R. G. Gordon, Criteria for Choosing Transparent Conductors, MRS Bulletin, vol.426, issue.08, pp.52-57, 2000.
DOI : 10.1143/JJAP.33.L1693

P. D. King and T. D. Veal, Conductivity in transparent oxide semiconductors, Journal of Physics: Condensed Matter, vol.23, issue.33, p.334214, 2011.
DOI : 10.1088/0953-8984/23/33/334214

T. Minami, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes, 5th International Symposium on Transparent Oxide Thin Films for Electronics and Optics, pp.5822-5828, 2008.
DOI : 10.1016/j.tsf.2007.10.063

K. Ellmer, Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties, Journal of Physics D: Applied Physics, vol.33, issue.4, p.17, 2000.
DOI : 10.1088/0022-3727/33/4/201

S. Cornelius and M. Vinnichenko, Al in ZnO ??? From doping to alloying: An investigation of Al electrical activation in relation to structure and charge transport limits, Thin Solid Films, vol.605, pp.20-29, 2016.
DOI : 10.1016/j.tsf.2015.11.059

, Transparent conductive zinc oxide: basics and applications in thin film solar cells, Springer series in materials science 104, 2008.

D. S. Ginley, Handbook of Transparent Conductors, 2011.

D. Horwat, M. Jullien, F. Capon, J. Pierson, J. Andersson et al., On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films, Journal of Physics D: Applied Physics, vol.43, issue.13, p.132003, 2010.
DOI : 10.1088/0022-3727/43/13/132003

URL : https://hal.archives-ouvertes.fr/hal-00569420

A. Bikowski, T. Welzel, and K. Ellmer, The impact of negative oxygen ion bombardment on electronic and structural properties of magnetron sputtered ZnO:Al films, Applied Physics Letters, vol.2, issue.24, p.242106, 2013.
DOI : 10.1063/1.321593

V. Kouznetsov, K. Macák, J. M. Schneider, U. Helmersson, and I. Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surface and Coatings Technology, vol.122, issue.2-3, pp.290-293, 1999.
DOI : 10.1016/S0257-8972(99)00292-3

H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi et al., P-type electrical conduction in transparent thin films of CuAlO2, Nature, vol.81, issue.6654, pp.939-942, 1997.
DOI : 10.1016/0167-2738(95)00169-7

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, Basic materials physics of transparent conducting oxides, Dalton Transactions, vol.90, issue.9, pp.2995-3002, 2004.
DOI : 10.1557/mrs2000.150

S. M. Sze, Physics of semiconductor devices (Wiley-Interscience, 1969.

T. S. Moss, The Interpretation of the Properties of Indium Antimonide, Proceedings of the Physical Society, p.775, 1954.
DOI : 10.1088/0370-1301/67/10/306

E. Burstein, Anomalous Optical Absorption Limit in InSb, Physical Review, vol.237, issue.3, pp.632-633, 1954.
DOI : 10.1098/rsta.1938.0004

M. Fox, American Journal of Physics, vol.70, issue.12, 2010.
DOI : 10.1119/1.1691372

S. Adachi, Optical Properties of Crystalline and Amorphous Semiconductors, 1999.
DOI : 10.1007/978-1-4615-5241-3

A. Bikowski and K. Ellmer, Analytical model of electron transport in polycrystalline, degenerately doped ZnO films, Journal of Applied Physics, vol.13, issue.14, p.143704, 2014.
DOI : 10.1063/1.4811647

G. Masetti, M. Severi, and S. Solmi, Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon, IEEE Transactions on Electron Devices, vol.30, issue.7, pp.764-769, 1983.
DOI : 10.1109/T-ED.1983.21207

K. Ellmer, Resistivity of polycrystalline zinc oxide films: current status and physical limit, Journal of Physics D: Applied Physics, vol.34, issue.21, p.3097, 2001.
DOI : 10.1088/0022-3727/34/21/301

K. Ellmer and R. Mientus, Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide, Thin Solid Films, vol.516, issue.14, pp.4620-4627, 2008.
DOI : 10.1016/j.tsf.2007.05.084

J. Y. Seto, The electrical properties of polycrystalline silicon films, Journal of Applied Physics, vol.18, issue.12, pp.5247-5254, 1975.
DOI : 10.1143/JJAP.2.91

N. W. Ashcroft and N. D. Mermin, Solid state physics, 1976.

, Optical thin films and coatings: from materials to applications, electronic and optical materials 49

C. G. Granqvist, Transparent conductors as solar energy materials: A panoramic review, Solar Energy Materials and Solar Cells, vol.91, issue.17, pp.1529-1598, 2007.
DOI : 10.1016/j.solmat.2007.04.031

K. L. Chopra, S. Major, and D. K. Pandya, Transparent conductors???A status review, Thin Solid Films, vol.102, issue.1, pp.1-46, 1983.
DOI : 10.1016/0040-6090(83)90256-0

I. Hamberg, J. S. Svensson, T. S. Eriksson, C. Granqvist, P. Arrenius et al., Radiative cooling and frost formation on surfaces with different thermal emittance: theoretical analysis and practical experience, Applied Optics, vol.26, issue.11, pp.2131-2136, 1987.
DOI : 10.1364/AO.26.002131

K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes, Nature Photonics, vol.516, issue.12, pp.809-817, 2012.
DOI : 10.1016/j.tsf.2007.05.084

J. J. Vos, Colorimetric and photometric properties of a 2?? fundamental observer, Color Research & Application, vol.14, issue.3, pp.125-128, 1978.
DOI : 10.1113/jphysiol.1955.sp005390

D. Myers, S. Kurtz, K. Emery, C. Whitaker, and T. Townsend, Outdoor meteorological broadband and spectral conditions for evaluating photovoltaic modules, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, 2000 (Cat. No.00CH37036), pp.1202-1205, 2000.
DOI : 10.1109/PVSC.2000.916104

U. Betz, M. Kharrazi-olsson, J. Marthy, M. F. Escolá, and F. Atamny, Thin films engineering of indium tin oxide: Large area flat panel displays application, Surface and Coatings Technology, vol.200, issue.20-21, pp.5751-5759, 2006.
DOI : 10.1016/j.surfcoat.2005.08.144

E. Fortunato, A. Pimentel, A. Gonçalves, A. Marques, and R. Martins, High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature, Thin Solid Films, vol.502, issue.1-2, pp.104-107, 2006.
DOI : 10.1016/j.tsf.2005.07.311

A. Facchetti and T. J. Marks, Transparent electronics: from synthesis to applications, 2010.
DOI : 10.1002/9780470710609

B. Rech and H. Wagner, Potential of amorphous silicon for solar cells, Applied Physics A: Materials Science & Processing, vol.69, issue.2, pp.155-167, 1999.
DOI : 10.1007/s003390050986

K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon et al., Properties of 19, 2% efficiency ZnO/CdS/CuInGaSe 2 thin-film solar cells Progress in Photovoltaics: Research and Applications, pp.225-230, 2003.

A. Gupta and A. D. Compaan, All-sputtered 14% CdS???CdTe thin-film solar cell with ZnO:Al transparent conducting oxide, Applied Physics Letters, vol.85, issue.4, pp.684-686, 2004.
DOI : 10.1063/1.349258

J. S. Svensson and C. G. Granqvist, Electrochromic coatings for ???smart windows???, Solar Energy Materials, vol.12, issue.6, pp.391-402, 1985.
DOI : 10.1016/0165-1633(85)90033-4

D. B. Fraser and H. D. Cook, Highly Conductive, Transparent Films of Sputtered In[sub 2???x]Sn[sub x]O[sub 3???y], Journal of The Electrochemical Society, vol.119, issue.10, pp.1368-1374, 1972.
DOI : 10.1149/1.2403999

G. Haacke, New figure of merit for transparent conductors, Journal of Applied Physics, vol.28, issue.9, pp.4086-4089, 1976.
DOI : 10.1103/PhysRevB.6.4370

R. G. Gordon, Preparation and Properties of Transparent Conductors, MRS Proceedings, vol.283, pp.419-429, 1996.
DOI : 10.1016/0379-6787(91)90076-2

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, vol.15, issue.200, pp.488-492, 2004.
DOI : 10.1002/adma.200304947

E. Fortunato, P. Barquinha, and R. Martins, Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances, Advanced Materials, vol.6, issue.622, pp.2945-2986, 2012.
DOI : 10.1109/JDT.2010.2056672

T. Smijs and P. , Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness, Nanotechnology, Science and Applications, p.95, 2011.
DOI : 10.2147/NSA.S19419

A. Janotti and C. G. Walle, Fundamentals of zinc oxide as a semiconductor, Reports on Progress in Physics, vol.72, issue.12, p.126501, 2009.
DOI : 10.1088/0034-4885/72/12/126501

Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications, Journal of Physics: Condensed Matter, vol.16, issue.25, p.829, 2004.
DOI : 10.1088/0953-8984/16/25/R01

S. Pearton, W. Heo, M. Ivill, D. Norton, and T. Steiner, Dilute magnetic semiconducting oxides, Semiconductor Science and Technology, vol.19, issue.10, pp.59-74, 2004.
DOI : 10.1088/0268-1242/19/10/R01

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov et al., A comprehensive review of ZnO materials and devices, Journal of Applied Physics, vol.20, issue.4, p.41301, 2005.
DOI : 10.1088/0268-1242/20/4/001

H. Morkoç and Ü. Özgür, Zinc oxide: fundamentals, materials and device technology, 2009.

Y. Kajikawa, Texture development of non-epitaxial polycrystalline ZnO films, Journal of Crystal Growth, vol.289, issue.1, pp.387-394, 2006.
DOI : 10.1016/j.jcrysgro.2005.11.089

C. Jagadish and S. J. Pearton, Zinc oxide bulk, thin films and nanostructures: processing, properties and applications, 2006.

C. Klingshirn, ZnO: From basics towards applications, physica status solidi (b), vol.95, issue.310, pp.3027-3073, 2007.
DOI : 10.1007/BF01375079

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Graduate Texts in Physics, 2010.

L. Schmidt-mende and J. L. Macmanus-driscoll, ZnO ??? nanostructures, defects, and devices, Materials Today, vol.10, issue.5, pp.40-48, 2007.
DOI : 10.1016/S1369-7021(07)70078-0

K. E. Knutsen, A. Galeckas, A. Zubiaga, F. Tuomisto, G. C. Farlow et al., Zinc vacancy and oxygen interstitial in ZnO revealed by sequential annealing and electron irradiation, Physical Review B, vol.86, issue.12, p.121203, 2012.
DOI : 10.1016/S0168-583X(98)00066-4

K. Ellmer and A. Bikowski, Intrinsic and extrinsic doping of ZnO and ZnO alloys, Journal of Physics D: Applied Physics, vol.49, issue.41, p.413002, 2016.
DOI : 10.1088/0022-3727/49/41/413002

C. G. Van-de-walle, Defect analysis and engineering in ZnO, Physica B: Condensed Matter, vol.308, issue.310, pp.899-903, 2001.
DOI : 10.1016/S0921-4526(01)00830-4

H. Sato, T. Minami, and S. Takata, Highly transparent and conductive group IV impurity???doped ZnO thin films prepared by radio frequency magnetron sputtering, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.11, issue.6, pp.2975-2979, 1993.
DOI : 10.1116/1.578678

J. Hu and R. G. Gordon, Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells, Solar Cells, vol.30, issue.1-4, pp.437-450, 1991.
DOI : 10.1016/0379-6787(91)90076-2

J. Clatot, M. Nistor, and A. Rougier, Influence of Si concentration on electrical and optical properties of room temperature ZnO:Si thin films, Thin Solid Films, vol.531, pp.197-202, 2013.
DOI : 10.1016/j.tsf.2013.01.046

URL : https://hal.archives-ouvertes.fr/hal-00814292

M. Lin, Y. Chang, M. Chen, and C. Chu, Characteristics of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition, Journal of The Electrochemical Society, vol.25, issue.6, pp.395-398, 2011.
DOI : 10.1063/1.117267

S. Yoshioka, F. Oba, R. Huang, I. Tanaka, T. Mizoguchi et al., Atomic structures of supersaturated ZnO???Al2O3 solid solutions, Journal of Applied Physics, vol.103, issue.1, p.14309, 2008.
DOI : 10.1039/a900790c

K. Shirouzu, T. Ohkusa, M. Hotta, N. Enomoto, and J. Hojo, Distribution and Solubility Limit of Al in Al2O3-Doped ZnO Sintered Body, Journal of the Ceramic Society of Japan, vol.115, issue.1340, pp.254-258, 2007.
DOI : 10.2109/jcersj.115.254

M. Vinnichenko, R. Gago, S. Cornelius, N. Shevchenko, A. Rogozin et al., Establishing the mechanism of thermally induced degradation of ZnO:Al electrical properties using synchrotron radiation, Applied Physics Letters, vol.96, issue.14, p.141907, 2010.
DOI : 10.1007/s10832-004-5094-y

D. Inamdar, C. Agashe, P. Kadam, and S. Mahamuni, Doping optimization and surface modification of aluminum doped zinc oxide films as transparent conductive coating, Thin Solid Films, vol.520, issue.11, pp.3871-3877, 2012.
DOI : 10.1016/j.tsf.2012.01.019

F. A. Garcés, N. Budini, J. A. Schmidt, and R. D. Arce, Highly doped ZnO films deposited by spray-pyrolysis. Design parameters for optoelectronic applications, Thin Solid Films, vol.605, pp.149-156, 2016.
DOI : 10.1016/j.tsf.2015.09.053

K. E. Lee, M. Wang, E. J. Kim, and S. H. Hahn, Structural, electrical and optical properties of sol???gel AZO thin films, Current Applied Physics, vol.9, issue.3, pp.683-687, 2009.
DOI : 10.1016/j.cap.2008.06.006

L. Znaidi, T. Touam, D. Vrel, N. Souded, S. B. Yahia et al., AZO Thin Films by Sol-Gel Process for Integrated Optics, Coatings, vol.59, issue.3, pp.126-139, 2013.
DOI : 10.1016/S0030-4018(96)00764-X

C. J. Brinker and G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, 1990.

O. Baka, A. Azizi, S. Velumani, G. Schmerber, and A. Dinia, Effect of Al concentrations on the electrodeposition and properties of transparent Al-doped ZnO thin films, Journal of Materials Science: Materials in Electronics, vol.57, issue.179, pp.1761-1769, 2014.
DOI : 10.1103/PhysRevB.57.12151

H. E. Belghiti, T. Pauporté, and D. Lincot, Mechanistic study of ZnO nanorod array electrodeposition, physica status solidi (a), vol.203, issue.10, pp.2360-2364, 2008.
DOI : 10.1002/pssa.200879443

V. Antohe, M. Mickan, F. Henry, R. Delamare, L. Gence et al., Self-seeded electrochemical growth of ZnO nanorods using textured glass/Al-doped ZnO substrates, Applied Surface Science, vol.313, pp.607-614, 2014.
DOI : 10.1016/j.apsusc.2014.06.031

M. Ohring, The materials science of thin films, 1992.

C. H. Lee and D. W. Kim, Preparation of Al doped ZnO thin films by MOCVD using ultrasonic atomization, Journal of Electroceramics, vol.67, issue.4, pp.12-16, 2014.
DOI : 10.1088/0370-1301/67/10/306

A. Martín, J. P. Espinós, A. Justo, J. P. Holgado, F. Yubero et al., Preparation of transparent and conductive Al-doped ZnO thin films by ECR plasma enhanced CVD, Proceedings of Symposium C on Protective Coatings and Thin Films, pp.289-293, 2002.
DOI : 10.1016/S0257-8972(01)01609-7

J. Hu and R. G. Gordon, Textured aluminum???doped zinc oxide thin films from atmospheric pressure chemical???vapor deposition, Journal of Applied Physics, vol.18, issue.2, pp.880-890, 1992.
DOI : 10.1364/JOSA.51.000123

Y. Geng, L. Guo, S. Xu, Q. Sun, S. Ding et al., Influence of Al Doping on the Properties of ZnO Thin Films Grown by Atomic Layer Deposition, The Journal of Physical Chemistry C, vol.115, issue.25, pp.12317-12321, 2011.
DOI : 10.1021/jp2023567

I. Volintiru, M. Creatore, B. J. Kniknie, C. I. Spee, and M. C. Sanden, Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition, Journal of Applied Physics, vol.102, issue.4, p.43709, 2007.
DOI : 10.1103/PhysRevA.43.2977

V. Miikkulainen, M. Leskelä, M. Ritala, and R. L. Puurunen, Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends, Journal of Applied Physics, vol.48, issue.2, p.21301, 2013.
DOI : 10.1016/j.mee.2007.05.023

K. S. Harsha, Principles of physical vapor deposition of thin films, 2006.

C. Periasamy and P. Chakrabarti, Tailoring the Structural and Optoelectronic Properties of Al-Doped Nanocrystalline ZnO Thin Films, Journal of Electronic Materials, vol.277, issue.4, pp.259-266, 2011.
DOI : 10.1016/j.jcrysgro.2005.01.061

D. R. Sahu, S. Lin, and J. Huang, Improved properties of Al-doped ZnO film by electron beam evaporation technique, Workshop on Thermal Investigations of ICs and Systems (THERMINIC), pp.245-250, 2005.
DOI : 10.1016/j.mejo.2006.11.005

A. Anders, S. H. Lim, K. M. Yu, J. Andersson, J. Rosén et al., High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition, Thin Solid Films, vol.518, issue.12, pp.3313-3319, 2010.
DOI : 10.1016/j.tsf.2009.10.006

H. Liu, V. Avrutin, N. Izyumskaya, H. Özgür, and . Morkoç, Transparent conducting oxides for electrode applications in light emitting and absorbing devices, Superlattices and Microstructures, vol.48, issue.5, pp.458-484, 2010.
DOI : 10.1016/j.spmi.2010.08.011

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition, Proceedings of the 3rd International Symposium on Transparent Oxide Thin films for Electronics and Optics 445, pp.263-267, 2003.
DOI : 10.1016/S0040-6090(03)01158-1

A. Anders, A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS), years of TiAlN hard coatings in research and industry 257, pp.308-325, 2014.
DOI : 10.1016/j.surfcoat.2014.08.043

A. Fridman, Plasma Chemistry, 2008.
DOI : 10.1017/CBO9780511546075

R. F. Bunshah, Handbook of deposition technologies for films and coatings: science, technology, and applications Materials science and process technology series, 1994.

F. F. Chen, Introduction to plasma physics and controlled fusion, 1984.

D. Depla, Magnetrons, reactive gases and sputtering, 2014.

M. W. Thompson, II. The energy spectrum of ejected atoms during the high energy sputtering of gold, Philosophical Magazine, vol.37, issue.152, pp.377-414, 1968.
DOI : 10.1103/PhysRev.102.690

URL : https://hal.archives-ouvertes.fr/in2p3-00008076

K. Ellmer and T. Welzel, Reactive magnetron sputtering of transparent conductive oxide thin films: Role of energetic particle (ion) bombardment, Journal of Materials Research, vol.7, issue.05, pp.765-779, 2012.
DOI : 10.1016/j.tsf.2006.12.188

J. A. Thornton, Magnetron sputtering: basic physics and application to cylindrical magnetrons, Journal of Vacuum Science and Technology, vol.15, issue.2, pp.171-177, 1978.
DOI : 10.1116/1.569448

R. A. Baragiola, E. V. Alonso, J. Ferron, and A. Oliva-florio, Ion-induced electron emission from clean metals, Surface Science, vol.90, issue.2, pp.240-255, 1979.
DOI : 10.1016/0039-6028(79)90341-8

D. Depla, S. Mahieu, and R. De-gryse, Magnetron sputter deposition: Linking discharge voltage with target properties, Thin Solid Films, vol.517, issue.9, pp.2825-2839, 2009.
DOI : 10.1016/j.tsf.2008.11.108

A. Anders, J. Andersson, and A. Ehiasarian, High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering, Journal of Applied Physics, vol.102, issue.11, p.113303, 2007.
DOI : 10.1116/1.582380

J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, High power impulse magnetron sputtering discharge, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.30, issue.3, p.30801, 2012.
DOI : 10.1116/1.3691832

P. J. Kelly and R. D. , Magnetron sputtering: a review of recent developments and applications, Vacuum, vol.56, issue.3, pp.159-172, 2000.
DOI : 10.1016/S0042-207X(99)00189-X

D. Depla, S. Mahieu, R. Hull, R. M. Osgood, J. Parisi et al., Reactive Sputter Deposition Series in Materials Science, 2008.

D. Depla, S. Heirwegh, S. Mahieu, and R. D. Gryse, Towards a more complete model for reactive magnetron sputtering, Journal of Physics D: Applied Physics, vol.40, issue.7, pp.1957-1965, 2007.
DOI : 10.1088/0022-3727/40/7/019

S. Berg and T. Nyberg, Fundamental understanding and modeling of reactive sputtering processes, Thin Solid Films, vol.476, issue.2, pp.215-230, 2005.
DOI : 10.1016/j.tsf.2004.10.051

S. Berg, H. Blom, T. Larsson, and C. Nender, Modeling of reactive sputtering of compound materials, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.5, issue.2, pp.202-207, 1987.
DOI : 10.1116/1.574104

W. D. Sproul, D. J. Christie, and D. C. Carter, Control of reactive sputtering processes, Thin Solid Films, vol.491, issue.1-2, pp.1-17, 2005.
DOI : 10.1016/j.tsf.2005.05.022

D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, and R. De-gryse, Understanding the discharge voltage behavior during reactive sputtering of oxides, Journal of Applied Physics, vol.101, issue.1, p.13301, 2007.
DOI : 10.1103/PhysRevB.45.1391

S. Bugaev, N. Koval, N. Sochugov, and A. Zakharov, Investigation of a high-current pulsed magnetron discharge initiated in the low-pressure diffuse arc plasma, Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum, pp.1074-1076, 1996.
DOI : 10.1109/DEIV.1996.545530

K. Sarakinos, J. Alami, and S. Konstantinidis, High power pulsed magnetron sputtering: A review on scientific and engineering state of the art, Surface and Coatings Technology, vol.204, issue.11, pp.1661-1684, 2010.
DOI : 10.1016/j.surfcoat.2009.11.013

A. Anders, Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS), Journal of Applied Physics, vol.121, issue.17, p.171101, 2017.
DOI : 10.1109/TPS.2016.2587750

A. Anders, Discharge physics of high power impulse magnetron sputtering, Surface and Coatings Technology, vol.205, pp.1-9, 2011.
DOI : 10.1016/j.surfcoat.2011.03.081

D. J. Christie, Target material pathways model for high power pulsed magnetron sputtering, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.23, issue.2, pp.330-335, 2005.
DOI : 10.1116/1.1865133

J. Vl?ek and K. Burcalová, A phenomenological equilibrium model applicable to high-power pulsed magnetron sputtering, Plasma Sources Science and Technology, vol.19, issue.6, p.65010, 2010.
DOI : 10.1088/0963-0252/19/6/065010

]. A. Anders, J. Capek, M. Hála, and L. Martinu, The ???recycling trap???: a generalized explanation of discharge runaway in high-power impulse magnetron sputtering, Journal of Physics D: Applied Physics, vol.45, issue.1, p.12003, 2012.
DOI : 10.1088/0022-3727/45/1/012003

N. Brenning, C. Huo, D. Lundin, M. A. Raadu, C. Vitelaru et al., Understanding deposition rate loss in high power impulse magnetron sputtering: I. Ionization-driven electric fields, Plasma Sources Science and Technology, p.25005, 2012.
DOI : 10.1088/0963-0252/21/2/025005

D. Horwat and A. Anders, Compression and strong rarefaction in high power impulse magnetron sputtering discharges, Journal of Applied Physics, vol.9, issue.12, p.123306, 2010.
DOI : 10.1007/978-3-540-44502-9_5

A. Anders, P. Ni, and A. Rauch, Drifting localization of ionization runaway: Unraveling the nature of anomalous transport in high power impulse magnetron sputtering, Journal of Applied Physics, vol.111, issue.5, p.53304, 2012.
DOI : 10.1134/1.2131134

M. A. Raadu, I. Axnäs, J. T. Gudmundsson, C. Huo, and N. Brenning, An ionization region model for high-power impulse magnetron sputtering discharges, Plasma Sources Science and Technology, vol.20, issue.6, p.65007, 2011.
DOI : 10.1088/0963-0252/20/6/065007

M. Aiempanakit, A. Aijaz, D. Lundin, U. Helmersson, and T. Kubart, Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides, Journal of Applied Physics, vol.113, issue.13, p.133302, 2013.
DOI : 10.1116/1.569448

T. Shimizu, M. Villamayor, D. Lundin, and U. Helmersson, Process stabilization by peak current regulation in reactive high-power impulse magnetron sputtering of hafnium nitride, Journal of Physics D: Applied Physics, vol.49, issue.6, p.65202, 2016.
DOI : 10.1088/0022-3727/49/6/065202

J. T. Gudmundsson, D. Lundin, N. Brenning, M. A. Raadu, C. Huo et al., high power impulse magnetron sputtering discharge, Plasma Sources Science and Technology, vol.25, issue.6, p.65004, 2016.
DOI : 10.1088/0963-0252/25/6/065004

E. Wallin and U. Helmersson, Hysteresis-free reactive high power impulse magnetron sputtering, Thin Solid Films, vol.516, issue.18, pp.6398-6401, 2008.
DOI : 10.1016/j.tsf.2007.08.123

M. Hála, J. Capek, O. Zabeida, J. E. Klemberg-sapieha, and L. Martinu, Hysteresis-free deposition of niobium oxide films by HiPIMS using different pulse management strategies, Journal of Physics D: Applied Physics, vol.45, issue.5, p.55204, 2012.
DOI : 10.1088/0022-3727/45/5/055204

K. Strijckmans, F. Moens, and D. Depla, Perspective: Is there a hysteresis during reactive High Power Impulse Magnetron Sputtering (R-HiPIMS)?, Journal of Applied Physics, vol.39, issue.8, p.80901, 2017.
DOI : 10.1016/j.solmat.2016.04.048

J. A. Thornton, High Rate Thick Film Growth, Annual Review of Materials Science, vol.7, issue.1, pp.239-260, 1977.
DOI : 10.1146/annurev.ms.07.080177.001323

A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, vol.518, issue.15, pp.4087-4090, 2010.
DOI : 10.1016/j.tsf.2009.10.145

D. Depla and W. P. Leroy, Magnetron sputter deposition as visualized by Monte Carlo modeling, Thin Solid Films, vol.520, issue.20, pp.6337-6354, 2012.
DOI : 10.1016/j.tsf.2012.06.032

J. A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, Journal of Vacuum Science and Technology, vol.11, issue.4, pp.666-670, 1974.
DOI : 10.1116/1.1312732

P. B. Barna and M. Adamik, Fundamental structure forming phenomena of polycrystalline films and the structure zone models, Thin Solid Films, vol.317, issue.1-2, pp.27-33, 1998.
DOI : 10.1016/S0040-6090(97)00503-8

P. B. Barna and M. Adamik, GROWTH MECHANISMS OF POLYCRYSTALLINE THIN FILMS, Science and Technology of Thin Films, 1995.
DOI : 10.1142/9789814261425_0001

S. Mahieu, P. Ghekiere, D. Depla, and R. De-gryse, Biaxial alignment in sputter deposited thin films, Thin Solid Films, vol.515, issue.4, pp.1229-1249, 2006.
DOI : 10.1016/j.tsf.2006.06.027

H. Sato, T. Minami, S. Takata, T. Mouri, and N. Ogawa, Highly conductive and transparent ZnO:Al thin films prepared on high-temperature substrates by d.c. magnetron sputtering, Thin Solid Films, vol.220, issue.1-2, pp.327-332, 1992.
DOI : 10.1016/0040-6090(92)90593-Z

S. Cornelius, M. Vinnichenko, N. Shevchenko, A. Rogozin, A. Kolitsch et al., Achieving high free electron mobility in ZnO:Al thin films grown by reactive pulsed magnetron sputtering, Applied Physics Letters, vol.94, issue.4, p.42103, 2009.
DOI : 10.1016/0022-0248(92)90778-H

C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech et al., Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films, Journal of Applied Physics, vol.95, issue.4, pp.1911-1917, 2004.
DOI : 10.1116/1.1290372

C. May, R. Menner, J. Strümpfel, M. Oertel, and B. Sprecher, Deposition of TCO films by reactive magnetron sputtering from metallic Zn:Al alloy targets, Proceedings of Frontiers of Surface Engineering 169-170, pp.512-516, 2003.
DOI : 10.1016/S0257-8972(03)00161-0

K. Tominaga, K. Kuroda, and O. Tada, Radiation Effect due to Energetic Oxygen Atoms on Conductive Al-Doped ZnO Films, Japanese Journal of Applied Physics, vol.27, issue.Part 1, No. 7, p.1176, 1988.
DOI : 10.1143/JJAP.27.1176

D. Horwat and A. Billard, Effects of substrate position and oxygen gas flow rate on the properties of ZnO: Al films prepared by reactive co-sputtering, Thin Solid Films, vol.515, issue.13, pp.5444-5448, 2007.
DOI : 10.1016/j.tsf.2006.12.188

T. Minami, H. Nanto, and S. Takata, Highly conductive and transparent zinc oxide films prepared by rf magnetron sputtering under an applied external magnetic field, Applied Physics Letters, vol.128, issue.10, pp.958-960, 1982.
DOI : 10.1063/1.92002

S. Brehme, F. Fenske, W. Fuhs, E. Nebauer, M. Poschenrieder et al., Free-carrier plasma resonance effects and electron transport in reactively sputtered degenerate ZnO:Al films, Thin Solid Films, vol.342, issue.1-2, pp.167-173, 1999.
DOI : 10.1016/S0040-6090(98)01490-4

S. Konstantinidis, A. Hemberg, J. P. Dauchot, and M. Hecq, Deposition of zinc oxide layers by high-power impulse magnetron sputtering, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.25, issue.3, p.19, 2007.
DOI : 10.1116/1.2735968

F. Ruske, A. Pflug, V. Sittinger, W. Werner, B. Szyszka et al., Reactive deposition of aluminium-doped zinc oxide thin films using high power pulsed magnetron sputtering, Thin Solid Films, vol.516, issue.14, pp.4472-4477, 2008.
DOI : 10.1016/j.tsf.2007.06.019

D. J. Christie, F. Tomasel, W. D. Sproul, and D. C. Carter, Power supply with arc handling for high peak power magnetron sputtering, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.22, issue.4, pp.1415-1419, 2004.
DOI : 10.1116/1.1688365

V. Sittinger, F. Ruske, W. Werner, C. Jacobs, B. Szyszka et al., High power pulsed magnetron sputtering of transparent conducting oxides, Thin Solid Films, vol.516, issue.17, pp.5847-5859, 2008.
DOI : 10.1016/j.tsf.2007.10.031

V. Sittinger, O. Lenck, M. Vergöhl, B. Szyszka, and G. Bräuer, Applications of HIPIMS metal oxides, Thin Solid Films, vol.548, pp.18-26, 2013.
DOI : 10.1016/j.tsf.2013.08.087

V. Tiron, L. Sirghi, and G. Popa, Control of aluminum doping of ZnO:Al thin films obtained by high-power impulse magnetron sputtering, Thin Solid Films, vol.520, issue.13, pp.4305-4309, 2012.
DOI : 10.1016/j.tsf.2012.02.079

A. Anders and J. Brown, A Plasma Lens for Magnetron Sputtering, IEEE Transactions on Plasma Science, vol.39, issue.11, pp.2528-2529, 2011.
DOI : 10.1109/TPS.2011.2157172

O. Stenzel, The Physics of Thin Film Optical Spectra, Series in Surface Sciences, 2005.
DOI : 10.1007/978-3-319-21602-7

C. Celindano, Croissance et propriétés de pérovskites en couches minces pour le solaire photovoltaïque, 2016.

H. G. Tompkins and E. A. Irene, Handbook of ellipsometry, 2005.

J. Tauc, R. Grigorovici, and A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, physica status solidi (b), vol.24, issue.2, pp.627-637, 1966.
DOI : 10.1002/pssb.19660150224

B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system, physica status solidi (b), vol.102, issue.8, pp.1700-1710, 2015.
DOI : 10.1063/1.2817822

W. Chamorro, D. Horwat, P. Pigeat, P. Miska, S. Migot et al., Near-room temperature single-domain epitaxy of reactively sputtered ZnO films, Journal of Physics D: Applied Physics, vol.46, issue.23, p.235107, 2013.
DOI : 10.1088/0022-3727/46/23/235107

URL : https://hal.archives-ouvertes.fr/hal-01285173

F. M. Smits, Measurement of Sheet Resistivities with the Four-Point Probe, Bell System Technical Journal, vol.37, issue.3, pp.711-718, 1958.
DOI : 10.1002/j.1538-7305.1958.tb03883.x

L. J. Van-der-pauw, A METHOD OF MEASURING SPECIFIC RESISTIVITY AND HALL EFFECT OF DISCS OF ARBITRARY SHAPE, Philips Research Reports, vol.13, pp.1-9, 1958.
DOI : 10.1142/9789814503464_0017

C. Hammond, The basics of crystallography and diffraction, International Union of Crystallography texts on crystallography, vol.12, 2009.
DOI : 10.1093/acprof:oso/9780198738671.001.0001

M. Birkholz, P. F. Fewster, and C. Genzel, Thin film analysis by X-ray scattering, 2006.
DOI : 10.1002/3527607595

M. Wohlschlögel, T. U. Schülli, B. Lantz, and U. Welzel, Application of a single-reflection collimating multilayer optic for X-ray diffraction experiments employing parallel-beam geometry, Journal of Applied Crystallography, vol.41, issue.1, pp.124-133, 2008.
DOI : 10.1107/S0021889807050005

A. L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, vol.74, issue.10, pp.978-982, 1939.
DOI : 10.1098/rspa.1938.0079

T. H. De-keijser, J. I. Langford, E. J. Mittemeijer, and A. B. Vogels, Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening, Journal of Applied Crystallography, vol.15, issue.3, pp.308-314, 1982.
DOI : 10.1107/S0021889882012035

D. B. Williams and C. B. Carter, Transmission electron microscopy: a textbook for materials science, 2008.

B. J. Griffin, A comparison of conventional Everhart-Thornley style and in-lens secondary electron detectors-a further variable in scanning electron microscopy, Scanning, vol.19, issue.3, pp.162-173, 2011.
DOI : 10.1002/sca.4950190708

J. F. Watts and J. Wolstenholme, An introduction to surface analysis by, 2003.

T. Tohsophon, J. Hüpkes, S. Calnan, W. Reetz, B. Rech et al., Damp heat stability and annealing behavior of aluminum doped zinc oxide films prepared by magnetron sputtering, Thin Solid Films, vol.511, issue.512, pp.511-512, 2006.
DOI : 10.1016/j.tsf.2005.12.130

J. Hüpkes, J. Owen, M. Wimmer, F. Ruske, D. Greiner et al., Damp heat stable doped zinc oxide films, Thin Solid Films, vol.555, pp.48-52, 2014.
DOI : 10.1016/j.tsf.2013.08.011

J. I. Kim, W. Lee, T. Hwang, J. Kim, S. Lee et al., Quantitative analyses of damp-heat-induced degradation in transparent conducting oxides, Solar Energy Materials and Solar Cells, vol.122, pp.282-286, 2014.
DOI : 10.1016/j.solmat.2013.12.014

J. Crank, The mathematics of diffusion, 1975.

J. C. Sit, D. Vick, K. Robbie, and M. J. Brett, Thin Film Microstructure Control Using Glancing Angle Deposition by Sputtering, Journal of Materials Research, vol.6, issue.04, pp.1197-1199, 1999.
DOI : 10.1016/S0040-6090(97)00095-3