\varphi, w) = \int_\Omega \nabla \varphi \nabla w dx \quad \forall \varphi, w \in H^1(\Omega),
\]

et

\[
a(\varphi, w)_Q = \int_Q \nabla \varphi \nabla w dt dx \quad \forall \varphi, w \in L^2(0, T, H^1(\Omega)).
\]
La solution faible du problème (5.1.1) peut être définie par la méthode de transposition comme dans le chapitre 3. En effet, pour \(g \in L^2(\Sigma_0) \) et \(v \in L^2([0,T]) \) données, on a :

\[
\int_Q z A^* \varphi dt dx = \int_0^T v(t) \varphi(t,b) dt - \int_{\Sigma_0} \varphi(t,x) g(t,x) dt dx \quad \forall \varphi \in \mathcal{W}(Q),
\]

où :

\[
\mathcal{W}(Q) = \{ \varphi \in X(0,T) : A^* \varphi \in L^2(Q) \text{ et } \partial_n \varphi \in L^2(\Sigma_0 \cup \Sigma_1); \varphi(.,T) = 0 \},
\]

et où :

\[
X(0,T) = L^2(0,T; H^2(\Omega)) \cap H^1(0,T,L^2(\Omega)) \hookrightarrow C([0,T], H^1(\Omega)),
\]

(voir chapitre 1, théorème 1.3).

On munit le problème (5.1.1) de la fonction coût suivante :

\[
J(v,g) = \|z(v,g) - z_d\|^2_{L^2(Q)} + N \|v\|^2_{L^2([0,T])} \quad \forall g \in G,
\]

où \(G \) est défini par (3.4.3), \(N > 0 \) est une constante, et où \(U_{ad} \) est l’espace des contrôles admissibles, défini par :

\[
U_{ad} = \{ v \in L^2(0,T) : a \leq v(t) \leq c; \quad \text{p.p dans } [0,T] \},
\]

avec \(a, c \) des constantes telles que \(a < c \).

On est devant un problème de contrôle optimal ponctuel avec donnée manquante, qui se résout par la méthode du contrôle à moindres regrets de J.-L. Lions. Il s’agit selon cette méthode de passer par le biais de certaines techniques, de la minimisation de la fonctionnelle (5.1.3), à l’étude du problème de contrôle classique suivant :

\[
\inf_{v \in U_{ad}} \mathcal{J}^\gamma(v), \quad \text{avec } \mathcal{J}^\gamma(v) = J(v,0) + \frac{1}{\gamma} \|\xi(v,0)\|^2_{L^2(\Sigma_0)}
\]

où \(\xi := \xi(v,0) \) est l’unique solution du problème adjoint suivant :

\[
\begin{cases}
A^* \xi(v,0) &= z(v,0) \quad \text{dans } Q, \\
\xi(T) &= 0 \quad \text{dans } \Omega, \\
\partial_n \xi &= 0 \quad \text{sur } \Sigma_0 \cup \Sigma_1.
\end{cases}
\]

Le contrôle optimal ponctuel à moindres regrets est alors caractérisé par le système d’optimalité singulier suivant :

Proposition 5.1. Le contrôle à moindres regrets \(u \) du problème (5.1.1)-(5.1.5) est caractérisé par l’unique solution \(\{u,z,\xi,\sigma,\pi\} \in L^2([0,T]) \times L^2(Q) \times (L^2(0,T;H^1(\Omega)))^3 \) du
système d’optimalité singulier (S.O.S) :
\[
\begin{align*}
\mathcal{A}z &= u\delta(x - b) & A^*\xi &= z \\
\mathcal{A}\sigma &= 0 & A^*\pi &= z - z_d + \sigma \quad \text{dans } Q, \\
z(0) &= 0 & \xi(T) &= 0 \\
\sigma(0) &= 0 & \pi(T) &= 0 \quad \text{dans } \Omega, \\
\partial_\nu z &= 0 & \partial_\nu \xi &= 0 \\
\partial_\nu \sigma &= \frac{1}{\gamma} \xi & \partial_\nu \pi &= 0 \\
\partial_\nu \sigma &= 0 & \partial_\nu \xi &= 0 \\
\partial_\nu \pi &= 0 & \partial_\nu \pi &= 0 \\
\end{align*}
\]
à
(5.1.7)
avec l’inégalité de l’état adjoint :
\[
\int_0^T [Nu(t) + \pi(t,b)](v(t) - u(t)) \geq 0 \quad \forall v \in U_{ad}.
\]
(5.1.8)

Preuve. La preuve est similaire à celle des propositions 3.3 et 4.1.

5.2 Approximation par éléments finis du problème de contrôle optimal avec donnée manquante

Le but de cette section est de discrétiser le problème (5.1.5). Pour cela on considère une famille de triangularisations régulières \{\mathcal{I}^h\} de \(\overline{\Omega}\), telle que :
\[
\overline{\Omega} = \bigcup_{\tau \in \mathcal{I}^h} \tau.
\]

On note par :
\[
h_\tau := \text{diam } \tau,
\]
le diamètre de l’élément \(\tau\), et
\[
h = \text{max}_{\tau \in \mathcal{I}^h} h_\tau,
\]
le pas du maillage.

Comme la solution du problème (5.1.1) existe dans \(L^2(Q)\) et est unique, on peut utiliser la méthode des éléments finis triangulaire de Lagrange d’ordre 0, associée à notre maillage. Cela nous conduit à considérer l’espace discret :
\[
V_h = \{ \varphi_h \in C(\overline{\Omega}) \text{ tel que } \varphi_h|_\tau \in \mathbb{P}_0 \text{ pour tout } \tau \in \mathcal{I}^h \},
\]
(5.2.1)
qui est un sous-espace de \(L^2(\Omega)\) de dimension finie, où \(\mathbb{P}_0\) est l’ensemble des polynômes affines par morceaux.

On a les estimations inverses suivantes (cf. : Ciarlet [8], théorème 3.2.6, p. 140) :
\[
\|\varphi_h\|_{H^r(\Omega)} \leq Ch^{l-s}\|\varphi_h\|_{H^s(\Omega)} \quad 0 \leq l \leq s \leq 1,
\]
(5.2.2)
\[\| \varphi_h \|_{L^\infty(\Omega)} \leq C h^{-\frac{d}{2}} \| \varphi_h \|_{L^2(\Omega)}, \]
\[\| \varphi_h \|_{L^\infty(\Omega)} \leq C \rho(d, h) \| \varphi_h \|_{H^1(\Omega)}, \]
pour tout \(\varphi_h \in V_h \), où :

\[\rho(d, h) = \begin{cases} \sqrt{\log h}, & d = 2, \\ h^{-\frac{d}{2}}, & d = 3. \end{cases} \]

Soit \(L_h : L^2(\Omega) \to V_h \) l’opérateur de la projection \(L^2 \), défini par :

\[\int_{\Omega} L_h \varphi w_h dx = \int_{\Omega} \varphi w_h dx \quad \forall w_h \in V_h, \ \varphi \in H^1(\Omega), \]

et \(R_h : H^1(\Omega) \to V^h \) l’opérateur de projection de Ritz, donné par :

\[a(R_h \varphi, w_h) = a(\varphi, w_h) \quad \forall w_h \in V_h, \ \varphi \in H^1(\Omega). \]

On a alors les estimations d’erreurs suivantes :

Lemme 5.2. [8] Soit \(L_h \) et \(R_h \) l’opérateur de projection \(L^2 \) et l’opérateur de la projection de Ritz respectivement, définies précédemment. Alors les estimations suivantes sont satisfaites :

\[\| \varphi - L_h \varphi \|_{H^{-1}(\Omega)} + h \| \varphi - L_h \varphi \|_{L^2(\Omega)} \leq C h^2 \| \varphi \|_{H^1(\Omega)}, \]
\[\| \varphi - R_h \varphi \|_{L^2(\Omega)} + h \| \varphi - R_h \varphi \|_{H^1(\Omega)} \leq C h^2 \| \varphi \|_{H^2(\Omega)}. \]

De plus :

\[\| \varphi - R_h \varphi \|_{L^\infty(\Omega)} \leq C h^{2-\frac{d}{2}} \| \varphi \|_{H^2(\Omega)}. \]

On introduit une partition de l’intervalle \([0, T]\) en sous-intervalles \(I_m = (t_{m-1}, t_m] \), de longueur \(k_m = mk \), \(m = 1, \ldots, M \), où \(0 = t_0 < t_1 < \ldots < t_{M-1} < t_M \) et \(k = \frac{T}{M} \). Dans ce qui suit, pour l’analyse d’erreur on suppose que \(k = O(h^d) \).

On considère le schéma d’Euler rétrograde (ce qui se traduit par la méthode de Galerkin discontinue avec des fonctions constantes par morceaux) pour la discrétisation en temps.

On définit :

\[V_{hk} := \{ \phi : \Omega \times [0, T] \to \mathbb{R}, \phi(., t)|_{I_m} \in V_h, \phi(x, .)|_{I_m} \in \mathbb{P}_0 ; \text{ pour } m = 1, \ldots, M \}, \]
c’est-à-dire que \(\phi \in V_{hk} \) est une fonction plynomiale, constante par morceaux par rapport au temps.

Pour \(z, \phi \in V_{hk} \), on définit :

\[A(z, \phi) = \sum_{m=1}^{M} (z^m - z^{m-1}, \phi^m)_{L^2(\Omega)} + ka(z^m, \phi^m). \]
Le schéma totalement discret du problème (5.1.2), basé sur le schéma d’Euler rétrograde pour la discrétisation en temps, et la méthode des éléments finis linéaires, continues par morceaux pour la discrétisation spatiale, se lit maintenant comme suit :

\[
\begin{cases}
A(z_{hk}, \phi) = \int_0^T v(t) \phi(t,b) dt \quad \forall \phi \in V_{hk}, \quad v \in U_{ad}.
\end{cases}
\]

(5.2.11)

Notons que pour chaque intervalle \(I_m\), la solution \(z_{hk}^m \in V_h\) satisfait :

\[
\begin{cases}
\left< \frac{z_{hk}^m - z_{hk}^{m-1}}{k}, \varphi_h \right>_{L^2(\Omega)} + a(z_{hk}^m, \varphi_h) = \frac{1}{k} \int_{t_{m-1}}^{t_m} v(t) \varphi_h(b) dt; \quad \forall \varphi_h \in V_h, \quad v \in U_{ad}, \\
z_{hk}^0 = 0.
\end{cases}
\]

(5.2.12)

Il est facile de montrer que (5.2.11) admet une solution unique \(z_{hk} \in V_{hk}\), (pour plus de détails voir [46], page 7).

De plus on a l’estimation de stabilité suivante :

Lemme 5.3. Soit \(z_{hk} \in V_{hk}\) la solution du schéma (5.2.11) et \(v \in L^2(0, T)\). Alors il existe une constante \(C\) telle que :

\[
\sum_{m=1}^{M} \left\| z_{hk}^m - z_{hk}^{m-1} \right\|^2_{L^2(\Omega)} + ka(z_{hk}^M, z_{hk}^M) \leq C \|v\|^2_{L^2(0,T)}.
\]

(5.2.13)

Preuve. En prenant \(\varphi_h = k(z_{hk}^m - z_{hk}^{m-1})\) dans (5.2.12) on obtient :

\[
\left\| z_{hk}^m - z_{hk}^{m-1} \right\|^2_{L^2(\Omega)} + ka(z_{hk}^m, z_{hk}^m) = \int_{t_{m-1}}^{t_m} v(t) \left[z_{hk}^m(b) - z_{hk}^{m-1}(b) \right] dt,
\]

(5.2.14)

et en utilisant l’inégalité de Young, on a :

\[
k \int_{\Omega} \nabla z_{hk}^m \nabla z_{hk}^m dx - k \int_{\Omega} \nabla z_{hk}^m \nabla z_{hk}^{m-1} dx \geq k \int_{\Omega} \left| \nabla z_{hk}^m \right|^2 dx - \frac{1}{2} k \int_{\Omega} \left| \nabla z_{hk}^{m-1} \right|^2 dx
\]

\[
- \frac{1}{2} k \int_{\Omega} \left| \nabla z_{hk}^{m-1} \right|^2 dx
\]

\[
\geq \frac{1}{2} k \left[a(z_{hk}^m, z_{hk}^m) - a(z_{hk}^{m-1}, z_{hk}^{m-1}) \right].
\]

Donc (5.2.14) devient :

\[
\left\| z_{hk}^m - z_{hk}^{m-1} \right\|^2_{L^2(\Omega)} + \frac{1}{2} k \left[a(z_{hk}^m, z_{hk}^m) - a(z_{hk}^{m-1}, z_{hk}^{m-1}) \right] \leq \int_{t_{m-1}}^{t_m} v(t) \left| z_{hk}^m - z_{hk}^{m-1} \right| dt
\]

\[
\leq \left\| z_{hk}^m - z_{hk}^{m-1} \right\|_{L^\infty(\Omega)} \int_{t_{m-1}}^{t_m} |v(t)| dt
\]

\[
\leq \left\| z_{hk}^m - z_{hk}^{m-1} \right\|_{L^\infty(\Omega)} \left(t_m - t_{m-1} \right)^{1/2} \|v\|_{L^2(t_{m-1}, t_m)}
\]

\[
\leq k^{1/2} \left\| z_{hk}^m - z_{hk}^{m-1} \right\|_{L^\infty(\Omega)} \|v\|_{L^2(t_{m-1}, t_m)}.
\]

(5.2.15)
Or, d’après l’estimation (5.2.3), on a :

\[k \hat{z} \left\| z_h^m - z_h^{m-1} \right\|_{L^\infty(\Omega)} \leq k \hat{z} C h^{-\frac{d}{2}} \left\| z_h^m - z_h^{m-1} \right\|_{L^2(\Omega)} \]

\[\leq C \left\| z_h^m - z_h^{m-1} \right\|_{L^2(\Omega)}, \quad \text{car on a l’hypothèse } k = O(h^d). \] (5.2.16)

Donc (5.2.15) devient comme suit :

\[\left\| z_h^m - z_h^{m-1} \right\|_{L^2(\Omega)}^2 + \frac{1}{2} k [a(z_h^m, z_h^m) - a(z_h^{m-1}, z_h^{m-1})] \leq C \left\| z_h^m - z_h^{m-1} \right\|_{L^2(\Omega)} \left\| v \right\|_{L^2(t_{m-1}, t_m)} \]

\[\leq \frac{1}{2} \left\| z_h^m - z_h^{m-1} \right\|_{L^2(\Omega)}^2 + C \left\| v \right\|_{L^2(t_{m-1}, t_m)^2}, \]

où \(C \) est une constante, notée comme les précédentes.

En faisant la somme pour \(m \) allant de 1 à \(M \), on obtient :

\[\frac{1}{2} \sum_{m=1}^{M} \left[\left\| z_h^m - z_h^{m-1} \right\|_{L^2(\Omega)}^2 + k [a(z_h^m, z_h^m) - a(z_h^{m-1}, z_h^{m-1})] \right] \]

\[\leq \sum_{m=1}^{M} C \left\| v \right\|_{L^2(t_{m-1}, t_m)^2}. \]

Par suite :

\[\sum_{m=1}^{M} \left\| z_h^m - z_h^{m-1} \right\|_{L^2(\Omega)}^2 + k a(z_h^M, z_h^M) \leq C \left\| v \right\|_{L^2([0, T])}. \]

Ce qui donne (5.2.13).

5.2.1 Discrétisation du problème de contrôle optimal

Pour discrétiser le problème de contrôle optimal ponctuel à moindres regrets, on utilise l’approche de discrétisation variationnelle développée dans [17] et [18].

La forme variationnelle discrète consiste à résoudre le problème de minimisation suivant :

\[
\begin{cases}
\text{Trouver } (z_h, u) \in V_h \times U_{ad} \text{ qui satisfait :} \\
\mathcal{J}^\gamma(u) = \inf_{v \in U_{ad}} \mathcal{J}^\gamma(v), \\
\text{où } \mathcal{J}^\gamma(v) = J(v, 0) + \frac{1}{\gamma} \left\| \xi_h(v, 0) \right\|_{L^2(\Sigma_0)^2},
\end{cases}
\] (5.2.17)

avec,

\[J(v, 0) = k \sum_{m=1}^{M} \left\| z_h^m - z_d^m \right\|_{L^2(Q)}^2 + N \left\| v \right\|_{L^2([0, T])}^2 \text{ et,} \]

\[J(0, 0) = k \sum_{m=1}^{M} \left\| z_d^m \right\|_{L^2(Q)}^2. \]
et où z_{hk} est la solution de :

$$A(z_{hk}, \phi) = \int_0^T v(t)\phi(t, b)dt, \ \forall \phi \in V_{hk}, \ v \in U_{ad}, \quad (5.2.18)$$

et $z_d^m = \tilde{z}_{d|m} = \frac{1}{k} \int_{I_m} z_d dt$.

Le problème (5.2.17) admet une unique solution $u_{hk} \in U_{ad}$ (voir chapitre 2, proposition 2.3).

Pour la suite, il est convenable d’introduire les quatre problèmes auxiliaires suivants :

Pour $u_{hk} \in U_{ad}$, trouvez $z(u_{hk}) \in L^2(Q)$ qui satisfait :

$$\begin{cases}
A z(u_{hk}) = u_{hk}(t)\delta_b & \text{dans } Q, \\
z(u_{hk})(0, x) = 0 & \text{dans } \Omega, \\
\partial_n z(u_{hk}) = 0 & \text{sur } \Sigma_0 \cup \Sigma_1.
\end{cases} \quad (5.2.19)$$

Pour $u_{hk} \in U_{ad}$, trouvez $\xi(u_{hk}) \in L^2(Q)$ qui satisfait :

$$\begin{cases}
A^*\xi(u_{hk}) = z_{hk} & \text{dans } Q, \\
\xi(u_{hk})(0, x) = 0 & \text{dans } \Omega, \\
\partial_n \xi(u_{hk}) = 0 & \text{sur } \Sigma_0 \cup \Sigma_1.
\end{cases} \quad (5.2.20)$$

Trouver $\sigma(u_{hk}) \in L^2(Q)$ qui satisfait :

$$\begin{cases}
A\sigma(u_{hk}) = 0 & \text{dans } Q, \\
\sigma(u_{hk})(0, x) = 0 & \text{dans } \Omega, \\
\partial_n \sigma(u_{hk}) = \frac{1}{\gamma} \xi_{hk} & \text{sur } \Sigma_0, \\
\partial_n \sigma(u_{hk}) = 0 & \text{sur } \Sigma_1.
\end{cases} \quad (5.2.21)$$

Pour $\sigma_{hk} \in V_{hk}$, trouvez $\pi(z_{hk}) \in L^2(Q)$ qui satisfait :

$$\begin{cases}
A^*\pi(z_{hk}) = z_{hk} - \tilde{z}_d + \sigma_{hk} & \text{dans } Q, \\
\pi(z_{hk})(T, x) = 0 & \text{dans } \Omega, \\
\partial_n \pi(z_{hk}) = 0 & \text{sur } \Sigma_0 \cup \Sigma_1.
\end{cases} \quad (5.2.22)$$

Comme $u_{hk} \in U_{ad}$, on conclut que le problème (5.2.19) admet une solution unique $z(u_{hk}) \in L^2(Q)$ (voir théorème 3.1, chapitre 3, section 3.2).

De même, les problèmes (5.2.20), (5.2.21) et (5.2.22) admettent une unique solution $\xi(u_{hk})$, $\sigma(u_{hk})$ et $\pi(z_{hk})$ respectivement dans $L^2(0, T; H^2(\Omega)) \cap H^1(0, T; L^2(\Omega))$ (cf. [30], chapitre 4, théorème 4.3, p. 30).
On a le système d’optimalité discrétisé du système continu (5.1.7) et qui caractérise u_{hk} suivant :

Proposition 5.4. Le contrôle ponctuel à moindres regrets discret u_{hk} est caractérisé par le quadruplet $(z_{hk}, \xi_{hk}, \sigma_{hk}, \pi_{hk}) \in (V_{hk})^4$ qui sont respectivement les approximations entièrement discrètes en éléments fins de $u, z(u_{hk}), \xi(u_{hk}), \sigma(u_{hk}), \pi(u_{hk})$ et solutions des problèmes suivants :

$$
\begin{aligned}
A(z_{hk}, \phi) &= \sum_{m=1}^{M} \int_{I_m} u(t) \phi(t,b)dt, & A(\phi, \xi_{hk}) &= \sum_{m=1}^{M} \int_{I_m} \langle z_{hk}^m, \phi \rangle_{L^2(\Omega)} dt, \\
A(\phi, \pi_{hk}) &= \sum_{m=1}^{M} \int_{I_m} \langle z_{hk}^m - z_d + \sigma_{hk}^m, \phi \rangle_{L^2(\Omega)} dt, & A(\sigma_{hk}, \phi) &= 0, & \forall \phi &\in V_{hk}, \\
& \quad z_{hk}^0 = 0, & &\xi_{hk}^M = 0, & \forall \phi &\in \overline{V_{hk}}, \\
& \quad \sigma_{hk}^0 = 0, & &\pi_{hk}^M = 0 &\text{dans } \overline{\Omega}.
\end{aligned}
$$

Avec l’inégalité de l’état adjoint discret suivante :

$$
\int_{0}^{T} [N_{u_{hk}}(t) + \pi_{hk}(t,b)] [v(t) - u_{hk}(t)] dt \geq 0 \quad \forall v \in U_{ad}.
$$

(5.2.24)

5.3 Analyse d’erreur pour le contrôle optimal ponctuel à moindres regrets

Lemme 5.5. Soit $z(u_{hk}) \in L^2(0,T;L^2(\Omega))$ et $z_{hk} \in V_{hk}$ les solutions du problème (5.2.19) et (5.2.18) respectivement. Alors on a l’estimation à priori suivante :

$$
\|z(u_{hk}) - z_{hk}\|_{L^2(0,T;L^2(\Omega))} \leq C(h^{2-d} + k^{1}).
$$

(5.3.1)

On considère le problème dual :

$$
\begin{aligned}
A^* \psi &= f \quad \text{dans } Q, \\
\psi(T) &= 0 \quad \text{dans } \Omega, \\
\partial_{\nu} \psi &= 0 \quad \text{sur } \Sigma_0 \cup \Sigma_1.
\end{aligned}
$$

(5.3.2)

Alors, selon [30] pour $f \in L^2(0,T;L^2(\Omega))$ on a $\psi \in L^2(0,T;H^2(\Omega)) \cap H^1(0,T;L^2(\Omega))$ et :

$$
\|\partial_{\nu} \psi\|_{L^2(Q)} + \|\psi\|_{L^2(0,T;H^2(\Omega))} \leq C\|f\|_{L^2(Q)},
$$

(5.3.3)
et

\[\|\psi(0)\|_{L^2(\Omega)} \leq C\|f\|_{L^2(Q)}. \]

(5.3.4)

Comme \(\psi \in C([0,T];L^2(\Omega)) \), \(\psi(t_m, \cdot) \) est bien définie pour \(m = 1, \ldots, M \). On notera dans la suite \(\psi(t_m, \cdot) := \psi^m \).

En multipliant l’équation du problème (5.3.2) par \(z(u_{hh}) - z_{hh} \) et en intégrant par parties sur \(Q \), on a :

\[
\int_0^T \int_{\Omega} (z(u_{hh}) - z_{hh}) f dt dx = \int_0^T \int_{\Omega} (z(u_{hh}) - z_{hh}) A^* \psi dt dx,
\]

\[
= \int_0^T \int_{\Omega} (z(u_{hh}) A^* \psi) dt dx - \int_0^T \int_{\Omega} z_{hh} A^* \psi dt dx,
\]

\[
= \int_0^T \int_{\Omega} Az(u_{hh}) \psi dt dx + \int_0^T \left[z(T) \psi(T) - z(0) \psi(0) \right] dt dx
\]

\[
- \int_{0,\Omega_1} \left[\partial_\nu \psi - z \partial_\nu \psi \right] - \int_0^T \int_{\Omega} z_{hh} A^* \psi dt dx,
\]

\[
= \int_0^T \int_{\Omega} Az(u_{hh}) \psi dt dx - \int_0^T \int_{\Omega} z_{hh} A^* \psi dt dx,
\]

\[
= \int_0^T u_{hh}(t) \psi(t, b) dt - \int_0^T \int_{\Omega} z_{hh} A^* \psi dt dx.
\]

Or

\[
\int_0^T \int_{\Omega} z_{hh} A^* \psi dt dx = \int_0^T \int_{\Omega} Az_{hh} \psi dt dx = \int_0^T u(t) \psi(t, b) \equiv A(z_{hh}, \psi).
\]

Donc :

\[
\int_0^T \int_{\Omega} (z(u_{hh}) - z_{hh}) f dt dx = \int_0^T \int_{\Omega} u_{hh}(t) \psi(t, b) dt - \sum_{m=1}^M (z_{hh}^m - z_{hh}^{m-1}, \psi^{m-1}) - \sum_{m=1}^M \int_{I_m} a(z_{hh}^m, \psi^m) dt.
\]

(5.3.5)

De (5.2.18), on a :

\[
\sum_{m=1}^M (z_{hh}^m - z_{hh}^{m-1}, \phi^m)_{L^2(\Omega)} + \sum_{m=1}^M \int_{I_m} a(z_{hh}^m, \phi^m) dt = k^2 \sum_{m=1}^M \int_{I_m} u_{hh}(t) \phi^m(t, b) dt
\]

(5.3.6)

pour tout \(\phi \in V_{hh} \),

et en prenant \(\phi^m = R_h \psi^m \) et \(\psi^m = R_h \psi^m \), on obtient :

\[
\sum_{m=1}^M (z_{hh}^m - z_{hh}^{m-1}, R_h \psi^m) + \sum_{m=1}^M \int_{I_m} a(z_{hh}^m, R_h \psi^m) dt = \sum_{m=1}^M \int_{I_m} u_{hh}(t) R_h \psi^m(t, b) dt.
\]

(5.3.7)
En remplaçant par (5.3.7) dans (5.3.5) on obtient :

\[
\int_0^T \int_{\Omega} \left(z(u_{hk}) - z_{hk} \right) f \, dt \, dx = \left[\int_0^T u_{hk}(t) \psi(t,b) \, dt - \sum_{m=1}^{M} \int_{I_m} u_{hk}(t) \overline{R_h\psi^m(t,b)} \, dt \right] \\
- \left[\sum_{m=1}^{M} \left(z^m_{hk} - z^{m-1}_{hk} \right) \psi^{m-1} - \overline{R_h\psi^m} \right] \\
+ \sum_{m=1}^{M} \int_{I_m} a(z^m_{hk}, \psi - \overline{R_h\psi^m}) \, dt \right] \\
= T_1 + T_2.
\]

(5.3.8)

On a :

\[
T_1 = \int_0^T u_{hk}(t) \psi(t,b) \, dt - \sum_{m=1}^{M} \int_{I_m} u_{hk}(t) \overline{R_h\psi^m(t,b)} \, dt \\
= \sum_{m=1}^{M} \int_{I_m} u_{hk}(t) \psi(t,b) \, dt - \sum_{m=1}^{M} \int_{I_m} u_{hk}(t) \overline{R_h\psi^m(t,b)} \, dt \\
= \sum_{m=1}^{M} \int_{I_m} u_{hk}(t) [\psi(t,b) - \overline{R_h\psi^m(t,b)}] \, dt.
\]

Or,

\[
\sum_{m=1}^{M} \int_{I_m} \overline{R_h\psi^m(t,b)} = \sum_{m=1}^{M} \int_{I_m} R_h\psi(t,b), \text{ car } R_h\psi(t,b) \in V_h.
\]

D'où,

\[
T_1 = \sum_{m=1}^{M} \int_{I_m} u_{hk}(t) \left[\psi(t,b) - \overline{R_h\psi(t,b)} \right] \, dt \\
\leq \| u_{hk} \|_{L^2([0,T])} \| \psi - \overline{R_h\psi} \|_{L^2(0,T;L^\infty(\Omega))} \\
\leq Ch^{2 - \frac{d}{2}} \| u_{hk} \|_{L^2([0,T])} \| \psi \|_{L^2(0,T;H^2(\Omega))} \\
\leq Ch^{2 - \frac{d}{2}} \| u_{hk} \|_{L^2([0,T])} \| f \|_{L^2(0,T;L^2(\Omega))}.
\]

D’autre part, on a :

\[
| T_2 | = \sum_{m=1}^{M} \left(z^m_{hk} - z^{m-1}_{hk} \right) \psi^{m-1} - \overline{R_h\psi^m} \right]_{L^2(\Omega)} + \sum_{m=1}^{M} \int_{I_m} a(z^m_{hk}, \psi - \overline{R_h\psi^m}) \, dt \\
\leq \sum_{m=1}^{M} \left(z^m_{hk} - z^{m-1}_{hk} \right) \psi^{m-1} \left. \overline{R_h\psi^m} \right]_{L^2(\Omega)} \\
\leq \sum_{m=1}^{M} \left(\| z^m_{hk} - z^{m-1}_{hk} \|_{L^2(\Omega)} \| \psi^{m-1} - \overline{R_h\psi^m} \|_{L^2(\Omega)} \right) \\
\leq \sum_{m=1}^{M} \left(\| z^m_{hk} - z^{m-1}_{hk} \|_{L^2(\Omega)} \| \psi^{m-1} - \overline{R_h\psi^m} \|_{L^2(\Omega)} \right)
\]
L’estimation d’erreur standard donne (voir exemple dans [13]-[46] et lemme 5.2) :
\[
\| \psi^{m-1} - \mathcal{R}_h \psi^m \|_{L^2(\Omega)} \leq \| \psi^{m-1} - \bar{\psi}^m \|_{L^2(\Omega)} + \| \bar{\psi}^m - \mathcal{R}_h \psi^m \|_{L^2(\Omega)} \\
\leq C k^{\frac{1}{2}} \| \partial_t \psi \|_{L^2(t_{m-1},t_m;L^2(\Omega))} + C h^2 \| \bar{\psi}^m \|_{H^2(\Omega)}.
\] (5.3.10)

Il est facile de montrer que :
\[
\| \bar{\psi}^m \|_{H^2(\Omega)} \leq k^{-\frac{1}{2}} \| \psi \|_{L^2(t_{m-1},t_m;H^2(\Omega))}.
\] (5.3.11)

car \(\bar{\psi}^m = \frac{1}{k} \int_{t_{m-1}}^{t_m} \psi dt \).

Alors, en utilisant (5.3.10), (5.3.11), Lemme 5.3 et l’estimation de stabilité pour \(\psi \), on obtient :
\[
|T_2| \leq \left(\sum_{m=1}^M \| z_{hk}^m - z_{h-1}^m \|_{L^2(\Omega)}^2 \right)^\frac{1}{2} \left(\sum_{m=1}^M \| \psi^{m-1} - \mathcal{R}_h \bar{\psi}^m \|_{L^2(\Omega)}^2 \right)^\frac{1}{2} \quad \text{(voir théorème 1.6, chapitre 2)}
\]
\[
\leq \left(C k^\frac{1}{2} \| u_{hk} \|_{L^2(0,T)} \right) \left(C^2 k \| \partial_t \psi \|_{L^2(t_{m-1},t_m;L^2(\Omega))}^2 + C h^4 \| \bar{\psi}^m \|_{H^2(\Omega)} \right)^\frac{1}{2}
\]
\[
\leq \left(C k^\frac{1}{2} \| u_{hk} \|_{L^2(0,T)} \right) \left(C^2 k \| \partial_t \psi \|_{L^2(t_{m-1},t_m;L^2(\Omega))}^2 + C h^4 k^{-1} \| \psi \|_{L^2(t_{m-1},t_m;H^2(\Omega))} \right)^\frac{1}{2}
\]
\[
\leq \left(C k^\frac{1}{2} \| u_{hk} \|_{L^2(0,T)} \right) \left(C^2 k + C h^4 \| f \|_{L^2(0,T;L^2(\Omega))} \right)^\frac{1}{2}
\]
\[
\leq \left(C k^\frac{1}{2} \| u_{hk} \|_{L^2(0,T)} \right) \left(C^2 k + C h^{1 - 4} \| f \|_{L^2(0,T;L^2(\Omega))} \right)^\frac{1}{2}
\]
\[
\leq C \left(k^\frac{1}{2} + h^{2 - \frac{2}{d}} \right) \| u_{hk} \|_{L^2(0,T)} \| f \|_{L^2(0,T;L^2(\Omega))},
\] (5.3.12)

En insérant les estimations pour \(T_1 \) et \(T_2 \) dans (5.3.8), on obtient :
\[
\int_0^T \int_{\Omega} (z(u_{hk}) - z_{hk}) f dt dx \leq C \left(k^\frac{1}{2} + h^{2 - \frac{2}{d}} \right) \| u_{hk} \|_{L^2(0,T)} \| f \|_{L^2(0,T;L^2(\Omega))}.
\] (5.3.13)

Finalement, en posant \(f := z(u_{hk}) - z_{hk} \), on a bien (5.3.1).

Lemme 5.6. Soit \(\xi(u_{hk}) \in L^2(0,T;H^2(\Omega)) \cap H^1(0,T;L^2(\Omega)) \) et \(\xi_{hk} \in V_{hk} \) les solutions des problèmes (5.2.20) et (5.2.23) respectivement, et soit \(\pi(z_{hk}) \in L^2(0,T;H^2(\Omega)) \cap H^1(0,T;L^2(\Omega)) \) et \(\pi_{hk} \in V_{hk} \) les solutions du problème (5.2.22) et (5.2.23) respectivement.

Alors on a :
\[
\| \xi(u_{hk}) - \xi_{hk} \|_{L^2(0,T;L^2(\Omega))} \leq C (h^2 + k),
\] (5.3.14)

et
\[
\| \pi(z_{hk}) - \pi_{hk} \|_{L^2(0,T;L^2(\Omega))} \leq C (h^2 + k).
\] (5.3.15)
Preuve. Notons que \(\xi_{hk} \) est l’approximation entièrement discrète en éléments finis de \(\xi(u_{hk}) \). On peut donc prouver par l’argument standard que (voir [13] et Raviart[42] Théorème 5.1-5, page 111) :

\[
\|\xi(u_{hk}) - \xi_{hk}\|_{L^2(0,T;L^2(\Omega))} \leq C(h^2 + k) \left(\|\xi(u_{hk})\|_{L^2(0,T;H^2(\Omega))} + \|\xi(u_{hk})\|_{H^1(0,T;L^2(\Omega))} \right)
\]

\[
\leq C(h^2 + k) \|z_{hk}\|_{L^2(0,T;L^2(\Omega))}
\]

\[
\leq C(h^2 + k) \|u_{hk}\|_{L^2(0,T;L^2(\Omega))}.
\]

D’autre part \(\pi_{hk} \) est aussi l’approximation totalement discrète de \(\pi(z_{hk}) \). En utilisant également l’argument standard, on obtient :

\[
\|\pi(z_{hk}) - \pi_{hk}\|_{L^2(0,T;L^2(\Omega))} \leq C(h^2 + k) \left(\|\pi(z_{hk})\|_{L^2(0,T;H^2(\Omega))} + \|\pi(z_{hk})\|_{H^1(0,T;L^2(\Omega))} \right)
\]

\[
\leq C(h^2 + k) \|z_{hk} - z_d + \sigma_{hk}\|_{L^2(0,T;L^2(\Omega))}
\]

\[
\leq C(h^2 + k) \|z_{hk}\|_{L^2(0,T;L^2(\Omega))} + \|z_d\|_{L^2(0,T;L^2(\Omega))} + \|\sigma_{hk}\|_{L^2(0,T;L^2(\Omega))}
\]

\[
\leq C(h^2 + k) \|u_{hk}\|_{L^2(0,T)} + \|z_d\|_{L^2(0,T;L^2(\Omega))} + \|\sigma_{hk}\|_{L^2(0,T;L^2(\Omega))}.\]

Finalement, on peut énoncer les estimations d’erreur pour le contrôle optimal ponctuel à moindres regrets. On a en effet le :

Théorème 5.7. Soit \(z \in L^2(0,T;L^2(\Omega)) \), \(\xi \in L^2(0,T;H^2(\Omega)) \cap H^1(0,T;L^2(\Omega)) \), \(\sigma \in L^2(0,T;H^1(\Omega)) \cap C(0,T;L^2(\Omega)) \), \(\pi \in L^2(0,T;H^2(\Omega)) \cap H^1(0,T;L^2(\Omega)) \) et \(u \in U_{ad} \) qui représente les solutions du système (5.1.7). Soit aussi \((z_{hk}, \xi_{hk}, \sigma_{hk}, u_{hk}) \in (V_{hk})^4 \times U_{ad} \) les solutions du problème (5.2.17)-(5.2.23). Alors il existe une constante positive \(C \) telle que :

\[
\sqrt{N} \|u - u_{hk}\|_{L^2([0,T])} + \|z - z_{hk}\|_{L^2(\Omega)} + \|\xi - \xi_{hk}\|_{L^2(\Omega)}
\]

\[
+ \|\sigma - \sigma_{hk}\|_{L^2(\Omega)} + \|\pi - \pi_{hk}\|_{L^2(\Omega)} \leq C(h^{2-\frac{d}{2}} + k^2). \tag{5.3.16}
\]

Preuve. Il résulte des inéquations de l’état adjoint continu (5.1.8) et discret (5.2.24) que :

\[
\int_0^T [Nu(t) + \pi(t,b)][v(t) - u(t)]dt \geq 0 \quad \forall v \in U_{ad}, \tag{5.3.17}
\]

et

\[
\int_0^T [Nu_{hk}(t) + \pi_{hk}(t,b)][v(t) - u_{hk}(t)]dt \geq 0 \quad \forall v \in U_{ad}. \tag{5.3.18}
\]

En choisissant \(v(t) = u_{hk}(t) \) dans (5.3.17) et \(v(t) = u(t) \) dans (5.3.18), et en faisant la somme des deux inégalités, on obtient :

\[
\int_0^T [u(t) - u_{hk}(t)][-Nu(t) - \pi(t,b) + Nu_{hk}(t) + \pi_{hk}(t,b)]dt \geq 0,
\]

76
ou encore :

\[
\int_0^T \left[-N(u(t) - u_{hk}(t))^2 + (u(t) - u_{hk})(\pi_{hk}(t, b) - \pi(t, b)) \right] dt \geq 0,
\]
on en déduit :

\[
N\|u - u_{hk}\|^2_{L^2(0,T)} \leq \int_0^T (u(t) - u_{hk}(t))(\pi_{hk}(t, b) - \pi(t, b)) dt,
\]
ce qui donne :

\[
N\|u - u_{hk}\|^2_{L^2(0,T)} \leq \int_0^T (\pi_{hk}(t, b) - \pi(z_{hk})(t, b))(u(t) - u_{hk}(t)) dt
\]
\[+ \int_0^T (\pi(z_{hk})(t, b) - \pi(t, b))(u(t) - u_{hk}(t)) dt \leq A + B. \tag{5.3.19}\]

En appliquant l'inégalité de Young pour A, on obtient :

\[
A \leq \frac{N}{2}\|u - u_{hk}\|^2_{L^2(0,T)} + C(N)\|\pi_{hk} - \pi(z_{hk})\|^2_{L^2(0,T;L^\infty(\Omega))}. \tag{5.3.20}\]

Pour B, on a :

\[
B = \int_Q A(z - z(u_{hk}))((z_{hk}) - \pi) dtdx
\]
\[= \int_Q \left[(z - z(u_{hk}))(z_{hk} - z + \sigma_{hk} - \sigma) \right] dtdx,
\]
\[= \int_Q (z_{hk} - z)(z - z_{hk} + z_{hk}) dtdx - \int_Q (z_{hk} - z)z(u_{hk}) dtdx
\]
\[+ \int_Q (\sigma_{hk} - \sigma)(z(u_{hk}) - z) dtdx,
\]
\[= -\|z_{hk} - z\|^2_{L^2(Q)} + \int_Q (z_{hk} - z)(z_{hk} - z(u_{hk})) dtdx
\]
\[+ \int_Q (\sigma_{hk} - \sigma)(z - z(u_{hk})) dtdx,
\]
et grâce à l'inégalité de Young, on obtient :

\[
B \leq -\|z_{hk} - z\|^2_{L^2(Q)} + \frac{1}{2}\|z_{hk} - z\|^2_{L^2(Q)} + \frac{1}{2}\|z_{hk} - z(u_{hk})\|^2_{L^2(Q)}
\]
\[+ \frac{1}{2}\|\sigma_{hk} - \sigma\|^2_{L^2(Q)} + \frac{1}{2}\|z - z(u_{hk})\|^2_{L^2(Q)}
\]
\[\leq -\|z_{hk} - z\|^2_{L^2(Q)} + \frac{1}{2}\|z_{hk} - z(u_{hk})\|^2_{L^2(Q)}
\]
\[+ \frac{1}{2}\|\sigma_{hk} - \sigma\|^2_{L^2(Q)} + \frac{1}{2}\|z - z(u_{hk})\|^2_{L^2(Q)},\]

77
On a donc :

\[B \leq \frac{1}{2} \| z_{hk} - z \|^2_{L^2(Q)} + \frac{1}{2} \| \sigma_{hk} - \sigma \|^2_{L^2(Q)} + \frac{1}{2} \| z_{hk} - z(u_{hk}) \|^2_{L^2(Q)} + \frac{1}{2} \| z - z(u_{hk}) \|^2_{L^2(Q)} \]

\[\leq \frac{1}{2} \| z_{hk} - z \|^2_{L^2(Q)} + \frac{1}{2} \| \sigma_{hk} - \sigma \|^2_{L^2(Q)} + \frac{1}{2} \| z_{hk} - z(u_{hk}) \|^2_{L^2(Q)}. \]

(5.3.21)

Par suite, grâce à (5.3.21), (5.3.20) et (5.3.19), on obtient :

\[N \| u - u_{hk} \|^2_{L^2(0,T)} + \| z_{hk} - z \|^2_{L^2(Q)} + \| \sigma_{hk} - \sigma \|^2_{L^2(Q)} \]

\[\leq C \left(\| \pi_{hk} - \pi(z_{hk}) \|^2_{L^2(0,T;L^\infty(\Omega))} + \| \pi_{hk} - \pi(z_{hk}) \|^2_{L^2(0,T;L^\infty(\Omega))} \right). \]

(5.3.22)

Maintenant, pour estimer \(\| \pi_{hk} - \pi(z_{hk}) \|^2_{L^2(0,T;L^\infty(\Omega))} \), on utilise les inégalités inverses et les estimations pour la projection de Ritz (voir lemme 5.2) :

\[\| \pi_{hk} - \pi(z_{hk}) \|^2_{L^2(0,T;L^\infty(\Omega))} \leq \| \pi(z_{hk}) - R_h \pi(z_{hk}) \|^2_{L^2(0,T;L^\infty(\Omega))} + \| \pi_{hk} - \pi(z_{hk}) \|^2_{L^2(0,T;L^\infty(\Omega))}, \]

et en utilisant (5.2.3) et (5.2.10), on obtient :

\[\| \pi_{hk} - \pi(z_{hk}) \|^2_{L^2(0,T;L^\infty(\Omega))} \leq C h^{2-d} \| \pi(z_{hk}) \|^2_{L^2(0,T;H^2(\Omega))} + C h^d \| \pi_{hk} - \pi(z_{hk}) \|^2_{L^2(0,T;L^2(\Omega))} \]

\[\leq C h^{2-d} \| \pi(z_{hk}) \|^2_{L^2(0,T;H^2(\Omega))} + C h^d \left[\| \pi_{hk} - \pi(z_{hk}) \|^2_{L^2(0,T;L^2(\Omega))} + \| \pi(z_{hk}) - R_h \pi(z_{hk}) \|^2_{L^2(0,T;L^2(\Omega))} \right] \]

\[\leq C h^{2-d} \| \pi(z_{hk}) \|^2_{L^2(0,T;H^2(\Omega))} + C h^d \| \pi_{hk} - \pi(z_{hk}) \|^2_{L^2(0,T;L^2(\Omega))}, \]

ceci avec (5.3.15), implique :

\[\| \pi_{hk} - \pi(z_{hk}) \|^2_{L^2(0,T;L^\infty(\Omega))} \leq C (h^{2-d} + k^{\frac{1}{2}}). \]

(5.3.23)

En combinant (5.3.22), (5.3.23) et (5.3.1), on obtient :

\[N \| u - u_{hk} \|^2_{L^2(0,T)} + \| z_{hk} - z \|^2_{L^2(Q)} + \| \sigma_{hk} - \sigma \|^2_{L^2(Q)} \leq C (h^{4-d} + k). \]

(5.3.24)

Il nous reste enfin à estimer les expressions : \(\| \pi_{hk} - \pi \|^2_{L^2(Q)} \) et \(\| \xi_{hk} - \xi \|^2_{L^2(Q)} \).

Pour cela on utilise les problèmes (5.1.7) et (5.2.22). On a :

\[\int_Q A^*(\pi - \pi(z_{hk})) \varphi \, dtdx = \int_Q (z - z_{hk} + \sigma - \sigma_{hk}) \varphi \, dtdx. \]

En posant \(\varphi = \pi - \pi(z_{hk}) \), on obtient :

\[\| \pi - \pi(z_{hk}) \|^2_{L^2(Q)} \leq C \| (z - z_{hk}) + (\sigma - \sigma_{hk}) \|^2_{L^2(Q)} \| \pi - \pi(z_{hk}) \|^2_{L^2(Q)}, \]

(5.3.25)
ce qui donne :

\[\| \pi - \pi(z_{hk}) \|_{L^2(Q)} \leq C \| z - z_{hk} \|_{L^2(Q)} + \| \sigma - \sigma_{hk} \|_{L^2(Q)}. \]

On en déduit que :

\[\| \pi - \pi_{hk} \|_{L^2(Q)} \leq \| \pi - \pi(z_{hk}) \|_{L^2(Q)} + \| \pi(z_{hk}) - \pi_{hk} \|_{L^2(Q)} \]

\[\leq C[\| z - z_{hk} \|_{L^2(Q)} + \| \sigma - \sigma_{hk} \|_{L^2(Q)}] + \| \pi(z_{hk}) - \pi_{hk} \|_{L^2(Q)}. \]

D'où grâce à (5.3.15) et (5.3.24), on conclut :

\[\| \pi - \pi(z_{hk}) \|_{L^2(\Omega)} \leq C(h^{2-\frac{d}{2}} + k^{\frac{1}{2}}). \]

(5.3.26)

De même, pour \(\| \xi_{hk} - \xi \|_{L^2(Q)} \), en utilisant les problèmes en \(\xi \) dans (5.1.7) et (5.2.20), on obtient :

\[\| \xi - \xi(z_{hk}) \|_{L^2(Q)} \leq C(h^{2-\frac{d}{2}} + k^{\frac{1}{2}}). \]

(5.3.27)

Finalement, de (5.3.24), (5.3.26) et (5.3.27), on obtient (5.3.16).
Conclusion et perspectives

Notre planète se contamine de plus en plus par la pollution et la lutte contre ce phénomène est devenue un enjeu majeur pour la préservation de l’environnement. Ce travail de thèse s’est inscrit dans cette dynamique, en essayant d’apporter une contribution du point de vue de la modélisation par les EDP et le contrôle optimal.

L’analyse mathématique et le contrôle du phénomène de diffusion de pollution, gouverné par l’équation de la chaleur, ont été abordé en utilisant deux types de contrôle : frontière et ponctuel. Une étude numérique avec calcul d’erreurs de convergence a été également effectuée. De plus, nous avons généralisé la notion de contrôle à moindres regrets au contrôle ponctuel avec donnée manquante, tant du point de vue théorique que numérique.

Nous avons établi que le problème de contrôle admet une solution optimale caractérisée par un système d’optimalité singulier (S.O.S).

Notre ambition dans ce travail a été double : tout d’abord, nous voulions appliquer la notion du contrôle à moindres regrets à des problèmes intéressants définis par Lions et Simon dans les années 80-90. En effet, ces problèmes correspondent à des cas concrets en écologie (comme expliqué par Lions dans ses travaux). De plus, notre méthode comme nous l’avons vu le long de la thèse, est bien adaptée aux questions de perturbations, et peut donc être appliquée aux problèmes de perturbations liées à la pollution en écologie. Le second intérêt que nous avions est celui de généraliser nos techniques aux cas de données ponctuelles et aux schémas numériques jusqu’à l’obtention d’un système d’optimalité singulier caractérisant le contrôle optimal dans tous les cas.

En perspective, on envisage un prolongement de ce travail par le passage du contrôle à
moindres regrets au contrôle sans regret en faisant tendre γ vers zéro, ainsi par les simulations numériques pour le problème de contrôle ponctuel à moindres regrets à partir du système d’optimalité obtenu et en se basant sur les schémas numériques et les estimations d’erreurs obtenues au chapitre 5. Le but est de pouvoir confronter par la suite les résultats avec les données mesures obtenues par les écologistes, ingénieurs et techniciens chargés de dépolluer l’environnement à moindre coût.

On envisage aussi de généraliser la technique du "contrôle virtuel" et celle de "la décomposition du domaine" aux problèmes de type parabolique avec source ponctuelle, qui n’ont pas été abordés jusqu’à présent à notre connaissance.

En effet, les domaines d’étude des problèmes complexes d’ordre écologique notamment sont en général assez difficiles à caractériser. L’avantage de ces méthodes consiste à choisir un domaine $\tilde{\Omega}$ virtuel plus simple que le domaine originel.

On se ramène alors à une méthode de type "décomposition du domaine" appliquée à la résolution d’une classe de problèmes de contrôle à moindres regrets.

Nous avons bien entamé une étude utilisant cette méthode - celle du contrôle virtuel -, elle est achevée et nous espérons la mener à terme.
Bibliographie

