, Cu(775) : étude de l'effet de l'halogène et du substrat sait que le polymère est commensurable avec la maille du Ainsi l'hybridation entre états moléculaires et états du substrat est moindre dans le cas de la surface vicinale, Chapitre 2. Propriétés structurales et électroniques de la 1 et incommensurable sur le Cu

/. Il-est-Également-intéressant-de-comparer-le-système-dbb and . Cu, Le gap HOMO-LUMO dans le cas de la surface vicinale de cuivre est estimé à 2.18eV tandis que sur la vicinale d'or, la valeur atteint 3.3eV. Cette valeur proche de celle du polymère en phase gazeuse montre que l'interaction PPP/substrat est très faible sur l'or. La non-planéité du polymère est caractéristique de la faible interaction, nous savons que l'interaction molécule/substrat est importante puisque la polymérisation est accompagnée du mécanisme de step-bunching ce qui n'est pas discuté dans les travaux de Basagni et coll

, Bibliographie

J. Lipton-duffin, Synthesis of Polyphenylene Molecular Wires by Surface-Confined Polymerization, Small, vol.78, issue.5, pp.592-597, 2009.
DOI : 10.1039/c39930001795

M. and D. Giovannantonio, Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined Ullmann polymerization, ACS Nano, vol.7, pp.8190-8198, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01273653

G. Vasseur, Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires, Nature Communications, vol.7, p.10235, 2016.
DOI : 10.1039/C5CC02989A

URL : https://hal.archives-ouvertes.fr/hal-01271637

J. Bardeen, L. N. Cooper, and S. J. , Theory of superconductivity. Physical Review, vol.108, p.1175, 1957.

J. G. Bednorz and K. A. Müller, Possible highT c superconductivity in the Ba?La?Cu?O system, Zeitschrift f???r Physik B Condensed Matter, vol.21, issue.2, pp.189-193, 1986.
DOI : 10.1007/BF01303701

J. Akimitsu, Presentation at Symp. on Transition Metal Oxides, 2001.

J. Nagamatsu, Superconductivity at 39???K in magnesium diboride, Nature, vol.76, issue.348, pp.63-64, 2001.
DOI : 10.1021/ja01634a089

U. B. Paramanik,

, As 2, J. Phys. : Condes. Matter, vol.25, p.265701, 2013.

U. B. Paramanik, Superconductor Science and Technology, vol.27, issue.7, p.75012, 2014.
DOI : 10.1088/0953-2048/27/7/075012

, High-Temperature Cuprate Superconductors, Experiment, Theory, and Applications, 2010.

L. Boeri, Physical Review B, vol.2010, issue.2, p.20506, 2010.
DOI : 10.1103/PhysRevB.79.224511

L. Boeri, O. V. Dolgov, and A. A. Golubov, an Electron-Phonon Superconductor?, Physical Review Letters, vol.101, issue.2, p.26403, 2008.
DOI : 10.1103/PhysRevLett.78.1396

I. Mazin, Superconductivity gets an iron boost, Nature, vol.67, issue.7286, p.183, 2010.
DOI : 10.1038/nature08914

B. Mansart, Physical Review B, vol.82, issue.2, p.24513, 2010.
DOI : 10.1103/PhysRev.167.331

Y. Kamihara, = 26 K, Journal of the American Chemical Society, vol.130, issue.11, p.3296, 2008.
DOI : 10.1021/ja800073m

D. N. Basov and A. V. Chubukov, Manifesto for a higher Tc, Nature Physics, vol.7, issue.4, p.272, 2011.
DOI : 10.1103/PhysRevB.82.174509

D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides, Advances in Physics, vol.78, issue.6, 2010.
DOI : 10.1143/JPSJ.78.033706

W. Wang, Cooperative Modulation of Electronic Structures of Aromatic Molecules Coupled to Multiple Metal Contacts, Physical Review Letters, vol.110, issue.4, p.46802, 2013.
DOI : 10.1021/cr60156a001

M. Rotter, Superconductivity at 38 k in the iron arsenide Ba 1 ? x K x Fe 2 As 2, Phys. Rev. Lett, vol.11, p.107006, 2008.

R. and Z. An, Superconductivity at 55K in iron based F-doped layered quaternary compound SmO 1 ? x F x FeAs, Chinese Physics Letters, vol.25, p.2215, 2008.

C. De and C. , Magnetic order close to superconductivity in the iron-based layered LaO 1 ? x F x FeAs systems, Nature, vol.453, p.899, 2008.

I. I. Mazin, Superconductivity gets an iron boost, Nature, vol.67, issue.7286, pp.183-186, 2010.
DOI : 10.1038/nature08914

J. Dong, Competing orders and spin-density-wave instability in La(O 1 ? x F x )FeAs, E.P.L, vol.83, p.27006, 2008.

T. Park, Journal of Physics: Condensed Matter, vol.20, issue.32, p.322204, 2008.
DOI : 10.1088/0953-8984/20/32/322204

M. A. Tanatar, Physical Review B, vol.87, issue.10, p.104506, 2013.
DOI : 10.1038/nature09169

J. Park, Physical Review Letters, vol.109, issue.11, p.117006, 2009.
DOI : 10.1063/1.2432410

J. Paglione and R. L. Greene, High-temperature superconductivity in iron-based materials, Nature Physics, vol.80, issue.9, p.645, 2010.
DOI : 10.1103/PhysRevB.82.020506

Y. Xiao, determined by single-crystal neutron diffraction, Physical Review B, vol.80, issue.17, p.174424, 2009.
DOI : 10.1103/PhysRevB.78.052502

R. M. Fernandes, A. V. Chubukov, and J. Schmalian, What drives nematic order in iron-based??superconductors?, Nature Physics, vol.4, issue.2, p.97, 2014.
DOI : 10.1103/PhysRevLett.111.057001

S. Zapf and M. Dressel, Europium-based iron pnictides: a unique laboratory for magnetism, superconductivity and structural effects, Reports on Progress in Physics, vol.80, issue.1, p.16501, 2017.
DOI : 10.1088/0034-4885/80/1/016501

M. Tachiki, Self-induced vortices in magnetic superconductors, Solid State Communications, vol.34, issue.1, p.19, 1980.
DOI : 10.1016/0038-1098(80)90620-1

N. Kurita, probed by high-pressure resistivity up to 3.2 GPa, Physical Review B, vol.83, issue.21, p.214513, 2010.
DOI : 10.1063/1.1148145

K. Matsubayashi, Physical Review B, vol.84, issue.2, p.24502, 2011.
DOI : 10.1103/PhysRevB.63.100102

W. Uhoya, under high pressures, Journal of Physics: Condensed Matter, vol.22, issue.29, p.292202, 2010.
DOI : 10.1088/0953-8984/22/29/292202

C. H. Lee, (Ln = La, Nd), Journal of the Physical Society of Japan, vol.77, issue.8, p.83704, 2008.
DOI : 10.1143/JPSJ.77.083704

Z. Ren, Physical Review Letters, vol.102, issue.13, p.137002, 2009.
DOI : 10.1038/nphys892

S. Sharma, as a function of Ru and temperature, Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, vol.26, issue.1, p.61, 2015.
DOI : 10.1142/S0217984912300207

W. H. Jiao, Anisotropic superconductivity in Eu

, As 2 ferromagnetic superconductor, Europhys. Lett, vol.95, p.67007, 2011.

W. H. Jiao, Journal of Physics: Conference Series, vol.400, issue.2, p.22038, 2012.
DOI : 10.1088/1742-6596/400/2/022038

W. Li, J. Xin-zhu, Y. Chen, and C. S. Ting, superconductors: Evidence for antiferromagnetic spin order, Physical Review B, vol.86, issue.15, p.155119, 2012.
DOI : 10.1038/372532a0

S. Nandi, Single Crystals, Physical Review Letters, vol.104, issue.5, p.57006, 2010.
DOI : 10.1103/PhysRevLett.67.1634

S. Jiang, Superconductivity and local-moment magnetism in Eu

, As 2, Phys. Rev. B, vol.80, p.184514, 2009.

X. B. Chen, Cobalt-doping effects in single crystalline and polycrystalline EuFe 2 ? x Co x As 2 compounds. Sci. China, p.1212, 2010.

J. J. Ying, single crystals, Physical Review B, vol.81, issue.5, p.52503, 2010.
DOI : 10.1088/1367-2630/11/2/025020

M. Nicklas, Journal of Physics: Conference Series, vol.273, p.12101, 2011.
DOI : 10.1088/1742-6596/273/1/012101

F. A. Garcia, New Journal of Physics, vol.14, issue.6, p.63005, 2012.
DOI : 10.1088/1367-2630/14/6/063005

C. Rumble, Journal of Applied Physics, vol.535, issue.1, p.13907, 2013.
DOI : 10.1143/JPSJ.56.2477

I. Nowik, 57Fe and 151Eu Mossbauer spectroscopy and magnetization studies of Eu(Fe 0.89 Co 0.11 ) 2 As 2 and Eu(Fe 0.9 Ni 0.1 ) 2 As 2, p.23033, 2011.
DOI : 10.1088/1367-2630/13/2/023033

Z. Guguchia, observed with NMR, Physical Review B, vol.12, issue.14, p.144516, 2011.
DOI : 10.1103/PhysRevB.79.180508

A. Blachowski, ssbauer spectroscopy, Physical Review B, vol.84, issue.17, p.174503, 2011.
DOI : 10.1088/0953-8984/22/14/145701

M. Matusiak, Doping dependence of the Nernst effect in

, As 2 : Departure from Dirac-Fermion physics, Phys. Rev. B, vol.83, p.224505, 2011.

V. H. Tran, Tuning superconductivity in Eu

, As 2 with magnetic fields, Phys. Rev. B, vol.85, p.52502, 2012.

V. H. Tran, The electronic phase diagrams of the Eu

, As 2 superconductor, New. J. Phys, vol.14, p.73052, 2012.

W. T. Jin, Magnetic structure of superconducting Eu

, As 2 as revealed by single-crystal neutron diffraction, Phys. Rev. B, vol.88, p.214516, 2013.

Z. Guguchia, Physical Review B, vol.84, issue.9, p.94513, 2011.
DOI : 10.1103/PhysRevB.79.052508

Z. Ren, Suppression of spin-density-wave transition and emergence of ferromagnetic ordering of Eu2+ moments in EuFe 2 ? x Ni x As 2, Phys. Rev. B, vol.79, p.94423, 2009.

I. Nowik, M??ssbauer studies of spin density wave-superconducting Fe-As systems, Journal of Physics: Conference Series, vol.217, p.12121, 2010.
DOI : 10.1088/1742-6596/217/1/012121

L. J. Li, single crystals, New Journal of Physics, vol.11, issue.2, p.25008, 2008.
DOI : 10.1088/1367-2630/11/2/025008

URL : https://hal.archives-ouvertes.fr/hal-01382699

W. H. Jiao, Anomalous critical fields and the absence of Meissner state in Eu(Fe 0.88 Ir 0.12 ) 2 As 2 crystals, New J. Phys, vol.15, p.11302, 2013.

C. Liu, Evidence for a Lifshitz transition in electron-doped iron arsenic superconductors at the onset of superconductivity, Nature Physics, vol.80, issue.6, p.419, 2010.
DOI : 10.1103/PhysRevB.80.100508

V. B. , Zabolotnyy et al. pi-pi electronic order in iron arsenide superconductors, Nature, vol.457, pp.569-572, 2009.

S. N. Khan and D. D. Johnson, Superconductors, Physical Review Letters, vol.112, issue.15, p.156401, 2014.
DOI : 10.1038/nmat2443

A. A. Kordyuk, Electronic Band Structure of Ferro-Pnictide Superconductors from ARPES Experiment, Journal of Superconductivity and Novel Magnetism, vol.93, issue.9, p.2837, 2013.
DOI : 10.1209/0295-5075/93/57001

M. Yi, across the spin density wave transition, Physical Review B, vol.80, issue.17, p.174510, 2009.
DOI : 10.1103/PhysRevLett.103.046404

D. J. Scalapino, The case for dx2 ??? y2 pairing in the cuprate superconductors, Physics Reports, vol.250, issue.6, p.329, 1995.
DOI : 10.1016/0370-1573(94)00086-I

C. C. Tsuei and J. R. Kirtley, Pairing symmetry in cuprate superconductors, Reviews of Modern Physics, vol.57, issue.287, p.969, 2000.
DOI : 10.1103/PhysRevB.57.8601

L. Chauviere, Magnétisme et supraconductivité dans les pnictures de fer étudiés par diffusion Raman, Thèse de doctorat, 2011.

M. L. Teague, Single Crystals Using Scanning Tunneling Spectroscopy, Physical Review Letters, vol.106, issue.8, p.87004, 2011.
DOI : 10.1007/s10948-010-0748-2

K. Terashima, Fermi surface nesting induced strong pairing in iron-based superconductors, Proceedings of the National Academy of Sciences of the United States of America, p.7330, 2009.
DOI : 10.1134/S0021364008140166

C. Wang, and Sm), Physical Review B, vol.39, issue.5, p.54521, 2009.
DOI : 10.1103/PhysRevB.36.8393

URL : https://hal.archives-ouvertes.fr/hal-00262094

H. S. Jeevan, Physical Review B, vol.359, issue.361, p.52502, 2008.
DOI : 10.1103/PhysRevLett.81.1501

J. Mansart, Magnétisme et nématicité dans la famille des nouveaux supraconducteurs au fer, 2016.

B. Zhou, Physical Review B, vol.88, issue.15, p.155124, 2010.
DOI : 10.1209/0295-5075/89/27007

S. De and J. , Droplet-like Fermi surfaces in the anti-ferromagnetic phase of EuFe 2 As 2 , an Fe-pnictide superconductor parent compound, EPL, vol.89, p.27007, 2010.

G. Adhikary, Journal of Physics: Condensed Matter, vol.25, issue.22, p.225701, 2013.
DOI : 10.1088/0953-8984/25/22/225701

P. Richard, Journal of Physics: Condensed Matter, vol.26, issue.3, p.35702, 2014.
DOI : 10.1088/0953-8984/26/3/035702

F. Massee, superconductors: A combined STM plus LEED study, Physical Review B, vol.80, issue.14, p.140507, 2009.
DOI : 10.1103/PhysRevLett.103.076104

V. Brouet, Physical Review Letters, vol.105, issue.8, p.87001, 2010.
DOI : 10.1103/PhysRevLett.104.057008

V. Brouet, Nesting between hole and electron pockets in Ba(Fe 1

, As 2 (x=0- 0.3) observed with angle-resolved photoemission, Phys. Rev. B, vol.80, p.165115, 2009.

N. Xu, Physical Review B, vol.52, issue.6, p.64505, 2012.
DOI : 10.1103/PhysRevB.79.174530

W. Malaeb, Three-Dimensional Electronic Structure of Superconducting Iron Pnictides Observed by Angle-Resolved Photoemission Spectroscopy, Journal of the Physical Society of Japan, vol.78, issue.12, p.123706, 2009.
DOI : 10.1143/JPSJ.78.123706

Y. Zhang, Symmetry breaking via orbital-dependent reconstruction of electronic structure in detwinned NaFeAs, Physical Review B, vol.85, issue.8, p.85121, 2012.
DOI : 10.1103/PhysRevLett.105.207202

T. Shimojima, orbital degeneracy at the structural transition in detwinned FeSe, Physical Review B, vol.90, issue.12, p.121111, 2014.
DOI : 10.1103/PhysRevLett.109.137001

URL : http://arxiv.org/pdf/1407.1418

T. Sato, Physical Review Letters, vol.103, issue.4, p.47002, 2009.
DOI : 10.1088/1367-2630/11/2/025020

I. A. Nekrasov, Electronic structure of prototype AFe2As2 and ReOFeAs high-temperature superconductors: A comparison, JETP Letters, vol.12, issue.2, p.144, 2008.
DOI : 10.1134/S0021364008140166

S. Ideta, Dependence of Carrier Doping on the Impurity Potential in Transition-Metal-Substituted FeAs-Based Superconductors, Physical Review Letters, vol.110, issue.10, p.107007, 2013.
DOI : 10.1103/PhysRevB.84.020509

H. Wadati, Electrons in Transition-Metal-Substituted Iron Pnictides?, Physical Review Letters, vol.105, issue.15, p.157004, 2010.
DOI : 10.1103/PhysRevB.79.014522

URL : http://arxiv.org/pdf/1003.2663

T. Berlijn, C. Lin, W. Garber, and W. Ku, Do Transition-Metal Substitutions Dope Carriers in Iron-Based Superconductors?, Physical Review Letters, vol.12, issue.20, p.207003, 2012.
DOI : 10.1103/PhysRevB.83.020505

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.108.207003

S. Thirupathaiaih, from angle-resolved photoemission spectroscopy, Physical Review B, vol.81, issue.10, p.104512, 2010.
DOI : 10.1103/PhysRevB.79.014506

H. Ding, EPL (Europhysics Letters), vol.83, issue.4, p.47001, 2008.
DOI : 10.1209/0295-5075/83/47001

Y. Zhang, Nodal superconducting-gap structure in ferropnictide superconductor BaFe2(As0.7P0.3)2, Nature Physics, vol.8, issue.5, p.371, 2012.
DOI : 10.1103/PhysRevLett.105.117003

URL : http://arxiv.org/pdf/1109.0229

R. C. Dynes, V. Narayanamurti, and J. P. Garno, Direct Measurement of Quasiparticle-Lifetime Broadening in a Strong-Coupled Superconductor, Physical Review Letters, vol.48, issue.21, p.1509, 1978.
DOI : 10.1063/1.323523

K. Hashimoto, Nodal versus Nodeless Behaviors of the Order Parameters of LiFeP and LiFeAs Superconductors from Magnetic Penetration-Depth Measurements, Physical Review Letters, vol.108, issue.4, p.47003, 2012.
DOI : 10.1080/00018732.2010.513480

M. Xia, studied by angle-resolved photoemission spectroscopy, Journal of Physics: Condensed Matter, vol.26, issue.26, p.265701, 2014.
DOI : 10.1088/0953-8984/26/26/265701

A. Baumgartner, : Spin glass and superconductivity, Physical Review B, vol.95, issue.17, p.174522, 2017.
DOI : 10.1103/PhysRevLett.110.097003

C. Joachim, Electronics using hybrid-molecular and mono-molecular devices, Nature, vol.408, issue.6812, pp.541-548, 2000.
DOI : 10.1038/35046000

A. Nitzan and M. A. Ratner, Electron Transport in Molecular Wire Junctions, Science, vol.300, issue.5624, pp.1384-1389, 2003.
DOI : 10.1126/science.1081572

J. Fiurásek, Intramolecular Hamiltonian logic gates, Physica E: Low-dimensional Systems and Nanostructures, vol.24, issue.3-4, pp.161-172, 2004.
DOI : 10.1016/j.physe.2004.03.021

I. Diez-perez, Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors, Nature Communications, vol.131, issue.3, p.31, 2010.
DOI : 10.1038/ncomms1029

F. Schwarz, High-Conductive Organometallic Molecular Wires with Delocalized Electron Systems Strongly Coupled to Metal Electrodes, Nano Letters, vol.14, issue.10, pp.5932-5940, 2014.
DOI : 10.1021/nl5029045

URL : http://arxiv.org/pdf/1511.01826

J. V. Barth, Supramolecular architectures and nanostructures at metal surfaces, Applied Physics A: Materials Science & Processing, vol.76, issue.5, pp.645-652, 2003.
DOI : 10.1007/s00339-002-2003-6

N. Lin, Surface-assisted coordination chemistry and self-assembly, Dalton Trans., vol.44, issue.145, pp.2794-2800, 2006.
DOI : 10.1002/anie.200502743

S. and D. Feyter, Molecular and supramolecular networks on surfaces : from twodimensional crystal engineering to reactivity, Angew. Chem. Int. Ed, pp.7298-7332, 2009.

D. Liu, Using Azobenzene-Embedded Self-Assembled Monolayers To Photochemically Control Cell Adhesion Reversibly, Angewandte Chemie International Edition, vol.125, issue.24, pp.4406-4408, 2009.
DOI : 10.1002/anie.200901130

URL : http://210.75.237.14/bitstream/351003/18287/1/2009e0043h.pdf

R. Klajn, Immobilized azobenzenes for the construction of photoresponsive materials, Pure and Applied Chemistry, vol.19, issue.12, pp.2247-2279, 2010.
DOI : 1010210655901

]. F. Klappenberger, Two-dimensional functional molecular nanoarchitectures ??? Complementary investigations with scanning tunneling microscopy and X-ray spectroscopy, Progress in Surface Science, vol.89, issue.1, pp.1-55, 2014.
DOI : 10.1016/j.progsurf.2013.10.002

G. Binning and H. Rohrer, Scanning tunneling microscopy, Surf. Sci, vol.126, pp.236-244, 1983.
DOI : 10.1007/978-94-011-1812-5_3

S. Hagström, Electron spectroscopy for chemical analyses, Physics Letters, vol.9, issue.3, pp.235-236, 1964.
DOI : 10.1016/0031-9163(64)90062-9

K. Siegbahn, Spectroscopy for atoms, molecules and condensed matter, Nobel Lecture, 1981.
DOI : 10.1126/science.217.4555.111

J. Stöhr, NEXAFS spectrocopy, 1992.

E. Moulin, The hierarchical self-assembly of charge nanocarriers : a highly cooperative process promoted by visible light, Angew. Chem. Int. Ed, vol.49, pp.2178-2188, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00530803

N. Giuseppone, Toward Self-Constructing Materials: A Systems Chemistry Approach, Accounts of Chemical Research, vol.45, issue.12, pp.2178-2188, 2012.
DOI : 10.1021/ar2002655

E. Moulin, J. Cid, and N. Giuseppone, Advances in Supramolecular Electronics - From Randomly Self-assembled Nanostructures to Addressable Self-Organized Interconnects, Advanced Materials, vol.45, issue.3, pp.477-487, 2013.
DOI : 10.1021/ar2002655

K. Wong, Effect of Halo Substitution on the Geometry of Arenethiol Films on Cu(111), Journal of the American Chemical Society, vol.126, issue.25, pp.7762-7763, 2004.
DOI : 10.1021/ja048660h

S. Lukas, G. Witte, and C. Woll, Novel Mechanism for Molecular Self-Assembly on Metal Substrates: Unidirectional Rows of Pentacene on Cu(110) Produced by a Substrate-Mediated Repulsion, Physical Review Letters, vol.33, issue.103, p.28301, 2001.
DOI : 10.1016/0039-6028(95)00074-7

T. Kawai, H. Tanaka, and T. Nakagawa, Low dimensional self-organization of DNA-base molecules on Cu(111) surfaces, Surface Science, vol.386, issue.1-3, pp.124-136, 1997.
DOI : 10.1016/S0039-6028(97)00312-9

S. Clair, The Journal of Physical Chemistry B, vol.108, issue.38, pp.14585-14590, 2004.
DOI : 10.1021/jp049501n

U. Schlickum, Chiral Kagome?? Lattice from Simple Ditopic Molecular Bricks, Journal of the American Chemical Society, vol.130, issue.35, pp.11778-11782, 2008.
DOI : 10.1021/ja8028119

URL : https://infoscience.epfl.ch/record/135850/files/2008_Schlickum_JACS.pdf

M. Bonhringer, K. Morgenstern, and W. Schneider, Two-Dimensional Self-Assembly of Supramolecular Clusters and Chains, Physical Review Letters, vol.107, issue.2, pp.324-327, 1999.
DOI : 10.1002/jcc.540020312

G. Pawin, A Quantitative Approach to Hydrogen Bonding at a Metal Surface, Journal of the American Chemical Society, vol.129, issue.40, pp.12056-12057, 2007.
DOI : 10.1021/ja0724341

V. Faramarzi, Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects, Nature Chemistry, vol.130, issue.6, pp.485-490, 2012.
DOI : 10.1021/ja8037307

K. Novoselov and A. Geim, Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, pp.666-669, 2004.
DOI : 10.1126/science.1102896

S. Stankovich, Graphene-based composite materials, Nature, vol.83, issue.7100, pp.282-286, 2006.
DOI : 10.1063/1.1616976

K. Novoselov, Room-Temperature Quantum Hall Effect in Graphene, Science, vol.315, issue.5817, p.1379, 2007.
DOI : 10.1126/science.1137201

M. Treier, N. V. Richardson, and R. Fasel, Fabrication of Surface-Supported Low-Dimensional Polyimide Networks, Journal of the American Chemical Society, vol.130, issue.43, pp.14054-14055, 2008.
DOI : 10.1021/ja805342n

N. A. Zwaneveld, Organized Formation of 2D Extended Covalent Organic Frameworks at Surfaces, Journal of the American Chemical Society, vol.130, issue.21, pp.6678-6679, 2008.
DOI : 10.1021/ja800906f

G. , Charged and metallic molecular monolayers through surface-induced aromatic stabilization, Nature Chem, vol.5, pp.187-194, 2013.

A. Kahn, N. Koch, and W. Gao, Electronic structure and electrical properties of interfaces between metals and ?-conjugated molecular films, Journal of Polymer Science Part B: Polymer Physics, vol.94, issue.21, pp.2529-2548, 2003.
DOI : 10.1063/1.1577400

S. Braun, W. Salaneck, and M. Fahlman, Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces, Advanced Materials, vol.321, issue.43, pp.1450-1472, 2009.
DOI : 10.1002/adma.200802893

N. Koch, Energy levels at interfaces between metals and conjugated organic molecules, Journal of Physics: Condensed Matter, vol.20, issue.18, p.184008, 2008.
DOI : 10.1088/0953-8984/20/18/184008

Y. Makoudi, Complete Supramolecular Self-Assembled Adlayer on a Silicon Surface at Room Temperature, Journal of the American Chemical Society, vol.130, issue.21, pp.6670-6671, 2008.
DOI : 10.1021/ja8001259

URL : https://hal.archives-ouvertes.fr/hal-00482078

G. Vasseur, Pi-band dispersion along conjugated organic nanowires synthesized on a metal oxide semiconductor, pp.5685-5692, 2016.

M. Oehzelt, The Molecular Orientation of para-Sexiphenyl on Cu(110) and Cu(110) p(2??1)O, ChemPhysChem, vol.67, issue.11, pp.1707-1702, 2007.
DOI : 10.1007/978-3-662-02853-7

A. Rastgoo-lahrood, Post-Synthetic Decoupling of On-Surface-Synthesized Covalent Nanostructures from Ag(111), Angewandte Chemie International Edition, vol.6, issue.27, pp.7650-7654, 2016.
DOI : 10.1021/nn3021376

A. Rastgoo-lahrood, Reversible intercalation of iodine monolayers between on-surface synthesised covalent polyphenylene networks and Au(111), Nanoscale, vol.81, issue.15, pp.4995-5001, 2017.
DOI : 10.1063/1.3292510

F. Ullmann and J. Bielecki, Ueber Synthesen in der Biphenylreihe, Berichte der deutschen chemischen Gesellschaft, vol.141, issue.2, p.2174, 1901.
DOI : 10.1002/cber.190103402141

M. Xi and B. E. Bent, Iodobenzene on Cu(111) : formation and coupling of adsorbed phenyl groups, Surf. Science, vol.178, pp.19-32, 1992.

J. Bjork, Mechanisms of Halogen-Based Covalent Self-Assembly on Metal Surfaces, Journal of the American Chemical Society, vol.135, issue.15, pp.5768-5775, 2013.
DOI : 10.1021/ja400304b

C. Zhang, Formation of polyphenyl chains through hierarchical reactions: Ullmann coupling followed by cross-dehydrogenative coupling, Chemical Communications, vol.136, issue.3, pp.495-498, 2015.
DOI : 10.1021/ja501680n

W. Wang, Single-Molecule Resolution of an Organometallic Intermediate in a Surface-Supported Ullmann Coupling Reaction, Journal of the American Chemical Society, vol.133, issue.34, p.13264, 2011.
DOI : 10.1021/ja204956b

H. Walch, Material- and Orientation-Dependent Reactivity for Heterogeneously Catalyzed Carbon???Bromine Bond Homolysis, The Journal of Physical Chemistry C, vol.114, issue.29, p.12604, 2010.
DOI : 10.1021/jp102704q

J. Park, Interchain Interactions Mediated by Br Adsorbates in Arrays of Metal???Organic Hybrid Chains on Ag(111), The Journal of Physical Chemistry C, vol.115, issue.30, pp.14834-14838, 2011.
DOI : 10.1021/jp203129f

E. A. Lewis, Atomic-scale insight into the formation, mobility and reaction of Ullmann coupling intermediates, Chem. Commun., vol.34, issue.8, pp.1006-1008, 2014.
DOI : 10.1039/tf9383400011

Q. Fan, Surface-Assisted Formation, Assembly, and Dynamics of Planar Organometallic Macrocycles and Zigzag Shaped Polymer Chains with C???Cu???C Bonds, ACS Nano, vol.8, issue.1, pp.709-718, 2014.
DOI : 10.1021/nn405370s

M. Chen, Combined Photoemission and Scanning Tunneling Microscopy Study of the Surface-Assisted Ullmann Coupling Reaction, The Journal of Physical Chemistry C, vol.118, issue.13, pp.6820-6830, 2014.
DOI : 10.1021/jp4121468

I. Pis, Surface-Confined Polymerization of Halogenated Polyacenes: The Case of Dibromotetracene on Ag(110), The Journal of Physical Chemistry C, vol.120, issue.9, pp.4909-4918, 2016.
DOI : 10.1021/acs.jpcc.5b12047

D. Barton, Formation of Organometallic Intermediate States in On-Surface Ullmann Couplings, Chemistry - A European Journal, vol.117, issue.25, pp.6190-6197, 2017.
DOI : 10.1021/jp406858p

M. Bieri, Two-Dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity, Journal of the American Chemical Society, vol.132, issue.46, pp.16669-16676, 2010.
DOI : 10.1021/ja107947z

M. and D. Giovannantonio, Mechanistic picture and kinetic analysis of surface-condined Ullmann polymerization, J. Am. Chem. Soc, vol.138, pp.16696-16702, 2016.

M. Yang, CH3I and C2H5I on Au(100): adsorption and reaction, Surface Science, vol.325, issue.1-2, pp.102-120, 1995.
DOI : 10.1016/0039-6028(94)00722-5

J. Novak, Crystal growth of para-sexiphenyl on clean and oxygen reconstructed Cu(110) surfaces, Physical Chemistry Chemical Physics, vol.13, issue.32, pp.14675-14684, 2011.
DOI : 10.1039/c0cp01516d

S. Rousset, Self-ordering of Au(111) vicinal surfaces and application to nanostructure organized growth, Journal of Physics: Condensed Matter, vol.15, issue.47, pp.3363-3392, 2003.
DOI : 10.1088/0953-8984/15/47/009

Y. W. Mo, Surface self-diffusion of Si on Si(001), Surface Science, vol.268, issue.1-3, pp.275-295, 1992.
DOI : 10.1016/0039-6028(92)90968-C

A. , Polymerization on stepped surfaces : alignment of polymers and identification of catalytic sites, Angew. Chem. Int. Ed, vol.51, pp.5096-5100, 2012.

B. Cirera, Synthesis of Extended Graphdiyne Wires by Vicinal Surface Templating, Nano Letters, vol.14, issue.4, pp.1891-1897, 2014.
DOI : 10.1021/nl4046747

N. Reinecke, Steps, facets and nanostructures: investigations of Cu (11 n ) surfaces, Applied Physics A: Materials Science & Processing, vol.75, issue.1, pp.1-10, 2002.
DOI : 10.1007/s003390101049

D. A. Walko, Structure of Cu(115): Clean surface and its oxygen-induced facets, Physical Review B, vol.262, issue.413, p.15446, 1999.
DOI : 10.1016/0039-6028(92)90460-N

N. Reinecke, The kinetics of oxygen-induced faceting of Cu(115) and Cu(119) surfaces, Surface Science, vol.454, issue.456, p.94, 2000.
DOI : 10.1016/S0039-6028(00)00272-7

D. A. Walko, SURFACE STRUCTURE OF O/Cu(104) FACETS DETERMINED BY X-RAY DIFFRACTION, Surface Review and Letters, vol.22, issue.05, p.851, 1999.
DOI : 10.1103/PhysRevLett.65.1788

Q. Chen, Surface facetting induced by adsorbates, Progress in Surface Science, vol.73, issue.4-8, pp.59-77, 2003.
DOI : 10.1016/j.progsurf.2003.09.002

J. Kröger, Molécules on vicinal Au surfaces studied by scanning tunneling microscopy, J. Phys. : Condens. Matter, vol.8, pp.51-66, 2006.

M. Fanetti, Long-Range-Ordered, Molecular-Induced Nanofaceting, Advanced Materials, vol.366, issue.68, pp.2963-2867, 2006.
DOI : 10.1103/PhysRevB.69.075408

P. Ruffieux, Electronic Structure of Atomically Precise Graphene Nanoribbons, ACS Nano, vol.6, issue.8, pp.6930-6935, 2012.
DOI : 10.1021/nn3021376

A. Basagni, Tunable Band Alignment with Unperturbed Carrier Mobility of On-Surface Synthesized Organic Semiconducting Wires, ACS Nano, vol.10, issue.2, pp.2644-2651, 2016.
DOI : 10.1021/acsnano.5b07683

G. Vasseur, Etude par ARPES et STS des propriétés électroniques de réseaux métalliques et organiques nanostructurés, 2014.

D. M. Rampulla, A. J. Gellman, and D. S. Sholl, Bromine atom diffusion on stepped and kinked copper surfaces, Surface Science, vol.600, issue.10, pp.2171-2177, 2006.
DOI : 10.1016/j.susc.2006.03.006

J. Inukai, Y. Osawa, and K. Itaya, Adlayer Structures of Chlorine, Bromine, and Iodine on Cu(111) Electrode in Solution:?? In-Situ STM and ex-Situ LEED Studies, The Journal of Physical Chemistry B, vol.102, issue.49, pp.10034-10040, 1998.
DOI : 10.1021/jp982952l

B. V. Andryushechkin, Chlorine adsorption on Cu(111) revisited: LT-STM and DFT study, Surface Science, vol.639, pp.7-12, 2015.
DOI : 10.1016/j.susc.2015.03.030

URL : https://hal.archives-ouvertes.fr/hal-01271642

P. Tejedor, P. Smilauer, C. Roberts, and B. A. Joyce, Surface-morphology evolution during unstable homoepitaxial growth of GaAs(110), Physical Review B, vol.407, issue.3, p.2341, 1999.
DOI : 10.1016/S0039-6028(98)00149-6

N. Néel, T. Maroutian, L. Douillard, and H. Ernst, From Meandering to Faceting, Is Step Flow Growth Ever Stable?, Physical Review Letters, vol.175, issue.176, p.226103, 2003.
DOI : 10.1103/PhysRevLett.88.206103

G. Galeotti, The role of halogens in on-surface Ullmann polymerization, Faraday Discussions, vol.5, pp.453-469, 2017.
DOI : 10.1016/S0022-0728(99)00063-7

R. P. Vasquez, CuBr by XPS, Surface Science Spectra, vol.2, issue.2, pp.144-148, 1993.
DOI : 10.1116/1.1247733

M. X. Yang, NEXAFS studies of halobenzenes and phenyl groups on Cu(111), Surface Science, vol.341, issue.1-2, pp.9-18, 1995.
DOI : 10.1016/0039-6028(95)00737-7

J. Stor, NEXAFS spectroscopy, 2003.

L. G. Pettersson, H. Agren, Y. Luo, and L. Triguero, ) : theoretical X-ray absorption, emission and shake calculations, Benzene adsorbed on Cu Surf. Sci, vol.408, issue.110, pp.1-20, 1998.
DOI : 10.1016/s0039-6028(98)00085-5

M. Weinelt, Electronic structure of benzene on Ni(100) and Cu(110): An x-ray-spectroscopy study, Physical Review B, vol.178, issue.209, p.7351, 1998.
DOI : 10.1103/PhysRev.178.1123

. T. Nguyenm, C. A. Pignedoli, and D. Passerone, An ab-initio insight into the Cu(111) mediated Ullmann reaction, Phys. Comm. Comm. Phys, vol.19, pp.154-160, 2011.

C. Y. Nakakura, G. Zheng, and E. I. Altman, Atomic-scale mechanisms of the halogenation of Cu(100), Surface Science, vol.401, issue.2, pp.173-184, 1998.
DOI : 10.1016/S0039-6028(97)01034-0

F. Pollinger, Nanoscale patterning, macroscopic reconstruction, and enhanced surface stress by organic adsorption on vicinal surfaces, New Journal of Physics, vol.19, issue.1, p.13019, 2017.
DOI : 10.1088/1367-2630/aa55b8

S. Schmitt, A. Scholl, and E. Umbach, Long-range surface faceting induced by chemisorption of PTCDA on stepped Ag(111) surfaces, Surface Science, vol.643, pp.59-64, 2016.
DOI : 10.1016/j.susc.2015.07.017

S. Schmitt, A. Scholl, and E. Umbach, Multitude of PTCDA Superstructures on Ag(111) and Vicinal Surfaces, The Journal of Physical Chemistry C, vol.121, issue.18, pp.9860-9868, 2017.
DOI : 10.1021/acs.jpcc.7b00657

P. Gartlan, S. Berge, and B. Slagsvold, Photoelectric Work Function of a Copper Single Crystal for the (100), (110), (111), and (112) Faces, Physical Review Letters, vol.28, issue.12, pp.738-739, 1972.
DOI : 10.1063/1.1722666

E. Bertel, K. Schwaha, and F. P. Netzer, The adsorption of bromine on Pt(111): Observation of an irreversible order-disorder transition, Surface Science, vol.83, issue.2, p.439, 1979.
DOI : 10.1016/0039-6028(79)90055-4

W. Erley, Chlorine adsorption on the (111) faces of Pd and Pt, Surface Science, vol.94, issue.2-3, p.281, 1980.
DOI : 10.1016/0039-6028(80)90007-2

E. Shustorovich, Chemisorption phenomena: Analytic modeling based on perturbation theory and bond-order conservation, Surface Science Reports, vol.6, issue.1, 1986.
DOI : 10.1016/0167-5729(86)90003-8

S. K. Jo and J. M. White, Characterization of adsorption states of atomic iodine on Pt(111), Surface Science, vol.261, issue.1-3, p.111, 1992.
DOI : 10.1016/0039-6028(92)90222-R

T. A. Delchar and G. Ehrlich, Chemisorption on Single???Crystal Planes: Nitrogen on Tungsten, The Journal of Chemical Physics, vol.152, issue.8, p.2686, 1965.
DOI : 10.1103/PhysRev.60.661

T. Roman and A. Gross, Periodic Density-Functional Calculations on Work-Function Change Induced by Adsorption of Halogens on Cu(111), Physical Review Letters, vol.110, issue.15, p.156804, 2013.
DOI : 10.1103/PhysRevB.18.616

H. Glowatzki, Molecules, Nano Letters, vol.8, issue.11, pp.3825-3829, 2008.
DOI : 10.1021/nl8021797

A. Hauschild, -Conjugated Molecule on a Metal Surface, Physical Review Letters, vol.94, issue.3, p.36106, 2005.
DOI : 10.1103/PhysRevLett.77.3865

M. Rohlfing, R. Temirov, and F. S. Tautz, Adsorption structure and scanning tunneling data of a prototype organic-inorganic interface: PTCDA on Ag(111), Physical Review B, vol.212, issue.213, p.115421, 2007.
DOI : 10.1103/PhysRevLett.94.126102

F. S. Tautz, Structure and bonding of large aromatic molecules on noble metal surfaces: The example of PTCDA, Progress in Surface Science, vol.82, issue.9-12, pp.479-520, 2007.
DOI : 10.1016/j.progsurf.2007.09.001

A. Bendounan, Electronic structure of 1ML NTCDA/Ag(111) studied by photoemission spectroscopy, Surface Science, vol.601, issue.18, pp.4013-4017, 2007.
DOI : 10.1016/j.susc.2007.04.054

L. Kilian, -Conjugated Molecule Adsorbed on a Metal Surface, Physical Review Letters, vol.100, issue.13, p.136103, 2008.
DOI : 10.1016/j.cplett.2007.03.001

J. Ziroff, Low-energy scale excitations in the spectral function of organic monolayer systems, Physical Review B, vol.85, issue.16, p.161404, 2012.
DOI : 10.1103/PhysRevB.84.125413

S. Duhm, Weak Charge Transfer between an Acceptor Molecule and Metal Surfaces Enabling Organic/Metal Energy Level Tuning, The Journal of Physical Chemistry B, vol.110, issue.42, pp.21069-21072, 2006.
DOI : 10.1021/jp0644715

S. Duhm, PTCDA on Au(111), Ag(111) and Cu(111): Correlation of interface charge transfer to bonding distance, Organic Electronics, vol.9, issue.1, pp.111-118, 2008.
DOI : 10.1016/j.orgel.2007.10.004

N. Koch, Tuning the hole injection barrier height at organic/metal interfaces with (sub-) monolayers of electron acceptor molecules, Applied Physics Letters, vol.87, issue.10, p.101905, 2005.
DOI : 10.1063/1.1592886

N. Koch, Optimized Hole Injection with Strong Electron Acceptors at Organic-Metal Interfaces, Physical Review Letters, vol.95, issue.23, p.237601, 2005.
DOI : 10.1063/1.1592886

URL : http://bib-pubdb1.desy.de//record/78277/files/237601.pdf

L. Romaner, Impact of Bidirectional Charge Transfer and Molecular Distortions on the Electronic Structure of a Metal-Organic Interface, Physical Review Letters, vol.99, issue.25, p.256801, 2007.
DOI : 10.1021/jp067004w

G. M. Rangger, F4TCNQ on Cu, Ag, and Au as prototypical example for a strong organic acceptor on coinage metals, Physical Review B, vol.9, issue.16, p.165306, 2009.
DOI : 10.1002/cphc.200700357

T. C. Tseng, Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces, Nature Chemistry, vol.40, issue.5, pp.374-379, 2010.
DOI : 10.1016/j.theochem.2003.09.011

P. Puschnig and C. , -phenylene): Band structures and dielectric tensors, Physical Review B, vol.91, issue.11, p.7891, 1999.
DOI : 10.1016/S0379-6779(97)03984-2

C. , First principles studies of the structural and optical properties of crystalline poly(para-phenylene), Phys. Rev. B : Condens. Matter. Mater. Phys, 1995.

T. Roman, F. Gossenberger, K. Forster-tonigold, and A. Gross, Halide adsorption on close-packed metal electrodes, Phys. Chem. Chem. Phys., vol.127, issue.27, pp.13630-13634, 2014.
DOI : 10.1016/0039-6028(83)90422-3

J. Repp, P. Liljeroth, and G. Meyer, Coherent electron???nuclear coupling in oligothiophene molecular wires, Nature Physics, vol.6, issue.12, pp.975-979, 2010.
DOI : 10.1103/PhysRevB.78.035445

G. Reecht, H. Bulou, F. Scheurer, and V. Speisser, Oligothiophene Nanorings as Electron Resonators for Whispering Gallery Modes, Physical Review Letters, vol.84, issue.5, p.56802, 2013.
DOI : 10.1021/ar9000179

S. Wang, W. Wang, and N. Lin, Resolving Band-Structure Evolution and Defect-Induced States of Single Conjugated Oligomers by Scanning Tunneling Microscopy and Tight-Binding Calculations, Physical Review Letters, vol.106, issue.20, p.206803, 2011.
DOI : 10.1016/j.synthmet.2003.08.019

I. Fernandez-torrente, K. Franke, and J. I. , single molecules: the role of screening on energy level alignment, Journal of Physics: Condensed Matter, vol.20, issue.18, p.184001, 2008.
DOI : 10.1088/0953-8984/20/18/184001

K. A. Cochrane, Pronounced polarization-induced energy level shifts at boundaries of organic semiconductor nanostructures, Nature Communications, vol.117, issue.1, p.8312, 2015.
DOI : 10.1021/jp402957g

J. Tersoff and R. Hamann, Theory and Application for the Scanning Tunneling Microscope, Physical Review Letters, vol.46, issue.25, 1983.
DOI : 10.1103/PhysRevLett.46.1227

J. Tersoff and R. Hamann, Theory of the scanning tunneling microscope, Physical Review B, vol.52, issue.2, p.805, 1985.
DOI : 10.1103/PhysRevLett.52.61

J. Bardeen, Tunnelling from a Many-Particle Point of View, Physical Review Letters, vol.34, issue.2, p.57, 1961.
DOI : 10.1103/PhysRev.108.1175

C. Battaglia, Structural and electronic properties of self-assembled nanostructures on silicon surfaces, 2008.

J. Kliewer, R. Berndt, and S. Crampin, Scanning tunneling spectroscopy of electron resonators, New J. Phys, vol.3, pp.1-22, 2001.

G. Mahan, Theory of Photoemission in Simple Metals, Physical Review B, vol.74, issue.11, p.4334, 1970.
DOI : 10.1007/978-3-642-52803-3

C. Berglund and W. Spicer, Photoemission Studies of Copper and Silver: Theory, Physical Review, vol.81, issue.4A, p.1030, 1964.
DOI : 10.1103/PhysRev.81.612

P. Cardona and L. Ley, Photoemission in solids 1, 1978.

L. Wan, In situ scanning tunneling microscopy of Cu(110): atomic structures of halide adlayers and anodic dissolution, Journal of Electroanalytical Chemistry, vol.473, issue.1-2, pp.10-18, 1999.
DOI : 10.1016/S0022-0728(99)00063-7