H. Expression-et-purification-de, , p.64

.. Transformation-et-culture-bactérienne, , p.65

.. Extraction-et-purification, , p.65

O. Dialyse and .. Supramoléculaire-de-la-protéine, , p.66

I. , -68 - II.1. Caractérisation électrique, p.70

I. Tem and A. , -71 - III.1. Techniques d'imagerie, La Microscopie à Force Atomique, p.72


.. , -74 - III.2.2. Préparation des échantillons de fibres HET pour la diffusion/diffraction des rayons-X et des neutrons. -75 - III.2.2. i) La diffusion des rayons X, Etude la structure de fibres HET : Diffusion des rayons X et des neutrons76 - III.2.2. ii) La diffusion des neutrons, p.76

C. , , p.80

.. En-fibres, -80 - I.1.1. Conduction électronique? ?. -83 - I.1.2. ?ou protonique ?, I.1. Caractéristiques courant-tension, p.86

.. Rôle-prédominant-de-l-'eau-sur-la-conductivité, -89 - I.2.1. Effet de l'humidité sur la conductivité des fibres et monomères, p.89

I. , -89 - I.2.1. ii) Effet de l'humidité : I, -91 - I.2.1. iii) Hypothèse sur le type de porteur de charges, p.93

H. Effet-de-la-température-sur-la-conductivité-des-fibres-et-monomères, , p.93

.. Production-Électrochimique-de-protons, -95 - I.3.1. Effet de l'oxygène sur la conduction : I, ?, p.101

C. , , p.104

I. , -106 - II.1. Etude de l'interaction eau-fibre : simulation de dynamique moléculaire. -106 - II.2. Etude expérimentale de l'interaction eau-fibre, 110 - II.2.2. i) Diffusion des rayons X aux petits et grands angles: principales caractéristiques structurales des fibres... -110 - II.2.2. ii) Etude de l'interaction eau-fibres par diffusion des neutrons, p.112

.. De-transport-de-protons, -116 - II.3.1. Effets de l'adsorption d'eau : Spectroscopie d'Impédance. -116 - II.3.2. Reconsidération de l'effet de l'humidité sur la conductivité des fibres, Mécanisme, p.122

I. 4. Conclusion and .. , , p.125

I. , -126 - III.1. Effets de la longueur d'onde d'irradiation, p.127

A. Noy and . Bionanoelectronics, Bionanoelectronics, Advanced Materials, vol.107, issue.7, pp.807-820, 2011.
DOI : 10.1073/pnas.1009645107

A. Zhang and C. M. Lieber, Nano-Bioelectronics. Chem. Rev, vol.116, pp.215-257, 2016.

I. Willner and E. Katz, Bioelectronics: from theory to applications, 2005.
DOI : 10.1002/352760376X

N. Bhalla, P. Jolly, N. Formisano, and P. Estrela, Introduction to biosensors, Essays In Biochemistry, vol.60, issue.1, pp.1-8, 2016.
DOI : 10.1042/EBC20150001

L. C. Clark and C. Lyons, ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY, Annals of the New York Academy of Sciences, vol.12, issue.2, pp.29-45, 1962.
DOI : 10.1161/01.CIR.24.5.1227

M. , S. Pernot, and P. Biocapteurs-implantables,

, Nanotechnologies Biotechnol. Pour Santé, 2017.

J. A. Costa-e-silva and R. E. Steffen, The future of psychiatry: brain devices, Metabolism, vol.69, pp.8-12, 2017.
DOI : 10.1016/j.metabol.2017.01.010

X. Navarro, A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems, Journal of the Peripheral Nervous System, vol.17, issue.3, pp.229-258, 2005.
DOI : 10.1002/mus.10358

E. Margalit, Retinal Prosthesis for the Blind, Survey of Ophthalmology, vol.47, issue.4, pp.335-356, 2002.
DOI : 10.1016/S0039-6257(02)00311-9

B. S. Wilson, Better speech recognition with cochlear implants, Nature, vol.352, issue.6332, pp.236-238, 1991.
DOI : 10.1038/352236a0

G. H. Moe-behrens, THE BIOLOGICAL MICROPROCESSOR, OR HOW TO BUILD A COMPUTER WITH BIOLOGICAL PARTS, Computational and Structural Biotechnology Journal, vol.7, issue.8, p.201304003, 2013.
DOI : 10.5936/csbj.201304003

D. V. Nicolau, Parallel computation with molecular-motor-propelled agents in nanofabricated networks, Proc. Natl. Acad. Sci, p.201510825, 2016.
DOI : 10.1016/j.bpj.2011.04.023

N. Roquet, A. P. Soleimany, A. C. Ferris, S. Aaronson, and T. K. Lu, Synthetic recombinase-based state machines in living cells, Science, vol.35, issue.2, pp.8559-8559, 2016.
DOI : 10.1046/j.1365-2958.2000.01720.x

E. Katz and M. Pita, Biofuel Cells Controlled by Logically Processed Biochemical Signals: Towards Physiologically Regulated Bioelectronic Devices, Chemistry - A European Journal, vol.1, issue.46, pp.12554-12564, 2009.
DOI : 10.1007/b11268

P. Cinquin, Glucose BioFuel Cell Implanted in Rats. PLoS ONE, vol.5, p.10476, 2010.

S. Cosnier, L. Goff, A. Holzinger, and M. , Towards glucose biofuel cells implanted in human body for powering artificial organs: Review, Electrochemistry Communications, vol.38, pp.19-23, 2014.
DOI : 10.1016/j.elecom.2013.09.021

URL : https://hal.archives-ouvertes.fr/hal-01652513

W. Göpel and P. Heiduschka, Introduction to bioelectronics: 'interfacing biology with electronics, Biosens. Bioelectron, vol.9, p.iii?xiii, 1994.

J. Rivnay, R. M. Owens, and G. G. Malliaras, The Rise of Organic Bioelectronics, Chemistry of Materials, vol.26, issue.1
DOI : 10.1021/cm4022003

, Chem. Mater, vol.26, pp.679-685, 2014.

G. G. Malliaras, Organic bioelectronics: A new era for organic electronics, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1830, issue.9
DOI : 10.1016/j.bbagen.2012.10.007

URL : https://hal.archives-ouvertes.fr/emse-00854076

. Biophys, . Acta, and . Bba-gen, , pp.4286-4287, 2013.

G. Lanzani, Organic electronics meets biology, Nature Materials, vol.4, issue.8
DOI : 10.1038/496159a

. Mater, , pp.775-776, 2014.

D. Khodagholy, High transconductance organic electrochemical transistors, Nature Communications, vol.25, issue.1
DOI : 10.1002/adma.201204322

URL : https://hal.archives-ouvertes.fr/emse-00854207

, Commun, vol.4, p.2133, 2013.

A. and A. , Polymères conjugués et électronique organique, 2017.

X. Wang, B. Shapiro, and E. Smela, Visualizing Ion Currents in Conjugated Polymers, Advanced Materials, vol.9, issue.18
DOI : 10.1002/adma.200400188

, Adv. Mater, vol.16, pp.1605-1609, 2004.

D. Khodagholy, vivo recordings of brain activity using organic transistors

, Nat. Commun, vol.4, p.1575, 2013.

E. Stavrinidou, Direct Measurement of Ion Mobility in a Conducting Polymer, Advanced Materials, vol.7, issue.32
DOI : 10.1016/j.orgel.2005.10.002

URL : https://hal.archives-ouvertes.fr/emse-00854181

, Adv. Mater, vol.25, pp.4488-4493, 2013.

J. Isaksson, Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump, Nature Materials, vol.121, issue.9, pp.673-679, 2007.
DOI : 10.1016/j.bios.2005.10.020

J. F. Nagle, M. Mille, and H. J. Morowitz, Theory of hydrogen bonded chains in bioenergetics, The Journal of Chemical Physics, vol.505, issue.7, pp.3959-3971, 1980.
DOI : 10.1063/1.1681056

P. Meredith, C. J. Bettinger, M. Irimia-vladu, A. B. Mostert, and P. Schwenn, Electronic and optoelectronic materials and devices inspired by nature, Reports on Progress in Physics, vol.76, issue.3, p.34501, 2013.
DOI : 10.1088/0034-4885/76/3/034501

P. Ramaswamy, N. E. Wong, and G. K. Shimizu, MOFs as proton conductors ??? challenges and opportunities, Chem. Soc. Rev., vol.14, issue.16, pp.5913-5932, 2014.
DOI : 10.1021/ja500356z

K. Kreuer, A. Rabenau, and W. Weppner, Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors, Angewandte Chemie International Edition in English, vol.49, issue.4, pp.208-209, 1982.
DOI : 10.1139/p71-104

T. Ueki and M. Watanabe, Macromolecules in Ionic Liquids: Progress, Challenges, and Opportunities, Macromolecules in Ionic Liquids: Progress, Challenges, and Opportunities, pp.3739-3749, 2008.
DOI : 10.1021/ma800171k

Y. Deng, H+-type and OH???-type biological protonic semiconductors and complementary devices, Scientific Reports, vol.111, issue.1, p.2481, 2013.
DOI : 10.1016/j.jbiosc.2010.09.018

M. Eigen and L. De-maeyer, Self-Dissociation and Protonic Charge Transport in Water and Ice, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.247, issue.1251, pp.505-533, 1958.
DOI : 10.1098/rspa.1958.0208

S. Cukierman and . Et-tu, Et tu, Grotthuss! and other unfinished stories, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1757, issue.8, pp.876-885, 2006.
DOI : 10.1016/j.bbabio.2005.12.001

D. Riccardi, ???Proton Holes??? in Long-Range Proton Transfer Reactions in Solution and Enzymes:?? A Theoretical Analysis, Journal of the American Chemical Society, vol.128, issue.50, pp.16302-16311, 2006.
DOI : 10.1021/ja065451j

K. D. Kreuer, On the complexity of proton conduction phenomena. Solid State Ion, pp.149-160, 2000.

T. Decoursey, Voltage-Gated Proton Channels and Other Proton Transfer Pathways, Physiological Reviews, vol.111, issue.2, pp.475-579, 2003.
DOI : 10.1073/pnas.90.21.9832

URL : http://physrev.physiology.org/content/physrev/83/2/475.full.pdf

S. Walbran and A. A. Kornyshev, Proton transport in polarizable water, The Journal of Chemical Physics, vol.26, issue.22, pp.10039-10048, 2001.
DOI : 10.1063/1.473903

URL : http://juser.fz-juelich.de/record/24872/files/166.pdf

T. Miyake and M. Rolandi, Grotthuss mechanisms: from proton transport in proton wires to bioprotonic devices, Journal of Physics: Condensed Matter, vol.28, issue.2, p.23001, 2016.
DOI : 10.1088/0953-8984/28/2/023001

W. J. Phang, pH-Dependent Proton Conducting Behavior in a Metal-Organic Framework Material, Angewandte Chemie International Edition, vol.5, issue.32, pp.8383-8387, 2014.
DOI : 10.1038/nchem.1503

J. Weiss, 47. The formation and structure of some organic molecular compounds, Journal of the Chemical Society (Resumed)
DOI : 10.1039/jr9420000245

, Chem. Soc. Resumed, vol.245252, 1942.

P. Rich, The molecular machinery of Keilin's respiratory chain, Biochemical Society Transactions, vol.31, issue.6, 2003.
DOI : 10.1042/bst0311095

N. Nelson and A. Ben-shem, The complex architecture of oxygenic photosynthesis

, Nat. Rev. Mol. Cell Biol, vol.5, pp.971-982, 2004.

S. K. Chapman and A. Mount, Electron transfer in proteins, Natural Product Reports, vol.12, issue.2, pp.93-100, 1995.
DOI : 10.1039/np9951200093

N. Amdursky, Electron Transfer across Helical Peptides, ChemPlusChem, vol.104, issue.7, pp.1075-1095, 2015.
DOI : 10.1073/pnas.0701979104

Y. Long, E. Abu-irhayem, and H. Kraatz, Peptide Electron Transfer: More Questions than Answers, Chemistry - A European Journal, vol.126, issue.639, pp.5186-5194, 2005.
DOI : 10.1007/b94410

B. Giese, M. Graber, and M. Cordes, Electron transfer in peptides and proteins, Curr

, Opin. Chem. Biol, vol.12, pp.755-759, 2008.

, Bibliographie________________________________________________________________ -163

M. Cordes, Influence of Amino Acid Side Chains on Long-Distance Electron Transfer in Peptides: Electron Hopping via ???Stepping Stones???, Angewandte Chemie International Edition, vol.44, issue.18, pp.3461-3463, 2008.
DOI : 10.1002/anie.200705588

C. Shih, Tryptophan-Accelerated Electron Flow Through Proteins, Science, vol.303, issue.5665, pp.1760-1762, 2008.
DOI : 10.1126/science.1093087

URL : https://authors.library.caltech.edu/51885/7/Shih_SOM.pdf

A. Shah, Electron transfer in peptides, Chemical Society Reviews, vol.1, issue.4, pp.1015-1027, 2015.
DOI : 10.1021/jz100210t

C. D. Bostick, Protein bioelectronics: a review of what we do and do not know, Reports on Progress in Physics, vol.81, issue.2
DOI : 10.1088/1361-6633/aa85f2

, ArXiv Prepr, 2017.

B. Alberts, A. Johnson, J. A. Lewis, and J. , J. Principles of Membrane Transport. in Molecular Biology of the Cell, 2002.

J. Faraudo and M. A. Arzo, Ion transport through biological channels, Contrib. Sci, pp.181-188, 2016.

H. Lodish, A. Johnson, B. A. Lewis, and J. , Z. S. Section Overview of Membrane Transport Proteins. in Molecular Cell Biology, vol.152, 2000.

P. Ädelroth, Biochemistry, vol.40, issue.48, pp.14538-14546, 2001.
DOI : 10.1021/bi011585s

J. F. Nagle and H. J. Morowitz, Molecular mechanisms for proton transport in membranes., Proc. Nat. Acad. Sci. 75, pp.298-302, 1978.
DOI : 10.1073/pnas.75.1.298

M. Brändén, On the role of the K-proton transfer pathway in cytochrome c oxidase, Proc. Nat. Acad. Sci. 98, pp.5013-5018, 2001.
DOI : 10.1016/0263-7855(96)00018-5

I. S. Ramsey, An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1, Nature Structural & Molecular Biology, vol.14, issue.7, pp.869-875, 2010.
DOI : 10.1113/jphysiol.1995.sp021051

J. Lerner-yardeni, M. Amit, G. Ashkenasy, and N. Ashkenasy, Sequence dependent proton conduction in self-assembled peptide nanostructures, Nanoscale, vol.37, issue.4, pp.2358-2366, 2016.
DOI : 10.1103/PhysRevA.37.2703

D. R. Weinberg, Proton-Coupled Electron Transfer, Chemical Reviews, vol.112, issue.7, pp.4016-4093, 2012.
DOI : 10.1021/cr200177j

S. Hammes-schiffer, Proton-coupled electron transfer: classification scheme and guide to theoretical methods, Energy & Environmental Science, vol.112, issue.7, p.7696, 2012.
DOI : 10.1021/jp802171y

B. A. Barry, Proton coupled electron transfer and redox active tyrosines in Photosystem II, Journal of Photochemistry and Photobiology B: Biology, vol.104, issue.1-2, pp.60-71, 2011.
DOI : 10.1016/j.jphotobiol.2011.01.026

S. Hammes-schiffer and A. A. Stuchebrukhov, Theory of Coupled Electron and Proton Transfer Reactions, Chemical Reviews, vol.110, issue.12, pp.6939-6960, 2010.
DOI : 10.1021/cr1001436

S. Y. Reece and D. G. Nocera, Proton-Coupled Electron Transfer in Biology: Results from Synergistic Studies in Natural and Model Systems, Annual Review of Biochemistry, vol.78, issue.1, pp.673-699, 2009.
DOI : 10.1146/annurev.biochem.78.080207.092132

X. Chen, Proton-Regulated Electron Transfers from Tyrosine to Tryptophan in Proteins: Through-Bond Mechanism versus Long-Range Hopping Mechanism, The Journal of Physical Chemistry B, vol.113, issue.52
DOI : 10.1021/jp9077689

, Chem. B, vol.113, pp.16681-16688, 2009.

N. Amdursky, Electronic Transport via Proteins, Advanced Materials, vol.53, issue.42, pp.7142-7161, 2014.
DOI : 10.1016/S0302-4598(00)00127-6

C. R. Martinez and B. L. Iverson, Rethinking the term ???pi-stacking???, Chemical Science, vol.10, issue.12, p.2191, 2012.
DOI : 10.1021/ol801286k

E. Gazit, A possible role for ??-stacking in the self-assembly of amyloid fibrils, The FASEB Journal, vol.16, issue.1, pp.77-83, 2002.
DOI : 10.1006/jmbi.2000.3840

M. Peyrard, Glass transition in protein hydration water, Physical Review E, vol.85, issue.1, 2001.
DOI : 10.1073/pnas.85.7.2029

G. Hummer and A. Tokmakoff, Preface: Special Topic on Biological Water. J. Chem

, Phys, vol.141, pp.22-101, 2014.

C. Giacomantonio, Charge transport in melanin, a disordered bio-organic conductor

, Univ. Qld, 2005.

J. Lin, The Nature of Aqueous Tunneling Pathways Between Electron-Transfer Proteins, Science, vol.310, issue.5752, pp.1311-1313, 2005.
DOI : 10.1126/science.1118316

B. Rosenberg, Electrical Conductivity of Proteins, Nature, vol.27, issue.4813, pp.364-365, 1962.
DOI : 10.1007/BF01502260

G. Careri, Cooperative charge fluctuations by migrating protons in globular proteins, Progress in Biophysics and Molecular Biology, vol.70, issue.3
DOI : 10.1016/S0079-6107(98)00030-3

, Prog. Biophys. Mol. Biol, vol.70, pp.223-249, 1998.

M. R. Powell and B. Rosenberg, The nature of the charge carriers in solvated biomacromolecules, Journal of Bioenergetics, vol.36, issue.6, pp.493-509, 1970.
DOI : 10.1139/p63-108

A. L. Efros, Physics and Geometry of Disorder -Percolation Theory, 1986.

Y. A. Gorby, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, Proc. Nat. Acad. Sci. 103, pp.11358-11363, 2006.
DOI : 10.1021/ac60289a016

N. S. Malvankar and D. R. Lovley, Microbial Nanowires: A New Paradigm for Biological Electron Transfer and Bioelectronics, ChemSusChem, vol.468, issue.6, pp.1039-1046, 2012.
DOI : 10.1038/468516a

N. S. Malvankar, Tunable metallic-like conductivity in microbial nanowire networks, Nature Nanotechnology, vol.55, issue.9, pp.573-579, 2011.
DOI : 10.1073/pnas.94.7.3459

M. Y. El-naggar, Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1, Proc. Nat. Acad. Sci, pp.18127-18131, 2010.
DOI : 10.1021/es903043p

, Bibliographie, p.165

N. F. Polizzi, S. S. Skourtis, and D. N. Beratan, Physical constraints on charge transport through bacterial nanowires, Faraday Discuss., vol.6, pp.43-61, 2012.
DOI : 10.1038/nnano.2011.119

A. Kumar, The ins and outs of microorganism???electrode electron transfer reactions, Nature Reviews Chemistry, vol.54, issue.3, p.24, 2017.
DOI : 10.1021/sb300042w

URL : https://hal.archives-ouvertes.fr/hal-01542755

J. Mcginness, P. Corry, and P. Proctor, Amorphous Semiconductor Switching in Melanins, Science, vol.183, issue.4127, pp.853-855, 1974.
DOI : 10.1126/science.183.4127.853

B. Mostert, A. Powell, B. J. Gentle, I. R. Meredith, and P. , On the origin of electrical conductivity in the bio-electronic material melanin, Applied Physics Letters, vol.122, issue.9, p.93701, 2012.
DOI : 10.1063/1.2075147

D. D. Eley and D. I. Spivey, Semiconductivity of organic substances. Part 8.???Porphyrins and dipyrromethenes, Trans. Faraday Soc., vol.58, issue.0, pp.405-410, 1962.
DOI : 10.1039/TF9625800405

E. D. G?owacki, M. Irimia-vladu, S. Bauer, and N. S. Sariciftci, Hydrogen-bonds in molecular solids ??? from biological systems to organic electronics, Journal of Materials Chemistry B, vol.47, issue.31, p.3742, 2013.
DOI : 10.1039/c1cc15118e

N. P. Armitage, M. Briman, and G. Grüner, Charge transfer and charge transport on the double helix, physica status solidi (b), vol.241, issue.1, pp.69-75, 2004.
DOI : 10.1002/pssb.200303603

J. M. Leveritt, C. Dibaya, S. Tesar, R. Shrestha, and A. L. Burin, One-dimensional confinement of electric field and humidity dependent DNA conductivity, The Journal of Chemical Physics, vol.355, issue.24, p.245102, 2009.
DOI : 10.1103/PhysRevE.80.041925

D. D. Ordinario, L. Phan, J. Jocson, T. Nguyen, and A. A. Gorodetsky, Protonic transistors from thin reflectin films, APL Materials, vol.3, issue.1, p.14907, 2015.
DOI : 10.1007/978-0-387-92134-1

G. Wu, Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors, Scientific Reports, vol.100, issue.1, p.23578, 2016.
DOI : 10.1073/pnas.0337591100

D. D. Ordinario, Bulk protonic conductivity in a cephalopod structural protein, Nature Chemistry, vol.25, issue.7
DOI : 10.1002/adma.201301240

, Nat. Chem, vol.6, pp.596-602, 2014.

T. Scheibel, Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition, Proc. Nat. Acad. Sci, pp.4527-4532, 2003.
DOI : 10.1126/science.1063821

J. Castillo, S. Tanzi, M. Dimaki, and W. Svendsen, Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis, ELECTROPHORESIS, vol.135, issue.24, pp.5026-5032, 2008.
DOI : 10.1557/mrs2007.47

D. Mercato and L. L. , Charge transport and intrinsic fluorescence in amyloid-like fibrils, Proc. Nat. Acad. Sci. U. S. A, pp.18019-18024, 2007.
DOI : 10.1080/07391102.1992.10508661

L. J. Domigan, J. P. Healy, S. J. Meade, R. J. Blaikie, and J. A. Gerrard, Controlling the dimensions of amyloid fibrils: Toward homogenous components for bionanotechnology, Biopolymers, vol.2, issue.2, pp.123-133, 2012.
DOI : 10.1002/pro.5560020312

R. C. Creasey, Y. Shingaya, and T. Nakayama, Improved electrical conductance through self-assembly of bioinspired peptides into nanoscale fibers, Materials Chemistry and Physics, vol.158, pp.52-59, 2015.
DOI : 10.1016/j.matchemphys.2015.03.034

M. Amit, G. Cheng, I. W. Hamley, and N. Ashkenasy, Conductance of amyloid ?? based peptide filaments: structure???function relations, Soft Matter, vol.46, issue.33, p.8690, 2012.
DOI : 10.1039/c0cc00212g

L. Glasser, Proton conduction and injection in solids, Chemical Reviews, vol.75, issue.1, pp.21-65, 1975.
DOI : 10.1021/cr60293a002

J. Wünsche, F. Cicoira, C. F. Graeff, and C. Santato, Eumelanin thin films: solution-processing, growth, and charge transport properties, Journal of Materials Chemistry B, vol.6, issue.340, p.3836, 2013.
DOI : 10.1038/nmat2021

F. Chiti, Designing conditions for in vitro formation of amyloid protofilaments and fibrils, Proc. Nat. Acad. Sci. 96, pp.3590-3594, 1999.
DOI : 10.1006/jmbi.1998.1677

J. D. Sipe, Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines, Amyloid, vol.117, issue.4, pp.209-213, 2016.
DOI : 10.1073/pnas.87.7.2843

C. L. Pham, A. H. Kwan, and M. Sunde, Functional amyloid: widespread in Nature, diverse in purpose, Essays In Biochemistry, vol.105, pp.207-219, 2014.
DOI : 10.1073/pnas.0803488105

D. M. Fowler, Functional Amyloid Formation within Mammalian Tissue, PLoS Biology, vol.322, issue.1, p.6, 2005.
DOI : 10.1371/journal.pbio.0040006.sg001

C. F. Kaminski and G. S. Kaminski-schierle, Probing amyloid protein aggregation with optical superresolution methods: from the test tube to models of disease, Neurophotonics, vol.3, issue.4, p.41807, 2016.
DOI : 10.1117/1.NPh.3.4.041807

J. Meinhardt, C. Sachse, P. Hortschansky, N. Grigorieff, M. Fändrich et al., , pp.1-40

, Fibril Polymorphism Implies Diverse Interaction Patterns in Amyloid Fibrils, J. Mol. Biol, vol.386, pp.869-877, 2009.

L. Nielsen, Biochemistry, vol.40, issue.20, pp.6036-6046, 2001.
DOI : 10.1021/bi002555c

A. Tiiman, J. Krishtal, P. Palumaa, and V. Ugu, In vitro fibrillization of Alzheimer's amyloid-? peptide (1-42) AIP Adv, p.92401, 2015.

J. A. Lemkul and D. R. Bevan, The Role of Molecular Simulations in the Development of Inhibitors of Amyloid ??-Peptide Aggregation for the Treatment of Alzheimer???s Disease, ACS Chemical Neuroscience, vol.3, issue.11
DOI : 10.1021/cn300091a

, ACS Chem. Neurosci, vol.3, pp.845-856, 2012.

J. L. Jiménez, The protofilament structure of insulin amyloid fibrils, Proc. Nat
DOI : 10.1021/bi0105983

. Acad and . Sci, , pp.9196-9201, 2002.

G. Wei, Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology, Chemical Society Reviews, vol.23, issue.15, pp.4661-4708, 2017.
DOI : 10.1038/nnano.2017.1058

C. Goldsbury, Amyloid structure and assembly: Insights from scanning transmission electron microscopy, Journal of Structural Biology, vol.173, issue.1, pp.1-13, 2011.
DOI : 10.1016/j.jsb.2010.09.018

L. C. Serpell, Alzheimer???s amyloid fibrils: structure and assembly, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1502, issue.1
DOI : 10.1016/S0925-4439(00)00029-6

, Acta, vol.1502, pp.16-30, 2000.

M. Sunde, Common core structure of amyloid fibrils by synchrotron X-ray diffraction 1 1Edited by F. E. Cohen, Journal of Molecular Biology, vol.273, issue.3, pp.729-739, 1997.
DOI : 10.1006/jmbi.1997.1348

S. Maurer-stroh, Exploring the sequence determinants of amyloid structure using position-specific scoring matrices, Nature Methods, vol.4, issue.3, pp.237-242, 2010.
DOI : 10.1385/1-59259-874-9:067

O. S. Makin, E. Atkins, P. Sikorski, J. Johansson, and L. C. Serpell, Molecular basis for amyloid fibril formation and stability, Proc. Nat. Acad. Sci, pp.315-320, 2005.
DOI : 10.1002/anie.199315841

M. R. Sawaya, Atomic structures of amyloid cross-?? spines reveal varied steric zippers, Nature, vol.234, issue.7143, pp.453-457, 2007.
DOI : 10.1177/16.11.673

K. Iwata, 3D structure of amyloid protofilaments of ?2-microglobulin fragment probed by solid-state NMR, Proc. Natl. Acad. Sci. 103, pp.18119-18124, 2006.

M. A. Wälti, Atomic-resolution structure of a disease-relevant A?(1-42) amyloid fibril, Proc. Nat. Acad. Sci, pp.4976-4984, 2016.

C. Wasmer, Amyloid Fibrils of the HET-s(218-289) Prion Form a ?? Solenoid with a Triangular Hydrophobic Core, Science, vol.32, issue.5, pp.1523-1526, 2008.
DOI : 10.1016/j.tibs.2007.03.003

F. Zhang, Mechanical Manipulation Assisted Self-Assembly To Achieve Defect Repair and Guided Epitaxial Growth of Individual Peptide Nanofilaments, ACS Nano, vol.4, issue.10, pp.5791-5796, 2010.
DOI : 10.1021/nn101541m

M. D. Peralta, Engineering Amyloid Fibrils from ??-Solenoid Proteins for Biomaterials Applications, ACS Nano, vol.9, issue.1, pp.449-463, 2015.
DOI : 10.1021/nn5056089

L. Altamura, A synthetic redox biofilm made from metalloprotein???prion domain chimera nanowires, Nature Chemistry, vol.9, issue.2, pp.157-163, 2016.
DOI : 10.1002/elan.200603855

URL : https://hal.archives-ouvertes.fr/hal-01617954

D. N. Woolfson and Z. N. Mahmoud, More than just bare scaffolds: towards multi-component and decorated fibrous biomaterials, Chemical Society Reviews, vol.130, issue.9, p.3464, 2010.
DOI : 10.1002/anie.200906831

T. P. Knowles and M. J. Buehler, Nanomechanics of functional and pathological amyloid materials, Nature Nanotechnology, vol.10, issue.8, pp.469-479, 2011.
DOI : 10.1016/S0969-2126(02)00827-4

S. S. Rogers, Investigating the permanent electric dipole moment of ??-lactoglobulin fibrils, using transient electric birefringence, Biopolymers, vol.91, issue.3, pp.241-252, 2006.
DOI : 10.1007/b11347

O. Tcherkasskaya, Photo-activity induced by amyloidogenesis, Protein Science, vol.16, issue.4, pp.561-571, 2007.
DOI : 10.1110/ps.062578307

URL : http://onlinelibrary.wiley.com/doi/10.1110/ps.062578307/pdf

F. T. Chan, Protein amyloids develop an intrinsic fluorescence signature during aggregation, The Analyst, vol.225, issue.7, p.2156, 2013.
DOI : 10.1524/zpch.2011.0109

URL : http://europepmc.org/articles/pmc5360231?pdf=render

A. Handelman, P. Beker, N. Amdursky, and G. Rosenman, Physics and engineering of peptide supramolecular nanostructures, Physical Chemistry Chemical Physics, vol.76, issue.18, p.6391, 2012.
DOI : 10.1063/1.125691

D. Pinotsi, Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures, Journal of the American Chemical Society, vol.138, issue.9, pp.3046-3057, 2016.
DOI : 10.1021/jacs.5b11012

T. P. Knowles and R. Mezzenga, Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials, Advanced Materials, vol.136, issue.Suppl 4, pp.6546-6561, 2016.
DOI : 10.1021/ja509648u

C. Zhong, Strong underwater adhesives made by self-assembling multi-protein nanofibres, Nature Nanotechnology, vol.487, issue.10, pp.858-866, 2014.
DOI : 10.1002/pro.2147

URL : http://europepmc.org/articles/pmc4191913?pdf=render

D. Li, Structure-Based Design of Functional Amyloid Materials, Journal of the American Chemical Society, vol.136, issue.52
DOI : 10.1021/ja509648u

, Soc, vol.136, pp.18044-18051, 2014.

B. An, Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains, ACS Nano, vol.11, issue.7, pp.6985-6995, 2017.
DOI : 10.1021/acsnano.7b02298

M. Amit, Hybrid Proton and Electron Transport in Peptide Fibrils, Advanced Functional Materials, vol.15, issue.37
DOI : 10.1039/c3cp43952f

, Mater, vol.24, pp.5873-5880, 2014.

X. Wang, Y. Li, and C. Zhong, Amyloid-directed assembly of nanostructures and functional devices for bionanoelectronics, Journal of Materials Chemistry B, vol.2, issue.25, pp.4953-4958, 2015.
DOI : 10.1038/ncomms1489

E. Kasotakis, Design of metal-binding sites onto self-assembled peptide fibrils, Biopolymers, vol.11, issue.3, pp.164-172, 2009.
DOI : 10.1016/S0925-4439(00)00029-6

S. Povilonien?, Functionalization of ??-synuclein fibrils, Beilstein Journal of Nanotechnology, vol.6, pp.124-133, 2015.
DOI : 10.3762/bjnano.6.12

M. Reches, Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes, Science, vol.300, issue.5619, pp.625-627, 2003.
DOI : 10.1126/science.1082387

M. Malisauskas, R. Meskys, and L. A. Morozova-roche, Ultrathin silver nanowires produced by amyloid biotemplating, Biotechnology Progress, vol.45, issue.5, pp.1166-1170, 2008.
DOI : 10.1016/j.bbapap.2005.10.021

URL : http://onlinelibrary.wiley.com/doi/10.1002/btpr.49/pdf

O. Carny, D. E. Shalev, and E. Gazit, Fabrication of Coaxial Metal Nanocables Using a Self-Assembled Peptide Nanotube Scaffold, Nano Letters, vol.6, issue.8, pp.1594-1597, 2006.
DOI : 10.1021/nl060468l

M. B. Larsen, K. B. Andersen, W. E. Svendsen, and J. Castillo-león, Self-Assembled Peptide Nanotubes as an Etching Material for the Rapid Fabrication of Silicon Wires, BioNanoScience, vol.14, issue.4, pp.31-37, 2011.
DOI : 10.1088/0960-1317/14/4/R01

D. Lee, Photoconductivity of Pea-Pod-Type Chains of Gold Nanoparticles Encapsulated within Dielectric Amyloid Protein Nanofibrils of ?-Synuclein, Angew. Chem

. Int and . Ed, , pp.1332-1337, 2011.

Y. S. Choi, J. Kim, G. Bhak, D. Lee, and S. R. Paik, Photoelectric Protein Nanofibrils of ?-Synuclein with Embedded Iron and Phthalocyanine Tetrasulfonate, Angew. Chem. Int

E. , , pp.6070-6074, 2011.

L. Altamura, Bio-inspired protein nanowire : electrical conductivity and use as redox mediator for enzyme wiring, Thèse, Université J. Fourier-Grenoble I, 2015.

C. Meier, I. Lifincev, and M. E. Welland, Conducting Core???Shell Nanowires by Amyloid Nanofiber Templated Polymerization, Biomacromolecules, vol.16, issue.2, pp.558-563, 2015.
DOI : 10.1021/bm501618c

M. Hamedi, A. Herland, R. H. Karlsson, and O. Inganäs, Electrochemical Devices Made from Conducting Nanowire Networks Self-Assembled from Amyloid Fibrils and Alkoxysulfonate PEDOT, Nano Letters, vol.8, issue.6, pp.1736-1740, 2008.
DOI : 10.1021/nl0808233

L. Benkemoun and S. J. Saupe, Prion proteins as genetic material in fungi, Fungal Genetics and Biology, vol.43, issue.12, pp.789-803, 2006.
DOI : 10.1016/j.fgb.2006.06.006

URL : https://hal.archives-ouvertes.fr/hal-00093140

H. Van-melckebeke, Probing Water Accessibility in HET-s(218???289) Amyloid Fibrils by Solid-State NMR, Journal of Molecular Biology, vol.405, issue.3, pp.765-772, 2011.
DOI : 10.1016/j.jmb.2010.11.004

R. Sabaté, Prion and Non-prion Amyloids of the HET-s Prion forming Domain, Journal of Molecular Biology, vol.370, issue.4
DOI : 10.1016/j.jmb.2007.05.014

, J. Mol. Biol, vol.370, pp.768-783, 2007.

N. Mizuno, U. Baxa, and A. C. Steven, Structural dependence of HET-s amyloid fibril infectivity assessed by cryoelectron microscopy, Proc. Nat. Acad. Sci, pp.3252-3257, 2011.
DOI : 10.1016/S0076-6879(97)77013-7

A. Daskalov, Contribution of Specific Residues of the ??-Solenoid Fold to HET-s Prion Function, Amyloid Structure and Stability, PLoS Pathogens, vol.59, issue.6, p.1004158, 2014.
DOI : 10.1371/journal.ppat.1004158.s006

URL : https://hal.archives-ouvertes.fr/hal-01074747

A. Balguerie, Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina, The EMBO Journal, vol.22, issue.9, pp.2071-2081, 2003.
DOI : 10.1093/emboj/cdg213

C. Wasmer, 289) are Amyloids, Angewandte Chemie International Edition, vol.9, issue.26, pp.4858-4860, 2009.
DOI : 10.4161/pri.1.1.4083

URL : https://hal.archives-ouvertes.fr/hal-00403267

C. Carmignani, Development of Characterization Platform Dedicated to Bio-Inspired Objects at the Nanoscale, ECS Transactions, vol.72, issue.4, pp.183-190, 2016.
DOI : 10.1149/07204.0183ecst

M. Mcdonald, Fiber Diffraction Data Indicate a Hollow Core for the Alzheimer's A?? 3-Fold Symmetric Fibril, Journal of Molecular Biology, vol.423, issue.3, pp.454-461, 2012.
DOI : 10.1016/j.jmb.2012.08.004

L. Pujadas, Reelin delays amyloid-beta fibril formation and rescues cognitive deficits in a model of Alzheimer???s disease, Nature Communications, vol.79, issue.1, p.3443, 2014.
DOI : 10.1046/j.1471-4159.2001.00592.x

J. A. Geurst, Theory of Space-Charge-Limited Currents in Thin Semiconductor Layers, physica status solidi (b), vol.27, issue.1
DOI : 10.1002/pssb.19660150108

, Phys. Status Solidi B, vol.15, pp.107-118, 1966.

J. Anthony, The Larger Acenes: Versatile Organic Semiconductors, Angewandte Chemie International Edition, vol.9, issue.3
DOI : 10.1016/j.crci.2005.11.014

. Int and . Ed, , pp.452-483, 2008.

A. Carbone, B. K. Kotowska, and D. Kotowski, Space-Charge-Limited Current Fluctuations in Organic Semiconductors, Physical Review Letters, vol.95, issue.23, p.95, 2005.
DOI : 10.1103/PhysRevLett.94.126602

T. Kleine-ostmann, Conductivity of single-stranded and double-stranded deoxyribose nucleic acid under ambient conditions: The dominance of water, Applied Physics Letters, vol.6, issue.10, p.102102, 2006.
DOI : 10.1021/ja00879a012

B. Rosenberg, Electrical Conductivity of Proteins. II. Semiconduction in Crystalline Bovine Hemoglobin, The Journal of Chemical Physics, vol.32, issue.3, pp.816-823, 1962.
DOI : 10.1039/tf9383400485

J. Wünsche, Protonic and Electronic Transport in Hydrated Thin Films of the Pigment Eumelanin, Chemistry of Materials, vol.27, issue.2, pp.436-442, 2015.
DOI : 10.1021/cm502939r

P. Drogui, S. Elmaleh, M. Rumeau, C. Bernard, and A. Rambaud, Hydrogen peroxide production by water electrolysis: application to disinfection, Journal of Applied Electrochemistry, vol.31, issue.8, pp.877-882, 2001.
DOI : 10.1023/A:1017588221369

L. Caër and S. , A trapped water network in nanoporous material: the role of interfaces, Physical Chemistry Chemical Physics, vol.113, issue.39, p.17658, 2011.
DOI : 10.1021/jp906607s

C. A. Wraight, Chance and design???Proton transfer in water, channels and bioenergetic proteins, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1757, issue.8, pp.886-912, 2006.
DOI : 10.1016/j.bbabio.2006.06.017

Y. Fichou, Hydration water mobility is enhanced around tau amyloid fibers, Proceedings of the National Academy of Sciences, vol.118, issue.36
DOI : 10.1016/S0921-4526(01)00492-6

URL : https://hal.archives-ouvertes.fr/hal-01158439

, Proc. Nat. Acad. Sci, pp.6365-6370, 2015.

D. Thirumalai, G. Reddy, and J. Straub, Role of Water in Protein Aggregation and Amyloid Polymorphism, Accounts of Chemical Research, vol.45, issue.1, pp.83-92, 2012.
DOI : 10.1021/ar2000869

M. F. Perutz, J. T. Finch, J. Berriman, and A. Lesk, Amyloid fibers are water-filled nanotubes, Proc. Nat. Acad. Sci. 99, pp.5591-5595, 2002.
DOI : 10.1016/S0969-2126(96)00104-9

G. Reddy, J. E. Straub, and D. Thirumalai, Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires, Proc. Nat. Acad. Sci, pp.21459-21464, 2010.
DOI : 10.1073/pnas.0902725106

W. Wan, Degradation of Fungal Prion HET-s(218-289) Induces Formation of??a Generic Amyloid Fold, Biophysical Journal, vol.102, issue.10, pp.2339-2344, 2012.
DOI : 10.1016/j.bpj.2012.04.011

W. Wan and G. Stubbs, Heterogeneous seeding of HET-s(218???289) and the mutability of prion structures, Prion, vol.8, issue.2, pp.178-182, 2014.
DOI : 10.1038/nature03680

W. Wan and G. Stubbs, Fiber Diffraction of the Prion-Forming Domain HET-s

, Shows Dehydration-Induced Deformation of a Complex Amyloid Structure, Biochemistry (Mosc.), vol.53, pp.2366-2370, 2014.

D. Stein, M. Kruithof, and C. Dekker, Surface-Charge-Governed Ion Transport in Nanofluidic Channels, Physical Review Letters, vol.92, issue.3, p.93, 2004.
DOI : 10.1021/nl0348185

J. Shao, K. Raidongia, A. R. Koltonow, and J. Huang, Self-assembled two-dimensional nanofluidic proton channels with high thermal stability, Nature Communications, vol.178, issue.1, p.7602, 2015.
DOI : 10.1016/j.ssi.2006.11.010

Y. Tokita, Protein Photoconductors and Photodiodes, Angewandte Chemie International Edition, vol.315, issue.49, pp.11663-11666, 2011.
DOI : 10.1126/science.1134862

A. B. Mostert, Role of semiconductivity and ion transport in the electrical conduction of melanin, Proc. Nat. Acad. Sci, pp.8943-8947, 2012.
DOI : 10.1016/S0921-4526(00)00328-8

S. Lin, M. Fujitsuka, and T. Majima, Sequence-Dependent Photocurrent Generation through Long-Distance Excess-Electron Transfer in DNA, Angewandte Chemie International Edition, vol.118, issue.30, pp.8715-8717, 2016.
DOI : 10.1002/ange.200603455

S. Haghighat, S. Ostresh, and J. M. Dawlaty, Controlling Proton Conductivity with Light: A Scheme Based on Photoacid Doping of Materials, The Journal of Physical Chemistry B, vol.120, issue.5, pp.1002-1007, 2016.
DOI : 10.1021/acs.jpcb.6b00370

C. V. Hoang, Interplay of hot electrons from localized and propagating plasmons, Nature Communications, vol.130, issue.1, 2017.
DOI : 10.1021/ja801173r

H. Nakanishi, Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles, Nature, vol.102, issue.7253, pp.371-375, 2009.
DOI : 10.1038/nature08131

Y. Yang, Hot Carrier Trapping Induced Negative Photoconductance in InAs Nanowires toward Novel Nonvolatile Memory, Nano Letters, vol.15, issue.9, pp.5875-5882, 2015.
DOI : 10.1021/acs.nanolett.5b01962

M. Nowak, Transient characteristics and negative photoconductivity of SbSI humidity sensor. Sens. Actuators Phys, pp.32-40, 2014.

M. J. Pirralho, Transition from negative to positive photoconductivity in p type P b 1 ? x E u x Te films, Phys. Rev. B, vol.95, 2017.

N. Gogurla, A. K. Sinha, D. Naskar, S. C. Kundu, and S. K. Ray, Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels, Nanoscale, vol.14, issue.14, pp.7695-7703, 2016.
DOI : 10.1021/nl5024854

F. Schmid, Biological Macromolecules: UV-visible Spectrophotometry, 2001.
DOI : 10.1038/npg.els.0003142

M. U. Sander, K. Luther, and J. Troe, Excitation energy dependence of the photoionization of liquid water, The Journal of Physical Chemistry, vol.97, issue.44, pp.11489-11492, 1993.
DOI : 10.1021/j100146a023

N. N. Khusnatdinov and V. F. Petrenko, Experimental Study of Ice Electrolysis under UV Irradiation, The Journal of Physical Chemistry B, vol.101, issue.32, pp.6208-6211, 1997.
DOI : 10.1021/jp963215x

E. S. Fry, Visible and near-ultraviolet absorption spectrum of liquid water: comment, Applied Optics, vol.39, issue.16
DOI : 10.1364/AO.39.002743

, Appl. Opt, vol.39, pp.2743-2744, 2000.

A. D. Modestov, J. Gun, and O. Lev, Graphite photoelectrochemistry 2. Photoelectrochemical studies of highly oriented pyrolitic graphite, Journal of Electroanalytical Chemistry, vol.476, issue.2, pp.118-131, 1999.
DOI : 10.1016/S0022-0728(99)00373-3

A. D. Modestov, J. Gun, and O. Lev, Graphite photoelectrochemistry study of glassy carbon, carbon-fiber and carbon-black electrodes in aqueous electrolytes by photocurrent response, Surface Science, vol.417, issue.2-3, pp.311-322, 1998.
DOI : 10.1016/S0039-6028(98)00681-5

O. Antoine and J. Augustynski, Photo-electrochemical behaviour of glassy carbon, Electrochemistry Communications, vol.3, issue.4, pp.195-198, 2001.
DOI : 10.1016/S1388-2481(01)00139-4

A. C. Tedesco, L. Martínez, and S. González, Photochemistry and photobiology of actinic erythema: defensive and reparative cutaneous mechanisms, Brazilian Journal of Medical and Biological Research, vol.103, issue.5, pp.561-575, 1997.
DOI : 10.1111/1523-1747.ep12388971

URL : http://www.scielo.br/pdf/bjmbr/v30n5/2432C.pdf

DOI : 10.1111/j.1751-1097.1981.tb08980.x

U. Schindewolf, Formation and Properties of Solvated Electrons, Angewandte Chemie International Edition in English, vol.7, issue.3
DOI : 10.1002/anie.196801901

E. , , pp.190-203, 1968.

J. Pansieri, Les amyloïdoses : détection à l'aide de nanoparticules et propriétés optiques originales, 2017.