M. Arzt, T. Young, L. Finn, J. B. Skatrud, and T. D. Bradley, Association of Sleep-disordered Breathing and the Occurrence of Stroke, American Journal of Respiratory and Critical Care Medicine, vol.172, issue.11, pp.1447-1451, 2005.
DOI : 10.1161/01.STR.30.4.736

H. F. Becker, A. Jerrentrup, T. Ploch, L. Grote, T. Penzel et al., Effect of Nasal Continuous Positive Airway Pressure Treatment on Blood Pressure in Patients With Obstructive Sleep Apnea, Circulation, vol.107, issue.1, pp.68-73, 2003.
DOI : 10.1161/01.CIR.0000042706.47107.7A

A. Biswas, M. Manivannan, and M. A. Srinivasan, Vibrotactile Sensitivity Threshold: Nonlinear Stochastic Mechanotransduction Model of the Pacinian Corpuscle, IEEE Transactions on Haptics, vol.8, issue.1, 2015.
DOI : 10.1109/TOH.2014.2369422

, IEEE transactions on haptics 8.1, pp.102-113

M. H. Bonnet and D. L. Arand, Clinical effects of sleep fragmentation versus sleep deprivation, Sleep medicine reviews 7.4, pp.297-310, 2003.
DOI : 10.1053/smrv.2001.0245

D. Brooks, R. L. Horner, L. F. Kozar, C. L. Render-teixeira, and E. A. Phillipson, Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model., Journal of Clinical Investigation, vol.99, issue.1, p.106, 1997.
DOI : 10.1172/JCI119120

, References 21

S. E. Martin, H. M. Engleman, I. J. Deary, and N. J. Douglas, The effect of sleep fragmentation on daytime function., American Journal of Respiratory and Critical Care Medicine, vol.153, issue.4, pp.1328-1332, 1996.
DOI : 10.1164/ajrccm.153.4.8616562

N. Mcardle, D. Hillman, L. Beilin, and G. Watts, Metabolic Risk Factors for Vascular Disease in Obstructive Sleep Apnea, American Journal of Respiratory and Critical Care Medicine, vol.175, issue.2, pp.190-195, 2007.
DOI : 10.1111/j.1365-2265.2005.02407.x

W. S. Mezzanotte, D. J. Tangel, and D. P. White, Influence of sleep onset on upper-airway muscle activity in apnea patients versus normal controls., American Journal of Respiratory and Critical Care Medicine, vol.153, issue.6, pp.1880-1887, 1996.
DOI : 10.1164/ajrccm.153.6.8665050

W. S. Mezzanotte, D. J. Tangel, and D. P. White, Waking genioglossal electromyogram in sleep apnea patients versus normal controls (a neuromuscular compensatory mechanism)., Journal of Clinical Investigation, vol.89, issue.5, p.1571, 1992.
DOI : 10.1172/JCI115751

T. D. Morgan and J. E. Remmers, Phylogeny and animal models: An uninhibited survey, 2007.

N. , A. , T. Yagi, M. Yokota, Y. Kayukawa et al., Daytime sleepiness and automobile accidents in patients with obstructive sleep apnea syndrome, Psychiatry and clinical neurosciences 52, pp.221-222, 1998.

O. Donnell, C. , T. Ayuse, E. King, A. Schwartz et al., Airway obstruction during sleep increases blood pressure without arousal, Journal of Applied Physiology, vol.803, pp.773-781, 1996.

M. Partinen, C. Guilleminault, M. Quera-salva, and A. Jamieson, Obstructive Sleep Apnea and Cephalometric Roentgenograms, Chest, vol.93, issue.6, pp.1199-1205, 1988.
DOI : 10.1378/chest.93.6.1199

J. Parvizi, High Yield Orthopaedics E-Book, 2010.

P. E. Peppard, T. Young, J. H. Barnet, M. Palta, E. W. Hagen et al., Increased Prevalence of Sleep-Disordered Breathing in Adults, American Journal of Epidemiology, vol.36, issue.2, pp.1006-1014, 2013.
DOI : 10.1183/09031936.00118609

P. E. Peppard, T. Young, M. Palta, J. Dempsey, and J. Skatrud, Longitudinal Study of Moderate Weight Change and Sleep-Disordered Breathing, JAMA, vol.284, issue.23, pp.3015-3021, 2000.
DOI : 10.1001/jama.284.23.3015

J. C. Pepperell, S. Ramdassingh-dow, N. Crosthwaite, R. Mullins, C. Jenkinson et al., Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial, The Lancet, vol.359, issue.9302, pp.204-210, 2002.
DOI : 10.1016/S0140-6736(02)07445-7

R. J. Pierce and C. J. Worsnop, UPPER AIRWAY FUNCTION AND DYSFUNCTION IN RESPIRATION, Clinical and Experimental Pharmacology and Physiology, vol.139, issue.1, pp.1-10, 1999.
DOI : 10.1016/0140-6736(92)91060-L

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1440-1681.1999.02988.x

G. Pillar, R. B. Fogel, A. Malhotra, J. Beauregard, J. K. Edwards et al., Genioglossal inspiratory activation: central respiratory vs mechanoreceptive influences, Respiration Physiology, vol.127, issue.1, pp.23-38, 2001.
DOI : 10.1016/S0034-5687(01)00230-4

URL : http://europepmc.org/articles/pmc4372894?pdf=render

R. Abdelsattar, Z. M. , S. Hendren, S. L. Wong, D. A. Jr et al.,

. Ramachandran, The impact of untreated obstructive sleep apnea on cardiopulmonary complications in general and vascular surgery: a cohort study, pp.1205-1210, 2015.

W. T. Abraham, D. Jagielski, O. Oldenburg, R. Augostini, S. Krueger et al., , 2006.

, Oxygen saturation regularity analysis in the diagnosis of obstructive sleep apnea, Artificial intelligence in medicine 37.2, pp.111-118

S. Gyulay, L. Olson, M. Hensley, M. King, K. M. Allen et al., , 1993.

, A Comparison of Clinical Assessment in the Diagnosis of Obstructive Sleep, Am Rev Respir Dis, vol.147, pp.50-53

V. A. Imadojemu, Z. Mawji, A. Kunselman, K. S. Gray, C. S. Hogeman et al., Sympathetic Chemoreflex Responses in Obstructive Sleep Apnea and Effects of Continuous Positive Airway Pressure Therapy, Chest, vol.131, issue.5, pp.1406-1413, 2007.
DOI : 10.1378/chest.06-2580

U. Leuenberger, E. Jacob, L. Sweer, N. Waravdekar, C. Zwillich et al.,

. Sinoway, Surges of muscle sympathetic nerve activity during obstructive apnea are linked to hypoxemia, Journal of Applied Physiology, vol.79, issue.2, pp.581-588, 1995.

P. Lévy, M. Kohler, W. T. Mcnicholas, F. Barbé, R. D. Mcevoy et al., Obstructive sleep apnoea syndrome, pp.15015-15015, 2014.

S. C. Lusina, P. M. Kennedy, J. T. Inglis, D. C. Mckenzie, N. T. Ayas et al., Long-term intermittent hypoxia increases sympathetic activity and chemosensitivity during acute hypoxia in humans, The Journal of Physiology, vol.91, issue.3, pp.961-970, 2006.
DOI : 10.1152/japplphysiol.01241.2003

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1995690

, References 79

, of a Clinical Pathway and Technical Aspects of Upper Airway Stimulation Therapy for Obstructive Sleep Apnea, In: Frontiers in neuroscience, vol.11, p.523

B. T. Woodson, R. J. Soose, M. B. Gillespie, K. P. Strohl, J. T. Maurer et al.,

D. Vries, D. L. Steward, J. Z. Baskin, M. S. Badr, and H. Lin, , 2016.

, Three-year outcomes of cranial nerve stimulation for obstructive sleep apnea: the STAR trial, In: Otolaryngology?Head and Neck Surgery, vol.154, issue.1, pp.181-188

R. Bailón, R. , L. Sornmo, and P. Laguna, A Robust Method for ECG-Based Estimation of the Respiratory Frequency During Stress Testing, IEEE transactions on biomedical engineering 53.7, pp.1273-1285, 2006.
DOI : 10.1109/TBME.2006.871888

P. Broersen, Finite sample criteria for autoregressive order selection, Signal Processing, pp.3550-3558, 2000.
DOI : 10.1109/78.887047

J. P. Burg, Maximum Entropy Spectral Analysis, 1975.

C. Gon?alez and M. , Analysis of the cardiovascular response to autonomic nervous system modulation in Brugada syndrome patients, 2017.

M. Calvo, V. Le-rolle, D. Romero, N. Béhar, P. Gomis et al.,

. Hernández, Time-frequency analysis of the autonomic response to head-up tilt testing in Brugada syndrome, Computing in Cardiology Conference (CinC), 2017.

, Sex-specific analysis of the cardiovascular function, 2018.

A. Camm, M. Malik, J. Bigger, G. Breithardt, S. Cerutti et al., Heart rate variability: standards of measurement, physiological interpretation and clinical use, 1996.

, Chapter Autonomic differences based on the response to kinesthetic stimulation therapy in sleep apnea patients Society of Cardiology and the North American Society of Pacing and Electrophysiology

, Circulation 93, pp.1043-1065

A. H. Costa and G. Boudreau-bartels, Design of time-frequency representations using a multiform, tiltable exponential kernel, IEEE Transactions on Signal Processing, vol.43, issue.10, pp.2283-2301, 1995.
DOI : 10.1109/78.469860

D. , L. , R. Js, G. Mp, and M. Jr, Sample entropy analysis of neonatal heart rate variability, American Journal of Physiology -Regulatory, Integrative and Comparative Physiology, vol.2833, pp.789-797, 2002.

J. Dumont, A. I. Hernandez, and G. Carrault, Improving ECG Beats Delineation With an Evolutionary Optimization Process, IEEE Transactions on Biomedical Engineering, vol.57, issue.3, pp.607-615, 2010.
DOI : 10.1109/TBME.2008.2002157

URL : https://hal.archives-ouvertes.fr/inserm-00361377

D. L. Eckberg, Sympathovagal Balance : A Critical Appraisal, Circulation, vol.96, issue.9, pp.3224-3232, 1997.
DOI : 10.1161/01.CIR.96.9.3224

A. L. Goldberger, L. A. Amaral, J. M. Hausdorff, P. C. Ivanov, C. Peng et al., Fractal dynamics in physiology: Alterations with disease and aging, Proceedings of the National Academy of Sciences 99, pp.2466-2472, 2002.
DOI : 10.1109/51.932728

T. Higuchi, Approach to an irregular time series on the basis of the fractal theory, Physica D: Nonlinear Phenomena 31.2, pp.277-283, 1988.
DOI : 10.1016/0167-2789(88)90081-4

F. Hlawatsch and G. F. Boudreaux-bartels, Linear and quadratic timefrequency signal representations, IEEE signal processing magazine 9.2, pp.21-67, 1992.

N. Iyengar, C. Peng, R. Morin, A. L. Goldberger, and L. A. Lipsitz, , 1996.

, Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics

, American Journal of Physiology-Regulatory Integrative and Comparative Physiology, vol.404, 1078.

A. Khandoker, H. Jelinek, and P. M. , Identifying diabetic patients with cardiac autonomic neuropathy by heart rate complexity analysis, BioMedical Engineering OnLine, vol.8, issue.1, p.3, 2009.
DOI : 10.1186/1475-925X-8-3

M. , J. , T. Z. , T. I. , J. J. et al., Short-term heart rate complexity is reduced in patients with type 1 diabetes mellitus, Clinical Neurophysiology, vol.1195, pp.1071-1081, 2008.

R. Magrans, P. Gomis, P. Caminal, and A. Voss, Higuchi's fractal complexity of RR and QT interval series during transient myocardial ischemia, Computing in Cardiology Conference (CinC), 2013. IEEE, pp.421-424, 2013.

A. Malliani, F. Lombardi, and M. Pagani, Power spectrum analysis of heart rate variability: a tool to explore neural regulatory mechanisms., Heart, vol.71, issue.1, pp.1-2, 1994.
DOI : 10.1136/hrt.71.1.1

A. Malliani, M. Pagani, F. Lombardi, and S. Cerutti, Cardiovascular neural regulation explored in the frequency domain, Circulation, vol.84, issue.2, pp.482-92, 1991.
DOI : 10.1161/01.CIR.84.2.482

G. B. Moody, R. G. Mark, M. A. Bump, J. S. Weinstein, A. D. Berman et al.,

A. L. Mietus and . Goldberger, Clinical validation of the ECG-derived respiration (EDR) technique, pp.1-3, 1986.

R. D. Ogilvie, R. T. Wilkinson, and S. Allison, The Detection of Sleep Onset: Behavioral and Physiological Convergence, Psychophysiology, vol.24, issue.5, 1989.
DOI : 10.1016/0013-4694(66)90155-6

Z. Ori, G. Monir, J. Weiss, X. Sayhouni, and D. Singer, Heart Rate Variability, Cardiology Clinics, vol.10, issue.3, pp.499-537, 1992.
DOI : 10.1016/S0733-8651(18)30231-5

C. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.9, issue.1, 1995.
DOI : 10.1103/PhysRevE.47.3730

, An Interdisciplinary Journal of Nonlinear Science, vol.51, pp.82-87

J. Richman and M. J. , Physiological time-series analysis using approximate entropy and sample entropy, American Journal of Physiology-Heart and Circulatory Physiology, vol.271, issue.6, pp.2039-2049, 2000.
DOI : 10.1152/ajpheart.1996.271.1.H244

A. Sleep-disorders-centers, of and A. for Psycho-physiological Study of Glossary of terms used in the sleep disorder classification, Sleep, issue.2, pp.123-129, 1979.

V. K. Somers, D. P. White, R. Amin, W. T. Abraham, F. Costa et al., Sleep Apnea and Cardiovascular Disease: An American Heart Association/American College of Cardiology Foundation Scientific Statement From the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing In Collaboration With the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health), Circulation, vol.118, issue.10, pp.686-717, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.189420

R. C. Stansbury and P. J. Strollo, Clinical manifestations of sleep apnea, 2015.

, In: Journal of thoracic disease, vol.79, p.298

P. K. Stein, P. P. Domitrovich, N. Hui, P. Rautaharju, and J. Gottdiener, Sometimes Higher Heart Rate Variability Is Not Better Heart Rate Variability: Results of Graphical and Nonlinear Analyses, Journal of Cardiovascular Electrophysiology, vol.138, issue.9, pp.954-959, 2005.
DOI : 10.1016/S0002-9149(02)02300-7

J. Trinder, J. Kleiman, M. Carrington, S. Smith, N. Breen et al., Autonomic activity during human sleep as a function of time and sleep stage, Journal of Sleep Research, vol.10, issue.4, 2001.
DOI : 10.1046/j.1365-2869.2001.00263.x

, Journal of sleep research 10, pp.253-264

V. , T. , N. S. , B. T. , and U. A. , Decrease in the heart rate complexity prior to the onset of atrial fibrillation, In: Europace, vol.6, issue.8, pp.398-402

, References

M. Altuve, G. Carrault, A. Beuchee, P. Pladys, and A. I. Hernandez, Online apnea-bradycardia detection using hidden semi-Markov models, Annual International Conference of the IEEE. IEEE, pp.4374-4377, 2011.
DOI : 10.1109/iembs.2011.6091085

URL : https://hal.archives-ouvertes.fr/inserm-00661940

J. Y. Cheng and T. Mailund, Ancestral population genomics using coalescence hidden Markov models and heuristic optimisation algorithms, Computational biology and chemistry 57, pp.80-92, 2015.
DOI : 10.1016/j.compbiolchem.2015.02.001

URL : https://doi.org/10.1016/j.compbiolchem.2015.02.001

J. Cruz, A. I. Hernandez, S. Wong, G. Carrault, and A. Beuchee, Algorithm fusion for the early detection of apnea-bradycardia in preterm infants, In: Computers in Cardiology, pp.473-476, 2006.

M. Doyen, Méthodes probabilistes pour le monitoring cardio-respiratoire des nouveau-nés prématurés, 2018.

D. Feuerstein, L. Graindorge, A. Amblard, A. Tatar, G. Guerrero et al., Real-time detection of sleep breathing disorders, 2015 Computing in Cardiology Conference (CinC), pp.2015-317, 2015.
DOI : 10.1109/CIC.2015.7408650

URL : https://hal.archives-ouvertes.fr/hal-01372343

D. E. Goldberg and J. H. Holland, Genetic algorithms and machine learning, Machine learning 3.2, pp.95-99, 1988.

A. Hernández, J. Cruz, and G. Garrault, Device for supervision and stimulation intended to fight sleep apnea, p.723, 2007.

, Chapter Closed-loop Kinesthetic Stimulation for the Treatment of Sleep Apnea Syndromes

A. Hernández, G. Guerrero, D. Feuerstein, L. Graindorge, D. Perez et al., PASITHEA: An Integrated Monitoring and Therapeutic System for Sleep Apnea Syndromes Based on Adaptive Kinesthetic Stimulation, IRBM, vol.37, issue.2, pp.81-89, 2016.
DOI : 10.1016/j.irbm.2016.02.009

L. Rolle, V. , A. Beuchee, J. Praud, N. Samson et al., Recursive identification of an arterial baroreflex model for the evaluation of cardiovascular autonomic modulation, Computers in biology and medicine 66, pp.287-294, 2015.
DOI : 10.1016/j.compbiomed.2015.09.013

URL : https://hal.archives-ouvertes.fr/hal-01262697

L. Rolle, V. , D. Ojeda, and A. I. Hernández, Embedding a Cardiac Pulsatile Model Into an Integrated Model of the Cardiovascular Regulation for Heart Failure Followup, IEEE transactions on biomedical engineering 58.10, pp.2982-2986, 2011.
DOI : 10.1109/TBME.2011.2159715

URL : https://hal.archives-ouvertes.fr/inserm-00654827

D. Ojeda, V. Le-rolle, M. Harmouche, A. Drochon, H. Corbineau et al., Sensitivity Analysis and Parameter Estimation of a Coronary Circulation Model for Triple-Vessel Disease, IEEE Transactions on Biomedical Engineering, vol.61, issue.4, pp.1208-1219, 2014.
DOI : 10.1109/TBME.2013.2296971

URL : https://hal.archives-ouvertes.fr/hal-02064841

D. Pérez, G. Guerrero, D. Feuerstein, L. Graindorge, A. Amblard et al., Closed-loop kinesthetic stimulation for the treatment of sleep apnea syndromes, Computing in Cardiology Conference (CinC), 2016. IEEE, pp.841-844, 2016.

C. Song, K. Liu, X. Zhang, L. Chen, and X. Xian, An Obstructive Sleep Apnea Detection Approach Using a Discriminative Hidden Markov Model From ECG Signals, IEEE Transactions on Biomedical Engineering, vol.63, issue.7, pp.1532-1542, 2016.
DOI : 10.1109/TBME.2015.2498199

URL : https://doi.org/10.1109/tbme.2015.2498199

, References

K. Berkani and J. Dimet, [Acceptability and compliance to long-term continuous positive pressure treatment, pp.249-255, 2015.

S. E. Craig, M. Kohler, D. Nicoll, D. J. Bratton, A. Nunn et al., Continuous positive airway pressure improves sleepiness but not calculated vascular risk in patients with minimally symptomatic obstructive sleep apnoea: the MOSAIC randomised controlled trial, Thorax, vol.67, issue.12, p.2012, 2012.
DOI : 10.1136/thoraxjnl-2012-202178

L. F. Drager, J. C. Jun, and V. Y. Polotsky, Metabolic consequences of intermittent hypoxia: relevance to obstructive sleep apnea " . In: Best practice & research Clinical endocrinology & metabolism 24, pp.843-851, 2010.

R. Heinzer, S. Vat, P. Marques-vidal, H. Marti-soler, D. Andries et al., Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study, The Lancet Respiratory Medicine, vol.3, issue.4, pp.310-318, 2015.
DOI : 10.1016/S2213-2600(15)00043-0

P. Jennum and R. L. Riha, Epidemiology of sleep apnoea/hypopnoea syndrome and sleep-disordered breathing, European Respiratory Journal, vol.33, issue.4, pp.907-914, 2009.
DOI : 10.1183/09031936.00180108

T. Kasai and T. D. Bradley, Obstructive Sleep Apnea and Heart Failure, Journal of the American College of Cardiology, vol.57, issue.2, pp.119-127, 2011.
DOI : 10.1016/j.jacc.2010.08.627

C. A. Kushida, D. A. Nichols, T. H. Holmes, S. F. Quan, J. K. Walsh et al.,

R. D. Gottlieb, C. Simon-jr, D. P. Guilleminault, J. L. White, and . Goodwin, Effects of continuous positive airway pressure on neurocognitive function in obstructive sleep apnea patients: the Apnea Positive Pressure Long-term Efficacy Study (APPLES), pp.35-47, 2012.

P. Lévy, M. Kohler, W. T. Mcnicholas, F. Barbé, R. D. Mcevoy et al., Obstructive sleep apnoea syndrome, pp.15015-15015, 2014.

, References, vol.119

J. M. Marin, S. J. Carrizo, E. Vicente, and A. G. Agusti, Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study, 2005.

, The Lancet 365, pp.1046-1053

M. F. Pengo, S. Xiao, C. Ratneswaran, K. Reed, N. Shah et al., Randomised sham-controlled trial of transcutaneous electrical stimulation in obstructive sleep apnoea, Thorax, vol.7, issue.10, p.2016, 2016.
DOI : 10.1183/09031936.00042412

P. Ponikowski, S. Javaheri, D. Michalkiewicz, B. A. Bart, D. Czarnecka et al.,

A. Jastrzebski, R. Kusiak, D. Augostini, T. Jagielski, and . Witkowski, , 2011.

, Transvenous phrenic nerve stimulation for the treatment of central sleep apnoea in heart failure, European heart journal 33.7, pp.889-894

V. K. Somers, D. P. White, R. Amin, W. T. Abraham, F. Costa et al., Sleep Apnea and Cardiovascular Disease: An American Heart Association/American College of Cardiology Foundation Scientific Statement From the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing In Collaboration With the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health), Circulation, vol.118, issue.10, pp.686-717, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.189420

R. C. Stansbury and P. J. Strollo, Clinical manifestations of sleep apnea, 2015.

, In: Journal of thoracic disease, vol.79, p.298

S. Jr, P. J. , R. J. Soose, J. T. Maurer, N. De-vries et al., Upper-airway stimulation for obstructive sleep apnea, pp.139-149, 2014.

J. Trinder, J. Kleiman, M. Carrington, S. Smith, N. Breen et al., Autonomic activity during human sleep as a function of time and sleep stage, Journal of Sleep Research, vol.10, issue.4, 2001.
DOI : 10.1046/j.1365-2869.2001.00263.x

, Journal of sleep research 10, pp.253-264

A. I. Hernández, . Pérez, D. Diego, C. Feuerstein, L. Loiodice et al., Kinesthetic stimulation for obstructive sleep apnea syndrome: An " on-off " proof of concept trial. AH and DP contributed equally to this work, APPENDIX A List of associated publications International journals, p.3092, 2018.

A. Hernandez, G. Guerrero, D. Feuerstein, L. Graindorge, D. Perez et al., PASITHEA: An Integrated Monitoring and Therapeutic System for Sleep Apnea Syndromes Based on Adaptive Kinesthetic Stimulation, IRBM, vol.37, issue.2, pp.81-89, 2016.
DOI : 10.1016/j.irbm.2016.02.009

URL : https://hal.archives-ouvertes.fr/hal-01289821

, International conferences

D. Pérez, G. Guerrero, D. Feuerstein, L. Graindorge, A. Amblard et al., Closed-loop kinesthetic stimulation for the treatment of sleep apnea syndromes, Computing in Cardiology Conference (CinC), 2016. IEEE, pp.841-844, 2016.

A. I. International-abstracts-hernández, D. O. Trenard, D. Feuerstein, C. Loiodice, L. Graindorge et al., Kinesthetic stimulation for obstructive sleep apnea syndrome: an " on-off " proof of concept trial, 2017.

, Response of the closed-loop system with proportional-derivative (PD) control

.. , 2 · (s + 1) ?3 with set-point of y s = 1. Being y(t) the control variable and u(t) the output of the controller. Responses to fixed proportional gains (K p ) for different derivative coefficients (K d ) are shown, p.35

.. , Block diagram of the previously mentioned example system in figure 3.4 implementing a proportional-integrative-derivative control Being e the control error, y s the target or expected value for the control variable, y the control variable and u the output of the controller, p.36

, PID) control. The transfer function of the process is G(s) = 2 · (s + 1) ?3 with set-point of y s = 1. Being y(t) the control variable and u(t) the output of the controller. Responses to fixed proportional gains (K p ) and integrative coefficients (K i ) for different derivative coefficients, p.37

, Representation of the performance indicators commonly computed for control methods. The response of the closed-loop system with proportional-integrativederivative (PID) control is presented. The transfer function of the process is G(s) = 2 · (s + 1) ?3 with set-point of y s = 1

.. , The following indicators are illustrated: settling time (t s ), peak (M p ), peak time (T p ), rise time (B r ) and the error (?), p.38

, General diagram of the PASITHEA detection and stimulation system, p.46

.. , The prototype cardiorespiratory Holter device with associated sensors (ECG electrodes, SaO 2 ear sensor and nasal pressure cannula), p.47

.. , showing (a) an opened control module and (b) and the kinesthetic actuator, The kinesthetic stimulation system, p.48

, Placement site of the kinesthetic actuator. The selected region is on the mastoid bone behind the ear of the patient which is an area rich in mechanoreceptors, allowing a more effective activation of the startle reflex (see section 3, p.48

.. , User-defined configuration parameters and BT connexion with the Holter and the stimulator are placed in the left side of the application. Four screens showing real-time acquired data: 2 ECG channels (top), nasal pressure (bottom left), SaO2 (bottom right). The output of the real-time respiratory event detector (apnea or hypopnea) indicated by LEDs and the stimulation parameters are found in the right side of the application frame, p.49

, Block diagram of the PASITHEA system integrating an "on-off" controller, being, y s the set-point or expected value, e the error, u the output of the controller, y the output of the system which, in this case is the patient, and its output the nasal pressure (NP) signal, and ? the output of the respiratory event detector, p.50

.. , Block diagram for the global methodology implementation, p.83

. Calvo, R-wave peak detections and RR series extraction from a representative ECG signal. Figure adapted from, p.84, 2018.

, Top: example of estimated?festimated? estimated?f (t) and corrected f r (t) instantaneous respiratory frequencies represented in dashed black line and blue solid line respectively

, Bottom: SPWVD spectral power of an estimated EDR series, together with its corrected instantaneous respiratory frequency, f r (t), (white solid line), p.85

.. , C) LF/HF ratio, D) Short-term fractal scaling exponent (? 1 ), E) Sample Entropy (SampEn) and F) Higuchi's Fractal Dimension (HF D) Analyzed groups are divided as non-responders (NR), apnea & hypopnea responders (AHR), apnea responders (AH) and hypopnea responders (HR) Statistically significant differences are represented by black dashed lines, p.89

R. Mean and S. , These parameters led to the highest mean AUC values among the analyzed HRV and HRC markers. A and D present the results from the all responders group, B and E show results for the apnea responders group and C and F illustrate the results from hypopnea responders group, p.90

.. , A) Machine state for the cycle detection function and B) example of cycle detection, Functioning, p.98

. Cheng, Flow diagram of a simple evolutionary algorithm in one generation Adapted figure from, p.99, 2015.

.. , A) Left side of the screen of the application: user-defined configuration parameters and BT connection with the Holter and the stimulator along with configuration and test buttons Central part of the screen of the application: 4 screens showing real-time acquired data: 2 ECG channels (top), nasal pressure (bottom left) SaO 2 (bottom right) Right side of the screen of the application: Output of the real-time respiratory event detector (normal, apnea or hypopnea) and characteristics of the stimulation. B) Configuration window view for customize all the different set of parameters to be used by the adaptive controller and the respiratory event detector, p.101

, The black, red and violet lines represent the different coupling thresholds Body positions are represented by a color-bar, 1) yellow = the head of the patient rests on top of the actuator, 2) green = neutral position where the actuator is on one side of the head without any other contact and 3) blue = the actuator is on the opposite side to the

, Values are given as mean [95% Confidence intervals]. The first two lines give the performances of the on-line detector, as assessed prospectively on all 30 patients included in the evaluation phase of the study. The last line gives the performances of the improved detector (v2) on the same patients, but assessed retrospectively, Real-time respiratory event detector performances, p.57

, of the mean respiratory frequency for all groups: Non-responders (NR), apnea responders (AR), hypopnea responders (HR) and all responders (AHR) Statistical analysis was performed by a Mann-Whitney U test comparing each responder group with non-responders, Mean ± standard deviation [Hz, p.88

, Mean ± standard deviation of the AUC resulting from leave-one-out analysis for each statistically significant responder group with respect to non-responders 88

.. , All the indicators are represented as percentage (%)), Respiratory detector performance results, p.106

, Optimized set of parameters for the respiratory event detector, p.107

, Set of control coefficients of each patient implemented for the closed-loop controller109

M. , Q1 and Q3 for the apnea duration results (24 patients), p.124

. .. Mean, Q1 and Q3 for the hypopnea duration results (24 patients), p.125

M. , Q1 and Q3 for the apnea ?SaO 2 results (24 patients), p.126

M. , Q1 and Q3 for the hypopnea ?SaO 2 results (24 patients), p.127

, Time spent in awake for T her en and T her dis periods (24 patients), p.128

, Time spent in REM for T her en and T her dis periods (24 patients), p.129

, Time spent in stage 1 for T her en and T her dis periods (24 patients), p.130

, Time spent in stage 2 for T her en and T her dis periods (24 patients), p.131

, Time spent in stage 3 for T her en and T her dis periods (24 patients), p.132

B. , MicroArousal Index results for T her en and T her dis periods (24 patients), p.133

B. , Time spent in each sleep stage for the whole night (24 patients), p.134