W. Kaim and J. Fiedler, Spectroelectrochemistry: the best of two worlds, Chemical Society Reviews, vol.128, issue.12, pp.38-3373, 2009.
DOI : 10.1039/b504286k

R. Zhan, S. Song, Y. Liu, and S. Dong, Mechanisms of methylene blue electrode processes studied by in situ electron paramagnetic resonance and ultraviolet???visible spectroelectrochemistry, Spectroelectrochemical Sensing Based on Multimode Selectivity Simultaneously Achievable in a Single Device. 1. Demonstration of Concept with Ferricyanide, pp.3125-3127, 1990.
DOI : 10.1080/00268948108072338

E. Topoglidis, Y. Astuti, F. Duriaux, M. Grätzel, and J. R. Durrant, Direct Electrochemistry and Nitric Oxide Interaction of Heme Proteins Adsorbed on Nanocrystalline Tin Oxide Electrodes, Langmuir, vol.19, issue.17, pp.19-6894, 2003.
DOI : 10.1021/la034466h

R. Ma?eikien, G. Niaura, and A. Malinauskas, Electrocatalytic reduction of hydrogen peroxide at Prussian blue modified electrode: An in situ Raman spectroelectrochemical study, Journal of Electroanalytical Chemistry, vol.660, issue.1, pp.140-146, 2011.
DOI : 10.1016/j.jelechem.2011.06.022

J. M. Smieja and C. P. Kubiak, Cl???improved Catalytic Activity for Reduction of Carbon Dioxide: IR-Spectroelectrochemical and Mechanistic Studies, Inorganic Chemistry, vol.49, issue.20, pp.49-9283, 2010.
DOI : 10.1021/ic1008363

J. Garoz-ruiz, A. Heras, S. Palmero, and A. Colina, Development of a Novel Bidimensional Spectroelectrochemistry Cell Using Transfer Single-Walled Carbon Nanotubes Films as Optically Transparent Electrodes, Analytical Chemistry, vol.87, issue.12, pp.6233-6239
DOI : 10.1021/acs.analchem.5b00923

J. Garoz-ruiz, D. Izquierdo, A. Colina, S. Palmero, and A. Heras, Optical fiber spectroelectrochemical device for detection of catechol at press-transferred single-walled carbon nanotubes electrodes, Analytical and Bioanalytical Chemistry, vol.84, issue.11, pp.405-3593
DOI : 10.1016/j.jelechem.2004.09.020

D. Ibañez, A. Santidrian, A. Heras, M. Kalbá?, and A. Colina, Study of Adenine and Guanine Oxidation Mechanism by Surface-Enhanced Raman Spectroelectrochemistry, J. Phys. Chem. C, vol.2015, issue.915, pp.119-8191

F. Hartl, Simple Construction of an Infrared Optically Transparent Thin-Layer Electrochemical Cell. Applications to the Redox Reactions of Ferrocene, Mn2(CO)10 and Mn(CO), pp.317-179, 1991.

J. Wu, W. Mei, Z. Yan, J. Liu, and H. Li, In situ spectroelectrochemical monitoring during the electrocatalytic oxidation of guanine on [Ru(bpy)2(MPyTMPP)Cl]+/ITO electrode, Situ Spectroelectrochemical Monitoring during the Electrocatalytic Oxidation of Guanine on [Ru(bpy)2(MPyTMPP)Cl]+/ITO Electrode, pp.21-27, 2013.
DOI : 10.1016/j.jelechem.2013.03.013

L. Hu and G. Xu, Applications and trends in electrochemiluminescence, Chemical Society Reviews, vol.112, issue.8, pp.39-3275, 2010.
DOI : 10.1021/jp026743j

V. Müller and J. Rathousky, Covalent immobilization of redox protein within the mesopores of transparent conducting electrodes, Electrochimica Acta, vol.116, issue.13, pp.1-8, 2014.
DOI : 10.1016/j.electacta.2013.10.136

C. Goebbert, H. Bisht, N. Dahoudi, R. Nonninger, M. A. Aegerter et al., Wet Chemical Deposition of Crystalline, Redispersable ATO and ITO Nanoparticles, J. Sol-Gel Sci. Technol, vol.19, issue.14, pp.1-3, 2000.

D. Fattakhova-rohlfing, T. Brezesinski, J. Rathouský, A. Feldhoff, T. Oekermann et al., Transparent Conducting Films of Indium Tin Oxide with 3D Mesopore Architecture, Adv. Mater, vol.15, issue.22, pp.18-2980, 2006.

J. W. Leem and J. S. Yu, Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/??c-Si:H tandem thin film solar cells, Optics Express, vol.19, issue.S3, pp.258-268, 2011.
DOI : 10.1364/OE.19.00A258

R. Ostermann, R. Zieba, M. Rudolph, D. Schlettwein, and B. M. Smarsly, Electrospun antimony doped tin oxide (ATO) nanofibers as a versatile conducting matrix, Chemical Communications, vol.44, issue.44, pp.47-12119, 2011.
DOI : 10.1016/S0032-3861(03)00539-1

J. H. Kang, J. H. Ryu, H. K. Kim, H. Y. Kim, N. Han et al., Enhancement of light output power in GaN-based light-emitting diodes using indium tin oxide films with nanoporous structures, Thin Solid Films, vol.520, issue.1, pp.437-441, 2011.
DOI : 10.1016/j.tsf.2011.05.051

A. Walcarius, E. Sibottier, M. Etienne, and J. Ghanbaja, Electrochemically assisted self-assembly of mesoporous silica thin films, Nature Materials, vol.72, issue.4, pp.602-608, 2007.
DOI : 10.1016/j.crci.2004.10.003

URL : https://hal.archives-ouvertes.fr/hal-01848968

D. S. Hecht, L. Hu, and G. Irvin, Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures, Adv. Mater, issue.13, pp.23-1482, 2011.

W. Cao, J. Li, H. Chen, and J. Xue, Transparent electrodes for organic optoelectronic devices: a review, Journal of Photonics for Energy, vol.4, issue.1, p.40990
DOI : 10.1117/1.JPE.4.040990

J. Lee and M. Yang, Progress in light harvesting and charge injection of dye-sensitized solar cells, Materials Science and Engineering: B, vol.176, issue.15, pp.1142-1160, 2011.
DOI : 10.1016/j.mseb.2011.06.018

M. Gross, A. Winnacker, and P. J. Wellmann, Optical and Morphological Properties of Nanoparticle Indium?tin?oxide Layers. Thin Solid Films, pp.515-8567, 2007.

R. Buonsanti, T. E. Pick, N. Krins, T. J. Richardson, B. A. Helms et al., Assembly of Ligand-Stripped Nanocrystals into Precisely Controlled Mesoporous Architectures, Nano Letters, vol.12, issue.7, pp.12-3872
DOI : 10.1021/nl302206s

M. D. Dickey, E. A. Weiss, E. J. Smythe, R. C. Chiechi, F. Capasso et al., Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation, ACS Nano, vol.2, issue.4, pp.800-808, 2008.
DOI : 10.1021/nn800036r

L. Xie, Y. Shao, X. Xiao, L. Zhang, X. Bi et al., Fabrication of indium-tin-oxide thin-film transistor using anodization, 2014 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), pp.101-103, 2014.
DOI : 10.1109/AM-FPD.2014.6867136

M. Jin, T. Ma, T. Ling, S. Qiao, and X. Du, Three-dimensional networks of ITO/CdS coaxial nanofibers for photovoltaic applications, Journal of Materials Chemistry, vol.110, issue.26, pp.22-13057
DOI : 10.1021/jp064256o

S. Chappel, L. Grinis, A. Ofir, and A. Zaban, Extending the Current Collector into the Nanoporous Matrix of Dye Sensitized Electrodes, The Journal of Physical Chemistry B, vol.109, issue.5, pp.1643-1647, 2005.
DOI : 10.1021/jp044949+

M. Kato, T. Cardona, W. Rutherford, and E. Reisner, Photoelectrochemical Water Oxidation with Photosystem II Integrated in a Mesoporous Indium???Tin Oxide Electrode, Journal of the American Chemical Society, vol.134, issue.20, pp.2012-8332
DOI : 10.1021/ja301488d

A. Sadeh, S. Sladkevich, F. Gelman, P. Prikhodchenko, I. Baumberg et al., Sol???Gel-Derived Composite Antimony-Doped, Tin Oxide-Coated Clay???Silicate Semitransparent and Conductive Electrodes, Analytical Chemistry, vol.79, issue.14, pp.79-5188, 2007.
DOI : 10.1021/ac070165r

S. Chappel, S. Chen, and A. Zaban, Electrodes for Dye-Sensitized Solar Cells, Langmuir, vol.18, issue.8, pp.3336-3342, 2002.
DOI : 10.1021/la015536s

H. Hosono, H. Ohta, M. Orita, K. Ueda, and M. Hirano, Frontier of transparent conductive oxide thin films, Vacuum, vol.66, issue.3-4, pp.3-4, 2002.
DOI : 10.1016/S0042-207X(02)00165-3

K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes, Nature Photonics, vol.516, issue.12, pp.808-816
DOI : 10.1016/j.tsf.2007.05.084

V. Gokulakrishnan, S. Parthiban, K. Jeganathan, and K. Ramamurthi, Investigations on the structural, optical and electrical properties of Nb-doped SnO2 thin films, Journal of Materials Science, vol.12, issue.16, pp.46-5553, 2011.
DOI : 10.1002/pip.541

T. Minami, H. Nanto, and S. Takata, Highly Conductive and Transparent Aluminum Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering, Japanese Journal of Applied Physics, vol.23, issue.Part 2, No. 1, p.280, 1984.
DOI : 10.1143/JJAP.23.L280

J. Hu and R. G. Gordon, Chemical Vapor Deposition of Highly Transparent and Conductive Boron Doped Zinc Oxide Thin Films, MRS Proc. 1992, pp.242-743
DOI : 10.1143/JJAP.24.1607

J. Niedziolka, K. Szot, F. Marken, and M. Opallo, A Porous ITO Nanoparticles Modified Electrode for the Redox Liquid Immobilization, Electroanalysis, vol.533, issue.2-3, pp.2-3, 2007.
DOI : 10.1002/elan.200603686

J. Ederth, P. Heszler, A. Hultåker, G. Niklasson, and C. Granqvist, Indium tin oxide films made from nanoparticles: models for the optical and electrical properties, Thin Solid Films, vol.445, issue.2, pp.445-199, 2003.
DOI : 10.1016/S0040-6090(03)01164-7

P. G. Hoertz, Z. Chen, C. A. Kent, and T. J. Meyer, Application of High Surface Area Tin-Doped Indium Oxide Nanoparticle Films as Transparent Conducting Electrodes, Inorganic Chemistry, vol.49, issue.18, pp.49-8179, 2010.
DOI : 10.1021/ic100719r

L. K?rösi, S. Papp, S. Beke, B. Pécz, R. Horváth et al., Dékány, I. Highly Transparent ITO Thin Films on Photosensitive Glass: Sol?gel Synthesis, Structure, Morphology and Optical Properties, Agócs, E, vol.107, issue.2, pp.385-392

S. Liu, W. Ding, Y. Gu, and W. Chai, Effect of Sb Doping on the Microstructure and Optoelectrical Properties of Sb-Doped SnO 2 Films Prepared by Spin Coating, Phys. Scr, vol.2012, issue.6, pp.85-65601

S. B. Bubenhofer, C. M. Schumacher, F. M. Koehler, N. A. Luechinger, G. A. Sotiriou et al., Electrical Resistivity of Assembled Transparent Inorganic Oxide Nanoparticle Thin Layers: Influence of Silica, Insulating Impurities, and Surfactant Layer Thickness, ACS Applied Materials & Interfaces, vol.4, issue.5, pp.2664-2671
DOI : 10.1021/am300319r

J. Guo, C. She, and T. Lian, Ultrafast Electron Transfer between Molecule Adsorbate and Antimony Doped Tin Oxide (ATO) Nanoparticles, The Journal of Physical Chemistry B, vol.109, issue.15, pp.7095-7102, 2005.
DOI : 10.1021/jp044579p

M. Kato, T. Cardona, A. W. Rutherford, and E. Reisner, Covalent Immobilization of Oriented Photosystem II on a Nanostructured Electrode for Solar Water Oxidation, Journal of the American Chemical Society, vol.135, issue.29, pp.135-10610
DOI : 10.1021/ja404699h

E. Gonzalez-arribas, O. Aleksejeva, T. Bobrowski, M. D. Toscano, L. Gorton et al., Electrochem. commun, vol.74, pp.2017-2026

R. Tao, T. Tomita, R. A. Wong, and K. Waki, Electrochemical and structural analysis of Al-doped ZnO nanorod arrays in??dye-sensitized solar cells, Journal of Power Sources, vol.214, issue.46, pp.159-165, 2012.
DOI : 10.1016/j.jpowsour.2012.04.071

H. Chen, L. Zhu, W. Li, and H. Liu, A three-dimensional electrode for photoelectrochemical cell: TiO2 coated ITO mesoporous film, Materials Letters, vol.64, issue.6, pp.781-784, 2010.
DOI : 10.1016/j.matlet.2010.01.020

H. Chen, L. Zhu, W. Li, and H. Liu, Synthesis and photoelectrochemical behavior of CdS quantum dots-sensitized indium???tin???oxide mesoporous film, Current Applied Physics, vol.12, issue.1, pp.129-133
DOI : 10.1016/j.cap.2011.05.018

Z. Huang, M. He, M. Yu, K. Click, D. Beauchamp et al., Dye-Controlled Interfacial Electron Transfer for High-Current Indium Tin Oxide Photocathodes. Angew. Chemie Int, pp.54-6857, 2015.

Z. Yang, S. Gao, T. Li, F. Q. Liu, Y. Ren et al., Enhanced Electron Extraction from Template-Free 3D Nanoparticulate Transparent Conducting Oxide (TCO) Electrodes for Dye-Sensitized Solar Cells, ACS Applied Materials & Interfaces, vol.4, issue.8, pp.4419-4427
DOI : 10.1021/am301090a

B. H. Farnum, Z. A. Morseth, A. M. Lapides, A. J. Rieth, P. G. Hoertz et al., Photoinduced Interfacial Electron Transfer within a Mesoporous Transparent Conducting Oxide Film, Journal of the American Chemical Society, vol.136, issue.6, pp.136-2208
DOI : 10.1021/ja4106418

F. Huang, W. Xiang, Y. B. Cheng, and L. Spiccia, Enhanced Charge Collection in Dye-Sensitized Solar Cells Utilizing Collector-Shell Electrodes, J. Power Sources, vol.277, pp.343-349, 2015.

A. J. Forman, Z. Chen, P. Chakthranont, and T. Jaramillo, High Surface Area Transparent Conducting Oxide Electrodes with a Customizable Device Architecture, Chemistry of Materials, vol.26, issue.2, pp.958-964
DOI : 10.1021/cm402551m

A. Pohl and B. Dunn, Mesoporous Indium Tin Oxide (ITO) Films. Thin Solid Films, pp.790-792, 2006.

X. Zhang, W. Wu, T. Tian, Y. Man, and J. Wang, Deposition of transparent conductive mesoporous indium tin oxide thin films by a dip coating process, Materials Research Bulletin, vol.43, issue.4, pp.1016-1022, 2008.
DOI : 10.1016/j.materresbull.2007.04.021

D. Fattakhova-rohlfing, T. Brezesinski, B. Smarsly, and J. Rathouský, Template-assisted preparation of films of transparent conductive indium tin oxide, Superlattices and Microstructures, vol.44, issue.4-5, pp.4-5, 2008.
DOI : 10.1016/j.spmi.2008.03.001

S. Frasca, T. Von-graberg, J. J. Feng, A. Thomas, B. M. Smarsly et al., Mesoporous Indium Tin Oxide as a Novel Platform for Bioelectronics, ChemCatChem, vol.76, issue.7, pp.839-845, 2010.
DOI : 10.1002/cctc.201000047

T. Graberg, . Von, P. Hartmann, A. Rein, S. Gross et al., Smarsly, B. M. Mesoporous Tin-Doped Indium Oxide Thin Films: Effect of Mesostructure on Electrical Conductivity. Sci. Technol. Adv. Mater, vol.12, issue.2, p.25005, 2011.

W. Hamd, M. Chavarot-kerlidou, J. Fize, G. Muller, A. Leyris et al., Dye-sensitized nanostructured crystalline mesoporous tin-doped indium oxide films with tunable thickness for photoelectrochemical applications, Journal of Materials Chemistry A, vol.292, issue.28, pp.8217-8225
DOI : 10.1016/0005-2728(73)90001-7

URL : https://hal.archives-ouvertes.fr/hal-01063041

Y. Wang, T. Brezesinski, M. Antonietti, and B. Smarsly, Thin Films with Adjustable Doping Levels and High Electrical Conductivity, ACS Nano, vol.3, issue.6, pp.1373-1378, 2009.
DOI : 10.1021/nn900108x

K. Hou, D. D. Puzzo, M. G. Helander, S. S. Lo, L. D. Bonifacio et al., Dye-Anchored Mesoporous Antimony-Doped Tin Oxide Electrochemiluminescence Cell, Advanced Materials, vol.124, issue.24, pp.2492-2496, 2009.
DOI : 10.1002/adma.200803330

N. Ueno, B. Dwijaya, Y. Uchida, Y. Egashira, and N. Nishiyama, Synthesis of mesoporous ZnO, AZO, and BZO transparent conducting films using nonionic triblock copolymer as template, Materials Letters, vol.100, pp.111-114, 2013.
DOI : 10.1016/j.matlet.2013.03.011

N. Suzuki, Y. Kamachi, Y. Chiang, K. C. Wu, S. Ishihara et al., Synthesis of Mesoporous Antimony-Doped Tin Oxide (ATO) Thin Films and Investigation of Their Electrical Conductivity, pp.15-4404

Y. Aksu, S. Frasca, U. Wollenberger, M. Driess, and A. Thomas, A Molecular Precursor Approach to Tunable Porous Tin-Rich Indium Tin Oxide with Durable High Electrical Conductivity for Bioelectronic Devices, Chemistry of Materials, vol.23, issue.7, pp.23-1798, 2011.
DOI : 10.1021/cm103087p

A. M. Volosin, S. Sharma, C. Traverse, N. Newman, and D. Seo, One-pot synthesis of highly mesoporous antimony-doped tin oxide from interpenetrating inorganic/organic networks, Journal of Materials Chemistry, vol.78, issue.35, p.13232, 2011.
DOI : 10.1021/ac051380f

S. Sharma, A. Volosin, D. Schmitt, and D. S. Seo, Preparation and electrochemical properties of nanoporous transparent antimony-doped tin oxide (ATO) coatings, J. Mater. Chem. A, vol.56, issue.3, pp.699-706
DOI : 10.1016/j.electacta.2011.01.046

P. Kwan, D. Schmitt, A. M. Volosin, C. L. Mcintosh, D. Seo et al., Spectroelectrochemistry of cytochrome c and azurin immobilized in nanoporous antimony-doped tin oxide, Chemical Communications, vol.105, issue.45, pp.47-12367, 2011.
DOI : 10.1021/jp004283t

A. M. Carey, H. Zhang, D. Mieritz, A. Volosin, A. T. Gardiner et al., Photocurrent Generation by Photosynthetic Purple Bacterial Reaction Centers Interfaced with a Porous Antimony-Doped Tin Oxide (ATO) Electrode, ACS Applied Materials & Interfaces, vol.8, issue.38, pp.25104-25110
DOI : 10.1021/acsami.6b07940

V. Müller, M. Rasp, J. Rathouský, B. Schütz, and M. Niederberger, Transparent Conducting Films of Antimony-Doped Tin Oxide with Uniform Mesostructure Assembled from Preformed Nanocrystals, Small, vol.130, issue.5, pp.633-637, 2010.
DOI : 10.1002/smll.200901887

Y. Liu, G. ?tefani?, J. Rathouský, O. Hayden, T. Bein et al., Assembly of mesoporous indium tin oxide electrodes from nano-hydroxide building blocks, Chemical Science, vol.21, issue.258, pp.2367-2374
DOI : 10.1021/la051616a

K. Peters, H. N. Lokupitiya, D. Sarauli, M. Labs, M. Pribil et al., Fattakhova-Rohlfing, D. Nanostructured Antimony-Doped Tin Oxide Layers with Tunable Pore Architectures as Versatile Transparent Current Collectors for Biophotovoltaics, Adv. Funct. Mater, vol.2016, issue.37, pp.26-6682

H. Wang, C. Ting, M. Hung, C. Chiou, Y. Liu et al., core???shell nanowire arrays by electrophoretic deposition, Nanotechnology, vol.20, issue.5, p.55601, 2009.
DOI : 10.1088/0957-4484/20/5/055601

E. Arsenault, N. Soheilnia, and G. A. Ozin, Periodic Macroporous Nanocrystalline Antimony-Doped Tin Oxide Electrode, ACS Nano, vol.5, issue.4, pp.2984-2988, 2011.
DOI : 10.1021/nn2000492

Z. Yang, S. Gao, W. Li, V. Vlasko-vlasov, U. Welp et al., Three-Dimensional Photonic Crystal Fluorinated Tin Oxide (FTO) Electrodes: Synthesis and Optical and Electrical Properties, ACS Applied Materials & Interfaces, vol.3, issue.4, pp.1101-1108, 2011.
DOI : 10.1021/am1012408

Q. Jiang, F. Liu, T. Li, and T. Xu, Fast and low voltage-driven solid-state electrochromics using 3-D conductive FTO nanobead electrodes, J. Mater. Chem. C, vol.34, issue.4, pp.618-621
DOI : 10.1021/ma0102823

J. Moir, N. Soheilnia, P. O-'brien, A. Jelle, C. M. Grozea et al., Enhanced Hematite Water Electrolysis Using a 3D Antimony-Doped Tin Oxide Electrode, ACS Nano, vol.7, issue.5, pp.4261-4274, 2013.
DOI : 10.1021/nn400744d

Y. Liu, K. Peters, B. Mandlmeier, A. Müller, K. Fominykh et al., Macroporous indium tin oxide electrode layers as conducting substrates for immobilization of bulky electroactive guests, Electrochimica Acta, vol.140, pp.108-115, 2014.
DOI : 10.1016/j.electacta.2014.05.046

K. Peters, P. Zeller, G. Stefanic, V. Skoromets, H. N?mec et al., Fattakhova- Rohlfing, D. Water-Dispersible Small Monodisperse Electrically Conducting Antimony Doped Tin Oxide Nanoparticles, Chem. Mater, vol.2015, issue.3, pp.27-1090

D. Mersch, C. Y. Lee, J. Z. Zhang, K. Brinkert, J. C. Fontecilla-camps et al., Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting, Journal of the American Chemical Society, vol.137, issue.26, pp.137-8541
DOI : 10.1021/jacs.5b03737

URL : https://hal.archives-ouvertes.fr/hal-01179249

K. R. Stieger, S. C. Feifel, H. Lokstein, M. Hejazi, A. Zouni et al., Biohybrid architectures for efficient light-to-current conversion based on photosystem I within scalable 3D mesoporous electrodes, Journal of Materials Chemistry A, vol.454, issue.43, pp.17009-17017, 2016.
DOI : 10.1016/S0003-2670(01)01545-8

K. Sokol, D. Mersch, V. Hartmann, J. Z. Zhang, M. M. Nowaczyk et al., Reisner, E. Rational Wiring of Photosystem II to Hierarchical Indium Tin Oxide Electrodes Using Redox Polymers, Energy Environ. Sci, vol.2016, issue.12, pp.16-1027

N. Naghavi, On the electrochromic properties of antimony???tin oxide thin films deposited by pulsed laser deposition, Solid State Ionics, vol.156, issue.3-4, pp.3-4, 2003.
DOI : 10.1016/S0167-2738(02)00749-X

P. Gondoni, P. Mazzolini, V. Russo, A. Petrozza, A. K. Srivastava et al., Enhancing light harvesting by hierarchical functionally graded transparent conducting Al-doped ZnO nano- and mesoarchitectures, Solar Energy Materials and Solar Cells, vol.128, pp.248-253, 2014.
DOI : 10.1016/j.solmat.2014.05.035

URL : http://arxiv.org/pdf/1311.7014

P. Gondoni, P. Mazzolini, V. Russo, M. Diani, M. Amati et al., Tuning electrical properties of hierarchically assembled Al-doped ZnO nanoforests by room temperature Pulsed Laser Deposition, Thin Solid Films, vol.594, pp.12-17, 2015.
DOI : 10.1016/j.tsf.2015.09.066

P. Gondoni, M. Ghidelli, F. Di-fonzo, M. Carminati, V. Russo et al., Structure-dependent optical and electrical transport properties of nanostructured Al-doped ZnO, Nanotechnology, vol.23, issue.36, pp.23-365706
DOI : 10.1088/0957-4484/23/36/365706

T. R. Garvey, B. H. Farnum, and R. Lopez, Pulsed laser deposited porous nano-carpets of indium tin oxide and their use as charge collectors in core???shell structures for dye sensitized solar cells, Nanoscale, vol.1, issue.6, pp.2400-2408
DOI : 10.1002/aenm.201100241

E. Joanni, R. Savu, M. De-sousa-góes, P. R. Bueno, J. N. De-freitas et al., Dye-sensitized solar cell architecture based on indium???tin oxide nanowires coated with titanium dioxide, Scripta Materialia, vol.57, issue.3, pp.277-280, 2007.
DOI : 10.1016/j.scriptamat.2007.03.051

J. Yun, Y. H. Park, T. Bae, S. Lee, and G. Lee,

, ACS Appl. Mater. Interfaces, vol.2013, issue.51, pp.164-172

W. Wang, T. Bae, Y. H. Park, D. H. Kim, S. Lee et al., Highly Efficient and Bendable Organic Solar Cells Using a Three-Dimensional Transparent Conducting Electrode, pp.6911-6924

G. A. Malek, T. Aytug, Q. Liu, and J. Wu, Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition, ACS Applied Materials & Interfaces, vol.7, issue.16, pp.8556-8561
DOI : 10.1021/acsami.5b00336

J. H. Noh, H. S. Han, S. Lee, J. Y. Kim, K. S. Hong et al., Nanowire-Based Three-Dimensional Transparent Conducting Oxide Electrodes for Extremely Fast Charge Collection, Advanced Energy Materials, vol.105, issue.5, pp.829-835, 2011.
DOI : 10.1021/jp0118468

H. S. Han, G. S. Han, J. S. Kim, D. H. Kim, J. S. Hong et al., One-Dimensional Heterojunction Photoelectrode for Enhanced Solar Hydrogen Production, ACS Sustainable Chemistry & Engineering, vol.4, issue.3, pp.1161-1168
DOI : 10.1021/acssuschemeng.5b01229

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield et al., Surface Area Characterization of Obliquely Deposited Metal Oxide Nanostructured Thin Films, Langmuir, vol.26, issue.6, pp.4368-4376, 2010.
DOI : 10.1021/la903444e

C. Renault, K. D. Harris, M. J. Brett, V. Balland, and B. Limoges, Time-resolved UV-visible spectroelectrochemistry using transparent 3D-mesoporous nanocrystalline ITO electrodes, Chem. Commun., vol.103, issue.566, pp.47-1863, 2011.
DOI : 10.1021/jp9825258

C. Renault, C. P. Andrieux, R. T. Tucker, M. J. Brett, and V. Balland, Limoges, B. Unraveling the Mechanism of Catalytic Reduction of O 2 by Microperoxidase-11

, Adsorbed within a Transparent 3D-Nanoporous ITO Film, J. Am. Chem. Soc, vol.2012, issue.13415, pp.6834-6845

D. Schaming, C. Renault, R. T. Tucker, S. Lau-truong, J. Aubard et al., Limoges, B. Spectroelectrochemical Characterization of Small Hemoproteins Adsorbed within Nanostructured Mesoporous ITO Electrodes. Langmuir, vol.2012, issue.39, pp.28-14065

A. W. Sood, D. J. Poxson, F. W. Mont, S. Chhajed, J. Cho et al., Experimental and Theoretical Study of the Optical and Electrical Properties of Nanostructured Indium Tin Oxide Fabricated by Oblique-Angle Deposition, Journal of Nanoscience and Nanotechnology, vol.12, issue.5, pp.3950-3953
DOI : 10.1166/jnn.2012.6181

A. Forget, R. T. Tucker, M. J. Brett, B. Limoges, and V. Balland, Tuning the reactivity of nanostructured indium tin oxide electrodes toward chemisorption, Chemical Communications, vol.21, issue.32, pp.51-6944
DOI : 10.1021/la051423n

H. Hong, S. Kim, and D. Kim, Improvement of Light Extraction for a Target Wavelength in InGaN/GaN LEDs with an Indium Tin Oxide Dual Layer by Oblique Angle Deposition, Appl. Phys. Express, 2016.

H. Lin, T. Jin, A. Dmytruk, M. Saito, and T. Yazawa, Preparation of a porous ITO electrode, Journal of Photochemistry and Photobiology A: Chemistry, vol.164, issue.1-3, pp.1-3, 2004.
DOI : 10.1016/j.jphotochem.2003.12.023

N. Tétreault, É. Arsenault, L. Heiniger, N. Soheilnia, J. Brillet et al., A.; Grätzel, M. High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode, Nano Lett, issue.10111, pp.11-4579, 2011.

S. C. Riha, M. J. Devries-vermeer, M. J. Pellin, J. T. Hupp, and A. B. Martinson, Hematite-based Photo-oxidation of Water Using Transparent Distributed Current Collectors, ACS Applied Materials & Interfaces, vol.5, issue.2, pp.360-367
DOI : 10.1021/am302356k

M. Stefik, M. Cornuz, N. Mathews, T. Hisatomi, S. Mhaisalkar et al., Conducting Nb:SnO 2 for Host?Guest Photoelectrochemistry, Nano Lett, vol.2012, issue.10, pp.12-5431
DOI : 10.1021/nl303101n

S. Hernández, M. Tortello, A. Sacco, M. Quaglio, T. Meyer et al., New Transparent Laser-Drilled Fluorine-doped Tin Oxide covered Quartz Electrodes for Photo-Electrochemical Water Splitting, Electrochimica Acta, vol.131, pp.184-194, 2014.
DOI : 10.1016/j.electacta.2014.01.037

P. Dhamodharan, C. Manoharan, M. Bououdina, R. Venkadachalapathy, and S. Ramalingam, Al-doped ZnO thin films grown onto ITO substrates as photoanode in dye sensitized solar cell, Solar Energy, vol.141, issue.105, pp.127-144, 2017.
DOI : 10.1016/j.solener.2016.11.029

K. Lee and S. Lu, Porous FTO thin layers created with a facile one-step Sn4+-based anodic deposition process and their potential applications in ion sensing, Journal of Materials Chemistry, vol.100, issue.32, pp.22-16259
DOI : 10.1002/bit.21755

F. Wang, N. K. Subbaiyan, Q. Wang, C. Rochford, G. Xu et al., Development of Nanopatterned Fluorine-Doped Tin Oxide Electrodes for Dye-Sensitized Solar Cells with Improved Light Trapping, ACS Applied Materials & Interfaces, vol.4, issue.3, pp.1565-1572
DOI : 10.1021/am201760q

D. Lin, H. Wu, R. Zhang, and W. Pan, Preparation and electrical properties of electrospun tin-doped indium oxide nanowires, Nanotechnology, vol.18, issue.46, pp.18-465301, 2007.
DOI : 10.1088/0957-4484/18/46/465301

Y. Lee, K. Lee, K. D. Kim, H. T. Kim, Y. Chang et al., Synthesis and Electrical Property of Indium Tin Oxide Nanofibers Using Electrospinning Method, Journal of Nanoscience and Nanotechnology, vol.7, issue.11, pp.7-3910, 2007.
DOI : 10.1166/jnn.2007.048

M. M. Munir, F. Iskandar, K. M. Yun, and K. Okuyama, , p.119

, Electrical Properties of Indium Tin Oxide Nanofibers Prepared by Electrospinning, Nanotechnology, vol.19, issue.14, p.145603, 2008.

F. Iskandar, A. B. Suryamas, M. Kawabe, M. M. Munir, K. Okuyama et al., Indium Tin Oxide Nanofiber Film Electrode for High Performance Dye Sensitized Solar Cells, Japanese Journal of Applied Physics, vol.49, issue.1, pp.9-12, 2010.
DOI : 10.1143/JJAP.49.010213

N. León-brito, A. Melendez, I. Ramos, N. J. Pinto, and J. J. Santiago-aviles, Electrical Properties of Electrospun Sb-Doped Tin Oxide Nanofibers, Journal of Physics: Conference Series, vol.61, pp.61-683, 2007.
DOI : 10.1088/1742-6596/61/1/137

W. Pan, X. He, and Y. Chen, Preparation and Characterization of Polyacrylonitrile / Antimony Doped Tin Oxide Composite Nanofibers by Electrospinning Method, Optoelectron. Adv. Mater. -Rapid Commun, vol.4, issue.1133, pp.390-394, 2010.

X. Wu, Y. Wang, and B. Yang, Effects of Sn Doping on the Morphology, Structure, and Electrical Property of In2O3 Nanofiber Networks. Appl. Phys. A 2014, pp.781-786

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong et al., Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes, Journal of the American Chemical Society, vol.133, issue.1, pp.27-29, 2011.
DOI : 10.1021/ja109228e

Y. Feng, W. Hou, X. Zhang, P. Lv, Y. Li et al., Highly Sensitive Reversible Light-Driven Switches Using Electrospun Porous Aluminum-Doped Zinc Oxide Nanofibers, The Journal of Physical Chemistry C, vol.115, issue.10, pp.115-3956, 2011.
DOI : 10.1021/jp1117745

C. Dunkel, M. Wark, T. Oekermann, R. Ostermann, and B. M. Smarsly, Electrodeposition of zinc oxide on transparent conducting metal oxide nanofibers and its performance in dye sensitized solar cells, Electrochimica Acta, vol.90, issue.117, pp.375-381, 2013.
DOI : 10.1016/j.electacta.2012.12.048

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel et al., Conductive Carbon Nanotube Films, Science, issue.5688, pp.305-1273, 2004.

R. Malavé-osuna, V. Hernández, J. T. López-navarrete, E. I. Kauppinen, and V. Ruiz, Ultrafast and High-Contrast Electrochromism on Bendable Transparent Carbon Nanotube Electrodes, The Journal of Physical Chemistry Letters, vol.1, issue.9, pp.1367-1371, 2010.
DOI : 10.1021/jz100333s

H. Nishihara, T. Kwon, Y. Fukura, W. Nakayama, Y. Hoshikawa et al., Fabrication of a Highly Conductive Ordered Porous Electrode by Carbon-Coating of a Continuous Mesoporous Silica Film, Chemistry of Materials, vol.23, issue.13, pp.23-3144, 2011.
DOI : 10.1021/cm103388y

H. Y. Jung, M. B. Karimi, M. G. Hahm, P. M. Ajayan, Y. J. Jung et al., Flexible Supercapacitors from Nano-Engineered Carbon Films. Sci. Rep. 2012, pp.1-5

Y. S. Wang, S. M. Li, S. T. Hsiao, W. H. Liao, S. Y. Yang et al., Thickness-self-controlled synthesis of porous transparent polyaniline-reduced graphene oxide composites towards advanced bifacial dye-sensitized solar cells, Journal of Power Sources, vol.260, issue.122, pp.326-337, 2014.
DOI : 10.1016/j.jpowsour.2014.02.090

N. Li, G. G. Yang, Y. Sun, H. Song, H. Cui et al., Free-Standing and Transparent Graphene Membrane of Polyhedron Box-Shaped Basic Building Units Directly Grown Using a NaCl Template for Flexible Transparent and Stretchable Solid-State Supercapacitors, Nano Letters, vol.15, issue.5, pp.15-3195
DOI : 10.1021/acs.nanolett.5b00364

N. Li, X. Huang, H. Zhang, Y. Li, and C. Wang, Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors, ACS Applied Materials & Interfaces, vol.9, issue.11, pp.9-9763
DOI : 10.1021/acsami.7b00487

E. Aubert and A. Walcarius, Electrogeneration of Highly Methylated Mesoporous Silica Thin Films with Vertically-Aligned Mesochannels and Electrochemical Monitoring of Mass Transport Issues, J. Mater. Chem, vol.20, issue.125, p.6799, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01941884

A. Walcarius, R. Nasraoui, Z. Wang, F. Qu, V. Urbanova et al., Factors affecting the electrochemical regeneration of NADH by (2,2???-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complexes: Impact on their immobilization onto electrode surfaces, Hempelmann, R. Factors Affecting the Electrochemical Regeneration of NADH byPentamethylcyclopentadienyl)-Rhodium Complexes: Impact on Their Immobilization onto Electrode Surfaces, pp.46-54, 2011.
DOI : 10.1016/j.bioelechem.2011.05.002

URL : https://hal.archives-ouvertes.fr/hal-01941842

N. Menzel, E. Ortel, R. Kraehnert, and P. Strasser, Electrocatalysis Using Porous Nanostructured Materials. Chemphyschem, vol.2012, issue.136, pp.1385-1394

A. Walcarius, Template-directed porous electrodes in electroanalysis, Analytical and Bioanalytical Chemistry, vol.8, issue.1, pp.261-272
DOI : 10.1016/j.aca.2007.10.013

URL : https://hal.archives-ouvertes.fr/hal-01941896

Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang et al., Progress of Electrochemical Capacitor Electrode Materials: A Review, pp.34-4889, 2009.

A. Walcarius, Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes, TrAC Trends in Analytical Chemistry, vol.38, issue.130, pp.79-97, 2012.
DOI : 10.1016/j.trac.2012.05.003

URL : https://hal.archives-ouvertes.fr/hal-01941828

M. Etienne, L. Zhang, N. Vilà, and A. Walcarius, Mesoporous Materials-Based Electrochemical Enzymatic Biosensors, Electroanalysis, vol.50, issue.9, pp.2028-2054
DOI : 10.1039/C4CC05083E

URL : https://hal.archives-ouvertes.fr/hal-01504775

E. Topoglidis, C. J. Campbell, A. E. Cass, and J. Durrant, Factors that Affect Protein Adsorption on Nanostructured Titania Films. A Novel Spectroelectrochemical Application to Sensing, Langmuir, vol.17, issue.25, pp.7899-7906, 2001.
DOI : 10.1021/la010309b

S. Frasca, C. Richter, T. Von-graberg, B. M. Smarsly, and U. Wollenberger, Electrochemical switchable protein-based optical device, Engineering in Life Sciences, vol.42, issue.6, pp.11-554, 2011.
DOI : 10.1021/bi970595j

L. León, J. J. Maraver, J. Carbajo, and J. Mozo, Simple and multi-configurational flow-cell detector for UV???vis spectroelectrochemical measurements in commercial instruments, Sensors and Actuators B: Chemical, vol.186, issue.134, pp.263-269, 2013.
DOI : 10.1016/j.snb.2013.06.024

H. Kim, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata et al., Indium tin oxide thin films for organic light-emitting devices, Applied Physics Letters, vol.74, issue.23, pp.74-3444, 1999.
DOI : 10.1117/12.332602

J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck et al., Indium???tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance, Journal of Applied Physics, vol.4, issue.12, pp.6859-6869, 1998.
DOI : 10.1063/1.365923

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer et al., Light-Extraction Enhancement of GaInN Light-Emitting Diodes by Graded-Refractive-Index Indium Tin Oxide Anti-Reflection Contact, Advanced Materials, vol.11, issue.4, pp.801-804, 2008.
DOI : 10.1002/adma.200701015

H. Choi, S. Yoon, J. Lee, and J. Lee, Crystallized Indium-Tin Oxide (ITO) Thin Films Grown at Low Temperature onto Flexible Polymer Substrates, ECS Journal of Solid State Science and Technology, vol.1, issue.5, pp.106-109
DOI : 10.1149/2.016205jss

K. D. Harris, A. C. Van-popta, J. C. Sit, D. J. Broer, and M. J. Brett, A Birefringent and Transparent Electrical Conductor, Advanced Functional Materials, vol.97, issue.15, pp.18-2147, 2008.
DOI : 10.1002/adfm.200800146

D. Zuev, F. V. Lebedev, O. D. Khramova, and . Petuhov, Pulsed laser deposition of ITO thin films and their characteristics, Semiconductors, vol.30, issue.3, pp.410-413
DOI : 10.1103/PhysRevB.30.3240

H. Chen, L. Zhu, H. Liu, and W. Li, ITO Porous Film-Supported Metal Sulfide Counter Electrodes for High-Performance Quantum-Dot-Sensitized Solar Cells, The Journal of Physical Chemistry C, vol.117, issue.8, pp.117-3739, 2013.
DOI : 10.1021/jp309967w

X. Sun, Y. Shi, H. Ji, X. Li, S. Cai et al., Nanocasting synthesis of ordered mesoporous indium tin oxide (ITO) materials with controllable particle size and high thermal stability, Journal of Alloys and Compounds, vol.545, issue.142, pp.5-11, 2012.
DOI : 10.1016/j.jallcom.2012.08.003

A. Walcarius, S. D. Minteer, J. Wang, Y. Lin, and A. Merkoçi, Nanomaterials for bio-functionalized electrodes: recent trends, Journal of Materials Chemistry B, vol.12, issue.167, pp.4878-4908
DOI : 10.1002/tcr.201100025

URL : https://hal.archives-ouvertes.fr/hal-01505219

W. Xiong, Q. Qu, and S. Liu, Self-assembly of ultra-small gold nanoparticles on an indium tin oxide electrode for the enzyme-free detection of hydrogen peroxide, Microchimica Acta, vol.44, issue.9-10, pp.9-10
DOI : 10.1007/s11244-007-0335-3

N. I. Kovtyukhova and T. Mallouk, Conductive indium-tin oxide nanowire and nanotube arrays made by electrochemically assisted deposition in template membranes: switching between wire and tube growth modes by surface chemical modification of the template, Nanoscale, vol.52, issue.4, pp.1541-1552, 2011.
DOI : 10.1002/pssa.2210520125

X. X. Zhang, Y. Man, J. Wang, C. Liu, and W. Wu, Synthesis of 3D ordered macroporous indium tin oxide using polymer colloidal crystal template, Science in China Series E: Technological Sciences, vol.411, issue.2, pp.49-537, 2006.
DOI : 10.1007/s11431-006-2009-y

Q. Qi, Y. Zou, M. Fan, Y. Liu, S. Gao et al., Trimethylamine Sensors with Enhanced Anti-Humidity Ability Fabricated from La0.7Sr0.3FeO3 Coated In2O3?SnO2 Composite Nanofibers. Sensors Actuators B Chem, pp.111-117, 2014.

L. Tao and D. Xiwen, Enhanced Interfacial Adhesion of Nanofibers with Conductive Glass Substrate for Photovoltaic Application, pp.1-9

M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, Electrospinning of Polyurethane Fibers Polymer (Guildf), pp.3303-3309, 2002.

A. Holzmeister, M. Rudisile, A. Greiner, and J. Wendorff, Structurally and chemically heterogeneous nanofibrous nonwovens via electrospinning, European Polymer Journal, vol.43, issue.12, pp.43-4859, 2007.
DOI : 10.1016/j.eurpolymj.2007.09.014

J. Deitzel, J. Kleinmeyer, D. Harris, and N. Beck-tan, The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles. Polymer (Guildf), pp.261-272, 2001.

O. S. Yördem, M. Papila, and Y. Mencelo?lu, Z.; Mencelo?lu, Y. Z. Effects, p.122

, Electrospinning Parameters on Polyacrylonitrile Nanofiber Diameter: An Investigation by Response Surface Methodology, Mater. Des, vol.29, issue.1, pp.34-44, 2008.

S. Basu, A. K. Agrawal, and M. Jassal, Concept of minimum electrospinning voltage in electrospinning of polyacrylonitrile N,N-dimethylformamide system, Journal of Applied Polymer Science, vol.32, issue.2, pp.856-866, 2011.
DOI : 10.1002/pen.760321209

S. Theron and E. Zussman, Yarin, a. L. Experimental Investigation of the Governing Parameters in the Electrospinning of Polymer Solutions. Polymer (Guildf), pp.45-2017, 2004.

J. Kim, J. Kang, U. Jeong, H. Kim, and H. Lee, Catalytic, Conductive, and Transparent Platinum Nanofiber Webs for FTO-Free Dye-Sensitized Solar Cells, ACS Applied Materials & Interfaces, vol.5, issue.8, pp.3176-3181
DOI : 10.1021/am400179j

J. Ba, D. Fattakhova-rohlfing, A. Feldhoff, T. Brezesinski, I. Djerdj et al., Nonaqueous Synthesis of Uniform Indium Tin Oxide Nanocrystals and Their Electrical Conductivity in Dependence of the Tin Oxide Concentration, Chemistry of Materials, vol.18, issue.12, pp.2848-2854, 2006.
DOI : 10.1021/cm060548q

D. Ito, K. Masuko, B. Weintraub, L. C. Mckenzie, and J. Hutchison, Convenient preparation of ITO nanoparticles inks for transparent conductive thin films, Journal of Nanoparticle Research, vol.23, issue.36, pp.14-1274
DOI : 10.1002/adma.201101514

L. Samiee, A. Beitollahi, and A. Vinu, Effect of calcination atmosphere on the structure and photocatalytic properties of titania mesoporous powder, Research on Chemical Intermediates, vol.110, issue.7, pp.38-1467
DOI : 10.1016/S1010-6030(97)00208-6

A. A. Baig, J. L. Fox, R. A. Young, Z. Wang, J. Hsu et al., Relationships Among Carbonated Apatite Solubility, Crystallite Size, and Microstrain Parameters, Relationships Among Carbonated Apatite Solubility, Crystallite Size, and Microstrain Parameters, pp.437-449, 1999.
DOI : 10.1007/PL00005826

F. Jia, C. Yu, Z. Ai, and L. Zhang, Fabrication of Nanoporous Gold Film Electrodes with Ultrahigh Surface Area and Electrochemical Activity, Chemistry of Materials, vol.19, issue.15, pp.3648-3653, 2007.
DOI : 10.1021/cm070425l

C. Shin, W. Shin, and H. Hong, Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor, Electrochimica Acta, vol.53, issue.2, pp.720-728, 2007.
DOI : 10.1016/j.electacta.2007.07.040

S. Skrovankova, J. Mlcek, J. Sochor, M. Baron, J. Kynicky et al., Determination of Ascorbic Acid by Electrochemical Techniques and Other Methods, Int. J. Electrochem. Sci, vol.10, issue.162, pp.2421-2431, 2015.

M. Wei, R. Huang, and L. Guo, High catalytic activity of indium tin oxide nanoparticle modified electrode towards electro-oxidation of ascorbic acid, Journal of Electroanalytical Chemistry, vol.664, pp.156-160, 2012.
DOI : 10.1016/j.jelechem.2011.10.020

X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim et al., Refractive-Index-Matched Indium???Tin-Oxide Electrodes for Liquid Crystal Displays, Japanese Journal of Applied Physics, vol.48, issue.12, pp.48-120203, 2009.
DOI : 10.1143/JJAP.48.120203

F. Vicente, A. Roig, J. Navarro, J. J. Garcia, F. Vicente et al., Electrochim. Acta, vol.39, issue.3, pp.437-442, 1994.

V. E. Sandana, D. J. Rogers, F. H. Teherani, P. Bove, and M. Razeghi, Chevreuse, D. Graphene versus Oxides for Transparent Electrode Applications. Conf. Oxide-Based Mater. Devices IV 2013, pp.1-9

K. T. Lee, J. C. Lytle, N. S. Ergang, S. M. Oh, and A. Stein, Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium-Ion Secondary Batteries, Advanced Functional Materials, vol.150, issue.82, pp.547-556, 2005.
DOI : 10.1002/adfm.200400186

E. M. Woo, M. L. Lee, and Y. S. Sun, Interactions between polystyrenes of different tacticities and thermal evidence for miscibility, Polymer, vol.41, issue.3, pp.41-883, 2000.
DOI : 10.1016/S0032-3861(99)00247-5

Z. M. Wang, T. C. Chung, J. W. Gilman, and E. Manias, Melt-processable syndiotactic polystyrene/montmorillonite nanocomposites, Journal of Polymer Science Part B: Polymer Physics, vol.35, issue.24, pp.3173-3187, 2003.
DOI : 10.1021/ma012215e

R. Szamocki, S. Reculusa, S. Ravaine, P. N. Bartlett, A. Kuhn et al., Tailored Mesostructuring and Biofunctionalization of Gold for Increased Electroactivity, Angewandte Chemie International Edition, vol.5, issue.8, pp.45-1317, 2006.
DOI : 10.1007/3-540-57729-7_3

URL : https://hal.archives-ouvertes.fr/hal-00018671

S. Sohrabnezhad, A. Pourahmad, and E. Radaee, Photocatalytic degradation of basic blue 9 by CoS nanoparticles supported on AlMCM-41 material as a catalyst, Journal of Hazardous Materials, vol.170, issue.1, pp.184-190, 2009.
DOI : 10.1016/j.jhazmat.2009.04.108

G. Upendar, S. Dutta, J. Chakraborty, and P. Bhattacharyya, Removal of methylene blue dye using immobilized bacillus subtilis in batch & column reactor, Mater. Today Proc. 2016, pp.3-3467
DOI : 10.1016/j.matpr.2016.10.029

S. Senthilkumaar, P. R. Varadarajan, K. Porkodi, and C. Subbhuraam, Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies, Journal of Colloid and Interface Science, vol.284, issue.1, pp.78-82, 2005.
DOI : 10.1016/j.jcis.2004.09.027

L. Ding and B. Su, Vertically Ordered Silica Mesochannels as Preconcentration Materials for the Electrochemical Detection of Methylene Blue, Sci. China Chem, vol.2015, issue.17410, pp.58-1593

S. S. Hassan, A. Nafady, . Sirajuddin, A. R. Solangi, M. S. Kalhoro et al., Ultra-trace level electrochemical sensor for methylene blue dye based on nafion stabilized ibuprofen derived gold nanoparticles, Sensors and Actuators B: Chemical, vol.208, issue.175, pp.320-326, 2015.
DOI : 10.1016/j.snb.2014.11.021

I. K. Tonlé, E. Ngameni, H. L. Tcheumi, V. Tchiéda, C. Carteret et al., Sorption of methylene blue on an organoclay bearing thiol groups and application to electrochemical sensing of the dye, Talanta, vol.74, issue.4, pp.489-497, 2008.
DOI : 10.1016/j.talanta.2007.06.006

J. Li, F. Zhao, J. Zhao, and B. Zeng, Adsorptive and stripping behavior of methylene blue at gold electrodes in the presence of cationic gemini surfactants, Electrochimica Acta, vol.51, issue.2, pp.51-297, 2005.
DOI : 10.1016/j.electacta.2005.04.024

M. L. Wen, Y. Zhao, X. Bin-;-chen, and C. Wang, Potentiometric sensor for methylene blue based on methylene blue???silicotungstate ion association and its pharmaceutical applications, Journal of Pharmaceutical and Biomedical Analysis, vol.18, issue.6, pp.957-961, 1999.
DOI : 10.1016/S0731-7085(98)00104-6

X. Z. Yu, Y. X. Feng, D. M. Yue, and E. Science, Phytotoxicity of Methylene Blue to Rice Seedlings, Glob. J. Environ. Sci. Manag, vol.2015, issue.13, pp.199-204

P. Bertoncello and R. J. Forster, Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: Recent advances and future perspectives, Biosensors and Bioelectronics, vol.24, issue.11
DOI : 10.1016/j.bios.2009.02.013

. Bioelectron, , pp.3191-3200, 2009.

W. Miao, Electrogenerated Chemiluminescence and Its Biorelated Applications, Chemical Reviews, vol.108, issue.7, pp.2506-2553, 2008.
DOI : 10.1021/cr068083a

Z. Zhou, W. Guo, L. Xu, Q. Yang, and B. Su, Two orders-of-magnitude enhancement in the electrochemiluminescence of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:msup><mml:mrow><mml:mtext>Ru</mml:mtext><mml:msub><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mtext>bpy</mml:mtext></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math> by vertically ordered silica mesochannels, Analytica Chimica Acta, vol.886, pp.48-55, 2015.
DOI : 10.1016/j.aca.2015.06.005

D. Shan, B. Qian, S. N. Ding, W. Zhu, S. Cosnier et al., Enhanced Solid-State Electrochemiluminescence of tris, Bipyridyl) ruthenium(II) Incorporated into Electrospun Nanofibrous Mat, pp.82-5892, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01658028

T. Kado, M. Takenouchi, S. Okamoto, W. Takashima, and K. Kaneto, Hayase, S. Enhanced Electrochemiluminescence by Use of Nanoporous TiO2 Electrodes: Electrochemiluminescence Devices Operated with Alternating Current. Japanese J

. Appl, Part 1 Regul, Physics Pap. Short Notes Rev. Pap, vol.44, issue.11, pp.8161-8164, 2005.

J. Lin, H. Wu, L. Lu, Z. Sun, Y. Zhang et al., Porous graphene containing immobilized Ru(II) tris-bipyridyl for use in electrochemiluminescence sensing of tripropylamine, Microchimica Acta, vol.26, issue.172, pp.1-7
DOI : 10.1016/j.bios.2010.12.015

W. Miao, J. Choi, and A. J. Bard, Cation Radicals, Journal of the American Chemical Society, vol.124, issue.48, pp.124-14478, 2002.
DOI : 10.1021/ja027532v