F. F. Kollmann, W. A. Jr, and . Côte, Principles of wood Science and Technology. Solid Wood, p.592, 1968.

R. A. Parhan and R. L. Gra, Formation and Structure of Wood In : The Chemistry of Solid Wood, pp.3-56, 1983.

C. Skaar, Wood-Water Relationships, pp.127-172, 1983.
DOI : 10.1021/ba-1984-0207.ch003

J. Bodig and B. Jayne, Mechanics of wood and wood composites, p.712, 1982.

P. Jodin, Le bois, matériau d'ingénierie. Association pour la recherche sur le bois en Lorraine, 1994.

J. E. Winandy and R. M. Rowell, The Chemistry of Wood Strength

. Ed, R. M. By, and . Rowell, , pp.211-255, 1983.

J. J. Harrington, MicroFibril Angle in Wood, 1998.

E. T. Howord and F. G. Manwiller, Anatomical characteristics of southern pine steamwood, pp.77-86, 1969.

C. Barbe and R. Keller, Les rayons ligneux et le mat??riau bois, Revue Foresti??re Fran??aise, vol.8, issue.1, pp.63-68, 1996.
DOI : 10.4267/2042/26729

D. Guitard, , 1987.

M. Oudjene and M. Khelifa, Finite element modelling of wooden structures at large deformations and brittle failure prediction, Materials & Design, vol.30, issue.10, pp.4081-4087, 2009.
DOI : 10.1016/j.matdes.2009.05.024

M. Oudjene and M. Khelifa, Elasto-plastic constitutive law for wood behaviour under compressive loadings, Construction and Building Materials, vol.23, issue.11, pp.3359-3366, 2009.
DOI : 10.1016/j.conbuildmat.2009.06.034

A. Reiterer and S. E. Stanzl-tschegg, Compressive behaviour of softwood under uniaxial loading at different orientations to the grain, Mechanics of Materials, vol.33, issue.12, pp.705-715, 2001.
DOI : 10.1016/S0167-6636(01)00086-2

W. Knigge and H. Schulz, Grundriss der Forstbenutzung, 1966.

M. Khelifa, A. Khennane, M. Ganaoui, and Y. Rogaume, Analysis of the behavior of multiple dowel timber connections in fire, Fire Safety Journal, vol.68, pp.119-128, 2014.
DOI : 10.1016/j.firesaf.2014.05.024

URL : https://hal.archives-ouvertes.fr/hal-01597087

V. D. Thi, M. Khelifa, M. Ganaoui, and Y. Rogaume, Finite element modelling of the pyrolysis of wet wood subjected to fire, Fire Safety Journal, vol.81, pp.85-96, 2016.
DOI : 10.1016/j.firesaf.2016.02.001

URL : https://hal.archives-ouvertes.fr/hal-01599583

D. K. Shen, M. X. Fang, Z. Y. Luo, and K. F. Cen, Modeling pyrolysis of wet wood under external heat flux, Fire Safety Journal, vol.42, issue.3, pp.210-217, 2007.
DOI : 10.1016/j.firesaf.2006.09.001

C. and D. Blasi, Analysis of Convection and Secondary Reaction Effects Within Porous Solid Fuels Undergoing Pyrolysis, Combustion Science and Technology, vol.90, issue.5, pp.315-340, 1993.
DOI : 10.1080/00102209308907620

W. C. Park, A. Atreya, and R. Howard, Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis, Combustion and Flame, vol.157, issue.3, pp.481-494, 2010.
DOI : 10.1016/j.combustflame.2009.10.006

M. Kosik, M. Dandarova, and R. Domansky, Pyrolyse des Buchenholzes bei niedrigen Temperaturen IX. : Chemische Veränderungen im Buchenholz während der Pyrolyse, Holzforschung Holzverwendung, vol.21, pp.40-43, 1969.

, Eurocode 5 -Design of timber structures. Part 1-2 : General -Structural fire design, European Committee for Standardization), 2004.

B. H. Xu, Modélisation du comportement mécanique d'assemblages bois avec prise en compte de critères de rupture, 2009.

S. Franke, Zur Beschreibung des Tragverhaltens von Holz unter Verwendung eines photogrammetrischen Messsystems, 2008.

J. S. Poulsen, Compression in clear wood, 1998.

R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.193, issue.1033, 1948.
DOI : 10.1098/rspa.1948.0045

O. Hoffman, The Brittle Strength of Orthotropic Materials, Journal of Composite Materials, vol.224, issue.2, pp.200-206, 1967.
DOI : 10.1098/rspa.1948.0045

S. W. Tsai and E. M. Wu, A General Theory of Strength for Anisotropic Materials, Journal of Composite Materials, vol.1, issue.1, pp.58-80, 1971.
DOI : 10.1177/002199836700100210

-. Van-diem and . Bibliographie,

M. Oudjene and M. Khelifa, Finite element modelling of wooden structures at large deformations and brittle failure prediction, Materials & Design, vol.30, issue.10, pp.4081-4087, 2009.
DOI : 10.1016/j.matdes.2009.05.024

M. Oudjene and M. Khelifa, Elasto-plastic constitutive law for wood behaviour under compressive loadings, Construction and Building Materials, vol.23, issue.11, pp.3359-3366, 2009.
DOI : 10.1016/j.conbuildmat.2009.06.034

A. Reiterer and S. E. Stanzl-tschegg, Compressive behaviour of softwood under uniaxial loading at different orientations to the grain, Mechanics of Materials, vol.33, issue.12, pp.705-715, 2001.
DOI : 10.1016/S0167-6636(01)00086-2

B. H. Xu, A. Bouchaïr, M. Taazount, and E. J. Vega, Numerical and experimental analyses of multiple-dowel steel-to-timber joints in tension perpendicular to grain, Engineering Structures, vol.31, issue.10, pp.2357-2367, 2009.
DOI : 10.1016/j.engstruct.2009.05.013

R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.193, issue.1033, 1948.
DOI : 10.1098/rspa.1948.0045

O. Hoffman, The Brittle Strength of Orthotropic Materials, Journal of Composite Materials, vol.224, issue.2, pp.200-206, 1967.
DOI : 10.1098/rspa.1948.0045

L. Kachanov, Time of the rupture process under creep conditions, Izv. Akad. NAUK. SSR -Otd. Nauk, vol.8, pp.26-31, 1958.

Y. Rabotnov, Creep rupture, Proc. 12th Int. Congress on Applied Mechanics, 1968.
DOI : 10.1007/978-3-642-85640-2_26

J. L. Chaboche, Sur l'utilisation des variables d'état interne pour la description du comportement viscoplastique et de la rupture par endommagement, 1977.

J. Lemaitre and J. L. Chaboche, Aspect phénoménologique de la rupture par endommagement, J. de Mécanique appliqué, vol.2, issue.3, pp.317-365, 1978.

J. Lemaitre and J. L. Chaboche, Mécanique des milieux solides, 1985.

J. Lemaitre, A Continuous Damage Mechanics Model for Ductile Fracture, Journal of Engineering Materials and Technology, vol.107, issue.1, pp.83-89, 1985.
DOI : 10.1115/1.3225775

J. Lemaitre, A course on Damage Mechanics, 1996.

J. P. Cordebois and F. Sidoroff, Endommagement anisotrope en élasticité et plasticité, Journal de la mécanique théorique, 1982.

K. Saanouni, C. Forster, and F. B. Hatira, On the Anelastic Flow with Damage, International Journal of Damage Mechanics, vol.8, issue.6, pp.140-169, 1994.
DOI : 10.1016/0001-6160(84)90213-X

P. Germain, Cours de mécaniques des milieux continus, 1973.

F. Sidoroff, Variables internes en viscoélasticité et plasticité, Thèse de doctorat, 1976.

A. Khennane, M. Khelifa, L. Bleron, and J. Viguier, Numerical modelling of ductile damage evolution in tensile and bending tests of timber structures, Mechanics of Materials, vol.68, pp.228-236, 2014.
DOI : 10.1016/j.mechmat.2013.09.004

URL : https://hal.archives-ouvertes.fr/hal-01597474

M. Khelifa and A. Khennane, Numerical Analysis of the Cutting Forces in Timber, Journal of Engineering Mechanics, vol.140, issue.3, pp.523-530, 2014.
DOI : 10.1061/(ASCE)EM.1943-7889.0000671

URL : https://hal.archives-ouvertes.fr/hal-01597483

J. C. Schellekens and R. D. Borst, The use of the Hoffman yield criterion in finite element analysis of anisotropic composites, Computers & Structures, vol.37, issue.6, pp.1087-1096, 1990.
DOI : 10.1016/0045-7949(90)90020-3

R. Bilbao, J. F. Mastral, J. Ceamanous, and M. E. Aldea, Modelling of the pyrolysis of wet wood, Journal of Analytical and Applied Pyrolysis, vol.36, issue.1, pp.81-97, 1996.
DOI : 10.1016/0165-2370(95)00918-3

D. K. Shen, M. X. Fang, Z. Y. Luo, and K. F. Cen, Modeling pyrolysis of wet wood under external heat flux, Fire Safety Journal, vol.42, issue.3, pp.210-217, 2007.
DOI : 10.1016/j.firesaf.2006.09.001

B. Moghtaderi, The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels, Fire and Materials, vol.23, issue.1, pp.1-34, 2006.
DOI : 10.1002/9780470694954.ch85

J. Havens, H. Hashemi, L. Brown, and R. Welker, A Mathematical Model of the Thermal Decomposition of Wood, Combustion Science and Technology, vol.2, issue.1, pp.91-99, 1972.
DOI : 10.1080/00102207208952509

E. Kansa, H. Perlee, and R. Chaiken, Mathematical model of wood pyrolysis including internal forced convection, Combustion and Flame, vol.29, pp.311-335, 1977.
DOI : 10.1016/0010-2180(77)90121-3

J. Larfeldt, B. Leckner, and M. C. Melaaen, Modelling and measurements of the pyrolysis of large wood particles, Fuel, vol.79, issue.13, pp.1637-1680, 2000.
DOI : 10.1016/S0016-2361(00)00007-7

S. S. Alves and J. L. Figueiredo, A model for pyrolysis of wet wood, Chemical Engineering Science, vol.44, issue.12, pp.2861-2870, 1989.
DOI : 10.1016/0009-2509(89)85096-1

A. Galgano and C. D. Blasi, Modeling the propagation of drying and decomposition fronts in wood, Combustion and Flame, vol.139, issue.1-2, pp.16-27, 2004.
DOI : 10.1016/j.combustflame.2004.07.004

A. Menis, Fire resistance of Laminated Veneer Lumber (LVL) and Cross-Laminated Timber (XLAM) elements, 2012.

E. J. Kansa, H. E. Perlee, and R. F. Chaiken, Mathematical model of wood pyrolysis including internal forced convection, Combustion and Flame, vol.29, pp.311-335, 1997.
DOI : 10.1016/0010-2180(77)90121-3

K. M. Bryden, Modeling thermally thick pyrolysis of wood, Biomass and Bioenergy, vol.22, issue.1, pp.41-53, 2002.
DOI : 10.1016/S0961-9534(01)00060-5

M. Khelifa, A. Khennane, M. Ganaoui, and Y. Rogaume, Analysis of the behavior of multiple dowel timber connections in fire, Fire Safety Journal, vol.68, pp.119-128, 2014.
DOI : 10.1016/j.firesaf.2014.05.024

URL : https://hal.archives-ouvertes.fr/hal-01597087

V. D. Thi, M. Khelifa, M. Ganaoui, and Y. Rogaume, Finite element modelling of the pyrolysis of wet wood subjected to fire, Fire Safety Journal, vol.81, pp.85-96, 2016.
DOI : 10.1016/j.firesaf.2016.02.001

URL : https://hal.archives-ouvertes.fr/hal-01599583

V. D. Thi, M. Khelifa, M. Oudjene, M. Ganaoui, and Y. Rogaume, Finite element analysis of heat transfer through timber elements exposed to fire, Engineering Structures, vol.143, pp.11-21, 2017.
DOI : 10.1016/j.engstruct.2017.04.014

M. Bellais, K. O. Davidssonb, T. Liliedahla, K. Sjostroma, and J. B. Pettersson, Pyrolysis of large wood particles: a study of shrinkage importance in simulations???, Fuel, vol.82, issue.12, pp.1541-1549, 2003.
DOI : 10.1016/S0016-2361(03)00062-0

K. M. Bryden and M. J. Hagge, Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle???, Fuel, vol.82, issue.13, pp.1633-1677, 2003.
DOI : 10.1016/S0016-2361(03)00108-X

F. Thurner and U. Mann, Kinetic investigation of wood pyrolysis, Industrial & Engineering Chemistry Process Design and Development, vol.20, issue.3, pp.482-490, 1981.
DOI : 10.1021/i200014a015

C. and D. Blasi, Analysis of Convection and Secondary Reaction Effects Within Porous Solid Fuels Undergoing Pyrolysis, Combustion Science and Technology, vol.90, issue.5, pp.315-340, 1993.
DOI : 10.1080/00102209308907620

W. R. Chan, M. Kelbon, and B. B. Krieger, Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle, Fuel, vol.64, issue.11, pp.1505-1518, 1985.
DOI : 10.1016/0016-2361(85)90364-3

W. C. Park, A. Atreya, and R. Howard, Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis, Combustion and Flame, vol.157, issue.3, pp.481-494, 2010.
DOI : 10.1016/j.combustflame.2009.10.006

, Eurocode 5 -Design of timber structures. Part 1-2 : General -Structural fire design, European Committee for Standardization), 2004.

R. M. Knudson and A. P. Schniewind, Performance of structural wood members exposed to fire, Forest Products Journal, vol.25, issue.2, pp.23-32, 1975.

B. Fredlund, Modelling of heat and mass transfer in wood structures during fire, Fire Safety Journal, vol.20, issue.1, pp.39-69, 1993.
DOI : 10.1016/0379-7112(93)90011-E

M. L. Janssens, Modeling of the thermal degradation of structural wood members exposed to fire, Fire and Materials, vol.28, issue.24, pp.199-207, 2004.
DOI : 10.1002/fam.848

S. Schnabl, I. Planinc, G. Turk, and S. Srp?ic, Fire analysis of timber composite beams with interlayer slip, Fire Safety Journal, vol.44, issue.5, pp.770-778, 2009.
DOI : 10.1016/j.firesaf.2009.03.007

Z. T. Yu, X. Xu, L. W. Fan, Y. C. Hu, and K. F. Cen, Experimental Measurements of Thermal Conductivity of Wood Species in China: Effects of Density, Temperature, and Moisture Content, Forest Products Journal, vol.61, issue.2, pp.130-135, 2011.
DOI : 10.13073/0015-7473-61.2.130

V. Oliver, D. B. Karin, H. Christian, T. Alfred, and M. Ulrich, Thermal conductivity of wood at angles to the principal anatomical directions, Wood Science and Technology, vol.49, pp.577-589, 2015.

P. Racher, K. Laplanche, D. Dhima, and A. Bouchaïr, Thermo-mechanical analysis of the fire performance of dowelled timber connection, Engineering Structures, vol.32, issue.4, pp.1148-1157, 2010.
DOI : 10.1016/j.engstruct.2009.12.041

M. Audebert, D. Dhima, M. Taazount, and A. Bouchaïr, Behavior of dowelled and bolted steel-to-timber connections exposed to fire, Engineering Structures, vol.39, pp.116-125, 2012.
DOI : 10.1016/j.engstruct.2012.02.010

E. L. Schaffer, Structural fire design : Wood. Rap tech. US Department of Agriculture, Forest service, 1984.

G. C. Thomas, Fire resistance of light timber framed walls and floors, 1996.

A. Nubissie, A. Ndoukouo-ngamie, and P. Woafo, Dynamical behavior of a wooden beam under mechanical loading and fire, Materials & Design, vol.32, issue.3, pp.1331-1336, 2001.
DOI : 10.1016/j.matdes.2010.09.020

B. A. Östman, Wood tensile strength at temperatures and moisture contents simulating fire conditions, Wood Science and Technology, vol.41, issue.1, pp.103-116, 1985.
DOI : 10.1007/978-3-642-87928-9

J. König and L. Walleij, Timber frame assemblies exposed to standard and parametric fires. Part 2 : A deign model for standard fire exposure. Rap, 2000.

G. Cueff, Développement d'un modèle thermo-mécanique du comportement sous agressions thermiques des matériaux cellulosiques : application à l'étude de résistance au feu de panneaux de bloc-porte en aggloméré de bois, 2014.

F. Kollmann and W. Cote, Principles of wood science and technology. Spring Ed, 1968.

A. , Version 6.14. Providence, RI : Dassault Systèmes Simulia Corp, 2016. [1] ABAQUS. Theory Manual. Version 6.14, Providence, RI : Dassault Systèmes Simulia Corp, 2016. [2] G. Dahlquist ,A. Bjork. Numerical Methods, 1974.

C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, 1993.

T. J. Hugues and R. L. Taylor, Unconditionally stable algorithms for quasistatic elastoviscoplasticity finite element analysis. Computers and Structures, pp.169-173, 1978.

A. D. Freed and K. P. Walker, Exponential Integration algorithms Applied to Viscoplasticity

. Conf, On Computational Plasticity, pp.1757-1768, 1992.

A. Khennane, M. Khelifa, L. Bleron, and J. Viguier, Numerical modelling of ductile damage evolution in tensile and bending tests of timber structures, Mechanics of Materials, vol.68, pp.228-236, 2014.
DOI : 10.1016/j.mechmat.2013.09.004

URL : https://hal.archives-ouvertes.fr/hal-01597474

O. Hoffman, The Brittle Strength of Orthotropic Materials, Journal of Composite Materials, vol.224, issue.2, pp.200-206, 1967.
DOI : 10.1098/rspa.1948.0045

V. D. Thi, M. Khelifa, M. Oudjene, M. Ganaoui, and Y. Rogaume, Finite element analysis of heat transfer through timber elements exposed to fire, Engineering Structures, vol.143, pp.11-21, 2017.
DOI : 10.1016/j.engstruct.2017.04.014

, Thèse doctorat : Modélisation du comportement au feu des structures en bois 4.4. Simulation des tests thermo-mécaniques

, Test de tension d'une éprouvette en LVL Une éprouvette en LVL de section transversale de 146×60 mm

, Les dimensions de l'éprouvette, les chargements thermique et mécanique, et le dispositif expérimental sont montrés sur la figure 4.63, mise un test de traction dans un four Les 4 surfaces latérales de cet élément sont exposées au feu standard

, Le maillage est constitué de 6566 éléments C3D8T (4930 pour le LVL, 960 pour la plaque métallique, 676 pour les boulons) Les propriétés thermo-mécaniques du matériau LVL sont résumées, RI : Dassault Systèmes Simulia Corp, 2016.

M. Khelifa, S. Auchet, P. Méausoone, and A. Celzard, Finite element analysis of flexural strengthening of timber beams with Carbon Fibre-Reinforced Polymers, Engineering Structures, vol.101, pp.364-375, 2015.
DOI : 10.1016/j.engstruct.2015.07.046

URL : https://hal.archives-ouvertes.fr/hal-01294583

M. Corradi, A. Borri, L. Righetti, and E. Speranzini, Uncertainty analysis of FRP reinforced timber beams, Composites Part B: Engineering, vol.113, pp.174-184, 2017.
DOI : 10.1016/j.compositesb.2017.01.030

K. S. Sikora, D. O. Mcpolin, and A. M. Harte, Effects of the thickness of cross-laminated timber (CLT) panels made from Irish Sitka spruce on mechanical performance in bending and shear, Construction and Building Materials, vol.116, pp.141-150, 2016.
DOI : 10.1016/j.conbuildmat.2016.04.145

A. Hassanieh, H. R. Valipour, and M. A. Bradford, Experimental and numerical study of steel-timber composite (STC) beams, Journal of Constructional Steel Research, vol.122, pp.367-378, 2016.
DOI : 10.1016/j.jcsr.2016.04.005

R. Gutkowski, K. Brown, A. Shigidi, and J. Natterer, Laboratory tests of composite wood???concrete beams, Construction and Building Materials, vol.22, issue.6, pp.1059-1066, 2008.
DOI : 10.1016/j.conbuildmat.2007.03.013

A. M. Dias, J. W. Van-de-kuilen, S. Lopes, and H. Cruz, A non-linear 3D FEM model to simulate timber???concrete joints, Advances in Engineering Software, vol.38, issue.8-9, pp.522-530, 2007.
DOI : 10.1016/j.advengsoft.2006.08.024

A. Menis, Fire resistance of Laminated Veneer Lumber (LVL) and Cross-Laminated Timber (XLAM) elements, 2012.

, ISO 834-1. Fire-resistance tests. Elements of building construction. Part 1 : General requirements.. International Organization for Standardization, 1999.

, Eurocode 5 -Design of timber structures. Part 1-2 : General -Structural fire design, European Committee for Standardization), 2004.

R. M. Knudson and A. P. Schniewind, Performance of structural wood members exposed to fire, Forest Products Journal, vol.25, issue.2, pp.23-32, 1975.

B. Fredlund, Modelling of heat and mass transfer in wood structures during fire, Fire Safety Journal, vol.20, issue.1, pp.39-69, 1993.
DOI : 10.1016/0379-7112(93)90011-E

M. L. Janssens, Modeling of the thermal degradation of structural wood members exposed to fire, Fire and Materials, vol.28, issue.24, pp.199-207, 2004.
DOI : 10.1002/fam.848

, Chapitre 4. Validations et applications des procédures numériques à la simulation des tests mécaniques et d'incendie

V. D. Thi, M. Khelifa, M. Oudjene, M. Ganaoui, and Y. Rogaume, Finite element analysis of heat transfer through timber elements exposed to fire, Engineering Structures, vol.143, pp.11-21, 2017.
DOI : 10.1016/j.engstruct.2017.04.014

W. P. Lane, Ignition, charring and structural performance of laminated veneer lumber, Fire Engineering Research Report, vol.053, 2005.

P. Keerthan and M. Mahendran, Numerical studies of gypsum plasterboard panels under standard fire conditions, Fire Safety Journal, vol.53, pp.105-119, 2012.
DOI : 10.1016/j.firesaf.2012.06.007

G. C. Thomas, Modelling thermal performance of gypsum plaster-board-lined light timber frame walls using SAFIR and TASEF, Fire and Materials, 2010.

D. Hopkin, T. Lennon, J. Rimawi, and V. Silberschmidt, A numerical study of gypsum plasterboard behaviour under standard and natural fire conditions, Fire and Materials, vol.30, issue.2, pp.107-126, 2012.
DOI : 10.1002/fam.898

A. Frangi, M. Fontana, E. Hugi, and R. , Experimental analysis of cross-laminated timber panels in fire, Fire Safety Journal, vol.44, issue.8, pp.1078-1087, 2009.
DOI : 10.1016/j.firesaf.2009.07.007

D. K. Shen, M. X. Fang, Z. Y. Luo, and K. F. Cen, Modeling pyrolysis of wet wood under external heat flux, Fire Safety Journal, vol.42, issue.3, pp.210-217, 2007.
DOI : 10.1016/j.firesaf.2006.09.001

C. and D. Blasi, Analysis of Convection and Secondary Reaction Effects Within Porous Solid Fuels Undergoing Pyrolysis, Combustion Science and Technology, vol.90, issue.5, pp.315-340, 1993.
DOI : 10.1080/00102209308907620

W. C. Park, A. Atreya, and R. Howard, Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis, Combustion and Flame, vol.157, issue.3, pp.481-494, 2010.
DOI : 10.1016/j.combustflame.2009.10.006

M. Fragiacomo, A. Menis, I. Clemente, C. Bochicchio, and A. Ceccotti, Fire Resistance of Cross-Laminated Timber Panels Loaded Out of Plane, Journal of Structural Engineering, vol.139, issue.12, 2013.
DOI : 10.1061/(ASCE)ST.1943-541X.0000787

S. A. Lineham, D. Thomson, A. I. Bartlett, L. A. Bisby, and R. M. Hadden, Structural response of fire-exposed cross-laminated timber beams under sustained loads, Fire Safety Journal, vol.85, pp.23-24, 2016.
DOI : 10.1016/j.firesaf.2016.08.002

, Bibliographie générale [A]

. Abaqus, Theory Manual. Version 6.14. Providence, RI : Dassault Systèmes Simulia Corp, 2016.

S. S. Alves and J. L. Figueiredo, A model for pyrolysis of wet wood, Chemical Engineering Science, vol.44, issue.12, pp.2861-2870, 1989.
DOI : 10.1016/0009-2509(89)85096-1

M. Audebert, D. Dhima, M. Taazount, and A. Bouchaïr, Behavior of dowelled and bolted steel-to-timber connections exposed to fire, Engineering Structures, vol.39, pp.116-125, 2012.
DOI : 10.1016/j.engstruct.2012.02.010

C. Barbe and R. Keller, Les rayons ligneux et le mat??riau bois, Revue Foresti??re Fran??aise, vol.8, issue.1, pp.63-68, 1996.
DOI : 10.4267/2042/26729

M. Bellais, K. O. Davidssonb, T. Liliedahla, K. Sjostroma, and J. B. Pettersson, Pyrolysis of large wood particles: a study of shrinkage importance in simulations???, Fuel, vol.82, issue.12, pp.1541-1549, 2003.
DOI : 10.1016/S0016-2361(03)00062-0

R. Bilbao, J. F. Mastral, J. Ceamanous, and M. E. Aldea, Modelling of the pyrolysis of wet wood, Journal of Analytical and Applied Pyrolysis, vol.36, issue.1, pp.81-97, 1996.
DOI : 10.1016/0165-2370(95)00918-3

C. and D. Blasi, Analysis of Convection and Secondary Reaction Effects Within Porous Solid Fuels Undergoing Pyrolysis, Combustion Science and Technology, vol.90, issue.5, pp.315-340, 1993.
DOI : 10.1080/00102209308907620

J. Bodig and B. Jayne, Mechanics of wood and wood composites, p.712, 1982.

K. M. Bryden, Modeling thermally thick pyrolysis of wood, Biomass and Bioenergy, vol.22, issue.1, pp.41-53, 2002.
DOI : 10.1016/S0961-9534(01)00060-5

K. M. Bryden and M. J. Hagge, Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle???, Fuel, vol.82, issue.13, pp.1633-1677, 2003.
DOI : 10.1016/S0016-2361(03)00108-X

J. L. Chaboche, Sur l'utilisation des variables d'état interne pour la description du comportement viscoplastique et de la rupture par endommagement, 1977.

W. R. Chan, M. Kelbon, and B. B. Krieger, Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle, Fuel, vol.64, issue.11, pp.1505-1518, 1985.
DOI : 10.1016/0016-2361(85)90364-3

J. P. Cordebois and F. Sidoroff, Endommagement anisotrope en élasticité et plasticité, Journal de la mécanique théorique, pp.45-60, 1982.

M. Corradi, A. Borri, L. Righetti, and E. Speranzini, Uncertainty analysis of FRP reinforced timber beams, Composites Part B: Engineering, vol.113, pp.174-184, 2017.
DOI : 10.1016/j.compositesb.2017.01.030

G. Cueff, Développement d'un modèle thermo-mécanique du comportement sous agressions thermiques des matériaux cellulosiques : application à l'étude de résistance au feu de panneaux de bloc-porte en aggloméré de bois, 2014.

G. Dahlquist and A. Bjork, Numerical Methods, 1974.

, Eurocode 5 -Design of timber structures. Part 1-2 : General -Structural fire design, European Committee for Standardization), 2004.

M. Fragiacomo, A. Menis, I. Clemente, C. Bochicchio, and A. Ceccotti, Fire Resistance of Cross-Laminated Timber Panels Loaded Out of Plane, Journal of Structural Engineering, vol.139, issue.12, 2013.
DOI : 10.1061/(ASCE)ST.1943-541X.0000787

A. Frangi, G. Bochicchio, A. Ceccotti, and M. P. Lauriola, atural full-scale fire test on a 3 storey XLam timber building, Proceedings of the 10th World Conference on Timber Engineering (WCTE), pp.2-5, 2008.

A. Frangi, M. Fontana, E. Hugi, and R. , Experimental analysis of cross-laminated timber panels in fire, Fire Safety Journal, vol.44, issue.8, pp.1078-1087, 2009.
DOI : 10.1016/j.firesaf.2009.07.007

S. Franke, Zur Beschreibung des Tragverhaltens von Holz unter Verwendung eines photogrammetrischen Messsystems, 2008.

J. Franssen, Contributions à la modélisation des incendies et leurs effets sur les bâtiments. Thèse d'agrégation de l'enseignement supérieur, 1997.

B. Fredlund, Modelling of heat and mass transfer in wood structures during fire, Fire Safety Journal, vol.20, issue.1, pp.39-69, 1993.
DOI : 10.1016/0379-7112(93)90011-E

A. Galgano and C. D. Blasi, Modeling the propagation of drying and decomposition fronts in wood, Combustion and Flame, vol.139, issue.1-2, pp.16-27, 2004.
DOI : 10.1016/j.combustflame.2004.07.004

C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, 1993.

P. Germain, Cours de mécaniques des milieux continus, 1973.

D. Guitard, , 1987.

R. Gutkowski, K. Brown, A. Shigidi, and J. Natterer, Laboratory tests of composite wood???concrete beams, Construction and Building Materials, vol.22, issue.6, pp.1059-1066, 2008.
DOI : 10.1016/j.conbuildmat.2007.03.013

J. J. Harrington, MicroFibril Angle in Wood, 1998.

A. Hassanieh, H. R. Valipour, and M. A. Bradford, Experimental and numerical study of steel-timber composite (STC) beams, Journal of Constructional Steel Research, vol.122, pp.367-378, 2016.
DOI : 10.1016/j.jcsr.2016.04.005

J. Havens, H. Hashemi, L. Brown, and R. Welker, A Mathematical Model of the Thermal Decomposition of Wood, Combustion Science and Technology, vol.2, issue.1, pp.91-99, 1972.
DOI : 10.1080/00102207208952509

R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.193, issue.1033, 1948.
DOI : 10.1098/rspa.1948.0045

O. Hoffman, The Brittle Strength of Orthotropic Materials, Journal of Composite Materials, vol.224, issue.2, pp.200-206, 1967.
DOI : 10.1098/rspa.1948.0045

D. Hopkin, T. Lennon, J. Rimawi, and V. Silberschmidt, A numerical study of gypsum plasterboard behaviour under standard and natural fire conditions, Fire and Materials, vol.30, issue.2, pp.107-126, 2012.
DOI : 10.1002/fam.898

E. T. Howord and F. G. Manwiller, Anatomical characteristics of southern pine steamwood, pp.77-86, 1969.

T. J. Hugues and R. L. Taylor, Unconditionally stable algorithms for quasistatic elasto-viscoplasticity finite element analysis. Computers and Structures, pp.169-173, 1978.

, ISO 834-1. Fire-resistance tests. Elements of building construction. Part 1 : General requirements, International Organization for Standardization, 1999.

M. L. Janssens, Modeling of the thermal degradation of structural wood members exposed to fire, Fire and Materials, vol.28, issue.24, pp.199-207, 2004.
DOI : 10.1002/fam.848

P. Jodin, Le bois, matériau d'ingénierie. Association pour la recherche sur le bois en Lorraine, 1994.

L. Kachanov, Time of the rupture process under creep conditions, Izv. Akad. NAUK. SSR -Otd. Nauk, vol.8, pp.26-31, 1958.

P. Keerthan and M. Mahendran, Numerical studies of gypsum plasterboard panels under standard fire conditions, Fire Safety Journal, vol.53, pp.105-119, 2012.
DOI : 10.1016/j.firesaf.2012.06.007

E. Kansa, H. Perlee, and R. Chaiken, Mathematical model of wood pyrolysis including internal forced convection, Combustion and Flame, vol.29, pp.311-335, 1977.
DOI : 10.1016/0010-2180(77)90121-3

P. Keerthan and M. Mahendran, Numerical studies of gypsum plasterboard panels under standard fire conditions, Fire Safety Journal, vol.53, pp.105-119, 2012.
DOI : 10.1016/j.firesaf.2012.06.007

M. Khelifa and A. Khennane, Numerical Analysis of the Cutting Forces in Timber, Journal of Engineering Mechanics, vol.140, issue.3, pp.523-530, 2014.
DOI : 10.1061/(ASCE)EM.1943-7889.0000671

URL : https://hal.archives-ouvertes.fr/hal-01597483

M. Khelifa, S. Auchet, P. Méausoone, and A. Celzard, Finite element analysis of flexural strengthening of timber beams with Carbon Fibre-Reinforced Polymers, Engineering Structures, vol.101, pp.364-375, 2015.
DOI : 10.1016/j.engstruct.2015.07.046

URL : https://hal.archives-ouvertes.fr/hal-01294583

M. Khelifa, A. Khennane, M. Ganaoui, and Y. Rogaume, Analysis of the behavior of multiple dowel timber connections in fire, Fire Safety Journal, vol.68, pp.119-128, 2014.
DOI : 10.1016/j.firesaf.2014.05.024

URL : https://hal.archives-ouvertes.fr/hal-01597087

A. Khennane, M. Khelifa, L. Bleron, and J. Viguier, Numerical modelling of ductile damage evolution in tensile and bending tests of timber structures, Mechanics of Materials, vol.68, pp.228-236, 2014.
DOI : 10.1016/j.mechmat.2013.09.004

URL : https://hal.archives-ouvertes.fr/hal-01597474

W. Knigge and H. Schulz, Grundriss der Forstbenutzung, 1966.

J. König and L. Walleij, Timber frame assemblies exposed to standard and parametric fires. Part 2 : A deign model for standard fire exposure. Rap, 2000.

R. M. Knudson and A. P. Schniewind, Performance of structural wood members exposed to fire, Forest Products Journal, vol.25, issue.2, pp.23-32, 1975.

F. F. Kollmann, W. A. Jr, and . Côte, Principles of wood Science and Technology. Solid Wood

, New York, vol.592, 1968.

M. Kosik, M. Dandarova, and R. Domansky, Pyrolyse des Buchenholzes bei niedrigen Temperaturen IX

C. Veränderungen-im-buchenholz-während-der-pyrolyse, Holzforschung Holzverwendung, vol.21, pp.40-43, 1969.

W. P. Lane, Ignition, charring and structural performance of laminated veneer lumber, Fire Engineering Research Report, vol.053, 2005.

J. Larfeldt, B. Leckner, and M. C. Melaaen, Modelling and measurements of the pyrolysis of large wood particles, Fuel, vol.79, issue.13, pp.1637-1680, 2000.
DOI : 10.1016/S0016-2361(00)00007-7

J. Lemaitre and J. L. Chaboche, Aspect phénoménologique de la rupture par endommagement, J. de Mécanique appliqué, vol.2, issue.3, pp.317-365, 1978.

J. Lemaitre and J. L. Chaboche, Mécanique des milieux solides, 1985.

J. Lemaitre, A Continuous Damage Mechanics Model for Ductile Fracture, Journal of Engineering Materials and Technology, vol.107, issue.1, pp.83-89, 1985.
DOI : 10.1115/1.3225775

J. Lemaitre, A course on Damage Mechanics, 1996.

S. A. Lineham, D. Thomson, A. I. Bartlett, L. A. Bisby, and R. M. Hadden, Structural response of fire-exposed cross-laminated timber beams under sustained loads, Fire Safety Journal, vol.85, pp.23-24, 2016.
DOI : 10.1016/j.firesaf.2016.08.002

URL : https://doi.org/10.1016/j.firesaf.2016.08.002

A. Menis, Fire resistance of Laminated Veneer Lumber (LVL) and Cross-Laminated Timber (XLAM) elements, 2012.

B. Moghtaderi, The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels, Fire and Materials, vol.23, issue.1, pp.1-34, 2006.
DOI : 10.1002/9780470694954.ch85

A. Nubissie, A. Ndoukouo-ngamie, and P. Woafo, Dynamical behavior of a wooden beam under mechanical loading and fire, Materials & Design, vol.32, issue.3, pp.1331-1336, 2001.
DOI : 10.1016/j.matdes.2010.09.020

V. Oliver, D. B. Karin, H. Christian, T. Alfred, and M. Ulrich, Thermal conductivity of wood at angles to the principal anatomical directions, Wood Science and Technology, vol.49, pp.577-589, 2015.

B. A. Östman, Wood tensile strength at temperatures and moisture contents simulating fire conditions

, Wood Science and Technology, vol.19, pp.103-116, 1985.

M. Oudjene and M. Khelifa, Finite element modelling of wooden structures at large deformations and brittle failure prediction, Materials & Design, vol.30, issue.10, pp.4081-4087, 2009.
DOI : 10.1016/j.matdes.2009.05.024

M. Oudjene and M. Khelifa, Elasto-plastic constitutive law for wood behaviour under compressive loadings, Construction and Building Materials, vol.23, issue.11, pp.3359-3366, 2009.
DOI : 10.1016/j.conbuildmat.2009.06.034

R. A. Parhan and R. L. Gra, Formation and Structure of Wood. In : The Chemistry of Solid Wood

. Rowell, , pp.3-56, 1983.

W. C. Park, A. Atreya, and R. Howard, Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis, Combustion and Flame, vol.157, issue.3, pp.481-494, 2010.
DOI : 10.1016/j.combustflame.2009.10.006

J. S. Poulsen, Compression in clear wood, 1998.

P. Racher, K. Laplanche, D. Dhima, and A. Bouchaïr, Thermo-mechanical analysis of the fire performance of dowelled timber connection, Engineering Structures, vol.32, issue.4, pp.1148-1157, 2010.
DOI : 10.1016/j.engstruct.2009.12.041

A. Reiterer and S. E. Stanzl-tschegg, Compressive behaviour of softwood under uniaxial loading at different orientations to the grain, Mechanics of Materials, vol.33, issue.12, pp.705-715, 2001.
DOI : 10.1016/S0167-6636(01)00086-2

K. Saanouni, C. Forster, and F. B. Hatira, On the Anelastic Flow with Damage, International Journal of Damage Mechanics, vol.8, issue.6, pp.140-169, 1994.
DOI : 10.1016/0001-6160(84)90213-X

E. L. Schaffer, Structural fire design : Wood. Rap tech. US Department of Agriculture, Forest service, 1984.

J. C. Schellekens and R. D. Borst, The use of the Hoffman yield criterion in finite element analysis of anisotropic composites, Computers & Structures, vol.37, issue.6, pp.1087-1096, 1990.
DOI : 10.1016/0045-7949(90)90020-3

S. Schnabl, I. Planinc, G. Turk, and S. Srp?ic, Fire analysis of timber composite beams with interlayer slip, Fire Safety Journal, vol.44, issue.5
DOI : 10.1016/j.firesaf.2009.03.007

, Fire Safety Journal, vol.44, pp.770-778, 2009.

D. K. Shen, M. X. Fang, Z. Y. Luo, and K. F. Cen, Modeling pyrolysis of wet wood under external heat flux, Fire Safety Journal, vol.42, issue.3
DOI : 10.1016/j.firesaf.2006.09.001

, Fire Safety Journal, vol.42, pp.210-217, 2007.

K. S. Sikora, D. O. Mcpolin, and A. M. Harte, Effects of the thickness of cross-laminated timber (CLT) panels made from Irish Sitka spruce on mechanical performance in bending and shear, Construction and Building Materials, vol.116, pp.141-150, 2016.
DOI : 10.1016/j.conbuildmat.2016.04.145

S. W. Tsai and E. M. Wu, A General Theory of Strength for Anisotropic Materials, Journal of Composite Materials, vol.1, issue.1, pp.58-80, 1971.
DOI : 10.1177/002199836700100210

V. D. Thi, M. Khelifa, M. Ganaoui, and Y. Rogaume, Finite element modelling of the pyrolysis of wet wood subjected to fire, Fire Safety Journal, vol.81, pp.85-96, 2016.
DOI : 10.1016/j.firesaf.2016.02.001

URL : https://hal.archives-ouvertes.fr/hal-01599583

V. D. Thi, M. Khelifa, M. Oudjene, M. Ganaoui, and Y. Rogaume, Finite element analysis of heat transfer through timber elements exposed to fire, Engineering Structures, vol.143, pp.11-21, 2017.
DOI : 10.1016/j.engstruct.2017.04.014

G. C. Thomas, Fire resistance of light timber framed walls and floors, 1996.

G. C. Thomas, Modelling thermal performance of gypsum plaster-board-lined light timber frame walls using SAFIR and TASEF, Fire and Materials, 2010.

B. H. Xu, Modélisation du comportement mécanique d'assemblages bois avec prise en compte de critères de rupture, 2009.

B. H. Xu, A. Bouchaïr, M. Taazount, and E. J. Vega, Numerical and experimental analyses of multiple-dowel steel-to-timber joints in tension perpendicular to grain, Engineering Structures, vol.31, issue.10, pp.2357-2367, 2009.
DOI : 10.1016/j.engstruct.2009.05.013

Z. T. Yu, X. Xu, L. W. Fan, Y. C. Hu, and K. F. Cen, Experimental Measurements of Thermal Conductivity of Wood Species in China: Effects of Density, Temperature, and Moisture Content, Forest Products Journal, vol.61, issue.2, pp.130-135, 2011.
DOI : 10.13073/0015-7473-61.2.130

J. E. Winandy, R. M. Ed, R. M. By, R. Rowell, J. F. Bilbao et al., The Chemistry of Wood Strength In : The Chemistry of solid Wood Modeling of the pyrolysis of wet wood, J. Anal. Appl. Pyrol, pp.211-255, 1983.

D. K. Shen, M. X. Fang, Z. Y. Luo, and K. F. Cen, Modeling pyrolysis of wet wood under external heat flux, Fire Saf, J, pp.42-210, 2007.

B. Moghtaderi, The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels, Fire and Materials, vol.23, issue.1, pp.1-34, 2006.
DOI : 10.1002/9780470694954.ch85

J. Havens, H. Hashemi, L. Brown, and R. Welker, A Mathematical Model of the Thermal Decomposition of Wood, Combustion Science and Technology, vol.2, issue.1, pp.91-98, 1972.
DOI : 10.1080/00102207208952509

E. Kansa, H. Perlee, and R. Chaiken, Mathematical model of wood pyrolysis including internal forced convection, Combustion and Flame, vol.29, pp.311-324, 1977.
DOI : 10.1016/0010-2180(77)90121-3

J. Larfeldt, B. Leckner, and M. C. Melaaen, Modelling and measurements of the pyrolysis of large wood particles, Fuel, vol.79, issue.13, pp.1637-1643, 2000.
DOI : 10.1016/S0016-2361(00)00007-7

S. S. Alves and J. L. Figueiredo, A model for pyrolysis of wet wood, Chemical Engineering Science, vol.44, issue.12, pp.2861-2869, 1989.
DOI : 10.1016/0009-2509(89)85096-1

A. Galgano and C. D. Blasi, Modeling the propagation of drying and decomposition fronts in wood, Combustion and Flame, vol.139, issue.1-2, pp.16-27, 2004.
DOI : 10.1016/j.combustflame.2004.07.004

M. L. , Janssens, Modeling of the thermal degradation of structural wood members exposed to fire, Fire Mater, vol.28, pp.199-207, 2004.

E. J. Kansa, H. E. Perlee, and R. F. Chaiken, Mathematical model of wood pyrolysis including internal forced convection, Combustion and Flame, vol.29, pp.311-324, 1997.
DOI : 10.1016/0010-2180(77)90121-3

K. M. Bryden, Modeling thermally thick pyrolysis of wood, Biomass and Bioenergy, vol.22, issue.1, pp.41-53, 2002.
DOI : 10.1016/S0961-9534(01)00060-5

A. Menis, Fire resistance of Laminated Veneer Lumber (LVL) and Cross-Laminated Timber (XLAM) elements PhD Thesis, 2012.

W. P. Lane, Ignition, charring and structural performance of laminated veneer lumber Fire Engineering Research Report 05, 2005.

S. Schnabl, I. Planinc, G. Turk, and S. Srpc?-ic, Fire analysis of timber composite beams with interlayer slip, Fire Saf, J, vol.44, pp.770-778, 2009.

R. M. Knudson and A. P. Schniewind, Performance of structural wood members exposed to fire, Forest Prod, J, vol.25, issue.2, pp.23-32, 1975.

B. Fredlund, Modelling of heat and mass transfer in wood structures during fire, Fire Saf, J, vol.20, pp.39-69, 1993.

, Eurocode 5-Design of timber structures Part 1 À 2: General-Structural fire design, European Committee for Standardization), 2004.

A. Frangi, M. Fontana, M. Knobloch, and G. Bochicchio, Fire behaviour of cross-laminated solid timber panels, Fire Safety Science, vol.9, pp.1279-1290, 2009.
DOI : 10.3801/IAFSS.FSS.9-1279

M. Khelifa, A. Khennane, M. Ganaoui, and Y. Rogaume, Analysis of the behaviour of multiple dowel timber connections in fire, Fire Saf, J, pp.68-119, 2014.

M. Bellais, K. O. Davidssonb, T. Liliedahla, K. Sjostroma, and J. B. Pettersson, Pyrolysis of large wood particles: a study of shrinkage importance in simulations???, Fuel, vol.82, issue.12, pp.1541-1548, 2003.
DOI : 10.1016/S0016-2361(03)00062-0

K. M. Bryden and M. J. Hagge, Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle???, Fuel, vol.82, issue.13, pp.1633-1644, 2003.
DOI : 10.1016/S0016-2361(03)00108-X

A. V. Luikov, Heat and Mass Transfer in Capillary-porous Bodies, 1966.

R. W. Lewis, P. Nithiarasu, and K. N. Seetharamu, Fundamentals of the Finite Element Method for Heat and Fluid Flow, 2004.
DOI : 10.1002/0470014164

F. Thurner and U. Mann, Kinetic investigation of wood pyrolysis, Industrial & Engineering Chemistry Process Design and Development, vol.20, issue.3, pp.482-488, 1981.
DOI : 10.1021/i200014a015

C. and D. Blasi, Analysis of Convection and Secondary Reaction Effects Within Porous Solid Fuels Undergoing Pyrolysis, Combustion Science and Technology, vol.90, issue.5, pp.1121-1132, 1993.
DOI : 10.1080/00102209308907620

G. L. Borman and K. W. Ragland, Combustion engineering, 1998.

W. R. Chan, M. Kelbon, and B. B. Krieger, Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle, Fuel, vol.64, issue.11, pp.1505-1513, 1985.
DOI : 10.1016/0016-2361(85)90364-3

K. M. Bryden, Computational modeling of wood combustion PhD thesis, 1998.

A. Menis, Numerical and experimental investigations of LVL members exposed to fire Master Thesis, 2008.

, ISO834 À 1: Fire-resistance Tests-Elements of Building Construction-Part0 1: General Requirements, International Organization for Standardization, 1999.

V. D. Thi, Finite element modelling of the pyrolysis of wet wood subjected to fire, Fire Safety Journal, vol.81, pp.85-96, 2016.
DOI : 10.1016/j.firesaf.2016.02.001

URL : https://hal.archives-ouvertes.fr/hal-01599583

, References [1] Eurocode 5 ? Design of timber structures. Part 1-2: General ? Structural fire design, CEN, 2004.

R. White, E. Schaffer, and F. Woeste, Replicate fire endurance tests of unprotected wood joist floor assembly, Wood Fiber Sci, vol.16, issue.3, pp.374-90, 1984.

D. Shen, M. Fang, Z. Luo, and K. Cen, Modeling pyrolysis of wet wood under external heat flux, Fire Safety Journal, vol.42, issue.3, pp.210-217, 2007.
DOI : 10.1016/j.firesaf.2006.09.001

W. Park, A. Atreya, and H. Baum, Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis, Combustion and Flame, vol.157, issue.3, pp.481-94, 2010.
DOI : 10.1016/j.combustflame.2009.10.006

C. Blasi, Analysis of Convection and Secondary Reaction Effects Within Porous Solid Fuels Undergoing Pyrolysis, Combustion Science and Technology, vol.90, issue.5, pp.315-355, 1993.
DOI : 10.1080/00102209308907620

S. Schnabl, I. Planinc, G. Turk, and S. Srpcic, Fire analysis of timber composite beams with interlayer slip, Fire Safety Journal, vol.44, issue.5, pp.770-778, 2009.
DOI : 10.1016/j.firesaf.2009.03.007

A. Menis, Fire resistance of Laminated Veneer Lumber (LVL) and Cross- Laminated Timber (XLAM) elements. Italy: Università degli studi di Cagliari, 2012.

C. Erchinger, A. Frangi, and M. Fontana, Fire design of steel-to-timber dowelled connections, Engineering Structures, vol.32, issue.2, pp.580-589, 2010.
DOI : 10.1016/j.engstruct.2009.11.004

R. Bilbao, J. Mastral, J. Ceamanous, and M. Aldea, Modelling of the pyrolysis of wet wood, Journal of Analytical and Applied Pyrolysis, vol.36, issue.1, pp.81-97, 1996.
DOI : 10.1016/0165-2370(95)00918-3

. Abaqus, Theory manual. Version 6.11. Providence, RI: Dassault Systèmes Simulia Corp, 2011.

W. Lane, Ignition, charring and structural performance of laminated veneer lumber, Fire Engineering Research Report, vol.053, 2005.

, ISO 834-1. Fire-resistance tests. Elements of building construction. Part 1: General requirements, International Organization for Standardization, 1999.

R. Knudson and A. Schniewind, Performance of structural wood members exposed to fire, Forest Prod J, vol.25, issue.2, pp.23-32, 1975.

B. Fredlund, Modelling of heat and mass transfer in wood structures during fire, Fire Safety Journal, vol.20, issue.1, pp.39-69, 1993.
DOI : 10.1016/0379-7112(93)90011-E

M. Janssens, Modeling of the thermal degradation of structural wood members exposed to fire, Fire and Materials, vol.28, issue.24, pp.199-207, 2004.
DOI : 10.1002/fam.848

D. Zhao-jin-chao, Z. Fei-peng, C. Xing-ping, W. Wei, Z. Xiao-mei et al., Thermal conductive and electrical properties of polyurethane/hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotube composites, Composites Part B: Engineering, vol.42, issue.8, pp.2111-2117, 2011.
DOI : 10.1016/j.compositesb.2011.05.005

A. Frangi and M. Fontana, Charring rates and temperature profiles of wood sections, Fire and Materials, vol.13, issue.2, pp.91-102, 2003.
DOI : 10.1002/fam.819

S. Schnabl, G. Turk, and I. Planinc, Buckling of timber columns exposed to fire, Fire Safety Journal, vol.46, issue.7, pp.431-440, 2011.
DOI : 10.1016/j.firesaf.2011.07.003

URL : https://repozitorij.uni-lj.si/Dokument.php?id=85612&dn=

P. Keerthan and M. Mahendran, Numerical studies of gypsum plasterboard panels under standard fire conditions, Fire Safety Journal, vol.53, pp.105-124, 2012.
DOI : 10.1016/j.firesaf.2012.06.007

URL : http://eprints.qut.edu.au/53448/1/55966.pdf

G. Thomas, Modelling thermal performance of gypsum plaster-board-lined light timber frame walls using SAFIR and TASEF. Fire Mater, 2010.
DOI : 10.1002/fam.1026

V. D. Thi, Finite element analysis of heat transfer through timber elements exposed to fire, Engineering Structures, vol.143, pp.11-21, 2017.
DOI : 10.1016/j.engstruct.2017.04.014