A. C. Modèle and . Du-rde,

I. Pour-la-ligne-de-courant, les particules passent aussi par le front de détonation CJ, mais sont détendues jusqu'à l'état 2, tel que P 2 = P 0 , à cause de l'expansion des produits de détonation. Elles sont ensuite capturées par le choc induit par cette expansion. Après ce choc, elles passent à l'état 3 puis se détendent de manière adiabatique jusqu'à l'état 3?

I. Pour-la-ligne-de-courant, la couche de mélange frais (0) étant en contact avec les produits de détonation chauds (états 1 ? 2), sa partie supérieure peut subir une combustion isobare qui l'amène dans l'état 4. Les particules ainsi chauffées subissent deux chocs successifs permettant d'équilibrer d'abord l'état 5 avec l'état 1 puis l'état 6 avec l

, Les gaz sont ensuite détendus jusqu'à P ? (état 6?)

2. Les-États, 3? et 6? sont enfin refroidis de manière isobare jusqu'à l'état ? , tel que T ? = T ? . Le diagramme C.2 résume l'ensemble des transformations subies

, Si la déflagration n'est pas prise en compte les états 4, 5, 6 et 6? n'existent plus et la ligne de glissement entre les états 0 et 2 est alors positionnée à la place de la déflagration

L. C. États-post-choc-et-détonation-]-t and G. R. Adamson, respectivement 3 et 1, sont alors séparés par la même ligne de glissement En première approximation, toutes les discontinuités sont supposées droites et le coefficient adiabatique des gaz parfaits ? reste constant dans tout le domaine de calcul. De plus, la chambre est considérée comme suffisamment courte pour que les trajectoires associées aux lignes II et III ne subissent qu'une seule compression par le choc induit OLSSON : Performance Analysis of a Rotating Detonation Wave Rocket Engine, Astronautica Acta, vol.13, issue.1, pp.405-415, 1967.

T. C. Adamson and S. Wu, Theoretical Analysis of a Rotating Two Phase Detonation in Liquid Rocket Motors, Nasa Cr, 1973.

A. Vijay, R. B. Driscoll, A. C. St, E. J. George, and . Gutmark, Experimental investigation of H2-Air mixtures in a rotating detonation combustor, Proceedings of the ASME Turbo Expo, p.4, 2015.

A. Vijay, A. C. St, R. B. George, E. J. Driscoll, and . Gutmark, Characterization of instabilities in a Rotating Detonation Combustor, International Journal of Hydrogen Energy, vol.40, issue.46, pp.16649-16659, 2015.

A. Vijay, A. C. St, R. B. George, E. J. Driscoll, and . Gutmark, Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor, Experimental Thermal and Fluid Science, vol.70, pp.408-416, 2016.

A. Vijay, A. C. St, R. B. George, E. J. Driscoll, and . Gutmark, Investigation of rotating detonation combustor operation with H2-Air mixtures, International Journal of Hydrogen Energy, vol.41, issue.2, pp.1281-1292, 2016.

A. Vijay, A. C. St, R. B. George, . Driscoll, and J. Ephraim, GUTMARK : Longitudinal pulsed detonation instability in a rotating detonation combustor, Experimental Thermal and Fluid Science, vol.77, pp.212-225, 2016.

A. Vijay, A. C. St, E. J. George, and . Gutmark, Amplitude modulated instability in reactants plenum of a rotating detonation combustor, International Journal of Hydrogen Energy, issue.17, pp.4212629-12644, 2016.

A. Vijay, A. C. St, E. J. George, and . Gutmark, Hollow Rotating Detonation Combustor, 54th AIAA Aerospace Sciences Meeting, pp.1-15, 2016.

Y. Song-bai, X. Meng, T. Mingyi, L. Jian-ping, and W. , Numerical study of hollow rotating detonation engine with different fuel injection area ratios, Proceedings of the Combustion Institute, pp.2649-2655, 2015.

Y. Song-bai, X. Meng, T. Et-jian-ping, and W. , Numerical Study of the Propulsive Performance of the Hollow Rotating Detonation Engine with a Laval Nozzle, International Journal of Turbo & Jet-Engines, vol.34, issue.1, 2017.

, BIBLIOGRAPHIE

M. Berthelot and P. Vieille, Sur la vitesse de propagation des phénomènes explosifs dans les gaz, CR Acad. Sci, vol.93, pp.18-22

W. A. Bone, R. P. Fraser, and W. H. Wheeler, A Photographic Investigation of Flame Movements in Gaseous Explosions. Part VII. The Phenomenon of Spin in Detonation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.235, issue.746, pp.23529-68, 1935.
DOI : 10.1098/rsta.1935.0015

B. Eric, D. Nathan, and F. K. Lu, Testing of a Continuous Detonation Wave Engine with Swirled Injection, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, pp.1-12

B. Eric, F. K. Lu, D. R. Wilson, and A. José, CAMBEROS : Airbreathing rotating detonation wave engine cycle analysis, Aerospace Science and Technology, vol.27, issue.1, pp.201-208, 2013.

A. Fedor, V. V. Bykovskii, and . Mitrofanov, Detonation combustion of a gas mixture in a cylindrical chamber. Combustion, Explosion, and Shock Waves, pp.570-578, 1981.

A. Fedor, V. V. Bykovskii, . Mitrofanov, and F. Evgenii, VEDERNIKOV : Continuous detonation combustion of fuel-air mixtures. Combustion, Explosion, and Shock Waves, pp.344-353, 1997.

A. Fedor, . Bykovskii, A. Anatoly, . Vasil-'ev, F. Evgenii et al., Explosive combustion of a gas mixture in radial annular chambers, Combustion Explosion and Shock Waves, issue.510, p.30, 1994.

A. Fedor, . Bykovskii, and F. Evgenii, VEDERNIKOV : Continuous detonation combustion of an annular gas-mixture layer. Combustion, explosion, and shock waves, pp.489-491, 1996.

A. Fedor, . Bykovskii, and F. Evgenii, VEDERNIKOV : Self-sustaining pulsating detonation of gas-mixture flow. Combustion, explosion, and shock waves, pp.442-448, 1996.

A. Fedor, . Bykovskii, and F. Evgenii, VEDERNIKOV : Continuous detonation of a subsonic flow of a propellant. Combustion, Explosion, and Shock Waves, pp.323-334, 2003.

A. Fedor, . Bykovskii, and F. Evgenii, VEDERNIKOV : Heat fluxes to combustor walls during continuous spin detonation of fuel-air mixtures. Combustion, Explosion, and Shock Waves, pp.70-77, 2009.

A. Fedor, . Bykovskii, A. Sergey, . Zhdan, F. Evgenii et al., Continuous Spin Detonation in Annular Combustors. Combustion, Explosion, and Shock Waves, pp.449-459, 2005.

A. Fedor, . Bykovskii, A. Sergey, . Zhdan, and F. Evgenii, VEDERNIKOV : Continuous spin detonation of fuel-air mixtures. Combustion, Explosion, and Shock Waves, pp.463-471, 2006.

A. Fedor, . Bykovskii, A. Sergey, . Zhdan, and F. Evgenii, VEDERNIKOV : Continuous Spin Detonations, BIBLIOGRAPHIE Journal of Propulsion and Power, vol.22, issue.6, pp.1204-1216, 2006.

A. Fedor, . Bykovskii, A. Sergey, . Zhdan, and F. Evgenii, VEDERNIKOV : Continuous spin detonation of hydrogen-oxygen mixtures. 1. Annular cylindrical combustors. Combustion , Explosion, and Shock Waves, pp.150-162, 2008.

A. Fedor, . Bykovskii, A. Sergey, . Zhdan, F. Evgenii et al., Continuous spin detonation of hydrogen-oxygen mixtures. 2. Combustor with an expanding annular channel. Combustion, Explosion, and Shock Waves, pp.330-342, 2008.

A. Fedor, . Bykovskii, A. Sergey, . Zhdan, and F. Evgenii, VEDERNIKOV : Continuous detonation in the regime of self-oscillatory ejection of the oxidizer. 1. Oxygen as a oxidizer, Combustion, Explosion, and Shock Waves, vol.46, issue.3, pp.344-351, 2010.

A. Fedor, . Bykovskii, A. Sergey, . Zhdan, F. Evgenii et al., Continuous spin detonation of a hydrogen-air mixture with addition of air into the products and the mixing region. Combustion, Explosion, and Shock Waves, pp.52-59, 2010.

A. Fedor, . Bykovskii, A. Sergey, . Zhdan, and F. Evgenii, VEDERNIKOV : Continuous detonation in the air ejection mode. Domain of existence. Combustion, Explosion, and Shock Waves, pp.330-334, 2011.

A. Fedor, . Bykovskii, A. Sergey, . Zhdan, and F. Evgenii, VEDERNIKOV : Continuous detonation in the regime of self-oscillatory ejection of the oxidizer. 2. Air as an oxidizer. Combustion, Explosion, and Shock Waves, pp.217-225, 2011.

C. Colin, D. Whitley, and W. , The ignition of gases by an explosion-wave. Part I. Carbon monoxide and hydrogen mixtures, Journal of the Chemical Society (Resumed), vol.129, pp.3010-3021, 1926.

C. Colin, D. Whitley, and W. , Striated photographic records of explosion-waves, Journal of the Chemical Society (Resumed), vol.130, pp.1572-1578, 1927.

C. Gabriel, Etude de la Détonation Continue Rotative : Application à la Propulsion, Thèse de doctorat, 2006.

D. Leonard and C. , On the rate of explosion in gases, Philosophical Magazine, vol.47, pp.90-104, 1899.

C. Richard, K. Otto, and F. , Supersonic flow and shock waves, 1999.

M. Dmitry, . Davidenko, E. Yohann, G. Iskender, and F. Francois, Theoretical and Numerical Studies on Continuous Detonation Wave Engines, 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, pp.1-17, 2011.

M. Dmitry, . Davidenko, G. Iskender, and N. Et-alexey, KUDRYAVTSEV : Numerical modeling of the rotating detonation in an annular combustion chamber fed with BIBLIOGRAPHIE hydrogen-oxygen mixture, Third European Combustion Meeting Ecm, pp.1-6, 2007.

M. Dmitry, . Davidenko, G. Iskender, and N. Et-alexey, KUDRYAVTSEV : Numerical Simulation of the Continuous Rotating Hydrogen-Oxygen Detonation with a Detailed Chemical Mechanism, West-East High Speed Flow Field Conference, 2007.

Y. N. Denisov and Y. K. Troshin, Pulsating and spinning detonation of gaseous mixtures in tubes, Dokl. Akad. Nauk SSSR, vol.27, issue.5, pp.534-541, 1959.

D. Werner, On the detonation process in gases, Annals of Physics, vol.43, pp.421-436, 1943.

E. Yohann, D. M. Davidenko, F. Francois, and G. Iskender, Use of the Adaptive Mesh Refinement for 3D Simulations of a CDWRE (Continuous Detonation Wave Rocket Engine), 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, pp.1-12, 2011.

F. Wildon and C. William, DAVIS : Detonation : Theory and Experiment, 2000.

M. Folusiak, A. Kobiera, and W. Piotr, Rotating detonation engine simulations in in-house code REFLOPS. Transactions of the Institute of Aviation, pp.3-12, 2010.

S. M. Frolov, V. S. Aksenov, V. S. Ivanov, and I. O. , Large-scale hydrogen???air continuous detonation combustor, International Journal of Hydrogen Energy, vol.40, issue.3, pp.1616-1623, 2015.
DOI : 10.1016/j.ijhydene.2014.11.112

S. M. Frolov, A. V. Dubrovskii, and V. S. , IVANOV : Three-dimensional numerical simulation of operation process in rotating detonation engine, Progress in Propulsion Physics, pp.467-488, 2013.

F. Jumpei, K. Yoshiki, M. Akiko, N. Soma, M. Ken et al., Numerical Simulation towards Investigating the Factor for Velocity Decrease of Detonation Wave in Rotating Detonation Engine Chamber

, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, pp.1-11, 2016.

F. Jumpei, K. Yoshiki, M. Akiko, N. Soma, M. Ken et al., Numerical investigation on detonation velocity in rotating detonation engine chamber, Proceedings of the Combustion Institute, pp.2665-2672, 2017.

G. Thomas, Étude numérique du fonctionnement d'un moteur à détonation rotative, Thèse de doctorat, 2017.

A. I. Gavrikov, A. A. Efimenko, and S. B. , A model for detonation cell size prediction from chemical kinetics, Combustion and Flame, vol.120, issue.1-2, pp.19-33, 2000.
DOI : 10.1016/S0010-2180(99)00076-0

D. G. Goodwin, H. K. Moffat, and R. L. Speth, Cantera : An Objectoriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, 2017.

G. Keisuke, K. Yuichi, I. Kazuki, M. Ken, K. Jiro et al., Experimental Study of Effects of Injector Configurations on Rotating Detonation Engine Performance, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, pp.1-6, 2016.

H. William, D. T. Heiser, and . Pratt, Thermodynamic Cycle Analysis of Pulse Detonation Engines, Journal of Propulsion and Power, vol.18, issue.1, pp.68-76, 2002.

H. Manabu, F. Toshi, and W. Piotr, Fundamentals of rotating detonations, Shock Waves, vol.19, issue.1, pp.1-10, 2009.

N. Hoffmann, Reaction Propulsion by Intermittent Detonative Combustion, German Ministry of Supply, 1940.

H. Hans, Die Gasturbine : Theorie, Konstruktion und Betriebsergebnisse von zwei ausgefuhrten Maschinen. R. Oldenbourg, 1911.

J. Charles-emile and J. , Sur la propagation des réactions chimiques dans les gaz [On the propagation of chemical reactions in gases], Journal des Mathématiques Pures et Appliquées, vol.1, issue.6, pp.347-425, 1905.

K. Michael and J. E. , SHEPHERD : Detonation Database, GALCIT, p.236, 1997.

K. Jiro, Rotating Detonation Rocket Engine Experiments, IWDP

K. Yuichi, I. Kazuki, M. Ken, K. Jiro, M. Akiko et al., Study of combustion chamber characteristic length in rotating detonation engine with convergent-divergent nozzle, 54th AIAA Aerospace Sciences Meeting, p.1406, 2016.

R. J. Kee, F. Rupley, J. Miller, M. Coltrin, J. F. Grcar et al., , 2006.

K. Jan, Badania eksperymentalne i symulacje numeryczne procesu inicjacji wirujacej detonacji gazowej (in Polish) Thèse de doctorat, 2008.

K. Jan, A. Kobiera, W. Piotr, Z. Gut, M. Folusiak et al., Experimental and numerical study of the rotating detonation engine in hydrogenair mixtures, Progress in Propulsion Physics, pp.555-582, 2011.

K. Jan, W. Piotr, and Z. Gut, Experimental research on the rotating detonation in gaseous fuelsâ " oxygen mixtures, Shock Waves, vol.21, issue.2, pp.75-84, 2011.

R. Knystautas, J. H. Lee, and C. M. Guirao, The critical tube diameter for detonation failure in hydrocarbon-air mixtures, Combustion and Flame, vol.48, issue.C, pp.4863-83, 1982.
DOI : 10.1016/0010-2180(82)90116-X

A. A. , KONNOV : Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism, Combustion and Flame, vol.156, issue.11, pp.2093-2105, 2009.

L. Bruno, . Naour, F. Francois, and M. Flore, Recent experimental results obtained on Continuous Detonation Wave Engine, 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, pp.1-7, 2011.

L. Bruno, F. H. Naour, . Falempin, and C. Kevin, MBDA R&T Effort Regarding Continuous Detonation Wave Engine for Propulsion -Status in 2016, 21st AIAA International Space Planes and Hypersonics Technologies Conference, pp.1-8, 2017.

H. S. John and . Lee, The Detonation Phenomenon, 2008.

L. Wei, Z. Jin, L. Shijie, and L. Zhiyong, An experimental study on CH4/O2 continuously rotating detonation wave in a hollow combustion chamber, Experimental Thermal and Fluid Science, vol.62, pp.122-130, 2015.

L. Wei, Z. Jin, L. Shijie, L. Zhiyong, and Z. Fengchen, Experimental study on propagation mode of H2/Air continuously rotating detonation wave, International Journal of Hydrogen Energy, vol.40, issue.4, pp.1980-1993, 2015.

L. Yusi, Y. Hui, W. , Y. , L. Yang et al., Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogenoxygen continuously rotating detonation engine, Chinese Journal of Aeronautics, vol.28, issue.3, pp.669-675, 2015.

K. Frank, . Lu, B. Eric, M. Luca, and D. R. Wilson, Rotating Detonation Wave Propulsion : Experimental Challenges, Modeling, and Engine Concepts (Invited ), 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, pp.464-470, 2011.

F. E. Mallard, H. L. Le, and . Châtelier, ??tude sur la combustion des m??langes gazeux explosifs, Journal de Physique Th??orique et Appliqu??e, vol.1, issue.1, pp.173-183
DOI : 10.1051/jphystap:018820010017301

V. Chad, . Mashuga, A. Daniel, and . Crowl, Flammability zone prediction using calculated adiabatic flame temperatures, Process Safety Progress, pp.127-134, 1999.

V. V. Mikhailov and M. E. Topchiyan, Study of continuous detonation in an annular channel, Combustion, Explosion, and Shock Waves, vol.114, issue.4, pp.20-23, 1965.
DOI : 10.1007/BF00748805

R. Andrew, . Mizener, K. Frank, and . Lu, Preliminary Parametric Analysis of a Rotating Detonation Engine by Analytical Methods, 52nd AIAA/SAE/ASEE Joint Propulsion BIBLIOGRAPHIE Conference, pp.1-16, 2016.

M. Chris, Gaseq : a chemical equilibrium program for Windows, 2005.

N. Soma, M. Ken, K. Jiro, M. Akiko, and F. Ikkoh, Visualization of Rotating Detonation Waves in a Plane Combustor with a Cylindrical Wall Injector, 53rd AIAA Aerospace Sciences Meeting, pp.1-12, 2015.

N. Soma, M. Ken, K. Jiro, M. Akiko, and F. Ikkoh, Experimental study of the structure of forward-tilting rotating detonation waves and highly maintained combustion chamber pressure in a disk-shaped combustor, Proceedings of the Combustion Institute, pp.2673-2680, 2017.

A. G. Naples, J. L. Hoke, K. James, and F. R. Schauer, Flowfield Characterization of a Rotating Detonation Engine, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, pp.1-6, 2013.
DOI : 10.2514/3.28557

A. James, R. E. Nicholls, and . Cullen, The feasibility of a rotating detonation wave rocket motor. Rapport technique, DTIC Document, 1964.

J. A. Nicholls, R. E. Cullen, and K. W. , RAGLAND : Feasibility studies of a rotating detonation wave rocket motor, Journal of Spacecraft and Rockets, vol.3, issue.6, pp.893-898, 1966.

A. K. , OPPENHEIM : Novel insight into the structure and development of detonation, Oppenheim, A. K, vol.11, issue.6, pp.391-400, 1965.

P. Dan, The American Institute of Aeronautics and Astronautics Pressure- Gain Combustion Program Committee : What, How, Why, International Constant Volume Detonation Combustion Workshop, 2017.

P. Lei, W. Dong, W. Xiaosong, M. Hu, and Y. Chenglong, Ignition experiment with automotive spark on rotating detonation engine, International Journal of Hydrogen Energy, vol.40, issue.26, pp.8465-8474, 2015.

H. N. Presles, D. Desbordes, and P. Bauer, An optical method for the study of the detonation front structure in gaseous explosive mixtures, Combustion and Flame, vol.70, issue.2, pp.207-213, 1987.
DOI : 10.1016/0010-2180(87)90079-4

A. Brent, D. R. Rankin, A. W. Richardson, A. G. Caswell, J. L. Naples et al., Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine, Combustion and Flame, vol.176, pp.12-22, 2017.

R. Vincent, V. Pierre, and Z. Ratiba, Experimental observations of semi-confined steadily-rotating detonation, 26th ICDERS, pp.1-6, 2017.

, BIBLIOGRAPHIE

G. D. Roy, S. M. Frolov, A. A. Borisov, and D. W. Netzer, Pulse detonation propulsion: challenges, current status, and future perspective, Progress in Energy and Combustion Science, pp.545-672, 2004.
DOI : 10.1016/j.pecs.2004.05.001

A. Douglas, . Schwer, and K. Kailas, Numerical Investigation of Rotating Detonation Engine, pp.1-15, 2010.

A. Douglas, . Schwer, and K. Kailas, Numerical investigation of the physics of rotating-detonation-engines, Proceedings of the Combustion Institute, pp.2195-2202, 2011.

A. Douglas, . Schwer, and K. Kailas, Numerical Study of the Effects of Engine Size on Rotating Detonation Engines, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, pp.1-13

A. Douglas, . Schwer, and K. Kailas, Feedback into Mixture Plenums in Rotating Detonation Engines, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, pp.1-17, 2012.

A. Douglas, . Schwer, and K. Kailas, Modeling Exhaust Effects in Rotating Detonation Engines, 48th AIAAASEE Joint Propulsion Conference & Exhibit, numéro August, pp.1-16, 2012.

A. Douglas, . Schwer, and K. Kailas, Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels, Proceedings of the Combustion Institute, pp.1991-1998, 2013.

A. Douglas, . Schwer, and K. Kailas, Rotating Detonation Engine Research at NRL, International Workshop for Detonations in Propulsion, 2013.

N. Research, . Washington, . Lab, . Computational, . And et al., , 2013.

J. C. Shank, Development and Testing of a Rotating Detonation Engine Run on Hydrogen and Air, Thèse de doctorat, AIR FORCE INSTITUTE OF TECHNOLOGY, 2012.

K. I. Shchelkin and Y. K. , TROSHIN : Gasdynamics of Combustion, 1965.

G. Smeets, The Ram Accelerator: Perspectives and Experimental Results Already Achieved, IUTAM Symposium on Combustion in Supersonic Flows, pp.219-236, 1997.
DOI : 10.1007/978-94-011-5432-1_18

G. P. Smith, D. M. Golden, F. Michael, N. W. Moriarty, E. Boris et al., , 1999.

S. Rémy, Etude et Optimisation de la Transition Déflagration Détonation en Tube des Mélanges Stoéchiométriques H2/O2, O2/N2 et de sa Transmission à un Espace de Plus Grande Dimension Thèse de doctorat, 2005.

C. Andrew, . St, R. B. George, . Driscoll, A. Vijay et al., Starting Transients and Detonation Onset Behavior in a Rotating Detonation Combustor, 54th AIAA Aerospace Sciences Meeting, pp.1-12, 2016.

C. Andrew, . St, R. B. George, . Driscoll, A. Vijay et al., GUTMARK : On the existence and multiplicity of rotating detonations, Proceedings of the Combustion Institute, pp.2691-2698, 2017.

C. Andrew, . St, R. B. George, . Driscoll, A. Vijay et al., GUTMARK : Fuel Blending as a Means to Achieve Initiation in a Rotating Detonation Engine, pp.1-18, 2015.

C. Andrew, . St, R. B. George, D. E. Driscoll, E. J. Munday et al., 53rd AIAA Aerospace Sciences Meeting, 2015.

C. Andrew, . St, . George, R. Steve, A. Vijay et al., Characterization of initiator dynamics in a rotating detonation combustor, Experimental Thermal and Fluid Science, vol.72, pp.171-181, 2016.

A. William, E. J. Stoddard, and . Gutmark, Numerical Investigation of Centerbodiless RDE Design Variations, pp.1-8, 2015.

K. Swiderski, M. Folusiak, L. Borys, A. Kobiera, K. Jan et al., Three dimensional numerical study of the propulsion system based on rotating detonation using Adaptive Mesh Refinement, pp.1-6, 2013.

X. Meng, T. , J. Ping, W. , Y. Tao et al., Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor, Combustion and Flame, vol.162, issue.4, pp.997-1008, 2015.

G. Taylor, The Dynamics of the Combustion Products behind Plane and Spherical Detonation Fronts in Explosives, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.200, issue.1061, pp.235-247, 1061.
DOI : 10.1098/rspa.1950.0014

A. Anatoly and . Vasil-'ev, Dynamic parameters of detonation, In Shock Waves Science and Technology Library, vol.6, pp.213-279, 2012.

M. Vieille, ??tude sur le role des discontinuit??s dans les ph??nom??nes de propagation, Journal de Physique Th??orique et Appliqu??e, vol.9, issue.1, pp.621-644, 1900.
DOI : 10.1051/jphystap:019000090062100

, BIBLIOGRAPHIE

B. V. , VOITSEKHOVSKII : Spinning Maintained Detonation, Journal of Applied Mechanics and Technical Physics, vol.3, pp.157-164, 1960.

B. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan, Structure of Detonation Front in Gases, Siberian Branch USSR Academy Science, pp.Novo-sibirsk, 1963.

V. John and . Neuman, Theory of Detonation Waves, 1942.

J. Ping, W. , Y. Tao, and S. , Rotating Detonation Engine Injection Velocity Limit and Nozzle Effects on Its Propulsion Performance, Computational Fluid Dynamics 2010, pp.789-795, 2011.

E. Wintenberger and J. E. , SHEPHERD : Introduction to " To the Question of Energy Use of Detonation Combustion, Ya. B. Zel'dovich. Journal of Propulsion and Power, vol.22, issue.3, pp.586-587, 2006.

W. Piotr, Rotating Detonation Wave Stability, 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), pp.1-6, 2011.

Y. Chenglong, W. Xiaosong, M. Hu, P. Lei, and G. Jian, Experimental research on initiation characteristics of a rotating detonation engine, Experimental Thermal and Fluid Science, vol.71, pp.154-163, 2016.

Y. B. Zel-'dovich, Pressure and velocity distributions in the detonation products of a divergent spherical wave, Zh. Eksp. Teor. Fiz, vol.12, pp.389-406, 1942.

Y. Borissovich and Z. Dovich, On the theory of the propagation of detonation in gaseous systems, Journal of Experimental and Theoretical Physics, vol.10, pp.542-568, 1940.

Y. Borissovich and Z. Dovich, To the Question of Energy Use of Detonation Combustion (en Russe), Journal of Technical Physics, vol.10, pp.542-568, 1940.

Z. Hailong, L. Weidong, and L. Shijie, Effects of inner cylinder length on H2/air rotating detonation, International Journal of Hydrogen Energy, vol.41, issue.30, pp.13281-13293, 2016.

Z. Hailong, L. Weidong, and L. Shijie, Experimental investigations on H2-air rotating detonation wave in the hollow chamber with Laval nozzle, International Journal of Hydrogen Energy, vol.42, issue.5, pp.3363-3370, 2017.

A. Sergey and . Zhdan, Mathematical model of continuous detonation in an annular combustor with a supersonic flow velocity. Combustion, Explosion, and Shock Waves, pp.690-697, 2008.

A. Sergey, . Zhdan, A. Fedor, . Bykovskii, F. Evgenii et al., Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture. Combustion, Explosion, and Shock Waves, pp.449-459, 2007.

A. Sergey, A. M. Zhdan, and V. V. Mardashev, MITROFANOV : Calculation of the flow of spin detonation in an annular chamber, Combustion, Explosion, and Shock Waves, vol.26, issue.2, pp.210-214, 1990.