H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI), Japanese Journal of Applied Physics, vol.28, issue.Part 2, No. 12, p.2112, 1989.
DOI : 10.1143/JJAP.28.L2112

S. Nakamura, T. Mukai, and M. Senoh, Candela???class high???brightness InGaN/AlGaN double???heterostructure blue???light???emitting diodes, Applied Physics Letters, vol.32, issue.13, p.1687, 1994.
DOI : 10.1143/JJAP.32.L338

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, J.of Light & Visual Evt, vol.22, issue.2, 1998.

J. Wu, Smart Lighting, Niche Lighting and Lighting in Emerging Countries are Top Three Driving Forces for Global LED Lighting Market Trend, LED Inside, 2017.

B. Damilano, N. Grandjean, S. Vézian, and J. Massies, J. Cryst. Growth, vol.228, p.466, 2001.

Y. Inatomi, Y. Kangawa, T. Ito, T. Suski, Y. Kumagai et al.,

, Jpn. J. Appl. Phy, vol.56, p.78003, 2017.

S. H. Park, T. H. Chung, J. H. Baek, and D. Ahn, References of chapter, Jpn. J. Appl. Phy, vol.54, issue.2, 2015.

T. Zhu and R. A. Oliver, Unintentional doping in GaN, Physical Chemistry Chemical Physics, vol.518, issue.24, p.9558, 2012.
DOI : 10.1016/j.tsf.2010.03.111

C. M. Balkas and R. F. Davis, Synthesis Routes and Characterization of High-Purity, Single-Phase Gallium Nitride Powders, Journal of the American Ceramic Society, vol.10, issue.4, p.2309, 1996.
DOI : 10.1017/S0885715600014950

W. Paszkowicz, S. Podsiad?o, and R. Minikayev, Rietveld-refinement study of aluminium and gallium nitrides, Journal of Alloys and Compounds, vol.382, issue.1-2, p.100, 2004.
DOI : 10.1016/j.jallcom.2004.05.036

W. Paszkowicz, Powder Diffr, vol.14, issue.258, 1999.

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff et al., J. S. Speck, S. P. Denbaars and U. K. Mishra. Semicond. Sci. Tech, vol.29, p.113001, 2014.

I. Vurgaftman and J. R. Meyer, Band parameters for nitrogen-containing semiconductors, Journal of Applied Physics, vol.66, issue.6, p.3675, 2003.
DOI : 10.1116/1.1381069

V. Fiorentini, F. Bernardini, and O. Ambacher, Appl. Phy. Express, vol.80, p.1204, 2002.

H. W. King and Y. L. Vegard, Quantitative size-factors for metallic solid solutions, Journal of Materials Science, vol.55, issue.1, p.79, 1921.
DOI : 10.1007/BF00549722

I. Ho and G. Stringfellow, Solid phase immiscibility in GaInN, Applied Physics Letters, vol.69, issue.18, p.2701, 1996.
DOI : 10.1063/1.117683

T. Saito, Y. Arakawa, and T. In, random alloys calculated using a valence-force-field method, Physical Review B, vol.71, issue.3, p.1701, 1999.
DOI : 10.1063/1.119440

J. Adhikari and D. A. Kofke, Molecular simulation study of miscibility of ternary and quaternary InGaAlN alloys, Journal of Applied Physics, vol.105, issue.11, p.6129, 2004.
DOI : 10.1063/1.119440

A. Koukitu and H. Seki, J. Cryst. Growth, vol.189190, issue.13, 1998.

D. Doppalapudi, S. N. Basu, and T. D. Moustakas, J. Appl. Phys, vol.512, p.1389, 1998.

N. A. El-masry, E. L. Piner, S. X. Liu, and S. M. Bedair, Phase separation in InGaN grown by metalorganic chemical vapor deposition, Applied Physics Letters, vol.72, issue.1, p.40, 1998.
DOI : 10.1016/S0022-0248(74)80047-3

M. Mesrine, N. Grandjean, and J. Massies, Efficiency of NH3 as nitrogen source for GaN molecular beam epitaxy, Applied Physics Letters, vol.72, issue.3, p.350, 1998.
DOI : 10.1007/s11664-997-0163-z

N. A. Kaufmann, A. Dussaigne, D. Martin, P. Valvin, T. Guillet et al., Thermal annealing of molecular beam epitaxy-grown InGaN/GaN single quantum well, Semiconductor Science and Technology, vol.27, issue.10, p.105023, 2012.
DOI : 10.1088/0268-1242/27/10/105023

URL : https://hal.archives-ouvertes.fr/hal-00805853

V. Potin, E. Hahn, A. Rosenauer, D. Gerthsen, B. Kuhn et al., Comparison of the In distribution in InGaN/GaN quantum well structures grown by molecular beam epitaxy and metalorganic vapor phase epitaxy, Journal of Crystal Growth, vol.262, issue.1-4, p.145, 2004.
DOI : 10.1016/j.jcrysgro.2003.10.082

M. Takeguchi, M. R. Mccartney, and D. J. Smith, Mapping In concentration, strain, and internal electric field in InGaN/GaN quantum well structure, Applied Physics Letters, vol.84, issue.12, p.2103, 2004.
DOI : 10.1063/1.1641173

Y. Lin, K. Ma, C. Hsu, and S. Feng, Appl. Phy. Express, vol.77, p.2988, 2000.

D. Gerthsen, E. Hahn, B. Neubauer, V. Potin, A. Rosenauer et al., Indium distribution in epitaxially grown InGaN layers analyzed by transmission electron microscopy, physica status solidi (c), vol.230, issue.220, p.1668, 2003.
DOI : 10.1016/S0022-0248(01)01260-X

D. Behr, J. Wagner, A. Ramakrishnan, H. Obloh, and K. H. Bachem,

, Lett, vol.73, issue.241, 1998.

H. K. Cho, J. Y. Lee, N. Sharma, C. J. Humphreys, G. M. Yang et al., Effect of growth interruptions on the light emission and indium clustering of InGaN/GaN multiple quantum wells, Applied Physics Letters, vol.79, issue.16, p.2594, 2001.
DOI : 10.1016/S0022-0248(01)01522-6

N. Wieser, O. Ambacher, H. P. Felsl, L. Gorgens, and M. Stutzmann,

, Lett, vol.74, issue.3981, 1999.

J. T. Griffiths, F. Oehler, F. Tang, S. Zhang, W. Y. Fu et al., J. Appl. Phys, vol.119, p.0, 2016.

B. Bonef, M. Catalano, C. Lund, S. P. Denbaars, S. Nakamura et al., Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography, Applied Physics Letters, vol.110, issue.14, p.143101, 2017.
DOI : 10.1063/1.113950

Y. Varshni, Physica, vol.34, issue.149, 1967.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller et al., ???S-shaped??? temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells, Applied Physics Letters, vol.73, issue.10, p.1370, 1998.
DOI : 10.1557/S109257830000209X

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, MRS Proc. 449, p.653, 1996.

H. P. Schenk, M. Leroux, and P. De-mierry, Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck???Shockley relation, Journal of Applied Physics, vol.4, issue.3, p.1525, 2000.
DOI : 10.1063/1.119689

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phy. Lett. 2822, p.19, 1997.

G. B. Stringfellow, J. Cryst. Growth, vol.312, issue.735, 2010.

T. Y. Wu, C. C. Chang, K. K. Tiong, Y. C. Lee, S. Y. Hu et al., Luminescence studies in InxGa1???xN epitaxial layers with different indium contents, Optical Materials, vol.35, issue.10, p.1829, 2013.
DOI : 10.1016/j.optmat.2013.03.024

H. Wang, Z. Ji, S. Qu, G. Wang, Y. Jiang et al., Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells, Optics Express, vol.20, issue.4, p.3932, 2012.
DOI : 10.1364/OE.20.003932

J. R. Jinschek, R. Erni, N. F. Gardner, A. Y. Kim, and C. Kisielowski, Local indium segregation and bang gap variations in high efficiency green light emitting InGaN/GaN diodes, Solid State Communications, vol.137, issue.4, p.230, 2006.
DOI : 10.1016/j.ssc.2005.10.030

T. M. Smeeton, C. J. Humphreys, J. S. Barnard, and M. J. Kappers, The impact of electron beam damage on the detection of indium-rich localisation centres in InGaN quantum wells using transmission electron microscopy, Journal of Materials Science, vol.228, issue.9, p.2729, 2006.
DOI : 10.1557/PROC-743-L11.13

C. J. Humphreys, Philos. Mag, vol.87, 1971.

S. Kret, P. D?uzewski, A. Szczepa?ska, M. Zak, R. Czernecki et al., Homogenous indium distribution in InGaN/GaN laser active structure grown by LP-MOCVD on bulk GaN crystal revealed by transmission electron microscopy and x-ray diffraction, Nanotechnology, vol.18, issue.46, p.465707, 2007.
DOI : 10.1088/0957-4484/18/46/465707

M. J. Galtrey, R. A. Oliver, M. J. Kappers, C. J. Humphreys, P. H. Clifton et al., Three-dimensional atom probe analysis of green- and blue-emitting InxGa1???xN???GaN multiple quantum well structures, Journal of Applied Physics, vol.6, issue.1, p.13524, 2008.
DOI : 10.1063/1.1757020

K. H. Baloch, A. C. Johnston-peck, K. Kisslinger, E. A. Stach, and S. Grade?ak,

. Appl, . Phy, and . Lett, , 2013.

F. Tang, T. Zhu, F. Oehler, W. Y. Fu, J. T. Griffiths et al.,

, Lett, vol.106, p.72104, 2015.

G. H. Gu, D. H. Jang, K. B. Nam, and C. G. , Composition Fluctuation of In and Well-Width Fluctuation in InGaN/GaN Multiple Quantum Wells in Light-Emitting Diode Devices, Microscopy and Microanalysis, vol.108, issue.S5, p.99, 2013.
DOI : 10.1143/JJAP.35.L74

H. Lei, J. Chen, and P. Ruterana, Role of c-screw dislocations on indium segregation in InGaN and InAlN alloys, Applied Physics Letters, vol.5, issue.16, p.161901, 2010.
DOI : 10.1016/0001-6160(61)90242-5

A. Reznitsky, A. Klochikhin, S. Permogorov, L. Tenishev, W. Lundin et al., Phys. Status Solidi C, vol.283, p.280, 2002.

K. O. Donnell, R. Martin, and P. Middleton, Phys. Rev. B, vol.82, p.237, 1999.

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita et al., Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm, Applied Physics Letters, vol.33, issue.8, p.981, 1997.
DOI : 10.1063/1.117683

D. M. Graham, A. Soltani-vala, P. Dawson, M. J. Godfrey, T. M. Smeeton et al., Optical and microstructural studies of InGaN???GaN single-quantum-well structures, Journal of Applied Physics, vol.97, issue.10, p.103508, 2005.
DOI : 10.1103/PhysRevB.40.11862

L. Bellaiche, T. Mattila, L. Wang, S. Wei, and A. Zunger, Resonant hole localization and anomalous optical bowing in InGaN alloys, Applied Physics Letters, vol.74, issue.13, p.1842, 1999.
DOI : 10.1103/PhysRevB.56.10233

A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow et al., Phys. Rev. Let, vol.95, p.1, 2005.

F. C. Massabuau, P. Chen, M. K. Horton, S. L. Rhode, C. X. Ren et al., Carrier localization in the vicinity of dislocations in InGaN, Journal of Applied Physics, vol.121, issue.1, p.13104, 2017.
DOI : 10.1080/14786435.2013.797617

S. F. Chichibu, A. Uedono, T. Onuma, B. Haskell, A. Chakraborty et al.,

, Mater, vol.5, issue.810, 2006.

M. A. Moram and M. E. Vickers, X-ray diffraction of III-nitrides, Reports on Progress in Physics, vol.72, issue.3, p.36502, 2009.
DOI : 10.1088/0034-4885/72/3/036502

K. Kim, W. Lambrecht, and B. Segall, Erratum:???Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN [Phys. Rev. B 53, 16310 (1996)], Physical Review B, vol.43, issue.11, p.7018, 1997.
DOI : 10.1103/PhysRevB.43.6388

K. Shimada, T. Sota, and K. Suzuki, First-principles study on electronic and elastic properties of BN, AlN, and GaN, Journal of Applied Physics, vol.37, issue.9, p.4951, 1998.
DOI : 10.1103/PhysRevB.7.743

A. Polian, M. Grimsditch, and I. Grzegory, Elastic constants of gallium nitride, Journal of Applied Physics, vol.11, issue.6, p.3343, 1996.
DOI : 10.1080/08957959308201649

A. F. Wright, Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN, Journal of Applied Physics, vol.37, issue.6, p.2833, 1997.
DOI : 10.1103/PhysRevB.7.743

M. A. Moram, Z. H. Barber, and C. J. Humphreys, Accurate experimental determination of the Poisson???s ratio of GaN using high-resolution x-ray diffraction, Journal of Applied Physics, vol.6, issue.2, p.23505, 2007.
DOI : 10.1016/j.tsf.2006.07.100

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu et al., Microstructure and electronic properties of InGaN alloys, physica status solidi (b), vol.240, issue.2, p.273, 2003.
DOI : 10.1002/pssb.200303527

D. Holec, Y. Zhang, D. V. Rao, M. J. Kappers, C. Mcaleese et al.,

, J. Appl. Phys, vol.104, 2008.

M. Leyer, J. Stellmach, C. Meissner, M. Pristovsek, and M. Kneissl, The critical thickness of InGaN on (0001)GaN, Journal of Crystal Growth, vol.310, issue.23, p.4913, 2008.
DOI : 10.1016/j.jcrysgro.2008.08.021

Z. Liliental-weber, K. M. Yu, M. Hawkridge, S. Bedair, A. E. Berman et al., Structural perfection of InGaN layers and its relation to photoluminescence, physica status solidi (c), vol.6, issue.12, p.2626, 2009.
DOI : 10.1002/pssc.200982555

M. Muller, G. D. Smith, C. R. Gault, and . Grovenor, Phase separation in thick InGaN layers ??? A quantitative, nanoscale study by pulsed laser atom probe tomography, Acta Materialia, vol.60, issue.10, p.4277, 2012.
DOI : 10.1016/j.actamat.2012.04.030

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir et al., Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials, physica status solidi (a), vol.32, issue.1, p.25, 2012.
DOI : 10.1088/0022-3727/32/10A/312

URL : https://hal.archives-ouvertes.fr/hal-00644001

M. J. Reed, N. El-masry, C. Parker, J. C. Roberts, and S. M. Bedair, Critical layer thickness determination of GaN/InGaN/GaN double heterostructures, Applied Physics Letters, vol.77, issue.25, p.4121, 2000.
DOI : 10.1063/1.125079

A. V. Sakharov, W. V. Lundin, E. E. Zavarin, M. A. Sinitsyn, A. E. Nikolaev et al., Semiconductors, vol.43, p.841, 2009.

H. Wang, D. S. Jiang, U. Jahn, J. J. Zhu, and D. G. Zhao, Investigation on the strain relaxation of InGaN layer and its effects on the InGaN structural and optical properties, Physica B: Condensed Matter, vol.405, issue.22, p.4668, 2010.
DOI : 10.1016/j.physb.2010.08.058

J. W. Matthews, S. Mader, and T. B. Light, Accommodation of Misfit Across the Interface Between Crystals of Semiconducting Elements or Compounds, Journal of Applied Physics, vol.22, issue.9, p.3800, 1970.
DOI : 10.1016/S0081-1947(08)60031-4

R. People and J. C. Bean, /Si strained???layer heterostructures, Applied Physics Letters, vol.33, issue.3, p.322, 1985.
DOI : 10.1016/0040-6090(76)90085-7

S. E. Park, O. B. Byungsung, and C. R. Lee, Strain relaxation in InxGa1???xN epitaxial films grown coherently on GaN, Journal of Crystal Growth, vol.249, issue.3-4, p.455, 2003.
DOI : 10.1016/S0022-0248(02)02244-3

F. C. Frank and J. H. Van-der-merwe, Proc. Royal Soc. London. Series A. Math

, Physi. Sci, vol.198, p.205, 1949.

A. Fischer, H. Kiihne, and H. Richter, New Approach in Equilibrium Theory for Strained Layer Relaxation, Physical Review Letters, vol.59, issue.20, p.2712, 1994.
DOI : 10.1063/1.106301

S. Pereira, Thin Solid Films, vol.515, issue.164, 2006.

M. Pristovsek, J. Stellmach, M. Leyer, and M. Kneissl, Growth mode of InGaN on GaN (0001) in MOVPE, physica status solidi (c), vol.6, issue.S2, p.565, 2009.
DOI : 10.1002/pssc.200880915

G. Orsal, Y. Gmili, N. Fressengeas, J. Streque, R. Djerboub et al., Bandgap energy bowing parameter of strained and relaxed InGaN layers, Optical Materials Express, vol.4, issue.5, p.1030, 2014.
DOI : 10.1364/OME.4.001030

URL : https://hal.archives-ouvertes.fr/hal-01170545

C. Passchier and R. A. Trouw, , 2005.

P. Coulon, Croissance et Caractérisation de Nanofils/Microfils de GaN, 2014.

X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller et al., Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells, Applied Physics Letters, vol.72, issue.6, p.692, 1998.
DOI : 10.1063/1.118762

M. Shiojiri, C. C. Chuo, J. T. Hsu, J. R. Yang, and H. Saijo, Structure and formation mechanism of V defects in multiple InGaN???GaN quantum well layers, Journal of Applied Physics, vol.99, issue.7, p.73505, 2006.
DOI : 10.1002/(SICI)1521-396X(199911)176:1<535::AID-PSSA535>3.0.CO;2-I

J. Northrup and J. Neugebauer, Indium-induced changes in GaN(0001) surface morphology, Physical Review B, vol.85, issue.12, p.8473, 1999.
DOI : 10.1063/1.370150

A. V. Lobanova, A. L. Kolesnikova, A. E. Romanov, S. Y. Karpov, M. E. Rudinsky et al., Mechanism of stress relaxation in (0001) InGaN/GaN via formation of V-shaped dislocation half-loops, Applied Physics Letters, vol.103, issue.15, p.152106, 2013.
DOI : 10.1063/1.3590141

T. L. Song, J. Appl. Phys, vol.98, issue.84901, 2005.

S. Srinivasan, L. Geng, R. Liu, F. A. Ponce, Y. Narukawa et al., Slip systems and misfit dislocations in InGaN epilayers, Applied Physics Letters, vol.83, issue.25, p.5187, 2003.
DOI : 10.1002/1521-3951(200111)228:1<41::AID-PSSB41>3.0.CO;2-N

C. Bazioti, E. Papadomanolaki, T. Kehagias, T. Walther, J. Smalc-koziorowska et al.,

, J. Appl. Phys, vol.118, p.155301, 2015.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B, vol.56, issue.4, 1997.

F. Bernardini and V. Fiorentini, Appl. Surf. Sci, vol.166, issue.23, 2000.

P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allègre et al., High internal electric field in a graded-width InGaN/GaN quantum well: Accurate determination by time-resolved photoluminescence spectroscopy, Applied Physics Letters, vol.78, issue.9, p.1252, 2001.
DOI : 10.1103/PhysRevB.54.2491

URL : https://hal.archives-ouvertes.fr/hal-01303203

F. Bernardini and V. Fiorentini, Spontaneous versus Piezoelectric Polarization in III-V Nitrides: Conceptual Aspects and Practical Consequences, physica status solidi (b), vol.216, issue.1, p.391, 1999.
DOI : 10.1002/(SICI)1521-3951(199911)216:1<391::AID-PSSB391>3.0.CO;2-K

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi et al., Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells, Japanese Journal of Applied Physics, vol.36, issue.Part 2, No. 4A, p.382, 1997.
DOI : 10.1143/JJAP.36.L382

S. F. Chichibu, .. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer et al., Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures, Applied Physics Letters, vol.73, issue.14, p.2006, 1998.
DOI : 10.1103/PhysRevB.51.10743

N. Grandjean, B. Damilano, S. Dalmasso, M. Leroux, M. Laügt et al., Effects of Built-in Polarization Field on the Optical Properties of AlGaN/GaN Quantum Wells, physica status solidi (a), vol.68, issue.1, p.219, 1999.
DOI : 10.1063/1.116543

A. Dussaigne, Diodes électroluminescentes blanches monolithiques, 2005.

Y. S. Kim, A. Kaneta, M. Funato, Y. Kawakami, T. Kyono et al., Optical Gain Spectroscopy of a Semipolar {20\bar21}-Oriented Green InGaN Laser Diode, Applied Physics Express, vol.4, issue.5, p.52103, 2011.
DOI : 10.1143/APEX.4.052103

Z. H. Zhang, W. Liu, Z. Ju, S. Tiam-tan, Y. Ji et al., Appl. Phy. Lett, vol.104, issue.1, 2014.

S. Y. Karpov, Suppression of phase separation in InGaN due to elastic strain, MRS Internet Journal of Nitride Semiconductor Research, vol.449, issue.268, p.16, 1999.
DOI : 10.1103/PhysRevB.53.16310

Y. Inatomi, Y. Kangawa, T. Ito, T. Suski, Y. Kumagai et al., Theoretical study of the composition pulling effect in InGaN metalorganic vapor-phase epitaxy growth, Japanese Journal of Applied Physics, vol.56, issue.7, p.78003, 2017.
DOI : 10.7567/JJAP.56.078003

S. Pereira, M. R. Correia, E. Pereira, K. P. O-'donnell, C. Trager-cowan et al., layers:???A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study, Physical Review B, vol.14, issue.163, p.205311, 2001.
DOI : 10.1017/S0885715600010630

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva et al., MRS Internet J. Nitride Semicond

, Res, vol.2, issue.1, 1997.

G. Schmidt, M. Müller, P. Veit, F. Bertram, J. Christen et al., Nano-scale luminescence characterization of individual InGaN/GaN quantum wells stacked in a microcavity using scanning transmission electron microscope cathodoluminescence, Applied Physics Letters, vol.105, issue.3, p.32101, 2014.
DOI : 10.1063/1.3033553

G. T. Thaler, D. D. Koleske, S. R. Lee, K. H. Bogart, and M. H. Crawford, Thermal stability of thin InGaN films on GaN, Journal of Crystal Growth, vol.312, issue.11, p.1817, 2010.
DOI : 10.1016/j.jcrysgro.2010.03.008

M. S. Oh, M. K. Kwon, I. K. Park, S. H. Baek, S. J. Park et al.,

, J. Cryst. Growth, vol.289, issue.107, 2006.

W. Lee, J. Limb, J. Ryou, D. Yoo, T. Chung et al., Influence of growth temperature and growth rate of p-GaN layers on the characteristics of green light emitting diodes, Journal of Electronic Materials, vol.50, issue.4, p.587, 2006.
DOI : 10.1007/s11664-006-0104-2

A. Dussaigne, B. Damilano, N. Grandjean, and J. Massies, In surface segregation in InGaN/GaN quantum wells, Journal of Crystal Growth, vol.251, issue.1-4, p.471, 2003.
DOI : 10.1016/S0022-0248(02)02443-0

Z. Deng, Y. Jiang, W. Wang, L. Cheng, W. Li et al., Indium segregation measured in InGaN quantum well layer, Scientific Reports, vol.251, issue.1, p.6734, 2014.
DOI : 10.1016/S0022-0248(02)02313-8

URL : https://www.nature.com/articles/srep06734.pdf

K. Muraki, S. Fukatsu, and Y. Shiraki, Appl. Phy. Lett, vol.61, issue.4, 1992.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-cowan, F. Sweeney et al., Structural and optical properties of InGaN/GaN layers close to the critical layer thickness, Applied Physics Letters, vol.81, issue.7, p.1207, 2002.
DOI : 10.1002/(SICI)1521-3951(199911)216:1<145::AID-PSSB145>3.0.CO;2-W

T. Mehrtens, M. Schowalter, D. Tytko, P. Choi, D. Raabe et al., Measurement of the indium concentration in high indium content InGaN layers by scanning transmission electron microscopy and atom probe tomography, Applied Physics Letters, vol.102, issue.13, p.132112, 2013.
DOI : 10.1088/1742-6596/326/1/012031

T. Tao, T. Zhi, B. Liu, Y. Li, Z. Zhuang et al., Spatially localised luminescence emission properties induced by formation of ring-shaped quasi-potential trap around V-pits in InGaN epi-layers, physica status solidi (a), vol.79, issue.12, p.2823, 2014.
DOI : 10.1063/1.1389327

T. Shin, X. Li, D. Ko, J. Won, S. Kim et al., Chem. Phys, pp.436-437, 2014.

E. F. Schubert, Light-Emitting Diodes, 2006.

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, White light-emitting diodes: History, progress, and future, Laser & Photonics Reviews, vol.70, issue.2, p.1600147, 2017.
DOI : 10.1016/j.biocel.2015.11.004

I. L. Azevedo, M. G. Morgan, and F. Morgan, Proc. of the IEEE 97, p.481, 2009.

D. , Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, 2014.

S. Nakamura, T. Mukai, and M. Senoh, Candela???class high???brightness InGaN/AlGaN double???heterostructure blue???light???emitting diodes, Applied Physics Letters, vol.32, issue.13, p.1687, 1994.
DOI : 10.1143/JJAP.32.L338

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, J.of Light & Visual Evt, vol.22, issue.2, 1998.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, White light emitting diodes with super-high luminous efficacy, Journal of Physics D: Applied Physics, vol.43, issue.35, p.354002, 2010.
DOI : 10.1088/0022-3727/43/35/354002

E. Taylor, P. R. Edwards, and R. W. Martin, Colorimetry and efficiency of white LEDs: Spectral width dependence, physica status solidi (a), vol.192, issue.3, p.461, 2012.
DOI : 10.1002/1521-396X(200207)192:1<117::AID-PSSA117>3.0.CO;2-W

G. Meneghesso, M. Meneghini, and E. Zanoni, Recent results on the degradation of white LEDs for lighting, Journal of Physics D: Applied Physics, vol.43, issue.35, p.354007, 2010.
DOI : 10.1088/0022-3727/43/35/354007

URL : https://hal.archives-ouvertes.fr/hal-00569692

M. Meneghini, L. Trevisanello, S. Podda, S. Buso, G. Spiazzi et al., Proc. SPIE, p.3370, 2006.

E. Radkov, A. Setlur, Z. Brown, and J. Reginelli, Proc. SPIE, p.260, 2004.

Y. Muramoto, M. Kimura, and S. , Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp, Semiconductor Science and Technology, vol.29, issue.8, p.84004, 2015.
DOI : 10.1088/0268-1242/29/8/084004

J. Stinson, US Patent, vol.4992, p.704, 1991.

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes, Journal of Applied Physics, vol.5187, issue.5, p.54506, 2005.
DOI : 10.1143/JJAP.36.3821

R. Haitz and J. Y. Tsao, Phys. Status Solidi A, vol.208, issue.17, 2011.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer et al., White organic light-emitting diodes with fluorescent tube efficiency, Nature, vol.245, issue.7244, p.234, 2009.
DOI : 10.1117/12.780249

Y. Xu, J. Peng, J. Jiang, W. Xu, W. Yang et al., Appl. Phy. Lett, vol.87, p.1, 2005.

N. Thejokalyani and S. J. Dhoble, Novel approaches for energy efficient solid state lighting by RGB organic light emitting diodes ??? A review, Renewable and Sustainable Energy Reviews, vol.32, p.448, 2014.
DOI : 10.1016/j.rser.2014.01.013

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDs), Advanced Materials, vol.2, issue.5, p.572, 2010.
DOI : 10.1103/PhysRevB.77.235215

B. Damilano, N. Grandjean, S. Vézian, and J. Massies, J. Cryst. Growth, vol.228, p.466, 2001.

H. Y. Ryu, ?Electroluminescence study of inhomogeneous carrier distribution in InGaN multiple-quantum-well light-emitting diode structures, Journal of the Korean Physical Society, vol.56, issue.4(1), p.1256, 2010.
DOI : 10.3938/jkps.56.1256

J. H. Zhu, S. M. Zhang, H. Wang, D. G. Zhao, and J. J. Zhu, J. Appl. Phys, vol.109, p.10, 2011.

S. Dalmasso, B. Damilano, C. Pernot, A. Dussaigne, D. Byrne et al., Injection Dependence of the Electroluminescence Spectra of Phosphor Free GaN-Based White Light Emitting Diodes, physica status solidi (a), vol.73, issue.190, p.139, 2002.
DOI : 10.1063/1.122247

A. Dussaigne, J. Brault, B. Damilano, and J. Massies, Monolithic white light emitting diodes with a broad emission spectrum, physica status solidi (c), vol.192, issue.1, p.57, 2007.
DOI : 10.1002/pssc.200673553

M. Yamada, Y. Narukawa, and T. Mukai, Phosphor Free High-Luminous-Efficiency White Light-Emitting Diodes Composed of InGaN Multi-Quantum Well, Japanese Journal of Applied Physics, vol.41, issue.Part 2, No. 3A, p.246, 2002.
DOI : 10.1143/JJAP.41.L246

I. K. Park, J. Y. Kim, M. K. Kwon, C. Y. Cho, J. H. Lim et al.,

, Phy. Lett, vol.92, issue.11, 2008.

S. Lim, Y. Ko, C. Rodriguez, S. Gong, and Y. Cho, Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures, Light: Science & Applications, vol.14, issue.2, p.16030, 2016.
DOI : 10.1021/nl5007905

K. M. Song, D. Kim, J. Kim, C. Cho, J. Choi et al., White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates, Nanotechnology, vol.28, issue.22, p.225703, 2017.
DOI : 10.1088/1361-6528/aa6fdd

S. J. Kowsz, C. D. Pynn, S. H. Oh, R. M. Farrell, S. P. Denbaars et al.,

, J. Appl. Phys, vol.120, p.33102, 2016.

B. Damilano, A. Dussaigne, J. Brault, T. Huault, F. Natali et al., Monolithic white light emitting diodes using a (Ga,In)N/GaN multiple quantum well light converter, Applied Physics Letters, vol.93, issue.10, p.101117, 2008.
DOI : 10.1063/1.123275

C. F. Lu, C. F. Huang, Y. S. Chen, W. Y. Shiao, C. Y. Chen et al., IEEE J. Sel. Top. Quantum Elect, vol.15, p.1210, 2009.

D. Yang, L. Wang, W. Lv, Z. Hao, and Y. Luo, Growth and characterization of phosphor-free white light-emitting diodes based on InGaN blue quantum wells and green???yellow quantum dots, Superlattices and Microstructures, vol.82, p.26, 2015.
DOI : 10.1016/j.spmi.2015.02.005

C. B. Soh, W. Liu, S. J. Chua, J. H. Teng, R. J. Tan et al., Novel tunable phosphor-free white III-nitride light emitting diodes based on indium rich InGaN nanostructures, physica status solidi (c), vol.6, issue.S2, p.519, 2009.
DOI : 10.1002/pssc.200880782

C. H. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen et al., Nitride-based cascade near white light-emitting diodes, IEEE Photonics Technology Letters, vol.14, issue.7, p.908, 2002.
DOI : 10.1109/LPT.2002.1012381

J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu et al., White-light emission from InGaN-GaN multiquantum-well light-emitting diodes with Si and Zn codoped active well layer, IEEE Photonics Technology Letters, vol.14, issue.4, p.450, 2002.
DOI : 10.1109/68.992574

Y. Huang, F. Yun, Y. Li, W. Ding, Y. Wang et al., Defect-induced color-tunable monolithic GaN-based light-emitting diodes, Applied Physics Express, vol.7, issue.10, p.102102, 2014.
DOI : 10.7567/APEX.7.102102

N. B. Sedrine, T. C. Esteves, J. Rodrigues, L. Rino, M. R. Correia et al., Photoluminescence studies of a perceived white light emission from a monolithic InGaN/GaN quantum well structure, Scientific Reports, vol.38, issue.89, p.13739, 2015.
DOI : 10.1364/AO.38.005703

X. H. Wang, H. Q. Jia, L. W. Guo, Z. G. Xing, Y. Wang et al., Appl. Phy. Lett, vol.91, p.23, 2007.

Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, Appl. Phy. Lett, vol.95, p.2012, 2009.

I. C. Robin, Light emitting diode with multiple quantum well and asymetric p-n junction, 2014.

M. Broell, P. Sundgren, A. Rudolph, W. Schmid, A. Vogl et al., Proc. SPIE 9003, p.90030, 2014.

M. Auf-der-maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. D. Carlo, Light Emitting Diodes: The Role of Random Alloy Fluctuations, Physical Review Letters, vol.116, issue.2, p.27401, 2016.
DOI : 10.1103/PhysRevB.84.075478

K. A. Bulashevich, A. V. Kulik, and S. Y. Karpov, Phy, vol.212, p.914, 2015.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames et al., Research challenges to ultra-efficient inorganic solid-state lighting, Laser & Photonics Review, vol.80, issue.412, p.307, 2007.
DOI : 10.1016/j.mejo.2006.09.004

A. Dussaigne, Diodes électroluminescentes blanches monolithiques, 2005.

J. Seo-im, H. Kollmer, J. Off, A. Sohmer, F. Scholz et al., quantum wells, Physical Review B, vol.3, issue.16, p.9435, 1998.
DOI : 10.1109/2944.605690

D. D. Koleske, A. E. Wickenden, R. L. Henry, and M. E. Twigg, Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN, Journal of Crystal Growth, vol.242, issue.1-2, p.55, 2002.
DOI : 10.1016/S0022-0248(02)01348-9

A. M. Armstrong, M. H. Crawford, and D. D. Koleske, Contribution of deep-level defects to decreasing radiative efficiency of InGaN/GaN quantum wells with increasing emission wavelength, Applied Physics Express, vol.7, issue.3, p.32101, 2014.
DOI : 10.7567/APEX.7.032101

T. Langer, H. Jönen, A. Kruse, H. Bremers, U. Rossow et al.,

, Phy. Lett, vol.103, p.22108, 2013.

S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition, Applied Physics Letters, vol.70, issue.4, p.420, 1997.
DOI : 10.1063/1.88226

T. Sugahara, M. Hao, T. Wang, D. Nakagawa, Y. Naoi et al.,

, Jpn. J. Appl. Phy, vol.37, p.1195, 1998.

S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, High dislocation densities in high efficiency GaN???based light???emitting diodes, Applied Physics Letters, vol.49, issue.10, p.1249, 1995.
DOI : 10.1063/1.113252

G. B. Stringfellow, J. Cryst. Growth, vol.312, issue.735, 2010.

C. J. Humphreys, Philos. Mag, vol.87, 1971.

A. Hangleiter, D. Fuhrmann, M. Grewe, F. Hitzel, G. Klewer et al., Phys. Status Solidi A, vol.201, p.2808, 2004.

A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow et al., Phys. Rev. Let, vol.95, p.1, 2005.

F. C. Massabuau, P. Chen, M. K. Horton, S. L. Rhode, C. X. Ren et al., Carrier localization in the vicinity of dislocations in InGaN, Journal of Applied Physics, vol.121, issue.1, p.13104, 2017.
DOI : 10.1080/14786435.2013.797617

H. Takahashi, A. Ito, T. Tanaka, A. Watanabe, H. Ota et al., Jpn. J

, Appl. Phy, vol.39, issue.569, 2000.

T. Detchprohm, M. Zhu, W. Zhao, Y. Wang, Y. Li et al., Enhanced device performance of GaInN-based deep green light emitting diodes with V-defect-free active region, physica status solidi (c), vol.6, issue.S2, p.840, 2009.
DOI : 10.1002/pssc.200880800

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, GaInN???GaN growth optimization for high-power green light-emitting diodes, Applied Physics Letters, vol.162, issue.6, p.866, 2004.
DOI : 10.1063/1.120844

J. Piprek, Efficiency droop in nitride-based light-emitting diodes, physica status solidi (a), vol.5, issue.8/9, p.2217, 2010.
DOI : 10.1557/S1092578300001162

L. Wang, X. Meng, J. Wang, Z. Hao, Y. Luo et al., Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization, Applied Physics Letters, vol.97, issue.20, p.201112, 2010.
DOI : 10.1007/0-387-37766-2

M. H. Crawford, LEDs for Solid-State Lighting: Performance Challenges and Recent Advances, IEEE Journal of Selected Topics in Quantum Electronics, vol.15, issue.4, p.1028, 2009.
DOI : 10.1109/JSTQE.2009.2013476

M. Shahmohammadi, W. Liu, G. Rossbach, L. Lahourcade, A. Dussaigne et al., Enhancement of Auger recombination induced by carrier localization in InGaN/GaN quantum wells, Physical Review B, vol.95, issue.12, p.125314, 2017.
DOI : 10.1103/PhysRevB.71.075311

URL : https://hal.archives-ouvertes.fr/hal-01677507

M. Peter, A. Laubsch, W. Bergbauer, T. Meyer, M. Sabathil et al., New developments in green LEDs, physica status solidi (a), vol.92, issue.S2, p.1125, 2009.
DOI : 10.1002/pssa.200880926

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm et al., Appl. Phy. Lett, p.91, 2007.

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske et al., Effect of dislocation density on efficiency droop in GaInN???GaN light-emitting diodes, Applied Physics Letters, vol.91, issue.23, p.231114, 2007.
DOI : 10.1017/CBO9780511790546

J. Liu, J. Zhang, G. Wang, C. Mo, L. Xu et al., Phys. B, vol.24, p.67804, 2015.

S. Karpov, Nusod, vol.2014, pp.17-18, 2014.

A. Laffler and M. Binder, Compound semiconductors, 2013.

J. H. Ryou, P. D. Yoder, J. Liu, Z. Lochner, H. S. Kim et al., Control of Quantum-Confined Stark Effect in InGaN-Based Quantum Wells, IEEE Journal of Selected Topics in Quantum Electronics, vol.15, issue.4, p.1080, 2009.
DOI : 10.1109/JSTQE.2009.2014170

K. C. Kim, M. C. Schmidt, H. Sato, F. Wu, N. Fellows et al., Improved electroluminescence on nonpolarm -plane InGaN/GaN quantum wells LEDs, physica status solidi (RRL) ??? Rapid Research Letters, vol.40, issue.3, p.125, 2007.
DOI : 10.1557/S1092578300001563

A. E. Romanov, T. J. Baker, S. Nakamura, and J. S. Speck, Strain-induced polarization in wurtzite III-nitride semipolar layers, Journal of Applied Physics, vol.100, issue.2, p.23522, 2006.
DOI : 10.1063/1.1923748

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffman et al., Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells, Semiconductor Science and Technology, vol.27, issue.2, p.24014, 2012.
DOI : 10.1088/0268-1242/27/2/024014

S. Yamamoto, Y. Zhao, C. C. Pan, R. B. Chung, K. Fujito et al., Appl. Phy. Express, vol.3, 2010.

H. Sato, R. B. Chung, H. Hirasawa, N. Fellows, H. Masui et al., Optical properties of yellow light-emitting diodes grown on semipolar (112??2) bulk GaN substrates, Applied Physics Letters, vol.92, issue.22, p.221110, 2008.
DOI : 10.1143/JJAP.45.L659

C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck et al., Appl. Phy. Express, vol.5, 2012.

H. Yamada, K. Iso, M. Saito, H. Masui, K. Fujito et al.,

, Appl. Phy. Express, vol.1, p.41101, 2008.

M. H. Crawford, J. J. Wierer, A. J. Fischer, G. T. Wang, D. D. Koleske et al., Solid-State Lighting: Toward Smart and Ultraefficient Materials, Devices, Lamps, and Systems, 2015.
DOI : 10.1007/978-3-642-23521-4_8

, P. Vennéguès. Semicond. Sci. Tech, vol.27, p.24004, 2012.

R. M. Farrell, E. C. Young, F. Wu, S. P. Denbaars, and J. S. , Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices, Semiconductor Science and Technology, vol.27, issue.2, p.24001, 2012.
DOI : 10.1088/0268-1242/27/2/024001

T. Shioda, H. Yoshida, K. Tachibana, N. Sugiyama, and S. Nunoue, Enhanced light output power of green LEDs employing AlGaN interlayer in InGaN/GaN MQW structure on sapphire (0001) substrate, physica status solidi (a), vol.311, issue.3, p.473, 2012.
DOI : 10.1016/j.jcrysgro.2009.01.066

T. H. Ngo, B. Gil, P. Valvin, B. Damilano, K. Lekhal et al., Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures, Applied Physics Letters, vol.106, issue.12, p.122103, 2015.
DOI : 10.1063/1.4905191

URL : https://hal.archives-ouvertes.fr/hal-01203313

T. Doi, Y. Honda, M. Yamaguchi, and H. Amano, Jpn. J. Appl. Phy, vol.52, pp.8-14, 2013.

T. Y. Seong, J. Han, H. Amano, and H. Morkoç, III-Nitride based Light-Emitting Diodes and Applications, 2017.

S. Saito, R. Hashimoto, J. Hwang, and S. Nunoue, -Face Sapphire Substrates in Green Gap Spectral Range, Applied Physics Express, vol.6, issue.11, p.111004, 2013.
DOI : 10.7567/APEX.6.111004

J. I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, Development of InGaN-based red LED grown on (0001) polar surface, Applied Physics Express, vol.7, issue.7, p.71003, 2014.
DOI : 10.7567/APEX.7.071003

M. J. Davies, F. C. Massabuau, P. Dawson, R. Oliver, M. J. Kappers et al., Effects of an InGaN prelayer on the properties of InGaN/GaN quantum well structures, physica status solidi (c), vol.11, issue.3-4, p.710, 2014.
DOI : 10.1002/pssc.201300451

T. Li, Q. Y. Wei, A. M. Fischer, J. Y. Huang, Y. U. Huang et al., Appl. Phy. Lett, vol.102, p.10, 2013.

N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui et al., Improved quality of InGaN/GaN multiple quantum wells by a strain relief layer, Journal of Crystal Growth, vol.286, issue.2, p.209, 2006.
DOI : 10.1016/j.jcrysgro.2005.09.027

J. K. Son, S. N. Lee, T. Sakong, H. S. Paek, O. Nam et al., Enhanced optical properties of InGaN MQWs with InGaN underlying layers, Journal of Crystal Growth, vol.287, issue.2, p.558, 2006.
DOI : 10.1016/j.jcrysgro.2005.10.071

P. T. Törmä, O. Svensk, M. Ali, S. Suihkonen, M. Sopanen et al., Effect of InGaN underneath layer on MOVPE-grown InGaN/GaN blue LEDs, Journal of Crystal Growth, vol.310, issue.23, p.5162, 2008.
DOI : 10.1016/j.jcrysgro.2008.07.031

Y. Xia, W. Hou, L. Zhao, M. Zhu, T. Detchprohm et al., Boosting Green GaInN/GaN Light-Emitting Diode Performance by a GaInN Underlying Layer, IEEE Transactions on Electron Devices, vol.57, issue.10, p.2639, 2010.
DOI : 10.1109/TED.2010.2061233

S. J. Leem, Y. C. Shin, K. C. Kim, E. H. Kim, Y. M. Sung et al., J. Cryst. Growth, vol.311, issue.103, 2008.

K. Sugimoto, Y. Denpo, N. Okada, and K. Tadatomo, Phys. Status Solidi B, vol.13, issue.270, 2016.

T. Jeong, H. J. Park, J. W. Ju, H. S. Oh, J. H. Baek et al., High Efficiency InGaN Blue Light-Emitting Diode With ${>}{\rm 4}\hbox{-}{\rm W}$ Output Power at 3 A, IEEE Photonics Technology Letters, vol.26, issue.7, p.649, 2014.
DOI : 10.1109/LPT.2014.2301874

W. V. Lundin, .. E. Nikolaev, .. V. Sakharov, E. E. Zavarin, G. Valkovskiy et al., Single quantum well deep-green LEDs with buried InGaN/GaN short-period superlattice, Journal of Crystal Growth, vol.315, issue.1, p.267, 2011.
DOI : 10.1016/j.jcrysgro.2010.09.043

URL : https://hal.archives-ouvertes.fr/hal-01736042

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, Room-Temperature Red Emission from a p-Type/Europium-Doped/n-Type Gallium Nitride Light-Emitting Diode under Current Injection, Applied Physics Express, vol.2, p.71004, 2009.
DOI : 10.1143/APEX.2.071004

I. K. Park and S. J. Park, Appl. Phy. Express, vol.4, 2011.

E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures, Journal of Applied Physics, vol.737, issue.11, p.114325, 2005.
DOI : 10.1063/1.98667

Y. J. Hong, C. H. Lee, A. Yoon, M. Kim, H. K. Seong et al., Visible-Color-Tunable Light-Emitting Diodes, Advanced Materials, vol.82, issue.29, p.3284, 2011.
DOI : 10.1063/1.1544437

F. Qian, S. Grade?ak, Y. Li, C. Y. Wen, and C. M. Lieber, Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes, Nano Letters, vol.5, issue.11, p.2287, 2005.
DOI : 10.1021/nl051689e

Y. H. Ra, R. Wang, S. Y. Woo, M. Djavid, S. M. Sadaf et al., Full-Color Single Nanowire Pixels for Projection Displays, Nano Letters, vol.16, issue.7, p.4608, 2016.
DOI : 10.1021/acs.nanolett.6b01929

J. Zhang and N. Tansu, J. Appl. Phys, vol.110, issue.1, 2011.

S. H. Park, T. H. Chung, J. H. Baek, and D. Ahn, Jpn. J. Appl. Phy, vol.54, issue.2, 2015.

J. Pal, M. A. Migliorato, C. K. Li, Y. R. Wu, B. G. Crutchley et al., J. Appl. Phys, vol.114, 2013.

Y. Inatomi, Y. Kangawa, T. Ito, T. Suski, Y. Kumagai et al., Theoretical study of the composition pulling effect in InGaN metalorganic vapor-phase epitaxy growth, Japanese Journal of Applied Physics, vol.56, issue.7, p.78003, 2017.
DOI : 10.7567/JJAP.56.078003

M. V. Durnev, A. V. Omelchenko, E. V. Yakovlev, I. Y. Evstratov, and S. Y. Karpov, Strain effects on indium incorporation and optical transitions in green-light InGaN heterostructures of different orientations, physica status solidi (a), vol.109, issue.11, p.2671, 2011.
DOI : 10.1016/j.jcrysgro.2009.12.018

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva et al., MRS Internet J. Nitride Semicond

, Res, vol.2, issue.1, 1997.

T. Ohata, Y. Honda, M. Yamaguchi, and H. Amano, Jpn. J. Appl. Phy, vol.52, p.10, 2013.

T. Hirasaki, M. Eriksson, Q. T. Thieu, F. Karlsson, H. Murakami et al., Growth of thick and high crystalline quality InGaN layers on GaN (0001??) substrate using tri-halide vapor phase epitaxy, Journal of Crystal Growth, vol.456, p.145, 2016.
DOI : 10.1016/j.jcrysgro.2016.08.019

T. Yamaguchi, N. Uematsu, T. Araki, T. Honda, E. Yoon et al., Growth of thick InGaN films with entire alloy composition using droplet elimination by radical-beam irradiation, Journal of Crystal Growth, vol.377, p.123, 2013.
DOI : 10.1016/j.jcrysgro.2013.05.009

K. Hestroffer, F. Wu, H. Li, C. Lund, S. Keller et al., -plane InGaN layers for the growth of strain-reduced InGaN quantum wells, Semiconductor Science and Technology, vol.30, issue.10, p.105015, 2015.
DOI : 10.1088/0268-1242/30/10/105015

K. Pantzas, Y. Gmili, J. Dickerson, S. Gautier, L. Largeau et al., Semibulk InGaN: A novel approach for thick, single phase, epitaxial InGaN layers grown by MOVPE, Journal of Crystal Growth, vol.370, p.57, 2013.
DOI : 10.1016/j.jcrysgro.2012.08.041

URL : https://hal.archives-ouvertes.fr/hal-00785001

D. Van-den-broeck, D. Bharrat, Z. Liu, N. El-masry, and S. Bedair, Growth and Characterization of High-Quality, Relaxed In y Ga1???y N Templates for Optoelectronic Applications, Journal of Electronic Materials, vol.69, issue.11, p.4161, 2015.
DOI : 10.1063/1.117300

J. Daubler, T. Passow, R. Aidam, K. Kohler, L. Kirste et al.,

. Appl, . Phy, and . Lett, , p.111111, 2014.

J. J. Xue, D. J. Chen, B. Liu, H. Lu, R. Zhang et al., Indium-rich InGaN epitaxial layers grown pseudomorphically on a nano-sculpted InGaN template, Optics Express, vol.20, issue.7, p.8093, 2012.
DOI : 10.1364/OE.20.008093

M. Iwaya, A. Miura, R. Senda, T. Nagai, T. Kawashima et al., Control of stress and crystalline quality in GaInN films used for green emitters, Journal of Crystal Growth, vol.310, issue.23, p.4920, 2008.
DOI : 10.1016/j.jcrysgro.2008.08.038

R. Senda, T. Matsubara, D. Iida, M. Iwaya, S. Kamiyama et al.,

, Appl. Phy. Express, vol.2, p.61004, 2009.

A. Kobayashi, J. Ohta, and H. Fujioka, J. Appl. Phys, vol.99, issue.1, 2006.

D. Doppalapudi, S. N. Basu, and T. D. Moustakas, J. Appl. Phys, vol.512, p.1389, 1998.

X. H. Wang, H. Q. Jia, L. W. Guo, Z. G. Xing, Y. Wang et al., Appl. Phy. Lett, vol.91, p.23, 2007.

C. G. Park, G. H. Gu, B. H. Lee, and D. H. Jang, Effects of growth pressure on the structural and optical properties of multi quantum wells (MQWs) in blue LED, Ultramicroscopy, vol.127, p.114, 2013.
DOI : 10.1016/j.ultramic.2012.07.009

M. Sumiya, N. Toyomitsu, Y. Nakano, J. Wang, Y. Harada et al., , p.16105, 2017.

A. Kimura, N. Futagawa, A. Usui, and M. Mizuta, Supersaturation-dependent step-behavior of InGaN grown by metal organic vapor phase epitaxy, Journal of Crystal Growth, vol.229, issue.1-4, p.53, 2001.
DOI : 10.1016/S0022-0248(01)01049-1

I. Vurgaftman and J. R. Meyer, Band parameters for nitrogen-containing semiconductors, Journal of Applied Physics, vol.66, issue.6, p.3675, 2003.
DOI : 10.1116/1.1381069

T. Y. Wu, C. C. Chang, K. K. Tiong, Y. C. Lee, S. Y. Hu et al., Luminescence studies in InxGa1???xN epitaxial layers with different indium contents, Optical Materials, vol.35, issue.10, p.1829, 2013.
DOI : 10.1016/j.optmat.2013.03.024

H. P. Schenk, M. Leroux, and P. De-mierry, Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck???Shockley relation, Journal of Applied Physics, vol.4, issue.3, p.1525, 2000.
DOI : 10.1063/1.119689

M. Hao, J. Zhang, X. H. Zhang, and S. Chua, Photoluminescence studies on InGaN/GaN multiple quantum wells with different degree of localization, Applied Physics Letters, vol.81, issue.27, p.5129, 2002.
DOI : 10.1103/PhysRev.157.655

J. Yang, D. Zhao, D. Jiang, P. Chen, Z. Liu et al., Phys. B, vol.26, p.77101, 2017.

Z. C. Feng, W. Liu, S. J. Chua, J. W. Wu, C. Yang et al., Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition, Thin Solid Films, vol.498, issue.1-2, p.118, 2006.
DOI : 10.1016/j.tsf.2005.07.087

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond et al., Temperature quenching of photoluminescence intensities in undoped and doped GaN, Journal of Applied Physics, vol.86, issue.7, p.3721, 1999.
DOI : 10.1063/1.112309

T. Li, Q. Y. Wei, A. M. Fischer, J. Y. Huang, Y. U. Huang et al., Appl. Phy. Lett, vol.102, p.10, 2013.

J. Wang, L. Wang, W. Zhao, Z. Hao, and Y. Luo, Appl. Phy. Lett, vol.97, p.2008, 2010.

C. Haller, J. F. Carlin, G. Jacopin, D. Martin, R. Butté et al., Appl. Phy. Lett, p.111, 2017.

R. Kaspi and K. R. Evans, Appl. Phy. Lett, vol.67, issue.819, 1995.

J. P. Liu, R. Q. Jin, J. J. Zhu, J. C. Zhang, J. F. Wang et al., Effects of TMIn flow on the interface and optical properties of InGaN/GaN mutiple quantum wells, Journal of Crystal Growth, vol.264, issue.1-3, p.53, 2004.
DOI : 10.1016/j.jcrysgro.2003.12.049

J. S. Park, Y. Moon, D. Kim, N. Park, T. Yao et al., Improvement in the optical and structural properties of InGaN/GaN multiple quantum wells by indium predeposition, Journal of Physics D: Applied Physics, vol.41, issue.16, p.165103, 2008.
DOI : 10.1088/0022-3727/41/16/165103

Y. Lee, Y. Chen, and T. Lu, Improvement of quantum efficiency in green light-emitting diodes with pre-TMIn flow treatment, Journal of Physics D: Applied Physics, vol.44, issue.22, p.224015, 2011.
DOI : 10.1088/0022-3727/44/22/224015

Z. Deng, Y. Jiang, W. Wang, L. Cheng, W. Li et al., Indium segregation measured in InGaN quantum well layer, Scientific Reports, vol.251, issue.1, p.6734, 2014.
DOI : 10.1016/S0022-0248(02)02313-8

URL : http://www.nature.com/articles/srep06734.pdf

M. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C. H. Hong et al.,

, Jpn. J. Appl. Phy, vol.47, issue.839, 2008.

J. M. Gerard and G. L. Roux, Growth of InGaAs/GaAs quantum wells with perfectly abrupt interfaces by molecular beam epitaxy, Applied Physics Letters, vol.58, issue.26, p.3452, 1993.
DOI : 10.1103/PhysRevB.45.6313

F. C. Massabuau, M. J. Davies, W. E. Blenkhorn, S. Hammersley, M. J. Kappers et al., Phys. Status Solidi B, vol.1, 2014.

, References of chapter

A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy et al., J. Garrione, B. Faure, F. Letertre and N. Kernevez. Elect. Lett, vol.41, p.11, 2005.

A. Dussaigne and D. Sotta, Compound semiconductors, 2017.

M. A. Moram and M. E. Vickers, X-ray diffraction of III-nitrides, Reports on Progress in Physics, vol.72, issue.3, p.36502, 2009.
DOI : 10.1088/0034-4885/72/3/036502

A. V. Lobanova, A. L. Kolesnikova, A. E. Romanov, S. Y. Karpov, M. E. Rudinsky et al., Mechanism of stress relaxation in (0001) InGaN/GaN via formation of V-shaped dislocation half-loops, Applied Physics Letters, vol.103, issue.15, p.152106, 2013.
DOI : 10.1063/1.3590141

T. L. Song, J. Appl. Phys, vol.98, issue.84901, 2005.

S. Srinivasan, L. Geng, R. Liu, F. A. Ponce, Y. Narukawa et al., Slip systems and misfit dislocations in InGaN epilayers, Applied Physics Letters, vol.83, issue.25, p.5187, 2003.
DOI : 10.1002/1521-3951(200111)228:1<41::AID-PSSB41>3.0.CO;2-N

C. Bazioti, E. Papadomanolaki, T. Kehagias, T. Walther, J. Smalc-koziorowska et al.,

, J. Appl. Phys, vol.118, p.155301, 2015.

K. Pantzas, Y. Gmili, J. Dickerson, S. Gautier, L. Largeau et al., Semibulk InGaN: A novel approach for thick, single phase, epitaxial InGaN layers grown by MOVPE, Journal of Crystal Growth, vol.370, p.57, 2013.
DOI : 10.1016/j.jcrysgro.2012.08.041

URL : https://hal.archives-ouvertes.fr/hal-00785001

D. Van-den-broeck, D. Bharrat, Z. Liu, N. El-masry, and S. Bedair, Growth and Characterization of High-Quality, Relaxed In y Ga1???y N Templates for Optoelectronic Applications, Journal of Electronic Materials, vol.69, issue.11, p.4161, 2015.
DOI : 10.1063/1.117300

J. Liu, J. Ryou, Z. Lochner, J. Limb, D. Yoo et al., Surface morphology control of green LEDs with p-InGaN layers grown by metalorganic chemical vapor deposition, Journal of Crystal Growth, vol.310, issue.23, p.5166, 2008.
DOI : 10.1016/j.jcrysgro.2008.07.033

D. D. Koleske, A. E. Wickenden, R. L. Henry, and M. E. Twigg, Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN, Journal of Crystal Growth, vol.242, issue.1-2, p.55, 2002.
DOI : 10.1016/S0022-0248(02)01348-9

G. A. Chahine, M. Richard, R. A. Homs-regojo, T. N. Tran-caliste, D. Carbone et al., Imaging of strain and lattice orientation by quick scanning X-ray microscopy combined with three-dimensional reciprocal space mapping, Journal of Applied Crystallography, vol.33, issue.2, p.762, 2014.
DOI : 10.1107/S0021889899014375

, References of chapter

Y. Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram et al., Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study, Acta Materialia, vol.61, issue.17, p.6587, 2013.
DOI : 10.1016/j.actamat.2013.07.041

F. C. Massabuau, P. Chen, M. K. Horton, S. L. Rhode, C. X. Ren et al.,

, J. Appl. Phys, vol.121, p.13104, 2017.

S. J. Pennycook, Ultramicroscopy, vol.30, issue.58, 1989.

N. Chery, T. H. Ngo, M. Chauvat, B. Damilano, A. Courville et al., J. Microsc, vol.00, p.1, 2017.

F. A. Ponce, Electrostatic energy profiles at nanometer-scale in group III nitride semiconductors using electron holography, Annalen der Physik, vol.62, issue.20, p.75, 2011.
DOI : 10.1002/andp.201000112

D. Cherns, J. Barnard, and F. A. Ponce, Measurement of the piezoelectric field across strained InGaN/GaN layers by electron holography, Solid State Communications, vol.111, issue.5, p.281, 1999.
DOI : 10.1016/S0038-1098(99)00130-1

T. Li, Q. Y. Wei, A. M. Fischer, J. Y. Huang, Y. U. Huang et al., Appl. Phy. Lett, vol.102, p.10, 2013.

M. Sénès, K. L. Smith, T. M. Smeeton, S. E. Hooper, and J. Heffernan, quantum dots grown by molecular beam epitaxy, Physical Review B, vol.4, issue.4, p.45314, 2007.
DOI : 10.1063/1.1977210

G. H. Gu, D. H. Jang, K. B. Nam, and C. G. , Composition Fluctuation of In and Well-Width Fluctuation in InGaN/GaN Multiple Quantum Wells in Light-Emitting Diode Devices, Microscopy and Microanalysis, vol.108, issue.S5, p.99, 2013.
DOI : 10.1143/JJAP.35.L74

X. H. Wang, H. Q. Jia, L. W. Guo, Z. G. Xing, Y. Wang et al., Appl. Phy. Lett, vol.91, p.23, 2007.

S. Y. Karpov, Suppression of phase separation in InGaN due to elastic strain, MRS Internet Journal of Nitride Semiconductor Research, vol.449, issue.268, p.16, 1999.
DOI : 10.1103/PhysRevB.53.16310

J. T. Griffiths, F. Oehler, F. Tang, S. Zhang, W. Y. Fu et al., J. Appl. Phys, vol.119, p.0, 2016.

D. Gerthsen, E. Hahn, B. Neubauer, V. Potin, A. Rosenauer et al., Indium distribution in epitaxially grown InGaN layers analyzed by transmission electron microscopy, physica status solidi (c), vol.230, issue.220, p.1668, 2003.
DOI : 10.1016/S0022-0248(01)01260-X

S. Karpov, Nusod, vol.2014, pp.17-18, 2014.

R. A. Oliver, F. C. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush et al., The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes, Applied Physics Letters, vol.103, issue.14, p.141114, 2013.
DOI : 10.1002/pssa.201026149

, References of chapter

W. V. Lundin, .. E. Nikolaev, .. V. Sakharov, E. E. Zavarin, G. Valkovskiy et al., Single quantum well deep-green LEDs with buried InGaN/GaN short-period superlattice, Journal of Crystal Growth, vol.315, issue.1, p.267, 2011.
DOI : 10.1016/j.jcrysgro.2010.09.043

URL : https://hal.archives-ouvertes.fr/hal-01736042

P. Li, H. Li, Z. Li, J. Kang, X. Yi et al., J. Appl. Phys, vol.117, p.1, 2015.

H. Li, P. Li, J. Kang, J. Ding, J. Ma et al., Broadband full-color monolithic InGaN light-emitting diodes by self-assembled InGaN quantum dots, Scientific Reports, vol.94, issue.1, p.35217, 2016.
DOI : 10.1063/1.3103559

URL : http://www.nature.com/articles/srep35217.pdf

M. Peter, A. Laubsch, W. Bergbauer, T. Meyer, M. Sabathil et al., New developments in green LEDs, physica status solidi (a), vol.92, issue.S2, p.1125, 2009.
DOI : 10.1002/pssa.200880926

D. Schiavon, M. Binder, A. Loeffler, and M. Peter, Appl. Phy. Lett, vol.102, 2013.

T. Shioda, H. Yoshida, K. Tachibana, N. Sugiyama, and S. Nunoue, Enhanced light output power of green LEDs employing AlGaN interlayer in InGaN/GaN MQW structure on sapphire (0001) substrate, physica status solidi (a), vol.311, issue.3, p.473, 2012.
DOI : 10.1016/j.jcrysgro.2009.01.066

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, White light emitting diodes with super-high luminous efficacy, Journal of Physics D: Applied Physics, vol.43, issue.35, p.354002, 2010.
DOI : 10.1088/0022-3727/43/35/354002

R. Hashimoto, J. Hwang, S. Saito, and S. Nunoue, High-efficiency green-yellow light-emitting diodes grown on sapphire (0001) substrates, physica status solidi (c), vol.10, issue.11, p.1529, 2013.
DOI : 10.1002/pssc.201300238

J. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, Jpn. J. Appl. Phy, vol.52, pp.8-13, 2013.

S. Saito, R. Hashimoto, J. Hwang, and S. Nunoue, -Face Sapphire Substrates in Green Gap Spectral Range, Applied Physics Express, vol.6, issue.11, p.111004, 2013.
DOI : 10.7567/APEX.6.111004

J. I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, Development of InGaN-based red LED grown on (0001) polar surface, Applied Physics Express, vol.7, issue.7, p.71003, 2014.
DOI : 10.7567/APEX.7.071003

S. Yamamoto, Y. Zhao, C. C. Pan, R. B. Chung, K. Fujito et al., Appl. Phy. Express, vol.3, 2010.

I. L. Koslow, M. T. Hardy, P. S. Hsu, P. Dang, F. Wu et al.,

E. C. Wu, S. Young, J. S. Nakamura, and S. P. Speck, DenBaars. Appl. Phy. Express, vol.101, p.121106, 2012.

M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi et al., Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar {11-22} GaN Bulk Substrates, Japanese Journal of Applied Physics, vol.45, issue.No. 26, p.659, 2006.
DOI : 10.1143/JJAP.45.L659

J. Danhof, U. T. Schwarz, T. Meyer, C. Vierheilig, and M. Peter, Local internal quantum efficiency of a green light emitting InGaN/GaN quantum well, physica status solidi (b), vol.96, issue.7, p.600, 2012.
DOI : 10.1063/1.3446889

J. Daubler, T. Passow, R. Aidam, K. Kohler, L. Kirste et al.,

. Appl, . Phy, and . Lett, , p.111111, 2014.

A. M. Armstrong, M. H. Crawford, and D. D. Koleske, Contribution of deep-level defects to decreasing radiative efficiency of InGaN/GaN quantum wells with increasing emission wavelength, Applied Physics Express, vol.7, issue.3, p.32101, 2014.
DOI : 10.7567/APEX.7.032101

K. Cheng, S. Degroote, M. Leys, L. Y. Zhang, J. Derluyn et al., In situ bow monitoring: towards uniform blue and green InGaN/GaN quantum well structures grown on 100 mm sapphire substrates by MOVPE, physica status solidi (c), vol.7, issue.7-8, p.2082, 2010.
DOI : 10.1002/pssc.200983553

C. G. , S. Hammersley, M. J. Davies, P. Dawson, M. J. Kappers et al., Phys. Status Solidi C, vol.13, p.248, 2016.

C. H. Liao, C. Y. Chen, H. S. Chen, K. Y. Chen, W. L. Chung et al., Emission Efficiency Dependence on the p-GaN Thickness in a High-Indium InGaN/GaN Quantum-Well Light-Emitting Diode, IEEE Photonics Technology Letters, vol.23, issue.23, p.1757, 2011.
DOI : 10.1109/LPT.2011.2169243

X. Li, F. Zhang, S. Okur, V. Avrutin, S. J. Liu et al., On the quantum efficiency of InGaN light emitting diodes: Effects of active layer design, electron cooler, and electron blocking layer, physica status solidi (a), vol.97, issue.12, p.2907, 2011.
DOI : 10.1063/1.3515851

J. Wang, L. Wang, W. Zhao, X. Zou, and Y. , Study on internal quantum efficiency of blue InGaN multiple-quantum-well with an InGaN underneath layer, Science China Technological Sciences, vol.95, issue.2, p.306, 2010.
DOI : 10.1007/s11431-010-0062-z

D. Fuhrman, H. Jönen, L. Hoffmann, H. Bremers, U. Rossow et al., High quality, high efficiency and ultrahigh In-content InGaN QWs ??? the problem of thermal stability, physica status solidi (c), vol.73, issue.6, p.1662, 2008.
DOI : 10.1002/pssc.200778575

H. Yamada, K. Iso, M. Saito, H. Masui, K. Fujito et al.,

, Appl. Phy. Express, vol.1, p.41101, 2008.

T. Detchprohm, M. Zhu, Y. Li, L. Zhao, S. You et al., Appl. Phy. Lett, p.96, 2010.

X. Guo and E. F. Schubert, Current crowding in GaN/InGaN light emitting diodes on insulating substrates, Journal of Applied Physics, vol.4, issue.8, p.4191, 2001.
DOI : 10.1063/1.1311819

H. Kim, S. J. Park, and H. Hwang, IEEE T. Electron. Dev, vol.48, p.1065, 2001.

J. B. Limb, W. Lee, J. H. Ryou, D. Yoo, and R. D. Dupuis, Comparison of GaN and In0.04Ga0.96N p-Layers on the Electrical and Electroluminescence Properties of Green Light Emitting Diodes, Journal of Electronic Materials, vol.85, issue.4, p.426, 2007.
DOI : 10.1557/S1092578300000879

M. E. Zvanut, W. R. Willoughby, U. R. Sunay, D. D. Koleske, A. A. Allerman et al., N:Mg, physica status solidi (c), vol.11, issue.3-4, p.594, 2014.
DOI : 10.1002/pssc.201300515

S. Lee, J. Son, T. Sakong, W. Lee, H. Paek et al., Investigation of optical and electrical properties of Mg-doped p-InxGa1???xN, p-GaN and p-AlyGa1???yN grown by MOCVD, Journal of Crystal Growth, vol.272, issue.1-4, p.455, 2004.
DOI : 10.1016/j.jcrysgro.2004.09.013

J. Liu, J. Ryou, Z. Lochner, J. Limb, D. Yoo et al., Surface morphology control of green LEDs with p-InGaN layers grown by metalorganic chemical vapor deposition, Journal of Crystal Growth, vol.310, issue.23, p.5166, 2008.
DOI : 10.1016/j.jcrysgro.2008.07.033

, References of annex A References of annex A

M. A. Moram and M. E. Vickers, X-ray diffraction of III-nitrides, Reports on Progress in Physics, vol.72, issue.3, p.36502, 2009.
DOI : 10.1088/0034-4885/72/3/036502

H. Wang, D. S. Jiang, U. Jahn, J. J. Zhu, and D. G. Zhao, Investigation on the strain relaxation of InGaN layer and its effects on the InGaN structural and optical properties, Physica B: Condensed Matter, vol.405, issue.22, p.4668, 2010.
DOI : 10.1016/j.physb.2010.08.058

S. Surender, K. Prabakaran, R. Loganathan, S. Pradeep, S. Singh et al., Effect of growth temperature on InGaN/GaN heterostructures grown by MOCVD, Journal of Crystal Growth, vol.468, p.249, 2017.
DOI : 10.1016/j.jcrysgro.2016.11.061

A. Benediktovitch, T. Ulyanenkova, and J. Keckes, Sample tilt-free characterization of residual stress gradients in thin coatings using an in-plane arm-equipped laboratory X-ray diffractometer, Journal of Applied Crystallography, vol.38, issue.378, p.1931, 2014.
DOI : 10.1107/S0021889804029516

P. F. Fewster and N. L. Andrew, Absolute Lattice-Parameter Measurement, Journal of Applied Crystallography, vol.28, issue.4, p.451, 1995.
DOI : 10.1107/S002188989500269X

URL : http://journals.iucr.org/j/issues/1995/04/00/gl0382/gl0382.pdf

B. , Choice of experimental conditions B.3 Choice of experimental conditions References of annex B

A. Hangleiter, D. Fuhrmann, M. Grewe, F. Hitzel, G. Klewer et al., Phys. Status Solidi A, vol.201, p.2808, 2004.

, REFERENCES OF ANNEX B References of annex C References of annex C

Y. Wu, R. Shivaraman, K. Wang, and J. S. Speck, Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure, Applied Physics Letters, vol.101, issue.8, p.83505, 2012.
DOI : 10.1063/1.3651332

F. Tang, T. Zhu, F. Oehler, W. Y. Fu, J. T. Griffiths et al.,

, Lett, vol.106, p.72104, 2015.

L. Rigutti, L. Mancini, D. Hernández-maldonado, W. Lefebvre, E. Giraud et al., J. Appl. Phys, vol.119, p.0, 2016.

M. Watanabe and D. B. Williams, The quantitative analysis of thin specimens: a review of progress from the Cliff-Lorimer to the new zeta-factor methods, Journal of Microscopy, vol.133, issue.2, p.89, 2006.
DOI : 10.1088/0370-1298/69/5/305

, En effet le désaccord de paramètre de maille (11 % entre l'InN et le GaN) provoque une forte contrainte compressive. Pour cette raison l'épaisseur critique est limitée à seulement quelques nanomètres pour les forts pourcentages d'indium (>20 %). A cause de cette contrainte considérable, de nombreux défauts structurels peuvent être présents dans ce matériau, sur GaN, nécessaire pour la structure Diode ElectroLuminescente(DEL) est difficile Ils peuvent être ponctuels (impuretés, etc.) ou sous la forme de dislocations

/. Ingan and . Gan, Celui-ci a pour effet de séparer les fonctions d'onde des électrons et des trous lorsque le puits est élargi ou lorsque le pourcentage d'indium est augmenté. Le phénomène appelé "pulling effect" caractérise la difficulté croissante à incorporer l'indium lorsque la contrainte compressive augmente, celui-ci est très présent lors de la croissance d'InGaN sur GaN. Un phénomène de segrégation de surface de l'indium est également mis en évidence dans la littérature

. Dans-la-dernière-partie-du-chapitre, InGaN épais (300 nm, x I n 5%) et un échantillon avec 4 puits quantiques avec différents pourcentages d'indium. Les techniques de caractérisation qui ont été testées sont les suivantes : spéctroscopie de rétrodiffusion de Rutherford (RBS), sonde atomique tomographique (APT), photolumiescence (PL), cathodoluminescence (CL), diffraction par rayons X (XRD), analyse dispersive en energie de rayons X (EDX) et spectrométrie de masse à ionisation secondaire (SIMS) La quantification de l'indium dans l'InGaN est difficile. Compte tenu des inhomogénéités existantes, la valeur de concentration donnée sera toujours une valeur moyenne. Pour la quantification de l'indium dans l'InGaN en couche épaisse, les méthodes XRD, EDX, APT et PL sont les plus adaptées. Pour la quantification dans les puits quantiques, les méthodes utilisées seront l'EDX et l'APT ainsi que XRD dans certains cas

, est définie par ses coordonnées de chromaticité (x, y) qui peuvent êtres représentées sur un diagramme de chromaticité Les coordonnées (0,33 ; 0,33) correspondent au blanc. La qualité d'une source de lumière blanche peut être évalué grâce à l'indice de rendu de couleur (IRC) qui varie entre 0 et 100. Par rapport aux autres sources de lumière blanche (lampe à incandescence, tube fluorescent), la DEL présente plusieurs avantages tels que la longue durée de vie

, Vers de plus grandes longueurs d'ondes sur GaN Dans ce chapitre, plusieurs tentatives pour atteindre de grandes longueurs d'ondes sur GaN sur saphir sont présentées. Pendant toute cette thèse, la largeur des puits quantiques est maintenue autour de 3 nm

. En-premier-lieu, des variations sur les conditions de croissance des puits quantiques d'une structure référence ont été effectuées. En augmentant la pression du réacteur pendant la croissance des puits quantiques et le flux de TMIn, un décalage des longueurs d'onde vers le rouge est observé. Néanmoins on ne dépasse pas 500 nm et lorsque ces paramètres dépassent une certaine valeur

. Ensuite, InGaN ( 50 nm) on été crues pour étudier l'influence des paramètres de croissances sur la qualité de la surface et l'incorporation d'indium. Puis, une de ces couches épaisses d'InGaN a été placée sous la zone active d'une structure classique de puits quantiques InGaN/GaN. L'introduction d'un super réseau InGaN/GaN a également été testé. Ces deux échantillons ont démontré des rendements d'efficacité quantique interne (IQE) supérieurs par rapport à l'échantillon référence

, Pour améliorer la qualité de la première interface, la vanne de TMIn est ouverte en amont afin de saturer la surface en indium avant l'arrivée du gallium. Ce traitement a permis d'observer un décalage vers le rouge jusqu'à 30 nm. Pour la deuxième interface une remontée en température avant la croissance de la barrière à également permis d'observer un faible décalage vers le rouge, Néanmoins même si toutes ces approches étaient combinées

, Croissance de couches InGaN sur substrats

, GaNOS

, Le substrat InGaNOS consiste en une couche d'InGaN reportée sur oxyde et saphir

L. Substrats-sont-fabriqués-À-partir-d-'un-donneur,-constitué-d-'une-couche-d-'ingan-sur and . Gan, Les caractéristiques des donneurs et des substrats InGaNOS ont été étudiées et le processus de fabrication est décrit, Le paramètre de maille a des substrats InGaNOS sont supérieurs à ceux du GaN sur saphir et également à celui du GaN relaxé (autrement appelé Free-Standing). Les substrats InGaNOS sont disponibles en 3 nuances, 0200.