Skip to Main content Skip to Navigation
Theses

Étude par ARPES et STS des propriétés électroniques d’un supraconducteur haute Tc à base de fer et de chaînes de polymères élaborées à la surface de métaux nobles

Abstract : In this work, we highlight the advantage of coupling techniques such as angle resolved photoemission (ARPES), scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) for investigating the electronic and structural properties of nanostructured surfaces/interfaces. In the first part, the electronic structure of the reentrant superconductor Eu(Fe0.86Ir0.14)2As2 (Tc=22K) with coexisting ferromagnetic order (TM=18K) is investigated using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS). We study the in-plane and out-of-plane band dispersions and Fermi surface of Eu(Fe0.86Ir0.14)2As2. The near EF Fe 3d-derived band dispersions near the high-symmetry points show changes due to Ir substitution, but the Fermi surface topology is preserved. The superconducting gap measured at the lowest temperature T=5K (equal to 5.5meV) is beyond the weak-coupling BCS estimation for Tc=22 K. The gap gets closed at a temperature T=10K and this is attributed to the resistive phase which sets in at TM=18K due to the Eu2+ derived magnetic order. The modifications of the FS with Ir substitution clearly indicate an effective hole doping with respect to the parent compound. In the second part, we provide insight into the growth and the electronic properties of 1,4-dibromobenzene (dBB) and 1,4-diiodobenzene on Cu(110), Cu(111) and Cu(775) surfaces. The influence of the substrate is reported in this study: using a copper vicinal surface as support for on-surface Ullmann coupling leads to highly ordered, quasi-infinite polymer growth. Such a new growth mechanism, stemming from vicinal surface reconstructions is observed. The structural composition of different phases obtained in the study is discussed as a concomitant effect of the halogen and the surface geometry. Various interactions such as substrate/molecule, substrate/halogen, molecule/halogen as well as molecule/molecule interactions that took place into the polymerization mechanism are considered for analyzing the electronic properties of the different interfaces. We measured an 1.15 eV HOMO-LUMO gap in dBB/Cu(110), whereas the gap is found to be slightly higher than 1.5eV in dBB/Cu(111) and equal to 2.2eV in dBB/Cu(775). Such a metal-semiconductor transition is shown to occur when the halogen is switched (Br vs I) or the surface geometry is changed (Cu(110) vs Cu(775)) in agreement with the concomitant reduction of the polymer/substrate interaction
Complete list of metadatas

Cited literature [230 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01835147
Contributor : Abes Star :  Contact
Submitted on : Wednesday, July 11, 2018 - 11:10:06 AM
Last modification on : Monday, April 6, 2020 - 2:44:03 PM
Long-term archiving on: : Friday, October 12, 2018 - 6:31:19 PM

File

DDOC_T_2017_0349_XING.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01835147, version 1

Citation

Sarah Xing. Étude par ARPES et STS des propriétés électroniques d’un supraconducteur haute Tc à base de fer et de chaînes de polymères élaborées à la surface de métaux nobles. Supraconductivité [cond-mat.supr-con]. Université de Lorraine, 2017. Français. ⟨NNT : 2017LORR0349⟩. ⟨tel-01835147⟩

Share

Metrics

Record views

167

Files downloads

302