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Abstract
This thesis is devoted to the study of stochastic decentralized processes. Typical exam-

ples in the real world include the dynamics of weather and temperature, of traffic, the way
we meet our friends, etc. We take the rich tool set from probability theory for the anal-
ysis of Markov Chains and employ it to study a wide range of such distributed processes:
Forest Fire Model (social networks), Balls-into-Bins with Deleting Bins, and fundamental
consensus dynamics and protocols such as the Voter Model, 2-Choices, and 3-Majority.

keywords— stochastic processes; distributed computing; consensus; leader election;
random walks; social networks

Résumé
Cette thèse est consacrée à l’étude des processus stochastiques décentralisés. Parmi les
exemples typiques de ces processus figurent la dynamique météorologique, la circulation
automobile, la façon dont nous rencontrons nos amis, etc. Dans cette thèse, nous exploitons
une large palette d’outils probabilistes permettant d’analyser des chaînes de Markov afin
d’étudier un large éventail de ces processus distribués : modèle des feux de forêt (réseaux
sociaux), balls-into-bins avec suppression, et des dynamiques et protocoles de consensus
fondamentaux tels que Voter Model, 2-Choices, et 3-Majority.

mots clés— processus stochastiques; processus distribués; consensus; élection de chef;
marches aléatoires; réseaux sociaux
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Chapter 1

Introduction

“So much of life, it seems to me, is determined by pure randomness."
- Sidney Poitier

This thesis is devoted to the study of stochastic distributed processes, i. e., processes evolving
as a result of randomized decisions of interacting autonomous entities. Such processes
surround us in many aspects of our daily lives and are imperative in the realm of distributed
computing. Archetypal examples of such processes include the evolution of social networks,
distribution of jobs in cloud computing, propagation of opinions and diseases, movement of
atoms, evolution of stock markets, etc.1

We focus on two groups of these processes: (i) dynamic processes, in which the entities
arrive (and leave) over time, and (ii) consensus processes, in which the entities of a static
network interact continuously with each other in order to reach consensus.

The dynamic processes we study in this thesis (Part I) are the Forest Fire Model, a
model for the creation of social networks, and Balls-into-Bins with Deletions modeling the
load distribution in systems. We are interested in the asymptotic behavior of these processes
as the time goes to infinity.

The consensus processes (Part II) we study are: Voter, 2-Choices, 3-Majority, as well
as faster, albeit slightly more sophisticated, processes.

At first glance, the wide-range of processes considered in this thesis appear to be un-
related; however, the common thread among them lies in our analysis. We relate each of
these processes to (general) random walks and employ machinery from different areas of
probability theory to analyze them.

1Although not all of these processes are inherently stochastic–possibly even deterministic–accurate pre-
dictions by means of deterministic models are often infeasible. The sheer amount of data required alone
renders this impractical, not to mention the complexity of the computations. Instead, treating theses pro-
cesses as being random allows, in some cases, for good estimates such as predicting the number of times a
die shows 6.
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Part I: Dynamic Processes

The first process we study is the Forest Fire Process, a model for generating random graphs
representing the evolution of social networks. The nodes in the generated graph represent
the users and and edge represents friendship between the adjacent nodes.

Forest Fire Process. In the Forest Fire Process, a new user u arrives in every round,
and connects to another user v chosen uniformly at random among those already present.
User u then becomes friends with a randomly chosen subset of v’s friends. These friends
then introduce u to some of their friends and so on. The process stops once there is no
user left who is willing to introduce u to any of their friends. Once this happens, an edge
is added between u and those nodes u was introduced to. This concludes the round and
the next rounds begins with the arrival of a new node executing the same process. See
Chapter 4 for the precise model and Figure 1.1 for an illustration.

Ten years ago, Leskovec et al. [LKF07] conjectured, based on their simulations, that the
Forest Fire Process exhibits the small-world effect, i. e., the expected distance between any
pair of users is constant. Under mild assumptions, we were able to prove this rigorously.
Furthermore, we show under certain conditions–in which the presence of edges is more
unlikely–that the expected distance is logarithmic in the number of rounds.

Figure 1.1: A social network generated by the Forest Fire Process.
The node sizes and the colors are a function of the degrees and the
node labels correspond to the arrival times.

Studying the Forest Fire
Process and other social net-
works is invaluable in under-
standing the societies we live
in—real and virtual. Com-
munication and the interac-
tion with other human beings
has shifted from face-to-face in-
teractions towards online so-
cial networks. The social net-
works surrounding us go far
beyond friendships and include
business cooperations [Pik13,
Jac+08, Jac05], academic col-
laborations, the spread of dis-
eases [EGA+04], marketing
[SR03], romantic relations, and
even political ideas. For ex-
ample, in marketing it is well-
known that targeted advertisement is more effective than generic advertisement [Joh13].
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Knowing a user’s social network is therefore an important part of efficient marketing as
suggested by the saying: “Show me your friends and I’ll tell you who you are”. Moreover,
studying social networks can fundamentally change the way we think about social networks
and society. A concrete example is the Milgram Experiment [TM67] in which participants
are asked to send a letter to an unknown person by only forwarding it to people they know
on a first-name basis. The recipients then forward the letters by following the same rule, and
so on, until the letters reach their intended destination. The experiment had the surprising
outcome that the average length of the chain, of the letters that arrived, was 6.2. This
experiment branded the terms “small-world”, and “six degrees of separation”. Nevertheless,
the experiment left the question open as to how social networks are structured; inviting
mathematicians to design suitable models–such as the Forest Fire Process [LKF07]. The
motivation behind studying the Forest Fire Process in particular are twofold. First, the
Forest Fire Process models that we often meet our friends through mutual friends. Second,
the Forest Fire Process encapsulates–as simulations suggest [LKF07]–three important prop-
erties observed in many social networks: (i) the small-world effect, (ii) the “densification”
of edges, i. e., the number of edges in the network is super constant in the number of users,
and (iii) a power-law distribution of the out-edges. See Chapter 4 for an overview of other
social network models.

The key to the analysis is a potential function, which allows us to show that whenever
the distance of a user in the network to the initial set of users is large, then the potential will
decrease in expectation over the course of the arrival of the next two users. In particular,
the potential can be modeled as a general random walk on the natural numbers with a drift
towards zero (apart from finitely many states) and tail bounds on the absolute change per
round. To bound the potential change, we couple the original process with a Galton-Watson
Tree.

Balls-into-Bins with Deletions. The Balls-into-Bins with Deletions process models the
load distribution in a system with n nodes (bins) representing n queues. Tasks (balls) arrive
over time and move to bins according to different strategies. We consider two strategies:
Greedy[1] and Greedy[2]. The process works as follows. At each round a batch of 0
to n balls arrives: Each of n potential balls spawns w.p. λ < 1 and each of the spawned
balls chooses (i) uniformly at random from n bins (Greedy[1]) or (ii) greedily from two
bins sampled uniformly at random from n bins (Greedy[2]). At the end of each round, all
non-empty bins delete one ball each. See Figure 1.2 for an illustration.

We give bounds on the load of the bins after an arbitrary number of steps (possibly
super-exponential in the number of bins n) and show an exponential difference in the load
of processes Greedy[1] and Greedy[2]. We show that the corresponding Markov Chains
are positive recurrent and that there is an exponential difference in the load, similarly to
the classical two-choices Balls-into-Bins process [ABKU99].
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Step t (beginning) Step t (after assignment)

ball 1 ball 2 ball 3 ball 4

ball 1

ball 2

ball 3

ball 4

Step t (end)

ball 1

ball 2

ball 3

ball 4

Figure 1.2: The figure depicts a typical round of Greedy[2]. In this example we have n = 5 and 4 balls
arrive. Balls 1, 2, and 3 choose the same bin with a load of 2 and a bin with larger node and hence all move
the same bin resulting in that bin having the highest load. Moreover, Ball 4 chooses two bins with equal
load and chooses one of these uniformly at random. At the end of the round all non-empty bins delete one
ball (marked gray).

The Balls-into-Bins with Deletions process can be used to model customers accessing
a web-service are assigned to servers, collisions protocols used for contention resolution
message routing, as well as (iii) real-life queues at airports, supermarkets, etc. [CMM+98,
EG16, MRS00]. Further applications are hashing, shared memory emulations on distributed
memory machines, load balancing with limited information, and low-congestion circuit rout-
ing [MRS00]. Knowing the length of the queues, and therefore the time a user or task spends
in the queue is helpful in the design of systems in which waiting times are a major concern.

The analysis follows–on a superficial level–the approach (which we also used in the Forest
Fire Process) of reducing the underlying problem to a potential that performs a biased
random walk with a drift towards zero (apart from finitely many states) and tail bounds
on the absolute change per round. This time, however, it is not necessary to consider two
consecutive time steps at once. On the other side, we are faced with a different challenge:
It seems hard to “condense” all relevant properties of the load distribution into one single
potential. For that reason, our analysis builds on the careful analysis of the interplay of three
different potentials. Each of these potentials characterizes features of the load distribution,
by mapping the features of the load distribution to a natural number.

In the same spirit as in the Forest Fire Process, the changes in the potential can be
treated as a general random walk with a drift. However, this time the potentials are in
expectation no longer constant but a function of the time step t = ω(poly(n)). In order
to get strong bounds at time t, we first use union bounds in an adaptive way to get rough
bounds on the potentials at all time steps up to time step t. Using combinatorial arguments,
we show that there must have been a state with a favorable load distribution at some round
t−poly(n). From there on we can apply a more fine-grained potential analysis to characterize
the load distribution at time t.

See Chapter 3 for further details about the high-level analysis and common aspects of
both dynamic processes.
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Part II: Consensus Processes

The second part of the thesis focuses on the study of consensus processes through the
lens of Markov Chains. Consensus processes are processes in which each node of a graph
starts with an opinion2 and all nodes execute simple protocols with the goal of attain-
ing consensus quickly, i. e., to agree on one opinion. We distinguish between consensus
dynamics, which are very simple and require little memory and communication, and con-
sensus protocols, which are faster in reaching consensus at the cost of being more compli-
cated often requiring more memory and communication. See Chapter 7 for more details.
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Figure 1.3: The figure depicts the three models with two examples
each.

It is well-known (e. g.,
[Ang80, Lyn89]) that reaching
consensus deterministically is
impossible in many settings of
interest. A natural way of defy-
ing the impossibility results is
by using randomized protocols
- the nucleus of this thesis. The
prevailing randomized dynam-
ics in this area are Voter, 2-
Choices, and 3-Majority, which
we define below (see also Fig-
ure 1.3 for an illustration).
Voter is arguably the simplest
randomized dynamic possible
and 2-Choices and 3-Majority are almost equally simple. However, 2-Choices and 3-Majority
are at the same time efficient self-stabilizing solutions for Byzantine agreement [PSL80,
Rab83]: achieving consensus in the presence of an adversary that can disrupt a bounded
set of nodes each round [BCN+14b, BCN+16, CER14, EFK+16]. We generalize each of
these protocols in different ways and settle the question of the fastest protocol among these
three on the complete graph.

Applications of consensus dynamics and protocols are manifold: The nodes may rep-
resent machines in a network: Consider Bitcoin, where the need of reaching consensus in
a distributed fashion arises frequently whenever two or more parties “mine” a new block
(bundling transactions) simultaneously; otherwise a transaction could be accounted for mul-
tiple times. In fact, distributed consensus is one of the most fundamental problem in dis-
tributed computing with many applications [DGM+11, Pel02, PVV09, CIG+15, BMPS04].
Arguably the most prominent special case of consensus protocols is leader election, the

2We assume that there is no ordering of the opinions.
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heart of distributed computing. In leader election, all nodes start with distinct opinions
and need to agree quickly on one opinion. Applications typically demand both very simple
and space-efficient protocols.

Consensus processes can also be used to develop a better understanding of how opinions
and believes spread in social networks, as well as for other application in social networks
[MS10, MNT14]. Such insights could be used to develop strategies such as determining
how and where to distribute free samples of a new product in order to raise market shares.
Moreover, developing simple consensus dynamics helps to understand how communication
in nature works, e. g., among ants and birds works, as well as many other aspects of nature
[BDDS10, CER14, FPM+02, CDS+13, CC12]. In the following we give an overview of the
results and techniques we show for each of the consensus processes.

The Voter model (see Chapter 8) works as follows. Initially, every node has a distinct
opinion and in each synchronous round each node samples a neighbor uniformly at random
and adopts its opinion. It is well-known that the consensus time follows the same distribu-
tion as the coalescence time, which is defined as follows. The coalescence time is expected
time it takes for n independent random walks starting from different nodes to absorb one
another. We thus study the more amenable consensus time and express it in terms of two
fundamental quantities related to random walks: The mixing time and the meeting time.
As a side product, we obtain tail bounds on the meeting time of random walks prior to the
meeting time.3

We then study 3-Majority (see Chapter 9), where every node samples three other nodes
at random and changes its opinion to the majority among the samples, with ties broken
arbitrarily in case all sampled colors are distinct. The analysis of 3-Majority rests on the
shoulders of Voter: We show via Strassen’s Theorem (Theorem 9.7) the existence of a
coupling between the processes which allows to bound the progress of 3-Majority with the
progress of Voter (Theorem 9.4). The latter allows, in the setting of many distinct opinions,
a much better handle and notion of progress–by making use of the aforementioned “duality”
with coalescing random walks. We also extend the well-known duality between the Voter
and coalescing random walks to obtain bounds on the expected time required to reduce the
number of opinions from n to k. This reduction to coalescing random walks (via theVoter)
together with a potential approach allows us to derive the first unconditional bounds for
the 3-Majority.

Subsequently, we consider the 2-Choices protocol (see Chapter 10) in which a node only
changes its opinion if both of its samples share the same opinion. We obtain the first results
for the case of more than 2 different opinions). We complete the picture by showing that 2-

3The meeting time of two nodes is the expected time for random walks starting from these two nodes to
meet and the meeting time of a graph is the maximum over all pairs of nodes of the graph.
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Choices is slower than 3-Majority but at the same time gives better guarantees for plurality
consensus, meaning that the initially most frequent option prevails.

In the wake of our study of simple consensus dynamics we move to consensus dynamics
which achieve better guarantees on the plurality consensus at the price of being slightly
more sophisticated. First, we harness the guarantees of 2-Choices to develop a considerably
faster algorithm (Chapter 11) to reach plurality consensus on the complete graph. Finally,
in Chapter 12 we appeal to load balancing to design protocols achieving plurality consensus
on general graphs.

Conclusion In essence, we relate a variety of seeming unrelated models to random walks
and use powerful machinery developed in the past decades (such as Strassen’s Theorem,
Hajek’s Theorem, Galton-Watson Trees, Póly urns, Doob-Martingales, etc.) to shed light
on fundamental problems in distributed computing.
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1.1 Introduction française

«Une grande partie de la vie, me semble-t-il, est déterminée par le pur hasard»
- Jean-Claude Pirotte

Cette thèse est consacrée à l’étude des processus stochastiques décentralisés qui sont om-
niprésents dans notre vie quotidienne. Ils décrivent par exemple le mouvement des atomes,
les marchés boursiers, les personnes que nous rencontrons, les élections, etc. 4, et nous
étudions dans cette thèse une large gamme d’exemples modélisés par des processus sto-
chastiques : les réseaux sociaux, les processus de balles dans les bacs et les dynamiques et
protocoles fondamentaux de consensus.

La particularité du travail réalisé dans cette thèse est de ramener systématiquement
l’étude de ces processus à l’étude de marches aléatoires sur des ensembles de basse dimension
(par exemple les entiers naturels), à l’aide d’une large palette d’outils de probabilités.

Première partie : processus dynamiques en temps infini. La première partie de
cette thèse est consacrée aux processus dynamiques en temps infini. Nous commencerons par
nous pencher sur le processus dynamiques de nouveaux utilisateurs sur les réseaux sociaux.
En effet, l’étude des réseaux sociaux est primordiale dans la compréhension des sociétés dans
lesquelles nous vivons - réelles et virtuelles. La communication et l’interaction avec autrui
ont évolué : de visu (réel) vers les réseaux sociaux en ligne (virtuel). Les réseaux sociaux qui
nous entourent vont bien au-delà des liens amicaux et incluent les liens commerciaux, les
collaborations académiques, les relations amoureuses, voire l’échange d’idées politiques et la
propagation des maladies. L’étude de ces réseaux sociaux est capitale dans divers domaines,
y compris l’économie, les sciences sociales, le marketing, la propagation des maladies, la
politique [Pik13, Jac+08, SR03, EGA+04, Jac05], etc.

Afin de comprendre les réseaux sociaux il est nécessaire de trouver un modèle qui pré-
sente les mêmes caractéristiques que ces dernieres. Dans cet esprit, de nombreux modèles
ont été proposés (voir Chapter 4 pour une vue d’ensemble). Un modèle bien connu est le
Forest Fire Process introduit par [LKF07]. Le modèle Forest Fire est un modèle pour les
réseaux sociaux dans lequel arrivent perpétuellement de nouveaux utilisateurs : à chaque
instant, un utilisateur arrive et se connecte à un autre utilisateur choisi uniformément au
hasard parmi ceux déjà présents. Le nouvel utilisateur exécute alors un processus récursif
simple pour déterminer ses connexions, c’est-à-dire son voisinage (voir Chapter 4 pour le
modèle précis et Figure 1.4 pour une illustration).

4Bien que tous ces processus ne soient pas intrinsèquement stochastiques, les méthodes de prédiction
basées sur des modèles déterministes nécessitent bien souvent des calculs infaisables en pratique car trop
complexes. Une façon de remédier à cette complexité est les traiter de façon stochastique. Des prédictions
précises par des modèles déterministes sont souvent infaisables face à la complexité des calculs. Le traitement
de ces processus comme inhérents aléatoires permet de bonnes estimations, comme par example la prédiction
du nombre de fois où un dé montre 6.
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Figure 1.4: A réseau social généré par le forest fire processus.

Il y a 10 ans, Leskovec et
al. [LKF07] ont fait la conjec-
ture suivante à partir des ré-
sultats de leurs simulations :
Le Forest Fire Process présente
« l’effet du petit monde », c’est-
à-dire que la distance atten-
due entre n’importe quelle paire
d’utilisateurs est constante. À
partir des hypothèses faibles,
nous avons pu prouver ceci.
L’idée clé de la preuve est l’in-
troduction d’une fonction po-
tentielle qui nous permet de
montrer que chaque fois que la
distance d’un utilisateur dans le
réseau à l’ensemble initial d’uti-
lisateurs est grande, alors le potentiel diminuera en espérance au cours de l’arrivée des pro-
chains deux utilisateurs. En particulier, le potentiel peut être modélisé comme une marche
aléatoire générale sur les nombres naturels biaisée vers zéro (sauf pour un nombre finis
d’états). En outre, le changement absolu par tour du potentiel est centré.

Dans un second temps, nous consacrerons notre étude au processus dynamiques d’utili-
sateurs accédant aux serveurs d’un service web et aux problèmes de routage qui consistent
à répartir efficacement ces utilisateurs entre les différents points d’accès aux serveurs. Ce
problème est classiquement modélisé par un problème de balls-into-bins avec suppression
(voir Chapter 5), processus fondamental en informatique distribuée, modélisant la charge
de machines (ou processeurs) dans les systèmes et les files d’attentes pour accéder à ces
services.

En pratique, il est essentiel de pouvoir prédire la longueur des files d’attente et, par
conséquent, le temps que l’utilisateur ou la tâche passe dans la file afin de concevoir effica-
cement les infrastructures.

Dans Chapter 5, nous montrons en quoi ce problème peut être modélisé par un problème
des balles arrivant de façon aléatoire dans différents bacs. Nous étudions la version des boules
dans les bacs qui fonctionne comme suit. À chaque étape du temps, un lot de 0 à n boules
arrive : chaque n boule potentielle apparaît avec probabilité λ < 1 et chacune des boules
apparues choisit (I) uniformément au hasard à partir de n bins (Greedy[1]) ou (ii) de
manière glouton parmi deux bacs échantillonnés uniformément au hasard à partir de n bins
(Greedy[2]). À la fin de chaque tour, chacun des bacs non vide supprime une boule (voir
Figure 1.5 pour une illustration).
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Step t (beginning) Step t (after assignment)

ball 1 ball 2 ball 3 ball 4

ball 1

ball 2

ball 3

ball 4

Step t (end)

ball 1

ball 2

ball 3

ball 4

Figure 1.5: Un tour typique de Greedy[2].

Nous attribuons des limites à la charge des bacs après un nombre arbitraire d’étapes
(éventuellement super exponentielles dans le nombre de bacs n) et montrons une différence
exponentielle dans la charge de processus Greedy[1] et Greedy[2]. Nous montrons que
les chaînes de Markov correspondantes sont récurrentes positives et qu’il y a une différence
exponentielle dans la charge, similaire à celle des processus classiques à deux choix de boules
dans les bacs [ABKU99]. Les applications sont Hashing, les émulations de mémoire partagée
sur les machines à mémoire distribuée, l’équilibrage de charge avec des informations limitées
et le routage des circuits à faible congestion [MRS00].

Notre analyse s’appuie sur une analyse minutieuse de l’interaction entre différents po-
tentiels que nous introduisons pour notre analyse. Chacun de ces potentiels représente les
caractéristiques de la répartition de la charge, et l’évolution de ces potentiels s’apparente à
une marche aléatoire générale avec une dérive. Afin d’obtenir des comportement asympto-
tiques, nous utilisons d’abord les limites de l’union d’une manière adaptative, puis à l’aide
d’arguments combinatoires en d de l’approche générale (voir Forest Fire Process).

Deuxième partie : Dynamique de consensus et protocoles de consensus. La
deuxième partie de la thèse est consacrée à l’étude de la dynamique et des protocoles de
consensus à travers l’objectif des chaînes de Markov : les dynamiques de consensus sont des
processus dans lesquels chaque noeud d’un graphe commence par une opinion 5 et tous les
nœuds exécutent des protocoles simples dans le but d’atteindre un consensus rapidement,
c’est-à-dire de s’entendre sur un seul avis. Les nœuds peuvent être utilisés dans un réseau
comme par exemple dans le cas de Bitcoin ou chaque fois que deux ou plusieurs parties
« découvrent » un nouveau bloc (regroupement de transactions) simultanément. Dans ce
cas, tous les joueurs doivent se mettre d’accord sur l’un de ces blocs de manière distribuée.
En fait, le consensus distribué est l’un des problèmes les plus fondamentaux en informatique
distribuée avec de nombreuses applications dans l’informatique distribuée [DGM+11, Pel02,
PVV09, CIG+15, BMPS04]. Le cas le plus important des protocoles de consensus est, sans
doute, l’élection de chef, le cœur de l’informatique distribuée. Dans l’élection de chef, tous
les nœuds commencent par des opinions distinctes et doivent s’entendre rapidement sur

5Nous supposons qu’il n’y a pas de ordre des opinions.
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un seul avis. Toutes ces applications exigent généralement des protocoles très simples et
économes en espace.

Les protocoles de consensus peuvent également être utilisés pour développer une
meilleure compréhension de la façon dont les opinions et les croyances se diffusent dans les
réseaux sociaux et autres applications des réseaux sociaux [MS10, MNT14]. En outre, le
développement d’une simple dynamique de consensus aide à comprendre comment la com-
munication dans la nature, par exemple parmi les fourmis et les oiseaux, fonctionne ainsi
que d’innombrables autres aspects de la nature, [BDDS10, CER14, FPM+02, CDS+13,
CC12].

Il est bien connu (e. g., [Ang80, Lyn89]) que l’obtention d’un consensus de manière
déterministe est impossible dans de nombreux contextes d’intérêts.

Une façon naturelle de défier les résultats impossibles est l’utilisation de protocoles
randomisés - le noyau de cette thèse. La dynamique aléatoire prédominante dans cette zone
est Voter, 2-Choices, et 3-Majority que nous présentons par la suite (voir Figure 1.6 pour
une illustration).

Voter est sans doute la dynamique aléatoire la plus simple possible et 2-Choices et 3-
Majority sont tout aussi simples et sont en même temps des solutions auto-stabilisantes
efficaces pour l’accord byzantin [PSL80, Rab83] : parvenir à un consensus en présence d’un
adversaire qui peut perturber un ensemble borné de noeuds à chaque tour [BCN+14b,
BCN+16, CER14, EFK+16].
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Figure 1.6: Illustration des dynamiques aléatoires.

Nous généralisons chacun
de ces protocoles de différentes
manières et réglons la ques-
tion du protocole le plus rapide
parmi ces trois sur le graphique
complet.

Le modèle Voter
(voir Chapter 8) fonctionne
ainsi : initialement, chaque
nœud a une opinion distincte
et, dans chaque cycle syn-
chrone, échantillonne un voi-
sin uniformément au hasard et
adopte son opinion. Il est bien
connu que le temps de consen-
sus suit la même distribution
que le temps de coalescence, c’est-à-dire le temps qu’il faut pour n marches aléatoires à
partir de différents nœuds pour s’annuler. Nous étudions donc le temps de consensus et
l’exprimons en deux quantités de marches aléatoires : le temps de mélange et le temps de
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réunion. En tant que produit secondaire, nous obtenons des limites de queue sur le temps
de la réunion des marches aléatoires avant le temps de réunion. 6

Nous étudions ensuite 3-Majority (voir Chapter 9), où chaque noeud échantillonne trois
autres noeuds au hasard et change son opinion à la majorité parmi les échantillons, avec des
liens cassés arbitrairement dans le cas où toutes les couleurs échantillonnées sont distinctes.
L’analyse de 3-Majority repose sur les épaules de Voter : nous montrons via le théorème de
Strassen l’existence d’un couplage entre les processus qui permettent de lier la progression
de 3-Majority avec l’évolution de Voter. Ce dernier permet, dans le cadre de nombreuses
opinions distinctes, une meilleure maîtrise et une notion de progrès, en utilisant la dualité
susmentionnée avec des marches aléatoires coalescentes. Nous étendons également la dualité
bien connue entre le temps de consensus et le temps de coalescence pour obtenir une borne
sur le temps requis pour réduire de n opinions à k opinions. Cette réduction à Voter et donc
aux marches aléatoires coalescentes avec une approche potentielle nous permet d’obtenir les
premières limites inconditionnelles pour le 3-Majority.

Par la suite, nous considérons le protocole 2-Choices (voir Chapter 10) dans lequel un
noeud échantillonne deux autres nœuds et ne change son avis que si les deux échantillons
partage le même avis. Nous obtenons les premiers résultats pour le cas où plus de deux avis
sont différents. De plus, nous complétons l’image globale en montrant que 2-Choices est plus
lent que 3-Majority, mais en même temps donne de meilleures garanties pour consensus de
la pluralité, ce qui signifie que l’opinion initialement majoritaire l’emporte.

À la suite de notre étude de la dynamique de consensus simple, nous nous déplaçons
vers les protocoles de consensus qui permettent d’obtenir de meilleures garanties sur la
pluralité de consensus au prix d’être plus sophistiqués. Tout d’abord, nous exploitons ces
garanties de 2-Choices pour développer un algorithme beaucoup plus rapide (Chapter 11)
pour atteindre un consensus de la pluralité sur le graph complet. Enfin, dans Chapter 12,
nous faisons appel au domaine de la répartition de charge pour concevoir des protocoles
obtenant un consensus de pluralité sur des graphes généraux.

6Le temps de réunion de deux nœuds est le temps prévue pour les marches aléatoires commençant sur
les noeuds respectifs et le de temps réunion d’un graphe est le maximum sur toutes les paires de noeuds du
graphe.
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1.2 Organization and Publications

In the first part of this thesis (Part I) we analyze two infinite dynamic processes: The
Forest Fire Process (Chapter 4) and a Balls-into-Bins version (Chapter 5). See Chapter 3
for an introduction and overview of our results. The second half of the thesis (Part II)
considers consensus dynamics and protocols and an introduction and overview can be found
in Chapter 7. In this part we study Voter (Chapter 8), 2-Choices (Chapter 10), 3-Majority
(Chapter 9), and other protocols (Chapter 11 and Chapter 12). Chapter 2 introduces
the bulk of the notation used in this thesis and Appendice A provides the probabilistic
preliminaries of this thesis.

Publications comprised in this thesis

• Chapter 4 considers Forest Fire Process and is based on
V. Kanade, R. Levi, Z. Lotker, F. Mallmann-Trenn, and C. Mathieu: Distance in the
Forest Fire Model How far are you from Eve? In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’16, 2016, pages 1602–
1620. url: http://dx.adoi.org/10.1137/1.9781611974331.ch109

• Chapter 5 considers the Balls-into-bins process and is based on
P. Berenbrink, T. Friedetzky, P. Kling, F. Mallmann-Trenn, L. Nagel, and C. Wastell:
Self-stabilizing Balls & Bins in Batches: The Power of Leaky Bins. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed Computing. PODC’16, 2016,
pages 83–92. url: http://adoi.acm.org/10.1145/2933057.2933092

• Chapter 8 considers the Voter and is based on
V. Kanade, F. Mallmann-Trenn, and T. Sauerwald: On coalescence time in graphs-
When is coalescing as fast as meeting? In CoRR, volume abs/1611.02460, 2016. url:
http://arxiv.org/abs/1611.02460

• Chapter 9 considers the 3-Majority and is based on
P. Berenbrink, A. E. F. Clementi, R. Elsässer, P. Kling, F. Mallmann-Trenn, and E.
Natale: Ignore or Comply?: On Breaking Symmetry in Consensus. In Proceedings of
the ACM Symposium on Principles of Distributed Computing, PODC’17, Washington,
DC, USA, July 25-27, 2017, 2017, pages 335–344. url: http://doi.acm.org/10.

1145/3087801.3087817

• Chapter 10 considers the 2-Choices and is based on
R. Elsässer, T. Friedetzky, D. Kaaser, F. Mallmann-Trenn, and H. Trinker: Efficient
k-Party Voting with Two Choices. In CoRR, volume abs/1602.04667, 2016. url:
http://arxiv.org/abs/1602.04667 and the preceding publication
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• Chapter 11 considers our asynchronous protocol and is based on the preceding publi-
cation

• Chapter 12 considers our consensus protocol inspired by load balancing and is based
on
P. Berenbrink, T. Friedetzky, P. Kling, F. Mallmann-Trenn, and C. Wastell: Plural-
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Chapter 2

General Notation

We denote by N = {0, 1, . . . , }, R the set of all natural and real numbers, respectively.
Let [n] := {1, 2, . . . , n}. We write log for the logarithm with base 2 and ln for the natural
logarithm. Let d ∈ N and x,y ∈ Rd. We define ‖x‖1 := ∑

i∈[d] xi and ‖x‖2 :=
(∑

i∈[d] x
2
i

)1/2.
Moreover, let x↓ denote a permutation of x such that all components are sorted non-
increasingly. We write x � y and say x majorizes y for ‖x‖1 = ‖y‖1 if, for all l ∈ [d], we
have ∑i∈[l] x

↓
i ≥

∑
i∈[l] y

↓
i . In general, we will use bold-faced letters to denote vectors and

capital letters to denote random variables and sets.

Graphs. Graphs G = (V,E) considered in this thesis may be directed or undirected; typ-
ically we assume |V | = n and |E| = m, though if there is scope for confusion we use |V |
or |E| explicitly. For undirected graphs, for a node v ∈ V we denote by N(v) its neigh-
bourhood, i. e., N(v) := {w | {v, w} ∈ E}, and its degree by deg(v) := |N(v)|. In the case
of directed graphs, we denote by N+(v) := {w | (v, w) ∈ E} its out-neighbourhood and by
deg+(v) := |N+(v)| its out-degree. Similarly, N−(v) := {u | (u, v) ∈ E} denotes its in-
neighbourhood and deg−(v) := |N−(v)| its in-degree. Furthermore, davg := ∑

v∈V deg(v)/n
denotes the average degree. We use dmax and dmin to refer the maximum and minimum de-
gree. Whenever there is scope for confusion, we use the notations degG(u), NG(v), davg(G),
etc. to emphasize that the terms are with respect to graph G.

Random Variables. For random variables X and Y we write X ≤st Y if X is stochas-
tically dominated by Y , i. e., for all k ∈ R it holds P[X ≥ k ] ≤ P[Y ≥ k ]. We denote by
Ft the filtration (i. e.,, intuitively speaking, the history of all random decisions) up to time
step t. Throughout this thesis, the expression w.h.p. (with high probability) means with
probability at least 1− n−Ω(1) and the expression w.c.p. (with constant probability) means
with probability > 0.
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Probability Distributions. We denote by Bernoulli(p) the Bernoulli distribution with
success probability p, by Bin(n, p) the Binomial distribution, with n independent trials, each
having success probability p, by Geom(p) the geometric distribution with success probability
p, i. e., for X ∼ Geom(p) we have P[X = i ] = (1− p)ip for i = 0, 1, . . . ., by Poisson(λ) the
Poisson distribution with mean λ, and by Uniform(b) the uniform distribution on the ele-
ments {0, 1, 2, . . . , b}. For a probability vector Θ ∈ [0, 1]d, we use Mult(m,Θ) to denote the
multinomial distribution for m trials and d categories (the i-th category having probability
Θi).

Markov Chains. Unless stated otherwise, all random walks are assumed to be discrete-
time (indexed by natural numbers) and lazy, i. e., if P denotes the n× n transition matrix
of the random walk, pu,u = 1

2 , pu,v = 1
2 deg(u) for any edge (u, v) ∈ E and pu,v = 0 otherwise.

We define ptu,v to be the probability that a random walk starting at u ∈ V is at node v ∈ V
at time t ∈ N. Furthermore, let ptu,· be the probability distribution of the random walk
after t time steps starting at u. By π we denote the stationary distribution, which satisfies,
for undirected graphs, π(u) = deg(u)

2m for all u ∈ V .
Let d(t) := maxu ‖ptu,· − π‖TV and d̄(t) := maxu,v ‖ptu,· − ptv,·‖TV, where ‖ · ‖TV denotes

the total variation distance. Following Aldous and Fill [AF02], we define the mixing time
to be tmix(ε) := min{t ≥ 0 : d̄(t) ≤ ε} and for convenience we will write

tmix := tmix(1/e).

We define separation from stationarity at a given time step as follows: s(t) := min{ε : ptu,v ≥
(1 − ε)π(v) for all u, v ∈ V }. The definition ensures that s(·) is submultiplicative, so in
particular, non-increasing [AF02], and we can define the separation threshold time

tsep := min{t ≥ 0 : s(t) ≤ e−1}

and, by [AF02, Lemma 4.11], tsep ≤ 4tmix. We write Thit(u, v) to denote the first time step
t ≥ 0 at which a random walk starting at u hits v. In particular, Thit(u, u) = 0. The hitting
time thit(u, v) = E[Thit(u, v) ] of any pair of nodes u, v ∈ V is the expected time required
for a random walk starting at u to hit v. Thus, thit(u, v) is the expectation of Thit(u, v).
The hitting time of a graph

thit := max
u,v

thit(u, v)

is the maximum over all such pairs.
For A ⊆ V , we use thit(u,A), to denote the expected time required for a random

walk starting to u to hit some node in the set A. Furthermore, we define thit(π, u) :=∑
v∈V thit(v, u) · π(v). Furthermore, we define tavg-hit := ∑

u,v∈V π(u) · π(v) · thit(u, v).
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For two random walks (Xt)t≥0, (Yt)t≥0 starting at u and v let

tmeet(u, v) := min{t ≥ 0: Xt = Yt}

denote the expected meeting time, i. e., the first time step at which both walks are on
the same node. We write tπmeet to denote the expected meeting time of two random walks
starting at two independent samples from the stationary distribution. Finally, let tmeet :=
maxu,v tmeet(u, v) denoted the worst-case expected meeting time.

Consensus Processes. The processes are defined in Chapter 7 and we restrict ourselves
to only introducing the important notation. In these processes we have n anonymous nodes
connected by edges of a graph. Initially, each node supports one opinion from the set
[k] := { 1, . . . , k }. We refer to these colors as C1, C2, . . . , Ck. The system state after any
round by an n-dimensional integral vector c = (ci)i∈[n] ∈ Nn0 with ∑i∈[n] ci = n. Here, the
i-th component ci ∈ N0 corresponds to the number of nodes supporting opinion i. If k < n,
then ci = 0 for all i ∈ { k + 1, k + 2, . . . , n }.

Miscellaneous. A function f : Rd → R is Schur-convex if x � y⇒ f(x) ≥ f(y).
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Part I

Probabilistic Analysis of
Distributed Dynamic Processes
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Chapter 3

Contributions Dynamic Processes

The first part of the thesis concerns the analysis of infinite dynamic processes by means
of carefully crafted potentials and the analysis of the potential through (general) random
walks. We consider two processes: Forest Fire Process and Balls-into-Bins with Deletions.

Definition Forest Fire Process. The Forest Fire Process is a model for generating
random graphs representing the evolution of social networks. The nodes in the generated
graph represent the users and the each edges represents friendship between the adjacent
nodes.

At every time step a user arrives and connects to another user chosen uniformly at
random among those already present. The new user then executes a simple recursive process
to determine their connections i. e., their neighborhood. Formally, the Forest Fire Process
is defined iteratively, starting from a seed graph G0. Let Gt−1 = (Vt−1, Et−1) denote the
graph at the end of round t − 1. In round t, a new node ut arrives, and chooses a node
amb(ut) ∈ Vt−1 uniformly at random, where we call the node amb(ut) the ambassador of
the new node ut. After selecting the ambassador, we burn the ambassador, meaning we
add the edge (ut, amb(ut)) to the graph. The graph generation process then continues as
follows. First choose a random subset of the edges of Gt−1 as active edges: every edge (u, v)
of Gt−1 is active independently with probability min{1, α

deg+(u)}, where α is a parameter of
the model and deg+(u) is u’s out-degree.

Secondly, add an edge to all vertices ofGt−1, reachable from amb(ut) by a path consisting
of active edges. This construction of Gt can be obtained by executing Algorithm 1 and
Algorithm 2.

We show, under mild assumptions, that if the parameter α is a large enough constant,
then this models exhibits indeed the small world effect, i. e., the expected distance between
two users is constant. Conversely, if α is below some constant, then the expected distance
is of order Ω(logn).
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Algorithm 1: Forest Fire Process (G0)
for t = 1, 2, . . . do

upon arrival of node ut at time t:
amb(ut)← a node chosen u.a.r. from Vt−1
S ← Burn(Gt−1, amb(ut))
Gt ← (Vt−1 ∪ {ut}, Et−1 ∪ {(ut, w) : w ∈ S})

Algorithm 2: Burn(G = (V,E), v) // Outputs a subset of V reachable from v

H ← ∅
for all (w, x) ∈ E do

with probability min
{

1, α
deg+

Gt
(w)

}
H ← H ∪ {(w, x)}

return {x ∈ V : there exists a directed path from v to x in H}

Definition Balls-into-Bins with Deletions. The Balls-into-Bins with Deletions pro-
cess (see Chapter 5) is a fundamental process modeling, among other things, the load
distribution in distributed systems. The system consists of n bins and balls which arrive
over time according to two strategies: Greedy[1] and Greedy[2]. The process works as
follows.

At each time step, we generate up to n balls, each with probability λ < 0. Each
of the spawned balls (i) chooses the target bin uniformly at random (Greedy[1]) or (ii)
chooses the target bin greedily among two bins chosen uniformly at random (Greedy[2]).
To model the load of real system more realistically, we extend the model by adding the
following ingredient. At the end of each round, all non-empty bins delete one ball each
modeling a finished tasks. In the following we state an algorithm summarizing the above.

The algorithm is executed by each of the n generators.
Algorithm 3: Greedy[d] for arrival rate λ, d ∈ [1, 2]

Spawn a ball w.p. λ < 0.
if a spawned is spaaned then
for all choice i ∈ [d] do

samplei = Uniform(bin1,bin2, . . . ,binn)
Move to bin with smallest load among sample1,Sample2, . . . ,Sampled

We show that both protocols are positive recurrent and that there is an exponential
load difference between both protocols.

Analysis. At first glance, the Forest Fire Process and the Balls-into-Bins with Dele-
tions process appear to be completely unrelated. The fabric connecting these processes is
our analysis. We design custom-tailored potential functions for the Forest Fire Process,
Greedy[1], and Greedy[2].
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Figure 3.1: The potential has a negative drift and the potential change exhibits a tail-bound.

Stating the precise definitions of the potentials would overstrain this overview (and is
therefore left to Chapter 4 and Chapter 5) but their intuition is simple. We show that, when-
ever any of our potentials surpasses a certain threshold, then it decreases in expectation–
regardless of the current state. Furthermore, the distribution of the potential change has
an exponential tail-bound, i. e., the probability to increase the potential by k is 2−Ω(k).
This allows us to model the potential via a general random walk on the real numbers. See
Figure 3.1 for an illustration.

It is worth mentioning that the potentials do not decrease (in expectation) in every case.
In fact, when the potential is close to zero it increases in expectation.

Since both processes are infinite, it does happen–albeit very rarely–that the quantities
of interest (e. g., the maximum load) attain a value which is a function of the time t. Our
potential approach shows that this is a “rare” state and whenever the system is in such a
state, it quickly recovers.

The potentials are designed in such a way that the following holds. Whenever the
potentials are large at a given time step t, we simply assume that system is in the worst-
case state and show that the potentials decrease in expectation. This technique proves to
be very useful for the problems we study since both problems are of infinite nature.

The analysis of such potentials dates back to Hajek [Haj82] (Theorem A.11) and less
general versions have successfully applied to various areas and notably to evolutionary
algorithms and drift theory [BFG03, DG13, PR99].

In order to harness the aforementioned general approach for the analysis of both prob-
lems, a few problem specific enhancement are required: For the Forest Fire Process we were
unable to find a potential that decrease in expectation in a single time step, regardless of the
current state. Instead, we consider the potential drop over two consecutive time steps: The
node arriving in the first time step t+ 1 is likely to have a very “favorable” neighborhood,
such that the node arriving at time step t+2 causes the potential to decrease. Our potential
might be of general interest and refer the reader to Chapter 4 for an in-depth discussion.
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As for the Balls-into-Bins process, we use three different potentials: Potential Φ(t) mea-
suring the load difference to average load over time, potential Ψ(t) counting the total load in
the system, and potential Γ(t) which interweaves both potentials and allows us use to prove
positive recurrence. Because of the strong dependencies between the potential, we start
by focusing solely on Φ(t) and we obtain bounds for arbitrary time steps (possibly super-
exponential in the number of bins). This allows to apply the general approach described
above and gives a weak bound on the maximum load at arbitrary time steps.

To derive a stronger bound we combine the bounds on Φ with combinatorial arguments.
To do so use union bounds in an adaptive way to get rough bounds on the potentials at
all time steps up to time step t. We then show that that there must have been a step
t − poly(n) where Ψ was very small. Together with our rough bounds on Φ, we are able
to establish strong bounds on the maximum load at time t. Finally, we are able to analyze
the third potential Γ by means of the general approach: We reduce it to a general random
walk with drift towards zero whenever it’s large and apply Hajek’s Theorem. Using Γ we
show positive recurrence of the underlying Markov chain.

Potential of the approach. It seems that the infinite nature (of the processes we consid-
ered) renders many standard approaches futile: for example, the approach of relying solely
on invariants which could fail over the course of time. On the other hand, the concepts
developed for Markov chains such as positive recurrence, and drift theory capture the notion
of “recovery”, making them very useful in the study of infinite processes. Using these tech-
niques reduces the analysis to finding suitable potentials encapsulating the key-properties of
the underlying problem. We are optimistic that this general potential approach, as well as
our ideas used to craft and analyze our potentials, carry over to other dynamic processes.
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Chapter 4

Social Networks: The Forest Fire
Model [KLL+16]

Ten years ago, Leskovec, Kleinberg and Faloutsos introduced the Forest Fire model, a
generative model to understand the dynamics of social networks over a long period [LKF07].
They examined real-world networks such as the ArXiv Citation Graph, the Patents Citation
Graph, the Autonomous Systems Graph, Affiliation Graphs, the Email Network, the IMDB
Actors-to-Movies Network, and a Product Recommendation Network. They observed that
these social networks become denser over time. They also made the surprising observation
that the effective diameter of the networks “shrinks" over time, instead of growing, as
was previously thought. They suggested the Forest Fire model as an attempt to explain
densification, shrinking diameter, and heavy-tailed distributions of vertex indegrees and
outdegrees.

In this model, the evolution initially starts with a fixed seed graph. Time is discrete
and at each time t a node ut arrives, picks a random node, w, in the current graph as its
“ambassador" and connects to it. The ambassador is considered burned and all other nodes
are considered unburnt. Node ut then generates two random numbers x and y and selects
x outgoing edges from w and y in-coming edges to w incident to nodes that have not yet
been burned. If not enough outgoing or incoming edges are available, ut selects as many as
it can. Let w1, w2, ..., wx+y denote the other endpoints of the edges selected. ut connects
to w1, w2, ..., wx+y, marks them as burned, and then applies the previous step recursively
to each wi. See Figure 4.1 for an illustration. Leskovec et al. observed through simulation,
that the Forest Fire Model appears to have the shrinking diameter property, but leave open
the question of providing a rigorous proof:

“Rigorous analysis of the Forest Fire model appears to be quite difficult. However
in simulations we find that [...] we can produce graphs that [...] have diameter
that decrease."
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Figure 4.1: A social network generated by the Forest Fire Process. The node sizes and the colors are a
function of the degrees and the node labels correspond to the arrival times.

Formal Definition

Formally, the Forest Fire Process is defined iteratively, starting from a seed graph G0. Let
Gt−1 = (Vt−1, Et−1) denote the graph at the end of round t− 1. In round t, a new node ut
arrives, and chooses a node amb(ut) ∈ Vt−1 uniformly at random, where we call the node
amb(ut) the ambassador of the new node ut. After selecting the ambassador, we burn the
ambassador, i. e., we add the edge (ut, amb(ut)) to the graph. This then propagates as
follows.

First choose a random subset of the edges of Gt−1 as active edges: every edge (u, v) of
Gt−1 is active independently with probability min{1, α

deg+(u)}, where α is a parameter of
the model. Second, burn all vertices of Gt−1, reachable from amb(ut) by following directed
active edges. Third, add an edge from ut to every burnt vertex. This construction of Gt can
be obtained by executing Algorithms 4 and 5. Although, it is more natural to view burning
as a branching process in which we consider the burnt nodes “layer by layer”, we describe
the process as a percolation process1 in order to avoid the need to define a specific order
for the burning process: In a branching process, a node w could appear on several levels
however we allow w to only be burnt once2 and thus the order in which we burn nodes
affects the random subtree of burnt nodes.

1A percolation process is a process in which every edge of the graph is present independently with a fixed
probability.

2In Section 4.7 we discuss a model where we allow a node to burn several times
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Algorithm 4: Forest Fire Process (G0)
for t = 1, 2, . . . do

upon arrival of node ut at time t:
amb(ut)← a node chosen u.a.r. from Vt−1
S ← Burn(Gt−1, amb(ut))
Gt ← (Vt−1 ∪ {ut}, Et−1 ∪ {(ut, w) : w ∈ S})

Algorithm 5: Burn(G = (V,E), v) // Outputs a subset of V reachable from v

H ← ∅
for all (w, x) ∈ E do

with probability min
{

1, α
deg+

Gt
(w)

}
H ← H ∪ {(w, x)}

return {x ∈ V : there exists a directed path from v to x in H}

4.1 Results

We now state our two main results for the Forest Fire model. The parameters α and the
input graph G0 are fixed and we study the asymptotic properties of the graph Gt. We have
not optimised the constants in the theorem statements and expect them to be far from
being tight.

Theorem 4.1. Let α ≥ 100 and let G0 be a directed cycle such that |G0| ≥ α20, the Forest
Fire Process with parameters α and G0 has the property of non-increasing distance to G0,
i. e., for every t,

E[ distGt(u,G0) ] = O(1),

where the expectation is over a node u, which is chosen uniformly at random in Gt, and
dist(u,G0) is the directed distance.3

Remark 4.2. It is not critical that G0 is a cycle. The main requirement is that conditioned
on the Burn Process reaching G0, a large enough constant number of vertices of G0 will
be burnt. For example, G0 being an expander, clique, or a strongly connected graph with
large girth suffices. Simulations seem to indicate that G0 being a single node also result in
a similar behaviour.

Theorem 4.3. Let α ≤ 1/(4e) and let G0 be an arbitrary graph, the Forest Fire Process
with parameters α and G0 is such that

E[ distGt(u,G0) ] = Ω(log t),

using the same notation as above.
3Note that dist(vt, G0), once defined at time t, never changes
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4.2 Approach and Technical Contributions

The main idea is as follows. We first reduce the process to the line process in which the
node at time t connects to the node which arrived at time t − 1 (see Section 4.4). In this
line process we define a potential φ(vt) which measures, intuitively speaking, the “typical
path length” of node vt arriving at time step t to the initial graph L0. We defer the formal
definition to Section 4.5. We would like to argue that no matter what happens up to
time t, dist(vt+1, L0) is less than dist(vt, L0) in expectation whenever dist(vt, L0) is large
enough. This does not seem to be possible when using distance directly; we can construct
graphs where this is not true. However, these graphs are unlikely to arise under the Line
Fire Process. Analysing φ instead gets around this issue. In fact, assuming φ(v2t) > 2,
we show that φ(v2t+2)− φ(v2t) has negative expectation—irrespective of the history up to
time 2t. The potential is designed such that v2t+1 sets up a favourable situation such that
v2t+2 is able to decrease the potential w.r.t. to the value φ((v2t). The crucial part is that
φ(vt) is designed such that it dominates dist(vt+1, L0) and thus assuming we can bound
E[φ(v) ] = 0, we get, by triangle inequality, that for u, v chosen uniformly at random

E[ dist(u, v) ] ≤ E[ dist(u, L0) ] + E[ dist(v, L0) ] ≤ E[φ(u) ] + E[φ(v) ] = O(1).

Note that even though the edges added are directed, we treat the graph as undirected when
we consider the distance of nodes.

4.3 Related work

There is a extensive variety of models for generating graphs of social networks, each re-
producing a subset of properties observed in real-world social networks. The first major
line of research considers static graphs, where the number of nodes does not change over
the course of time: For example, in small-world like models, there is a fixed underlying
graph which is augmented by additional links between the vertices. Kleinberg proposed
a particular random augmentation of links on the grid and proved that this gives rise to
a decentralised greedy algorithms to find short paths among nodes [Kle01]. In a more
recent paper, Chaintreau et al. proposed a different model, in which similar results are
achieved, where the grid is augmented with links generated by random walks on the grid
with occasional resets [CFL08].

Other static models focus mainly on reproducing both densification and small diameter
simultaneously. One example is the model by Leskovec et al. which uses a matrix-operation,
namely, the Kronecker product, to generate self-similar graphs recursively [LCKF05]. They
reproduce a vast number of properties including heavy tails for the in- and out-degree
distribution and small diameter. However, the deterministic nature of this model produces
unrealistic features. To remedy this drawback, they propose the Stochastic Kronecker
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Graph (SKG) model which has been very successful and is widely used in simulations. One
disadvantage of SKG is that the adjustment of the parameters may have a huge influence
on the properties of the resulting graphs. Recently, Seshadhri et al. [SPK12] showed that
in fact the SKG model bears resemblance to a variant of the Chung and Lu model [CL03]
which generalises classical random graph models. Here for any given collection of n weights
(w1, w2, . . . , wn), the probability of an edge (i, j) is given by wiwj(

∑
k wk).

Additionally, Pinar et al. [PKC13] introduce the Block Two-Level Erdős Rény (BTER)
model, and demonstrate that it captures observable properties of many real-world social
networks. Given a degree sequence, the model works in two stages: In the first stage the
nodes of roughly the same degree are grouped into clusters and the edges in each cluster are
generated by ER (Erdős Rény) graphs for a given using another input parameter. Finally,
the “excess” edges of the node i, i. e., the edges not yet used up by edges in the same cluster,
are generated by randomly choosing two endpoints proportional to the excess edges of the
nodes. Resulting self-loops and multi-edges are discarded.

The second major research line considers graph evolving over time where at each time
step new vertices and edges are added to the evolving graph. Barabási et al. proposed
the so called preferential attachment model in which new vertices attach preferentially to
vertices with high degree, reproducing the power-law distribution over the in-degrees [BA99].
Building on preferential attachment, Cooper and Frieze propose a model in which exhibits
a power-law of the degree as well as a shrinking diameter and densification; unfortunately,
it involves many parameters [CF03]. Roughly speaking, the graph at time Gt is generated
as follows. With some probability a new node is added with one or more edges to Gt−1

and with the remaining probability an already existing vertex is selected and exta edges are
added to it. Recently, Avin et al. extended the preferential attachment model to incorporate
densification [ALNP15]: Similarly as in [CF03] either a new node arrives or new edges are
added. In either case, the nodes are chosen according to preferential attachment. Krapivsky
and Redner investigated the development of random networks as the attachment probability
grows [KR01].

The authors of [KKR+99, KRR+00] consider an edge copying evolution in which, on
arrival, a new vertex picks an existing node and copies a subset of its neighbours. Another
model is the Community Guided Attachment model, in which there is a hierarchical back-
bone structure that determines the linkage probabilities [LKF07]. Lattanzi and Sivakumar
generate random graphs according to an underlying affiliation network: Each node picks a
random subset of affiliations and in each affiliation the nodes are connected as a clique (ad-
ditionally, there is a process of preferential attachment) [LS09]. They show that this model
exhibits shrinking diameter, densification, and a heavy-tailed degree distribution. Moreover,
they connected the densification of the network to the non-linearity of the core. The recur-
sive search model proposed by Vazquez is quite similar to the Forest-Fire model [Vaz01]. In
the recursive search model, vertices are added to the graph one by one; when a new vertex
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arrives it first connects to a random vertex and then recursively connects to a subset of
its unvisited neighbours. The main difference is that in the Forest Fire model, the average
number of neighbours visited out of the current node is constant, where as in the recursive
search model this is a constant fraction. Thus, presence of high-degree nodes can make the
two models quite different.

In the Random-Surfer Model (RSM), introduced by Blum et al. [BCR06], the nodes
arrive one by one. Upon arrival, each node performs several random walks from random
starting points and connects to the endpoints of the performed walks. Our Random Walk
Process (RWP) share resemblance to the RSM. The main difference is that in the RWP
a new node connects to all the visited nodes in the random walk (instead of just the
endpoint). Chebolu and Melsted [CM08] proved that the RSM and the PageRank-based
selection model, proposed by Pandurangan et al. [PRU06], are equivalent and also proved
that the expected in-degree of vertices follows a powerlaw distribution. More recently,
Mehrabian and Wormald [MW14] proved logarithmic upper bounds for the diameter in the
RSM and the PageRank-based selection model as well as a logarithmic lower bound for a
special case where the generated graph is a tree.

The only rigorous work thus far on the Forest Fire model is by Mehrabian [MW14] who
provide a logarithmic upper bound to the diameter of the Forest Fire model as well as for
other well known models, e.g., the copying model and the PageRank-based selection model.

4.4 Relating graph and line process

4.4.1 Line process

To prove the results for the Forest Fire, we study the related process which we call the Line
Fire Process allowing us to reduce the graph process to a line process: When comparing the
graph processes (Forest Fire Process), defined in Section 4.1, with the line process (Line
Fire Process), the difference is that while in the graph process the first step is to select the
ambassador at random; in the line process we skip this step, and force each new node to
select the most recently added node as its ambassador, i. e., in the line process the first step
is deterministic and follows the line structure.

We state two corresponding technical lemmas for the Line process; in the next sub-
section, we state coupling lemmas to relate the processes and prove the results of Sec-
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tion 4.1, using the corresponding related results on the line (whose proofs are deferred to
later sections), together with the coupling.

Algorithm 6: Line Fire Process(L0)
for t = 1, 2, . . . do

upon arrival of node ut at time t:
amb(ut)← ut−1 (key difference)
S ← Burn(Lt−1, amb(ut))
Lt ← (Vt−1 ∪ {ut}, Et−1 ∪ {(ut, w) : w ∈ S})

Next, we state the relevant lemmas for the Line Fire Process, that are used to prove the
above theorems. The proofs of these lemmas are deferred to later sections.

Lemma 4.4. Let α ≥ 100 and let L0 be a directed cycle, such that |L0| ≥ α20. Then, the
Line Fire Process has the property that

∃c,∃γ < 1 s.t. ∀t ∀j P[ distLt(vt, L0) > j ] < cγj .

To see why Theorem 4.1 follows from Lemma 4.4 observe that the subgraph of Gt by the
vertices on the path from vt to G0 following edges to ambassadors has the same distribution
as Lτ for some τ - This concept is formalized in the remainder of Section 4.4, which the
reader might wish to skip.

Lemma 4.5. There exists an α∗ > 0 such that the following holds. Let α ≤ α∗ and let L0

be an arbitrary graph. Then, the Line Fire Process with parameters α and L0 is such that

E[ distLt(vt, L0) ] = Ω(t).

4.4.2 The ambassador graph

Definition 4.6. The ambassador graph At is the subgraph of Gt = (Vt, Et), consisting of
edges (u, amb(u)) induced by all nodes u 6∈ G0. These edges are referred to as ambassador
edges.

At is a forest of directed trees, rooted at vertices of G0. First, we observe the following
fact.

Fact 4.7. If (u, v) is an edge of Gt \G0, then there exists a path from u to v in At.

To prove our lower bounds, we will use the following bound on the expected distance
to the seed graph in the ambassador graph. The following lemma was originally proven in
[Dev87, Theorem 10].

Lemma 4.8. Let u be a vertex in the ambassador graph At chosen uniformly at random.
Then

E[ distAt(u,G0) ] = Θ(log t) .

31



Proof. Let vk denote the node which arrives at time k, where by convention the vertices of
G0 arrive at time 0. First we prove the upper bound

E[ distAt(u,G0) ] ≤ 1
t

∑
1≤k≤t

E[ distAt(vk, G0) ] . (4.1)

Since distAt(vk, G0) is at most k in the worst-case:

E[ distAt(vk, G0) ] ≤ 2 log2 k + k · P[ distAt(vk, G0) > 2 log k ] . (4.2)

Recall that distAt(vk, G0) is the length the path vk, amb(vk), amb2(vk), . . ., until we reach
G0. Let Xi denote the arrival time of ambi−1(vk) = vk−i+1.

We have, by uniform choice of the ambassador of a node: X1 = k and thus E[Xi|Xi−1 ] ≤
Xi−1/2, which implies E[Xi ] ≤ E[Xi−1 ]/2. We deduce that E[Xi ] ≤ k/2i−1 for all i and

E
[
X2 log2 k+1

]
≤ 1
k
.

Moreover, we have XdistAt (vk,G0) = 0. By Markov’s inequality,

P[ distAt(vk, G0) > 2 log2 k ] = P
[
X2 log2 k+1 ≥ 1

]
≤ E

[
X2 log2 k+1

]
≤ 1/k. (4.3)

Combining (4.1), (4.2), and (4.3), we obtain E[ distAt(u,G0) ] = O(log t), as desired. We
now prove the lower bound on the expectation. Again, let vk denote the node which arrives
at time k and recall that the vertices of G0 arrive at time 0. Consider the path p from vk to
G0 in Ak and observe that arrival times are decreasing along p. For i ≤ log2 k let Yi denote
the indicator variable of the event that some vertex of p has an arrival time in (2i−1, 2i].
Since those intervals are disjoint,

E[ distAt(vk, G0) ] ≥ E

 ∑
i≤log2 k

Yi

. (4.4)

To analyze Yi, let v denote the first vertex on p with arrival time in [0, 2i]. By uniform
choice of the ambassador and monotonicity

P[Yi = 1 ] = P
[
v has arrival time > 2i−1

]
= 2i − 2i−1

2i + |G0|
≥ 1

2(1 + |G0|)
.

Thus,

E[ distAt(vk, G0) ] ≥ E

 ∑
i≤log2 k

Yi

 ≥ log2 k

2(|G0|+ 1) . (4.5)
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4.4.3 Coupling

The following lemma shows the relation between the Line Fire and Forest Fire Processes.

Definition 4.9. The level of a vertex u is its distance to G0 in the ambassador graph,
defined by:

`(u) =

0 if u ∈ G0

`(amb(u)) + 1 otherwise.

Lemma 4.10. Let t ≥ τ ≥ 1. Consider the Forest Fire Process with seed graph G0,
conditioned on `(ut) = τ . Then, the subgraph of Gt, consisting of G0 and of all vertices on
the path from ut to G0 in At, and of all edges out of those vertices; has the same distribution
as the graph Lτ , with seed graph L0 = G0. In particular distGt(ut, G0) in the Forest Fire
Process conditioned on `(ut) = τ has the same distribution as distLτ (vτ , G0) in the Line
Fire Process.

Proof. The ambassador graph is constructed independently of the Burn Process (Algo-
rithm 5), so we can change the order in which the edges of Gt are constructed, by generating
the ambassador graph in a first phase, and then adding the other edges in a second phase.
In the first phase, a node only chooses a random ambassador and connects to it. In the
second phase, every node invokes the Burn Process starting with the respective ambassador.

Consider the path in the ambassador graph, going from ut to G0, and label its vertices

(ut, amb(ut), amb2(ut), . . . , amb`(ut)(ut)) = (w`(ut), . . . , w0),

where ambk denotes k iterative applications of amb(·).
Thus w`(ut) = ut, wi = amb(wi+1) for i < `(ut), and w0 ∈ G0. We claim that the

subgraph induced by G0 ∪ {w0, . . . , w`(ut)} in the Forest Fire Process, has exactly the same
distribution as the graph Lτ , produced by the Line Fire process with seed G0, for τ = `(ut).

To prove this, we couple the burning decisions of wi and vi. When i = 0, both graphs are
G0. Assume by induction that the subgraphs induced by G0∪{w0, . . . , wi−1}, in the Forest
Fire Process and in the graph Li−1 in the Line Fire Process, are identically distributed,
hence coupled. Then the Burn Process, starting at wi, can clearly also be coupled with the
Burn Process of vertex vi, to give the desired result.

Corollary 4.11. For every b ≥ 0, we have

P[ distGt(ut, G0) > b | `(ut) = τ ] = P[ distLτ (vτ , G0) > b ].
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4.4.4 Proofs of the Graph results from the Line results - Proof of Theo-
rem 4.1 and Theorem 4.3

Before proving Lemma 4.4, let us see how it implies Theorem 4.1.

Proof of Theorem 4.1. Let c be a large enough constant. Since dist(ut, G0), once defined
at time t, never changes, it suffices to show that E[ distGt(ut, G0) ] = O(1). Thus, by law of
total probability,

E[ distGt(ut, G0) ] =
t∑

b=0
P[ distGt(ut, G0) > b ]

=
t∑

b=0

t∑
τ=1

P[ distGt(ut, G0) > b | `(ut) = τ ] · P[ `(ut) = τ ]

=
t∑

b=0

t∑
τ=1

P[ distLτ (vτ , G0) > b ] · P[ `(ut) = τ ]

=
t∑

τ=1
P[ `(ut) = τ ]

t∑
b=0

P[ distLτ (vτ , G0) > b ]. (4.6)

From Lemma 4.4 for the Line Fire Process, P[ distLτ (vτ , G0) > b ] ≤ cγb. Thus

t∑
b=0

P[ distLτ (vτ , G0) > b ] ≤
t∑

b=0
cγb ≤ c

1− γ = O(1).

Since ∑t
τ=1 P[ `(ut) = τ ] = 1, the result follows.

Proofs of Theorem 4.3. We follow the proof of Theorem 4.1 until (4.6) and get

E[ distGt(ut, G0) ] =
t∑

τ=1
P[ `(ut) = τ ]

t∑
b=0

P[ distLτ (vτ , G0) > b ]

=
t∑

τ=1
P[ `(ut) = τ ]E[ distLτ (vτ , G0) ].

Using Lemma 4.5, we get E[ distLτ (vτ , G0) ] ≥ cτ for a suitable constant c. Thus,

E[ distGt(ut, G0) ] ≥
t∑

τ=1
P[ `(ut) = τ ]c · τ

= c · E[ `(ut) ] = Ω(log t),

by Lemma 4.8. Hence, E[ distGt(ut′ , G0) ] = Ω(log t) for every t′ ≥ t/2, hence we obtain the
desired result.
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4.5 Analysis of the Line Fire Process

Throughout Sections 4.5.1, 4.5.2, 4.5.3, and 4.5.4 we assume that α ≥ 100, L0 is a directed
cycle with |L0| ≥ α20. In order to prove Lemma 4.4, we define a function φ, such that for
all t, distLt(vt) ≤ φ(vt), and which is more amenable to analysis. The function φ is defined
as follows: Let δ := α20, then

φ(v) =



0 if v ∈ L0

max
w∈N+(v)

{φ(w)}+ 1 if deg+(v) < δ

max

φ(amb(v))− 2, max
w∈N+(v)
w 6=amb(v)

φ(w) + 1

 otherwise.

We now give an intuitive description and we defer the reader to Section 4.5.1 and Sec-
tion 4.5.5 for an in-depth discussion about the ingredients of φ.

4.5.1 High-Level Proof Overview

We first give some intuition about the definition of φ. We would like to argue that no matter
what happens up to time t, dist(vt+1, L0) is less than dist(vt, L0) in expectation whenever
dist(vt, L0) is large enough. This does not seem to be possible when using distance directly;
we can construct graphs where this is not true. However, these graphs are unlikely to arise
under the Line Fire Process. Analysing φ instead gets around this issue. In fact, assuming
φ(v2t) > 2, we show that φ(v2t+2) − φ(v2t) has negative expectation — irrespective of the
history up to time 2t. A low value φ(vt) implies that not only is there one short path from
vt to L0, but most paths from vt to L0 are short. However, note that not all paths are
short, in particular the path of ambassador edges vt, vt−1, . . . , v0 is of linear size.

Furthermore, while it is true for most nodes, it is not necessarily true that all nodes are
well connected to the seed graph. Note that the definition of φ makes a special case for the
ambassador when the degree is small. For an edge (v, u) if u 6= amb(v), φ(u) < φ(v). We
will call edges (v, amb(u)) ambassador edges.

We start from an arbitrary history (and hence an arbitrary graph) at time 2t. (See
Figure 4.2a: the nodes are arranged by their φ value, ambassador edges are marked purple
and may point upwards, i. e., an increase in φ-value, all other edges point strictly downward,
i. e., a decrease in φ-value.) The good event at time 2t + 1 involves two things: (i) the
degree of v2t+1 is at least δ (ii) All neighbours v of v2t+1, except possibly the ambassador,
are such that φ(v) ≤ φ(v2t)− 2. We give a high-level idea why this is likely (formal proof in
Lemma 4.16). The Burn Process stops at any node only with probability≈ (1−α/d)d ≈ e−α,
thus it is quite likely that at least δ = α20 nodes are burnt starting at v2t. For the second
part, at the very first stage, i. e., neighbours of v2t that are burnt, almost all neighbours
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v2t

v2t−1v2t+1

φ(v2t)

φ(v2t)− 1

φ(v2t)− 2

φ(v2t)− 3

(a)

v2t

v2t−1v2t+1

φ(v2t)

φ(v2t)− 1

φ(v2t)− 2

φ(v2t)− 3

(b)

v2t

v2t−1v2t+1

φ(v2t)

φ(v2t)− 1

φ(v2t)− 2

φ(v2t)− 3

v2t+2

(c)

Figure 4.2: The purple edges are ambassador edges. The blue edges are the neighbours of v2t+1 and the
green edges are the neighbours of v2t+2. When v2t+1 arrives it is likely to only have very few edges to
nodes with φ-values ≥ φ(v2t) − 1. When v2t arrives it is likely not to have any neighbours (except of the
ambassador) with φ-values ≤ φ(v2t)− 2.
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Figure 4.3: The figure depicts a typical situation for the case that φ(v2t) is large: When v2t+1 arrives
it is likely to only have very few edges to nodes with φ-values ≥ φ(v2t) − 1. At the arrival of v2t+2, its
neighbourhood (red edges) is determined by the Line Fire process. Due to the aforementioned structure of
v2t+1, it is likely that v2t+2 will not have any neighbours (except of its ambassador) with φ-values ≤ φ(v2t)−2.

(except possibly the ambassador if the v2t has out-degree at least δ), will cause a drop
in φ-value of at least 1. Subsequently, if we look at any path in the Burn Process, every
edge traversed implies that the φ value dropped by at least 1, except if the edge was an
ambassador (purple) edge at a high-degree node, where it may increase by 2 (see definition
of φ). A large fraction of such purple edges are not likely to appear on any path (ambassador
edges of low-degree nodes are not a problem, by definition of φ). The edges burnt when
v2t+1 arrives are shown in Figure 4.2b.

Given that the good event at time 2t+ 1 happens, the good event at time 2t+ 2 again
involves two things: (i) the degree of v2t+2 is at least δ (ii) all neighbours v of v2t+2 satisfy
φ(v) ≤ φ(v2t)− 2. First, it is easily checked that if the good event happens, indeed it is the
case that φ(v2t+2) ≤ φ(v2t)−1, i. e., a decrease. The first part of the good event is similar to
the previous case. For the second part, we again consider the first step of the Burn Process,
i. e., the burnt neighbours of v2t+1. Since most neighbours of v2t+1 have φ-value at most
φ(v2t)− 2, with high probability all burnt neighbours will satisfy this. Further down in the
burn process, it is unlikely that φ-value increases as argued earlier, since a large fraction of
ambassador (purple) edges would have to be followed which is unlikely (See Figure 4.2c).
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Formally we can show that given any history up to time 2t, φ(v2t+2) − φ(v2t) has a
sub-exponential tail and negative expectation, which implies by Hajek’s theorem (Theo-
rem A.11) that E[φ(v2t) ] = O(1).

Figure 4.3 offers a slightly different point of view: Here we illustrate the essence of φ
by focusing on the Line Fire process as opposed to focusing on the branching nature of the
process.

4.5.2 Proof of Lemma 4.4

We now formalise the high-level ideas presented in the previous section. We begin by
proving that φ indeed dominates the distance.

Fact 4.12. If v arrives at time t, then

distLt(v, L0) ≤ φ(v).

Proof. The straightforward proof is by induction on t. For t = 0, v ∈ L0 and then
distLt(v, L0) = 0 = φ(0), so the statement holds.

Assume the statement holds for all nodes in Lt−1. Note that in the graph Lt all (directed)
edges point to vertices that arrived earlier (i. e., for any edge (vt, vτ ), t > τ). We get, by
applying the induction hypothesis,

distLt(v, L0) =


0 if v ∈ L0

min
w∈N+(v)

{distLt(w,L0)}+ 1 otherwise

ind.
≤


0 if v ∈ L0

min
w∈N+(v)

{φ(w)}+ 1 otherwise

≤


0 if v ∈ L0

φ(amb(v)) + 1 if deg+(v) = 1

min
w∈N+(v)\{amb(v)}

{φ(w)}+ 1 otherwise

≤



0 if v ∈ L0

max
w∈N+(v)

{φ(w)}+ 1 if deg+(v) < δ

max

φ(amb(v))− 2, max
w∈N+(v)
w 6=amb(v)

φ(w) + 1

 otherwise.

= φ(v).
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The proof of Lemma 4.4 relies on Hajek’s theorem (Theorem A.11), which we can be
found in Section A.2.4.

Let (Ft)t≥0 denote the history of random choices up to time t for the Line Fire process.
We state the lemma that prove that (φ(v2t+2) − φ(v2t) | F2t) satisfies the conditions of
Hajek’s theorem. The proofs of this appears in subsequent subsections.

Lemma 4.13 (Majorization and Negative bias). The following holds.

1. Let Z be the random variable taking values over all integers greater than or equal to
4, defined by: P[Z = i ] = 3−i/2 for i ≥ 5, and P[Z = 4 ] = 1− 1

9(
√

3+1) . Then

(|φ(v2t+2)− φ(v2t)| | F2t) ≤st Z.

2. Let α and κ be large enough constants and assume |L0| ≥ δ ≥ ακ. There exists a
constant ε0 > 0 such that for every t we have,

E[φ(v2t+2)− φ(v2t) | F2t, φ(v2t) > 2 ] ≤ −ε0

We now prove Lemma 4.4.

Proof of Lemma 4.4. Let Yt = φ(v2t). For any constant λ′ < ln(
√

3)/2, we have,

E
[
eλ
′Z
]
≤ eλ′4 · 1 +

∑
i≥3

eλ
′2i · 3−i/2 = O(1),

where the last equation follows from the geometric series. Thus E
[
eλ
′Z
]
is finite for the

random variable Z defined in the statement of Lemma 4.13 and hence the sequence (Yt)t≥0

with respect to the filtration (F2t)t≥0 satisfies the two conditions of Theorem A.11 by
Lemma 4.13, hence, by using Fact 4.12, Lemma 4.4 follows.

4.5.3 Proof of Lemma 4.13

In our proofs, it is useful to rephrase the process Burn(G,α) defined in Algorithm 5 as a
tree process, rather than a percolation process.We define BurnBFS(G, v) in Algorithm 7.
We assume that vertices have a natural order in the graph, for examples for graphs evolving
in time, the vertices are ordered according to their time of arrival. Thus, when indexing a
set we assume that the vertices are indexed in this order.

First, we note that if the burning decisions made for activation of edges (w, x) in Al-
gorithm 7 are coupled with those made in Algorithm 5, the set of vertices returned by the
two processes is exactly the same. Thus, this is indeed another view of the Burn Process.
The Burn Process BurnBFS produces a tree T with activated vertices ∪j≥0Mj , and edges
(w, x) for which the if condition in Algorithm 7 was satisfied (see Figure 4.4). (We remark
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Algorithm 7: BurnBFS(G, v)
M0 := {v}
for i = 1, 2, . . . do
Mi := ∅
for all w ∈Mi−1 do
for all edges (w, x) do

activate edge (w, x) with probability min{1, α
deg+

G
(w)}

if (w, x) is activated and x 6∈
⋃
j≤i

Mj then

add x to Mi

set parent(x) := w

return
⋃
j≥0

Mj

vtvt−1vt−2vt−3vt−4vt−5

vt−1

vt−3

vt−4

vt−6

vt−5

M3

M0

M1

M2

vt−6

Figure 4.4: The figure depicts the percolation Burn Process (Algorithm 5) on the l.h.s. and the corre-
sponding BFS burn process (BurnBFS(G, v) in Algorithm 7) on the r.h.s. Activated edges and burnt nodes
are coloured red. In this example vt−5 (level M2) is burnt by two predecessors one on level M1 and one on
level M2; due to the definition of the BFS burn process, it is placed on M2 (rather than M3).
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that if Hv is the induced subgraph of H (defined in Algorithm 5) consisting of all nodes
reachable from v, then T is simply the unique BFS tree of Hv starting at v using the order
on the vertices.)

In the present section, we will fix some graph G (say some Lt produced by the Line
Fire process), and look at calls made to BurnBFS with this graph as input. Thus, the only
source of randomness is the activation decision of the edges.

In order to apply Hajek’s Theorem to φ, the main idea of the following lemma is roughly
the following: Given u, let Tu denote the nodes burned by starting at u. Then, with proba-
bility at least 1−Ω(3−k), we have that all nodes burnt in Tu (and thus the new neighbour-
hood) have a φ-value of at most φ(u)+k which establishes a tail bound. Proposition 4.14 is
proved by coupling the burning process with a Galton-Watson process (See Section A.5.1).
On the Galton-Watson tree, we can finally analyze a simpler function that majorizes φ.

Proposition 4.14. Let u be a vertex burnt by BurnBFS and Tu be the random subtree of
T with root u. Then, for any k ≥ 0,

P[ for all w ∈ Tu, φ(w) ≤ φ(u) + k | H ] ≥ 1− 3−k
12α4 ,

where, if i is s. t. u ∈ Mi in BurnBFS(G, v), then H denotes the history of all activation
decisions made by BurnBFS until all nodes belonging to Mi are added.

The proof can be found in Section 4.5.4. We continue by proving the following side
lemma.

Lemma 4.15. P
[

deg+
Lt

(vt) < δ | Ft−1
]
≤ 1

2α .

Proof. Observe that P
[
Bin(d,min{1, αd }) = 0

]
≤ e−α. Hence, for any vertex, with prob-

ability at least 1 − e−α, one or more of its outgoing edges are burned. Starting from
amb(vt) = vt−1, we do the following.

w ← vt−1
repeat
if at least one outgoing edge of w is burned then

pick one such edges (w, x)
w ← x

until w has no outgoing edges that is burned

All the vertices traversed by this process are neighbours of vt. Note that, by assumption,
the only cycles are in L0 and we assume, that L0 is a cycle of length ≥ δ. Thus, since δ = α20

and α large enough we get,

P
[

deg+
Lt

(vt) ≥ δ | Ft−1
]
≥ (1− e−α)δ−1 ≥ 1− (δ − 1)e−α ≥ 1− 1

2α.

41



This completes the proof.

To prove the negative bias, we need to analyse the process over two consecutive steps.
We start from an arbitrary history F2t. We first establish some properties that after one
step hold with high probability (w.r.t. α).

Lemma 4.16. Fix F2t and consider the arrival of v2t+1. With probability at least 1− 1/α
the following holds: node v2t+1 has outdegree at least δ, and among the nodes of N+(v2t+1)
only v2t has value φ(v2t), at most 6α nodes have value φ(v2t)− 1, and all other nodes have
value ≤ φ(v2t)− 2.

Proof. Let z = φ(v2t). Consider the process BurnBFS(G, v2t) executed to construct
N+(v2t+1). The number of activated edges |M1| at v2t is distributed

|M1| ∼ Bin
(
|N (v2t)|,min

{
1, α
|N (v2t)|

})
≤st Bin

(
|N (v)|, α

|N (v)|

)
and thus E[ |M1| ] ≤ α. By Chernoff bounds (Proposition A.3), with probability at least
1− 2−6α we have |M1| ≤ 6α. Assume this holds.

We consider now the out-degree of v2t. If it is less than δ, then, by definition of φ, all
nodes of N+(v2t), and in particular all elements of M1, have φ-value at most z − 1. If it is
greater than or equal to δ, then by definition of φ all but one node (v2t−1) of N+(v2t) have
value less than or equal to z − 1. In other words, in the former case all nodes have a small
φ-value and in the latter case but one node have a low φ-value. We now consider the latter
and argue that w.p. at least 1 − 6α/δ the node v2t−1 is not activated, i. e., v2t−1 6∈ M1.
This follows trivially since we assumed that at most 6α neighbors were activated (chosen
u.a.r.) and |N+(v2t)| ≥ δ.

Assuming this holds, all elements of M1 have φ-value less than or equal to z− 1. Then,
Proposition 4.14 (with k = 0) applied to each sub-tree rooted at nodes of M1 and taking
a Union bound, shows that with probability at least 1− 6α/(12α4), all other nodes visited
by BurnBFS(G, v2t) have φ-value less than or equal to z − 2. Assume this holds.

Moreover, by Lemma 4.15, with probability at least 1−1/(2α), we have deg+(v2t+1) ≥ δ.
Assume this holds.

Assuming all those events hold, N+(v2t+1) satisfies all the statements of the lemma.
The probability that one of the assumptions we made along the way fails to be realised is,
by Union bound, at most

2−6α + 6α
δ

+ 6α
12α4 + 1

2α ≤
1
α
.

We now prove the majorisation Lemma 4.13.

Proof of Lemma 4.13. We start by proving the first part of the statement.
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Majorization. Recall that P[Z = i ] = 3−i/2 for i ≥ 5, and P[Z = 4 ] = 1− 1
9(
√

3+1) .
Fix the history F2t up to time 2t and let

∆ := φ(v2t+2)− φ(v2t)

= φ(v2t+2)− φ(v2t+1) + φ(v2t+1)− φ(v2t)

= (φ(v2t+2)− φ(amb(v2t+2))) + (φ(v2t+1)− φ(amb(v2t+1))).

If ∆ ≥ i ≥ 4, then at least one of the two expressions on the right hand side exceeds
di/2e ≥ 2, so

P[ ∆ ≥ i | F2t ] ≤ P[φ(v2t+1)− φ(amb(v2t+1)) ≥ di/2e | F2t ]

+ P[φ(v2t+2)− φ(amb(v2t+2)) ≥ di/2e | F2t+1 ].

Thus we need an upper bound on P[φ(v)− φ(amb(v)) ≥ j | F ] for j ≥ 2, where F is the
history right before the arrival of v.

Consider the process BurnBFS(G, amb(v)) with output Tamb(v) executed to construct
N+(v). By definition of φ, the sub-tree Tamb(v) needs to contain a node with φ-value at
least φ(amb(v)) + j−1. We use Proposition 4.14 by setting u = amb(v), k = di/2e−1, and
can therefore write, by Union bound,

P[ ∆ ≥ i ] ≤ 23−(di/2e−1)

12α4 = 3−di/2e 1
2α4 . (4.7)

Thus for any i ≥ 5 and large enough constant α we have

P[ ∆ ≥ i ] ≤ 3−di/2e 1
2α4 ≤ 3−i/2 = P[Z = i ] ≤ P[Z ≥ i ]. (4.8)

Note that for i < 5 we have P[Z ≥ i ] = 1 ≥ P[ ∆ ≥ i ]. Thus, we have ∆ ≤st Z.
On the other hand, by definition of φ, φ(v2t+2) − φ(v2t) ≥ −4, so −∆ ≤st Z. Thus

|∆| ≤st Z, which yields the first part of Lemma 4.13. We now turn to the second statement.

Negative bias. Fix F2t and consider the arrival of v2t+1. With probability at least
1− 1/α the situation described in Lemma 4.16 happens. Assume that to be the case, and
consider the arrival of v2t+2. Consider the process BurnBFS(G, v2t+1) executed to construct
N+(v2t+2). Once again, by Chernoff bounds (Proposition A.3), with probability at least
1 − 2−6α we have |M1| ≤ 6α. Assume this holds. By Lemma 4.16 we know that v2t+1

has at least δ neighbours, of which only 6α + 1 may have φ-value greater than or equal to
z − 1. By Union bound, with probability at least 1 − 6α(6α + 1)/δ, none of the nodes of
M1 are in that set, and therefore all nodes of M1 have φ-value less than or equal to z − 2.
Then, Proposition 4.14 (for k = 0) applied to all sub-trees rooted at nodes of M1 shows
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that with probability at least 1− 6α/(12α4), all other nodes visited by BurnBFS(G, v2t+1)
have φ-value less than or equal to z − 2. Assume that holds.

By Lemma 4.15, with probability at least 1−1/(2α), we have deg+(v2t+2) > δ. Assume
this holds. Then by definition of φ and since φ(v2t) > 2, we obtain φ(v2t+2) ≤ z − 1, and
thus

φ(v2t+2) ≤ φ(v2t)− 1.

The probability that one of the assumptions we made along the way fails to be realised is
at most

1
α

+ 2−6α + 6α(6α+ 1)
δ

+ 6α
12α4 + 1

2α ≤
2
α
.

To recap, if we let ∆ = φ(v2t+2)− φ(v2t), we have just proved that

P[ ∆ ≤ −1 ] ≥ 1− 2
α
.

To compute the expectation (implicitly conditioning on F2t), we now write

E[ ∆ ] ≤
∑
k≥4

k · P[ ∆ = k ] + 3 · P[ 0 ≤ ∆ ≤ 3 ]− P[ ∆ ≤ −1 ]

≤
∑
k≥4

P[ ∆ ≥ k ] + 3 · 2
α
−
(

1− 2
α

)
. (4.9)

The first term on the right hand side can be bounded using (4.7):

∑
k≥4

P[ ∆ ≥ k ] ≤
∑
k≥4

3−dk/2e 1
2α4 ≤

1
α2 .

We finally obtain
E[ ∆ | F2t ] ≤ −1 + 8

α
+ 1
α2 < 0,

hence the negative bias.

4.5.4 Proof of Proposition 4.14

Proof. The main idea of the proof is to couple the tree process defined by BurnBFS with a
Galton-Watson Process. Let i be as in the statement of the lemma, and suppose that the
sets M0, . . . ,Mi have already been fixed by the activation decisions in BurnBFS. We look
at u ∈Mi, the designated vertex in the statement of the lemma.

Let w be some vertex in T , the tree generated by BurnBFS, and say w ∈ Mk−1. We
are interested in understanding the random variable that is the number of children of w
in T . Let Mw

k denote the set Mk right after the activation decisions for edges of vertices
in Mk−1 that are before w in the ordering are completed. Let S = {x ∈ N+(w) | x 6∈
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∪j<kMj and x /∈ Mw
k } be the random variable (depending on the choices made while

determining M0, . . . ,Mk−1,M
w
k \ {w}), that is the set of potential children of w. Let

p = min{1, α
deg+(w)}. Let B be obtained by adding each x ∈ S to B with probability

p. Thus,
Zw := |B| ∼ Bin(|S|, p)

and B corresponds to the activated edges that lead to nodes not already in ∪j<kMj ∪Mw
k .

We define Rw to be a random variable

Rw =

0 if deg+(w) < δ

1 if deg+(w) ≥ δ and amb(w) ∈ B.

We will call the edge (w, amb(w)) in T purple if Rw = 1. We are interested in the random
variables (Zw, Rw) (note that they are dependent on random choices made earlier in the
process defined above; however, to minimise cumbersome notation we will not make this
explicit).

We will now define a branching process that is completely independent of the Line
Fire process. It is a Galton-Watson process (see Section A.5.1 for a definition), with some
designated red edges. Let Z ′, R′ be random variables

Z ′ ∼ 1 + deαe+ Poisson(eα)

that defines the offspring distribution of the Galton-Watson process. Furthermore,

R′ ∼ Bernoulli(α/δ),

is the indicator variable where R′ = 1 if and only if the edge between the node and its “first”
child is marked red. We will show that this process stochastically dominates the branching
process resulting from a call to Burn, in a particular technical sense. We have the following
claim:

Claim 4.17. Let w be some node in Mk−1, and let S, p,B be as defined above. Let (Zw, Rw)
be the random variables defined above for the burn process. Let Z ′, R′ be as used to define
the independent Galton-Watson process. Then, whenever α ≤ δ, there exists a coupling of
the random variables such that Zw < Z ′ and Rw ≤ R′.

Subproof. We distinguish between three cases.

1. If deg+(w) < δ, then Rw = 0 ≤ R′. So we only need to define a coupling so that
Zw < Z ′.
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2. If deg+(w) ≥ δ, but amb(w) 6∈ S (that is amb(w) is in some Mj for j ≤ k already
when the activation decisions for out-edges of w were made), then Rw = 0 ≤ R′, and
again we just need to define a coupling so that Zw < Z ′.

3. Finally, consider the case deg+(w) ≥ δ and amb(w) ∈ S. Note that Zw = Rw +
Z̃w, where Rw ∼ Bernoulli(p) and Z̃w ∼ Bin(|S| − 1, p) (when deg+(w) ≥ δ, p =
min{1, α/ deg+(w)} = α/deg+(w), as long as δ ≥ α). Note that (Zw, Rw) have the
exact same joint distribution as defined above, since effectively we are making the
choice of whether or not amb(w) should be included in B independently of the other
elements. Since α/deg+(w) ≤ α/δ, it is clear that we can couple Rw and R′ so that
Rw ≤ R′. Thus, again it remains only to show a coupling such that Zw < Z ′.

For all α ≥ 1, it follows that Bin(n, p) is stochastically dominated by Poisson(eα) when-
ever p ≤ α/n and n ≥ eα (see e. g., [KM10]). When, n < eα, clearly Bin(n, p) is stochasti-
cally dominated by 1 + deαe. The additional 1 in the definition of Z ′ takes care of the strict
inequality made in the claim. This completes the proof. �

Let T′ denote the (possibly infinite) Galton-Watson tree with offspring distribution Z ′

and some edges marked “red” as defined above. We define a coupling between the (random)
sub-tree Tu generated by the Burn process (rooted at u ∈ Mi) and T′ inductively below:
This results in an injective map σ from V (Tu) to V (T′), where V (T ) denotes the vertices
in tree T . Let ρ denote the root of T′, then σ is defined as follows (through coupling and
induction on distTu(u,w)). Note that u is the only vertex with distTu(u, u) = 0.

1. σ(u) = ρ

2. Suppose all w ∈ Tu with distTu(u,w) ≤ ∆ are mapped under σ to some vertices in T′.
We look at the time when activation decisions for some w such that distTu(u,w) =
∆ are made. For each such w, we apply the coupling defined in Claim 4.17. Let
(Zw, Rw) be the corresponding random variables and let (Z ′, R′) be the independent
instantiation of the random variables denoting the children of σ(w) in T′. By the
coupling, we have Zw < Z ′ and Rw ≤ R′. If Rw = 1, we set σ(amb(w)) to be
the “red” (first) child of σ(w). The remaining Zw − 1 children of w can be mapped
to the subsequent Zw − 1 children of σ(w), which is possible by the coupling. If
Rw = 0, all Zw children of w are mapped to the non-“red” children of σ(w), which
again is possible since Z ′ > Zw. This defines the map σ for all vertices w′, such that
distTu(u,w′) = ∆ + 1 and completes the inductive step.

We observe that the map σ satisfies the following properties by definition:

1. If (w, x) is an edge in Tu, then (σ(w), σ(x)) is an edge in T′, and furthermore the edge
(σ(w), σ(x)) points away from the root.
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2. If (w, x) is coloured purple in Tu, then (σ(w), σ(x)) is coloured purple in T′.

Finally, we define a function φ′ : V (T′)→ N, on the nodes of the tree T′ as follows:

1. φ′(ρ) = φ(u)

2. For w′, let parent(w′) denote the parent of w′ in T′. Then,

φ′(w′) =

φ
′(parent(w′)) + 2 if (parent(w′), w′) is red

φ′(parent(w′))− 1 otherwise.

We check the following fact:

Claim 4.18. For every w ∈ V (Tu), φ(w) ≤ φ′(σ(w))

Subproof. The proof is based on induction on distTu(u,w). Clearly, when distTu(u,w) = 0,
it must be the case that w = u, and we have φ′(σ(u)) = φ′(ρ) = φ(u). Suppose, this
holds for all w such that distTu(u,w) ≤ ∆. Consider an edge (w, x) in Tu, such that
distTu(u, x) = ∆ + 1. Then, we consider two cases:

• If (w, x) is coloured purple, x = amb(w). Also, in this case, the edge (σ(w), σ(x)) in
T′ is also coloured purple. Hence by definition φ′(σ(x)) = φ′(σ(w)) + 2 ≥ φ(w) + 2.
On the other hand, since (w, x) is red, we have that deg+(w) ≥ δ and x = amb(w).
Thus, by definition of φ, a node cannot have potential difference of more than −2
w.r.t. its ambassador, i. e., φ(w) ≥ φ(x)− 2. Hence, putting everything together, we
have φ(x) ≤ φ(w) + 2 ≤ φ′(σ(x)).

• On the other hand, if (w, x) is not red, we have that φ′(σ(x)) = φ′(σ(w))−1 ≥ φ(w)−1.
Also by definition of φ, we know that φ(w) ≥ φ(x) + 1 for all x ∈ N+(w) \ {amb(w)}.
Hence, putting everything together, we have φ(x) ≤ φ(w)− 1 ≤ φ′(σ(x)).

This yields the claim. �

Using Claim 4.18 we have,

P[ ∃w ∈ Tu s. t. φ(w) ≥ φ(u) + k | H ] ≤ P
[
∃w ∈ T′s. t. φ′(w) ≥ φ′(ρ) + k

]
. (4.10)

Thus, it only remains to analyze φ′ on T′ to bound the r.h.s. of (4.10) and thus yielding
the proposition.

Claim 4.19. We have, for k ≥ 0

P
[
∃w ∈ T′ s. t. φ′(w) ≥ φ′(ρ) + k

]
≤ 3−k

12α4 ,

where ρ is the root.
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Subproof. Let
α′ = (1 + deαe+ eα);

for i ≥ 0, let
bi = (k + 1)(6α′)i

and let Ni be the random variable denoting the number of nodes of T′ at distance i from
the root ρ. We have the following:

P
[
∃w ∈ T′s. t. φ′(w) ≥ φ′(ρ) + k

]
≤ (4.11)

≤ P
[
∃w ∈ T′ s. t. φ′(w) ≥ φ′(ρ) + k

∣∣∣∣∣ ⋂
i

{Ni < bi}
]
· 1 + P

[⋃
i

{Ni ≥ bi}
]

We bound the two terms of (4.11) separately. To bound the first term, we use a Union
bound:

P
[
∃w ∈ T′ s. t. φ′(w) ≥ φ′(ρ) + k

∣∣∣∣∣ ⋂
i

{Ni < bi}
]
≤ (4.12)

≤
∑
j≥1

bj max
w

P
[
φ′(w) ≥ φ′(ρ) + k | dist(ρ, w) = j

]
We now bound for an arbitrary (directed) path P, with vertices v0 = ρ, v1, . . . , vj = w

in T′, the probability that φ′(w) ≥ φ′(ρ) + k. Note that as we go down the tree T′, the
value of φ′ only decreases, except on red edges. Observe by definition of the tree, that the
number of children of any node, distributed according to Z ′ ∼ 1 + deαe + Poisson(eα) is
independent of whether or not the first node is coloured purple (since the random variable
R′ and Z ′ ≥ 1 are drawn independently). Therefore, by assuming that every edge along the
path can potentially be red, we are only increasing the probability that for some node w,
φ′(w) ≥ φ′(ρ) + k. Note that the probability that any edge out of a node is red, denoted by
pr is α/δ (for the first child of a node, which always exists since the number of children is
at least 1 + deαe, the probability is pr, for the remaining it is 0). Let r denote the number
of purple edges in the path v0 = ρ, v1, . . . , vj = w, then the number of non-purple edges is
j− r. Thus, by definition of φ′, φ′(w) = φ′(ρ) + 2 · r− 1 · (j− r) = φ′(ρ) + 3r− j, and hence
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for φ′(w) ≥ φ(ρ) + k to be true, it must be the case that r ≥
⌈
j+k

3

⌉
. Thus, we have

P
[
At least

⌈
j+k

3

⌉
edges in P are red

]
≤

j∑
b=
⌈
j+k

3

⌉
(
j

b

)
pbr(1− pr)(j−b)

≤
j∑

b=
⌈
j+k

3

⌉
(
ej

b

)b
pbr

≤
∑

b≥
⌈
j+k

3

⌉(3e · pr)b

≤ (3e · pr)
j+k

3 · 1
1−3epr .

Substituting this bound in (4.12), we get using pr = α/δ = 1/α19

P
[
∃w ∈ T′s. t. φ′(w) ≥ φ′(ρ) + k

∣∣∣∣∣ ⋂
i

{Ni < bi}
]
≤

≤
∑
j≥1

bj
1

1−3epr

(
(3epr)1/3

)j+k
≤ (k + 1) 1

1− 3epr

(
(3epr)1/3

)k∑
j≥1

(
6α′(3epr)1/3

)j
≤ (k + 1) 1

1− 3epr

(
(3epr)1/3

)k
· 6α′(3epr)1/3

1− 6α′(3epr)1/3

≤ (k + 1)3 1
1
2

(
p1/3
r

)k
· 6α′3 · p1/3

r
1
2

≤ (k + 1)216α′ 1
α6(k+1)

≤ 3−k
24α4 , (4.13)

whenever α ≥ 100. Now, we analyse the second term of (4.11). Let Ei denote the event
that Ni ≥ bi. Thus, we are interested in bounding P[⋃i Ei ]. Observe, that:

P
[⋃

i

Ei

]
≤
∑
i≥1

P
[
Ei | E i−1

]
.

We observe that Ni is a sum of Ni−1 independent copies of Z ′ ∼ 1 + deαe + Poisson(eα).
Lemma A.10 proves that,

P
[
Ei | E i−1

]
≤ 2−6eabi−1
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Thus, we have:

P
[⋃

i

Ei

]
≤
∑
i≥1

2−6eabi−1 ≤ 2 · 2−6eab0 = 2 · 2−(k+1)(36eα) ≤ 3−k
24α4 . (4.14)

Substituting (4.13) and (4.14) in (4.11) concludes the proof:

P
[
∃w ∈ T′s. t. φ′(w) ≥ φ′(ρ) + k

]
≤ 2 · 3−k

24α4 = 3−k
12α4 .

�

This completes the proof of Proposition 4.14.

4.5.5 The foundations of φ

In order to derive a constant expected distance, we require some notion of positive recur-
rence: Over the course of t time steps, subgraphs with a distance of ω(1) emerge with
constant probability and we need to show that the graph “recovers quickly” from this. For
this reason, we show that whenever φ is large at time t, it decreases in expectation regard-
less of the structure of the graph at time t. Such an analysis seems to break if one analyzes
the distance directly: One can construct worst-case graphs, where the distance does not de-
crease in expectation in a constant number of steps. For example one can construct line-like
graphs in which the distance is likely to increase considerably. The reason why we are able
to show that φ decreases is that in such graphs the degree of the nodes is small and thus
causing φ to be relative large (w.r.t. the distance) allowing the potential (in contrast to the
distance) to decrease in expectation. On the other side, creating such a worst-case subgraph
is extremely unlikely (otherwise φ would increase in expectation). These worst-case graphs
are the intuition behind the second line of φ, namely

φ(v) = max
w∈N+(v)

{φ(w)}+ 1 if deg+(v) < δ .

The third line of φ, namely

φ(v) = max

φ(amb(v))− 2, max
w∈N+(v)
w 6=amb(v)

φ(w) + 1


consists of two parts: The second part is the core of φ and measures essentially the longest
path ignoring ambassador edges (note that the longest path from a node to G0 is monoton-
ically increasing due to to ambassador edges which is the reason why we disregard them).
The first part (of the third line) ensure that the potential cannot increase by too much if
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an ambassador edge of a node is activated; without the constraint, the potential increase
caused by just activating one edge could be unbounded.

4.6 Lower bound - Proof of Lemma 4.5

We set α∗ = 1/(4e). We majorize the original process by a process P in which the following
holds. First, every arriving node performs Poisson(eα) burns nodes upon arrival. As we
show, this strictly majorizes the number of neighbours burns and hence increases a node’s
neighborhood and its distance to L0. Second, all the burns happen along the shortest path
which, intuitively speaking, only decreases the distance to L0.

Let ∆t = distLt(vt, L0)− distLt−1(vt−1, L0). We have for process P that −∞ < ∆t ≤ 1.
We show that it’s very unlikely that the distance upon arrival of a new decreases, more
precisely we show the tail bound P[ ∆t = −k ] ≤ e−(k+1) by majorizing with a Galton Watson
tree with offspring distribution Poisson(eα). From this we get, E[ ∆t | Ft−1 ] ≥ 1/2 which
allows us to conlcude that E[ distLt(vt, L0) ] = Ω(t).

Proof of Lemma 4.5. We set α∗ = 1/(4e). As mentioned earlier, the neighbours of a node
vt in the Line Fire process can be represented by the vertices of a tree T rooted at vt−1, in
which every node v appears at most once. Furthermore, the number of edges percolated by
v is Xv ∼ Bin

(
|N (v)|,min

{
1, α
|N (v)|

})
= Bin

(
|N (v)|, α

|N (v)|

)
for α < 1. Since Xv depends

on the degree of node v we will make use of Lemma A.9 and majorize Xv by the degree-
independent distribution Poisson(eα).

We define a process P in which, at the arrival of vt, node vt−1 percolates Yvt−1 ∼
Poisson(eα) outgoing edges uniformly at random. Moreover, whenever an edge (v1, v2)
is percolated, node v2 percolates Yv2 ∼ Poisson(eα) of its outgoing edges uniformly at
random. Let T ′vt (Tvt , respectively) be the resulting tree of percolated edges in the new
process (original process, respectively).

Node vt connects then to all nodes of T ′vt – If the same node v appears several times,
then we only connect vt once to v. However, we allow v to be burnt several times: every
time v is added, it chooses Poisson(eα) children u.a.r. and independent of former choices to
percolate.

Since Pr(Xv ≥ k) ≤ Pr(Yv ≥ k) for k ≥ 1 (by Lemma A.9), we can couple the trees Tv
and T ′vt such that if v ∈ T , then v ∈ T ′vt . This implies that the neighborhood of vt in the
original process is a subset of the neighborhood of vt in P . Hence, the distance of vt in the
original process is at least the distance of vt in P .

Let ∆t = distLt(vt, L0) − distLt−1(vt−1, L0). We have −∞ < ∆t ≤ 1. The distance of
a node v to L0 in Lt equals the number of nodes on the shortest path plus one. Hence,
we obtain a crude bound on P[ ∆t = −k ] by bounding P

[
|T ′vt | ≥ k + 1

]
. As we will argue

in the following, P[ |T ′| ≥ k + 1 ] has an exponential tail distribution. Observe, that T ′vt is
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GW-tree with offspring distribution Poisson(eα). We have, by Proposition A.33, using that
eα ≤ eα∗ = 1/4,

P[ ∆t = −k|Ft−1 ] ≤ P
[
|T ′vt | ≥ k + 1

]
≤ e−h(1)·(k+1) ≤ e−(k+1),

where h(1) ≥ 1 is the function defined in Proposition A.33. Hence,

E[ ∆t|Ft−1 ] ≥ 1 · P
[
Xvt−1 = 0

]
+
∑
k≥1

(−k) · P[ ∆t = −k|Ft−1 ]

≥ min
d≥1
{(1− α/d)d}+

∑
k≥1
−ke−(k+1)

≥ 1− α− 2/5 ≥ 1/2.

Hence, E[ distLt(vt, L0)|Ft−1 ] ≥ distLt−1(vt−1, L0) + 1/2. We have,

E[ distLt(vt, L0) ] = E[E[ distLt(vt, L0)|Ft−1 ] ]

≥ E
[
distLt−1(vt−1, L0)

]
+ 1/2.

Hence, by repeating this iteratively, we get E[ distLt(vt, L0) ] = Ω(t), which yields the claim.

4.7 Future Work and Conclusion

The Forest Fire model was proposed by Leskovec et al. to explain several properties of
social networks, shrinking diameter being an important one, in addition to densification
and power-law degree distributions [LKF07]. As the graphs generated are directed, we
focused on distance to the seed graph, rather than diameter as the property of interest.
This work shows that in a restricted version of the Forest Fire model, we can prove that
this distance remains bounded, even as the graph size increases, albeit with some conditions
on the seed graph.

There are several natural open questions as to how to proceed from here. The obvious
one is whether one can remove the conditions on the seed graph. Our simulation results
seem to suggest that starting with a single node as a seed graph should also result in similar
behaviour. The next is whether one can address densification. Without backward burning,
it is clear that the out-degree of any vertex in Gt can be at most logarithmic in t. This
follows from the fact that the edges have to be on directed paths in the ambassador tree,
which is of logarithmic depth. Thus, we cannot expect the average edge density to be more
than logarithmic in the number of nodes.

Also, for this reason the out-degrees cannot have a heavy tail. In simulations, the
in-degrees did exhibit power-law behaviour.
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4.7.1 Further models

As mentioned before, backward burning might prove interesting to study as it might result
in a super polylogarithmic number of edges as observed in the simulations of [LKF07]. Our
analysis however would break: Our potential φ was carefully designed to ensure that for
every node at most one out of many outgoing (i. e., burnable) edges is “bad”, i. e., leading
to node with a high potential. This would no longer be true in the case of backward burning
since it would be possible that many nodes with a high (possibly much higher) φ-value have
an edge to a node v and thus, when v is “burnt”, v might have many neighbours with high
φ-values. Changing the potential function alone seems to be futile, as the backward edges
of vt are only added after time step t and thus the potential of vt might change after time
step t rendering our approach inapplicable.

On the other hand, there is a multitude of variations that our techniques allow to analyze.
For example the Random Surfer Model, in which at the arrival of a node a random walk
is started at the ambassador, which then travers the out-edges of nodes stopping at every
node with probability p. Even though this model could be analyzed with our techniques,
the required bounds on p to have a constant diameter would not be sharp in contrast to
[KLL+16] where we investigate tight bounds for this model. Another natural extension
would be to allow “multi burning”: in our model, a node is not allowed to “burn” several
times, i. e., to introduce the arriving nodes several times to his own friends several times.
Without this restriction the process becomes much easier to analyze: The random process
behaves like a Galton-Watson process with a suitable mapping from the children in the
resulting Galton-Watson tree to the current graph. If the Galton-Watson tree is infinite,
then we must be in the cyclic seed graph and thus the distance to the root is 1. For a
suitable constant α it is well-known that this is the case. A drawback of this is the resulting
infinite edges to the seed-graph; A simple way around this would be to forbid multi-edges
and to simply remove them when they occur (the analysis still works). In this model, it
would even be possible the drop the assumption on the seed graph: Once a Galton-Watson
tree exceeds a certain depth and by making use of the underlying mapping, we know that
the new node must have reached the root-node.

Further models which easily fit in our framework are those where the probability of
continuing decays as function of the depth as well as models where the out-edges chosen
are always the edges which lead the“oldest” neighbour of a node. Finally, the following
variation also falls into our framework: each outgoing edge is activated with constant prob-
ability, i. e., without normalizing by the out-degree of a node. This model behaves like
the aforementioned Random Surfer model with additional edges. It is worth mentioning
that it is unclear whether any of the above models exhibits the densification (of the edges)
property.
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4.7.2 Conclusion

To summarize, we showed that the Forest Fire model with forward burning exhibits a
constant expected distance for large enough constant α and a logarithmic distance for small
enough constant α. The machinery we developed and in particular the core ideas of the
potential function allow the study of a wide-range of variants for models of social networks.
We were able to apply the high-level ideas of our approach to the at first glance unrelated
appearing problem of balls-into-bins (see Chapter 5). We believe that our techniques find
application in settings beyond the realm of social networks and balls-into-bins.
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Chapter 5

Balls-into-Bins with Deleting Bins
[BFK+16a]

One of the fundamental problems in distributed computing is the distribution of requests,
tasks, or data items to a set of uniform servers. In order to simplify this process and to avoid
a single point of failure, it is often advisable to use a simple, randomized strategy instead of
a complex, centralized controller to allocate the requests to the servers. In the most naive
strategy (Greedy[1]), each client sends its request to a server chosen uniformly at random.
A more elaborate scheme (Greedy[2]) chooses two servers, queries their current loads, and
sends the request to the least loaded of them. Both approaches are typically modeled as
balls-into-bins processes [Gon81, RS98, ABKU99, BCSV06, ACMR98, Ste96, BCN+15a],
where requests are represented as balls and servers as bins. While the latter approach leads
to considerably better load distributions [ABKU99, BCSV06], it loses some of its power
in synchronous settings, where requests arrive in parallel and cannot take each other into
account [ACMR98, Ste96].

We propose and study a novel infinite batch-based balls-into-bins process to model the
client-server scenario. In a round, each server (bin) consumes one of its current tasks
(balls). Afterward, in expectation λn tasks arrive and are allocated using a given distribu-
tion scheme. The arrival rate λ is allowed to be a function of n (e.g., λ = 1− 1/ poly(n)).
Standard balls-into-bins results imply that, for high arrival rates, with high probability1

(w.h.p.) in each round there is a bin that receives Θ(logn/ log logn) balls. Most other infi-
nite balls-into-bins-type processes limit the total number of concurrent balls in the system
by n [ABKU99, BCN+15a] and show a fast recovery.

1An event E occurs with high probability (w.h.p.) if P[ E ] = 1− n−Ω(1).
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5.1 Results

Since we do not limit the number of balls, our process can, in principle, result in an arbitrary
high system load. In particular, if starting in a high-load situation (e.g., exponentially
many balls), we cannot recover in a polynomial number of steps. Instead, we regard the
system load as a Markov chain and adapt the following notion of self-stabilization: The
system is positive recurrent (expected return time to a typical low-load situation is finite),
and taking a snapshot of the load situation at an arbitrary (even super-exponential large)
time step yields (w.h.p.) a time-independent maximum load. Positive recurrence is a
standard notion for stability and basically states that the system load is time-invariant.
For irreducible, aperiodic Markov chains it implies the existence of a unique stationary
distribution (cf. Section 5.4). While this alone does not guarantee a good load in the
stationary distribution, together with the snapshot property we can look at an arbitrary
time window of polynomial size (even if it is exponentially far away from the start) and give
strong load guarantees.

In particular, we give the following bounds on the load in addition to showing positive
recurrence:

1-Choice Process: The maximum load at an arbitrary time is (w.h.p.) bounded by
O
( 1

1−λ · log n
1−λ

)
. We also provide a lower bound which is asymptotically tight for

λ ≤ 1 − 1/ poly(n). While this implies that already the simple 1-Choice process is
self-stabilizing, the load properties in a “typical” state are poor: even an arrival rate
of only λ = 1− 1/n yields a superlinear maximum load.

2-Choice Process: The maximum load at an arbitrary time is (w.h.p.) bounded by
O
(
log n

1−λ
)
. This allows to maintain an exponentially better system load compared

to the 1-Choice process; for any λ ≤ 1− 1/ poly(n) the maximum load remains loga-
rithmic.

Note that the resulting processes can be seen as queuing processes.

5.2 Approach and Technical Contributions

For the analysis of Greedy[1] the main idea of the proof is to bound the maximum load for
any bin i and to take union bound of all resources. The load of bin i decreases whenever it
is large and, thus, performs a biased random walk towards a load of zero. However, when
the load is zero, it increases in expectation, such that standard drift theorems cannot not be
applied directly. Nevertheless, the increase of the load for any given state has an exponential
tail, which allows us to apply Hajek’s Theorem (Theorem A.11) to derive exponential tail
bounds on the load of i at any (possibly super-exponential) number of time steps.
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For the analysis of Greedy[2] we define three different potentials (see Section 5.6 for
further details) which measure the total load in the system, the load difference as an ex-
ponential function (which was already sucuessfully used in [TW14]) as well as a weighted
combination of the first two potentials. We’re able to derive strong bounds on the load dif-
ference after an arbitrary number. In order to derive bounds on the maximum load of the
system after an arbitrary number of steps we essentially use union bounds in an adaptive
manner: While we cannot apply the same union bound over exponentially many time steps
to bound to the load difference of the system at a given time step t, we apply union bounds
at every τ < t which bound the load difference as a function of t − τ . This together with
combinatorical properties of the potentials will allow us to derive strong bounds on the load
of the system at an arbitrary point t in time. See Section 5.6.2 for further intuition.

5.3 Related Work

We will continue with an overview of related work. We start with classical results for
sequential and finite balls-into-bins processes, go over to parallel settings, and give an
overview of infinite and batch-based processes similar to ours. We also briefly mention
some results from queuing theory (which is related but studies slightly different quality of
service measures and system models).

Sequential Setting. There are many strong, well-known results for the classical, sequen-
tial balls-into-bins process. In the sequential setting, m balls are thrown one after another
and allocated to n bins. For m = n, the maximum load of any bin is known to be (w.h.p.)
(1+o(1)) · ln(n)/ ln lnn for the 1-Choice process [Gon81, RS98] and ln ln(n)/ ln d+Θ(1) for
the d-Choice process with d ≥ 2 [ABKU99]. If m ≥ n · lnn, the maximum load increases
to m/n+ Θ

(√
m · ln(n)/n

)
[RS98] and m/n+ ln ln(n)/ ln d+ Θ(1) [BCSV06], respectively.

In particular, note that the number of balls above the average grows with m for d = 1
but is independent of m for d ≥ 2. This fundamental difference is known as the power of
two choices. A similar (if slightly weaker) result was shown by Talwar and Wieder [TW14]
using a quite elegant proof technique (which we also employ and generalize for our analysis
in Section 5.6). Czumaj and Stemann [CS97] study adaptive allocation processes where the
number of a ball’s choices depends on the load of queried bins. The authors subsequently
analyze a scenario that allows reallocations.

Berenbrink et al. [BKSS13] adapt the threshold protocol from [ACMR98] (see below)
to a sequential setting and m ≥ n bins. Here, ball i randomly chooses bins until it sees a
load smaller than 1 + i/n. While this is a relatively strong assumption on the balls, this
protocol needs only O(m) choices in total (allocation time) and achieves an almost optimal
maximum load of dm/ne+ 1.
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Parallel Setting. Several papers (e.g., [ACMR98, Ste96]) investigated parallel settings of
multiple-Choice games for the case m = n. Here, all m balls have to be allocated in parallel,
but balls and bins might employ some (limited) communication. Adler et al. [ACMR98]
consider a trade-off between the maximum load and the number of communication rounds
r the balls need to decide for a target bin. Basically, bounds that are close to the classical
(sequential) processes can only be achieved if r is close to the maximum load [ACMR98].
The authors also give a lower bound on the maximum load if r communication rounds
are allowed, and Stemann [Ste96] provides a matching upper bound via a collision-based
protocol.

Infinite Processes. In infinite processes, the number of balls to be thrown is not fixed.
Instead, in each of infinitely many rounds, balls are thrown or reallocated and bins (possibly)
delete old balls. Azar et al. [ABKU99] consider an infinite, sequential process starting with
n balls arbitrarily assigned to n bins. In each round one random ball is reallocated using
the d-Choice process. For any t > cn2 log logn, the maximum load at time t is (w.h.p.)
ln ln(n)/ ln d+O(1).

Adler et al. [ABS98] consider a system where in each round m ≤ n/9 balls are allocated.
Bins have a FIFO queue, and each arriving ball is stored in the queue of two random bins.
After each round, every non-empty bin deletes its frontmost ball (which automatically
removes its copy from the second random bin). It is shown that the expected waiting time
is constant and the maximum waiting time is (w.h.p.) ln ln(n)/ ln d+O(1). The restriction
m ≤ n/9 is the major drawback of this process. A further study of this process, based
on differential methods and experiments, was conducted in [BCFV00]. The balls’ arrival
times are binomially distributed with parameters n and λ = m/n. Their results indicate
a stable behavior for λ ≤ 0.86. A similar model was considered by Mitzenmacher [Mit01],
who considers ball arrivals as a Poisson stream of rate λn for λ < 1. It is shown that the
2-Choice process reduces the waiting time exponentially compared to the 1-Choice process.

Czumaj [Czu98] presents a framework to study the recovery time of discrete-time dy-
namic allocation processes. In each round one of n balls is reallocated using the d-Choice
process. Two models are considered: in the first, the ball to be reallocated is chosen by tak-
ing a ball from a random bin. In the second, the ball to be reallocated is chosen by selecting
a random ball. From an arbitrary initial assignment, the system is shown to recover to the
maximum load from [ABKU99] within O

(
n2 lnn

)
rounds in the former and O(n lnn) rounds

in the latter case. Becchetti et al. [BCN+15a] consider a similar (but parallel) process. In
each round one ball is chosen from every non-empty bin and reallocated to a randomly cho-
sen bin (one Choice per ball). The authors show that (w.h.p.) starting from an arbitrary
configuration, it takes O(n) rounds to reach a configuration with maximum load O(logn).
Moreover, if the process starts in a configuration with maximum load O(logn), then the
maximum load stays in O(logn) for poly(n) rounds. An interesting connection to our work
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is that the analysis of [BCN+15a] is based on an auxiliary Tetris-process. This process
can be seen a special version of our 1-Choice process and is defined as follows: starting from
a state with at least n/4 empty bins, in each round every non-empty bin deletes one ball.
Subsequently, exactly 3n/4 new balls are allocated to the bins (one choice per ball).

Batch-Processes. Batch-based processes allocatem balls to n bins in batches of (usually)
n balls each, where each batch is allocated in parallel. They lie between (pure) parallel and
sequential processes. For m = τ · n, Stemann [Ste96] investigates a scenario with n players
each having m/n balls. To allocate a ball, every player independently chooses two bins and
allocates copies of the ball to both of them. Every bin has two queues (one for first copies,
one for second copies) and processes one ball from each queue per round. When a ball is
processed, its copy is removed from the system and the player is allowed to initiate the
allocation of the next ball. If τ = lnn, all balls are processed in O(lnn) rounds and the
waiting time is (w.h.p.) O(ln lnn). Berenbrink et al. [BCE+12] study the d-Choice process
in a scenario where m balls are allocated to n bins in batches of size n each. The authors
show that the load of every bin is (w.h.p.) m/n ± O(logn). As noted in Lemma 5.9, our
analysis can be used to derive the same result by easier means. Batch-processes have also
been studied in the operations research community [Bai54, Dow55, BDJ98] though with
more practical emphasis. Bailey [Bai54] and Downton [Dow55] study the process where
users arrive and are processed once a sufficiently large number (batch) are present and Berg
et al. [BDJ98] studies a variant where manufactures deliver in batches and individually.

Queuing Processes. Batch arrival processes have also been considered in the context of
queuing systems. A key motivation for such models stems from the asynchronous transfer
mode (ATM) in telecommunication systems. Tasks arrive in batches, are stored in a FIFO
queue and served by a fixed number of servers which remove the tasks from the queue and
process them. Several papers [SZ92, Kam96, KCYK12, Alf03] consider scenarios where the
number of arriving tasks is determined by a finite state Markov chain. Results study steady
state properties of the system to determine properties of interest (e.g., waiting times or
queue lengths). Sohraby and Zhang [SZ92] use spectral techniques to study a multi-server
scenario with an infinite queue. Alfa [Alf03] considers a discrete-time process for n identical
servers and tasks with constant service time s ≥ 1. To ensure a stable system, the arrival
rate λ is assumed to be at most n/s and tasks are assigned cyclical, allowing to study an
arbitrary server (instead of the complete system). Kamal [Kam96] and Kim et al. [KCYK12]
study a system with a finite capacity. The tasks which arrive when the buffer is full are
lost. The authors study the steady state probability and give empirical results to show the
decay of waiting times as n increases.
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Step t (beginning) Step t (after assignment)

ball 1 ball 2 ball 3 ball 4

ball 1

ball 2

ball 3

ball 4

Step t (end)

ball 1

ball 2

ball 3

ball 4

Figure 5.1: The figure depicts a typical round of Greedy[2]. In this example we have n = 5 and 4 balls
arrive. Balls 1, 2, and 3 choose the same bin with a load of 2 and a bin with larger node and hence all move
the same bin resulting in that bin having the highest load. Moreover, Ball 4 chooses two bins with equal
load and chooses one of these uniformly at random. At the end of the round all non-empty bins delete one
ball (marked gray).

5.4 Model & Preliminaries

We model our load balancing problem as an infinite, parallel balls-into-bins process. Time is
divided into discrete, synchronous rounds. There are n bins and n generators, and the initial
system is assumed to be empty. At the start of each round, every non-empty bin deletes one
ball. Afterward, every generator generates a ball with a probability of λ = λ(n) ∈ [0, 1] (the
arrival rate). This generation scheme allows us to consider arrival rates that are arbitrarily
close to one (like 1 − 1/poly(n)). Generated balls are distributed in the system using a
distribution process. We analyze two specific distribution processes:

• The 1-Choice process Greedy[1] assigns every ball to a random bin.

• The 2-Choice process Greedy[2] assigns every ball to a least loaded among two
randomly chosen bins.

See Figure 5.1 for an illustration. It is worth mentioning, that the maximum load in
Greedy[2] does not need to be smaller than in Greedy[1] as the following (artificial)
example shows. Consider two bins (n = 2) with different initial loads and λ = 1. In
Greedy[1] each bin receives n/2± c

√
n new balls for some constant c. On the other side,

in Greedy[2] the bin with the smaller initial load receives 3n/4± c
√
n new balls. However,

as our results indicate, this effect becomes negligible when n grows.

Notation. The random variableXi(t) denotes the load (number of balls) of the i-th fullest
bin at the end of round t. Thus, the load situation (configuration) after round t can be
described by the load vector X(t) = (Xi(t))i∈[n] ∈ Nn. We define ∅(t) := 1

n

∑n
i=1Xi(t) as

the average load at the end of round t. The value ν(t) denotes the fraction of non-empty
bins after round t and η(t) := 1 − ν(t) the fraction of empty bins after round t. It will be
useful to define 1i(t) := min

(
1, Xi(t)

)
and ηi(t) := 1i(t) − ν(t) (which equals η(t) if i is a

non-empty bin and −ν(t) otherwise). For random variables X and Y we write X ≤st Y if
X is stochastically dominated by Y . That is, if for all k we have P[X ≥ k ] ≤ P[Y ≥ k ].

60



Markov Chain Preliminaries. The random process (X(t))t∈N has the Markov property,
since X(t) depends only on X(t − 1) and the random choices during round t. We refer
to this Markov chain as X. Note that X is time-homogeneous (transition probabilities
are time-independent), irreducible (every state is reachable from every other state2), and
aperiodic (path lengths have no period; in fact, our chain is lazy). Recall that such a
Markov chain is positive recurrent (or ergodic) if the probability to return to the start
state is 1 and the expected return time is finite. In particular, this implies the existence
of a unique stationary distribution. Positive recurrence is a standard formalization of the
intuitive concept of stability. See [LP08] for an excellent introduction into Markov chains
and the involved terminology.

5.5 The 1-Choice Process

We present two main results for the 1-Choice process: Theorem 5.1 states the stability
of the system under the 1-Choice process for an arbitrary λ, using the standard notion of
positive recurrence as defined above. In particular, this implies the existence of a stationary
distribution for the 1-Choice process. Theorem 5.2 strengthens this by giving a high prob-
ability bound on the maximum load for an arbitrary round t ∈ N. Together, both results
imply that the 1-Choice process is self-stabilizing. That is, the system is positive recurrent
and taking a snapshot of the load situation at an arbitrary time step yields (w.h.p.) a
time-independent maximum load.

Theorem 5.1 (Stability). Let λ = λ(n) < 1. The Markov chain X of the 1-Choice process
is positive recurrent.

Theorem 5.2 (Maximum Load). Let λ = λ(n) < 1. Fix an arbitrary round t of the
1-Choice process. The maximum load of all bins is (w.h.p.) bounded by O

( 1
1−λ · log n

1−λ
)
.

Note that for high arrival rates of the form λ(n) = 1 − ε(n), the bound given in The-
orem 5.2 is inversely proportional to ε(n). For example, for ε(n) = 1/n the maximal load
is O(n logn). Theorem 5.3 shows that this dependence is unavoidable: the bound given in
Theorem 5.2 is tight for large values of λ.

Theorem 5.3. Let n be sufficiently large. Let λ = λ(n) ≥ 3/4 and consider step t :=
9λ log(n)/(64(1− λ)2). With probability 1− o(1) there is a bin i in step t with load Ω

( 1
1−λ ·

logn
)
.

The proofs of these results can be found in the following subsections. We first prove a
bound on the maximum load (Theorem 5.2). Afterward, we prove stability of the system
(Theorem 5.1). Finally we prove the lower bound (Theorem 5.3).

2The state space includes all vectors with non-increasing entries over Nn.
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5.5.1 Maximum Load - Proof of Theorem 5.2

The proof idea is to apply Hajek’s Theorem (Theorem A.11) to derive exponential tail
bounds on the load of i at any (possibly super-exponential) number of time steps.

Proof of Theorem 5.2. We prove Theorem 5.2 using a (slightly simplified) “drift theorem”
from Hajek [Haj82] (cf. Theorem A.11). As mentioned in Section 5.4, our process is a
Markov chain, such that we need to condition only on the previous state (instead of the
full filtration from Theorem A.11). Our goal is to bound the load of a fixed bin i at time
t using Theorem A.11 and, subsequently, to use this with a union bound to bound the
maximum load over all bins. To apply Theorem A.11, we have to prove that the maximum
load difference of bin i between two rounds is exponentially bounded (Majorization) and
that, given a high enough load, the system tends to lose load (Negative Bias). We start
with the majorization. Recall that for random variables X and Y we write X ≤st Y if X
is stochastically dominated by Y , i.e., for all k it holds P[X ≥ k ] ≤ P[Y ≥ k ]. The load
difference |Xi(t + 1) − Xi(t)| is bounded by max(1, Bi(t)) ≤ 1 + Bi(t), where Bi(t) is the
number of tokens bin i receives during round t + 1. In particular,

(
|Xi(t + 1) − Xi(t)| |

X(t)
)
≤st 1 + Bi(t). Note that Bi(t) is binomially distributed with parameters n and λ/n

since each of the potential n balls has probability λ to spawn and, given that it spawned,
with probability 1/n it ends up in bin i. Using standard inequalities we bound

P[Bi(t) = k ] ≤
(
n

k

)
·
(
λ

n

)k
≤
(
e · n
k

)k
·
( 1
n

)k
= ek

kk
(5.1)

and calculate

E
[
eBi(t)+1

]
= e ·

n∑
k=0

ek · e
k

kk
= e ·

de3−1e∑
k=0

e2k

kk
+ e ·

∞∑
k=e3

e2k

kk

≤ Θ(1) +
∞∑
k=1

e−k = Θ(1).

(5.2)

This shows that the Majorization condition from Theorem A.11 holds (with λ′ = 1 and
D = Θ(1)). To see that the Negative Bias condition is also given, note that if bin i has
non-zero load, it is guaranteed to delete one ball and receives in expectation n · λ/n = λ

balls. We get E[Xi(t+ 1)−Xi(t)|Xi(t) > 0 ] ≤ λ − 1 < 0, establishing the Negative Bias
condition (with ε0 = 1 − λ). Thus, we can apply Theorem A.11 with η := min(1, (1 −
λ)/(2D), 1/(2− 2λ)) = (1− λ)/(2D) and get for b ≥ 1

P[Xi(t) ≥ b ] ≤ e−b·η + 2D
η · (1− λ) · e

η·(−b) ≤ 2 · (2D)2

(1− λ)2 · e
(1−λ)·(−b)

2D

≤ (4D)2

(1− λ)2 · e
−b·(1−λ)

(4D)2 ≤ c

(1− λ)2 · e
− b·(1−λ)

c ,

(5.3)
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where c ≥ (4D)2 denotes a suitable constant. Applying the Union bound to all n bins and
choosing b := c

1−λ ·ln
(
c·nh+1

(1−λ)2
)
, where h > 2 is a constant, yields P

[
maxi∈[n]Xi(t) ≥ b

]
≤ n−h.

Since
b = c

1− λ · ln
(
c · nh+1

(1− λ)2

)
≤ c2 · (h+ 1)

1− λ · ln
(

n

1− λ

)
= O

( 1
1− λ · ln

(
n

1− λ

))
,

(5.4)

we get the desired statement.

5.5.2 Stability – Proof of Theorem 5.1

In the following, we provide an auxiliary result that will prove useful for deriving the stability
of the 1-Choice process.

Corollary 5.4. Let λ = λ(n) < 1. Fix an arbitrary round t of the 1-Choice process and
a bin i. There is a constant c > 1 such that the expected load of bin i is bounded by

6c
1−λ · ln

(
n

1−λ
)
.

Proof. By Theorem 5.2, the maximum load of all bins is with high probability bounded by
c · 1

1−λ · log n
1−λ , for a sufficiently large constant c. Let

γ := c

1− λ · ln
(

e · cn
(1− λ)2

)
. (5.5)

Partitioning time into windows of γ rounds and with (5.3), we calculate

E[Xi(t) ] =
γ∑
b=1

b · P[Xi(t) = b ] +
∞∑
k=1

(k+1)γ∑
b=k·γ+1

b · P[Xi(t) = b ]

≤ γ +
∞∑
k=1

(k + 1)γ · P[Xi(t) > k · γ ]

≤ γ +
∞∑
k=1

(k + 1)γ · c

(1− λ)2 · e
− k·γ·(1−λ)

c

≤ γ +
∞∑
k=1

(k + 1)γ · c

(1− λ)2 · e
−k · e− ln(cn/(1−λ)2)

≤ γ +
∞∑
k=1

(k + 1)γ · e−k ≤ 3γ ≤ 6c
1− λ · ln

(
e · cn
1− λ

)
.

(5.6)

This finishes the proof.

Proof of Theorem 5.1. We prove Theorem 5.1 using a result from Fayolle et al. [FMM95]
(cf. Theorem A.22). Note that X is a time-homogeneous irreducible Markov chain with a
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countable state space. In the following, let

∆ := 12e2 · c2n2

(1− λ)3 , (5.7)

where c is the constant from Corollary 5.4. For a configuration x, we define the auxiliary
potential Ψ(x) := ∑n

i=1 xi as the total system load of configuration x. Consider the (finite)
set C := {x | Ψ(x) ≤ n ·∆ } of all configurations with not too much load. To prove positive
recurrence, it remains to show that item 1 (expected potential drop if not in a high-load
configuration) and item 2 (finite potential) of Theorem A.22 hold. Let us start with item 1.
Fix a round t and let x = X(t) 6∈ C. By definition of C, we have Ψ(x) > n · ∆. Hence,
there is at least one bin i with load xi ≥ Ψ(x)/n > ∆. Thus, by definition of the process,
during each of the next ∆ rounds bin i deletes exactly one ball. On the other hand, bin i
receives in expectation ∆ · λn · 1

n = λ∆ balls during the next ∆ rounds. We get
E[Xi(t+ ∆)− xi|X(t) = x ] = λ∆ −∆ = −(1 − λ) ·∆. For any bin j 6= i, we assume

pessimistically that no ball is deleted. Note that the expected load increase of each of
these bins can be majorized by the load increase in an empty system running for ∆ rounds.
Thus, we can use Corollary 5.4 to bound the expected load increase in each of these bins
by 6c

1−λ · ln
( 2·cn

1−λ
)
≤ 6e2·c2·n

(1−λ)2 = (1−λ)∆
2n , by definition of ∆. We get

E[ Ψ(X(t+ ∆))|X(t) = x ] ≤ −(1− λ) ·∆ + (n− 1) · (1− λ)∆
2n

≤ −1− λ
2 ·∆.

(5.8)

This proves item 1 of Theorem A.22. For item 2, assume x = X(t) ∈ C. We bound the
system load after ∆ rounds trivially by

E[ Ψ(X(t+ ∆))|X(t) = x ] ≤ Ψ(x) + ∆ · n ≤ n ·∆ + ∆ · n <∞, (5.9)

(note that the finiteness in Theorem A.22 is with respect to time, not n). This finishes the
proof.

5.5.3 Lower Bound on Maximum Load - Proof of Theorem 5.3

In expectation, the load of any non-empty bin decreases. Thus, to derive a meaningful lower
bound, we need to make use of the variance of the number of balls that are assigned to a
bin over a period of suitable length. To do so, we make use of Theorem A.34 (due to Raab
and Steger [RS98]; see appendix), which lower-bounds the maximum number of balls a bin
receives when m balls are allocated into n bins.

Proof of Theorem 5.3. We assume that we start at an empty system and apply Theo-
rem A.34 to m := λtn many balls. The theorem states that, due to the variance, one
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of the bins is likely to get more than c1λt + c2
√
tλ logn many balls for suitable constants

c1 and c2. This allows us to show that the load of this bin is large, even if we assume,
pessimistically, that it deletes a ball during each of the t time steps.

Let M(t′) be the number of balls allocated during the first t′ ∈ N steps, and let Ymax(t′)
be the maximum number of balls allocated to any bin. Set

t := 9λ log(n)
64(1− λ)2 (5.10)

and let ε := (1− λ)/λ. Since all balls are independent and E[M(t) ] = t · λn ≥ n logn (due
to λ ≥ 3/4), it follows by Chernoff’s inequality that

P[M(t) ≤ (1− ε) · t · λn ] ≤ e−ε2E[M(t) ]/2 ≤ 1
n2 . (5.11)

By Theorem A.34 Cases 3 and 4 (depending on the size of 1 − λ) we get for α :=
√

8/9
(w.h.p.)

Ymax(t) ≥

≥ (1− ε) · t · λ+
√

2(1− ε) · t · λ logn ·min
{
α,

√
1− log logn

2α logn

}

= (1− ε) · t · λ+ α
√

2(1− ε) · t · λ logn.

(5.12)

Let Xmax(t) denote the load of the bin of maximum load. We derive,

Xmax(t) ≥ (1− ε) · t · λ+
√

(1− ε) · 16
9 t · λ logn− t

= (1− ε) · t · λ+
√

1− ε
4 · λ logn

(1− λ) − t

=
√

1− ε
4 · λ logn

(1− λ) − 2(1− λ)t

=
√

1− ε
4 · λ logn

(1− λ) −
9λ log(n)
32(1− λ)

=

√1− 1−λ
λ

4 − 9
32

 · λ logn
(1− λ) = Ω

(
λ logn
1− λ

)
,

(5.13)

where the last inequality holds since λ ≥ 3/4.
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5.6 The 2-Choice Process

We continue with the study of the 2-Choice process. Here, new balls are distributed ac-
cording to Greedy[2] (cf. description in Section 5.4). Our main results are the following
theorems, which are equivalents to the corresponding theorems for the 1-Choice process.

Theorem 5.5 (Stability). Let λ = λ(n) ∈ [1/4, 1). The Markov chain X of the 2-Choice
process is positive recurrent.

Theorem 5.6 (Maximum Load). Let λ = λ(n) ∈ [1/4, 1). Fix an arbitrary round t of the
2-Choice process. The maximum load of all bins is (w.h.p.) bounded by O

(
log n

1−λ
)
.

Note that Theorem 5.6 implies a much better behaved system than we saw in Theo-
rem 5.2 for the 1-Choice process. In particular, it allows for an exponentially higher arrival
rate: for λ(n) = 1− 1/ poly(n) the 2-Choice process maintains a maximal load of O(logn).
In contrast, for the same arrival rate the 1-Choice process results in a system with maximal
load Ω(poly(n)).

Our analysis of the 2-Choice process relies to a large part on a good bound on the
smoothness (the maximum load difference between any two bins). This is stated in the
following proposition. This result is of independent interest, showing that even if the arrival
rate is λ(n) = 1−e−n, where we get a polynomial system load, the maximum load difference
is still logarithmic.

Proposition 5.7 (Smoothness). Let λ = λ(n) ∈ [1/4, 1]. Fix an arbitrary round t of the
2-Choice process. The load difference of all bins is (w.h.p.) bounded by O(lnn).

Analysis Overview. To prove these results, we combine three different potential func-
tions: For a configuration x with average load ∅ and for a suitable constant α < 1 (to be
fixed later), we define

Φ(x) :=
∑
i∈[n]

eα·(xi−∅) +
∑
i∈[n]

eα·(∅−xi), Ψ(x) :=
∑
i∈[n]

xi, and

Γ(x) := Φ(x) + n
1−λ ·Ψ(x).

(5.14)

The potential Φ measures the smoothness (the maximum load difference to the average) of
a configuration and is used to prove Proposition 5.7 (Section 5.6.1). The proof is based on
the observation that whenever the load of a bin is far from the average load, it decreases
in expectation. The potential Ψ measures the total load of a configuration and is used, in
combination with our results on the smoothness, to prove Theorem 5.6 (Section 5.6.2). The
potential Γ entangles the smoothness and total load, allowing us to prove Theorem 5.5 (Sec-
tion 5.6.3). The proof is based on the fact that whenever Γ is large (i.e., the configuration
is not smooth or it has a huge total load), it decreases in expectation.
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Before we continue with our analysis, let us make a simple but useful observation con-
cerning the smoothness: For any configuration x and value b ≥ 0, the inequality Φ(x) ≤ eα·b

implies (by definition of Φ) maxi|xi −∅| ≤ b. That is, the load difference of any bin to the
average is at most b and, thus, the load difference between any two bins is at most 2b.

Observation 5.8. Consider a configuration x with average load ∅ and let b ≥ 0. If
Φ(x) ≤ eα·b, then |xi −∅| ≤ b for all i ∈ [n]. In particular, maxi(xi)−mini(xi) ≤ 2b.

5.6.1 Bounding the Smoothness – Proof of Proposition 5.7

The goal of this section is to prove Proposition 5.7. The key ingredient for its proof is the
following statement: There are values 0 < c < 1 and γ > 0 such that

E[ Φ(X(t+ 1))|X(t) ] ≤ c · Φ(X(t)) + γ (5.15)

holds for all rounds t ≥ 0. Once (5.15) is proven, taking the expected value on both sides
yields E[ Φ(X(t+ 1)) ] ≤ c · E[ Φ(X(t)) ] + γ. This recursion is solved by E[ Φ(X(t)) ] ≤
γ · (1− c)−1. In the rest of this section, we prove that (5.15) holds for a constant c and
γ = O(n), such that we immediately get the following bound on the expected smoothness
(potential Φ) at an arbitrary time t:

Lemma 5.9. Let λ ∈ [1/4, 1]. Fix an arbitrary round t of the 2-Choice process. There is a
constant ε > 0 such that E[ Φ(X(t)) ] ≤ n/ε.

In Lemma 5.9, we chose λ ∈ [1/4, 1] for convenience; the proof works with minor modifi-
cations for any λ = Θ(1) (i.e., for any constant λ, no matter whether λ < 1 or λ > 1). Also,
our analysis easily adapts to the process without deletions by setting λ = 1 and ηi(t) = 0.
This yields the same results as [BCE+12] using a simpler analysis.

Proposition 5.7 emerges by combining Observation 5.8, Lemma 5.9, and Markov’s in-
equality:

P
[

max
i
Xi(t)−min

i
Xi(t) ≥

4
α
· ln
(
n

ε

)]
≤ P

[
Φ(X(t)) ≥ n2

ε2

]
≤ ε

n
.

It remains to prove (5.15). Our proof follows the lines of [PTW10, TW14]3. We start
by splitting the potential Φ(x) in two parts:

Φ(x) = Φ+(x) + Φ−(x), (5.16)

with the upper potential Φ+(x) := ∑
i e
α·(xi−∅) and with the lower potential Φ−(x) :=∑

i e
α·(∅−xi). For a fixed bin i, we use Φi,+(x) := eα·(xi−∅) and Φi,−(x) := eα·(∅−xi) to

3Talwar and Wieder [TW14] use the same potential function to analyze variants of the sequential d-Choice
process without deletions. Our analysis turns out a bit more involved, since we have to consider deletions
and argue over whole batches (of random size) instead of single balls.
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denote i’s contribution to the upper and lower potential, respectively. When we consider
the effect of a fixed round t+ 1, we will sometimes omit the time parameter and use prime
notation to denote the value of a parameter at the end of round t+1. For example, we write
Xi and X ′i for the load of bin i at the beginning and at the end of round t+ 1, respectively.

Two simple but useful identities regarding the potential drops ∆i,+(t+1) := Φi,+(X(t+
1))−Φi,+(X(t)) and ∆i,−(t+ 1) := Φi,−(X(t+ 1))−Φi,−(X(t)) due to a fixed bin i during
round t+ 1 are as follows:

Observation 5.10. Fix a bin i, let K denote the number of balls that are placed during
round t+ 1 and let k ≤ K be the number of these balls that fall into bin i. Then,

1. ∆i,+(t+ 1) = Φi,+(X(t)) ·
(
eα·(k−ηi(t)−K/n) − 1

)
and

2. ∆i,−(t+ 1) = Φi,−(X(t)) ·
(
e−α·(k−ηi(t)−K/n) − 1

)
.

Proof. Remember that 1i is an indicator value which equals 1 if and only if the i-th bin is
non-empty in configuration X. Bin i looses exactly 1i balls and receives exactly k balls,
such that X ′i −Xi = −1i + k. Similarly, we have ∅′ −∅ = −ν +K/n for the change of the
average load. With the identity ηi = 1i − ν (see Section 5.4), this yields

∆i,+(t+ 1) = eα·
(
X′i−∅

′
)
− eα·

(
Xi−∅

)
= eα·

(
Xi−∅

)
·
(
eα·
(
−1i+k+ν−K/n

)
− 1

)
= Φi,+ ·

(
eα·(k−ηi−K/n) − 1

)
,

(5.17)

proving the first statement. The second statement follows similarly.

Preliminaries to Bound the Potential Drop

We now derive the main technical lemma that states general bounds on the expected upper
and lower potential change during one round. This will be used to derive different bounds
on the potential change depending on the situation (Section 5.6.1). For this, let pi :=(
i
n

)2
−
(
i−1
n

)2
= 2i−1

n2 (the probability that a ball thrown with Greedy[2] falls into the
i-th fullest bin). We also define

α̂ := eα − 1 and α̌ := 1− e−α. (5.18)

Note that α̂ ∈ (α, α + α2) and α̌ ∈ (α − α2, α) for α ∈ (0, 1.7). This follows from the
Taylor approximation ex ≤ 1 + x + x2, which holds for x ∈ (−∞, 1.7] (we will use this
approximation several times in the analysis). Finally, let

δ̂i := λn · (1/n · 1− − pi · α̂/α) and δ̌i := λn · (1/n · 1+ − pi · α̌/α), (5.19)

where 1− := 1 − α/n < 1 < 1+ := 1 + α/n. These δ̂i and δ̌i values can be thought of as
upper/lower bounds on the expected difference in the number of balls that fall into bin i
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under the 1-Choice and 2-Choice process, respectively (note that 1+, 1−, α̂/α, and α̌/α are
all close to 1).

Lemma 5.11. Consider a bin i after round t and a constant α ≤ 1.

1. For the expected change of i’s upper potential during round t+ 1 we have

E[ ∆i,+(t+ 1)|X(t) ]
Φi,+(X(t)) ≤ −α ·

(
ηi + δ̂i

)
+ α2 ·

(
ηi + δ̂i

)2
. (5.20)

2. For the expected change of i’s lower potential during round t+ 1 we have

E[ ∆i,−(t+ 1)|X(t) ]
Φi,−(X(t)) ≤ α ·

(
ηi + δ̌i

)
+ α2 ·

(
ηi + δ̌i

)2
. (5.21)

Proof. For the first statement, we use Observation 5.10 to calculate

E[ ∆i,+(t)|X ]/Φi,+ =

=
n∑

K=0

K∑
k=0

(
n

K

)(
K

k

)
(piλ)k ·

(
(1− pi)λ

)K−k · (1− λ)n−K ·
(
eα·(k−ηi−K/n) − 1

)

=
n∑

K=0

(
n

K

)
(1− λ)n−KλK

K∑
k=0

(
K

k

)
· pki · (1− pi)K−k ·

(
eα·(k−ηi−K/n) − 1

)

=
n∑

K=0

(
n

K

)
(1− λ)n−KλK ·

(
e−α(ηi+K/n)

K∑
k=0

(
K

k

)
(eα · pi)k(1− pi)K−k − 1

)

=
n∑

K=0

(
n

K

)
(1− λ)n−KλK ·

(
e−α(ηi+K/n) · (1 + α̂ · pi)K − 1

)
,

where we first apply the law of total expectation together with Observation 5.10 and,
afterward, twice the binomial theorem. Continuing the calculation using the aforementioned
Taylor approximation ex ≤ 1+x+x2 (which holds for any x ∈ (−∞, 1.7]), and the definition
of δ̂i yields

= e−αηi ·
(
1− λ+ λe−α/n · (1 + α̂ · pi)

)n − 1

≤ e−αηi ·
(
1− λ(1− e−α/n) + λ · α̂ · pi

)n − 1

≤ e−αηi ·
(

1− λ · α
n
· (1− α/n) + λ · α̂ · pi

)n
− 1

≤ e−αηi ·
(

1− α

n
· δ̂i
)n
− 1

≤ e−α·(ηi+δ̂i) − 1.

Now, the claim follows by another application of the Taylor approximation. The second
statement follows similarly.
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Before we apply Lemma 5.11 to derive different bounds on the potential drop for various
situations, we provide three auxiliary claims:

Claim 5.12. Consider a bin i and the values δ̂i and δ̌i as defined before Lemma 5.11. If
α ≤ ln(10/9), then max(|δ̂i|, |δ̌i|) ≤ 5λ/4.

Proof. Remember that δ̂i = λn · (1/n · 1− − pi · α̂/α) and δ̌i = λn · (1/n · 1+ − pi · α̌/α), where
1− = 1 − α/n < 1 < 1 + α/n = 1+ (see proof of Lemma 5.11). Note that if α ≤ ln(10/9),
we have 1+ < 5/4 and 1− > 8/9. Since the pi are non-decreasing in i, it is sufficient to
consider the extreme cases i = 1 and i = n.

The claims hold trivially for i = 1, since p1 = 1/n2 and both |1/n ·1−−pi · α̂/α| ≤ 1/n and
|1/n · 1+ − pi · α̌/α| ≤ 1+/n. For the other extreme, i = n, we have pn ≤ 2/n. From this and
the definition of α̂ = eα − 1, we get |δ̂i| ≤ 5

4λ, since
2
n ·

α̂
α −

1
n · 1− ≤

2
n

10/9−1
ln(10/9) −

1
n · 1− <

5
4n .

Similarly, |δ̌i| ≤ 5
4λ follows together with 2

n
α̌
α −

1
n · 1+ < 1

n (which holds for any α > 0).

Claim 5.13. There is a constant ε > 0 such that

1. ∑i≤ 3
4n
pi · Φi,+ ≤ (1− 2ε) · Φ+

n and

2. ∑i∈[n] pi · Φi,− ≥ (1 + 2ε) ·
Φ−−

∑
i≤n4

Φi,−
n .

Proof. For part1, note that the Φi,+ are non-increasing in i, that they sum up to Φ+, and
that the pi are non-decreasing in i. Thus, the left hand side of the claim’s first statement
is maximized if Φi,+ = 4Φ+

3n for all i. Now note that there is a constant ε such that4∑
i>3n/4 pi ≥ 1

4 + ε. We get ∑i≤3n/4 pi ≤ 3
4 − ε. With this, the result follows by

∑
i≤ 3

4n

pi · Φi,+ ≤
(3

4 − ε
)4Φ+

3n =
(

1− 4ε
3n

)
· Φ+ ≤ (1− 2ε) · Φ+

n
. (5.22)

Part 2 follows similarly.

Claim 5.14. Consider a round t and a constant α ≥ 0. Then:

1. ∑i∈[n] αηi(αηi − 1) · Φi,+(X(t)) ≤ α2ην ·min
(
n,Φ+(X(t))

)
and

2. ∑i∈[n] αηi(αηi + 1) · Φi,−(X(t)) ≤ α2ην · Φ−(X(t)).
4This is easily verified by hand. Alternatively, [TW14, Appendix A] gives

∑
i≥3n/4 pi ≥

1
4 + ε′ and the

statement follows by noting that p3n/4 = o(1).
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Proof. For the first statement, we calculate∑
i∈[n]

αηi(αηi − 1) · Φi,+(X(t))

=
∑
i≤νn

αηi(αηi − 1) · Φi,+(X(t)) +
∑
i>νn

αηi(αηi − 1) · Φi,+(X(t))

= αη(αη − 1) ·
∑
i≤νn

Φi,+(X(t)) + αν(1 + αν) ·
∑
i>νn

Φi,+(X(t))

≤ αη(αη − 1) · ν · Φ+(X(t)) + αν(1 + αν) · η ·min
(
n,Φ+(X(t))

)
≤ α2ην ·min

(
n,Φ+(X(t))

)
,

(5.23)

where the first inequality uses that Φi,+(X(t)) is non-increasing in i and that Φi,+(X(t)) ≤ 1
for all i > νn. The claim’s second statement follows by a similar calculation, using that
Φi,−(X(t)) is non-decreasing in i (note that we cannot apply the same trick as above to get
min

(
n,Φ−(X(t))

)
instead of Φ−(X(t))).

Bounding the Potential Drop in Different Situations

With these tools in place, we can derive the bounds on the potential drop in different
situations. We start with a relative bound on the upper potential change ∆+(t + 1) :=∑
i∈[n] ∆i,+(t+ 1) and lower potential change ∆−(t+ 1) := ∑

i∈[n] ∆i,−(t+ 1) during round
t+ 1, respectively.

Lemma 5.15. Consider a round t and a constant α ≤ ln(10/9) (< 1/8). Let R ∈ {+,−}
and λ ∈ [1/4, 1]. For the expected upper and lower potential drop during round t + 1 we
have

E[ ∆R(t+ 1)|X(t) ] < 2αλ · ΦR(X(t)). (5.24)

Proof. We prove the statement for R = +. The case R = − follows similarly. Using
Lemma 5.11 and summing up over all i ∈ [n] we get

E[ ∆+(t+ 1)|X ] ≤
∑
i∈[n]

(
−α · (ηi + δ̂i) + α2 · (ηi + δ̂i)

2) · Φi,+

=
∑
i∈[n]

(
ηiα(ηiα− 1) + α2 · (2ηiδ̂i + δ̂2

i )− α · δ̂i
)
· Φi,+

≤
∑
i∈[n]

(
ηiα(ηiα− 1) + 5α2λ+ 5

4αλ
)
· Φi,+.

Here, the last inequality uses λ ≤ 1 and |δ̂i| ≤ 5
4λ (Claim 5.12). We now apply Claim 5.14,

νη ≤ 1/4 ≤ λ, and α < 1/8 to get

E[ ∆+(t)|X ] ≤
(
α2λ+ 5α2λ+ 5

4αλ
)
· Φ+ < 2αλ · Φ+, (5.25)
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the desired statement.

The next two lemmas derive bounds that are used to bound the upper/lower potential
change in reasonably balanced configurations.

Lemma 5.16. Consider a round t and the constants ε (from Claim 5.13) and α ≤
min(ln(10/9), ε/4). Let λ ∈ [1/4, 1] and assume X 3

4n
(t) ≤ ∅(t). For the expected upper

potential drop during round t+ 1 we have

E[ ∆+(t+ 1)|X(t) ] ≤ −εαλ · Φ+(X(t)) + 2αλn. (5.26)

Proof. To calculate the expected upper potential change, we use Lemma 5.11 and sum up
over all i ∈ [n] (using similar inequalities as in the proof of Lemma 5.15 and the definition
of δ̂i):

E[ ∆+(t+ 1)|X ] ≤ 6α2λ · Φ+ −
∑
i∈[n]

α · δ̂i · Φi,+

=
(
6α2λ− αλ · 1−

)
· Φ+ + α̂λn

∑
i∈[n]

pi · Φi,+.
(5.27)

We now use that Φi,+ = eα·(Xi−∅) ≤ 1 for all i > 3
4n (by our assumption on X 3

4n
). This

yields

E[ ∆+(t+ 1)|X ] ≤
(
6α2λ− αλ · 1−

)
· Φ+ + α̂λn

∑
i≤ 3

4n

pi · Φi,+ + 2αλn. (5.28)

Finally, we apply Claim 5.13 and the definition of 1− and α̂ to get

E[ ∆+(t+ 1)|X ] ≤
(
6α2λ− αλ · 1− + (1− 2ε) · α̂λ

)
· Φ+ + 2αλn

≤
(
4α2λ− 2ε · αλ

)
· Φ+ + 2αλn.

(5.29)

Using α ≤ ε/4 yields the desired result.

Lemma 5.17. Consider a round t and the constants ε (from Claim 5.13) and α ≤
min(ln(10/9), ε/8). Let λ ∈ [1/4, 1] and assume Xn

4
(t) ≥ ∅(t). For the expected lower

potential drop during round t we have

E[ ∆−(t+ 1)|X(t) ] ≤ −εαλ · Φ−(X(t)) + αλn

2 . (5.30)
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Proof. To calculate the expected lower potential change, we use Lemma 5.11 and sum up
over all i ∈ [n] (as in the proof of Lemma 5.16):

E[ ∆−(t+ 1)|X ] ≤ 6α2λ · Φ− +
∑
i∈[n]

α · δ̌i · Φi,−

=
(
6α2λ+ αλ · 1+

)
· Φ− − α̌λn

∑
i∈[n]

pi · Φi,−.
(5.31)

We now use that Φi,− = eα·(∅−Xi) ≤ 1 for all i ≤ n
4 (by our assumption on Xn

4
) and apply

Claim 5.13 to get

E[ ∆−(t)|X ] ≤
(
6α2λ+ αλ · 1+

)
· Φ− − (1 + 2ε) · α̌λn ·

Φ− − n
4

n

=
(
6α2λ+ αλ · 1+ − (1 + 2ε) · α̌λ

)
· Φ− + (1 + 2ε) · α̌λn4

≤
(
8α2λ− 2ε · αλ

)
· Φ− + αλn

2 ,

(5.32)

where the last inequality used the definitions of 1+, α̌, as well as α̌ > α−α2. Using α ≤ ε/8
yields the desired result.

The following two lemmas bound the potential drop in configurations with many balls
far below the average to the right and with many balls far above the average to the left.

Lemma 5.18. Consider a round t and constants α ≤ 1/46 (< ln(10/9)) and ε ≤ 1/3. Let
λ ∈ [1/4, 1] and assume X 3

4n
(t) ≥ ∅(t) and E[ ∆+(t+ 1)|X(t) ] ≥ − εαλ

4 · Φ+(X(t)). Then,
Φ+(X(t)) ≤ ε

4 · Φ−(X(t)) or Φ(X(t)) = ε−8 ·O(n).

Proof. Let L := ∑
i∈[n] max(Xi − ∅, 0) = ∑

i∈[n] max(∅ − Xi, 0) be the “excess load”
above and below the average. First note that the assumption X 3

4n
≥ ∅ implies Φ− ≥

n
4 · exp( αLn/4) (using Jensen’s inequality). On the other hand, we can use the assump-
tion E[ ∆+(t+ 1)|X ] ≥ − εαλ

4 · Φ+ to show an upper bound on Φ+. To this end, we
use Lemma 5.11 and sum up over all i ∈ [n] (as in the proof of Lemma 5.16):

E[ ∆+(t+ 1)|X ] ≤ 6α2λ · Φ+ −
∑
i∈[n]

α · δ̂i · Φi,+

= 6α2λ · Φ+ −
∑
i≤n3

α · δ̂i · Φi,+ −
∑
i>n

3

α · δ̂i · Φi,+.
(5.33)

For i ≤ n/3 we have pi = 2i−1
n2 ≤ 2

3n and, using the definition of 1− and α̂, δ̂i = λn ·
(

1/n ·
1− − pi · α̂/α

)
≥ (1 − 5α)λ/3. Setting Φ≤n/3,+ := ∑

i≤n/3 Φi,+ and Φ>n/3,+ := ∑
i>n/3 Φi,+,
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together with Claim 5.12 this yields

E[ ∆+(t+ 1)|X ] ≤

≤ 6α2λ · Φ+ −
α(1− 5α)λ

3 · Φ≤n/3,+ + 5
4αλ · Φ>n/3,+

=
(

6α2λ− α(1− 5α)λ
3

)
· Φ+ +

(5
4αλ+ α(1− 5α)λ

3

)
· Φ>n/3,+

≤ − εαλ

2 · Φ+ + 2αλ · Φ>n/3,+,

(5.34)

where the last inequality uses α ≤ 1/46 ≤ 1
23 −

3
46ε. With this, the assumption

E[ ∆+(t+ 1)|X ] ≥ − εαλ
4 · Φ+ implies Φ+ ≤ 8

ε · Φ>n/3,+ ≤ 8
ε ·

2n
3 e

αL
n/3 = 16n

3ε e
3αL
n (the last

inequality uses that none of the 2n/3 remaining bins can have a load higher than L/(n/3)).
To finish the proof, assume Φ+ > ε

4 ·Φ− (otherwise the lemma holds). Combining this with
the upper bound on Φ+ and with the lower bound on Φ−, we get

16n
3ε e

3αL
n ≥ Φ+ >

ε

4 · Φ− ≥
εn

16 · e
4αL
n . (5.35)

Thus, the excess load can be bounded by L < n
α · ln

(
256
3ε2
)
. Now, the lemma’s statement

follows from Φ = Φ+ + Φ− < 5
ε · Φ+ ≤ 80n

3ε2 e
3αL
n = ε−8 ·O(n).

Lemma 5.19. Consider a round t and constants α ≤ 1/32 (< ln(10/9)) and ε ≤ 1. Let
λ ∈ [1/4, 1] and assume Xn

4
(t) ≤ ∅(t) and E[ ∆−(t+ 1)|X(t) ] ≥ − εαλ

4 · Φ−(X(t)). Then,
Φ−(X(t)) ≤ ε

4 · Φ+(X(t)) or Φ(X(t)) = ε−8 ·O(n).

Proof. Let L := ∑
i∈[n] max(Xi −∅, 0) = ∑

i∈[n] max(∅−Xi, 0) be the “excess load” above
and below the average. First note that the assumption Xn

4
≤ ∅ implies Φ+ ≥ n

4 ·e
αL
n/4 (using

Jensen’s inequality). On the other hand, we can use the assumption E[ ∆−(t+ 1)|X ] ≥
− εαλ

4 · Φ− to show an upper bound on Φ−. To this end, we use Lemma 5.11 and sum up
over all i ∈ [n] (as in the proof of Lemma 5.17):

E[ ∆−(t+ 1)|X ] ≤ 6α2λ · Φ− +
∑
i∈[n]

α · δ̌i · Φi,−

= 6α2λ · Φ− +
∑
i≤ 2n

3

α · δ̌i · Φi,− +
∑
i> 2n

3

α · δ̌i · Φi,−.
(5.36)

For i ≥ 2n/3 we have pi = 2i−1
n2 ≥ 4

3n −
1
n2 . Using this with pi ≤ pn ≤ 2/n and α̌ ≥ α− α2,

we can bound δ̌i = λn ·
(

1/n · 1+ − pi · α̌/α
)
≤ λ · (−1/3 + 1+α

n ) + 2αλ ≤ −λ/6 + 2αλ.
Setting Φ≤2n/3,− := ∑

i≤2n/3 Φi,− and Φ>2n/3,− := ∑
i>2n/3 Φi,−, together with Claim 5.12
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this yields

E[ ∆−(t+ 1)|X ] ≤

≤ 6α2λ · Φ− + 5
4αλ · Φ≤2n/3,− −

αλ

6 · Φ>2n/3,− + 2α2λ · Φ>2n/3,−

≤
(
8α2λ− αλ/6

)
· Φ− +

(5
4αλ+ αλ/6

)
· Φ≤2n/3,−

≤ − εαλ

2 · Φ− + 2αλ · Φ≤2n/3,−,

(5.37)

where the last inequality uses α ≤ 1/32 ≤ 1
16 −

1
48ε. With this, the assumption

E[ ∆−(t+ 1)|X ] ≥ − εαλ
4 · Φ− implies that Φ− ≤ 8

ε · Φ≤2n/3,− ≤ 8
ε ·

2n
3 e

αL
n/3 = 16n

3ε e
3αL
n

(the last inequality uses that none of the 2n/3 remaining bins can have a load higher than
L/(n/3)). To finish the proof, assume Φ− > ε

4 ·Φ+ (otherwise the lemma holds). Combining
this with the upper bound on Φ− and with the lower bound on Φ+, we get

16n
3ε e

3αL
n ≥ Φ− >

ε

4 · Φ+ ≥
εn

16 · e
4αL
n . (5.38)

Thus, the excess load can be bounded by L < n
α · ln

(
256
3ε2
)
. Now, the lemma’s statement

follows from Φ = Φ+ + Φ− < 5
ε · Φ− ≤

80n
3ε2 e

3αL
n = ε−8 ·O(n).

Proving (5.15)

With the lemmas from Section 5.6.1, we are finally ready to prove (5.15). More exactly, we
argue that for the constant ε from Claim 5.13 and α ≤ min(1/32, ε/8), for any λ ∈ [1/4, 1]
we have

E[ Φ(X(t+ 1))|X(t) ] ≤
(

1− εαλ

4

)
· Φ(X(t)) + ε−8 ·O(n). (5.39)

This follows via a case analysis analogously to [TW14]:

Case 1: xn
4
≥ ∅ and x 3n

4
≤ ∅

The bound follows from Lemma 5.16 and Lemma 5.17.

Case 2: xn
4
≥ x 3n

4
> ∅

For E[ ∆+(t+ 1)|X(t) ] ≤ −εαλ4 ·Φ+ the results follows from Lemma 5.17. Otherwise,
E[ ∆+(t+ 1)|X(t) ] > −εαλ

4 · Φ+ and Lemma 5.18 yields two subcases:

Case 2.1: Φ+(X(t)) ≤ ε
4 · Φ−(X(t))
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Using Lemma 5.15 and Lemma 5.17 we obtain

E[ ∆(t+ 1)|X(t) ] ≤

≤ 2αλ · Φ+(X(t))− εαλ · Φ−(X(t)) + αλn

2
≤ − εαλ

2 · Φ−(X(t)) + αλn

2
≤ − εαλ

4 · Φ(X(t)) + ε−8 ·O(n).

(5.40)

Case 2.2: Φ(X(t)) = ε−8 ·O(n)
Using Lemma 5.15 we get E[ ∆(t+ 1)|X(t) ] ≤ 2αλε−8 · O(n). Our choice of
α (< 1/8), λ (< 1), and ε (� 1) yields 2αλ ≤ (1 − εαλ/4). Using the case
assumption, we compute

E[ ∆(t+ 1)|X(t) ] ≤ 2αλε−8 ·O(n) ≤
(

1− εαλ

4

)
· ε−8 ·O(n)

≤ −εαλ4 · Φ(X(t)) + ε−8 ·O(n).
(5.41)

Case 3: x 3n
4
≤ xn

4
≤ ∅

Similar to the previous case, for E[ ∆−(t+ 1)|X(t) ] ≤ −εαn
4 · Φ− the result follows

from Lemma 5.16. For E[ ∆−(t+ 1)|X(t) ] ≥ −εαn
4 · Φ−, Lemma 5.19 yields two

subcases that are proven analogously to Cases 2.1 and 2.2 (using Lemma 5.16 instead
of Lemma 5.17).

Thus, all cases lead to (5.39).

5.6.2 Maximum Load – Proof of Theorem 5.6

The goal of this section is to prove Theorem 5.6. Recall the definitions of Φ(x) and Ψ(x)
from (5.14). For any fixed round t, we will prove that (w.h.p.) Ψ(X(t)) = O(n · lnn) and
that the average load is ∅ = O(lnn). Using Union bounds and Proposition 5.7, we see that
(w.h.p.) the maximum load at the end of round t is bounded by ∅ +O(lnn) = O(lnn).

It remains to prove a high probability bound on Ψ(X(t)) for arbitrary t. To get an
intuition for our analysis, consider the toy case t = poly(n) and assume that exactly λ·n ≤ n
balls are thrown each round. Here, we can combine Observation 5.8 and Lemma 5.9 to bound
(w.h.p.) the load difference between any pair of bins and for all t′ < t by O(lnn) (via a
union bound over poly(n) rounds). Given this bound on load difference, we can use the
following combinatorial observation (formally stated in Lemma 5.20). If the load distance
to the average is bounded by some b ≥ 0, the bound on the number of balls Ψ ≤ 2b · n is
invariant under the 2-Choice process, since under our assumptions all bins are non-empty
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timet

bound on load difference (Φ(t))

min load mini{Xi(t)}

t′ T

Figure 5.2: To bound the system load at time t, consider the minimum load and our bound on the load
difference over time. We consider the last time T when there was an empty bin. The system load can only
increase if there is an empty bin, and this increase is bounded by our bound on the load difference. Using
that the system load decreases linearly in time while every increase is bounded by our logarithmic bound on
the load difference, we find a small interval [t′, t] containing T . Due to the monotonic of our bound on Ψ,
this will allow us to derive strong bounds on Ψ(t) and on the maximum load.

and thus at least as many balls are deleted as spawn. In particular, we get for b = O(lnn)
that Ψ(X(t)) ≤ 2b · n = O(n · lnn), as required.

The case t = ω(poly(n)) is considerably more involved. In particular, the fact that the
number of balls in the system is only guaranteed to decrease when the total load is high and
the load distance to the average is low makes it challenging to design a suitable potential
function that drops fast enough when it is high. Thus, we deviate from this standard
technique and elaborate on the idea of the toy case: Instead of bounding (w.h.p.) the load
difference between any pair of bins by O(lnn) for all t′ < t (which is not possible for t �
poly(n)), we prove (w.h.p.) an adaptive bound of O(ln(t− t′) · f(λ)) for all t′ < t, where f is
a suitable function (Lemma 5.21 and Lemma 5.22). Then we consider the last round T < t

with an empty bin. Observation 5.8 yields a bound of Ψ(X(T )) = 2 ·O(ln(t− T ) · f(λ)) ·n
on the total load at time T . Using the same combinatorial observation as in the toy case,
we get that (w.h.p.) Ψ(X(t)) ≤ Ψ(X(T )) = 2 · O(ln(t− T ) · f(λ)) · n. The final step is
to show that the load at time T (the load is is logarithmic in t − T ) decreases linearly
in t − T , showing that the time interval [t − T, t] cannot be too large (or we would get a
negative load at time t). Since the interval [t−T, t] is short, we get a good bound on Ψ(T ).
Using Ψ(t) ≤ Ψ(T ) (due to the definition of T ) together with the smoothness bounds of
Lemma 5.21 yields the claim. See Figure 5.2 for an illustration.

Lemma 5.20. Let b ≥ 0 and consider a configuration x with Ψ(x) ≤ 2b·n and Φ(x) ≤ eα·b.
Let x′ denote the configuration after one step of the 2-Choice process. Then, Ψ(x′) ≤ 2b ·n.

Proof. We distinguish two cases: if there is no empty bin, then all n bins delete one ball.
Since the maximum number of new balls is n, the number of balls cannot increase. That
is, we have Ψ(x′) ≤ Ψ(x) ≤ 2b · n. Now consider the case that there is at least one empty
bin. Let η ∈ (0, 1] denote the fraction of empty bins (i.e., there are exactly η · n > 0 empty
bins). Since the minimal load is zero, Observation 5.8 implies maxi xi ≤ 2b. Thus, the
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total number of balls in configuration x is at most (1− η)n · 2b. Exactly (1− η)n balls are
deleted (one from each non-empty bin) and at most n new balls enter the system. We get
Ψ(x′) ≤ (1− η)n · 2b− (1− η)n+ n = (1− η)n · (2b− 1) + n ≤ 2b · n.

The next lemma bounds the probability of two events: First, it bounds Φ over an
arbitrary time interval [0, t) using a union bound over all past rounds t′ < t. Note that
t can be arbitrary large. Thus, in order to get a high probability bound, we must make
the bound adaptive and allow for larger errors the further back in time we go. Second, the
lemma shows that (w.h.p.) not too many balls are created.

Lemma 5.21. Let λ ∈ [1/4, 1). Fix a round t. For i ∈ N with t − i · 8 logn
1−λ ≥ 0 define

Ii := [t− i · 8 lnn
1−λ , t]. Let Yi be the number of balls which spawn in Ii.

1. Define the (good) smooth event St := ⋂
t′<t {Φ(X(t′)) ≤ |t− t′|2 · n2 }. Then, P[St ] =

1−O
(
n−1).

2. Define the (good) bounded balls event Bt := ⋂
i {Yi ≤ 1+λ

2 · |Ii| · n }. Then, P[Bt ] =
1−O

(
n−1).

Proof. Consider an arbitrary time t′ < t. By Lemma 5.9 we have E[ Φ(t′) ] ≤ n/ε. Using
Markov’s inequality, this implies

P
[

Φ(t′) ≥ |t− t′|2 · n2
]
≤ 1/(ε · |t− t′|2 · n). (5.42)

Using the union bound over all t′ < t we calculate

P
[
S̄t
]
≤
∑
t′<t

P
[

Φ(t′) ≥ |t− t′|2 · n2
]
≤ 1
εn
·
∑
t′<t

1
|t− t′|2

≤ π2

6ε · n = O
(
n−1

)
,

where the last inequality uses the solution to the Basel problem. This proves the first
statement.

For the second statement, let Zi := |Ii| ·n−Yi be the number of balls that did not spawn
during Ii. Note that Zi is a sum of |Ii| · n independent indicator variables with E[Zi ] =
(1 − λ) · |Ii| · n = 8i · lnn. Chernoff yields P[Zi ≤ (1− λ) · |Ii| · n/2 ] ≤ e−8i·lnn/8 = n−i.

The desired statement follows from applying the identity Zi = |Ii| · n − Yi and taking the
union bound.

Lemma 5.22. Fix a round t and assume that both St and Bt hold. Then,

Ψ(X(t)) ≤ 9n
α
· ln
(

n

1− λ

)
. (5.43)

Proof. Let T < t be the last time when there was an empty bin and set ∆ := t− T . Note
that T is well defined, as we have Xi(0) = 0 for all i ∈ [n]. Since St holds, we have

Φ(X(T )) ≤ ∆2 · n2 = exp
(
ln(∆2 · n2)

)
. (5.44)
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By definition of T , we have miniXi(T ) = 0. Together with Observation 5.8 we get

max
i
Xi(T ) ≤ 2 ln

(
∆2 · n2)/α. (5.45)

Summing up over all bins (and pulling out the square), this implies that Ψ(X(T )) ≤
4n · ln

(
∆ · n

)
/α. Applying Lemma 5.20 yields

Ψ(X(T + 1)) ≤ 4n · ln
(
∆ · n

)
/α. (5.46)

By the definition of T , is must be the case that there is no empty bin in X(t′′) for
all t′′ ∈ {T + 1, T + 2, . . . , t− 1 }. Thus, during each of these rounds exactly n balls are
deleted. To bound the number of deleted balls, let i be maximal with Ii ⊆ [T, t] (as defined
in Lemma 5.21). Recall that Ii = [t− i · 8 lnn

1−λ , t]. Since Bt holds and using the maximality
of i, the number of balls Y that spawn during [T, t] is bounded by

(1 + λ)|Ii| · n/2 + 8 lnn
1− λ · n ≤ (1 + λ)∆ · n/2 + 8 lnn

1− λ · n.
(5.47)

We calculate

Ψ(X(t)) ≤ Ψ(X(T + 1))−∆ · n+ Y

≤ 4n
α

ln(∆ · n)− 1− λ
2 ∆ · n+ 8 lnn

1− λ · n

= 1− λ
2 · n ·

(
8

α(1− λ) · ln(∆ · n)−∆ + 16 lnn
(1− λ)2

)

≤ 1− λ
2 ·∆ · n ·

(
24

α(1− λ)2 ·
ln(∆ · n)

∆ − 1
)
.

(5.48)

With f = f(λ) := 24/
(
α(1− λ)2) the last factor becomes f · ln(∆ · n)/∆− 1. It is negative

if and only if ∆ > f · ln(∆ · n). This inequality holds for any ∆ > −f ·W−1(− 1
f ·n), where

W−1 denotes the lower branch of the Lambert W function5. This implies that ∆ ≤ −f ·
W−1(− 1

f ·n), since otherwise we would have Ψ(X(t)) < 0, which is clearly a contradiction.
Using the Taylor approximation W−1(x) = ln(−x)− ln

(
ln(−1/x)

)
−o(1) as x→ −0, we get

∆ ≤ −f ·W−1

(
− 1
f · n

)
≤ f · ln(f · n) + f · ln

(
ln(f · n)

)
+ f ≤ 2f · ln(f · n). (5.49)

5Note that − 1
f ·n ≥ −1/e, so that W−1(− 1

f ·n ) is well defined.
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Finally, we use this bound on ∆ to get

Ψ(X(t)) ≤ Ψ(X(T + 1)) ≤ 4n
α
· ln(∆ · n) ≤ 4n

α
· ln
(
2fn · ln(fn)

)
≤ 4n

α
· ln
(

48n
α(1− λ)2 · ln

(
24n

α(1− λ)2

))
≤ 9n

α
· ln
(

n

1− λ

)
.

(5.50)

Now, by combining Lemma 5.22 with the fact that the events St and Bt hold with
high probability (Lemma 5.21), we immediately get that (w.h.p.) Ψ(X(t)) = O(n · lnn).
As described at the beginning of this section, combining this with Proposition 5.7 proves
Theorem 5.6.

5.6.3 Stability – Proof of Theorem 5.5

This section proves Theorem 5.5. In order to do so, we consider the potential Γ (defined in
(5.14)) and show that, for a sufficiently high value of, this potential decreases (Lemma 5.23).6

To show this drop, we argue along the following lines. For the potential to be large and since
the potential is the sum of two potentials Φ and Ψ, one of must have size at least Γ(x)/2.
If Φ(x) is large, then we can even assume a worst-case increase of Ψ and invoke (5.39)
to show that Φ drops considerably resulting in an overall potential drop of Γ. Similarly,
if Ψ(x) ≥ Γ(x)/2, then, due to the careful construction of Γ, we can show that all bins
are non-empty, and the overall potential decreases in expectation. This overall potential
decrease of Γ allows to apply Theorem A.22 yielding stability.

Lemma 5.23 (Negative Bias Γ). Let λ ∈ [1/4, 1). If Γ(X(t)) ≥ 2 n4

(1−λ)2λ
, then

E[ Γ(X(t+ 1))− Γ(X(t))|X(t) ] ≤ −1. (5.51)

Proof. Assume X(t) = x is fixed. By definition of Γ(·), we have Φ(x) ≥ Γ(x)/2 or Ψ(x) ≥
Γ(x)/2. We now show that in both cases

E[ Γ(X(t+ 1))− Γ(x)|X(t) = x ] ≤ −1. (5.52)

1. If Φ(x) ≥ Γ(x)/2, then we have, by (5.39), a potential drop of

E[ Φ(X(t+ 1))− Φ(x)|X(t) = x ] ≤ −(εαλ/4) · Φ(x) + n logn

≤ −(εαλ/8) · Γ(x) + n logn.
(5.53)

6It might look tempting to use Γ together with Hajek’s theorem to bound the maximum system load.
However, this would require (exponentially) sharper bounds on Φ. Furthermore, it might be tempting to
use the stability of Greedy[1] to prove stability of Greedy[2], however, as discussed earlier, it is not clear
to achieve this, as it seems challenging to couple or majorize the processes.
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Note that, by definition of Ψ, Ψ(X(t + 1)) − Ψ(x) ≤ n. Together with Γ(x) ≥
8(n logn+n2/(1−λ)+1)

eαλ ,

E[ Γ(X(t+ 1))− Γ(x)|X(t) = x ]

≤ − εαλ

8 Γ(x) + n logn+ (n/(1− λ)) · n ≤ −1.
(5.54)

2. Otherwise, i.e., if Φ(x) < Γ(x)/2, we have that

(i) the load difference is, by Observation 5.8, bounded by 2 ln(Γ(x)/2)/α, and

(ii) Ψ(x) ≥ Γ(x)/2 must hold. This implies that ∅ ≥ 1
n

(
Γ(x)/2

n
1−λ

)
= (1−λ)·Γ(x)

2n2 .

From (i) and (ii) we have that the minimum load is at least (1−λ)·Γ(x)
2n2 − ln(Γ(x)/2)/α.

From Lemma 5.24 and Γ(x) ≥ 2 n4

(1−λ)2λ
, it follows that every bin has load at least

load 1. Thus each bin will delete one ball and the number of balls arriving is λn in
expectation. Hence,

E[ Ψ(X(t+ 1))−Ψ(x)|X(t) = x ] = − n

1− λ(1− λ)n. (5.55)

Now,

E[ Γ(X(t+ 1))− Γ(x)|X(t) = x ]

= E[ Φ(X(t+ 1))− Φ(x)|X(t) = x ]− n

1− λ(1− λ)n

≤ n logn− n

1− λ(1− λ)n ≤ −1.

(5.56)

Thus, E[ Γ(X(t+ 1))− Γ(x)|X(t) = x ] ≤ −1, which yields the claim.

We now proceed with a technical result.

Lemma 5.24. For all x ≥ 2 n4

(1−λ)2λ
it holds that (1−λ)·x

2n2 − 2 ln(x/2)/α ≥ 1.

Proof. Define f(x) = (1−λ)·x
2n2 −2 ln(x/2)/α. We have f

(
2 n4

(1−λ)2λ

)
≥ n2

(1−λ)λ−
2
α ln

(
n4

(1−λ)2λ

)
≥

1, where the last inequality holds for large enough of n since α is a constant. Moreover, for
all x ≥ 2 n4

(1−λ)2λ
we have f ′(x) = 1−λ

n2 − 2
αx ≥ 0. Thus, the claim follows.

We are ready to prove Theorem 5.5.

Proof of Theorem 5.5. The proof proceeds by applying Theorem A.22. We now define the
parameters of Theorem A.22. Let ζ(t) = X(t) and hence Ω is the state space of X. First
we observe that Ω is countable since there are a constant number of bins (n is consider a
constant in this matter) each having a load which is a natural number. We define φ(X(t))
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to be Γ(X(t)). We define C = {x | Γ(x) ≤ 2 n4

(1−λ)2λ
}. Define β(x) = 1 and η = 1. We now

show that the preconditions (a) and (b) of Theorem A.22 are fulfilled.

• Let x 6∈ C. By definition of C and φ(X(t)), and from Lemma 5.23 we have

E[φ(X(t+ 1))− φ(x)|X(t) = x ]

≤ E[ Γ(X(t+ 1))− Γ(x)|X(t) = x ] ≤ −1.
(5.57)

• Let x ∈ C. Recall that Γ(X(t)) = Φ(X(t)) + Ψ(X(t)). By Lemma 5.19 and the fact
that the number of balls arriving in one round is bounded by n, we derive,

E[φ(X(t+ 1))|X(t) = x ] =

= E[ Φ(X(t+ 1))|X(t) = x ] + E[ Ψ(X(t+ 1))|X(t) = x ]

≤
((

1− εαλ

4

)
2 n4

(1−λ)2λ

)
+ n

1− λn <∞.

(5.58)

The claim follows by applying Theorem A.22 with (5.57) and (5.58).
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Chapter 6

Future Work - Dynamic Processes

Apart from the variants of the Forest Fire Process discussed in Section 4.7 we suspect that
there are many social networks and other dynamic processes that can be studied by using
the potential approach of Chapter 3 and similar ideas and methods as we used for the study
of Forest Fire Process and Balls-into-Bins with Deletions.

It would be interesting to develop some further notion of what it means that a process is
self-stabilizing in the sense that whenever the process is in a “bad” state (e. g., the distance
is super-constant), then it quickly recovers. This notion of self-stabilization is different
than the related the notion of positive recurrence of the underlying Markov chain we use
in Chapter 5 since we would like the notion to include the distance in the Forest Fire
Process—however, the underlying state space is growing since the graph is growing and
the underlying Markov chain is not positive recurrent. Nevertheless, as our analysis of the
Forest Fire Process shows, whenever the potential maximizing the distance is large, then
it decreases in expectation. It would be interesting to identify necessary properties of such
self-stabilizing processes—what’s the common thread about self-stabilizing processes?

Another interesting research direction consists of deriving lower bounds complementing
Theorem A.11 and to understand how tight the results of Theorem A.11 are—can the first
condition (the bound on all moments), be relaxed?

One of the the technically most challenging task consists of deriving tools to deal with
potentials that change in more convoluted ways: We studied the Forest Fire Process for
the case without backward burning since with backward burning the φ of the node arrive
at time t changes by nodes arriving after time t. We are not aware of any tools that would
permit the analysis of such a potential and we believe that such tools would allow us to
study much more involved processes—rendering the potential analysis of dynamic processes
even more powerful.

83



Part II

Probabilistic Analysis of Consensus
Dynamics and Protocols
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Chapter 7

Contributions Consensus Processes

Since reaching consensus is impossible for deterministic distributed algorithm in many set-
tings of interest (e. g., [Ang80, Lyn89]), we focus on randomized consensus processes exe-
cuting simple algorithms. The system consists of n anonymous nodes connected by edges
of a graph. Initially, each node supports one opinion from the set [k] := { 1, . . . , k }. We
refer to these opinions as colors. We describe the system state after any round by an n-
dimensional integral vector c = (ci)i∈[n] ∈ Nn0 with ∑i∈[n] ci = n. Here, the i-th component
ci ∈ N0 corresponds to the number of nodes supporting opinion i. If k < n, then ci = 0
for all i ∈ { k + 1, k + 2, . . . , n }. A consensus process is specified by an update rule that is
executed by each node. The goal is to reach a state in which all nodes support the same
color; the special case where nodes start with pairwise distinct colors is leader election, an
important primitive in distributed computing. The quantity of interest is the consensus
time which is the expected time of a consensus process to reach consensus. In some cases
we are also interested in plurality consensus in which the goal is that all nodes agree on the
initially most dominant color.

We assume a severely restricted and simple communication mechanism known as Uni-
form Pull [DGH+87, KSSV00, KDG03]. Here, in each discrete round, nodes independently
pull information from some (typically constant) number of randomly sampled nodes. We
are interested in protocols with low memory and low message size.

We distinguish between Consensus Dynamics and Consensus Protocols: Consensus Dy-
namics are a subset of Consensus Protocols in which the message size and memory is
bounded by O(log k)–the memory is enough to share a constant number of opinions but
no more. Typically, consensus dynamics are simple and memoryless. Consensus protocols
on the other side can be more complex: they are trading off additional memory and larger
message sizes against faster consensus or better guarantees on the plurality consensus (i. e.,
they require a smaller initial bias to ensure that plurality color wins).
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7.1 Consensus Dynamics

We start by giving an overview over the most studied protocols in this class. The Voter
process (also known as Polling) uses the most naïve update rule: In every round, with
probability 1/2, each node samples one neighbor independently and uniformly at random,
and it adopts that node’s color. Otherwise, the node keeps its current color. We will also
consider the non-lazy version of the model, where every node samples one neighbor in every
round.

Two further natural and prominent consensus processes are the 2-Choices and the 3-
Majority processes. Their corresponding update rules, executed synchronously by every
node, are as follows:

• 2-Choices: Sample two neighboring nodes independently and uniformly at random.
If the samples have the same color, adopt it. Otherwise, ignore them and keep the
current color.

• 3-Majority: Sample three neighboring nodes independently and uniformly at random.
If a color is supported by at least two samples, adopt it. Otherwise, adopt the color
of one of them at random1.

See Figure 7.1 for an illustration.
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Figure 7.1: The figure depicts the three models with two examples each.

In the following we give an overview of our results in these models.
1Equivalently, the node may adopt the color of a fixed sample (the first, or second, or third).
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7.1.1 Overview of Results

We start by considering the Voter model on general undirected graphs.

Results Voter model. The Voter is the dual2 of the so-called coalescing random walk
model, which is a fundamental stochastic process on connected and undirected graphs: At
the beginning of the process there is one particle on each node in the graph. At discrete
time steps, every particle performs independently one step of a random walk.3 Whenever
two or more particles arrive at the same node at the same time step, they merge into a
single particle and continue as a single random walk. We are interested in the (expected)
first time step when only one particle remains, to which we refer to as coalescence time.

The aforementioned duality (see [HP01, AF02] and Proposition 9.11 (more rigorously))
states that the Voter process viewed backwards is exactly the same as the coalescence
process starting with a random walk on every node; thus, the coalescence time tcoal and
consensus time tV have the same distribution. In other words, a bound on the coalescence
time yields a bound on consensus time and vice versa.

When starting with two particles, the coalescence time is referred to as the meeting
time: we denote by tmeet the worst-case expected meeting time over all pairs of starting
nodes and let tcoal denote the expected coalescence time starting from one particle on every
node. Surprisingly, little is known about the relationship between tmeet and tcoal.

Question 1: What are the bounds for the expected consensus time tcoal in terms of the
meeting time tmeet?

Question 2: For which graphs do we have tcoal = Θ(tmeet)?

The first question can partially be answered by

tcoal ∈ [tmeet, O(tcoal logn)]. (7.1)

The lower bound follows my means of a coupling argument stating that it takes for all n
walks at least as long to meet as for 2 random walks. The upper bound follows by dividing
time into periods of length 2tmeet: Say we are left with k random walks, then any pair
of random walks meets after 2tmeet time steps w.p. at least 1/2, by Markov inequality.

2The meaning of “dual” in this field differs from usage in other fields. As we elaborate later, the duality
states that either of the processes can be viewed as the other the exception that time runs “backwards”.
This is made rigorously in Proposition 9.11.

3Throughout this thesis, we use random walk and particle interchangeably, assuming that every random
walk has an identifier.
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Repeating this argument shows that after O(logn) periods only one walk prevails (see
Proposition 8.6).

In Chapter 8, we generalize (7.1) and give at the same time sufficient conditions in
answer to the second question. More precisely, we relate tcoal to the ratio of the mixing
time tmix and tmeet: Whenever tmeet is marginally larger than tmix (a factor of log2 n), then
tcoal = Θ(tmeet). This result as well as (7.1) are special cases of our more general bound
covering the entire spectrum tmeet/tmix ∈ [1, log2 n]. We show that (Theorem 8.1), using
the duality tV = tcoal

tV = tcoal = O

(
tmeet

(
1 +

√
tmix
tmeet

· logn
))

.

We complement this by giving a matching lower bound (Theorem 8.2).

While the Voter model is very natural and useful in many settings–due to its simplicity,
the Voter model has two downsides: 1) the consensus time on the clique is fairly large Θ(n)
and 2) the probability for an opinion to win is proportional to the sum of the degrees of
nodes of that color ([HP01]) and thus even with a large bias the second most dominant
color can easily win, which is in certain settings intolerable. To circumvent both issues two
other simple dynamics were proposed: 3-Majority and 2-Choices.

Results 3-Majority. All known results for 3-Majority (and 2-Choices) apply only if
the number of opinions is small thus not solving the leader election problem. Most results
require–in addition to a limited number of opinions–a sufficient bias between the largest and
second largest color. The reason for the lack of more general results is the following. While
it it easy to apply first moment analysis, it seems challenging to analyze the true behavior
of the process, due to the considerable variance. Intuitively, in the difficult regime where
the number of opinions exceeds n2/3, the process behaves similarly to the Voter in the sense
that majorities shift easily, rendering many standard approaches futile. We embrace this
resemblance and show a stochastic majorization between the processes (Proposition 9.10)
which allows us to analyze the challenging regime by reducing to the easy-to-analyze Voter
model. By doing so we obtain the first unconditional results on the clique: We show
(Theorem 9.8) that the expected consensus time is bounded by

t3M = O
(
n3/4 log7/8 n

)
.

This stochastic majorization is a consequence of our general result (Theorem 9.4) whose
essence is the following. We define a potential φ measuring the progress towards consensus,
and a family of memoryless processes (AC-processes defined in Definition 9.2) comprising
3-Majority and the non-lazy voter model. For any two process P, P ′ of this family we show
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that P ′ reaches consensus faster than P , i. e., TP ≤st TP ′ if the following holds. For every
pair of color distributions c, c′ such that φ(c′) ≤ φ(c) after one-step P remains closer towards
consensus than P ′, i. e., E[φ(P ′(c′)) ] ≤ E[φ(P (c)) ]. These requirements are satisfied by
Voter and 3-Majority (Proposition 9.10) establishing the stochastic majorization between
the two processes. Therefore, we use the following two-state approach: We can use our
reduction from 3-Majority to Voter in order to reduce the number of opinion until we are in
a regime where the known results apply. From there one we simply use the known results
to reduce to one opinion.

Results 2-Choices. For the 2-Choices dynamics we generalize to the setting of k > 2
colors and highlight the advantage of 2-Choices (in comparison to 3-Majority) when it
comes to plurality consensus (converging towards the initially most dominant color) in the
self-stabilizing setting, i. e., in presence of adversaries. We show for the complete graph
(Theorem 10.2) starting with k = O(nε) opinions for some small constant ε > 0 and for
a sufficient bias (between the most and second most dominant color) of Ω(

√
n logn) that

2-Choices converges with high probability4 to the initially most dominant color within

t2C = O(n/c1 · logn)

rounds even in presence of an adversary which can change up to c1(c1 − c2)/n nodes per
round, where ci is the size of the i’th largest opinion.

Furthermore, we prove a series of lower bounds which show that leader election takes
Ω(n/ logn) rounds (Theorem 10.5), and that plurality consensus is likely to fail if the initial
bias is smaller (w.r.t. the bias of our upper bound) by a factor of

√
logn (Theorem 10.6).

At first glance 2-Choices and 3-Majority appear to very similar: Under the first moment
method both processes behave identically meaning that when started from the same config-
uration the expected sized of all colors after one round are identical. Nevertheless, we show
stark differences between processes resulting in an interesting trade-off: 2-Choices trades
a (considerably) worst-case slower consensus time for better guarantees on the plurality
color. These strong plurality guarantees prove to be very useful in the design of consensus
protocols as we show by using 2-Choices as the core of our fast protocol RapidPlurali-
tyConsensus.

7.2 Consensus Protocols

The goal of our consensus protocols is not only to reach consensus more efficiently, but
also to relax the synchronicity requirement, i. e.,, the requirement that all nodes perform

4Throughout this thesis, the expression with high probability means a probability of at least 1− n−Ω(1).
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synchronous rounds. Instead, we would like our algorithm to work even in settings such the
asynchronous model, sequential model.

7.2.1 Overview of Results

We consider three protocols RapidPluralityConsensus as well as two protocols inspired
by load balancing: Balance and Shuffle.

Results RapidPluralityConsensus. The key to our fast plurality protocol is the combi-
nation of the 2-Choices process with an information dissemination process. We divide time
into phases: A 2-Choices sub-phase and a dissemination sub-phase. The first sub-phase is
just one round of 2-Choices and every node that changed its color propagates the adopted
color in the second sub-phase via a process which is essentially pull rumor spreading with
multiple rumors (representing the adopted colors).

While this process is not too difficult to analyze in the synchronous model it becomes
very challenging in the asynchronous (continuous) setting or sequential settings in which
the nodes are selected u.a.r. to perform a tick (see Chapter 11). The reason for the arising
difficulties is that the aforementioned protocol relies heavily on simultaneously execution of
the phases which is no longer the case in the asynchronous realm.

Nevertheless, we are able to adapt the aforementioned protocol to obtain (Theorem 11.1)
a plurality consensus time5 of

tasync = O(logn).

Incidentally, this is the best possible consensus time since some nodes will not have even
ticked once after Ω(logn) and have therefore not even queried a single. To make our
algorithm work, we develop the following weaker notion of synchronicity. At any time we
only require a (1 − o(1)) fraction of the nodes to be almost synchronous. This relaxes full
synchronicity in three ways: First, nodes are only “almost synchronous”, meaning that for
any two nodes their clocks (adjusted over time) may differ by up to ∆ = Θ(logn/ log logn).
Secondly, we allow o(n) nodes to be poorly synchronized. Finally, we require this to hold
only with high probability.

The above notion does not require the nodes to synchronize actively per se, since their
number of ticks is to some extent concentrated even without active synchronization. How-
ever, it turns out that without synchronizing perpetually, the number of poorly synchronized
nodes in each phase will become larger than the initial bias (we are interested in) towards
the plurality opinion c1 − c2 and could therefore influence the consensus significantly. We
thus synchronize actively (see Algorithm 10) nodes at the end of each phase to decrease the

5To allow for an easier comparison with the synchronous model, we will normalize the run time of
all sequential algorithms and continuous processes throughout this thesis by dividing their run time by n
[AGV15].
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fraction of poorly synchronized nodes such that their number is in o(c1 − c2), resulting in
a negligible influence of those nodes.

Results Consensus via Load Balancing. To the best of our knowledge, no effort has
been made to ensure plurality consensus in arbitrary undirected graphs. We develop two
protocols Balance and Shuffle which are heavily inspired by distributed load balancing.
In the spirit of generalization, our protocols work in a multitude of different environments:
Asynchronous, sequential, synchronous, and random matchings. The beauty of our proto-
cols is that they’re transparent to the underlying communication environment and use the
results from load balancing as a black box.

Protocol Balance (Algorithm 13) uses load balancing in the most natural way possible:
Each node creates a polynomial number of balls of its own color and then balances the balls
of all colors separately for

tBalance = O

( logn
1− λ2

)
rounds, where λ2 is the second largest eigenvalue. Afterwards, each node simply chooses
the color of which it has the most number of balls. This will with high probability be the
plurality opinion (Theorem 12.9). While this is very efficient in the settings with few colors
(small k), the required memory per node is Θ(k logn). Reducing this memory is the goal of
our algorithm Shuffle (Algorithm 12), which essentially performs “blind” load-balancing
as opposed to color separated load balancing as done by Balance: In the “diffusion setting”
where all nodes can communicate to all of the neighbors in every round the algorithm
essential just chooses half of its tokens and randomly sends them in equal shares to each
of the neighbors. Our results (Theorem 12.9) show a trade-off between memory usage
and consensus time of Shuffle. The challenge in analyzing Shuffle is the dependencies
between the tokens: The number of tokens per node is invariant and thus if we reveal the
positions of some tokens, we affect the probability distribution of the remaining tokens.
Fortunately, it turns out that the the dependencies work in the right direction: the tokens
are negatively associated (Lemma 12.6) allowing us to apply concentration inequalities.

7.3 Related Work

7.3.1 Voter Model

Due to the duality, one easily obtains the bound O(tmeet logn) on the coalescence time.
This bound appears implicitly in the work of Hassin and Peleg [HP01]. In recent work,
Cooper et al. [CEOR13] provide results that are better than O(tmeet logn) for several in-
teresting graph classes, notably expanders and power-law graphs. They show that tcoal =
O((log4 n+ ‖π‖−2

2 ) · (1− λ2)−1), where λ2 is the second largest eigenvalue of the transition
matrix of the random walk and π is the stationary distribution. Berenbrink et al. [BGKM16]
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show that tcoal = O(m/(dmin · Φ)), where m is the number of edges, dmin is the minimum
degree and Φ is the conductance. Their result improves on that of Cooper et al. for certain
graph classes, e. g., cycles. Their bounds hold in dynamic graphs where edges change, in a
restricted way, over time.

Despite the recent progress due to Cooper et al. [CEOR13] as well as Berenbrink et
al. [BGKM16], for many fundamental graphs such as the hypercube and the (d-dimensional)
torus, the coalescing time in the discrete setting remains unsettled.

The coalescing random walk process has also been studied in continuous time; in this
case, particles jump to a random neighboring node when activated according to a Poisson
clock with mean 1. As Cooper and Rivera [CR16] recently pointed out

“It is however, not clear whether the continuous-time results apply to the
discrete-time setting.”

and to the best of our knowledge, there is no general way in which results in continuous time
can be transferred to discrete time or vice versa, even when the random walks in discrete-
time are lazy. In the continuous time setting, Cox [Cox89] show that the coalescence time is
bounded by Θ(thit) for tori. Oliveira [Oli12] showed that the coalescence time is O(thit) in
general. In a different work, Oliveira [Oli13] proved so-called mean field conditions, which
are sufficient conditions for the coalescing process on a graph to behave similarly to that
on a complete graph. His main result in [Oli13], Theorem 1.2, implies that tcoal = O(tmeet)
whenever tmix · πmax = O(1/ log4 n).

7.3.2 2-Choices

The expected convergence time of the Voter process is at least Ω(n) on many graphs, such
as regular expanders and complete graphs. Taking into account that solutions to many
other fundamental problems in distributed computing, such as information dissemination
[KSSV00] or aggregate computation [KDG03], are known to run much more efficiently,
Cooper et al. noted that there is room for improvement. To address this issue, Cooper
et al. [CER14] introduced the 2-Choices voting process. In this modified process, one is
given a graph G = (V,E) where each node has one of two possible opinions. The process
runs in discrete rounds during which, unlike in the Voter process, every node is allowed to
contact two neighbors chosen uniformly at random. As mentioned earlier, if both neighbors
have the same opinion, then this opinion is adopted, otherwise the calling vertex retains its
current opinion in this round.

They show that in random d-regular graphs, with high probability all nodes agree af-
ter O(logn) steps on the initially most frequent opinion, provided that c1 − c2 = K ·
(n
√

1/d+ d/n) for K large enough, where c1 and c2 denote the support of the initially
most frequent and second-most frequent colors. For an arbitrary d-regular graph G, they
need c1 − c2 = K · λ2 · n, where λ2 is the second largest eigenvalue. In the more recent
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work by Cooper et al. [CER+15], the results from [CER14] have been extended to general
expander graphs, cutting out the restrictions on the node degrees but nevertheless proving
that the convergence time remains in O(logn). Recently, the authors of [CRRS16] showed
the following bound on the consensus time in regular expanders. If the initial bias between
the largest and second-largest opinion is at least c1 − c2 ≥ Cnmax{

√
logn/c1, λ2}, where

λ2 is the second largest eigenvalue and C is a suitable constant, then the largest opinion
wins in O((n logn)/c1) steps, with high probability. Very recently Ghaffari and Lengler
[GL17] show for 2-Choices that for k = O(

√
n logn) the consensus time is O(k logn) which

is known to be tight. The authors suggest that their results extend to 3-Majority.

7.3.3 3-Majority

All theoretical results for 3-Majority consider the complete graph. The authors of [BCN+14b]
assume that the bias is Ω

(
min {

√
2k, (n/ logn)1/6 }·

√
n logn

)
. Under this assumption, they

prove that consensus is reached with high probability in O
(
min { k, (n/ logn)1/3 } · logn

)
rounds, and that this is tight if k ≤ (n/ logn)1/4. The only result without bias [BCN+16]
restricts the number of initial colors to k = o

(
n1/3). Under this assumption, they prove that

3-Majority reaches consensus with high probability in O
(
(k2(logn)1/2 +k logn) · (k+logn)

)
rounds. Their analysis considers phases of length O

(
k2 logn

)
and shows that, at the end

of each phase, one of the initial colors disappears with high probability. Note that this
approach is so far the only one not assuming any bias cannot yield sublinear bounds with
respect to k.

7.3.4 Further Consensus Dynamics

A related consensus process is 2-Median [DGM+11]. Here, every node updates its color (a
numerical value) to the median of its own value and two randomly sampled nodes. Without
assuming any initial bias, the authors show that this process reaches consensus with high
probability in O(log k · log logn+ logn) rounds. This is seemingly stronger than the bounds
achieved for 3-Majority and 2-Choices without bias. However, it comes at the price of a
complete order on the colors (our processes require colors only to be testable for identity).
Moreover, 2-Median is not self-stabilizing for Byzantine agreement (unlike 3-Majority and
2-Choices [BCN+16, EFK+16]): it cannot guarantee validity6 [BCN+16]. Another consen-
sus process is the UndecidedDynamics. Here, each node randomly samples one neighbor
and, if the sample has a different color, adopts a special “undecided” color. In subsequent
rounds, it tries to find a new (real) color by sampling one random neighbor. The most re-
cent results [BCN+15b] show that, for a large enough bias, consensus is reached with high
probability in at most O(k logn) rounds. Slightly more involved variants yield improved

6Byzantine agreement requires that the system does not converge to a color that was initially not sup-
ported by at least one non-corrupted node.
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bounds of O(log k · logn) [BFGK16, GP16, EFK+16]. However, observe that for k = n all
nodes become undecided with constant probability instead of agreeing on a color.

Another natural variant is five-sample voting in d-regular graphs with d ≥ 5, where in
each round at least five distinct neighbors are consulted. Abdullah and Draief showed for
the case k = 2 an O(logd logd n) bound [AD15], which is tight for a wider class of voting
protocols. A more general analysis of multi-sample voting has been conducted by Cruise
and Ganesh [CG14] on the complete graph.

7.3.5 Consensus Protocols

There is a diverse body of literature that analyzes consensus problems under various models
and assumptions. Results differ in the considered network topology (e.g., arbitrary or
complete), the restrictions on model parameters (e.g., the number of opinions or the initial
bias7), the time model (synchronous or asynchronous), or the required knowledge (e.g., n,
maximal degree, or spanning tree). To capture this diverse spectrum, we classify8 results
into population protocols and sensor networks. We will not discuss work whose focus is
too far away from this paper’s, e.g., consensus on some arbitrary opinion, leader election,
robustness concerns, or Byzantine models.

Population Protocols. The first area of work we consider comes from population pro-
tocols. Population protocols model interactions between large populations of very simple
entities (like molecules). Entities are modeled as finite state machines with a small state
space and communicate asynchronously. In each step, an edge is chosen uniformly at ran-
dom and only the two connected nodes communicate. We refer to this communication
model as the sequential model. See [AR07, AAER07] for detailed introductions.

Angluin et al. [AAE08] propose a 3-state population protocol for majority voting (i.e.,
k = 2) on the clique. If the initial bias α is ω(logn/

√
n), their protocol agrees (w.h.p.) 9

on the majority opinion in O(n · logn) steps. Mertzios et al. [MNRS14] suggest a 4-state
protocol for exact majority voting, which always returns the majority opinion (independent
of α) in time O

(
n6) in arbitrary graphs and in time O

(
n2 · log(n)/α

)
in the clique. This

is optimal in that no population protocol for exact majority can have fewer than four
states [MNRS14].

Alistarh et al. [AGV15] gives a protocol for k = 2 in the clique that allows for a
speed-memory trade-off. It solves exact majority and has expected parallel running time10

7The bias is α := (n1 − n2)/n, n1 and n2 being the support of the most and second most common
opinions.

8This classification is neither unique nor injective but merely an attempt to make the overview more
accessible.

9We say an event happens with high probability (w.h.p.) if its probability is at least 1− 1/nc for c ∈ N.
10The number of steps divided by n. A typical measure for population protocols, based on the intuition

that each node communicates roughly once in n steps.
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Table 7.1: Summary of plurality consensus results.

Arbitrary
Graph

Number
of Opinions

Required Bias α
O-notation

Time
O-notation Model Space

O-notation

Shuf. 3 arbitrary arbitrary
T · tmix

T · log n/(1− λ2)
for (d-regular graph)

sync
& async

see
Theo-

rem 12.1

Bala. 3 arbitrary arbitrary
τ

log n/(1− λ2)
for (d-regular graph)

sync
& async

k · log n

[KLS08] 3 arbitrary arbitrary D + F2
n2

1
· log(k) broadcast –

[MNRS14] 3 2 arbitrary n5 async 1
[DV12] 3 2 arbitrary log n/δ(G, n1/n) async 1
[CER+15]expander 2 vol(1)− vol(2) ≥ 4λ2

2|E| log n sync 1

[CER14] random
d-reg 2

√
1/d + d/n log n sync 1

[BCN+14a]7 ≤ n

√√√√min
{
k, 3

√
n

log n

}
· log n

n min
{
k, 3

√
n

log n

}
· log n sync log(k)

[BCN+15b]7 O( 3
√

n
log n) ε · n2/n md(c) · log n sync log(k)

[EFK+16] 7 O(nε)
√

log n/n k + log n sync log(k)
[BFGK16] 7 o(

√
n

log n) �
√

log n/n log n · log log n sync log(k)
[AAG17] 7 2 arbitrary O(log2(n)) async s =

O(log n)
states

[AGV15] 7 2 arbitrary log2(n)
sα + log2(n) async s =

O(n)
states

[AAG17] 7 2 arbitrary O(log2 n) async O(log n)
states

[GS17] 7 2 arbitrary O(log n) async O(log(2) n)
states

[AAE08] 7 2 � log n/
√
n log n async 1

Shuffle assumes rough bounds on tmix and n. Bounds on α can reduce the space requirements of our protocols.
[KLS08] requires a spanning tree and a common set of quasi-random hash functions. Time in the async model
use parallel time. All results, except for [DV12], hold w.p. 1 − o(1). [AGV15] also gives an expected time of
o(log(n)/(sα) + log(n) · log(s)).
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O
( logn
s·α + logn · log s

)
and (w.h.p.) O

( log2 n
s·α + log2 n

)
. Here, s is the number of states and

must be in the range s = O(n) and s = Ω(logn · log logn).
In contrast to these results, our protocols consider the case of arbitrary number k ≥ 2 of

opinions. Also, with the notable exception of [MNRS14], the above results are restricted to
the complete graph. These restrictions are not surprising, given that these protocols operate
on a very constrained state space. Moreover, [GS17] provided a protocol for leader election
which uses O(log logn) states and reaches consensus in O(log2 n) rounds. Very recently
[AAG17] showed that for a protocol converging to the majority opinion in O(nc), c ≤ 1
time steps regardless of the initial configuration, Ω(logn) states are necessary. Moreover,
they give a protocol requiring O

(
log2(n)

)
time steps to converge and O(logn) states.

Sensor Networks. Another line of work has a background in sensor networks. Quantized
interval consensus draws its motivation from signal processing. Initially, nodes measure
quantized values (signals) and then communicate through a network to agree on the quan-
tized values that enclose the average. This can be used to solve majority consensus (k = 2).
The communication model is typically sequential.

Bénézit et al. [BTV09] propose a protocol that is equivalent to the 4-state population
protocol of [MNRS14] and prove that with probability 1 it converges in finite time, but
without bounds on that convergence time.

A more recent result by Draief and Vojnovic [DV12] shows that this protocol (and
thus [MNRS14]) needs O

( logn
δ(QS ,α)

)
steps in expectation. Here, δ(QS , α) depends on the bias

α and on the spectrum of a set of matrices QS related to the underlying graph. The authors
give concrete bounds for several specific graphs (e.g., in the complete graph the consensus
time is of order11 O(logn/α)). The only related result for k > 2 we are aware of is [BTV11]
which again proves only convergence in finite time.

Another consensus variant is mode computation. For example, Kuhn et al. [KLS08]
consider a graph of diameter D where each node has one or several of k distinct elements.
The authors use a protocol based on a complex hashing scheme to compute the mode (the
most frequent element) w.h.p. in time O

(
D+F2/n

2
1 · log k

)
. Here, F2 = ∑

i n
2
i is the second

frequency moment and ni the frequency of the i-th most common element. F2/n
2
1 ∈ [1, k]

can be seen as an alternative bias measure. Nodes communicate via synchronous broadcasts
and need a precomputed spanning tree and hash functions. [KLS08] can also be used for
aggregate computation as done by Kempe et al. [KDG03] (where the authors provide an
elegant protocol to compute sums or averages in complete graphs).

Overall, [DV12] and [KLS08] are probably the most closely related to our work since
they consider arbitrary graphs. However, we our work consider more general communication
models, including dynamic graphs. Similar to [DV12], our results for k = 2 rely on spectral
properties of the underlying graph (and are asymptotically the same for their concrete

11We state their bound in terms of our α = (n1 − n2)/n; their definition of α differs slightly.
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examples). However, our bounds are related to well-studied load balancing bounds and
mixing times of random walks (which we believe are easier to get a handle on than their
δ(QS , α)).

Further Consensus Protocols.

The authors of [FHK15, FN16] give efficient protocols for plurality consensus in the setting
where transmission are subject the noise.
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Chapter 8

Voter Model [KMS16]

In the voter model, each node of a graph has an opinion, and in every round each node
chooses independently a random neighbor and adopts its opinion. We are interested in the
consensus time, which is the first point in time where all nodes have the same opinion. In
order to derive strong bound on the voter model we will study the dual of this problem which
is called Coalescing random walks. Coalescing random walks is a fundamental stochastic
process on connected and undirected graphs. The process begins with particles on some
subset of the nodes in the graph. At discrete time steps, every particle performs one step of
a random walk.1 Whenever two or more particles arrive at the same node at the same time
step, they merge into a single particle and continue as a single random walk. The coalescence
time is defined as the first time step when only one particle remains. The coalescence time
depends on the number and starting positions of the particles.

When starting with two particles, the coalescence time is referred to as the meeting time.
Let tmeet denote worst-case expected meeting time over all pairs of starting nodes and let
tcoal denote the expected coalescence time starting from one particle on every node. It is
clear that tmeet ≤ tcoal; as for an upper bound, it can be shown that tcoal = O(tmeet logn),
where n is the number of nodes in the graph. The main idea used to obtain the bound is
that the number of surviving random walks halves roughly every tmeet steps. A proof of the
result appears implicitly in the work of Hassin and Peleg [HP01].

8.1 Results

In this work, we provide several results relating the coalescence too two fundamental quanti-
ties related to random walks: the mixing time and the meeting time. In particular, our focus
is on understanding for which graphs the coalescence time is the same as meeting time, as
we know that tcoal is always in the rather narrow interval of [Ω(tmeet), O(tmeet · logn)]. As a

1Throughout this thesis, we use random walk and particle interchangeably, assuming that every random
walk has an identifier.
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consequence of our results, we derive new bounds on the coalescence times for several graph
families of interest. Formal definitions of all quantities used below appear in Chapter 2 and
Section 8.3.1.

Our first main result relates tcoal to tmeet and tmix. As already mentioned in the intro-
duction, the crude bound tcoal = O(tmeet logn) is well-known. However, this bound is not
in general tight, as demonstrated by our result below.

Theorem 8.1. For any graph G, we have

tcoal = O

(
tmeet

(
1 +

√
tmix
tmeet

· logn
))

Consequently, when tmeet ≥ tmix log2 n, tcoal = O(tmeet).

The proof of Theorem 8.1 appears in Section 8.3. One interesting aspect about this
bound is that it can be used to establish tcoal = Θ(tmeet) even without having to know
the quantities tmeet or tmix. This flexibility turns out to particularly useful when dealing
with random graph models for “real world” networks. From this we immediately derive the
coalescence time for Erdős Rény graphs, random regular graphs, hypercubes, tours for any
d > 2 as well as for many “real word” networks:

Common features of real world graph models are (i) a power-law degree distribution
with exponent β ∈ (2, 3) and (ii) high expansion, i. e., 1 − λ2 is not too large, and hence
tmix = O(logn). Notice that (i) β ∈ (2, 3) implies that w.h.p. we have ∆ = O(n1−ε), and
hence ‖π‖22 ≤ maxu∈V π(u) ≤ n−ε, for ε > 0. It is easy to see that tcoal ≥ tmeet = Ω(‖π‖−2

2 )
which implies for the above defined networks that tcoal = Ω(nε). This implies that for a
large range of parameters we have that tcoal = Θ(tmeet).

Our next main result shows that the bound in Theorem 8.1 is tight up to a constant
factor, which we establish by constructing an explicit family of graphs. Interestingly, for
this family of almost-regular graphs we also have thit � tmeet, thus showing that thit may
be a rather loose upper bound for tcoal in some cases.2

Theorem 8.2. For any sequence (αn)n≥0, αn ∈ [1, log2 n] there exists a family of almost-
regular graphs (Gn), with Gn having Θ(n) nodes and satisfying tmeet

tmix
= Θ(αn) such that

tcoal = Ω
(
tmeet ·

(
1 +

√
tmix
tmeet

· logn
))
.

The above two results show that that tmeet/tmix should be Ω(log2 n) to guarantee that
tcoal = O(tmeet).

2Note that the star also exhibits thit � tmeet. However, the star is not almost-regular.
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8.2 Approach and Technical Contributions

When dealing with processes involving concurrent random walks, a significant challenge is
often to understand the behavior of “short” random walks. This challenge appears in several
settings, e. g., in the context of cover time of multiple random walks [AAK+11, ER09], where
Efremenko and Reingold [ER09, Section 6] highlight the difficulty in analyzing the hitting
time distribution before its expectation. In the context of concentration inequalities for
Markov chains, Lezaud [Lez89, p. 863] points out the requirement to spend at least mixing
time steps before taking any samples. Related to that, in property testing, dealing with
graphs that are far from expanders has been mentioned as one of the major challenges to
test the expansion of the graph by Czumaj and Sohler [CS10].

In our setting, we also face these generic problems and devise different methods to get
a handle on the meeting time distribution before its expectation.

Bounds on tcoal in terms of tmix and tmeet

The key ingredient in the proof of Theorem 8.1, where we express tcoal as a trade-off between
tmeet and tmix is the following: a tight bound on the probability p` that two random walks
meet before ` time steps, for ` in the range [tmix, tmeet]. Arguing about meeting probabilities
of walks that are much shorter than tmeet allows us to understand the rate at which the
number of alive, random walks is decreasing.

Optimistically, one may hope that starting with k random walks, as there are
(k

2
)
possible

meeting events, roughly
(k

2
)
· p` meetings may have occurred after ` time steps. However,

the non-independence of these events turns out to be a serious issue and we require a
significantly more sophisticated approach to account for the dependencies. We divide the
k random walks into disjoint groups G1 and G2 (with |G1| usually being much smaller than
|G2|) and walks of G1 can’t be eliminated. The domination of the real process by the group-
restricted one is established by introducing a formal concept called immortal process at the
beginning of Section 8.3.2. In this stochastic process, we can expose the random walks of
G1 first and consider meetings with random walks in G2 (for an illustration, see Figure 8.2
on page 103). Conditioning on a specific exposed walk in G1, the events of the different
walks in G2 meeting this exposed walk are indeed independent. In fact, we will also use the
symmetric case where the roles of G1 and G2 are switched. Thus, the problem then reduces
to calculating the likelihood of a random walk in G2 having a ‘good trajectory’, i. e., one
which many random walks in G1 would meet with large enough probability.

Surprisingly, it suffices to divide trajectories into only two categories (Lemma 8.5).
Although, one may expect that a more fine-grained classification of trajectories would result
in better bounds, it turns out not to be the case. In fact, the bound that we derive
on the coalescing time in Theorem 8.1 is tight, and this is precisely due to the tightness
of Lemma 8.5. The tightness is established by the following construction (cf. Figure 8.1).
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Figure 8.1: The graph described in Section 8.3.5 with tcoal = Ω(tmeet +
√
α · logn · tmix).

The graph is designed such that the vast majority of meetings (between any two random
walks) occur in a relatively small part of the graph (G2 in Figure 8.1). On average, it takes a
considerable number of time steps before random walks actually get to this part of the graph.
What this implies is that for relatively short trajectories (of length significantly smaller than
tmeet), it is quite likely that other random walks will not meet them (cf. Lemma 8.5). There
is a bit of a dichotomy here, once a walk reaches G2 it is likely that many random walks
will meet it; however, a random walk not reaching G2 is unlikely to be met by any other
random walk.

Equipped with Theorem 8.1, we can bound tcoal = Θ(tmeet) for all graphs satisfying
tmeet/tmix ≥ log2 n. Therefore, the problem of bounding tcoal reduces to bounding tmeet.

For some of the other results including Theorem 8.2, we will need a more fine-grained
approach to derive lower (or upper bounds) on the probability that two walks meet during a
certain number of steps, which may or may not be smaller than the mixing time or meeting
time. The starting point is the following simple observation. If we have two random walks
(Xt)t≥0 and (Yt)t≥0, and count the number of collisions Z := ∑τ−1

t=0 1Xt=Yt before time step
τ ,then

P[Z ≥ 1 ] = E[Z ]
E[Z | Z ≥ 1 ] . (8.1)

If we further assume that both walks start from the stationary distribution, then we have

P[Z ≥ 1 ] = τ · ‖π‖22
E[Z | Z ≥ 1 ] .
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We should mention that this generic approach is of course not new, an analogous variant of
counting visits to a vertex has been used by Cooper and Frieze in several works (e. g., [CF05])
to derive very accurate bounds on the hitting (and cover time) on various classes of random
graphs, or in Barlow et al. [BPS12] to bound the collisions of random walks on infinite
graphs. However, using (8.1), we are able to obtain several improvements to existing bounds
on the meeting time, and as a consequence for coalescing time. We believe that our work
further highlights the power of this identity.

The crux of (8.1) is that in order to lower (or upper) bound the probability that the two
walks meet, we need to derive a corresponding bound on E[Z | Z ≥ 1 ], i. e., the number
of collisions conditioning on the occurrence of at least one collision.

Our results employ various tools to get a handle on this quantity, but here we mention
one that is relatively simple:

E[Z | Z ≥ 1 ] ≤ max
u∈V

τ−1∑
t=0

∑
v∈V

(
ptu,v

)2
. (8.2)

The inner summand ∑v∈V (ptu,v)2 is the probability that two walks starting from the same
vertex u will meet after further t steps. Thus, summing over t and conditioning on the first
meeting happening (i. e., the condition Z ≥ 1) at some vertex u before time step τ yields
the bound in (8.2). Despite the seemingly crude nature of this bound, it can be used to
derive new results for thit, tmeet and tcoal that significantly improve over the state-of-the-art
for regular graphs.

8.3 Bounding the coalescence time

In this section we prove Theorem 8.1, one of our main results. We refer the reader to
Section 8.2 for a high-level description of the proof ideas.

8.3.1 The coalescence process

We define the coalescence process as a stochastic process as follows: Let S0 ⊆ V be the set
of nodes for which there is initially one random walk on it, and for all v ∈ St let

Yv(t) =

u ∈ N(v) w.p. 1
2|N(v)|

v w.p. 1
2

The set of active nodes in step t+1 is given by St+1 = {Yv(t) | v ∈ St}. The process satisfies
the Markov property, i. e.,

P[St+1 | Ft ] = P[St+1 | St ], (8.3)
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where Ft is the filtration up to time t. Finally, we define the time of coalescence as
tcoal(S0) = min{t ≥ 0 | |St| = 1}. Let tcoal(S0) be defined as expected consensus time
when initially only the nodes of S0 are occupied by random walks; we use the notation tcoal

when S0 = V . Throughout this paper, the expression w.h.p. (with high probability) means
with probability at least 1 − n−Ω(1) and the expression w.c.p. (with constant probability)
means with probability > 0. We use logn for the natural logarithm. Appendice A contains
some known results about Markov Chains that we frequently use in our proofs.

8.3.2 A more amenable process

In order to prove our first main result, it is helpful to consider a more general stochastic
process, Pimm, called the immortal process, involving multiple independent random walks.
In the immortal process, whenever several random walks arrive at the same node at the
same time a subset of them (rather than just one) may survive, while the remaining are
merged with one of the surviving walks. To identify the random walks, we assume that
each walk has a natural number (in N) as an identifier. In order to define this process
formally, we introduce some additional notation and definitions; then we state and prove
some auxiliary lemmas. A related concept was introduced in [Oli12, Section 3.4] under the
name of “allowed killings”.

G1 = {1, 2}

G2 = {3, 4, 5}

t = 0

5

4

32

1

t = 1

1 2

33

554

t = 2

1

2

4

t = 3

1

2

4

t = 4

1

2

44

Figure 8.2: Illustration of the process Pimm.

As mentioned before, we assume that every random walk r has a unique identifier
id(r) ∈ N. We divide the ids into two groups G1, the group of immortal walks and G2 the
group of the remaining (mortal) walks. Whenever two or more walks collide at a node, then
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all walks with ids in G1 survive, while all walks with ids in G2 are killed (merged with some
walk with id in G1). Furthermore, if all walks have ids in G2, i. e., there are no walks with
id in G1, then the walk with the minimum id among these walks survives. The ids along
with the assignment of ids to groups determine which of the random walks that arrive at a
given node at the same time survive.

Formally, let Pimm denote the following process:

1. At time 0, S0 = {(ur, id(r))}, where ur is the starting node of random walk r and
id(r) is its identifier.

2. At time t, several random walks may arrive at the same node. The process Pimm allows
some subset of them to survive, while the rest ‘coalesce’ with one of the surviving
walks. Formally, St+1 is defined using St as follows. Define the (random) next-step
position of the random walk with id i ∈ N which is on node v ∈ V to be

Yv,i(t) :=

u where u ∈ N(v) w.p. 1
2|N(v)|

v w.p. 1
2 ,

Let Rv(t) := {(Yv,i(t), i) | (v, i) ∈ St}, v ∈ V be the set of next-step positions (before
merging happens) for random walks that were at node v at time t. Let

R̂v(t) := {(v, i) | ∃u ∈ V, (v, i) ∈ Ru(t)}

be the random walks that have arrived at node v at time step t+1, just before merging
happens. Then, merging happens w.r.t. the ids as follows:

(a) If there exists i ∈ G1 such that (v, i) ∈ R̂v(t) (at least one walk with id in G1

arrives at v), then

Sv(t+ 1) := {(v, j) | (v, j) ∈ R̂v(t), j ∈ G1}

(b) If there is no i ∈ G1, such that (v, i) ∈ R̂v(t) and R̂v(t) 6= ∅ (no walk with id in
G1 arrives at v, but at least one walk arrives at v), then

Sv(t+ 1) := {(v, j)},

where j = min{i | (v, i) ∈ R̂v(t)}.

(c) Otherwise, Sv(t+ 1) := ∅, i. e., no walk arrived at v.

Finally, let
St+1 :=

⋃
v∈V

Sv(t+ 1).
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We now relate this more general process, Pimm, to the coalescing process defined in
Section 8.3.1. Let P be regarded as a special instance of Pimm with G1 = {1}. In process
P , only one of several walks arriving at the same node survives and by convention the one
having the smallest id is chosen. Let (St)∞t=0 denote the stochastic process P . If we define
S̄t := {v | (v, i) ∈ St}, then (S̄t)∞t=0 is a coalescence process as defined in Section 8.3.1.
Moreover, P represented by (St)∞t=0 is the coalescence process which additionally keeps
track of the ids. Throughout this chapter, we assume that every random walk of S0 is on a
distinct node.

In the following we show that the time it takes to reduce to k random walks in the
original process P is majorized by the time it takes in Pimm to reduce to k random walks.
While this might be intuitive, one needs to be very careful about the dependencies between
the meetings of different random walks: For instance a random walk which is immortal in
Pimm might eliminate many other random walks whereas the corresponding coupled random
walk in P might be eliminated early and therefore cannot eliminate said random walks.

Proposition 8.3. Consider the following two processes:

1. Process P is the standard process of coalescing random walks, viewed as a special case
of Pimm with G1 = {1} as described above.

2. Process Pimm is the process defined above using groups G1 and G2, where 1 ∈ G1.

Let T k, T kimm be the stopping times given by the condition that fewer than k random walks
remain for the two processes respectively. Assume both processes start with the same initial
configuration, i. e., the vertices occupied by walks in both processes are identical and there
is only one walk per vertex in either process. Then, there exists a coupling such that

T k ≤ T kimm.

Proof. We will give a coupling between the moves of walks in Pimm and Pint, a new process
that is essentially intermediate between P and Pimm; furthermore, we will show that the
original process P is essentially a restricted view of the process Pint. The process Pint

will label the walks dead, alive, and phantom. We emphasize that a phantom walk is not
considered alive. Note that the processes P and Pimm can be viewed as processes which
assign labels to each random walk of the type alive and dead.

Let SQ
t denote the set of tuples of alive walks in process Q ∈ {P, Pint, Pimm} at time t.

Let S̄Q
t = {v | (v, i) ∈ SQ

t } for Q ∈ {P, Pint, Pimm} be the set of nodes which are occupied
by at least one alive walk (there might be several in Pimm at t ≥ 1). In order to prove the
proposition, we show that there exists a coupling, such that for any t ∈ N

S̄P
t ⊆ S̄

Pint
t (8.4)
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S̄Pint
t ⊆ S̄Pimm

t (8.5)

implying that |S̄P
t | ≤ |S̄

Pimm
t | which yields the claim since

T k = min{t ≥ 0: |S̄Pt | ≤ k} ≤ min{t ≥ 0: |S̄Pimm
t | ≤ k} = T kimm.

We now define Pint. As mentioned above, the walks in Pint will be given three kinds of
labels alive, dead, or phantom; the dead walks do not continue ahead in time; alive and
phantom walks do.

Formally, Pint using the groups G1 and G2 is defined as follows. We say that walk r is
of type Gi, if id(r) ∈ Gi for i ∈ {1, 2}. Whenever at least one walk arrives3 on a node, then
the following happens.

1. At least one of the walks is of type G1

(a) At least one walk of type G1 is alive

i. the walk of G1 with the smallest id is labeled as alive (even if it was labeled
phantom before)

ii. all other walks of type G1 (if there are any) are labeled as phantom
iii. alive walks of type G2 are labeled dead (if present).

(b) All walks of type G1 are phantom walks

i. There is no walk of type G2

A. No label is changed
ii. There is at least one walk of type G2

A. the walk of type G1 with the smallest id is labeled as alive
B. all other walks of type G1 (if there are any) are labeled as phantom
C. alive walks of type G2 are labeled dead.

2. All walks are of type G2

(a) the walk of G2 with the smallest id is labeled as alive

(b) all other walks are labeled as dead.

Note, that walks of G1 are either alive or phantom and walks of G2 are either alive or
dead. Also, note that in the process Pint, there is at most one alive walk at any given node.
Throughout the proof we regard the processes in two stages: First, each random walk selects
a destination (possibly the same node it was on) and moves there. In the second phase the
walks are merged according to the process. See Figure 8.3 for an illustration.

3Throughout, by arrive we take into account that walks may arrive at a node from the same node through
laziness.
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Figure 8.3: An illustration of couplings between the processes. The squares depict the random walks.
Walks of G1 are colored black and gray (phantom) and the nodes of G2 are white. The blue arrows denote
the moving decisions. Observe that in Pint a phantom becomes alive (and a walk of G2 is labeled dead).

We prove (8.4) by induction on t starting from the same initial configuration: if v ∈ S̄P
t ,

then v ∈ S̄Pint
t . Consider the inductive step from t to t + 1 and assume that the claim

holds at the end of round t (after merging happened). For the (unique) random walk at
v ∈ S̄P

t under process P , we couple its transition to node Yv(t+ 1) (where we possibly have
Yv(t+ 1) = v) with the corresponding alive walk of S̄Pint

t (there might be several walks of
Pint, however only one is alive and we couple with this alive walk). Let S be the set of
nodes to which a random walk in P moved, i. e., S = {Yv(t+ 1): v ∈ S̄P

t }. Observe, that
before the merging takes place in round t + 1 (but moves have been made), there is, by
induction hypothesis and the coupling, at least one alive walk of Pint on each node of S.
Furthermore, the definition of Pint ensures that whenever an alive random walk moves to a
node, then after merging takes place, at least4 one alive walk remains. Thus, our coupling
ensures that if v ∈ S̄P

t+1, then v ∈ S̄Pint
t+1 . In words, if one looks at the subsets where there is

an alive walk of Pint, this is essentially the standard coalescence process. This finishes the
proof of (8.4) and we turn to proving (8.5).

When starting from the same initial configuration, we will provide a coupling that
satisfies the following invariants.

1. There is a bijective map from the alive and phantom walks of Pint to the alive walks
of Pimm, such that the following holds. All walks of Pint of type Gi are mapped to
walks of Pimm of type Gi, for i ∈ {1, 2}.

4By definition, there is actually exactly one alive walk.
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2. Whenever a walk of type G2 is labeled dead in Pimm, then it is also labeled dead in
Pint and vice versa.

At the beginning there are no dead or phantom walks in Pint, there are no dead walks
in Pimm, all walks are alive and as the starting positions in Pimm and Pint are the same, an
arbitrary bijective mapping may be chosen, so long as it respects node positions and walk
types.

Assume the invariant holds at time t. We take one random walk step for each alive or
phantom random walk in Pint. These are coupled with the corresponding walks in Pimm,
under the chosen map. Walks that are already dead are neither simulated in Pint nor in
Pimm. Hence, we can ensure the bijection between the walks of G1 in both processes holds
at time t+ 1.

We now prove the second invariant. Note that whenever a walk r of type G2 in Pimm(Pint)
is labeled dead, this implies there must have been another walk r′ on the same node at the
same time. Since there is a bijective map, r′ must be on the same node in Pint(Pimm). We
have that either r′ is of type G1 or r′ is of type G2 and that id(r′) < id(r). In either case, r
is also killed (labeled dead) in Pint(Pimm). Hence, we can ensure the bijection between the
walks of G2 in both processes holds at time t + 1. Thus, the invariant holds at time t + 1.
By induction, and since the alive walks of Pint are a subset of the alive walks of Pimm the
invariant holds throughout the process and yielding (8.5). This finishes the proof.

8.3.3 Meeting Time Distribution Prior to tmeet

Let (Xt)t≥0 and (Yt)t≥0 be independent random walks starting at arbitrary positions. For τ
a multiple of tmix, the following lemma gives a lower bound on the probability of intersection
of the two random walks in τ steps.

Lemma 8.4. Let (Xt)t≥0 and (Yt)t≥0 be two independent random walks starting at arbitrary
positions. Let intersect(Xt, Yt, τ) be the event that there exists 0 ≤ s ≤ τ , such that Xs = Ys.
Then

P[ intersect(Xt, Yt, 5tmix) ] ≥ 1
32α,

where α = tmeet/tmix. Furthermore, for any 1 ≤ b ≤ e−1
e · α, there exists a constant c > 0,

such that
P[ intersect(Xt, Yt, c b tmix) ] ≥ b

α
,

Proof. First, let (X̃t)t≥0 and (Ỹt)t≥0 be two random walks that start from two independent
samples drawn from the stationary distribution and are run for ` := 2dαedtmixe steps. Notice
that ` ≥ 2tmeet, and hence, by Markov’s inequality,

P
[

intersect(X̃t, Ỹt, `)
]
≥ 1

2 . (8.6)
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Furthermore, if we divide the interval [1, `] into 2dαe consecutive sections of length dtmixe
each, the probability for a collision in each of these section is identical and therefore the
union bound implies

P
[

intersect(X̃t, Ỹt, `)
]
≤ 2dαe · P

[
intersect(X̃t, Ỹt, tmix)

]
, (8.7)

and hence combining equation (8.6) and (8.7) yields

P
[

intersect(X̃t, Ỹt, tmix)
]
≥ 1

4dαe .

Consider now two independent random walks (Xt)t≥0 and (Yt)t≥0 starting at arbitrary
positions. By applying Lemma A.27 to both walks, with probability at least (1−e−1)2 both
X4tmix and Y4tmix are drawn independently from the stationary distribution since 4tmix ≥
tsep. Therefore,

P[ intersect(Xt, Yt, 5tmix) ] ≥ (1− e−1)2 · P
[

intersect(X̃t, Ỹt, tmix)
]
≥ (1− e−1)2 · 1

4dαe .

Observing that for any α ≥ 1, the RHS above expression is greater than 1/(32α) completes
the proof of the first part. For the second part, we consider k blocks of length 5tmix. Due
to independence of different blocks, the probability of that the two walks meet in at least
one of the k blocks is at least 1− (1− 1

32α)k. We set k := d∗e32b/(1− e−1), x := 1/(32α).
We distinguish between two cases.

Case k · x < 1: We use the fact that (1− x)k ≤ e−xk ≤ 1− (1− e−1)xk for 0 ≤ x < 1,
k ≥ 0 and xk ≤ 1. We derive that the probability of intersecting after k blocks is at least
1− (1− 1

32α)k ≥ (1− e−1)k/(32α) = b/α.
Case k · x ≥ 1: We have 1 − (1 − 1

32α)k ≥ 1 − (1 − 1
32α)32α ≥ 1 − 1/e ≥ b/α. In both

cases the second part follows.

At the heart of the proof of Theorem 8.1 lies the following lemma that analyses the
marginal distribution of the meeting time distribution. That is, we only expose the first
random walk (Xt)τt=0, and look at how this affects the probability of meeting. In essence, we
show that at least one of the two “orthogonal” cases hold. In Case 1 (corresponding to set
C1), there is at least a modest probability that after exposing (Xt), (Yt) will intersect with
significant probability. Otherwise, in Case 2 (corresponding to set C2), there is a significant
probability that after exposing (Xt), (Yt) will intersect with at least a modest probability.

Lemma 8.5. Fix τ ∈ N and a graph G. Let (Xt)τt=0 and (Yt)τt=0 be independent random
walks, where the starting nodes X0 and Y0 are drawn independently from the stationary dis-
tribution π (w.r.t. to G), and the walks are run for τ steps. Let p = P[ intersect(Xt, Yt, τ) ]
and let Tτ denote the set all possible trajectories of a walk of length τ in G (including possible
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self-loops). We define the following two categories C1 and C2 with C1 ⊆ C2

C1 := {(z0, . . . , zτ ) ∈ Tτ : P[ ∃0 ≤ s ≤ τ, Ys = zs ] ≥ √p}

C2 := {(z0, . . . , zτ ) ∈ Tτ : P[ ∃0 ≤ s ≤ τ, Ys = zs ] ≥ p/3}.

Then, P[ (Xt)τt=0 ∈ C1 ] ≥ p
3 or P[ (Xt)τt=0 ∈ C2 ] ≥

√
p

3 .

While the actual lower bounds on the probabilities appear rather crude, it turns out
that the “significant probability” √p/3 is best possible, as we demonstrate in our lower
bound construction later. Remarkably, the fact that the “modest probability” is only p/3
and much smaller than √p/3 does not affect the tightness of our bound, since in Claim 8.7,
we can make up for this gap in both cases through a simple amplification argument over
the unexposed random walks.

Proof. Let us suppose that P[ (Xt)τt=0 ∈ C1 ] < p
3 . We show that this implies P[ (Xt)τt=0 ∈ C2 ] ≥

√
p

3 . Assume for the sake of contradiction P[ (Xt)τt=0 ∈ C2 ] <
√
p

3 . We have

p = P[ intersect(Xt, Yt, τ) ]

≤ P[ (Xt)τt=0 ∈ C1 ] · 1 + P[ (Xt)τt=0 ∈ (C2 \ C1) ] · √p+ P[ (Xt)τt=0 6∈ C2 ] · p3
< p/3 +√p/3 · √p+ p/3 ≤ p,

a contradiction. This completes the proof.

It is well-known that starting with k random walks, the coalescence time is bounded
by O(tmeet log k), this can be deduced from the proof presented in [HP01]. For the sake of
completeness, we give a self-contained proof5.

Proposition 8.6. We have tcoal(S0) = O(tmeet log |S0|).

Proof. Let P be the coalescing process (with ids) defined in Section 8.3.2. Recall that
G1 = {1}. Let St be set of coalescing random walks at an arbitrary time step t. In the
following we show the slightly stronger claim that the expected time to reduce the number
of random walks by a constant factor is O(tmeet).

Formally, we fix an arbitrary time step t0. With T := min{t ≥ t0 : |St| ≤ 99/100 ·
|St0 |, |St0 | ≥ 100} denoting the first time step the number of coalescing random walks
reduces by a factor of 99/100, we will prove that E[T ] = O(tmeet). Iterating the argument
O(log |S0|) times implies that the expected time it takes to reduce to 100 random walks

5One might be tempted to pair random walks in groups of two and run them for 2tmeet time steps so
that, by Markov inequality, they meet with probability at least 1/2. Repeating this iteratively would yield
the claim. To formalize such an argument one would need to disallow coalescence between different pairs of
random walk which differs from the stochastic process we reduce to in Section 8.3.2.
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is O(tmeet log |S0|). Note that the expected time to reduce from 100 random walks to 1 is
bounded by O(tmeet). Hence, the claim tcoal(S0) = O(tmeet log |S0|) follows.

It remains to show that the expected number of time steps it takes to reduce the number
of random walks by a factor of 99/100 is indeed O(tmeet).

We divide time into blocks of length τ := c e−1
e tmeet + 4tmix, where c is the constant

of Lemma 8.4, i. e., P
[

intersect(Xt, Yt, c
e−1
e tmeet)

]
≥ e−1

e . We are primarily interested
in what happens at the end of the blocks, i. e., at time steps t0, t0 + τ, t0 + 2τ, . . .. For
simplicity, we will start counting time from 0 at the beginning of each block. Let (Xt)t≥0 be
the random walk with id 1. After 4tmix steps, we can couple the state of the random walk
(Xt)t≥4tmix with a node drawn from π with probability at least (1− e−1), since 4tmix ≥ tsep

(see Lemma A.27). Further, note that conditioned on this coupling, the statement of
Lemma 8.5 implies that (Xt)t≥4tmix ∈ C2 w.p. at least p/3, where we used C2 ⊆ C1, and
where p := P

[
intersect(X̃t, Ỹt, c · e−1

e · tmeet)
]
≥ e−1

e for X̃0, Ỹ0 ∼ π.
We condition on the successful coupling of X4tmix with a node drawn from π and that

(Xt)t≥4tmix ∈ C2, which happens with probability at least (1−e−1)p/3 = (e−1)2

3e2 (called event
E). Finally, consider any random walk (Yt)t≥0b with id other than 1. Again with probability
at least 1−e−1 we can couple Y4tmix with a node drawn from π and conditioned on successful
coupling, (Yt)t≥4tmix meets (Xt)t≥4tmix between time steps [4tmix, τ ] with probability at least
p/3, by definition of C2. Thus, conditioned on event E , each walk of G2 vanishes w.p.
(1 − e−1)p/3 = (e−1)2

3e2 and thus the expected fraction of walks killed in the τ time steps is
at least (e−1)2

3e .
Let Z` = |St0+`·τ | denote the number of random walks alive at the beginning of block `.

E
[
Z` | Ft0+(`−1)·τ

]
≤ Z`−1 − (Z`−1 − 1) · (e− 1)4

9e4 ≤ Z`−1 −
Z`−1
100 .

The above holds as long as Z`−1 ≥ 100. We can therefore apply Lemma A.14 with
parameters g = 99/100 · S0 and β = 99/100 to obtain that E[T ] = O(τ) = O(tmeet), which
completes the proof.

8.3.4 Upper Bound - Proof of Theorem 8.1

We commence by considering the process Pimm defined in Section 8.3.2. This allows us to
establish Claim 8.7 providing us with the following trade-off. For a given period τ of length
at least tmix we obtain a bound on the required number of periods to reduce the number of
random walks by an arbitrary factor. The proof relies heavily on Lemma 8.5 which divides
the walks of G1 into two groups allowing us to expose the walks of G1 first and then to
calculate the probability of the walks of G2 to intersect with them. In fact, we will also
use the symmetric case where the roles of G1 and G2 are switched. These probabilities are
derived from the time-probability trade-off presented in Lemma 8.4. We then use Claim 8.7
to derive a bound on the number of time steps it takes to reduce the number of walks to
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d2αe, where α = tmeet/tmix (Corollary 8.8). From there on we employ Claim 8.7 to reduce
the number of walks to 1 in O(tmeet) time steps. Melding both phases together yields the
bound of Theorem 8.1.

We now define a process Pimm(S0, k) with k < |S0|, which is a parameterized version of
the process Pimm defined in Section 8.3.2:

• Let |S0| = k′; there are k′ random walks with ids 1, . . . , k′ and starting nodes
v1, . . . , vk′ . Thus, S0 = {(vi, i) | 1 ≤ i ≤ k′}.

• Let G1 = {1, . . . , k} and G2 = {k + 1, . . . , k′}. Recall that, by definition of Pimm, we
have that if some random walks with ids in G1 and some with ids in G2 are present
on the same node at the same time, only the ones with ids in G1 survive. If all the
random walks have ids in only in G1, then all of them survive. If all random walks
have ids only in G2, then only the one with the smallest id survives.

We define
IDs(St) := {id(r) | (ur, id(r)) ∈ St}, t ∈ N.

The following lemma gives the expected time it takes to reduce the number of random walks
in G2 from k′ − k to some arbitrary integer g ≥ k: given a period of length τ and integer
g, assuming that k = |G1| is large enough, we derive a bound on the number of periods of
length τ until the walks in G2 are reduced to g. The required size of k is a function of the
probability for two random walks drawn from π intersecting after τ time steps.

Claim 8.7. Let τ ∈ N, let (Xt)τt=0 and (Yt)τt=0 be independent random walks run for τ steps,
with X0 and Y0 drawn independently from π. Let pτ ≤ P[ intersect(Xt, Yt, τ) ] be a lower
bound on the probability of the intersection of the two walks during the τ steps. Consider
an instantiation of Pimm(S0, k). Suppose that k ≥ 3

(1−e−1)·pτ . For some 1 ≤ g ≤ |S0| − k,
define the stopping condition Tg = min{t ≥ 0 | | IDs(St) ∩ G2| ≤ g}. Then the expected
stopping time satisfies

E[Tg ] = O

(
(4tmix + τ) ·

√
1
pτ
· (log |G2| − log g)

)
.

We first describe the high-level proof idea, before delving into the formal proof. We
divide time into blocks of size 4tmix + τ . For any random walk (Zt)4tmix+τ

t=0 we can couple
its position after 4tmix ≥ tsep w.c.p. with a node drawn from π. Thus, conditioning
on the success of this coupling we have, by Lemma 8.5, P

[
(Zt)4tmix+τ

t=4tmix ∈ C1
]
≥ pτ

3 or
P
[

(Zt)4tmix+τ
t=4tmix ∈ C2

]
≥
√
pτ
3 . In the former case we have that w.c.p. there is at least

one random walk r in G1 which is, due to independence of the walks, in class C1. The
hypothetical extension of the trajectory of any random walk in r′ ∈ G2 intersects with r

w.p. c√pτ/3, where the constant arises due to the fact that we also need to couple the state
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of r′ at time 4tmix to a node drawn according to π. (We need to consider the hypothetical
extension because the walk r′ may get eliminated sooner–this only helps us.) Thus, r′ gets
eliminated w.p. at least c√pτ for a suitable constant c.

In the latter case we have that w.p. at least c√pτ/3 a random walks of G2 is in class
C2. Every random walk in that class intersects w.c.p. with at least one of the walks of G1.
Thus, in both cases, we have that in each block a random walk of G2 is eliminated w.p.
a least c√pτ for some constant c. Thus, the number of random walks in G2 decrease in
expectation by a factor of c√pτ .

Proof. We will consider the process in blocks each consisting of 4tmix+τ time steps. For con-
venience in the proof, we’ll restart counting time steps from 0 at the beginning of each block;
we keep track of the total number of time steps by counting the number of blocks. Let C1 and
C2 be as defined in Lemma 8.5. Then we perform a case analysis by considering the two pos-
sible outcomes described in Lemma 8.5 separately. We define Zj = | IDs(Sj·(4tmix+τ)) ∩ G2|,
i. e., the number of walks remaining in G2 after j blocks of time have passed. For any j ≥ 1,
we will show that there exists a constant c > 0 such that,

E[Zj | Fj−1 ] ≤ Zj−1 · (1− c
√
pτ ).

By using Lemma A.14, we get E[Tg ] = O
(
(4tmix + τ) · 1√

pτ
· (log |G2| − log g)

)
(the factor

(4tmix + τ) appears as the size of the block). Recall that Fj is the filtration up to end of the
jth block. In the remainder we show that we have indeed E[Zj | Fj−1 ] ≤ Zj−1 ·

(
1− c√pτ

)
.

Case 1. P[ (Xt)τt=0 ∈ C1 ] ≥ pτ
3 :

Consider any random walk r in G1 at the beginning of a block. Using Lemma A.27, after
4tmix steps we can couple the state of the random walk with a node drawn from π with
probability at least (1 − e−1). Furthermore, conditioned on this coupling, the portion of
the random walk between time steps 4tmix and 4tmix + τ of the walk is in class C1 with
probability at least pτ

3 . Since k ≥ 3
pτ ·(1−e−1) , w.p. c1 > 0, in any block, there exists a walk

in G1 that has the portion between time steps 4tmix and 4tmix + τ in C1.
Fix a block and condition on the event that there is a walk in G1, denoted by r1, whose

portion between time steps 4tmix and 4tmix + τ is in C1. Consider any walk in G2, denoted
by r2, at the beginning of the block. We want to argue that this walk r2 has a reasonable
probability of intersecting some walk in G1 in this block of time steps. First, consider (the
possibly hypothetical continuation of r2 ) walk r′2 for the entire length of the block. The
reason for this is that if r2 and some walk from G1 are at the same node at the same time
sometime in the block, r2 will be eliminated in the process Pimm(S0, k); however, we can
consider its hypothetical extension to the entire length of the block. Using Lemma A.27
the state of the walk r′2 at time step 4tmix can be coupled with a node drawn from π with
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probability at least c2 := 1− e−1. Then conditioned on successful coupling, the probability
that r′2 and r1 collide during time steps 4tmix and 4tmix + τ is at least √pτ (by definition
of C1 in Lemma 8.5). Thus, the probability that r2 hits at least one walk in G1 is at least
c1 · c2 ·

√
pτ . Note that it is also possible for r′2 to be eliminated by another walk from G2.

In any case, we have that r2 is eliminated w.p. at least c√pτ and we get

E[Zj | Fj−1 ] ≤ Zj−1 · (1− c1 · c2
√
pτ ).

Case 2. P[ (Xt)τt=0 ∈ C2 ] ≥
√
pτ
3 :

Consider a walk in G2, denoted by r2, at the beginning of a block; as in the previous case,
we will consider a possibly hypothetical continuation r′2 of r2. Using Lemma A.27 we can
couple the state of r′2 at time step 4tmix with a node drawn from π with probability at
least 1−e−1. Furthermore, conditioned on the successful coupling, with probability at least
√
pτ
3 the trajectory of r′2 between the time steps 4tmix to 4tmix + τ is in C2. Thus, with

probability at least p := (1 − e−1)
√
pτ
3 , r′2 has a trajectory between time steps 4tmix and

4tmix + τ that lies in C2. Now consider any random walk r1 ∈ G1 at the beginning of the
block. Again, using Lemma A.27 with probability at least 1− e−1, we can couple the state
of the random walk at time 4tmix with a node drawn from π. Conditioned on this between
time steps 4tmix to 4tmix + τ , this random walk hits any trajectory whose portion between
time steps 4tmix to 4tmix + τ lies in C2 with probability at least pτ/3 (by definition of C2 in
Lemma 8.5). Since k = |G1| ≥ 3

(1−e−1)·pτ , with at least constant probability c1 > 0 there is
some walk in G1 that intersects any fixed trajectory whose portion between time steps 4tmix

to 4tmix + τ lies in C2. Since the random walks in G1 are independent, by the definition of
the immortal process, we have that any walk in G2 is eliminated by the end of the block
with probability at least c1 · p = c

√
pτ for some constant c > 0. Similarly as before, it is

possible that r2 is eliminated by at least one of the walks of G2, which only increases the
probability for r2 of being eliminated. We get

E[Zj | Fj−1 ] ≤ Zj−1 · (1− c
√
pτ ).

In the following we bound the time T required to reduce to 2dαe random walks. The
claim follows by applying Claim 8.7 to derive a bound on Timm for processPimm, and using
the majorization of T by Timm (Proposition 8.3).

Corollary 8.8. Consider the coalescence process starting with set S0 and let α = tmeet/tmix.
Let T1 = min{t ≥ 0 | |St| ≤ 2dαe}. Then E[T1 ] = O(tmix ·

√
α · log |S0|).

Proof. We consider the process P (defined in Section 8.3.2), which is identical to the co-
alescence process, but in addition also keeps track of ids of random walks and that al-
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lows only the walk with the smallest id to survive. We assume that the ids are from
the set {1, 2, . . . , |S0|}. Let S0 = {(v1, 1), . . . , (v|S0|, |S0|)} and S̄0 = {i : (v, i) ∈ S0}. We
consider the process Pimm(S0, k) and k = dαe. Let T ∗1 be the stopping time defined by
| IDs(S̄t) ∩ G2| ≤ α for the process Pimm(S0, k). By definition of Pimm and Proposition 8.3,
it follows that Timm stochastically dominates T . Thus, it suffices to bound E[Timm ]. W.l.o.g.
we assume that α ≥ 6 e−1

e , otherwise the claim follows directly from Proposition 8.6. We
apply Lemma 8.4 with b = 6 and derive that for some suitable constant c,

p = P[ intersect(Xt≥0, Yt≥0, 6ctmix) ] ≥ 6
α
,

Thus, we have
3

(1− e−1) · p ≤
3

1
2 · p

≤ α ≤ k

Applying Claim 8.7 with g = α, τ = 6ctmix (where c is a constant as given by Lemma 8.4),
pτ = 6/α, and observing that k ≥ 3

(1−e−1)·pτ , we get the required result.

In the following we bound the time T required to reduce from 2dαe random walks to
a single random walk. The proof uses the same ideas as before (Corollary 8.8) however,
this time we consider several phases and in each we reduce the number of random walks by
a constant factor. The expected time per phase is geometrically increasing as the number
of walks decreases and the overall time is essentially dominated by the time for a constant
number of random walks to meet, which is O(tmeet).

Lemma 8.9. Consider the coalescence process starting with set S0, satisfying |S0| ≤
4α logα, where α = tmeet/tmix. Let T2 := min{t ≥ 0 | |St| ≤ 1}. Then E[T2 ] = O(tmeet).

Proof. We will consider the coalescence process in phases. Let ` be the largest integer such
that |S0| ≥

(
4
3

)`
. For j ≥ 1, the jþ phase ends when |St| <

(
4
3

)`−j+1
. The (j + 1)þ phase

begins as soon as the jþ phase ends. Note that it may be the case that some phases are
empty. Let T2(j) denote the time for phase j to last. We will only consider phases up to
which `− j + 1 ≥ 32.

Now we focus on a particular phase j. Let tj be the time when the jþ phase begins and
let Stj denote the corresponding set at that time. Thus, we have

(4
3

)`−j+1
≤ |Stj | <

(4
3

)`−j+2
(8.8)

We consider the process Pimm defined in Section 8.3.4 as follows. Define nj = |Stj |. Fix
a phase j and define S′0 = {(v1, 1), . . . , (vnj , nj)} and S̄′0 = {v1, . . . , vnj}. Then, consider
again the set of occupied vertices (ignoring the labels) S̄tj+t = {v | ∃i ∈ N, (v, i) ∈ S′t} with
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t ∈ N. Thus, phase j ends when |S′t| = |S̄tj+t| <
(

4
3

)`−j+1
. Let

kj :=
⌈ |S′0|

2

⌉
be the size of G1 and consider the process Pimm(S′0, kj) as defined in Section 8.3.4. Let

gj :=
⌊ |S′0| − kj

3

⌋
and

T ∗2 (j) := min{t | | IDs(S′t) ∩ G2| ≤ gj}.

We note that as long as `− j + 1 ≥ 32, gj ≥ 1 and at time T ∗2 (j),

|S′t| ≤ gj + kj ≤
|S′0| − kj

3 + kj = |S
′
0|

3 + 2kj
3 ≤ |S

′
0|

3 + |S
′
0|

3 + 2
3 <

3
4 · |S

′
0|.

By Proposition 8.3, T ∗2 (j) stochastically dominates T2(j) and hence it suffices to bound
E[T ∗2 (j) ]. In order to bound E[T ∗2 (j) ], we define

bj := 32α log(4/3)(`− j + 1)(3/4)`−j+1.

Since we only consider phases with j respecting ` − j + 1 ≥ 32 we have bj ≤ b`−31 ≤
((e− 1)/e)α. Furthermore, we have bj ≥ b0 ≥ 4α logα(3/4)` ≥ 1, where the last inequality
follows from (4/3)` ≤ |S0| ≤ 4α logα, which in turn follows from definition of ` and the
assumed bound on |S0|. Applying Lemma 8.4 with this value of bj , we get that for

τj := cbjtmix,

for independent random walks (Xt)
τj
t=0, (Yt)

τj
t=0, P[ intersect(Xt, Yt, τj) ] ≥ pj , where

pj := 32 log(4/3)(`− j + 1)(3/4)`−j+1.

We seek to apply Claim 8.7 to bound E[T ∗2 (j) ]. We first verify that the conditions of
Claim 8.7 are fulfilled. In particular, we verify that kj ≥ 8

pj
; to see this consider the

following:

8
pj

= 8
32 log(4/3)(`− j + 1)(4/3)`−j+1 ≤ 1

4 ·
(4

3

)`−j+1
≤ 1

2 · |S
′
0| ≤ kj ,

116



where we used (8.8) and |S′0| = |Stj | in the second-last inequality. Thus we can apply
Claim 8.7 and derive

E[T ∗2 (j) ] ≤ (τj + 4tmix) · 1
√
pj
·
(
log | IDs(S′0) ∩ G2| − log gj

)
and we continue by dissecting that bound. Since bj ≥ 1, there exists a suitably large
constant c1, so that τj + 4tmix ≤ c1bjtmix. Furthermore,

bj√
pj

= 32α log(4/3)(`− j + 1)(3/4)`−j+1√
32 log(4/3)(`− j + 1)(3/4)`−j+1

= O

(
α
√
`− j + 1 ·

(3
4

)(`−j+1)/2
)
.

Observe that, by definition, | IDs(S′0)∩G2|/gj ≤ 3, hence log | IDs(S′0)∩G2|− log gj ≤ log(3).
Putting everything together, we get that there is a constant c2 such that,

E[T ∗2 (j) ] ≤ c2 · tmix · α ·
√
`− j + 1

(3
4

)(`−j+1)/2
(8.9)

Note that since we stop when `− j+ 1 < 32, there are at most `−30 phases considered.
Let T̃ be the random variable denoting the time step when the last phase ends; at this point
|ST̃ | = O(1). Therefore, using Proposition 8.6, E

[
T2 − T̃ | T̃

]
= O(tmeet). But, clearly T̃ is

stochastically dominated by ∑`−30
j=0 T ∗2 (j). Thus, we have

E[T2 ] = E
[
T̃
]

+ E
[
E
[
T2 − T̃ | T̃

] ]
≤ c2 · tmix · α

`−30∑
j=0

√
`− j + 1

(3
4

)(`−j+1)/2
+ c3tmeet (8.10)

≤ c2 · tmix · α+ c3tmeet = O(tmeet) (8.11)

Above, in (8.10) we used (8.9) and the fact that E
[
T2 − T̃ | T̃

]
≤ c3tmeet for some constant

c3 > 0 and in step (8.11), we used the fact that ∑∞j=32 jc
j < 1 for c ≤

√
3/4.

Thus, the first phase (Corollary 8.8) and the second phase (Lemma 8.9) take together
O(
√
α · logn · tmix + tmeet) time steps, which yields Theorem 8.1.

8.3.5 Lower Bound - Proof of Theorem 8.2

In this section we give a construction of a graph family in order to establish lower bounds on
tcoal(G) in terms of tmeet(G) and tmix(G) demonstrating that Theorem 8.1 is asymptotically
tight. Additionally, our construction generalizes a claim of Aldous and Fill [AF02, Chapter
14]: They mention that it is possible construct regular graphs that mimic the n-star in the
sense that the tmeet = o(tavg-hit), without giving further details of the construction. Our
construction shows that even the coalescence time can be significantly smaller than the
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Figure 8.4: The graph described in Section 8.3.5 with tcoal = Ω(tmeet +
√
α · logn · tmix).

average hitting time for almost-regular graphs. For our family of almost-regular graphs,
there is a polynomial gap between tmeet and tavg-hit. More importantly, we show that these
almost-regular graphs have a gap of

√
tmix/tmeet ·logn between coalescing and meeting time.

This shows that the bound in Theorem 8.1 is best possible, even if we constrain G to be
almost-regular. We refer the reader to Section 8.2 for a high-level description of the proof
ideas.

More precisely, in the proof of Theorem 8.2 we shall give an explicit construction of a
graph family G = Gn with tcoal = Ω(√αn · logn · tmix), where αn = tmeet/tmix. For the
remainder of this section, we will drop the dependence on n and will simply use G instead
of Gn and α instead αn.

The construction of G (see Figure 8.4 for an illustration) is based on two building blocks,
G1 and G2. First, let G1 = (V1, E1) be a clique of size

√
n. Let G2 = (V2, E2) be a

√
n-

regular bipartite Ramanujan Graph on n/
√
α′ nodes [MSS15], where α′ = max{α, 220 ·C2},

where C > 1 is the universal constant of Corollary A.30. The graph G is made of one
copy of G2, κ =

√
n copies of G1 (denoted by G1

1, G
2
1, . . . , G

κ
1), and a node ẑ, which has

an edge to
√
n/α′ distinct nodes of G2 and to each of the designated nodes zi ∈ V i

1 in Gi1
for i ∈ [1, κ]. It is not difficult to see that this graph is almost-regular, i. e., maximum and
minimum degree differ by at most a constant.

In Lemma 8.13, Lemma 8.14, Lemma 8.15 and Lemma 8.16 respectively we show that
tmix = Θ(n), tmeet = Θ(α′n), tcoal = Ω(

√
α′ · n logn), and tavg-hit = Ω(n3/2). We start

with the following auxiliary lemma which shows that the walk restricted to V2 behaves
similarly to the walk restricted to V2 ∪{ẑ}, meaning that the walks have very similar t-step
probabilities.
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Lemma 8.10. Let P denote the transition matrix of the random walk on G, Q the transition
matrix of the random walk on G2 and Q̂ be the transition matrix of the random walk on
the subgraph of G induced by V2 ∪ {ẑ}. Let S∗ = {u ∈ V2 ∩ N(ẑ)}. Then the following
statements hold:

(i) For any u, v ∈ V2 we have ‖ptu,· − qtu,·‖TV ≤
∑t−1
i=1 p

i
u,S∗/(2

√
n) ≤ t/(2

√
n).

(ii) For any u, v ∈ V2 we have ‖q̂tu,· − qtu,·‖TV ≤
∑t−1
i=1 p

i
u,S∗/(2

√
n) ≤ t/(2

√
n).

(iii) For any u, v ∈ V2 we have that after t = tmix(G2) time steps ‖ptu,·−ptv,·‖TV ≤ o(1)+2/e.

Proof. Let (Xt)t≥0 be the Markov chain with transition matrix P and let (Yt)t≥0 be the
Markov chain with transition matrix Q. We will inductively couple these two random walks
starting from X0 = Y0 = u. Given that we coupled both chains up to time t − 1, we can
couple (Xt, Yt) such that Xt = Yt with an error probability

P[Xt 6= Yt | Xt−1 = Yt−1 ] = P[Xt 6= Yt | Xt−1 = Yt−1, Xt−1 ∈ S∗ ] · P[Xt−1 ∈ S∗ ]

+ P[Xt 6= Yt | Xt−1 = Yt−1, Xt−1 ∈ V2 \ S∗ ] · P[Xt−1 ∈ V2 \ S∗ ]

≤ pt−1
u,S∗/(2

√
n) + 0.

We have, by [LPW06, Proposition 4.7],

‖ptu,· − ptv,·‖TV = inf{P[X 6= Y ] | (X,Y ) is a coupling of ptu,· and ptv,·}.

Hence, by a union bound over t steps,

‖ptu,· − ptv,·‖TV = inf{P[X 6= Y ] | (X,Y ) is a coupling of ptu,· and ptv,·} ≤ P[Xt 6= Yt ]

≤
t−1∑
i=1

piu,S∗/(2
√
n) ≤ t

2
√
n
.

To prove the second part we redefine (Xt)t≥0 to be the Markov chain with transition matrix
Q̂ and the proof is identical.

We proceed with the last part. For u, v ∈ V2 we have that after t = tmix(G2) time steps,
by the triangle inequality and using that tmix(G2) = O(1), by Proposition A.29, we get

‖ptu,· − πG2(·)‖TV ≤ ‖ptu,· − qtu,·‖TV + ‖qtu,· − πG2(·)‖TV

≤ tmix(G2)
2
√
n

+ ‖qtu,· − πG2(·)‖TV

≤ o(1) + ‖qtu,· − πG2(·)‖TV ≤ o(1) + 1/e,

where the last inequality follows form the definition of mixing time. Again, by the triangle
inequality, ‖ptu,· − ptv,·‖TV ≤ o(1) + 2/e.

119



Based on Lemma 8.10, we can now bound the hitting time to reach ẑ, which will later
be used to establish the bounds on the mixing and meeting time of the whole graph G. But
first, we prove that the mixing time of the graph Ĝ induced by V2 ∪ {ẑ} is constant and
that after mixing on Ĝ, the random walk has a probability of Ω(1/n) to hit ẑ in a constant
number of time steps.

Lemma 8.11. The following three statements hold.

(i) Let Ĝ be the induced graph by the vertices V2 ∪ {ẑ}. Then tmix(Ĝ) = O(1).

(ii) Let u ∈ V \ {ẑ}. Then there exists a constant c ≥ 1 such that P[Thit(u, ẑ) ≥ n/c ] ≥
1/2.

(iii) Let u ∈ V \ {ẑ}. Then thit(u, ẑ) = O(n).

Proof. We prove the statements one by one.

(i) Let Q be the transition matrix of a random walk restricted to G2. Let dQ(t) be
the total variation distance w.r.t. the transition matrix Q. Further, let Q̂ be the
transition matrix of a random walk restricted to Ĝ. Recall that tmix(G2) = O(1), by
Proposition A.29.

Fix an arbitrary t ∈ [2tmix(G2), 2tmix(G2) + 7]. In the following we show ‖q̂tu,· −
πĜ(·)‖TV ≤ 1/e. We first consider any start vertex u ∈ V2 \ {ẑ} and afterwards the
vertex u = ẑ. Let D be the set of distributions over V (Ĝ) = V2 ∪ {ẑ} assigning no
probability mass to ẑ, i. e.,

D = {D′ : for u ∼ D′ we have P[u = ẑ ] = 0}. (8.12)

For any such D′ ∈ D, we have, by definition of the total variation distance,

‖q̂tu∼D′,· − πĜ(·)‖TV = 0 + 1
2
∑
v∈V2

∣∣∣∣q̂tu∼D′,v − πĜ(v)
∣∣∣∣+ 1

2

∣∣∣∣q̂tu∼D′,ẑ − πĜ(ẑ)
∣∣∣∣.

For u ∈ V2 observe that πĜ(u) ∈ [πG2(u)(1− ζ), πG2(u)(1 + ζ)] for some ζ = o(1). By
[LPW06, Exercise 4.1] we have the following identity for dQ(t). Let D∗ be the set of
all distributions over V (G2), then

dQ(t) = max
D∈D∗

‖qtu∼D,· − πG2(·)‖TV ≥ max
D′∈D

‖qtu∼D′,· − πG2(·)‖TV.
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Thus, for δv := |q̂tu,v − qtu,v|, we get by using triangle inequality,

1
2
∑
v∈V2

∣∣∣∣q̂tu∼D′,v − πĜ(v)
∣∣∣∣ ≤ 1

2
∑
v∈V2

∣∣∣q̂tu∼D′,v − πG2(v)
∣∣∣+ 1

2
∑
v∈V2

|πG2(v)− πĜ(v)|

≤ 1
2
∑
v∈V2

∣∣∣q̂tu∼D′,v − πG2(v)
∣∣∣+ 1

2
∑
v∈V2

πG2(v)ζ

≤ 1
2
∑
v∈V2

∣∣∣qtu∼D′,v − πG2(v)
∣∣∣+ 1

2
∑
v∈V2

|δv|+
1
2
∑
v∈V2

πG2(v)|ζ|

≤ dQ(t) + 1/32 + ζ

2 ,

≤ dQ(t) + 1/32 + 1/32, (8.13)

where the second-last inequality is due to Lemma 8.10.(ii), 1
2
∑
v∈V |δv| ≤ t/(2

√
n) ≤

1
32 . By definition of the tmix(G2) and by sub-multiplicativity we have dQ(t) ≤
dQ(2tmix(G2)) ≤ 1/e2.

The above equation (8.13) only consider the variation distance w.r.t. V2. For ẑ we
have 1

2 |q̂
t
u∼D′,ẑ − π

Ĝ(ẑ)| ≤ (2tmix(G2) + 7)/
√
n ≤ 1/32.

Putting everything together we get we get

‖q̂tu∼D′,· − πĜ(·)‖TV = 1
2
∑
v∈V2

∣∣∣∣q̂tu∼D′,v − πĜ(v)
∣∣∣∣+ 1

2

∣∣∣∣q̂tu∼D′,ẑ − πĜ(ẑ)
∣∣∣∣

≤ dQ(t) + 1/32 + 1/32 + 1/32 ≤ 1/e2 + 3/32 (8.14)

≤ 1/e. (8.15)

Consider the random walk starting at ẑ and let (X0, X1, . . . ) denote its trajectory.
Observe that at time 7 we have

q̂7
ẑ,ẑ
≤ 1

27 +
∑
i≤7

∑
v∈N(ẑ)

q̂i−1
ẑ,v
· 1

2(
√
n+ 1) ≤

1
27 + 72

√
n
≤ 1/32.

The set of distribution for the position of the random walk at time 7 conditioning on
X7 6= ẑ gives the same distribution D as defined in (8.12). Let Dẑ ∈ D be distribution
of the random at time 7 starting at ẑ. Hence, by(8.14), we get

‖q̂2tmix(G2)+7
ẑ,· − πĜ(·)‖TV ≤ q̂ẑ,V (Ĝ)\{ẑ} · ‖q̂

2tmix(G2)
u∼D

ẑ
,· − π

Ĝ(·)‖TV + q̂ẑ,ẑ · 1 (8.16)

≤ 1 · (1/e2 + 3/32) + 1/32 ≤ 1/e. (8.17)
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Thus, for t′ = 2tmix(G2) + 7 we have ‖q̂t′
ẑ,· − π

Ĝ(·)‖TV ≤ 1/e. Together with (8.14),

we conclude that for all u ∈ V ′, ‖q̂t′u,· − πĜ(·)‖TV ≤ 1/e and by definition of tmix and
we get tmix(Ĝ) ≤ 2tmix + 7 = O(1).

(ii) To prove P[Thit(u, ẑ) ≥ n/c ] ≥ 1/2 for u ∈ V2 we show that the random walk restricted
to Ĝ does not hit ẑ after n/c1 steps w.c.p. for some large enough constant c1. By the
Union bound, for some large constants c1, c2 that

P
[
TGhit(u, ẑ) ≤ n/c1

]
= P

[
T Ĝhit(u, ẑ) ≤ n/c1

]
≤

n/c1∑
t=1

q̂t
u,ẑ
≤

c2 logn∑
t=1

1/
√
n+

n/c1∑
t=c2 logn

q̂t
u,ẑ

≤ o(1) + n/c1 · (πĜ(ẑ) + 1/n2) ≤ 1/2,

where we used q̂t
u,ẑ
≤ πĜ(ẑ) +

√
πĜ(ẑ)
πĜ(u)

λ2(Ĝ)t (Proposition A.26).

We proceed by bounding that P[Thit(u, ẑ) ≥ n/c1 ] ≥ 1/2 for u ∈ V1. Consider first
a random walk (X̃t)t≥0 restricted to G1

1 = G1 that starts at vertex z1 and let P̃
denote the transition matrix. Furthermore, in order to couple the random walk X̃t

restricted to G1 with a random walk in G, we will consider the random variable
Z̃ := ∑t

G1
sep
t=0 1X̃t=z1 . Since G1 is a clique, tG1

sep = O(1), and p̃tz1,z1 ≤
1√
n

+ λ2(G1)t by
Proposition A.26, where λ2(G1) is some constant bounded away form 1. Therefore,
E
[
Z̃
]

= ∑n/c1
t=0 p̃tz1,z1 ≤ 2

√
n/c1. Let γ := 4 · E

[
Z̃
]
. Then, by Markov’s inequality

P
[
Z̃ ≥ γ

]
≤ 1/4.

Consider now the straightforward coupling between a random walk (Xt)t≥1 in G that
starts at vertex z1 and the random walk (X̃t)t≥1 restricted to Gi1 that starts at the
same vertex. Whenever the random walk X̃t is at a vertex different from z1, then the
random walk Xt makes the same transition. If the random walk X̃t is at vertex z1,
then there is a coupling so that the random walk Xt makes the same transition as X̃t

with probability 2
√
n−1

2
√
n

. Conditional on the event Z̃ ≤ γ occurring, the random walk
X̃t follows the random walk Xt up until step n/c1 with probability at least

p :=
(

2
√
n− 1

2
√
n

)γ
≥ 3/4,

since the random walk X̃t has at most γ visits to z1. Therefore, by the Union bound,

P
[
TGhit(u, ẑ) ≥ n/c1

]
≥ P

[
∪n/c1t=0 Xt = X̃t

]
≥ 1− P

[
Z̃ ≥ γ

]
− (1− p) ≥ 1/2

and the proof is complete.
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(iii) We proceed by showing thit(u, ẑ) = O(n) for u ∈ V2.

Let Q be the transition matrix of the random walk restricted to G2. Let u ∈ V2

and S∗ = N(ẑ) be the neighbors of ẑ in G2. For every v ∈ S∗ we have πG2(v) =
√
n+1

n√
α′
√
n+
√
n√
α′
≥
√
α′

1.2n . Hence, after t = tsep(G2) we have that

qtu,S∗ :=
∑
v∈S∗

qtu,v ≥
∑
v∈S∗

πG2(v)(1− e−1) ≥
√
n√
α′
·
√
α′

1.2n(1− e−1) = 1− e−1

1.2
√
n
.

By Lemma 8.10, we have for any u ∈ V2 that ‖ptu,· − qtu,·‖TV ≤ tsep(G2)/(2
√
n). To

bound TGhit(u, ẑ) we show that after tsep + 1 = O(1) steps the random walk hits ẑ w.p.
Ω(1/n).

We distinguish between two cases.

(a) For all i ≤ t we have ptu,S∗ ≤ 1/tsep(G2). Thus, by Lemma 8.10.(i)

ptu,S∗ =
∑
v∈S∗

ptu,v ≥ qtu,S∗ − ‖ptu,· − qtu,·‖TV

≥ 1− e−1

1.2
√
n
−

t−1∑
i=1

piu,S∗/(2
√
n)

≥ 1− e−1

1.2
√
n
− tsep(G2)
tsep(G2)2

√
n

= Ω(1/
√
n).

Hence, the random walk hits ẑ after tsep(G2)+1 w.p. at least ptu,S∗ ·minv∈S∗{pv,ẑ} =
Ω(1/n).

(b) Otherwise there exists a t∗ such that pt∗u,S∗ > 1/tsep(G2). Thus the random walk
hits ẑ after tsep(G2) + 1 w.p. at least pt∗u,S∗ ·minv∈S∗{pv,ẑ} = Ω(1/n).

Thus after O(1) steps the random walk hits ẑ w.p. Ω(1/n).

We now show a similar statement if u ∈ V1. Let (Xt)t≥0 be a random walk on G

starting on u. Observe that Xt (the walk on G) hits ẑ with probability p1
u,z1 · p1

z1,ẑ
=

Ω(1/n) in 2 time steps. Hence, for any u ∈ V we P[Thit(u, ẑ) = O(1) ] = Ω(1/n).
Thus, repeating this iteratively and using independence yields thit(u, ẑ) = O(n) for
u ∈ V .

To establish a bound on the mixing time of G, we will make use of a following result
of Peres and Sousi [PS15] (Theorem A.31 in Appendice A) to relate the mixing time of a
graph to the hitting time of large sets. Peres and Sousi [PS15] show the following. For any
β < 1/2, let tH(β) = maxu,A:π(A)≥β thit(u,A). Then there exist positive constants cβ and
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c′β such that
c′β · tH(β) ≤ tmix(1/4) ≤ cβ · tH(β).

In the following we show for any β close enough to 1/2, that any A ⊆ V satisfying
π(A) ≥ β must include at least a constant fraction of nodes from a constant fraction of
copies of G1.

Claim 8.12. Let β = 1/2 − 10−3. For any A ⊆ V with π(A) ≥ β, define H(A) =
{i | |Gi1 ∩A| ≥ |V1|/(2e)}. Then, |H(A)| ≥ κ/(2e).

Proof. This follows from a simple pigeon-hole argument: Suppose |H(A)| < κ/(2e) was
true. Then,

π(A) ≤ |H(A)| · π(V1) + (κ− |H(A)|) ·
(
π(V1)

2e + π(zi)
)

+ π(V2) + π(ẑ)

<
κ

2e · π(V1) + κ ·
(
π(V1)

2e + π(zi)
)

+ 1/20 < β ≤ π(A),

which is a contradiction and hence choice of A must fulfill |H(A)| ≥ κ/(2e).

We are now ready to determine the mixing time of G. The lower bound is a simple
application of Cheeger’s inequality, while the upper bound combines the previous lemmas
with Theorem A.31.

Lemma 8.13. Let G be the graph described at the beginning of Section 8.3.5. We have
tmix(G) = Θ(n).

Proof. First we show tmix = Ω(n). The conductance of G = (V,E) is defined by Φ(G) =
min
U⊆V,

0<vol(U)≤vol(V )/2

|E(U,V \U)|
vol(U) . In particular, for U = V1 we get that Φ(G) ≤ 4

n . Hence, by

Cheeger’s inequality and
(

1
1−λ2(G) − 1

)
· log( e2) ≤ tmix(1/e) (see, e. g., [LPW06, Chapter

12]),
n

4 ≤
1

Φ(G) ≤
2

1− λ2(G) = 2
1− λ2(G) − 2 + 2 ≤ 2tmix

log
(
e
2
) + 2.

Rearranging the terms yields tmix = Ω(n).
We proceed with the upper bound on the mixing time. Let β = 1/2 − 10−3 and let

A ⊆ V be an arbitrary set satisfying π(A) ≥ β. First, we apply Claim 8.12 to conclude that
|H(A)| ≥ κ/(2e). This immediately implies that with Z := {zi : i ∈ H(A)}, |Z| ≥ κ/(2e).
The remainder of the proof is divided into the following three parts:

(i) Starting from any vertex u ∈ V , with probability at least 1/2, the random walk hits
z∗ after 2 maxu∈V thit(u, ẑ) = O(n) steps.

(ii) With constant probability p1 > 0, the random walk moves from z∗ to a vertex in Z.
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(iii) With constant probability p2 > 0 a random walk starting from a vertex in Z will hit
A after one step.

It is clear that combining these three results shows that with constant probability
1
2p1p2 > 0, a random walk starting from an arbitrary vertex u ∈ V hits a vertex in A after
O(n)+1+1 time steps. Iterating this and using independence shows that thit(u,A) = O(n),
and hence by Theorem A.31, tmix = O(n) as needed.

Part (i). Consider maxu∈V thit(u, ẑ). For u ∈ V , Lemma 8.11.(iii) implies thit(u, ẑ) =
O(n).

Part (ii). If the random walk is on z∗, then since deg(z∗) = κ+
√
n/α′, |Z| ≥ κ/(2e),

it follows that the random walk hits a vertex in Z after one step with constant probability
p1 := |Z|

2(κ+
√
n/α′)

> 0.

Part (iii). Finally, for any z ∈ Z we have that p2 = pz,A = |V1|/(2e)
2
√
n

> 0 and the proof
is complete.

In the following we establish the bound on the meeting time. As it turns out, any
meeting is very likely to happen on V2 and it takes about Θ(α′n) time steps until both
walks reach V2 simultaneously. The lower bound then follows from our common analysis
method (8.1). The upper bound combines the mixing time bound of O(n) (Lemma 8.13),
and that once a random walk reaches a copy of G1, it says there for Θ(n) steps with constant
probability Lemma 8.11.(ii).

Lemma 8.14. Let G be the graph described at the beginning of Section 8.3.5. We have
tmeet(G) = Θ(α′n).

Proof. We start by proving tmeet = Ω(α′n): Consider two non-interactingDEGreplace these
by something, random walks with starting positions drawn from the stationary distribution
π. Let ` = c′α′n, for some small enough constant c′ > 0. Let Z1 be the number of collisions
of the two random walks on the nodes in V 1

1 ∪ V 2
1 ∪ · · · ∪ V κ

1 . Let Z2 be the number of
collisions of the two random walks on the nodes in V2. Let Z∗ be the number of collisions
of the two random walks on the node ẑ.

Let Z be the number of collisions of the two walks during the first ` time steps, i. e.,
Z = Z1 + Z2 + Z∗. Using the Union bound we derive

P[Z ≥ 1 ] ≤ P[Z1 ≥ 1 ] + P[Z2 ≥ 1 ] + P[Z∗ ≥ 1 ]

≤ E[Z1 ]
E[Z1 |Z1 ≥ 1 ] + E[Z2 ]

E[Z2 |Z2 ≥ 1 ] + E[Z∗ ]
E[Z∗ |Z∗ ≥ 1 ] . (8.18)

We have E[Z1 ] ≤ `n
(

2
n

)2
, E[Z2 ] ≤ ` n√

α′

(
2
n

)2
, and E[Z∗ ] ≤ `

(
2
n

)2
, since maxu π(u) ≤

2/n. Conditioning on Z1 ≥ 1 and since both random walks start from the stationary
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distribution, we have, by Observation A.25, that the first meeting happens in the first `/2
time steps w.p. at least 1/2.

Consider E[Z1 |Z1 ≥ 1 ]. Suppose the meeting occurred at node u ∈ V1. Let E1 be the
event that for u ∈ V1 we have Thit(u, ẑ) ≥ n/c for both walks, where c > 0 is a large enough
constant. By Lemma 8.11.(ii), we have that P[ E1 ] ≥ (1/2)2 = 1/4 due to independence of
the walks. For any t < n/c let p̂tu,· be the distribution of the random walk on G1 starting
on u after t time steps under the conditioning E1. Observe that ∑v∈V1 p̂

t
u,v = 1 implying

that ∑v∈V1(p̂tu,v)2 ≥
∑
v∈V1

(
1
|V1|

)2
= 1/|V1|. Hence, we get

E[Z1 |Z1 ≥ 1 ] ≥ E[Z1 |Z1 ≥ 1, E1 ]·P[ E1 ] ≥ 1
2 min
u∈V1

n/c−1∑
t=0

∑
v∈V1

(p̂tu,v)2 ≥ 1
4

n/c−1∑
t=0

1/|V1| =
√
n

4c .

Using an exactly analogous analysis for Z2 we can upper bound E[Z2 |Z2 ≥ 1 ] as follows:

E[Z2 |Z2 ≥ 1 ] ≥ E[Z2 |Z2 ≥ 1, E2 ]·P[ E2 ] ≥ 1
4 min
u∈V2

n/c−1∑
t=0

∑
v∈V2

(p̂tu,v)2 ≥ 1
4

n/c−1∑
t=0

1/|V2| =
√
α′

4c ,

where E2 is the event that for u ∈ V2 we have Thit(u, ẑ) ≥ n/c for some large enough constant
c. Plugging everything into (8.18) and using ` = c′α′n yields

P[Z ≥ 1 ] ≤ E[Z1 ]
E[Z1 |Z1 ≥ 1 ] + E[Z2 ]

E[Z2 |Z2 ≥ 1 ] + E[Z∗ ]
E[Z∗ |Z∗ ≥ 1 ]

≤
`n
(

2
n

)2

√
n

4c

+
` n√

α′

(
2
n

)2

√
α′

4c

+
`
(

2
n

)2

1

≤ o(1) + 16c · c′ + o(1) ≤ 1/2,

for any constant c′ ∈ (0, 1
33c ]. This finishes the proof of tmeet = Ω(α′n). In the remainder

we prove tmeet = O(α′n). Consider two independent walks (Xt)t≥0 and (Yt)t≥0 on G, both
starting from arbitrary nodes. Note tsep = tsep(G) ≤ 4tmix = O(n) by Lemma 8.13, and

p0 := P
[ {
Xtsep ∈ V2

}
∩
{
Ytsep ∈ V2

} ]
≥

∑
u∈V2

(1− e)π(u)

2

= Ω
((

1/
√
α′
)2
)

= Ω
(
1/α′

)
.

We assume in the following that
{
Xtsep ∈ V2

}
∩
{
Ytsep ∈ V2

}
. We have tmix(G2) = O(1), by

Proposition A.29. Consider a random walk (X̃t)t≥tsep restricted to G2 that starts at vertex
Xtsep ∈ V2 and let P̃ denote the transition matrix. Furthermore, in order to couple the
random walk X̃t restricted to G2 with a random walk in G, we will consider the random
variable

Z̃ :=
tsep+n/c−1∑
t=tsep

∑
z∈N(ẑ)

1X̃t=z,
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for c = 32. Thus, for any z ∈ N(ẑ),

E
[
Z̃
]
≤ tmix(G2) +

tsep+n/c−1∑
t=tsep+tmix(G2)+1

|N(ẑ)|(πG2(z) + dP̃ (t))

≤ tmix(G2) + |N(ẑ)|(n/c) +O(1) ≤ (1 + 1/e)
√
n/c.

Let γ := 8(1 + 1/e)
√
n/c. Then, by Markov’s inequality

P
[
Z̃ ≥ γ

]
≤ 1/8.

Consider now the straightforward coupling between a random walk (Xt)t≥tsep in G that
starts at vertex X̃tsep ∈ V2 and the random walk (X̃t)t≥tsep restricted to G2 that starts at
the same vertex. Whenever the random walk X̃t is at a vertex in V2 \ {N(ẑ)}, then the
random walk Xt makes the same transition. If the random walk X̃t is at vertex z′ ∈ N(ẑ),
then there is a coupling so that the random walk Xt makes the same transition as X̃t

with probability 2
√
n

2
√
n+2 . Conditional on the event {Z̃ ≤ γ} occurring, the random walk X̃t

follows the random walk Xt up until step n/c with probability at least

p1 :=
(

2
√
n

2
√
n+ 2

)γ
=
(

1− 1√
n+ 1

)γ
≥ 3

4 ,

since the random walk X̃t has at most γ visits to N(ẑ). Consider now the random walk
(Ỹt)t≥tsep using P̃ (i. e., restricted to V2) starting at Ytsep , i.e., Ỹtsep = Ytsep . By an analogous
argument as before we can couple (Yt)t≥tsep and (Ỹt)t≥tsep for n/c time steps w.p. at least
p1.

Furthermore, after tsep(G2) = O(1) steps we can couple X̃t and Ỹt with nodes drawn
independently from πG2 . Hence,

p2 := P
[
X̃t+tsep(G2) = Ỹt+tsep(G2) | Ft

]
≥ (1− 1/e)2‖πG2‖22 ≥

√
α′

8n .

Recall that α′ ≥ 220tsep(G2)2 by definition. Therefore, the probability that X̃t and Ỹt do
not meet in the time-interval [tsep(G1), tsep(G1) + n/c− 1] is at most

p3 := (1− p2)bn/(tsep(G2)c)c ≤ (1− p2)b210n/(
√
α′c)c ≤ 1/4.

Therefore, by the Union bound,

P
[
∪tsep(G1)+n/c−1
t=0 Xt = Yt

]
≥ p0 ·

(
1− P

[
Z̃ ≥ γ

]
− 2 · (1− p1)− p3

)
= Ω(α′).

Repeating this O(1/p3) times and using the independence yields that the expected meeting
time is O((tsep(G1) + n/c− 1)/p3) = O(α′n) and the proof is complete.
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Finally, we analyze the coalescing time of G. The proof idea is to consider 5
√
n random

walks starting from π and show that meetings only occur on V2 and that at least one random
walk requires Ω(

√
α′ · n logn) time steps to reach V2.

Lemma 8.15. Let G be the graph described at the beginning of Section 8.3.5. We have
tcoal(G) = Ω(

√
α′ · n logn).

Proof. Let ε = 1/5. We show that even the coalescing time of nε random walks requires
Ω(
√
α′ · n logn) time steps w.c.p.. Let R be a collection of nε independent, i. e., non-

interacting, random walks with starting positions drawn from the stationary distribution
π. We define the following three bad events:

(i) Let E1 be the event that any of the nε random walks meet on a node V \ V2 in√
α′ · n log2 n steps.

(ii) Let E2 be the event that fewer than nε/4 random walks start on copies of G1, i. e., on
nodes V \ (V2 ∪ ẑ).

(iii) Let E3 be the event that all random walks starting from a copy of G1 require fewer
than c ·

√
α′ · n logn time steps for leaving V \ (V2 ∪ z∗) for some constant c > 0 to be

determined later.

In the following we show that P[ E1 ] = o(1), P[ E2 ] = o(1), and P
[
E3 | E2

]
< 1/e, which

implies, by union bound,

P
[
E1 ∩ E2 ∩ E3

]
≥ P

[
E1
]
− (1− P

[
E2 ∩ E3

]
)

≥ 1− o(1)−
(

1− (1− o(1)) ·
(

1− 1
e

))
≥ 1− 1

2e.

Conditioning on E1 ∩ E2 ∩ E3, none of the independent random walks meet on any node
V \ V2 and hence they are indistinguishable from coalescing random walks until they reach
V2. Therefore, it is necessary for all random walks to reach G2 in order to coalesce. Hence,
we conclude that tcoal(G) = Ω(

√
α′ · n logn) yielding the lemma.

(i) We now prove P[ E1 ] = o(1). Consider any pair of the random walks R. Since both
random walks start from the stationary distribution, the probability for them to meet
on a node on ẑ in a fixed step t ≥ 0 is at most O(1/n2).

Hence, by the Union bound over
(nε

2
)
pairs of random walks and

√
α′·n log2 n ≤ n log3 n

steps, the probability of any two random walks meeting on ẑ is at most

p1 :=
(
nε

2

)
· n log3 n ·O(1/n2) = o(1),
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since ε = 1
5 . Furthermore, the probability that no two walks start on the same copy

of G1 is at most p2 := nε · nε√
n

= o(1) by the Union bound.

Moreover, using a Chernoff bound together with Lemma 8.11.(ii), it follows that a
random walks visits the vertex z∗ at most 10 log3 n times during n log3 n steps with
probability at least 1 − n−2. By the Union bound over all random walks, it follows
that w.p. at least 1−n−1, each random walk visits at most 10 log3 n different copies of
G1, and by construction of G each such copy is chosen uniformly and independently
at random among G1

1, G
2
1, . . . , G

κ
1 . Therefore, the probability that there exists a copy

of G1 which is visited by at least two random walks in n log3 n steps is at most

p3 := n−1 + nε(10 log3 n+ 1) · n
ε(10 log3 n+ 1)√

n
= o(1). (8.19)

Putting everything together, using union bound, yields P[ E1 ] ≤ p1 + p2 + p3 = o(1).

(ii) We now prove P[ E2 ] = o(1). The probability p for each random walk to start on a
node of V \ (V2 ∪ ẑ) is π(V \ (V2 ∪ ẑ)) ≥ 1/2. For each of the random walks with
label 1 ≤ i ≤ nε we define the indicator variable Xi to be one, if that random walk
starts on V \ (V2 ∪ ẑ). Let X = ∑nε

i=1Xi. We have E[X ] = nε · E[Xi ] ≥ nε/2. Since
the starting positions of the nε random walks are drawn independently, by a Chernoff
bound

P[ E2 ] = P
[
X ≤ 1

4n
ε
]
≤ P[X ≤ E[X ]/2 ] ≤ e−nε/16 = o(1).

(iii) We now prove P
[
E3 | E2

]
< 1/4. From Lemma 8.11.(ii) we get that w.p. at least

1/2 a random walk starting at any node u ∈ V1 does not leave G1, i. e., does not
reach z∗, after c1n time steps for some constant c1 > 0. It is easy to see that the
number of visits to ẑ required before the random walk hits G2 instead of returning
to G1 is w.c.p. at least

√
α′/2; this is because the fraction of edges from ẑ to G2 is√

n/α′/(
√
n/α′ +

√
n). Using a Chernoff bound, we conclude that any random walk

starting at G1 doesn’t hit G2 during the first T = c1 ·
√
α′n/2 time steps with constant

probability p > 0. Thus the probability that a random walk does not reach G2 after
λ ·T time steps is at least pλ, for any integer λ ≥ 1. Setting λ = ε · log(1/p) · log(n/4),
the probability that all of the at least 1

4n
ε random walks starting from G1 reach G2

within λ · T = Ω(
√
α′ · n logn) steps is

P
[
E3 | E2

]
≤ (1− pλ)

1
4n

ε ≤ 1/e,

completing the proof.

The following lemma establishes a bound on the average hitting time.
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Lemma 8.16. Let G be the graph described at the beginning of Section 8.3.5. We have
tavg-hit = Ω(n3/2)

Proof. Consider a random walk that starts from an arbitrary vertex u ∈ V . By Lemma 8.11.(ii),
every time a vertex zi is visited, with probability at least c > 0 it takes Ω(n) time steps
to visit another vertex zj , j 6= i. Using a Chernoff bound, it follows that with prob-
ability larger than 1/2 it takes at least Ω(n3/2) time steps to visit at least half of the
nodes in {z1, z2, . . . , zκ}. By symmetry, it follows that for every vertex in a copy of
G1 there are Ω(n) vertices to which the hitting time is Ω(n3/2). Thus, by symmetry,
tavg-hit = ∑

u,v∈V π(u) · π(v) · thit(u, v) = Ω(n2 1
n2n

3/2) = Ω(n3/2).
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Chapter 9

3-Majority [BCE+17]

In the 3-Majority, each node of a graph has an opinion, and in every round each node
chooses independently three random neighbours and adopts the opinion of the majority
where ties are broken arbitrarily. We are interested in the consensus time, which is the first
point in time where all nodes have the same opinion. The system consists of n anonymous
nodes connected by a complete graph. Initially, each node supports one opinion from the
set [k] := { 1, . . . , k }. We refer to these opinions as colors. The system state is modeled as
a configuration vector c, whose i-th component ci denotes the number (support) of nodes
with color i.

A consensus process is specified by an update rule that is executed by each node. The
so-called Voter process (also known as Polling), uses the most naïve update rule: In every
round, each node samples one neighbor independently and uniformly at random and adopts
that node’s color. Two further natural and prominent consensus processes are the 2-Choices
and the 3-Majority process. Their corresponding update rules, as executed synchronously
by each node, are as follows:

• 2-Choices: Sample two nodes independently and uniformly at random. If the samples
have the same color, adopt it. Otherwise, ignore them and keep your current color.

• 3-Majority: Sample three nodes independently and uniformly at random. If a color
is supported by at least two samples, adopt it. Otherwise, adopt the color of one of
them at random1.

One reason for the interest in these processes is that they represent simple and efficient self-
stabilizing solutions for Byzantine agreement [PSL80, Rab83]: achieving consensus in the
presence of an adversary that can disrupt a bounded set of nodes each round [BCN+14b,
BCN+16, CER14, EFK+16]. Further interest stems from the fact that they capture aspects

1Equivalently, the node may adopt the color of a fixed sample (the first, or second, or third).
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of how agreement is reached in social networks and biological systems [BDDS10, CER14,
FPM+02].

At first glance, the above processes look quite different. But a slight reformulation of
3-Majority’s update rule reveals an intriguing connection:

• 3-Majority (alt.): Sample two nodes independently and uniformly at random. If the
samples have the same color, adopt it. Otherwise, sample a new neighbor and adopt
its color.

This highlights the fact that 3-Majority is a combination of 2-Choices and Voter: Each node
u performs the update rule of 2-Choices. If the sampled colors do not match, instead of
keeping its color, u executes the update rule of Voter. Interestingly enough, both 3-Majority
and 2-Choices behave identical in expectation2. In comparison to Voter, both 2-Choices and
3-Majority exhibit a drift: they favor colors with a large support, for which it is more likely
that the first two samples match. In particular, if there is a certain initial bias3 towards
one color, Voter still needs linear time (in n) to reach consensus, while both 2-Choices and
3-Majority can exploit the bias to achieve sublinear time. On the other hand, it is unknown
how 2-Choices and 3-Majority behave when they start from configurations having a large
number of colors and no (or small) bias since for neither of the models reasonable bounds
are unknown in the general setting with up to n colors.

9.1 Results

In this chapter, we give the first unconditional sublinear bound on any of these processes –
an open issue from, e.g., [BCN+16]).

The following theorem states slightly simplified version of our upper bound (see Theo-
rem 9.8.

Theorem 9.1 (Simplified). Starting from an arbitrary configuration, 3-Majority reaches
consensus with high probability in O

(
n3/4 log7/8 n

)
rounds.

The proof is more based on a combination of various techniques and results from different
contexts. This approach not only results in a concise proof of the upper bound, but yields
some additional, interesting results along the way. We give a brief overview of our approach
in the next paragraph.

Should the bound of Ghaffari and Lengler [GL17] carry over from 2-Choices to 3-
Majority, then together with our results (see Theorem 9.8 and Section 9.4), we would
get that the expected consensus time is O(k logn) for any k.

2Simple calculations [BCN+14b, EFK+16] show that, for both processes, if xi is the current fraction of
nodes with color i then the expected fraction of nodes with color i after one round is x2

i + (1−
∑

x2
j ) · xi.

3The bias is the difference between the number of nodes supporting the most and second most common
color.

132



9.2 Approach and Technical Contributions

To derive our upper bound on the time to consensus required by 3-Majority, we split the
analysis in two phases: (a) the time needed to go from n to ≈ n1/4 colors and (b) the
time needed to go from ≈ n1/4 to one color. The runtime of the second phase follows by
a simple application of [BCN+16] and is Õ

(
n3/4). Bounding the runtime of the first phase

is more challenging: we cannot rely on the drift from a bias or similar effects, and it is
not clear how to perform a direct analysis in this setting (3-Majority is geared towards
biased configurations). To overcome this issue, we resort to a coupling between Voter and
3-Majority. Since the construction of such a coupling seems elusive, we use some machinery
from majorization theory [MOA11] to merely prove the existence of the coupling (see next
paragraph). As a consequence of (the existence of) this coupling, we get that the time needed
by 3-Majority to reduce the number of colors to a fixed value is stochastically dominated
by the time Voter needs for this (Proposition 9.10). This, finally, allows us to upper bound
the time needed by 3-Majority4 to go from ≈ n to ≈ n1/4 colors by the time Voter needs
for this (which, in turn, we bound in Lemma 9.12 by Õ(n/k)).

The technically most interesting part of our analysis is the proof of the stochastic domi-
nance between 3-Majority and Voter. It works for a wide class of processes (including Voter
and 3-Majority), which we call anonymous consensus (AC-) processes (see Definition 9.2).
These are defined by an update rule that causes each node to adopt any color i with the
same probability αi that depends only on the current frequency of colors.

In the following, we provide a natural way to compare two processes. First, we define a
way to compare two configurations c and c′. We use vector majorization for this purpose: c
majorizes c′ (c � c′) if the total support of the j largest colors in c is not smaller than that
in c′ for all j ∈ [k]. In particular, note that a configuration where all nodes have the same
color majorizes any other configuration. Intuitively, this can be thought of as a potential φ
with φ(c) ≥ φ(c′) if and only if c � c′. Let us write P (c) for the (random) configuration
obtained by performing one step of a process P on configuration c. Consider two processes
P, P ′ and two configurations c, c′ with c � c′. We say P dominates P ′ if, for all j ∈ [k], the
following holds:

For every pair of color distributions c, c′ such that φ(c′) ≤ φ(c) after one-step
P remains closer towards consensus than P ′, i. e., E[φ(P ′(c′)) ] ≤ E[φ(P (c)) ].

Note that this definition is not restricted to AC-processes.
Our main technical result (Theorem 9.4) proves that, for two AC-processes, P dom-

inating P ′ implies that the time needed by P ′ to reduce the number of colors to a fixed
value stochastically dominates the time P needs for this. Note that while this statement

4Note that for a large number of colors, a node executing 3-Majority behaves with high probability like a
node performing Voter. Thus, it is relatively tight to bound 3-Majority by Voter in this parameter regime.
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might sound obvious, it is not true in general (if one of the processes is not an AC-process):
2-Choices dominates Voter, but it is much slower in reducing the number of colors when
there are many colors.

9.3 Consensus Model & Technical Framework

This section introduces our technical framework using concepts from majorization theory,
which is used in Section 9.4 to derive the sublinear upper bound on 3-Majority. We provide
a few definitions and state the main result of this section (Theorem 9.4).

9.3.1 Comparing Anonymous Consensus Processes

We first define a class of processes defined by update rules that depend only on the current
configuration. The update rule states that each nodes adopts a color i with the same prob-
ability αi(c), where c ∈ C is the current configuration. In particular, node IDs (including
the sampling node’s ID) do not influence the outcome. In this sense, such update rules are
anonymous.

Definition 9.2 (Anonymous Consensus Processes). Given a distributed system of n nodes,
an anonymous consensus process Pα is characterized by a process function α : C → [0, 1]n

with ∑i∈[n] αi(c) = 1 for all c ∈ C. When in configuration c ∈ C, each node independently
adopts opinion i ∈ [k] with probability αi(c). We use the shorthand AC-processes to refer
to this class.

Given an AC-process Pα and a fixed initial configuration, let5 Pα(t) denote the configu-
ration of Pα at time t. By Definition 9.2,

(
Pα(t)

)
t≥0 is a Markov chain, since Pα(t) depends

only on Pα(t − 1). Another immediate consequence of Definition 9.2 is that Pα(t) condi-
tional on Pα(t− 1) = c is distributed according to Mult

(
n, α(c)

)
; in other words, the 1-step

distribution of an AC-process is a multinomial distribution. Two important examples of
AC-processes include Voter and 3-Majority:

• In the Voter process Pα(V) , each node samples one node (according to the pull mech-
anism) and (always) adopts that node’s opinion. Thus

α
(V)
i (c) = ci

n
. (9.1)

• In the 3-Majority process Pα(3M) , each node samples independently and uniformly
at random three nodes. If a color is supported by at least two of the samples,

5Recall that, with a slight abuse of notation we also write P (c) for the (random) configuration obtained
by performing one step of a process P on configuration c.
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adopt it. Otherwise, adopt a random one of the sampled colors. Simple calculations
(see [BCN+14b]) show

α
(3M)
i (c) = ci

n
·
(

1 + ci
n
−
∥∥∥∥ cn
∥∥∥∥2

2

)
. (9.2)

For any protocol P starting with configuration c ∈ C let T κP (c) denote the first time step
where the number of remaining colors reduces to κ where κ ∈ N. The next definition intro-
duces dominance between protocol. Intuitively, a protocol P dominates another protocol
P ′ if their expected behavior preserves majorization.

Definition 9.3 (Protocol Dominance). Consider two (not necessarily AC-) processes P, P̃ .
We say P dominates P̃ if for all c, c̃ ∈ C with c � c̃ we have that E[P (c) ] � E

[
P̃ (c̃)

]
holds.

Note that, in the case of AC-protocols, Definition 9.3 can be stated as follows: Pα

dominates Pα̃ if and only if c � c̃⇒ α(c) � α̃(c̃) for all c, c̃ ∈ C with c � c̃. With this, the
main result of our framework can be stated as follows.

Theorem 9.4. Consider two AC-Processes P and P ′ where P dominates P ′. Assume P
and P ′ are started from the same configuration c ∈ C. Then, for any κ ∈ N, the time needed
by P ′ to reduce the number of remaining colors to κ dominates the time P needs for this,
i.e.,

T κP ′(c) ≥st T κP (c).

One should note that the statement of Theorem 9.4 is not true in general (i.e., for
non-AC-processes). In particular, 2-Choices dominates Voter, but our upper bound on
Voter (Lemma 9.12) and our lower bound on 2-Choices (Theorem 10.5 in Chapter 10)
contradict the statement of Theorem 9.4: The 2-Choices process takes Ω(n/ logn) time steps
to reduce to k = n/ logn opinions whereas Voter reduces to k w.h.p. in only O(n/k logn) =
O(log2(n)) time steps.

9.3.2 Coupling two AC-Processes - Proof of Theorem 9.4

In order to prove Theorem 9.4, we formulate a strong 1-step coupling property for AC-
processes:

Lemma 9.5 (1-Step Coupling). Let Pα and Pα̃ be two AC-processes. Consider any two
configurations c, c̃ ∈ C with α(c) � α̃(c̃). Let c′ and c̃′ be the configurations of Pα and Pα̃
after one round, respectively. Then, there exists a coupling such that c′ � c̃′.

Proof. Consider the processes Pα and Pα̃ with the configurations c and c̃ from the theorem’s
statement. Let Y = c′ and X = c̃′ denote the configurations resulting after one round of
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Pα on c and Pα̃ on c̃, respectively. Let Θ := α(c) and Θ̃ := α̃(c̃). As observed earlier in
Section 9.3.1, we have Y ∼ Mult(n,Θ1) and X ∼ Mult(n,Θ2). By the theorem’s assumption,
we have Θ � Θ̃. Since, by Proposition A.20, the function Θ→ E

[
f
(
Mult(n,Θ)

) ]
is Schur-

convex for any Schur-convex function f(·) for which the expectation exists, we get X ≤st Y.
Since the configuration space C is a finite subset of Rn, it is closed and so is { (x, y) | x � y }.

We now apply Theorem 9.7 (Strassen’s Theorem) to get that there exists a coupling between
X and Y such that6 X � Y. This finishes the proof.

Note that Theorem 9.4 is an immediate consequence of Lemma 9.5: Since P dominates
P ′ (which is, for AC-processes, equivalent to α(c) � α̃(c̃) for all c, c̃ with c � c̃) we can
apply Lemma 9.5 iteratively to get Theorem 9.4. The fine-grained comparison enabled by
Lemma 9.5 is based on three observations:

1. The (pre-) order “�” on the set of configurations naturally measures the closeness
to consensus. Indeed, a configuration with only one remaining color is maximal with
respect to “�”. Similarly, the n-color configuration is minimal.

2. We can define a vector variant “≤st” of stochastic domination (see Definition 9.6)
such that Θ1 � Θ2 ⇒ Mult

(
m,Θ1

)
≤st Mult

(
m,Θ2

)
([MOA11, Proposition 11.E.11]

or Proposition A.20).

3. Consider two configurations c, c̃ ∈ C with α(c) � α̃(c̃). Since Pα(c) ∼ Mult(n, α(c))
and Pα̃ ∼ Mult(n, α̃(c̃)), the previous observations imply that one step of Pα on c is
stochastically “better” than one step of Pα̃ on c̃. Our goal is to apply Lemma 9.5
iteratively to get Theorem 9.4. For this, we prove a coupling showing majorization
between the resulting configurations. We achieve this via a variant of Strassen’s
Theorem (see Theorem 9.7 below), which translates stochastic domination among
random vectors to the existence of such a coupling.

We now give a definition of stochastic majorization that is compatible with the preorder
“�” on the configuration space C (cf. [MOA11, Chapter 11]).

Definition 9.6 (Stochastic Majorization). For two random vectors X and Y in Rd, we
write X ≤st Y and say that Y stochastically majorizes X if E[ f(X) ] ≤ E[ f(Y) ] for all
Schur-convex functions f on Rd such that the expectations are defined.

We proceed by stating the aforementioned variant (Theorem 9.7) of Strassen’s Theorem
(Theorem A.21).

Theorem 9.7 (Strassen’s Theorem (variant)). Consider a closed subset A ⊆ Rn such that
the set { (x, y) | x � y } is closed. For two random vectors X and Y over A, the following
conditions are equivalent:

6Observe that Strassen’s Theorem gives us that P[ X � Y ] = 1. That is, X � Y holds almost surely.
However, since C is finite, this actually means that c̃′ = X � Y = c′ holds (surely).
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(i) (Stochastic Majorization) X ≤st Y and

(ii) (Coupling) there is a coupling between X and Y such that P[X � Y ] = 1.

Proof. Consider the cone

C := { f : A → R | f is Schur-convex }

of real-valued Schur-convex functions on A. This cone implies a preorder “≤C” on A by
the definition x ≤C y :⇔ f(x) ≤ f(y) for all f ∈ C. One can show that this preorder is the
vector majorization “�” (cf. [MOA11, Example 14.E.5])7. Now, “≤C” being equal to “�”
has two implications:

(a) The stochastic majorization “≤st
C ” implied by the preorder “≤C” is the stochastic

majorization “≤st” from Definition 9.6 (cf. [MOA11, Definition 17.B.1]).

(b) Since a cone C is complete if it is maximal with respect to functions preserving the
preorder “≤C” (cf. [MOA11, Definition 14.E.2]), C is complete (Schur-convex functions
are by definition the set of all functions preserving the majorization preorder).

From (a) we get that Condition (i) is actually Condition (i) of Theorem A.21. The same
holds for Condition (ii). From (b) we get that C = C∗ = C+ (cf. [MOA11, Proposi-
tion 17.B.3]), such that Conditions (i) and (ii) are equivalent by Theorem A.21. This
finishes the proof.

With this, Lemma 9.5 follows by a straightforward combination of the aforementioned
machinery.

9.4 Upper Bound for 3-Majority - Proof of Theorem 9.8

In this section, we provide a sublinear upper bound on the time needed by 3-Majority to
reach consensus with high probability. This is one of our main results and is formulated in
the following theorem.

Theorem 9.8. Starting from any configuration c ∈ C, 3-Majority reaches consensus w.h.p.
in O

(
n3/4 log7/8 n

)
rounds.

The analysis is split into two phases, each consisting of O
(
n3/4 log7/8 n

)
rounds.

Phase 1: From up to n to n1/4 log1/8 colors. This is the crucial part of the analysis.
Instead of analyzing 3-Majority directly, we use our machinery from Section 9.3.1 to
show that 3-Majority is not slower than Voter (Proposition 9.10). Then, we prove
that Voter reaches O

(
n1/4) colors in O(n3/4 log7/8 n

)
rounds (Lemma 9.12).

7Alternatively, one checks this manually: The direction x � y ⇒ x ≤C y is trivial by the definition of
Schur-convexity. For x ≤C y ⇒ x � y consider the n + 1 Schur-convex functions z 7→

∑
j∈[i] z↓ for i ∈ [n]

and z 7→ −‖z‖1.
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Phase 2: From up to n1/4 log1/8 n to 1 color (consensus). Once we reached a config-
uration with n1/4 log1/8 n colors, we can apply [BCN+16, Theorem 3.1] (see Theo-
rem 9.9), a previous analysis of 3-Majority. It works only for initial configurations
with at most k ≤ n1/3−ε colors (ε > 0 arbitrarily small). In that case, [BCN+16,
Theorem 3.1] yields a runtime of O

(
(k2 log1/2 n+ k logn) · (k+ logn)

)
. Since the first

phase leaves us with O
(
n1/4) colors, this immediately implies that the second phase

takes O
(
n3/4 log7/8 n

)
rounds.

This section proceeds by proving the runtime of Phase 1 in two steps: dominating the run-
time of 3-Majority by that of Voter (Section 9.4.1) and proving the corresponding runtime
for Voter (Section 9.4.2). In the end, we can combine these results together with [BCN+16,
Theorem 3.1] to prove Theorem 9.8.

Proof of Theorem 9.8. Consider any initial configuration c ∈ C. By applying Lemma 9.12
for k = n1/4, we get that Voter reduces the number of remaining colors w.h.p. from initially
at most n to n1/4 in O

(
n3/4 log7/8 n

)
rounds. By Proposition 9.10, the time it takes 3-

Majority to reach some fixed number of remaining colors is dominated by the time it takes
Voter to reach the same number of remaining colors. In particular, we get that 3-Majority
also reduces the number of remaining colors w.h.p. to n1/4 in O

(
n3/4 log7/8 n

)
rounds. That

is, the first phase takes O
(
n3/4 log7/8 n

)
rounds.

For the second phase, we apply [BCN+16, Theorem 3.1] (see Theorem 9.9) for k =
n1/4 = o

(
n1/3

)
. This immediately yields that the second phase takes O

(
n3/4 log7/8 n

)
rounds, finishing the proof.

Theorem 9.9 ([BCN+16, Theorem 3.1]). Let ε > 0 be an arbitrarily small constant.
Starting from any initial configuration with k ≤ n1/3−ε colors, 3-Majority reaches consensus
w.h.p. in

O
(
(k2 log1/2 n+ k logn) · (k + logn)

)
rounds.

9.4.1 Analysis of Phase 1: 3-Majority vs. Voter

We prove the following proposition.

Proposition 9.10. Consider the clique. We have tht Voter (V) and 3-Majority (3M)
started from the same initial configuration c ∈ C. There is a coupling such that after any
round, the number of remaining colors in Voter is not smaller than those in 3-Majority. In
particular, the time Voter needs to reach consensus stochastically dominates the time needed
by 3-Majority to reach consensus, i.e.,

T κ3M (c) ≤st T κV (c).
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Proof. By Theorem 9.4, all we have to prove is c � c̃⇒ α(3M)c � α(V)(c̃) (see Section 9.3.1).
To this end, consider two configurations c, c̃ ∈ C with c � c̃. Let p := α(3M)c and
p̃ := α(V)(c̃). We have to show p � p̃. Since these are probability vectors, we have
‖p‖1 = 1 = ‖p̃‖1. It remains to consider the partial sums for k ∈ [n]. For this, let x := c/n
and x̃ := c̃/n. Remember that pi = x2

i + (1 − ‖x‖22) · xi ((9.2)) and p̃i = x̃i ((9.1)). In the
following, we assume (w.l.o.g.) p = p↓ and p̃ = p̃↓ (this implies x = x↓ and x̃ = x̃↓). We
compute

k∑
i=1

pi −
k∑
i=1

p̃i =
k∑
i=1

x2
i +

k∑
i=1

xi − ‖x‖22
k∑
i=1

xi −
k∑
i=1

x̃i

≥
k∑
i=1

x2
i − ‖x‖

2
2

k∑
i=1

xi.

(9.3)

We have to show that this last expression is non-negative, which is equivalent to

‖x‖22 ≤
(

k∑
i=1

x2
i

)
/

(
k∑
i=1

xi

)
. (9.4)

This holds trivially for k = n (where we have equality). Thus, it is sufficient to show that
(∑k

i=1 x
2
i )/(

∑k
i=1 xi) is non-increasing in k. That is, for any k ∈ [n− 1] we seek to show the

inequality ∑k+1
i=1 x

2
i∑k+1

i=1 xi
=
∑k
i=1 x

2
i + x2

k+1∑k
i=1 xi + xk+1

≤
∑k
i=1 x

2
i∑k

i=1 xi
. (9.5)

This inequality is of the form A+x
B+x ≤

A
B , where A,B, x > 0. Rearranging shows that this is

equivalent to x ≤ A/B. Thus, (9.5) holds if and only if xk+1 ≤ (∑k
i=1 x

2
i )/(

∑k
i=1 xi). This

last inequality holds via xk+1 ·
∑k
i=1 xi = ∑k

i=1 xi · xk+1 ≤
∑k
i=1 xi · xi = ∑k

i=1 x
2
i , where we

used x = x↓. This finishes the proof.

9.4.2 Analysis of Phase 1: A Bound for Voter

We analyze the time the Voter process takes to reduce the number of remaining colors from
n to k. One should note that [BGKM16] studies a similar process. However, their analysis
relies critically on the fact that their process is lazy (i.e., nodes do not sample another node
with probability 1/2), while our proof does not require any laziness.

We make use of the well-known duality (via time reversal) between the Voter process and
coalescing random walks. In the coalescing random walks process there are initially n inde-
pendent random walks, one placed at each of the n nodes. While performing synchronous
steps, whenever two or more random walks meet, they coalesce into a single random walk.
Let T kC denote the number of steps it takes to reduce the number of random walks from n

to k in the coalescing random walks process (the coalescence time). Similarly, let T kV denote
the number of rounds it takes Voter to reduce the number of remaining colors from n to k.
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voting process

coalescence process

node u1

node u2

node u3

node u4

t

t′

O∗
T k
C

O∗0

Figure 9.1: Running the coalescence process from right to left (an edge from u to v means that the token
on u -if any- moves to v) yields that after T = 4 rounds the number of random walks reduces to k = 2.
Using the same random choices (black arrows) for the voter process and running the process from left to
right (an edge from u to v means that u pulls v’s opinion) we derive that the number of opinions after T = 4
rounds is also 2. This is no coincidence as we show in Proposition 9.11.

The following lemma uses the high-level idea of the proof presented in [AF02, Chapter
14] which only considers the case k = 1. For the purposes of our proof we would only
require a coupling with T kV ≤ T kC , but for the sake of completeness we show the stronger
claim T kV = T kC .

Proposition 9.11. For any graph G = (V,E), there exists a coupling such that T kC = T kV .

Proof. For t ∈ N and for u ∈ V define the random variables Yt(u) with Yt(u) ∼
uniform(N(u)), where uniform(·) denotes the uniform distribution and N(u) denotes the
neighborhood of u. Hence, Yt(u) = v means that u pulls information from node v in step t.
In the Coalescence process, the random variable Yt(u) ∈ N(u), t ∈ [0, T kC) captures the
transition performed by the random walk which is at u at time t (if any). In other words,
these random variables define the arrows in Figure 9.1. For the voter process Yt(u) = v

means that in step t node u adopts the opinion of v.
Let X(u) = (X0(u) = u,X1(u), . . . , XTkC

(u)) be the trajectory of the random walk
starting at u. We can thus express

Xt(u) =

u if t = 0

Yt−1(Xt−1(u)) otherwise.
(9.6)

Thus, this trajectory X(u) and the random variable T kC are completely determined by the
random variables Y = {Yt(u) : t ∈ N, u ∈ V }.
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Let VTkC be the Voter process whose starting time t′ = 0 equals the time T kC of the
coalescence process (see also Figure 9.1). Let O∗

TkC−t′
(u) be the opinion of u at time t′ of

VTkC . For every node u ∈ V and t′ ∈ [0, T kC ] we can thus express

O∗
TkC−t′

(u) =


u if t′ = 0

O∗
TkC−(t′−1)(YTkC−t′(u)) otherwise.

(9.7)

Note that (9.7) constructs a coupling between the Voter process and the coalescence process
through the common usage of the random variables Y in (9.6) and (9.7). In particular, by
unrolling (9.6) and (9.7) we get

XTkC
(u) = YTkC−1(YTkC−2(. . . (Y0(X0(u))) . . . ))

(a)= YTkC−1(YTkC−2(. . . (Y0(u)) . . . ))

O∗0(u) = O∗
TkC

(YTkC−1(YTkC−2(. . . (Y0(u)) . . . )))
(b)= YTkC−1(YTkC−2(. . . (Y0(u) . . . )),

where and (a) we used that X0(u) = u and in (b) we used that O∗
TkC

(v) = v for all v. The
above equations imply

XTkC
(u) = O∗0(u). (9.8)

Let Zt = {Xt(u) : u ∈ V } denote the positions of the remaining walks in the coalescence
process at time t. Observe that |Z0| = n, |ZTkC | ≤ k, by definition of T kC . We have, by (9.8),
that

ZTkC
= {XTkC

(u) : u ∈ V } = {O∗0(u) : u ∈ V } =: O∗0. (9.9)

From (9.9) we infer |O∗0| = |ZTkC | ≤ k, which implies that

T kV ≤ T kC .

In the reminder we generalize the previous coupling to show that

T kV = T kC .

In particular, we consider the Voter process for all starting position τ < T kC (all nodes
have different colors at round t) and show that the resulting number of opinions is strictly
more than k.
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Let Vτ be the Voter process that starts at time τ ∈ [0, T kC), and let Oτ
TkC−t′

(u) be the
opinion of u at time t′ of Vτ . For every node u ∈ V and t′ ∈ [0, τ ] we have

Oττ−t′(u) =

u if t′ = τ

Oττ−(t′−1)(Yτ−t′(u)) otherwise.
(9.10)

Similarly as before, by unrolling (9.6) and (9.10) we get

Xτ (u) = Yτ−1(Yτ−2(. . . (Y0(X0(u))) . . . ))
(a)= Yτ−1(Yτ−2(. . . (Y0(u)) . . . ))

Oτ0(u) = Oττ (Yτ−1(Yτ−2(. . . (Y0(u)) . . . )))
(b)= Yτ−1(Yτ−2(. . . (Y0(u) . . . )),

where and (a) we used that X0(u) = u and in (b) we used that Oττ (v) = v for all v. By
defining O0

TkC−t′
= {O0

TkC−t′
(u) : u ∈ V }, from the above equations we get that

Xτ (u) = Oτ0(u).

Hence,

Zτ = {Xτ (u) : u ∈ V } = {Oτ0(u) : u ∈ V } =: Oτ0 . (9.11)

Since for all τ < T kC we have |Zτ | > k, from (9.11) it follows that |Oτ0 | = |Zτ | > k which
yields the claim.

Given the above duality, we are ready to prove the lower bound on Voter.

Lemma 9.12. Consider an arbitrary initial configuration c ∈ C. Voter reaches a
configuration c′ having at most k remaining colors w.h.p. in O

(
n
k logn

)
rounds, i.e.,

P
[
T kV = O

(
n
k logn

) ]
≥ 1− 1/n.

Proof. We prove the lemma using the well-known duality (via time reversal) between the
Voter process and coalescing random walks.

It is well-known (e.g., [AF02]), that T 1
V = T 1

C . This statement generalizes for all k ∈ [n]
(see Proposition 9.11 for a proof) to

T kV = T kC . (9.12)

Thanks to the previous identity, we can prove the lemma’s statement by proving that
w.h.p. T kC = O

(
n
k logn

)
. To this end, we show that E

[
T kC

]
= O(n/k). In order to get the

claimed bound in concentration, we can apply the following standard argument. Consider
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the process as a sequence of phases, each one of length 2E
[
T kC

]
. We say that a phase is

successful when the number of remaining random walks drops below n/k. Thanks to our
bound in expectation above and the Markov inequality, we easily get that every phase has
probability Ω(1) to be successful. So, with high probability, there will be at least one success
within the first O(logn) phases.

Let Xt denote the number of coalescing random walks at time t. We have X0 = n

and T kC = min { t ≥ 0 | Xt ≤ k }. We seek to apply drift theory (Theorem A.13 to derive a
bound on E

[
T kC

]
. Next, we compute an upper bound on E[Xt+1 −Xt | Xt = x ].

Let us begin assuming that k is any constant. It holds in general that

E[Xt+1 −Xt | Xt ≥ 2 ] ≤ −1/n,

since in expectation two random walks collide w.p. 1/n in a given time step. Hence we can
directly apply8 Theorem A.13 with parameters h(x) = 1/n to reduce from k random walks
to 1, yielding the bound E

[
T kC

]
= O(n/k) = O(n), where in the latter equality we used

that k is constant.
We now consider the case where k is larger than a big constant, say k > 100. Assume

that in every time step the random walks move in two phases. Let W1 denote an arbitrary
set of bXt/2c random walks and let W2 denote the remaining ones. We first look at how
the random walks in W1 coalesce, then we consider the movement of the remaining walks
W2. Let E be the event that the walks in W1 move onto more than bXt/4c distinct nodes.
This would imply that each walk in W2 coalesces with one in W1 with probability at least
bXt/4c/n. We thus have

E[Xt+1 | Xt = x, E ] ≤ x− dx/2e · bx/4c
n
≤ x− x2

10n.

Moreover, conditioning on E implies that there were at least bXt/2c − bXt/4c collisions
during the first phase. Thus,

E
[
Xt+1 | Xt = x, E

]
≤ x− (bx/2c − bx/4c) ≤ x− x2

10n.

Hence, by law of total expectation,

E[Xt+1 | Xt = x ] = E[Xt+1 | Xt = x, E ]P[ E ]

+ E
[
Xt+1 | Xt = x, E

]
P
[
E
]
≤ x− x2

10n.

8Technically, one would have to define a new random variable which is 0 whenever the number of random
walks reduces to 1. We illustrate this technicality shortly, for case k > 100 below.
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In order to apply Theorem A.13, we define the random variables (Yt)t≥0 as follows

Yt =

Xt if Xt > k,

0 otherwise.

Let T ∗ = {t ≥ 0 | Yt = 0}. Since by construction we have Yt = Xt for t < T kC and
YTkC

= 0 otherwise, it follows that
T kC = T ∗. (9.13)

Therefore,

E[Yt+1 | Yt = y, Yt > k ] ≤ y − y2

10n.

We can thus apply Theorem A.13 for the random variables (Yt)t≥0 with xmin = k, xmax =
n, and h(x) = x2

10n , obtaining

E[T ∗ ] ≤ k

k2/(10n) +
n∫
k

1
h(u) ≤

10n
k

+ 10n
(
− 1
n
−
(
−1
k

))
≤ 20n

k
. (9.14)

Finally, from (9.12), (9.13) and (9.14) we get

E
[
T kV

]
= E

[
T kC

]
= E[T ∗ ] ≤ 20n

k
, (9.15)

concluding the proof.

9.5 Limitations of 1-Step Coupling

In this section we show that there are configurations c � c̃ such that α(hM)(c) 6� α(h+1M)(c̃).
This means that, Lemma 9.5 is not strong enough to derive Conjecture 13.1. Consider the
configurations x := (1/2, 1/6, 1/6, 1/6) � (1/2, 1/2, 0, 0) =: x̃ (for simplicity, we use the
fraction vectors x = c/n). For symmetry reasons, we immediately get that α(h+1M)(c̃) =
(1/2, 1/2, 0, 0) = c̃. However, even for h = 3, for the second configuration we get that the
expected fraction of the nodes which adopt the first opinion after one step is

1 ·
(

3
0

)
·
(1

2

)3
+ 1 ·

(
3
1

)
·
(1

2

)2
· 3

6 + 1
3 ·
(

3
2

)
· 1

2 ·
3
6 ·

2
6 = 7

12 . (9.16)

The three terms of the sum on the left hand side correspond to the cases and probabilities
for which the first color is adopted:

• all samples choose color 1 (probability to win is 1, number of cases
(3
0
)
),

• two samples choose color 1 (probability to win is 1, number of cases
(3
1
)
), or
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• 1 sample chooses color 1 and the other samples choose different colors (probability to
win is 1/3, number of cases

(3
2
)
).

Thus, for n large enough, with high probability the configuration resulting from (h + 1)-
Majority will not majorize the one resulting from h−Majority.
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Chapter 10

2-Choices [EFK+16, BCE+17]

The 2-Choices process works as follows. Each node of a graph has an opinion, and in every
round each node chooses independently two random neighbours and adopts their opinion if
they coincide; otherwise the node keeps its own opinion. We are interested in the plurality
consensus time, which is the first point in time where all nodes have the opinion of the
initially most dominant opinion. In this chapter we put emphasize on the difference to
3-Majority and we establish a lower bound on 2-Choices showing a polynomial difference in
the consensus time of both protocols. Another focus of this chapter is Byzantine agreement,
where the goal is to achieve consensus in spite of an adversary who is allowed to change
the opinion of a bounded number of nodes per round [PSL80, Rab83, BCN+14b, BCN+16,
CER14, EFK+16].

Stability

In our analysis, we will show that the 2-Choices process can tolerate the presence of an
adversary which is allowed to arbitrarily change the opinion of up to F = c1(c1 − c2)/(8n)
arbitrarily selected nodes after every round. We will show that under these assumptions
our 2-Choices process still guarantees that with high probability a vast majority of nodes
accept the plurality opinion, that is, the initially dominant opinion. Observe that, similarly,
all our theorems also hold if the adversary is allowed to change opinions at the beginning of
a round. We use a definition similar to the definition by Becchetti et al. [BCN+16], which
in turn has its roots in [AAE08, AFJ06].

Definition 10.1. A stabilizing near-plurality protocol ensures the following properties:

1. Almost agreement. Starting from any initial configuration, in a finite number of
rounds, the system must reach a regime of configurations where all but a negligible
bad subset of nodes of size at most O(nε) for some constant ε < 1 support the same
opinion.
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2. Almost validity. Given a large enough initial bias, the system is required to converge
to the plurality opinion A, with high probability, where all but a negligible bad set of
nodes have opinion A.

3. Non-termination. In dynamic distributed systems, nodes represent simple and anony-
mous computing units which are not necessarily able to detect any global property.

4. Stability. The convergence to such a weaker form of agreement is only guaranteed to
hold with high probability.

10.1 Results

The 2-Choices protocol seems to be very efficient if the number of colors is two [CER14].
The following result can be seen as an extension of Cooper et al. [CER14] on the complete
graph when initially the number of opinions is larger than two. That is, we assume that
every node of the complete graph G = (V,E) has one of k possible opinions at the beginning,
where k = O(nε) for some small positive constant ε. Then, the following theorem holds.

Theorem 10.2. Consider the synchronous model on the complete graph with n nodes. Let
k = O(nε) be the number of opinions for some small constant ε > 0. Assume the initial bias
is at least c1 − c2 ≥ z ·

√
n logn for some constant z. Then 2-Choices plurality consensus

process converges with high probability to the initially most dominant color within

t2C = O(n/c1 · logn)

rounds. Moreover, the process fulfills the stabilizing near-plurality conditions in presence of
any F = c1(c1 − c2)/(8n)-dynamic adversary.

The difficulty in the analysis lies in the possibly diminishingly small initial mass of A in
comparison to the mass of all other colors. Interestingly, the required initial gap does not
depend on the number of opinions present. Moreover, we also show that if c1−c2 = O(

√
n),

then B wins with constant probability.
Slightly later, Cooper et al. [CRRS16] proved the same run time in a much more general

form by considering the class of regular expander graphs, albeit assuming a slightly more
restrictive initial bias.

Finally, in Theorem 10.5, we show that the it takes Ω(n/ logn) rounds to reach consensus
if all nodes start with distinct colors, i. e., in the leader election setting. This shows that 3-
Majority is polynomial faster (Chapter 9). On the other side our upper bound on 2-Choices
shows that it beats 3-Majority in terms of the required initial bias. We defer the reader to
Section 10.5 for an in-depth discussion on the compression between both dynamics.
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Algorithm 8: Distributed Voting Protocol with Two Choices
Algorithm 2-Choices (G = (V,E), color : V → C)

for round t = 1 to |C| · log |V | do
at each node v do in parallel

let u1, u2 ∈ N(v) uniformly at random;
if color(u1) = color(u2) then

color(v) ← color(u1);

10.2 Approach and Technical Contributions

This chapter rests on the shoulders of careful applications of Chernoff bounds. The main
idea of the proof of the upper bound is to show that, by carefully applying Chernoff bounds,
the initial bias of color 1 to all other colors increases sufficiently fast. Intuitively, the
difficulty lies in the sheer number of initial opinions we allow. In contrast to what is
permitted in most previous work, their total mass may significantly exceed the initial mass
of c1. We denote the number of nodes changing their opinion from color i (Ci) to color j
(Cj) by ∆ij . As mentioned before, we use c1, c2, . . . , ck to denote the support of the colors
{1, 2, . . . , k} at the beginning of a round. We will use c′1, . . . , c′k to denote the number of
nodes of corresponding colors after the switching has been performed before the adversary
changes F arbitrary nodes. Note that, c′1, . . . , c′k are not necessary monotonically decreasing
(as opposed to c1, c2, . . . , ck).

Whenever we fix a configuration, we assume, w.l.o.g. that colors are ordered in descend-
ing order such that c1 ≥ c2 ≥ · · · ≥ ck.

Observe that in the complete graph the number ∆ij of nodes switching from color 1
to color 2 has a binomial distribution with parameters ∆ij ∼ Bin(ci, c2

j/n
2). Clearly, the

expectation and variance of ∆ij are

E[ ∆ij ] =
ci · c2

j

n2

As for the lower bound in Theorem 10.5 showing that t2C = Ω(n/ logn), we refrain from
applying Chernoff bounds in every step the result would be too weak. Instead we consider
larger periods together with stochastic domination to derive stronger bounds.

10.3 Plurality Consensus with Two Choices

In Section 10.3.1 we show the upper bound Theorem 10.2 on the 2-Choices process. We
show that if the initial bias is Ω(n logn), then the initially most dominant color wins with
high probability in O(k · logn) rounds.
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In Section 10.4.2 we show two lower bounds: We show that if the initial bias is of order
O(
√
n), then with constant probability a color different than color 1 will win (Theorem 10.6).

Furthermore, we show that there are configurations from which we require Ω(k + logn)
rounds until any opinion wins (Theorem 10.7).

10.3.1 Upper bound - Proof of Theorem 10.2

The algorithm discussed in this section is formally defined in Algorithm 8. The interesting
regime is when the largest color c1 has non yet reached an absolute majority. Otherwise,
that is if c1 ≥ (1/2 + ε1)n for some constant ε1 > 0, the process converges within O(logn)
steps with high probability. This follows from [CER14] since in the case of c1 ≥ (1/2 + ε1)n
the size of the largest color is stochastically dominated by the size of the largest color when
all other colors are merged into one single color.

For the sake of readability we assume in the following that a ≤ n/2. Furthermore,
observe that c1 > n/k, since color 1 is the largest of k color classes. We introduce the
following notation.

Let S ⊆ C be a set of colors. We will use the random variable ∆iS to denote the sum
of all flows from color i to any color in S and ∆Si to denote the sum of all flows from any
color in S to i. We have in expectation

E[ ∆Si ] =
∑
j∈S

cj · c2
i

n2 and E[ ∆iS ] =
∑
j∈S

ci · c2
j

n2 .

For color i define i be the set of all other colors, in symbols i = {j : j ∈ C with j 6= i}.
We observe that after one round the new number of nodes supporting color i is a random
variable

c′i = ci +
∑
j 6=i

∆ji −
∑
j 6=i

∆ij = ci + ∆ii −∆ii .

Since all nodes perform their choices independently, the first sum ∆Cii has a binomial
distribution with parameters ∆Cii ∼ B(n − ci, c2

i /n
2). Furthermore, every node of color i

changes its color away from Ci to any other opinion with probability ∑j 6=i c
2
j/n

2. More-
over, ∆ii also has a binomial distribution with parameters ∆ii ∼ Bin(ci,

∑
j 6=i c

2
j/n

2). In
expectation

E
[
c′i
]

= ci + (n− ci)c2
i

n2 − ci
n2

∑
j 6=i

c2
j . (10.1)

Note that these expected values are monotone w.r.t. the current size.

Observation 10.3. Let r and s be two colors. It holds that if cr ≤ cs then E[ c′r ] ≤ E[ c′s ].
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Proof. By (10.1),

E
[
c′i
]

= ci + c2
i

n
− ci
n2

∑
Cj
c2
j = ci

1 + ci
n
−
∑
Cj

c2
j

n2

 .

Thus,

E
[
c′r
]

= cr

1 + cr
n
−
∑
j

c2
j

n2

 (cr≤cs)
≤ cs

1 + cs
n
−
∑
j

c2
j

n2

 = E
[
c′s
]
.

We are ready to prove the following lemma.

Lemma 10.4. Assume that c1− c2 > z ·
√
n logn. There exists a constant z such that with

high probability
c′1 − c′2 > (c1 − c2)(1 + c1/4n)

In the following proof we utilize certain methods which have also been used in [CER14]
for the two-opinion plurality consensus process with two choices in more general graphs.

Proof. First we observe that

∑
i

c2
i = c2

1 +
∑
i 6=1

c2
i ≤ c2

1 +
∑
i 6=1

ci · c2 = c2
1 + (n− c1) · c2 ≤ c2

1 + n · c2 (10.2)

We derive,

E
[
c′1 − c′2

]
= c1 + E

[
∆11

]
− E

[
∆11

]
− c2 − E

[
∆22

]
+ E

[
∆22

]
= a+ (n− c1) · c

2
1
n2 −

c1
n2

∑
i 6=1

c2
i − c2 − (n− c2) · c

2
2
n2 + c2

n2

∑
i 6=2

c2
i

= c1 − c2 + 1
n2

c2
1n− c3

1 − c2
2n+ c3

2 − c1
∑
i 6=1

c2
i + c2

∑
i 6=2

c2
i


= c1 − c2 + 1

n2

n(c2
1 − c2

2

)
− c1

c2
1 +

∑
i 6=1

c2
i

+ c2

c2
2 +

∑
i 6=2

c2
i


= c1 − c2 + 1

n

(
c2

1 − c2
2

)
− 1
n2

(
c1
∑
i

c2
i − c2

∑
i

c2
i

)

= c1 − c2 + (c1 − c2)(c1 + c2)
n

− 1
n2

∑
i

c2
i (c1 − c2)

= (c1 − c2) ·
(

1 + (c1 + c2)
n

− 1
n2

∑
i

c2
i

)
.

(10.2)
≥ (c1 − c2)

(
1 + (c1 + c2)

n
− c2

1 + n · c2
n2

)
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≥ (c1 − c2)
(

1 + c1
n
·
(

1− c1
n

))
≥ (c1 − c2)

(
1 + c1

2n

)
,

where the last inequality uses c1 ≤ n/2. Before we apply Chernoff bounds to c′1 − c′2 we
introduce the following notation.

E
[
∆11

]
= (n− c1) c

2
1
n2 , E

[
∆11

]
= c1
n2

∑
i 6=1

c2
i ,

E
[
∆22

]
= (n− c2) c

2
2
n2 , E

[
∆22

]
= c2
n2

∑
i 6=2

c2
i .

Furthermore, let δ11, δ11, δ22, δ22 be defined as

δ11 = 2
√
n logn
c1

, δ11 = 2n
√

logn√
c1
∑
i 6=1 c

2
i

,

δ22 = 2
√
n logn
c2

, δ22 = 2n
√

logn√
c2
∑
i 6=2 c

2
i

Since c1 ≤ n/2 we know for the second largest color (color 2) that c2 ≥ n/2k. Together
with c1 ≥ n/k ≥ n1−ε we get 0 < δ < 1 and δ2

xy · ∆xy = Ω(logn) for (δxy,∆xy) defined
above. We now apply Chernoff bounds to c′1 − c′2 and obtain with high probability

c′1 − c′2 ≥ (c1 − c2) ·
(

1 + c1
2n

)
− σ

where the “Chernoff deviation” σ is bounded as follows.

σ := δ11 · E
[
∆11

]
+ δ11 · E

[
∆11

]
+ δ22 · E

[
∆22

]
+ δ22 · E

[
∆22

]
= 2
√
n logn
n2

c1n− c2
1 +

√
c1n

∑
i 6=1

c2
i + c2n− c2

2 +
√
c2n

∑
i 6=2

c2
i


≤ 2
√
n logn
n2

√n∑
i

c2
i (
√
c1 +√c2) + c1n+ c2n


≤ 2
√
n logn
n2 (2c1n+ c1n+ c2n)

≤ 8a
√
n logn
n

,

where we used that ∑i c
2
i ≤

∑
i c1 · ci ≤ c1n. From the conditions in the statement of the

lemma we know that (c1 − c2) ≥ z ·
√
n logn for some constant z. If we assume that z is
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large enough, e.g., z ≥ 32, then we get with high probability

c′1 − c′2 ≥ (c1 − c2) ·
(

1 + c1
4n

)
.

While Lemma 10.4 shows that in the absence of an adversary the difference between the
most dominant color and the second most dominant color increases in every round with high
probability. It is easy to see that the same holds for any third color, i. e., the increase in the
distance between the most dominant color and any other given color is lower bounded by
Lemma 10.4. By taking Union bound over all other colors we derive that the gap increases
every round. To obtain a strong upper bound on the runtime, we will analyze how in the
following (Theorem 10.2). the increase

Proof. Assume c1 − c2 ≥ z ·
√
n logn for a sufficiently large constant z. From Lemma 10.4

we know that c′1 − c′2 ≥ (c1 − c2) · (1 + c1/4n) with high probability. By using a standard
coupling, we get that c′1 − c′j ≥ c′1 − c′2 ≥ (c1 − c2) · (1 + c1/4n). Note that it may very well
happen, especially if all colors have the same size except for color 1, that another color j
“overtakes” color 2. However, with high probability

c′1 −max
j≥2

c′j ≥ (c1 − c2) · (1 + c1/4n).

We now take care of the adversary who may change up to F arbitrary nodes. Let c′′i
denote the support of color i the next round after the adversary influenced nodes. Clearly,
we have

|c′′i − ci| ≤ F

for all i ∈ C. We conclude that We have

c′′1 − c′′j ≥ c′1 − c′j − 2F ≥ (c1 − c2) · (1 + c1/4n− 2F/c1 − c2) ≥ (c1 − c2) · (1 + c1/8n),

since F = a(c1 − c2)/8n.
Taking the union bound over all colors, we conclude that the distance between the

most dominant color and every other color grows in every round by a factor of at least
(1 + c1/4n) with high probability. Therefore, after τ = 4n/c1 rounds, the relative distance
between color 1 and any other color doubles with high probability. Hence, the required
time for color 1 to reach a size of at least (1/2 + ε1) · n for a constant ε1 > 0 is bounded
by O(n/c1 · logn). This bias is large enough that we assume in the following that all nodes
which are not of color 1 are of the same color, say 2.

In absence of an adversary, we can see that after additional O(logn) rounds every
node has the same color 1, with high probability; see [CER14]. In each individual round,
the growth described in Lemma 10.4 takes place with high probability. A union bound
over all O(n/c1 · logn) rounds yields that the protocol indeed converges to color 1 within
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O(n/c1 · logn) rounds with high probability. The same analysis of [CER14] can be used
even in the presence of an adversary. However, in this case we can only reach almost validity
according to Definition 10.1, since the adversary is allowed to change F = o(n) nodes per
round.

Finally, we argue that the 2-Choices process trivially fulfills the property almost agree-
ment according to Definition 10.1. Starting from an arbitrary initial distribution of colors,
there is in every round a positive (albeit super-exponentially small in n) probability that
all nodes adopt the same color.

10.4 Lower Bound for 2-Choices

This section give lower bounds for 2-Choices. We first show that the consensus time can
be almost linear with high probability starting from n colors (Section 10.4.1). We then
complement on upper bounds of Section 10.3: Even if the initial bias is of order

√
n (as

opposed to
√
n logn), then the second largest color might win with constant probability.

Additionally, we give almost matching lower bounds on the consensus time in the setting
where the initial bias is of order

√
n logn.

10.4.1 Worst-Case Lower bound - Theorem 10.5

It turns out that, when started from an almost balanced configuration, the consensus time
is dictated by the time it takes for one of the colors to gain a support of Ω(logn). To prove
this result, we prove a slightly stronger statement, that captures the slow initial part of the
process when started from configurations with a maximal load of `.

Theorem 10.5. Let γ be a sufficiently large constant. Consider the 2-Choices process
starting from any initial configuration c ∈ C. Let ` := maxi ci(0) be the support of the
largest color. Then, for `′ := max{2`, γ logn}, it holds with high probability that no color
has a support larger than `′ for n/(γ`′) rounds. In symbols,

P
[

max
i

ci(t) > `′ for some t < n

γ`′

]
≤ 1
n
. (10.3)

In particular, starting from the n-color configuration, it holds with high probability that no
color has a support larger than γ logn for n

γ2 logn rounds.

Proof. Let Ti = min{t ≥ 0 | ci(t) > `′}. For any fixed opinion i ≤ k we show that
P[Ti < n/(γ`′) ] ≤ 1/n2, so that, by a union bound over all opinions and using that T =
min{Ti | i ≤ k}, we obtain P[T < n/(γ`′) ] ≤ 1/n. Intuitively, we would like to show that,
conditioning on ci ≤ `′, the expected number of nodes joining opinion i is dominated by
a binomial distribution with parameters n and p = (`′/n)2. The main obstacle to this is
that naïvely applying Chernoff bounds for every time step yields a weak bound, since with
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constant probability at each round at least one color increases its support by a constant
number of nodes. Instead, we consider a new process P in which the number P (t) of nodes
supporting color i at time t majorizes ci(t) as long as P (t) ≤ `′; we will then show that,
after a certain time w.h.p. P (t) is still smaller than `′ implying that P indeed majorizes
the original process. Using the fact that in P we can simply apply Chernoff bounds over
several rounds, we can finally get ci ≤ P (t) ≤ `′ w.h.p..

Formally, process P is defined as follows. P (0) := ` and P (t + 1) = P (t) +∑
j≤nX

(t)
j ,

where X(t)
j is a Bernoulli random variable with P[Xi = 1 ] = p and, by a standard coupling,

it is 1 whenever node j sees two times color i at round t (note that the latter event happens
with probability at most p for any t < Ti). By definition, if t < Ti it holds ci(t) ≤ `′, which
implies that the probability that any node in the original process gets opinion i is at most
p. Thus, we can couple 2-Choices and P for t ≤ Ti so that ci(t) ≤ P (t). This implies that

T ′ := min{t ≥ 0 | P (t) ≥ `′} � Ti. (10.4)

In the remainder we show that P[T ′ < n/(γ`′) ] < 1/n2. For any round t+ 1, we define
∆t+1 := P (t + 1) − P (t) = ∑

i≤nXi. Observe that ∆t+1 ∼ Bin(n, p). Let t0 = n/(γ`′). In
the following we bound

B := P (t0)− P (0) =
t0∑
i=1

∆i.

Observe that B ∼ Bin(t0 · n, p) and thus E[B ] = t0 · n · p. Using Chernoff bounds, e.g.,
[MU05, Theorem 4.4] we derive for any γ ≥ 18

P
[
P (t0) ≥ `′

]
= P

[
B ≥ `′ − `

]
≤ P

[
B ≥ max

{
2E[B ], γ2 logn

}]
= P

[
B ≥ E[B ] ·max

{
2, 1 +

γ
2 logn
E[B ]

}]

≤ exp
(
−
γ
2 logn

3

)
≤ 1/n3, (10.5)

where we used that

max
{

2E[B ], γ2 logn
}

= max
{

2t0 · n · p,
γ

2 logn
}

≤ max
{

(`′)2

γ`′
,
γ

2 logn
}

≤ max
{
`′

2 ,
γ

2 logn
}
≤ `′

2 = `′ − `.
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Putting everything together yields

P
[
T < n/(γ`′)

]
= P[T < t0 ] (10.6)
(a)
≤ nP[Ti < t0 ]
(b)
≤ nP

[
T ′ < t0

]
(c)
≤ nP

[
P (t0) ≥ `′

] (d)
≤ n−2, (10.7)

where in (a) we used union bound over all colors, in (b) we used (10.4), in (c) we used
that “T ′ < t0” =⇒ “P (t0) ≥ `′” and in (d) we used (10.5). This completes the proof.

10.4.2 Complementing our Upper bounds Theorem 10.6 and Theo-
rem 10.7

In this section we give lower bounds complementing our positive results: In the previous
section, we proved that the process converges to color 1 with high probability if the initial
imbalance c1−c2 is not too small. Precisely, Theorem 10.2 states that if c1−c2 ≥ z ·

√
n logn

for some constant z, color 1 wins with high probability. Conversely, in the following section
we examine a lower bound on the initial bias. We will show, as stated in Theorem 10.6,
that for an initial bias c1 − c2 ≤ z ·

√
n for some constant z we have a constant probability

that color 2 “overtakes” color 1 in the first round, that is, P[ c′1 < c′2 ] = Ω(1) implying that
color 2 wins w.c.p..

Our lower bound is based on the approximation of the binomial distribution with the
normal distribution, which allows us to obtain a lower bound. In order to so, we apply the
DeMoivre-Laplace limit theorem (Theorem A.6)

We now prove Theorem 10.6 which states that there exists an initial color assignment
for which c1 = c2 + z′ ·

√
n but color 2 wins with constant probability even in absence of an

adversary.

Theorem 10.6 (Lower Bound on the Initial Bias). For any k ≤
√
n and constant z′ there

exists an initial assignment of colors to nodes for which c1 = c2 + z′ ·
√
n but P[ c′1 < c′2 ] =

Ω(1) even in absence of an adversary.

Proof. Let z = z′/2 and n′ = n−k+2
2 . Assume that we have the following initial color

distribution among the nodes.

(c1, c2, c3, . . . , ck) =
(⌊
n′
⌋

+
⌊
z ·
√
n
⌋
,
⌈
n′
⌉
−
⌊
z ·
√
n
⌋
, 1, . . . , 1

)
.

Clearly, ∑Cj cj = n. In the following we will omit the floor and ceiling functions for the
sake of readability reasons. First, we start by giving an upper bound on the number of
nodes which change their color away from color 2. Now recall that ∆22 follows a binomial
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distribution ∆22 ∼ Bin(b,∑Cj 6=B c
2
j/n

2) with expected value

E
[
∆22

]
= c2 ·

c2
1 + k − 2
n2 =

(
n′ − z ·

√
n
)
· (n′ + z ·

√
n)2 + k − 2
n2

≤ (n′ + z ·
√
n)3 + k − 2
n2 ≤ n

8 + 4z
√
n .

Applying Chernoff bounds to ∆22 gives us

P
[

∆22 ≥
(

1 +
√

3/E
[
∆22

])
E
[
∆22

] ]
≤ 1/e . (10.8)

That is, with constant probability at least 1− 1/e we have

∆22 ≤
(

1 +
√

3/E
[
∆22

])
E
[
∆22

]
≤ n

8 + 4z
√
n+

√
3E
[
∆22

]
≤ n

8 + (4z + 1)
√
n .

Secondly, we give the following lower bound on the number of nodes which change their
color from color 1 to color 2 and ∆12 ∼ Bin

(
a, b2/n2) with expected value

E[ ∆12 ] =
(
n′ + z ·

√
n
)
· (n′ − z ·

√
n)2

n2 ≥ (n′ − z ·
√
n)3

n2

≥ (n/2− (z + 1/2)
√
n)3

n2 ≥ n

8 − 4z
√
n

and variance

Var[ ∆12 ] = E[ ∆12 ] ·
(

1− (n′ − z ·
√
n)2

n2

)
≥ n

9 ·
1
2 = n

18 .

We now apply Theorem A.6 to ∆12. Let x =
√

18
2 (18z + 4). We derive

P
[

∆12 ≥ E[ ∆12 ] + x ·
√

Var[ ∆12 ]
]

= 1√
2π · x

exp
(
−x2/2

)
± o(1) = Ω(1) .

That is, we have with constant probability

∆12 ≥ E[ ∆12 ] + x ·
√

Var[ ∆12 ] ≥ n

8 − 4z
√
n+ x ·

√
n

18 . (10.9)

Finally, assume that in the worst-case every node of colors 3, . . . , k changes to color 1
but not a single node changes away from color 1 to these colors 3, . . . , k. Observe that ∆22
is an upper bound on ∆21. Therefore,

c′1 − c′2 ≤ (c1 + k − 2 + ∆21 −∆21)−
(
c2 + ∆12 −∆22

)
≤ c1 − c2 + k − 2 + 2∆22 − 2∆12

≤ 2z ·
√
n+ k − 2 + 2∆22 − 2∆12 ≤ (2z + 1) ·

√
n+ 2∆22 − 2∆12 .
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We plug in (10.8) and (10.9) to bound the random variables ∆12 and ∆22 and obtain with
constant probability

c′1 − c′2 ≤ (2z + 1) ·
√
n+ 2

(
n

8 + (4z + 1)
√
n

)
− 2

(
n

8 − 4z
√
n+ x ·

√
n

18

)
= (2z + 1 + 8z + 2 + 8z − 2x/

√
18) ·

√
n = (18z + 3− 2x/

√
18) ·

√
n

which gives us c′1− c′2 < 0 for x =
√

18
2 (18z+ 4). Therefore, we have P[ c′1 < c′2 ] = Ω(1) and

thus we conclude that color 2 wins with constant probability.

Theorem 10.7 (Lower Bound on the Run Time). Assume the initial bias is exactly
z
√
n logn for some constant z. The number of rounds required for the plurality consen-

sus process defined in Algorithm 8 to converge is at least Ω(n/c1 + logn) with constant
probability, even in absence of an adversary.

Proof. Let c1(t) denote the size of color 1 in round t and of initial size c1(0) = n/k + z ·
√
n logn. Furthermore, assume that k ≥ 3 · z. We show by induction on the rounds that

c1(t) ≤ c1(0) · (1 + 3 · c1(0)/n)t for 1 ≤ t ≤ n/(10 · c1(0)) with probability 1− t/n. First we
note that

c1(t) ≤ c1(0) ·
(

1 + 3 · c1(0)
n

)t
≤ c1(0) ·

(
1 + 3 · c1(0)

n

)n/(10·c1(0))
≤ c1(0) · exp(1/2)

≤ 2 · c1(0) (10.10)

We now prove the induction claim. The base case holds trivially. Consider step t+ 1.
By induction hypothesis we have with probability at least 1 − t/n that c1(t) ≤ c1(0) ·
(1 + 3 · c1(0)/n)t. Note that we have with high probability

c1(t+ 1) ≤ c1(t) + ∆11 ≤ c1(t) +

1 +
√

3 logn√
E
[
∆11

]
 · E[∆11

]
,

where the latter inequality follows by Chernoff bounds. Using (10.10) and c1(t) ≤ c1(0), we
derive

c1(t+ 1) ≤ c1(t) +
(

1 +
√

3 logn√
c1(t)2/(2 · n)

)
c1(t)2

n
≤ c1(t) +

(
1 +

√
3 logn√

c1(0)2/(2 · n)

)
c1(t)2

n

≤ c1(t) + 3
2 ·

c1(t)2

n
= c1(t) ·

(
1 + 3

2 ·
c1(t)
n

)
≤ c1(t) ·

(
1 + 3 · c1(0)

n

)
.

From the induction hypothesis we therefore obtain

c1(t+ 1) ≤ c1(0) ·
(

1 + 3 · c1(0)
n

)t
·
(

1 + 3 · c1(0)
n

)
= c1(0) ·

(
1 + 3 · c1(0)

n

)t+1
.
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Using a union bound to account for all errors, we derive that with probability at least
1 − (t+ 1)/n we have c1(t + 1) ≤ c1(0) · (1 + 3 · c1(0)/n)t+1, which completes the proof of
the induction and proves the lower bound of Ω(n/a).

In the remainder we establish the bound Ω(logn). Assume only two colors 1 and color
2 where color 1 initial size c1(0) = n/2 +

√
n logn. We show by induction on the rounds

that c1(t) ≤ c1(0) + 6t
√
n logn for 1 ≤ t ≤ logn/20 with probability 1−2t/n. First we note

that c1(t) ≥ c1(0) and

c1(t) ≤ c1(0) + 6t
√
n logn ≤ n/2 + n5/6 < n .

We now prove the induction claim. The base case holds trivially. Consider step t+ 1.
By induction hypothesis we have with probability at least 1 − 2t/n that c1(t) ≤ c1(0) +
6t
√
n logn. We have, using c1 = c1(t) and σ = 6t

√
n logn,

n2 · E
[
∆11 −∆11

]
= (n− 1)c2

1 − c1 · (n− c1)2 = (n− c1)c1(2c1 − n)

≤ n/2 · c1 · 2σ = n · σ(n+ σ) = n2 · σ + n · σ2 .

Similar to before, we obtain by Chernoff bounds that with high probability

c1(t+ 1)− c1(t) = ∆11 −∆11 ≤

1 +
√

3 logn√
E
[
∆11

]
E[∆11

]
−

1−
√

3 logn√
E
[
∆11

]
E[∆11

]
≤ E

[
∆11 −∆11

]
+ 2

√
3 logn ·

√
E
[
∆11

]
≤ σ + σ2/n+ 2

√
3 logn ·

√
n ≤ 3σ .

From the induction hypothesis we therefore obtain

c1(t+ 1) ≤ c1(0) + 6t
√
n logn+ 3σ ≤ c1(0) + 6t+1√n logn ,

which completes the induction and yields the lower bound of Ω(logn).

10.5 Comparison with the 3-Majority Process

In this section we elaborate on the difference between the 2-Choices process and the 3-
Majority rule [BCN+14b], where in the latter each node pulls the opinion of three random
neighbors and adopts the majority opinion among those three, breaking ties uniformly at
random. As mentioned before, the 3-Majority process of [BCN+14b] uses O(log k) memory
bits and the authors prove a tight run time of Θ(k · logn) for this protocol, given a suffi-
ciently high bias c1 − c2. Moreover, they show that if the bias is only of order

√
kn, then

with constant probability the difference c1 − c2 decreases. This is fundamentally different
in the 2-Choices process, which requires only a bias of O(

√
n logn).
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The reasons are twofold. First, the variance of the 3-Majority process can be orders of
magnitude larger and second, the expected increase in the difference between the largest
and second largest color in the 3-Majority process is only of order of the variance. As for
the variance, consider an initial setting where all colors are of sublinear size and colors 1
and 2 are larger than all other colors, such that c1 = o(n) and

c2 = c1 − c
√
n logn > cj

and

cj = (n− c2 − c1)/(k − 2)

for all 3 ≤ j ≤ k with k = nε for constants ε and c. Observe that the expected numbers of
color switches differ significantly. In the 2-Choices process it is very unlikely for a node to
pick the same color twice and the probability of switching is o(1). In contrast to this, the
probability of switching in the 3-Majority process is 1− o(1).

More illustratively, consider the number of switches to color 2. By Lemma 2.1 of
[BCN+14b], the probability that a node switches to color 2 in the 3-Majority process is
p ∈ [c2/n, 2c2/n] and the variance becomes n · p · (1 − p) ≥ c2/2. However, in the 2-
Choices process, the probability of switching to color 2 is q = c2

2/n
2 and the variance is

thus at most n · q · (1 − q) ≤ n · q = c2
2/n, which is considerably smaller than c2/2. This

high variance paired with the small expected increase in the difference between color 1 and
color 2 easily becomes fatal. Again, by Lemma 2.1 of [BCN+14b], one can verify that
E[ c′1 − c′2 ] ≤ c1− c2 + (c2

1 − c2
2)/n. Now we have P[ c′1 ≤ E[ c′1 ] ] = Ω(1) and, using the large

variance, we obtain from Theorem A.6 that

P
[
c′2 ≥ c2 + (c2

1 − c2
2)/n

∣∣c′1 ≤ E
[
c′1
] ]
≥ P

[
c′2 ≥ c2 + (c2

1 − c2
2)/n

]
≥ P

[
c′2 ≥ E

[
c′2
]

+ Var
[
c′2
] ]

= Ω(1) .

Thus the distance between color 1 and 2 decreases with constant probability, that is,

P
[
c′1 − c′2 < c1 − c2

]
= Ω(1).

In comparison to this, we have seen in Section 10.3 that in the given setting the distance
between color 1 and color 2 in the 2-Choices process increases with high probability.
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Chapter 11

Rapid Asynchronous Consensus
[EFK+16]

We consider the following plurality consensus process on the complete graph of size n. We
consider the asynchronous setting (cf. e.g. [MS08]). In the asynchronous model, we assume
that each node has a random clock which ticks according to a Poisson distribution, once per
unit of time in expectation [MS08] (note that this model is equivalent to the continuous-time
model of [AF02], page 26 (ii), according to which random walks move along the vertices of
a graph). Again, upon activation a node updates its opinion according to a sample of its
neighborhood.

Regardless of the underlying model of synchronicity, if eventually all nodes agree on one
opinion, we say this opinion wins, and the process converges. Typically, one would demand
from such a voting procedure to run accurately, that is, the opinion with the largest initial
support should win with decent probability (1−o(1)), and to be efficient, that is, the voting
process should converge within as few communication steps as possible.

Our goal is to design a simple algorithm which reaches quickly plurality consensus.

Model

In the following section, we will introduce formally the model which we consider in the
remainder of this chapter. We give a formal definition of the consensus process in the syn-
chronous and the asynchronous model followed by an overview of our results in Section 10.1.

We consider the following plurality consensus process on the complete graph of size n.

Synchronous Model

In the synchronous model we assume that the protocol operates in discrete rounds. In each
round, the nodes may simultaneously sample other nodes uniformly at random and then
simultaneously change their opinion as a function of the observed samples. An example
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here is the 2-Choices process where in each round every node samples two nodes chosen
uniformly at random, with replacement. If the chosen nodes’ colors coincide, then the node
adopts this color. We denote this process as the plurality consensus process with two choices.
Our first two results will be shown w.r.t. this synchronous model.

Parallel Asynchronous Model

In the asynchronous model we consider, every node v is equipped with a random clock
which ticks according to a Poisson distribution with parameter λ = 1. Whenever a node
ticks, it may sample nodes chosen uniformly at random and update its opinion based on
the sampled values.

As discussed in [BGPS06, MS08], this model is equivalent to the setting, in which a
global clock ticks according to a Poisson process of rate n. If Ti denotes the i’th tick of this
clock, then the time differences Ti − Ti−1 are identically distributed independent random
variables which have exponential distribution with parameter n. At each tick of this global
clock, a node is chosen uniformly at random, and the global tick corresponds to the local
tick at this node. As shown before, there is a strong correspondence between the number
of ticks and the absolute time, meaning that with probability 1− e−Ω(n) the k’th tick of the
global clock occurs at some time Θ(k/n) for any k = Ω(n).

Sequential Asynchronous Model

While the parallel model described above represents real-world processes for which event
frequencies are commonly modeled by Poisson clocks, we give in the following a more
theoretical model. Instead of considering the asynchronous parallel process in continuous
time, we rather analyze the process in the sequential model. In this sequential model, we
assume that a discrete time is given by the sequence of ticks, and at any of the discrete
time steps, a node is selected uniformly at random from the set of all nodes to perform its
task. According to the global clock model described above, and using the fact that for any
k = Ω(n) the k’th tick of the global clock occurs at some time Θ(k/n), with probability
1−e−Ω(n), we can relate the number of ticks in the sequential model to the continuous time
in the asynchronous model. Since k ticks in the global clock model occur within time Θ(k/n)
for any k = Ω(n) with probability 1 − e−Ω(n), the number of ticks divided by the number
of nodes in the sequential model and the time in the global clock model are asymptotically
the same with probability 1− e−Ω(n).

11.1 Results

Our main contribution is an efficient algorithm for plurality consensus in the asynchronous
setting. As discussed below in more detail, a straight-forward observation is that in the
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sequential asynchronous model many nodes may remain unselected for up to O(logn) time,
which implies that no algorithm can converge in o(logn) time. Thus, our aim is to construct
a protocol that solves plurality consensus in O(logn) time. We show that if the difference
between the numbers of the largest two opinions is at least Ω(c2), where c2 is the size
of the second largest opinion, and k = nO(1/ log logn), then our algorithm solves plurality
consensus and achieves the best possible run time of O(logn), provided a node is allowed
to communicate with at most constantly many other nodes in a step.

The key to the rapidity of our protocol is that we pair a phase in which all nodes
execute the 2-Choices process with a phase in which successful opinions are propagated
quickly–much like in broadcasting. For this to work it is crucial to separate the two phases.
While this is trivial in the synchronous setting, it is impossible in the asynchronous setting.
The number of activations of different nodes can easily differ by Θ(logn), rendering any
attempt of full synchronization futile if one aims for a run time of O(logn). Thus, we restrict
ourselves to the concept of weak synchronicity as follows. At any time we only require
that a (1 − o(1))-fraction of nodes are almost synchronous. To cope with the influence of
the remaining nodes, we rely on a toolkit of gadgets, which we believe are interesting in
their own right. Our result is formally stated in the following theorem.

Theorem 11.1. Consider the asynchronous model. Let G = Kn be the complete graph
with n nodes. Let k = O(exp(logn/ log logn)) be the number of opinions. Let εbias > 0 be a
constant. Assume c1 ≥ (1 + εbias) ·ci for all i ≥ 2, then the asynchronous plurality consensus
process defined in Section 11.2 on G converges within time Θ(logn) to the majority opinion
C1, with high probability.

The result of Theorem 11.1 can be extended to the following asynchronous model that
takes into account latency and response times when a node is contacted. In this extended
model, every node ticks according to a Poisson process with parameter λ = 1, and the
response time of a node has exponential distribution with some constant parameter. Fur-
thermore, we believe that the result of the theorem, and the methods used in its proof, can
be extended beyond the Poisson clock process–see Section 11.11 for a discussion.

11.2 Approach and Technical Contributions

In this section, we introduce our asynchronous consensus algorithm and give the intuition
behind the proof of Theorem 11.1. To simplify the presentation we start by discussing
our synchronous consensus protocol. A detailed description and its proofs can be found in
[EFK+16]. Afterwards, we introduce a framework allowing us to adapt the algorithm to
the asynchronous setting.

An Ideal World: Synchronous Consensus A simple algorithm for reaching consensus
is 2-Choices. As we show in detail in the full version, a bias of c1−c2 = O

(√
n logn

)
between
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the two largest colors suffices to guarantee that the largest color 1 wins after O(n/c1 · logn)
rounds with high probability.

In order to achieve a poly-logarithmic run time we do the following. We combine the
guarantee of the 2-Choices process to reach plurality consensus with the speed of broadcast-
ing. More specifically, the protocol consists of Θ(log(n/c1) + log logn) phases which in turn
consist of two sub-phases: (i) one round of the 2-Choices process and (ii) several rounds of
the so-called Bit-Propagation sub-phase in which each node that changed its opinion during
the preceding two-choice step broadcasts its new opinion.

More precisely, we equip each node with an additional bit of memory which is set to True

if and only if it changed its opinion in the 2-Choices sub-phase. In the Bit-Propagation sub-
phase, each node u samples nodes randomly until a node v with its bit set to True is found.
Then u adopts v’s opinion and sets its own bit to True, which means that subsequently any
node sampling u will set their bit as well.

The first sub-phase ensures that after the 2-Choices round the number of nodes holding
opinion C1 and having their bit set to True is concentrated around c2

1/n. After the Bit-
Propagation sub-phase all nodes will have their bit set, and the distribution and the size of
Cj ’s support is concentrated around c2

j/x(1), where x(1) is the total number of bits set after
the 2-Choices sub-phase. This is enough to show that after O(log(n/c1)) rounds the distance
between C1 and any opinion Cj 6= C1 increases quadratically, that is, c′1/c′j ≥ (1−o(1))c2

1/c
2
j .

Due to the quadratic growth in the distance between C1 and every other opinion, the number
of required phases is only of order Θ(log(n/a) + log logn). We assume that every node is
aware of (upper bounds on) n and k, allowing us to use these values within the algorithm,
and in particular to run it in multiple phases of length Θ(log k + log logn) each.

Towards an Asynchronous Algorithm. We now introduce our asynchronous protocol
to solve plurality consensus. In the sequential asynchronous model we assume that a se-
quence of discrete time steps is given, where at each time step one node is chosen uniformly
at random to perform its tick.

Algorithm 9: Distributed Voting Protocol with Two Choices

C1 lgorithmtwo-choices(G = (V,E), color : V → C) for round t = 1 to |C| · log |V | do
C1 tNodev let u1, u2 ∈ N(v) uniformly at random;
if color(u1) = color(u2) then

color(v) ← color(u1);

The key to the speed of the synchronous algorithm is the combination of the two-choice
process with an information dissemination process. However, this interweaving of these
processes requires that the nodes execute the sub-phases simultaneously. While this is
trivially the case in the synchronous setting, it is extremely unlikely in the asynchronous
setting, since the numbers of ticks of different nodes may differ by up to O(logn). Therefore,
any attempt to reach full synchronization is futile if one aims for a run time of O(logn).
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To overcome this restriction, we adopt the following weaker notion of synchronicity. At
any time we only require a (1− o(1)) fraction of the nodes to be almost synchronous. This
relaxes full synchronicity in three ways: First, nodes are only almost synchronous, meaning
that for any two nodes their working times may differ by up to ∆ = Θ(logn/ log logn).
Secondly, we allow o(n) nodes to be poorly synchronized. Finally, we require this to hold
only with high probability.

The above notion does not require the nodes to synchronize actively per se, since their
number of ticks is to some extent concentrated even without active synchronization. How-
ever, it turns out that without synchronizing perpetually, the number of poorly synchronized
nodes in each phase will become larger than the initial bias towards the plurality opinion
c1 − c2 and could therefore influence the consensus significantly. We thus actively synchro-
nize nodes at the end of each phase to decrease the fraction of poorly synchronized nodes
such that their number is in o(c1 − c2), resulting in a negligible influence of those nodes.

Once several technical challenges are resolved, the resulting weak synchronicity allows
us to reuse the high-level structure of the synchronous algorithm(OneExtraBit). As in
the synchronous case, the asynchronous protocol consists of one 2-Choices sub-phase and
one Bit-Propagation sub-phase, the latter of which propagates the choices of the 2-Choices
phase to all nodes in the network. In addition to these sub-phases we have a third sub-phase
in which we synchronize nodes.

After executing the first two sub-phases, the relative difference between C1 and any
opinion Cj 6= A increases quadratically and thus we only require O(log logn) such phases.
Each of the sub-phases has a length of O(logn/ log logn), amounting to a total run-time of
O(logn). While superficially the asynchronous version looks very similar to the synchronous
protocol (OneExtraBit), the analysis differs greatly from the synchronous case, in both
approach and technical execution.

11.3 The Asynchronous Protocol

Our asynchronous protocol consists of two parts, Part 1 defined in Algorithm 10 later in
this section and Part 2 defined in Algorithm 11 in Section 11.8. In these formal definitions,
we specify the operations that each node performs when selected to tick. The goal of the
first part is to increase the number of nodes of color 1 to at least c1 ≥ (1− εPart1) ·n for some
small constant εPart1. Once the execution of the first part has finished, the nodes execute a
simple 2-Choices algorithm in an asynchronous manner. We will show that after the second
part, C1 wins with high probability. Our main contribution is the analysis of the first part.
For the sake of completeness, we formally analyzethe second part in Section 11.8.

In contrast to the formal definitions, it is more convenient and instructive to represent
the algorithm executed by each node in a graphical way. This graphical representation for
a single phase of the first part is shown in Figure 11.1. In this graphical representation, the
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Algorithm 10: Part 1 of the asynchronous protocol to solve plurality consensus. Both variables
realtime and workingtime are initialized to 0, and samples is initially the empty set. The variables κ
and ` denote large constants. The goal of the algorithm is to increase the plurality opinion C1 such that
c1 ≥ (1− εPart1) · n for a small constant εPart1.
Algorithm asynchronous(node v) (Part 1)

let T = κ · logn/ log logn;
let t = workingtime(v) modT ;

if t = T/10 then
let u1, u2 ∈ N(v) uniformly at ran-
dom;
if color(u1) = color(u2) then

intermediate(v) ←
color(u1);

else
intermediate(v)← Null;

else if t = 2 · T/10 then
if intermediate(v) 6= Null then

color(v)← intermediate(v);
bit(v)← True;

else
bit(v)← False;

else if t ∈ [3 · T/10, 7 · T/10] then
if bit(v) = False then

let u ∈ N(v) uniformly at ran-
dom;
if bit(u) = True then

bit(v)← True;
...

color(v)← color(u);

...
else if t ∈ [8 · T/10, 9.5 · T/10] then

increase all values in samples(v) by 1;
if t ∈

[
8 · T/10, 8 · T/10 + log3 logn

]
then

let u ∈ N(v) uniformly at random;
samples(v) ← samples(v) ∪
{realtime(u)};

if t = 9.5 · T/10 and samples(v) 6= ∅ then
workingtime(v) ←
median(samples(v));
samples(v)← ∅;

else
do nothing;

realtime(v)← realtime(v) + 1;
workingtime(v)← workingtime(v) + 1;
if workingtime(v) ≥ κ · ` · logn then

continue with Algorithm 11;

1∆ 2∆ 4∆ 5∆ 7∆

τ0 τtc τset τ1 τ2 τ3 τ4 τ5

8∆ 9∆

τjump

T

τtτm1

6∆3∆

τ ′1 τ ′2 τ ′3 τ ′4
τbp1 τbp2 τm2

0

Bit PropagationTwo Choices Sync Gadget

Figure 11.1: Graphical representation of one phase of Algorithm 10. Each phase consists of T = 10 · ∆
ticks.

instructions are drawn on a line from left to right, starting with the first instruction at the
left endpoint.

As in the synchronous case, the asynchronous algorithm operates in multiple phases.
Each of these phases is split into three sub-phases. Each sub-phase consists of multiple
blocks of length ∆ each. During these sub-phases, according to Algorithm 10, there are
multiple blocks of instructions where nodes for a long time literally do nothing. These
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do-nothing-blocks are used, in combination with the following result on synchronicity, to
ensure that a large fraction of nodes executes critical instructions at almost the same time.
That is, for a large fraction of nodes we will show that these nodes execute instructions as
if they were bulk synchronized, which they clearly are not.

The first phase is the 2-Choices sub-phase, which consists of two instructions, the 2-
Choices step and the commit step. In the 2-Choices step, every node samples two neighbors
uniformly at random. If and only if these neighbors’ colors coincide, the node sets an
intermediate color to the neighbors’ colors. In the commit step, nodes change their color if
they have their intermediate color set and then set their bit accordingly. The second phase
is the Bit-Propagation sub-phase, which closely resembles the synchronous counter part.
Finally, in the third phase, all nodes execute the so-called Sync Gadget. In this gadget,
nodes adjust their working time in order to synchronize. Our perpetual synchronization
mechanism is described after the following definitions.

For the analysis of the asynchronous algorithm we will use the following notation and
definitions.

Definitions. Let κ and ` denote sufficiently large positive constants. We refer to a series
of n consecutive time steps as a period, and we combine T = κ · logn/ log logn periods to a
phase. The first part of the asynchronous protocol consists of ` · log logn phases. Intuitively,
a period is the number of time steps during which each node ticks in expectation once. We
define a reference point τ to be a time step which marks the end of a period τ . In particular,
at reference point τ there have been τ ·n time steps, and each node has ticked in expectation
τ times.

• Let Tv(t) denote the random variable for the real time, the number of ticks of node
v after the first t · n time steps. That is, Tv(t) denotes the number of times v was
scheduled during the first t · n ticks.

• Let T ′v(t) denote the random variable for the working time, the current instruction
counter of node v after the first t · n time steps. Note that T ′v(t) can differ from Tv(t)
since the working time is adjusted with the goal of synchronization in Algorithm 10.

At the beginning of the algorithm, both, the real time and the working time are initial-
ized to 0. Since at each time step one node is chosen to tick independently and uniformly
at random, Tv(τ) has a binomial distribution Tv(τ) ∼ Bin(τ · n, 1/n) with expected value
E[Tv(τ) ] = τ . It will prove convenient to regard a reference point as the one instruction
in the algorithm which would be executed in the corresponding period if every node ticked
exactly once in every period.

Weak Perpetual Synchronization. In the asynchronous algorithm, when a node is
selected to tick, all operations are performed based on the node’s current working time. In
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contrast, the real time of a node is used to always the total number of ticks performed so far
by this node. In the Sync Gadget, the working time T ′v of a node v, denoted as workingtime

in Algorithm 10, is adjusted as follows.
The Sync Gadget consists of a sampling sub-phase [τm1, τm2] and a jump step τjump. The

sampling sub-phase of the Sync Gadget consists of log3 logn ticks. During these ticks, every
node samples a neighbor uniformly at random and collects the real time Tu of the sampled
neighbor u. Additionally, the node increments all real times sampled so far by 1 until the
jump step is executed. At the jump step, the node sets its working time to the median of
the samples.

During the entire phase, according to Algorithm 10, there are multiple blocks of in-
structions where nodes literally do nothing. These blocks are used, in combination with the
following result on synchronicity, to ensure that a large fraction of nodes executes critical
instructions at almost the same time. That is, for a large fraction of nodes we will show
that these nodes execute instructions as if they were bulk synchronized, which they clearly
are not.

11.4 The Key Lemmas

The use of the Sync Gadget and the following definition of ∆-closeness allow us to show
Proposition 11.3 which forms the basis for our adaption of the synchronous protocol to the
asynchronous setting.

Definition 11.2. We say a node is ∆-close to a reference point τ w.r.t. the real time Tv or
the working time T ′v, if |Tv(τ)− τ | ≤ ∆ or |T ′v(τ)− τ | ≤ ∆, respectively. If we say a node
is ∆-close without specifying a reference point, we mean that it is ∆-close to the expected
number of ticks.

Proposition 11.3. Let S be set of synchronized nodes that are (∆/2)-close w.r.t. the
working time throughout the entire process. With high probability,

|S| ≥ n · (1− exp(−8 logn/ log logn)).

The proof idea is as follows. We first observe that roughly n·
(
1− exp

(
− logn/ log2 logn

))
nodes are (∆/16)-close throughout the execution of the algorithm. As argued before, the
resulting number of poorly synchronized nodes is too large and could tip the balance.
Furthermore, we show, by careful induction, that thanks to the perpetual synchronization
in each phase, a large fraction f = (1− exp(−9 logn/ log logn)) of the nodes which were
(∆/2)-close throughout the first i phases, will remain (∆/2)-close in phase i + 1: (i) a
fraction f of these nodes will tick equally often in each interval in this phase, up to an error
of ∆/16, and (ii) among these nodes again a fraction f will adapt their working time by
selecting the median of a sample of nodes. That median will be (∆/16)-close. Accounting
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for numerous other sources of error we obtain overall (∆/2)-closeness for a large fraction of
nodes.

Equipped with Proposition 11.3 we analyze the 2-Choices and Bit-Propagation sub-
phases. Instead of describing the distribution of colors after every 2-Choices and Bit-
Propagation sub-phase, we restrict ourselves to the distribution of colors among the well-
synchronized nodes in S. In fact, throughout the analysis, we assume for all other nodes
in (V \ S) the worst-case. However, based on the Sync Gadget and Proposition 11.3, their
number is small enough such to prevent them from tipping the balance.

Our next key-lemma is Proposition 11.4 which establishes that the number of nodes
which pick up a bit for color Cj is with high probability concentrated around the expectation.

Analogously to the synchronous case, we consider in the following definitions and propo-
sitions an arbitrary but fixed phase of Algorithm 10. Let ĉj(τ) denote the number of nodes
belonging to S having color Cj at reference point τ , that is, at time step τ · n. Let further-
more xj(τ) denote the set of nodes belonging to S having color Cj and having their bit set
at reference point τ and let finally x(τ) = ∑

j xj(τ).

Proposition 11.4. Assume |S| ≥ n · (1− exp(−8 logn/ log logn)). Let Cj be an arbitrary
but fixed color. With high probability, the number of nodes in S having a bit set for color
Cj after the 2-Choices sub-phase at reference point τbp1 is bounded as follows.

x1(τbp1) ≥ ĉj(τ0)2

n
(1− o(1)) and xi(τbp1) ≤ ĉj(τ0)2

n
(1 + o(1)) + O

(
n1−14/log logn

)
.

Building on the concentration of bits given by Proposition 11.4 at τbp1, the following
proposition bounds the number of nodes of each color after the Bit-Propagation sub-phase
at τbp2. As before, we only characterize those nodes which are part of S.

Proposition 11.5. Assume |S| ≥ n · (1− exp(−8 logn/ log logn)). Let Cj be an arbitrary
but fixed color. With high probability, the number of nodes in S of color Cj after the Bit-
Propagation sub-phase is bounded as follows.

ĉ1(τbp2) ≥ ĉ1(τ0)2

x(τbp1) · (1− o(1)) and ĉj(τbp2) ≤ ĉj(τ0)2

x(τbp1) · (1 + o(1)) + O
(
n1−4/log logn

)
.

In the proof we analyze the Bit-Propagation by the means of the Pólya urn process.
In particular, we show that the fraction of nodes supporting each color Cj remains concen-
trated throughout the Bit-Propagation sub-phase. The proofs can be found in Section 11.5,
Section 11.6, and Section 11.7, respectively.

11.5 Concentration of the Clocks: Proof of Proposition 11.3

In the following we show that throughout the entire process there do not exist nodes which
perform more than O(logn) ticks, with high probability.
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Observation 11.6. For any reference point τ we have that the working time of any node
is bounded by the minimum and maximum real times, that is, for all u ∈ V and τ ∈ N we
have

T ′v(τ) ∈
[
min
u∈V

Tu(τ),max
u∈V

Tu(τ)
]
. (11.1)

Let T denote the total number of time steps until all nodes have completed the execution of
Part 1 of the asynchronous protocol defined in Algorithm 10 w.r.t. their working time. With
high probability, we have

T ≤ 3/2 · κ · ` · n logn . (11.2)

Furthermore, we have with high probability that

max
v∈V
{Tv(T)} < 2 · κ · ` · logn and max

v∈V

{
T ′v(T)

}
< 2 · κ · ` · logn . (11.3)

Proof Sketch. The proof idea is the following. (11.1) follows from the fact that at every tick
the working time and the real time are simultaneously increased by one, and whenever the
working time is set to the median of the sampled real times, which are also incremented
upon each tick, the property also holds. For the proof of (11.2) and (11.3), observe that
according to Algorithm 10 a node completes the execution of the algorithm when T ′v reaches
κ · ` · logn. The proof of (11.2) and (11.3) follows, for κ · ` large enough, from an application
of Chernoff bounds to Tv(T) and union bound over all nodes, where we use (11.1) to show
the second part of (11.3).

We proceed to show thatmost nodes are almost synchronous at carefully chosen reference
points. Intuitively, a huge fraction of nodes has a number of ticks that is concentrated
around the expected value and therefore most nodes will execute instructions which are close
together. We formalize this concept in the following lemma which is based on Definition 11.2.
The lemma establishes in its first part that n ·

(
1− exp

(
−Θ

(
logn/ log2 logn

)))
nodes will

be (∆/6)-close w.r.t. the real time over the course of the algorithm.
In the second statement we consider shorter intervals of the length of a phase and claim

that a much larger number of nodes, to be specific, n · (1− exp(−9 logn/ log logn)) nodes,
will be selected to tick for the same number of times up to an error of ∆/16.

Lemma 11.7. Let ∆ ≥ c∆ logn/ log logn, for some large enough constant c∆. Let τ be a
reference point with τ ≤ c · logn, and let Y (τ) be the random variable for the number of
nodes which are (∆/16)-close to τ w.r.t. Tv. We have

Y (τ) ≥ n ·
(
1− exp

(
−Ω

(
logn/ log2 logn

)))
.

Furthermore, consider an arbitrary interval consisting of t consecutive ticks. Fix a subset
Y ⊆ V and let Y ′ ⊂ Y be the subset of nodes which receive at least t/n−∆/16 ticks and at
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most t/n+ ∆/16 ticks out of the t ticks. We have

|Y ′| ≥ |Y | · (1− exp(−10 logn/ log logn))− Õ(
√
n) .

Proof. Let Ev(τ) be the event that a node v is (∆/16)-close to τ , that is,

Ev(τ) =
[
τ −∆/16 ≤ Tv(τ) ≤ τ + ∆/16

]
.

We apply Chernoff bounds to Tv(t) and obtain

P[ Ev(τ) ] ≥ 1− exp
(
−Ω

( logn
log2 logn

))
, (11.4)

Let in the following Yv(τ) be an indicator random variable for a node v and a reference
point τ defined as

Yv(τ) =

1, if Ev(τ) ,

0, otherwise.

Summing up over all nodes gives us Y (τ) = ∑
v∈V Yv(τ). By linearity of expectation, we

have E[Y (τ) ] ≥ n ·
(
1− exp

(
−Θ

(
logn/(log2 logn)

)))
. Note that the random variables

Tv(τ), and therefore also the random variables Yv(τ), are not independent. We thus consider
the process of uncovering Yv(τ) one node after the other in order to obtain the Doob martin-
gale of Y (τ) as follows. We define the sequence Zj(τ) as Zj(τ) = E[Y (τ)|Tj(τ), . . . , T1(τ) ]
with Z0(τ) = E[Y (τ) ]. We have

E[Zj(τ)|Tj−1(τ), . . . , T1(τ) ] = E[E[Y (τ)|Tj(τ), . . . , T1(τ) ]|Tj−1(τ), . . . , T1(τ) ]

which, applying the tower property, gives us that

E[Zj(τ)|Tj−1(τ), . . . , T1(τ) ] = E[Y (τ)|Tj−1(τ), . . . , T1(τ) ] = Zj−1(τ) .

Therefore Zj(τ) is indeed the Doob martingale of Y (τ).
According to Observation 11.6 each node ticks at most 2c·logn times, that is, |Tj+1(τ)−

Tj(τ)| ≤ 2c · logn. This holds with high probability in the original process P and with
probability 1 in the coupled process P ′. Since at most 2c · logn of the random variables
Yj+1(τ), . . . , Yn(τ) differ, we have

|Zj+1(τ)− Zj(τ)| =
∣∣E[Yn(τ) + · · ·+ Y1(τ)|Tj+1(τ), . . . , T1(τ) ]

− E[Yn(τ) + · · ·+ Y1(τ)|Tj(τ), . . . , T1(τ) ]
∣∣ ≤ 2c · logn .
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Applying the Azuma-Hoeffding bound to Y (τ) = ∑
v∈V Yv(τ) gives us

P
[
|Y (τ)− E[Y (τ) ]| ≥

√
c3 · n · log3 n

]
≤ exp

(
− c3 · n · log3 n

2 ·∑n
j=1(2c · logn)2

)
,

which for sufficiently large c yields |Y (τ)− E[Y (τ) ]| ≤
√
c3 · n · log3 n with high probability.

Observe that
√
c3 · n · log3 n ≤ n · exp

(
−Θ

(
logn/ log2 logn

))
. We finally conclude that,

with high probability, at least n ·
(
1− exp

(
−Θ

(
logn/ log2 logn

)))
nodes are synchronous

up to a deviation of at most ∆ = Θ(logn/ log logn) ticks from the expected number of ticks
at the given reference point τ .

We now turn to the second part of the statement. Recall that ∆ = c∆ logn/ log logn
and c∆ is a large enough constant. Observe that, by definition of our algorithm, T = 10∆.
The proof of the second part follows in a similar way as before. We define an analogous
event E ′v(τ1) for node v to hold, then the number of ticks it receives t/n ± ∆/16 out of t
ticks. We have

P
[
E ′v(τ)

]
≥ 1− exp

(
− 10 logn

log logn

)
.

Observe that this is bound is much stronger than (11.4). Similarly, as before, |Y ′ − E[Y ′ ]| ≤√
c3 · n · log3 n with high probability. Thus,

|Y ′(τ1)| ≥ |Y | · (1− exp(−10 logn/ log logn))−
√
c3 · n · log3 n

yielding the claim.

In the following we show that the median taken will be concentrated around the expected
real time.

Lemma 11.8. The median real-time of a uniform sample of Ω(log2 logn) nodes is (∆/16)-
close with high probability at any reference point τ ≤ κ · ` · logn.

Proof. In this proof we assume for simplicity that the c′′ log2 logn sampled nodes are taken
in one single step. First, we show that the median of the sampled times is close to the
average of all (real) times, with high probability. The median real-time of the sample is no
(∆/16)-close if at least half of the sample contained nodes which were not (∆/16)-close. By
Lemma 11.7, we know that for some constant c > 0 there are with high probability at most

L = n exp
(
−c(logn/ log2 logn

)
)

nodes u which are not (∆/16)-close w.r.t. Tu during any point of the execution of the
algorithm.
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Let G be the set of these bad nodes. Let Z denote the number of samples drawn which
are bad. Thus, by Theorem A.4 with parameters α = 1/2 and p = L/n, we derive

P
[
Z ≥ αc′′ log2 logn/2

]
≤
(
(2p)1/2(2(1− p))1/2

)c′′ log2 logn

≤ 2c′′ log2 logn · (p1/2(1− p))c′′ log2 logn

≤
√
n · (L/n)c′′ log2 logn/2

=
√
n · n−

c·c′′ log2 logn
2 log2 logn

≤ 1/n2,

for large enough c′′.

Proof of Proposition 11.3. For every phase s = O(log logn), let Js be the set of nodes which
are

1. (5∆/16)-close w.r.t. the working time at any reference point τ = s · T and

2. (∆/2)-close w.r.t. the working time at any reference point in [(s− 1) · T, s · T ].

In the following, we show by induction that with high probability

|Js| ≥ n
(
1− T 2 · s · exp(−9 logn/ log logn)

)
.

For s = 0 this holds trivially since |J0| = n. Suppose the claims holds for phase s and
consider phase s+1. We seek to show that the claim holds in the interval [s·T, (s+1)·T ]. Let
τl, τr with τl < τr be an arbitrary pair of reference points with τl ≥ s·T and τr ≤ (s+1)·T .
Let furthermore J ′ ⊂ Js denote the set of nodes which are selected to tick τr − τl ±∆/16
times in any interval [τl, τr]. By Part 2 of Lemma 11.7, we have

|J ′| ≥ |Js|(1− exp(−9 logn/ log logn)) . (11.5)

Let J ′s be the set of nodes which are selected τr − τl ± ∆/16 times to tick in every
interval [τl, τr]. Since there are at most T 2 such intervals, we get by (11.5) that with high
probability

|J ′s| ≥ |Js|
(
1− T 2 · exp(−9 logn/ log logn)

)
.

Let v be an arbitrary but fixed node. Let ϑv be the exact time step at which v jumps
and observe that ϑv is a random variable. Let furthermore τv denote the first reference
point after time step ϑv, that is, τv = dϑv/ne. Consider the number of times v is selected to
tick in the interval of time steps [ϑv, τv ·n]. By a standard balls-into-bins argument [RS98],
we can argue that with high probability

|T (τv)− T (ϑv/n)| ≤ ∆/16 . (11.6)
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Let τ ′ be any reference point in [τv, (s + 1) · T ]. Since the working time increases
afterwards whenever v is selected to tick, we have

T ′v(τ ′)− T ′v(ϑv/n) = Tv(τ ′)− Tv(ϑv/n) . (11.7)

We now show that every node v ∈ J ′s jumps exactly once. Recall that τjump is the
instruction at which every node executes the jump step. That is, if any nodes has a working
time of s · T + τjump, then that node jumps We claim that every node v ∈ J ′s must have
jumped prior to (s + 1) · T , that is, we have τv ≤ (s + 1) · T . To see this, assume that v
didn’t jump. By (11.7),

T ′v((s+ 1) · T ) = Tv((s+ 1) · T )− Tv(s · T ) + T ′v(s · T )

≥ (s+ 1) · T − s · T −∆/16 + T ′v(s · T )

≥ (s+ 1) · T − s · T −∆/16 + s · T − 5∆/16

> (s+ 1) · T −∆/2 ≥ s · T + τjump ,

where the first inequality follows from the definition of J ′s and the second inequality follows
from the induction hypothesis. The the above inequality implies that v must have executed
the jump instruction and thus must have jumped.

Symmetrically, we claim that every node v ∈ J ′s will jump at most once per phase
with high probability. It suffices to show that no node of J ′s jumps before reference point
τ ′ := τm2 + ∆/2, since, informally speaking, at reference point τ ′ all nodes of J ′s will have
a real time exceeding τm2 (similarly as before, this can be shown using the definition of J ′s
and the induction hypothesis). Thus, by Lemma 11.8 and the due to the immense size of
J ′s, node v will set its working time to the median of sampled real times which will be larger
than τm2. Node v will not execute the jump instruction again in this phase. To show this
claim we need to show that T ′v(τ ′) < s · T + τjump, which is true since (11.7),

T ′v(τ ′) = Tv(τ ′)− Tv(s · T ) + T ′v(s · T )

≤ τm2 + ∆/2 + ∆/16 + T ′v(s · T )

≤ τm2 + ∆/2 + ∆/16 + s · T − 5∆/16

≤ (s+ 1) · T −∆/2 = s · T + τjump ,

where the first inequality follows from the definition of J ′s and the second inequality follows
from the induction hypothesis. Thus, v jumped at most once. We therefore conclude that
every node v ∈ J ′s jumps exactly once.

We will now argue the following. For every v ∈ J ′s chooses with high probability

|T ′v(ϑv/n)− ϑv/n| ≤ 2∆/16 + 1 . (11.8)
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To see this, first observe that, by Lemma 11.8, the median taken from log3 logn samples
of the real time is (∆/6)-close. Second, we need to account for the fact that median is not
taken directly, but rather over time. If all samples were taken directly before jumping, then
the median would indeed be (∆/6)-close. However, since v ∈ J ′s, it holds that the value of
any sample is (∆/6)-close w.r.t. the value it would have if it were sampled directly before
v jumps. Accounting for all errors, using triangle inequality and that τu = dϑv/ne, (11.8)
follows.

We proceed by showing that after v ∈ J ′s jumps its working-time well-concentrated, that
is,

|T ′v(τ ′)− τ ′| ≤ 5∆/16 , (11.9)

for any reference point τ ′ in [τv, (s+ 1) · T ]. We have

T ′v(τ ′)
(11.7)= T ′v(ϑv/n) + Tv(τ ′)− Tv(ϑv/n)
(11.8)
≤ ϑv/n+ 2∆/16 + 1 + Tv(τ ′)− Tv(ϑv/n)

(11.6)
≤ ϑv/n+ 2∆/16 + 1 + Tv(τ ′)− Tv(τv) + ∆/16

def. J ′s
≤ ϑv/n+ 2∆/16 + 1 + ((τ ′ − τv) + ∆/16) + ∆/16

def. τv
≤ τv + 1 + 2∆/16 + 1 + ((τ ′ − τv) + ∆/16) + ∆/16

≤ τ ′ + 5∆/16,

Symmetrically, we have

T ′v(τ ′)
(11.7)= T ′v(ϑv/n) + Tv(τ ′)− Tv(ϑv/n)
(11.8)
≥ ϑv/n− 2∆/16− 1 + Tv(τ ′)− Tv(ϑv/n)

(11.6)
≥ ϑv/n− 2∆/16− 1 + Tv(τ ′)− Tv(τv)−∆/16

def. J ′s
≥ ϑv/n− 2∆/16− 1 + ((τ ′ − τv) + ∆/16)−∆/16

def. τv
≥ τv − 1− 2∆/16− 1 + ((τ ′ − τv) + ∆/16)−∆/16

≥ τ ′ − 5∆/16 ,

This shows (11.9). Define Js+1 = J ′s. This shows that v ∈ Js+1 is (5∆/16)-close at
(s+ 1) · T . Furthermore, at reference point s · T , v was, by induction hypothesis, (5∆/16)-
close and, since Js+1 = J ′s, at every reference point τ before u jumped we can derive
|T ′v(τ) − τ | ≤ 5∆/16 + ∆/16 ≤ ∆/2. Furthermore, (11.9) implies that v was also (∆/2)-
close after jumping and thus v was ∆/2 at each reference point in [s · T, (s+ 1) · T ].

174



We now show that |Js+1| is large enough. Using the induction hypothesis, we have

|Js+1| = |J ′s| ≥ |Js|
(
1− T 2 · exp(−9 logn/ log logn)

)
≥ n

(
1− sT 2 · exp(−9 logn/ log logn)

)(
1− T 2 · exp(−9 logn/ log logn)

)
≥ n

(
1− (s+ 1)T 2 · exp(−9 logn/ log logn)

)
.

This finishes the induction step. Finally, observe that for any s = O(log logn) we have

n ·
(
1− s · T 2 · exp(−9 logn/ log logn)

)
≥ n(1− exp(−8 logn/ log logn)) .

11.6 Analysis of the 2-Choices sub-phase: Proof of Proposi-
tion 11.4

Proof of Proposition 11.4. Recall that S is the set of nodes v that are (∆/2)-close w.r.t.
T ′(v) throughout the entire process. By Proposition 11.3, |S| ≥ n − E , with E ≤ n ·
exp(−8 logn/ log logn)) = n1−8/log logn. When a node of S samples two nodes, then by
definition the working time of all nodes of S is larger than τ0 and smaller than τset. Let u
be a node of S. Then, u samples at two nodes (that is, when its working time is τtc), then
its probability of sampling two nodes of color Cj with probability at least (ĉj(τ0)/n)2 and
at most ((ĉj(τ0) + E)/n)2.

By Chernoff bounds,

x1(τbp1) ≥ |S| · (ĉj(τ0)/n)2 −
√
n logn ≥ ĉj(τ0)2

n
(1− o(1)),

where we used the fact that all nodes of S must have executed the instruction at τset at
reference point τbp1.

We now distinguish between two cases. If ĉj(τ0) ≤ n1−7/log logn we have, ĉj(τ0) + E =
O
(
n1−7/log logn

)
. Thus, by Chernoff bounds, with high probability

xj(τbp1) ≤ n · ((ĉj(τ0) + E)/n)2 +
√
n logn = O

(
n1−14/log logn

)
.

Otherwise, ĉj(τbp1) > n1−7/log logn and we have ĉj(τ0) + E = ĉj(τ0)(1 + o(1)). Thus, by
Chernoff bounds, we obtain with high probability that

xj(τbp1) ≤ n · ((ĉj(τ0) + E)/n)2 = ĉj(τ0)2/n · (1 + o(1)).

This finishes the proof.

175



11.7 Analysis of the Bit-Propagation Sub-Phase: Proof of
Proposition 11.5

We now focus on the analysis of the Bit-Propagation sub-phase. Similar to the analysis
of the synchronous case, we first analyze the number of bits which are set during the
Bit-Propagation sub-phase without taking their color into consideration. The following
lemma is based on the observation that the Bit-Propagation can be modeled by a simple
asynchronous randomized-gossip-based information dissemination process.

Lemma 11.9. Consider an arbitrary but fixed phase and let x(τ) be the number of nodes
in S which have a bit set at reference point τ in that phase. Assume that |S| ≥ n ·
(1− exp(−8 logn/ log logn)) and that x(τbp1) ≥ n/(2k). Then we have x(τbp2) = |S| with
high probability.

Proof. We split the proof into three parts, in each of which we will rely on the fact that at
each reference point the nodes of S are (∆/2)-close. We argue that with high probability
(i) x(τ ′2) ≥ n/2, (ii) x(τ4) ≥ |S| ·

(
1− n−2/ log logn

)
, and (iii) x(τbp2) = |S|.

Part (i). To show the first part, we first consider a sequence of ∆ periods from τ ′1 to τ ′2.
Recall that each period consists of n consecutive time steps. We will show by induction
over i ∈ [τ ′1, τ ′2) that

x(i) ≥ min
{
n

2 ,
n

2k ·
(

1 + 1
5

)i}
.

Let i be an arbitrary but fixed period in [τ ′1, τ ′2) and assume that x(i− 1) < n/2. Note
that by definition of S at any reference point τ ∈ [τ ′1, τ ′2] all nodes of S are in [τ1, τ3]. Let
H(i) ⊆ S be the set of nodes in S which did not have their bit set after period i − 1. By
assumption, |H(i)| ≥ |S|−n/2 = n/2 · (1− o(1)). Let furthermore A(i) be the set of active
nodes which tick in period i at least once. By a standard balls-into-bins arguments [RS98],
we have that |A(i)| has size at least n/2 with high probability. Observe that each node is
equally likely to tick, independently of whether the bit is set or not. Therefore, A(i) and
H(i) are independent, and any node in H(i) ticks at least once with probability at least
n/2, independently. Hence, |A(i)∩H(i)| ≥ n/4 · (1− o(1)) with high probability, where the
concentration follows from Chernoff bounds.

For a node v ∈ A(i)∩H(i) in period i, we define Xv to be the indicator random variable
for the event that v sets the bit. Note that all Xv are independent and P[Xv = 1 ] ≥
x(i−1)/n. Let X = ∑

Xi. By Chernoff bounds, X ≥ |A(i)∩H(i)| ·x(i−1)/n · (1− o(1)) ≥
x(i− 1)/5 with high probability. We therefore get that with high probability

x(i) ≥ x(i− 1) +X ≥ x(i− 1)
(

1 + 1
5

) IH
≥ n

2k ·
(

1 + 1
5

)i
,
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which completes the induction. We now obtain, using τ ′2 − τ ′1 ≥ 4 log k, that

x(τ ′2) ≥ n

2k

(
1 + 1

5

)τ ′2−τ ′1
≥ n

2k · k = n/2 .

This completes the proof of Part (i).

Part (ii). Let H(τ ′2) ⊆ S be the set of nodes in S which do not have a bit set at reference
point τ ′2. We consider an arbitrary but fixed node v ∈ H(τ ′2) at reference point τ4. Since v
is in S and thus (∆/2)-close at both, τ ′2 and τ4, we observe that it ticked at least τ4 − τ ′2 −
2 ·∆/2 = ∆/2 times between time steps τ ′2 · n and τ4 · n corresponding to these reference
points. The probability that the node v never sampled a node with the bit set is thus at
most 2−∆/2. Hence, by using independence and Chernoff bounds, the number of nodes
remaining in H(τ4) is, for ∆ large enough, at most |S| · n−2/ log logn with high probability.

Part (iii). As before, let H(τ4) ⊆ S be the set of nodes in S which do not have a
bit set at reference point τ4. We again consider an arbitrary but fixed node v ∈ H(τ4).
Since v is in S and thus (∆/2)-close at both, τ4 and τbp2, we observe that it performed
at least τ5 − τ ′4 = ∆/2 Bit-Propagation ticks. The probability that v samples in one of
these ticks a node in S without the bit set or that v samples a node not in S is at most
n−2/ log logn + n−8/ log logn ≤ n−1/ log logn. Therefore, the probability that this node never
obtains the bit is at most

(
n−1/ log logn

)∆/2
≤ n−ω(1). From union bound we derive that all

nodes in S therefore have the bit set at reference point τbp2.

In the following we analyze the individual colors during the Bit-Propagation sub-phase.
Our main observation is that the Bit-Propagation process can be modeled by so-called Pólya
urns [JK77]. In this model, we are given an urn containing marbles of two colors, black and
white. In every step, one marble is drawn uniformly at random from the urn. Its color is
observed, the marble is returned to the urn and one more marble of the same color is added.
For any color, the ratio of marbles with that given color over the total number of marbles is
a martingale. We will use this urn process to model the Bit-Propagation sub-phase, which
then can be analyzed by means of martingale techniques. Formally, the Pólya urn process
is defined as follows.

Definition 11.10 (Pólya Urn Process). Let Pólya(α1, α2) with α1, α2 ∈ Z+
0 be the following

urn process. At the beginning there are α1 black marbles and α2 white marbles in the
urn. The process runs in multiple steps where α1(i) and α2(i) denote the number of black
and white marbles in the urn, respectively, for every time step i. In every time step i, a
black marble is added with probability α1(i)/(α1(i) + α2(i)), and with remaining probability
α2(i)/(α1(i) + α2(i)) a white marble is added.
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We now use this urn model to show our main result for the Bit-Propagation sub-phase,
Proposition 11.5. We start by performing a worst-case analysis for color 1 in order to give
a lower bound on the number of nodes of color 1 after the Bit-Propagation sub-phase.
Similarly, we will upper bound any large color Cj . Then we will show that after each phase
the gap between color 1 and Cj grows quadratically. We will use bounds resulting from
Proposition 11.4 for the numbers of nodes with bits and their color distribution among S.
For the worst-case analysis, we will assume that any node which is not in S has color Cj
and its bit set. We now give the formal proof.

Proof of Proposition 11.5. We consider an arbitrary but fixed Bit-Propagation sub-phase
which we model by Pólya(α1, α2) as follows. Initially, we place for each node in S of color 1
which has its bit set at reference point τbp1 a black marble in the urn, that is, α1 = x1(τbp1).
Additionally, we add for each node in S which has its bit set for any color Cj 6= C1 a white
marble in the urn. Finally, in order to perform a worst-case analysis, we add a white marble
for any node which is not in S, that is, we add an additional number of |V \S| white marbles.
We therefore have α1 +α2 = x(τbp1)+ |V \S|. We now consider only those time steps of the
Bit-Propagation sub-phase, where a node in S without bit samples another node with bit.
We couple these very steps with the Pólya urn process, where we assume that a marble is
added based on the adopted color in the Bit-Propagation process, that is, if a node newly
adopts a bit for color 1, we add a black marble, and if otherwise a node adopts a bit for
color Cj 6= C1, we add a white marble. For the worst-case analysis we assume in the Bit-
Propagation process that all nodes in V \ S have a bit set for a color Cj 6= C1 throughout
the entire process. This corresponds to the additional |V \ S| white marbles initially added
to the urn.

As before, we will use the notation that x(τ) denotes the number of nodes in S which
have a bit set at reference point τ and xj(τ) denotes the number of nodes in S of color Cj
which have a bit set at reference point τ . Let M be a lower bound on x(τbp1), the number
of bits set at the beginning of the Bit-Propagation sub-phase, and recall that according to
the proof of Proposition 11.4 we have with high probability

M ≥ n/(2k) . (11.10)

We now consider the Pólya urn process. Let F (i) be the fraction of black marbles in step
i of the Pólya urn process. As mentioned before, this fraction of black marbles in the Pólya
urn process is a martingale. Observe furthermore that |F (i)−F (i− 1)| ≤ 1/M throughout
the entire urn process. Let I be the last step of the Pólya urn process and observe that
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I ≤ n. Applying Azuma’s inequality to F (i) for any i ≤ I gives us

P[ |F (i)− F (1)| ≥ δ ] ≤ 2 · exp
(
− δ2

2 ·∑i
j=1 1/M2

)

≤ 2 · exp
(
−δ

2 ·M2

2 · i

)
.

We set δ = 4 · k ·
√

logn/n and obtain using (11.10)

P
[
|F (i)− F (1)| ≥ 4 · k ·

√
logn/n

]
≤ 2 · exp

(
−2 · k2 ·M2 · logn

n · i

)
≤ 2 · exp(−2 · logn) , (11.11)

where we used that x(τbp1) ≥ n/(2k) with high probability.
From the calculation above we see that with high probability the fraction of black

marbles in the urn remains concentrated around the initial value. To derive a lower bound
on the absolute number of black marbles at the end of the process we first bound F (1). By
Proposition 11.3, we have |V \ S| ≤ n1−8/ log logn and thus

F (1) ≥ x1(τbp1)
x(τbp1) + |V \ S| ≥

x1(τbp1)
x(τbp1) + n1−8/ log logn = x1(τbp1)

x(τbp1) · (1− o(1)) (11.12)

Using (11.11), we get for the end of the Bit-Propagation sub-phase that at reference point
τbp2 with high probability

F (I) ≥ F (1)− 4 · k ·
√

logn/n = x1(τbp1)
x(τbp1) · (1− o(1))− 4 · n1/ log logn

√
logn/n

= x1(τbp1)
x(τbp1) · (1− o(1)) ,

where we used that x1(τbp1) ≥ n/(2k2) ≥ n1−3/ log logn with high probability and x(τbp) ≤ n.
Hence,

x1(τbp2) ≥ x(τbp2)x1(τbp1)
x(τbp1) · (1− o(1)) (11.13)

It remains to establish an upper bound on xj(τbp2) for every other large color Cj 6= C1. We
will use a symmetric argument. Let Cj 6= A be an arbitrary but fixed color and let F ′(i) be
the fraction of black marbles in another Pólya urn process which we use to bound the size of
color Cj . As before, we use the black marbles to represent Cj , the color under investigation,
and the white marbles to represent all other colors Ci 6= Cj . For the worst-case analysis,
we again assume that all nodes of V \ S have their bit set for color Cj . We apply a similar
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computation as before and observe, now for color Cj , that

F ′(1) ≤ xj(τbp1) + |V \ S|
x(τbp1) + |V \ S| ≤

xj(τbp1) + |V \ S|
x(τbp1)

≤ xj(τbp1) + n1−8/ log logn

x(τbp1)

≤ xj(τbp1)
x(τbp1) + n1−8/ log logn

n1−3/ log logn

≤ xj(τbp1)
x(τbp1) + n−5/ log logn .

Again using (11.11), we get with high probability

F ′(I) ≤ F ′(1) + 4 · k ·
√

logn/n = x1(τbp1)
x(τbp1) + n−5/ log logn + n−1/3

≤ x1(τbp1)
x(τbp1) + 2n−5/ log logn .

Thus, using that x(τbp2)/x(τbp2) ≤ 2k with high probability we get

xj(τbp2) ≤ x(τbp2) · xj(τbp1)
x(τbp1) + 2n−1/ log logn · 2n−5/ log logn

= x(τbp2) · xj(τbp1)
x(τbp1) + 4n−5/ log logn .

Furthermore, from the calculation above and (11.13) we obtain for all Cj that with high
probability

xj(τbp2) = xj(τbp1) · x(τbp2)
x(τbp1) · (1± o(1)) + O

(
n−5/log logn

)
.

By Proposition 11.4, we have that with high probability

xj(τbp1) = ĉj(τset)2

n
(1± o(1)) + O

(
n1−5/log logn

)
.

Moreover, by Lemma 11.9 and Definition 11.2, we have

x(τbp2) ∈ [n · (1− o(1)), n] .

Putting everything together, we derive that with high probability

xj(τbp2) = ĉj(τ0)2

x(τbp1)(1± o(1)) + O
(
n1−4/log logn

)
.
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Algorithm 11: Part 2 of the asynchronous pro-
tocol to solve plurality consensus. At ticks in
[τend0, τend1], the nodes do not perform any action.
Algorithm asynchronous(node v) (Part 2)

if τend1 ≤ workingtime(v) ≤ τend4 then
let u1, u2 ∈ N(v) uniformly at
random;
if color(u1) = color(u2) then

color(v)← color(u1);

workingtime(v)← workingtime(v) + 1;

Part 1

Θ(logn) ticks

Part 2

Θ(logn) ticks

` · log logn phases

T T T T T T
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Figure 3: graphical representation of the
asynchronous protocol, showing Part 1 (Algo-
rithm 10) and Part 2 (Algorithm 11)

11.8 The Endgame: Taking a from (1− εPart1) · n to n

In this section we analyze Part 2 of the asynchronous algorithm defined in Algorithm 11.
As we will argue in the proof of Theorem 11.1, we assume at for Part 2 that at τend1 we
have with high probability c1 ≥ (1 − εPart1) · n, where εPart1 is a small constant. Observe
that Part 2 is executed after Part 1 defined in Algorithm 10. Therefore, τend0 = κ · ` · logn.
We define the following reference points for Part 2.

τ ′end0 = 3/2 · τend0 τend1 = 2 · τend0 τend2 = 3 · τend0 τend3 = 4 · τend0 τend4 = 5 · τend0

Observe that according to the definition of Part 2 given in Algorithm 11 we only consider
the working time (and not the real time). As Observation 11.6 Part 1 suggests, the working
times of the nodes are sandwiched by the real time of the nodes and thus if we bound the
real times of nodes, we get bounds on the working times as well.

From Observation 11.6 we obtain that all nodes have finished Part 1 at time step T after
at most T ≤ 3/2 · κ · ` · logn = τ ′end0 ticks w.r.t. the working time. Furthermore, also due
to Observation 11.6, we have that no node has yet reached τend1 w.r.t. the working time at
time step T. Therefore, we conclude that all nodes have completed Part 1 before any node
starts the two choices process of Part 2 at reference point τend1. More precisely, all nodes
are with high probability in [τend0, τend1] before the first node passes τend1.

Since the real times are sandwiched, we get from Chernoff bounds that when the first
node reaches τend2, all nodes are with high probability in [τend1, τend2] w.r.t. the real time.
We assume that nodes which are in [τend0, τend4 ] respond, when queried, with the color
they last set, possibly in Part 1 of the algorithm.

The remainder of this section is structured as follows. In Lemma 11.11 we give a lower
bound on the size of C1 throughout the execution of Algorithm 9. This lower bound on C1

allows us to show that the number of nodes having any other color Cj 6= C1 decreases quickly
in expectation. This expected drop lets us apply a standard drift theorem, Theorem A.12,
to obtain a bound on the required time until C1 prevails and all other colors vanish. Finally,
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this will allow us to show that with high probability all nodes have set their color to C1 by
the end of the the asynchronous algorithm at τend4.

For the next two lemmas, we will use the following notation. Consider an arbitrary but
fixed time step t. Let at and bt be the number of nodes of color 1 and B at time step t,
respectively.

Lemma 11.11. Assume that all nodes have a working time in [τend0, τend4] during the time
steps in [n · τ ′end0, n · τend3]. Assume furthermore that at time step t = n · τ ′end0 we have
at ≥ 19n/20. Then for any later tick t′ in [n · τ ′end0, n · τend4] we have at′ ≥ 4n/5, with high
probability.

Proof. To show the claim, we split Part 2 of the asynchronous algorithm into phases of n/100
consecutive time steps each. Based on these phases, we show the claim by an induction
over every phase i ∈ [100 · τ ′end0, 100 · τend4]. By induction, we will show that we have with
high probability at time step ti = i · 100 · n

ati ≥ 17n/20− i ·
√
n · logn .

Let now i be an arbitrary but fixed phase. We distinguish two cases.

Case 1: ati ≥ 18n/20. In this case the induction step holds trivially, since in the worst-
case ati+1 ≥ ati − (ti+1 − ti) = 18n/20− n/100 > 17n/20.

Case 2: ati ≤ 18n/20. Observe that we have, by induction hypothesis, that for every
t ∈ [ti, ti+1] that at ≥ 17n/20 − i ·

√
n · logn − n/100 ≥ 16.5n/20. Furthermore, by

assumption of the lemma we have at ≥ 19n/20 at time step t = n · τ ′end0. We conclude that
there are at least n/20 nodes that have already passed τend2 and changed their color away
from C1. However, by assumption of the lemma, these nodes have not yet passed τend4.
These nodes can thus switch to C1 if they are selected to tick and choose two nodes of color
1.

We define the random variable Xt as 1 when a node of color Cj 6= C1 is selected to tick
and changes its color to C1 and as −1 if a node of color C1 is selected to tick and changes
its color to any other color Cj 6= C1. If neither of these cases apply, we define Xt to be
zero. Observe, that the probability for Xt to be negative is maximized when bt = n − at.
Therefore, we have

Xt =


1 with probability at least 1/20 · (16.5n/20)2/n2 = 272.25/203

−1 with probability at most 19/20 · (3.5n/20)2/n2 = 232.75/203

0 otherwise.
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We now define Yt as Yt = ∑
k≤tXk and show that Yt is a sub-martingale.

E[Yt|Yt−1, . . . , Y1 ] = Yt−1 + E[Xt|Yt−1, . . . , Y1 ]

≥ Yt−1 − 19/20 · (3.5n/20)2/n2 + 1/20 · (16.5n/20)2/n2

≥ Yt−1 .

Since |Yt − Yt−1| ≤ 1, applying the Azuma-Hoeffding bound to Yt gives us

P
[
Yti+1 − Yti ≥ −

√
n · logn

]
≤ exp

(
−n · log2 n

2 · n/100

)
,

which yields that the induction steps hold with high probability. This completes the proof.

In the following (Lemma 11.12) we make use of multiplicative drift theorem (Theo-
rem A.12 in Appendice A) which will allow us to derive a bound on the number of required
periods until all nodes agree on one opinion.

Lemma 11.12. Assume that all nodes have a working time in [τend1, τend4] during the
time steps in [n · τend2, n · τend3]. Furthermore assume that at ≥ 4n/5 for any time step
t ∈ [n · τend2, n · τend3]. Then at reference point τend3 all nodes have opinion C1 with high
probability, that is, aτend3 = n.

Proof. W.l.o.g. let bt = n− at. We have

E[ bt+1 − bt|Ft ] = (+1)at
n
· b

2
t

n2 + (−1)bt
n

a2
t

n2

= at · bt(bt − at)
n3 ≤ at · bt · (−3/5)n

n3 ≤ −4/5n · bt · 3/5n
n3

= −12 · bt
25n .

Let δ = 12/(25n) and define Φ(xt) = bt. Note that Φ(xmax) ≤ n and at any time step t

we have E[ Φ(xt+1)|Φ(xt) ] ≤ (1− δ)Φ(xt). Let T be the first point in time where all nodes
agree on color 1, that is, T = min{t ≥ 0: Φ(xt) = 0}. We derive from Theorem A.12 with
parameters δ and k = 5 logn that P[ T ≥ 20/δ · lnn ] ≤ n−5, where we used the Taylor
series approximation for log(1− δ). Since τend3 − τend2 ≥ 20/δ lnn, the claim follows.

11.9 Putting Everything Together: Proof of Theorem 11.1

We use Proposition 11.5 (which builds on Proposition 11.4) and Lemma 11.12 to show
Theorem 11.1, which is restated as follows.
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Theorem 11.1. Consider the asynchronous model. Let G = Kn be the complete graph
with n nodes. Let k = O(exp(logn/ log logn)) be the number of opinions. Let εbias > 0 be a
constant. Assume c1 ≥ (1 + εbias) ·ci for all i ≥ 2, then the asynchronous plurality consensus
process defined in Section 11.2 on G converges within time Θ(logn) to the majority opinion
C1, with high probability.

Proof. By Proposition 11.5 we have

xj(τbp2) = ĉj(τ0)2

x(τbp1) · (1± o(1)) + O
(
n1−4/log logn

)
.

Observe that due to the definition of xj and S, we have xj(τt) = xj(τbp2). Furthermore,
note that ĉ1(τ0) ≥ n/k ≥ n1−1/ log logn and hence

ĉ1(τ0)2

x(τbp1) ≥ n
1−2/ log logn = ω

(
n1−4/log logn

)
Let a′ := ĉ1(τ0 + T ) the nodes of color 1 belonging to S at the the beginning of the
next round. Define b′ analogously for color B. We consider the ratio between and show a
quadratic growth w.r.t. ĉ1(τ0)2/ĉ2(τ0 + T )2. We derive

a′

b′
≥

ĉ1(τ0)2

x(τbp1) · (1− o(1))
ĉ2(τ0)2

x(τtc) ·
(
1 + o(1)) + O

(
n1−4/log logn)) ≥ ĉ1(τ0)2

ĉ2(τ0)2 · (1− o(1)).

Hence, for sufficiently large constant `, we have after ` · log logn phases

ĉ1 ≥ 19n/20 . (11.14)

As mentioned before (see Observation 11.6), using Chernoff bounds, we can show that
with high probability:

1. All nodes have a working time in [τend0, τend1) at reference point τ ′end0. This implies
that no node starts with two choices phase before all nodes finished Part 1 (Algo-
rithm 10).

2. All nodes have a working time in [τend0, τend4] during the reference points in
[τ ′end0, τend3]. This together with above statement and (11.14) are the assumptions of
Lemma 11.11.

3. All nodes have a working time in [τend1, τend4] during the reference points in
[τend2, τend3]. This is the assumption required by Lemma 11.12.

Thus, by Lemma 11.11 and Lemma 11.12, with high probability all nodes agree on C1

at τend3. Clearly, no node can change to any other color afterwards and, by Chernoff
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bounds, after additional Θ(logn) periods all nodes will have completed the execution of
Algorithm 11. Thus the total run time is Θ(logn).

11.10 Increasing the Number of Opinions

In our proofs we considered the setting k ≤ exp(logn/ log logn).
However, it is possible to allow for any k = O(nε) (we still require that a ≥ (1 + ε)b).

This requires the algorithm to have a bound on k so that the length of block ∆ is adapted
to ∆ = Θ(log k + logn/ log logn). This is sufficient to get an equivalent notion of weak
synchronicity. Due to the quadratic doubling, the algorithm requires O(log logn) phases.
The length of the second part of the algorithm remains untouched resulting in a run time
of O(log k · log logn+ logn).

11.11 Conclusions and Further Work

We introduced an algorithm to solve the plurality consensus in the asynchronous setting.
Our algorithm achieves the best the possible asymptotic run time in the setting where
the number of opinions k is bounded by exp(logn/ log logn). It remains an open question
whether there exists an algorithm with the same run time allowing for k = O(nε) opinions;
we note that even in the synchronous setting this questions is open.

We believe that the concept of weak synchronicity (including the Sync Gadget and the
tactical waiting) as well as our analysis techniques may well prove to be of independent
interest.

We showed our main result assuming independent Poisson clocks with parameter 1.
However, our techniques should carry over to a much more general setting where the nodes’
clocks follow distributions satisfying the following properties: in Θ(logn/ log logn) periods
n− n/eO(logn/ log logn) nodes tick Θ(logn/ log logn) times with high probability; a message
is spread to n−n/eO(logn/ log logn) nodes within Θ(logn/ log logn) periods; at each (global)
time t at least n− n/eΩ(logn/ log2 logn) nodes ticked t± O(logn/ log logn) many times; and
the two-choice protocol converges within O(logn) steps if the majority opinion is supported
by 19/20 of the nodes. We believe we may also be able to relax the assumption that the
nodes’ clocks tick independently.

Moreover, we assumed that once a node contacts another node, it receives that node’s
response without any delay. This assumption, however, might be unrealistic in real networks
(or other models of asynchronicity). We may address this issue by extending our model to
allow for response delays following some exponential distribution with constant parameter
(which need not be 1, but must be independent of n).
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Finally, we feel that the ideas presented here may be applicable to the adaptation of
synchronous protocols to asynchronous settings for a much wider class of problems, perhaps
even eventually leading to a generic framework.
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Chapter 12

Consensus via Load Balancing
[BFK+16b]

In this chapter we consider plurality consensus on arbitrary connected and undirected graphs
and a wide range of communication modes: From anything between simple sequential com-
munication with a single neighbor (often used in biological settings as a simple variant of
asynchronous communication [AR07]) to fully parallel communication where all nodes com-
municate with all their neighbors simultaneously (e.g. broadcasting models in distributed
computing). This diversity turns out to be a major obstacle for algorithm design, since
protocols (and their analysis) to a large degree depend upon the employed communication
mechanism.

We present two simple protocols for the plurality consensus problem called Shuffle
and Balance. Both protocols work in a very general discrete-time communication model.
The communication partners are determined by a (possibly randomized) sequence (Mt)t≥0

of communication matrices, where we assume1 N to be some suitably large polynomial in
n. That is, nodes u and v can communicate in round t if and only if Mt[u, v] = 1. In that
case, we call the edge {u, v } active (see [AKL08, SS12] for related graph models). Our
results allow for a wide class of communication patterns (which can even vary over time)
as long as the communication matrices have certain “mixing” properties (cf. Section 12.3).

In fact, load balancing is the source of inspiration for our protocols. Initially, each node
creates a suitably chosen number of tokens labeled with its own opinion. Our Balance
protocol then performs discrete load balancing on these tokens, allowing each node to get an
estimate on the total number of tokens for each opinion. The Shuffle protocol keeps the
number of tokens on every node fixed, but shuffles tokens between communication partners.
By keeping track of how many tokens of their own opinion (label) were exchanged in total,

1For simplicity and without loss of generality; our protocols run in polynomial time in all considered
models.
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nodes gain an estimate on the total (global) number of such tokens. Together with a simple
broadcast routine, all nodes can determine the plurality opinion.

The running time of our protocols is the smallest time t where all nodes have stabilized
on the plurality opinion. That is, all nodes have determined the plurality opinion and will
not change. This time depends on the network G, the communication pattern (Mt)t≥0, and
the initial bias towards the plurality opinion (cf. Section 12.3). For both protocols we show
a strong correlation between their running time, the mixing time of certain random walks,
both of which are used in the analysis of recent load balancing results [SS12].

To give some more concrete examples of our results, let T := O(logn/(1− λ2)), where
1 − λ2 is the spectral gap of G. If the bias is sufficiently high, then both our protocols
Shuffle and Balance determine the plurality opinion in time

• n · T in the sequential model (only one pair of nodes communicates per time step);

• d · T in the balancing circuit model (communication partners are chosen according to
d (deterministic) perfect matchings in a round-robin fashion); and

• T in the diffusion model (all nodes communicate with all their neighbors at once).

To the best of our knowledge, these match the best known bounds in the corresponding
models. For an arbitrary bias (in particular, arbitrarily small bias), the protocols differ in
their time and space requirements. More details of our results can be found in Section 12.1.

12.1 Results

We introduce two protocols for plurality consensus, called Shuffle and Balance. Both
solve plurality consensus under a diverse set of (randomized or adversarial) communication
patterns in arbitrary graphs for any positive bias. We continue with a detailed description
of our results.

Shuffle. Our main result is the Shuffle protocol. In the first time step each node
generates γ tokens labeled with its initial opinion. During round t, any pair of nodes
connected by an active edge (as specified by the communication pattern (Mt)t≤N ) exchanges
tokens. We show that Shuffle solves plurality consensus and allows for a trade-off between
running time and memory.

More exactly, let the number of tokens be γ = O
(
logn/(α2 · T )

)
, where T is a parame-

ter to control the trade-off between memory and running time2. Moreover, let tmix be such
that any time interval [t, t + tmix] is ε-smoothing3 (cf. Section 12.3). Given knowledge of

2The protocol works for any integral choice of γ (this fixes the trade-off parameter T ).
3Intuitively, this means that the communication pattern has good load balancing properties during any

time window of length tmix. This coincides with the worst-case mixing time of a lazy random walk on active
edges.

188



the maximum number degree dmax and the mixing time tmix of the underlying communica-
tion pattern4, Shuffle lets all nodes agree on the plurality opinion in O(T · tmix) rounds
(w.h.p.), using O

(
logn/(α2T ) · log k + log(T · tmix)

)
memory bits per node.

This implies, for example, that plurality consensus on expanders in the sequential model
is achieved in O(T · n logn) time steps and with O(logn · log k/T + log(Tn)) memory bits
(assuming a constant initial bias). For arbitrary graphs, arbitrary bias, and many natural
communication patterns (e.g., communicating with all neighbors in every round or commu-
nicating via random matchings), the time for plurality consensus is closely related to the
spectral gap of the underlying communication network (cf. Corollary 12.2).

Balance. The previous protocol, Shuffle, allows for a nice trade-off between running
time and memory. If the number of opinions is relatively small, our much simpler Balance
protocol gives better results.

In Balance, each node u maintains a k-dimensional load vector. Where j denotes u’s
initial opinion, the j-th dimension of this load vector is initialized with γ ∈ N (a sufficiently
large value) and any other dimension is initialized with zero. In each time step, all nodes
perform a simple, discrete load balancing on each dimension of these load vectors. Our
results imply, for example, that plurality consensus on expanders in the sequential model
is achieved in only O(n · logn) time steps with O(k) memory bits per node (assuming a
constant initial bias).

Balance can be thought of as a (slightly simplified) version of [AGV15] or [KDG03]
that generalizes naturally to k ≥ 2 and arbitrary (even dynamic) graphs. In the setting
of [AGV15] (but as opposed to [AGV15] for arbitrary k), it achieves plurality consensus
with probability 1 − o(1) in parallel time O(logn) and uses O(k · log(1/α)) = O(k · logn)
bits per node (Corollary 12.10), an improvement by a log(n) factor.

12.2 Approach and Technical Contributions

While our protocol Shuffle is relatively simple, the analysis is quite involved. The idea is
to observe that after tmix time steps, each single token is on any node with (roughly) the
same probability; the difficulty is that token movements are not independent. The main
ingredients for our analysis are Lemma 12.5 and Lemma 12.6, which generalize a result by
Sauerwald and Sun [SS12] (we believe that this generalization is interesting in its own right).
These lemmas show that the joint distribution of token locations is negatively correlated,
allowing us to derive a suitable Chernoff bound. Once this is proven, nodes can “count”
tokens every tmix time steps, building up over time an estimate of the total number of tokens

4For static graphs, dmax is the maximal degree which can be easily computed in a distributed way, see
for example [BGPS06]. For tmix, good bounds are known for many static graphs [AF02, Chapter 5].
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labeled with their own opinion. By broadcasting these estimates, all nodes determine the
plurality opinion.

On the other hand protocol Balance analysis’ is straightforward: Even if the bias of
the plurality color just one (the second largest color has support which is smaller by one),
by construction, there will be ≥ γ = poly(n) many more tokens of the plurality token.
The analysis of [SS12] then shows that sufficiently many time steps, the load discrepancy
between any pair of nodes is so small that these additional γ tokens ensure that each node
has strictly more tokens of the plurality color than of any other color.

12.3 Communication Model and Notation

We consider an undirected graph G = (V,E) of n ∈ N nodes and let 1 − λ2 denote the
eigenvalue (or spectral) gap of G. Each node u is assigned an opinion ou ∈ { 1, 2, . . . , k }.
For i ∈ { 1, 2, . . . , k }, we use ni ∈ N to denote the number of nodes which have initially
opinion i. Without loss of generality (w.l.o.g), we assume n1 > n2 ≥ · · · ≥ nk, such that 1
is the opinion that is initially supported by the largest subset of nodes. We also say that
1 is the plurality opinion. The value α := n1−n2

n ∈ [1/n, 1] denotes the initial bias towards
the plurality opinion. In the plurality consensus problem, the goal is to design simple,
distributed protocols that let all nodes agree on the plurality opinion. Time is measured in
discrete rounds, such that the (randomized) running time of our protocols is the number of
rounds it takes until all nodes are aware of the plurality opinion. Further to the running
time we also consider the total number of memory bits per node that are required by our
protocols. All our statements and proofs assume n to be sufficiently large.

Communication Model. In any given round, two nodes u and v can communicate if
and only if the edge between u and v is active. We use Mt to denote the symmetric
communication matrix at time t, where Mt[u, v] = Mt[v, u] = 1 if {u, v } is active and
Mt[u, v] = Mt[v, u] = 0 otherwise. We assume (w.l.o.g) Mt[u, u] = 1 (allowing nodes to
“communicate” with themselves). Typically, the sequenceM = (Mt)t∈N of communication
matrices (the communication pattern) is either randomized or adversarial, and our state-
ments merely require that M satisfies certain smoothing properties (see below). For the
ease of presentation, we restrict ourselves to polynomial number of time steps and consider
only communication patterns M = (Mt)t≥0 where N = N(n) is an arbitrarily large poly-
nomial. Let us briefly mention some natural and common communication models covered
by such patterns:

• Diffusion Model: In every round t, all edges of the graph are activated.

• Random matching model: In every round t, the active edges are given by a ran-
dom matching. We require that random matchings from different rounds are mu-

190



tually independent5. Results for the random matching model dependent on pmin :=
mint∈N,{u,v }∈E P[Mt[u, v] = 1 ].

• Balancing Circuit Model: There are d perfect matchings M0,M1, . . . ,Md−1 given.
They are used in a round-robin fashion, such that for t ≥ d we have Mt = Mt mod d.

• Sequential Model: In each round t an edge {u, v } ∈ E is activated uniformly random.

Notation. We use ‖x‖` to denote the `-norm of vector x, where the ∞-norm is the
vector’s maximum absolute entry. In general, bold font indicates vectors and matrices,
and x(i) refers to the i-th component of x. The discrepancy of x is defined as disc(x) :=
maxi x(i)−mini x(i). For i ∈ N, we define [i] := { 1, 2, . . . , i } as the set of the first i integers.
We use log x to denote the binary logarithm of x ∈ R>0. We write a | b if a divides b. For
any node u ∈ V , we use degu to denote u’s degree in G and degu(t) := ∑

vMt[u, v] to denote
its active degree at time t (i.e., its degree when restricted to active edges). Similarly, N(u)
and Nt(u) refer to u’s (active) neighborhood respectively. Moreover, dmax := maxt,u degu(t)
is the maximum active degree of any node. We assume knowledge of dmax. On static graphs
it can be computed efficiently in a distributed manner [BGPS06] and it is given by many
dynamic graph models (e.g., 1 for the sequential model, d for balancing circuits). Let c(t)
be the configuration (state) of the all nodes at time t. We say an event happens with high
probability (w.h.p.) if its probability is at least 1− 1/nc for c ∈ N.

Random Walks. The running time of our protocols is closely related to the running time
(“smoothing time”) of diffusion load balancing algorithms, which in turn is a function of the
mixing time of a random walk on G (see also [AKL08, SS12]). More exactly, we consider a
random walk on G that is restricted to the active edges in each time step. As indicated in
Section 12.1, this random walk should converge towards the uniform distribution over the
nodes of G. This leads to the following definition of the random walk’s transition matrices
Pt based on the communication matrices Mt:

Pt[u, v] :=


1

2 dmax
if Mt[u, v] = 1 and u 6= v,

1− degu(t)
2 dmax

if Mt[u, v] = 1 and u = v,

0 if Mt[u, v] = 0.

(12.1)

Obviously, Pt is doubly stochastic for all t ∈ N. Moreover, note that the random walk is
trivial in any matching-based model, while we get Pt[u, v] = 1

2d for every edge {u, v } ∈ E
in the diffusion model on a d-regular graph. We are now ready to define the required mixing
property.

5Note that there are several simple, distributed protocols to obtain such matchings [GM96, BGPS06].
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Generalized Mixing Time Consider a fixed sequence (Mt)t≥1 of communication ma-
trices.

In the following we generalize the standard definition for the mixing time to our general
communication patterns. Let d(t) = maxx,t1 ‖x ·

∏t1+t
t′=t1 Pt′ −π‖TV and d̄(t) = maxx,y,t1 ‖x ·∏t1+t

t′=t1 Pt′ − y ·
∏t1+t
t′=t1 Pt′‖TV, where ‖ · ‖TV denotes the total variation distance. We define

the mixing time to be tmix(ε) = min{t ≥ 0 : d̄(t) ≤ ε}. For convenience we adapt the
definition to only include t1 ∈ poly(n); otherwise, the mixing time might be arbitrary large
for many communication patterns such as the sequential model.

The mixing time can be seen as the worst-case time required by a random walk to get
“close” to the uniform distribution. If the parameter ε is not explicitly stated, we consider
tmix := tmix(n−5).

12.4 Protocol Shuffle - Theorem 12.1

Our main result is the following theorem, stating the correctness as well as the time and
space-efficiency of Shuffle. The protocol is described in Section 12.4.1, followed by its
analysis in Section 12.4.2.

Theorem 12.1. Let α = n1−n2
n ∈ [1/n, 1] denote the initial bias. Consider a fixed commu-

nication pattern (Mt)t≥1 and let T ∈ N. Protocol Shuffle ensures that all nodes know the
plurality opinion after O

(
T · tmix(n−5)

)
rounds6 (w.h.p.) and requires

(
12 · log(n)

α2·T + 2∆ + 4
)
·

log(k) + 4 log
(12·log(n)

α2
)

+ log(T · tmix) memory bits per node.

The parameter T in the statement serves as a lever to trade running time for memory.
Since tmix(n−5) depends on the graph and communication pattern, Theorem 12.1 might
look a bit unwieldy. The following corollary gives a few concrete examples for common
communication patterns on general graphs.

Corollary 12.2. Let G be an arbitrary d-regular graph. Shuffle ensures that all nodes
agree on the plurality opinion (w.h.p.) using

(
12 · log(n)

α2·T + 2∆ + 4
)
· log(k) + 4 log

(12·log(n)
α2

)
+

log(T · tmix) bits of memory in time

• O
(
T · log(n)

1−λ2

)
in the diffusion model,

• O
(

T
d·pmin

· log(n)
1−λ2

)
in the random matching model,

• O
(
T · d · log(n)

1−λ2

)
in the balancing circuit model, and

• O
(
T · n · log(n)

1−λ2

)
in the sequential model.

6This state is then maintained for a poly(n) many rounds. For an exponential number of time steps, one
would require larger counters to guarantee correctness.
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12.4.1 Protocol Description

We continue to explain the Shuffle protocol given in Listing 12. Our protocol consists of
three parts that are executed in each time step: the shuffle part, the broadcast part, and
the update part.

Every node u is initialized with γ ∈ N tokens labeled with u’s opinion ou. Our protocol
sends 2 dmax tokens chosen uniformly at random (without replacement) over each edge
{u, v } ∈ E with Mt[u, v] = 1.

Here, γ ≥ 2 dmax is a parameter depending on T and α to be fixed during the analysis7.
Shuffle maintains the invariant that, at any time, all nodes have exactly γ tokens.

In addition to storing the tokens, each node maintains a set of auxiliary variables. The
variable cu is increased during the update part of the protocol and counts tokens labeled
ou. The variable pair (domu, eu) is a temporary guess of the plurality opinion and its
frequency. During the broadcast part of the protocol, nodes broadcast these pairs, replacing
their own pair whenever they observe a pair with higher frequency. Finally, the variable
pluu represents the opinion currently believed to be the plurality opinion. The shuffle and
broadcast parts of the protocol are executed in each time step, while the update part is
executed only every tmix(n−5) time steps

Waiting tmix(n−5) time steps for each update gives the broadcast enough time to inform
all nodes and ensures that the tokens of each opinion are well distributed. The latter implies
that, if we consider a node u with opinion ou = i at time T · tmix(n−5), the value cu is a
good estimate of T · γni/n (which is maximized for the plurality opinion). When we reset
the broadcast (Line 11), the subsequent tmix(n−5) broadcast steps ensure that all nodes get

7 Shuffle needs not to know α, it works for any choice of γ; such a choice merely fixes the trade-off
parameter T .
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to know the pair (ou, cu) for which cu is maximal. Thus, if we can ensure that cu is a good
enough approximation of T · γni/n, all nodes get to know the plurality.

Algorithm 12: Protocol Shuffle as executed by node u at time t. At time zero, each node u creates

γ tokens labeled ou and sets cu := 0 and (domu, eu) := (ou, cu).

Algorithm Shuffle
// shuffle sub-phase

1 for {u, v } ∈ E with Mt[u, v] = 1 do
2 send 2 dmax tokens chosen u.a.r. (without replacement) to v

// broadcast sub-phase
3 for {u, v } ∈ E with Mt[u, v] = 1 do
4 send (domu, eu);
5 receive (domv, ev)

6 v := w with ew ≥ ew′ ∀w,w′ ∈ Nt(u) ∪ {u };
7 (domu, eu) := (domv, ev);

// update sub-phase
8 if t ≡ 0 (mod tmix)(n−5) then
9 increase cu by the number of tokens labeled ou held by u ;

10 pluu := domu ; // plurality guess: last broadcast’s dom. op.
11 (domu, eu) := (ou, cu) ; // reset broadcast

12.4.2 Analysis of Shuffle

Fix a communication pattern (Mt)t≥0 and an arbitrary parameter T ∈ N. Remember that
tmix := tmix(n−5) ensure that a random walk starting at any node and for any time step t
and run for tmix(n−5) time steps will be n−5-close to the stationary distribution. We set
the number of tokens stored in each node to γ :=

⌈
c · logn

α2T

⌉
, where c is a suitable constant.

The analysis of Shuffle is largely based on Lemma 12.8, which states that, after
O
(
T · tmix(n−5)

)
time steps, the counter values cu can be used to reliably separate the plural-

ity opinion from any other opinion. The main technical difficulty is the dependency between
the tokens’ movements, rendering standard Chernoff-bounds inapplicable. Instead, we show
that certain random variables satisfy the negative regression condition (Lemma 12.5), which
allows us to majorize the token distribution by a random walk (Lemma 12.6) and to derive
the Chernoff type bound in Lemma 12.7. This Chernoff type bound can be used to show that
all counter values are concentrated which is the main pillar of the proof of Theorem 12.1.

Majorizing Shuffle by Random Walks

While our Shuffle protocol assumes that 2 dmax divides γ, here we assume the slightly
weaker requirement that Pt[u, v] · γ ∈ N for any u, v ∈ V and t ∈ N. Let us first introduce
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some notation for the shuffle part of our protocol at time t. To ease the discussion, we
consider u as a neighbor of itself and speak of degu(t) + 1 neighbors. For i ∈ [degu(t) + 1],
let Nt(u, i) ∈ V denote the i-th neighbor of u (in an arbitrary order). Fix a node u and let
u’s tokens be numbered from 1 to γ. Our assumption on γ allows us to partition the tokens
into degu(t) + 1 disjoint subsets (slots) Si ⊆ [γ] of size Pt[u, v] · γ each, where v = Nt(u, i).
Let πt,u : [γ] → [γ] be a random permutation of u’s tokens at time t. All tokens j of node
u at time t with πt,u(j) ∈ Si are sent to u’s i-th neighbor. To ease notation, we drop the
time index t and write πu instead of πt,u (and, similarly for degu and N(u, i)).

A configuration c describes the location of all γn tokens at a given point in time. For a
token j ∈ [γn] we use uj ∈ V to denote its location in configuration c (which will always be
clear from the context). For each such token j we define a random variable Xj ∈ [deguj +1]
with Xj = i if and only if πuj (j) ∈ Si. In other words, Xj indicates to which of uj ’s
neighbors token j is sent. Our key technical lemma (Lemma 12.5) establishes the negative
regression condition for these X = (Xj)j∈[γn] variables.

Formally, negative regression is defined as follows:

Definition 12.3 (Neg. Regression [DR98, Def. 21]). For n ∈ N, a vector (X1, X2, . . . , Xn)
of random variables is said to satisfy the negative regression condition (NRC) if

E[ f(Xl, l ∈ L )|Xr = xr, r ∈ R ]

is non-increasing in each xr for any disjoint L ,R ⊆ [n] and for any non-decreasing function
f .

The intuition is as follows. Consider two disjoint subsets R and L of [γn] and let XR ,
XL be the corresponding sets of random variables. The higher the values of the random
variables XR we condition on, the (monotoinically) smaller the expectation of the random
variables XL .

Lemma 12.4 ([DR98, Lemma 26]). Let n ∈ N and assume (X1, X2, . . . , Xn) satisfy the
negative regression condition. Consider an arbitrary index set I ⊆ [n] as well as any family
of non-decreasing functions fi (i ∈ I). Then, we have

E
[∏
i∈I

fi(Xi)
]
≤
∏
i∈I

E[ fi(Xi) ]. (12.2)

Lemma 12.5 (NRC). Fix a configuration c and consider the random variables (Xj)j∈[γn].
Then (Xj)j∈[γn] satisfies the negative regression condition.

Proof. Recall that uj is the location of token j in configuration c and that Xj ∈ [deguj +1]
indicates the neighbor of u that token j is sent in the next step. We show for any u ∈ V
that (Xj)j : uj=u satisfies the NRC. The lemma’s statement follows since the πu are chosen
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independently: if two independent vectors (Xj) and (Yj) satisfy the NRC, then so do both
together.

Fix a node u and disjoint subsets L ,R ⊆ { j ∈ [γn] : uj = u } of tokens on u. Define
d := degu and let f : [d + 1]|L | → R be an arbitrary non-decreasing function. We have to
show that E[ f(Xl, l ∈ L )|Xr = xr, r ∈ R ] is non-increasing in each xr (cf. Definition 12.3).
That is, we need to show

E[ f(Xl, l ∈ L )|Xr = xr, r ∈ R ] ≤ E[ f(Xl, l ∈ L )|Xr = x̃r, r ∈ R ], (12.3)

where xr = x̃r holds for all r ∈ R \ { r̂ } and xr̂ > x̃r̂ for a fixed index r̂ ∈ R.
We prove Inequality (12.3) via a coupling of the processes on the left-hand side (LHS

process) and right-hand side (RHS process) of that inequality. Since xr̂ 6= x̃r̂, these processes
involve two slightly different probability spaces Ω and Ω̃, respectively. To couple these, we
employ a common uniform random variable Ui ∈ [0, 1). By partitioning [0, 1) into d + 1
suitable slots for each process (corresponding to the slots Si mentioned above), we can use
the outcome of Ui to set the Xj in both Ω and Ω̃. We first explain how to handle the case
xr̂ − x̃r̂ = 1. The case xr̂ − x̃r̂ > 1 follows from this by a simple reordering argument.

So assume xr̂− x̃r̂ = 1. We reveal the yet unset random variables Xj (i.e., j 6∈ R) one by
one in order of increasing indices. To ease the description assume (w.l.o.g.) that the tokens
from R are numbered from 1 to |R|. When we reveal the j-th variable (which indicates
the new location of the j-th token), note that the probability pj,i that token j is assigned
to N(u, i) (the i’th neighbour of u) depends solely on the number of previous tokens j′ < j

that were assigned to N(u, i). Thus, we can denote by pj,i : N→ [0, 1] a function mapping
x ∈ N to the probability that j is assigned to N(u, i) conditioned on the event that exactly
x previous tokens were assigned to N(u, i). We observe that pj,i is non-increasing.

For a vector x ∈ Nd+1, we define a threshold function Tj,i : Nd+1 → [0, 1] by

Tj,i(x) :=
∑
i′≤i

pj,i′(xi′)

for each i ∈ [d+ 1]. To define our coupling, let

βj,i := |{ j′ < j | Xj′ = i }|

denote the number of already revealed variables with value i in the LHS process and define,
similarly,

β̃j,i := |{ j′ < j | X̃j′ = i }|

for the RHS process. We use βj , β̃j ∈ Nd+1 to denote the corresponding vectors. Now,
to assign token j we consider a uniform random variable Uj ∈ [0, 1) and assign j in both
processes using customized partitions of the unit interval. To this end, let Tj,i := Tj,i(βj)
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LHS

Tj,1 Tj,2 Tj,3 Tj,4

RHS
T̃j,1 T̃j,2 T̃j,3 T̃j,4

×

LHS

Tj+1,1 Tj+1,2 Tj+1,3 Tj+1,4

RHS
T̃j+1,1 T̃j+1,2 T̃j+1,3 T̃j+1,4

Figure 12.1: The figure illustrates the coupling between the two process for the token j and the token j+1.
The first figure depicts the situation after the random decision of the j-th token is made and the second
figure depicts the coupling for the subsequence token j + 1. In this example, there are d + 1 = 4 different
slots for the LHS and RHS process, xr̂ = 3 and x̃r̂ = 2. On the left, the uniform random variable Uj falls
into slot [Tj,1, Tj,2) for the LHS process (causing j to be sent to node N(u, 2)) and into slot [T̃j,2, T̃j,3) for
the RHS process (causing j to be sent to node N(u, 3)).

and T̃j,i := Tj,i(β̃j) for each i ∈ [d + 1]. We assign Xj in the LHS and RHS process as
follows:

• LHS Process: Xj = xj = i if and only if Uj ∈ [Tj,i−1, Tj,i),

• RHS Process: Xj = x̃j = i if and only if Uj ∈ [T̃j,i−1, T̃j,i).

See Figure 12.1 for an illustration. Our construction guarantees that the coupling is valid
(i.e., considered in isolation, both the LHS and RHS process behave correctly).

At the beginning of this coupling, only the variables Xr corresponding to tokens r ∈ R

are set, and these differ in the LHS and RHS process only for the index r̂ ∈ R, for which we
have Xr̂ = xr̂ (LHS) and Xr̂ = x̃r̂ = xr̂ − 1 (RHS). For the first revealed token j = |R|+ 1,
this implies βj,xr̂ = β̃j,xr̂ + 1, βj,xr̂−1 = β̃j,xr̂−1 − 1, and βj,i = β̃j,i for all i 6∈ {xr̂, xr̂ − 1 }.
By the definitions of the slots for both processes, we get Tj,i = T̃j,i for all i 6= xr̂ − 1 and
Tj,xr̂−1 > T̃j,xr̂−1 (cf. Figure 12.1). Thus, the LHS and RHS process behave differently if and
only if Ui ∈ [T̃j,xr̂−1, Tj,xr̂−1). If this happens, we get xj < x̃j (i.e., token j is assigned to a
smaller neighbor in the LHS process). This implies βj+1 = β̃j+1 and both processes behave
identical from now on. Otherwise, if Ui 6∈ [T̃j,xr̂−1, Tj,xr̂−1), we have β̃j+1−βj+1 = β̃j−βj
and we can repeat the above argument. Thus, after all Xj are revealed, there is at most
one j ∈ L for which xj 6= x̃j , and for this we have xj < x̃j . Since f is non-decreasing, this
guarantees Inequality (12.3). To handle the case xr̂ − x̃r̂ > 1, note that we can reorder the
intervals [Tj,i−1, Tj,i) used for the assignment of the variables such that the corresponding
slots for xr̂ and x̃r̂ are neighboring. Formally, this merely changes in which order we consider
the neighbors in the definition of the functions Tj,i. With this change, the same arguments
as above apply.

Before proving the majorization of tokens with random walks (Lemma 12.6) we require
further notation. Let S denote our random Shuffle process, and W the random walk
process in which each of the γn tokens performs an independent random walk according
to the sequence of random walk matrices (Pt)t∈N (i.e., a token on u uses Pt(u, ·) for the
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transition probabilities). We use wP
j (t) to denote the position of token j after t steps of

a process P. We assume (w.l.o.g.) wS
j (0) = wW

j (0) for all j. While there are strong
correlations between the tokens’ movements in S (e.g., not all tokens can move to the
same neighbor), Lemma 12.6 shows that these correlations are negative.

Lemma 12.6 (Majorizing RWs). Consider a time t ≥ 0, a token j, and node v. Let
B ⊆ [γn] and D ⊆ V be arbitrary subsets of tokens and nodes, respectively. The following
holds:

1. P
[
wS
j (t) = v

]
= P

[
wW
j (t) = v

]
and

2. P
[⋂

j∈B

(
wS
j (t) ∈ D

) ]
≤ P

[⋂
j∈B

(
wW
j (t) ∈ D

) ]
= ∏

j∈B P
[
wW
j (t) ∈ D

]
.

Proof. The first statement follows immediately from the definition of our process. For the
second statement, note that the equality on the right-hand side holds trivially, since the
tokens perform independent random walks in W . To show the inequality, we define the
intermediate process S W (t′) (t′ ≤ t) that performs t′ steps of S followed by t− t′ steps of
W . By this definition, S W (0) is identical to W restricted to t steps and, similar, S W (t)
is identical to S restricted to t steps. Define

Et′ :=
⋂
j∈B

(
w

S W (t′)
j (t) ∈ D

)
(12.4)

(the event that all tokens from B end up at nodes from D under process S W (t′)). The
lemma’s statement is equivalent to P[ Et ] ≤ P[ E0 ]. To prove this, we show P[ Et′+1 ] ≤ P[ Et′ ]
for all t′ ∈ { 0, 1, . . . , t− 1 }. Combining these inequalities yields the desired result.

Fix an arbitrary t′ ∈ { 0, 1, . . . , t− 1 } and note that S W (t′) and S W (t′ + 1) behave
identical up to and including step t′. Hence, we can fix an arbitrary configuration (i.e., the
location of each token) c(t′) = c immediately before time step t′+1. Remember that uj ∈ V
denotes the location of j in configuration c. The auxiliary functions hj : [deguj +1]→ [0, 1]
describe the probability that a random walk starting at time t′ + 1 from uj ’s i-th neighbor
ends up in a node from D. Formally,

hj(i) := P
[
wW
j (t) ∈ D|wW

j (t′ + 1) = N(uj , i)
]
. (12.5)

We can assume (w.l.o.g.) that all hj are non-decreasing (by reordering the neighborhood of
uj).

Now, by Lemma 12.5 the variables (Xj)j∈B satisfy the negative regression condition.
Thus, we can apply Lemma 12.4 (a well-known characterization of negative regression) to
the functions hj . Using another simple auxiliary result ((12.6) and (12.7)) we can relate the
(conditioned) probabilities of the events Et′ and Et′+1 to the expectations over the different
hj(Xj). We assume the following. Fix a time t′ ∈ { 0, 1, . . . , t− 1 } and consider an arbitrary
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configuration c. Then the following identities hold:

P
[
Et′+1|c(t′) = c

]
= E

 ∏
j∈B

hj(Xj)|c(t′) = c′
 (12.6)

and

P
[
Et′ |c(t′) = c′

]
=
∏
j∈B

E
[
hj(Xj)|c(t′) = c′

]
. (12.7)

We defer the proof the end of the lemma. Using this assumption, we compute

P
[
Et′+1|c(t′) = c

] (12.6)= E

 ∏
j∈B

hj(Xj)|c(t′) = c

 Lemma 12.4=
∏
j∈B

E
[
hj(Xj)|c(t′) = c

]
(12.7)= P

[
Et′ |c(t′) = c

]
.

Using the law of total probability, we conclude P[ Et′+1 ] ≤ P[ Et′ ], as required.
In the remainder we prove (12.6) and (12.7). Remember the definitions from Lemma 12.6

and its proof. We use the shorthand deguj = deguj (t
′ + 1). Remember that each Xj

indicates to which of the deguj +1 neighbors of uj (where uj is considered a neighbor of
itself) a token j moves during time step t′ + 1. Thus, given the configuration c(t′) = c′

immediately before time step t′ + 1, there is a bijection between any possible configuration
c(t′ + 1) and outcomes of the random variable vector X = (Xj)j∈[γn]. Let cx denote
the configuration corresponding to a concrete outcome X = x ∈ [deguj +1]γn. Thus, we
have P[ c(t′ + 1) = cx|c(t′) = c′ ] = P[X = x|c(t′) = c′ ], and conditioning on c(t′ + 1) is
equivalent to conditioning on X and c(t′). For the claim’s first statement, we calculate

P
[
Et′+1|c(t′) = c′

]
=

(a)=
∑
cx

P
[
Et′+1|c(t′ + 1) = cx

]
· P
[
c(t′ + 1) = cx|c(t′) = c′

]
(b)=
∑
cx

∏
j∈B

P
[
w

S W (t′+1)
j (t) ∈ D|X = x, c(t′) = c′

]
· P
[
X = x|c(t′) = c′

]
(c)=
∑
cx

∏
j∈B

hj(xj) · P
[
X = x|c(t′) = c′

]

=
∑
x

∏
j∈B

hj(xj) · P
[
X = x|c(t′) = c′

]
= E

 ∏
j∈B

hj(Xj)|c(t′) = c′
,

where (a) follows from law of total probability, (b) follows by using the bijection between
c(t′ + 1) and X (if c(t′) is given) and that the process S W (t′ + 1) consists of independent
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random walks if c(t′ + 1) is fixed, (c) we use the definition of the auxiliary functions hj(i),
which equal the probability that a random walk starting at time t′+1 from uj ’s i-th neighbor
reaches a node from D.

For the claim’s second statement, we do a similar calculation for the process S W (t′). By
definition, this process consists already from time t′ onward of a collection of independent
random walks. For a fixed configuration cc = cc(t′) let X̃ denote the vector obtained after
each token performed a step of an independent random walk. Thus, following the same
arguments as before we obtain,

P
[
Et′ |c(t′) = c′

]
=

=
∑
cx̃

P
[
Et′ |c(t′ + 1) = cx̃

]
· P
[
c(t′ + 1) = cx̃|c(t′) = c′

]
=
∑
cx̃

∏
j∈B

P
[
w

S W (t′)
j (t) ∈ D|X̃ = x̃, c(t′) = c′

]
· P
[
X̃ = x̃|c(t′) = c′

]
=
∑
cx̃

∏
j∈B

hj(x̃j) · P
[
X̃ = x̃|c(t′) = c′

]
=
∑
x̃

∏
j∈B

hj(x̃j) · P
[
X̃ = x̃|c(t′) = c′

]

= E

 ∏
j∈B

hj(X̃j)|c(t′) = c′
.

The difference to before is that the X̃j are independent and thus we obtain,

P
[
Et′ |c(t′) = c′

]
= E

 ∏
j∈B

hj(X̃j)|c(t′) = c′
 =

∏
j∈B

E
[
hj(X̃j)|c(t′) = c′

]
=
∏
j∈B

E
[
hj(Xj)|c(t′) = c′

]
,

where the last equality stems from the fact that if consider only one token, then its distri-
bution is the same in both processes.

Separating the Plurality via Chernoff

We rely on a bound of Theorem A.5 by [ABKU99] which allows us to majorize a sequence
of “weakly dependent” variables by a sequence of binomially distributed variables.

We are finally able to prove the following Chernoff-like bound.

Lemma 12.7 (Token Concentration). Consider any subset B of tokens, a node u ∈ V , and
an integer T . Let X := ∑

1≤t≤T
∑
j∈BXj,t, where Xj,t is 1 if token j is on node u at time

t · tmix. With µ := (1/n+ 1/n5) · |B| · T , we have P[X ≥ (1 + δ) · µ ] ≤ eδ2µ/3.
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Proof. Let vj,t denote the location of token j at time (t − 1) · tmix. For all t ∈ {1, . . . , T}
and ` ∈ N define the random indicator variable Yj,t to be 1 if and only if the random walk
starting at vj,t is at node u after tmix time steps. By Lemma 12.6 we have for each B′ ⊆ B
and t ∈ {1, . . . , T} that

P

 ⋂
i∈B′

Xj,t = 1

 ≤ ∏
j∈B′

P[Yj,t = 1 ]. (12.8)

Hence for all t ≤ T and ` ∈ N we have P
[∑

j∈BXj,t ≥ `
]
≤ P

[∑
j∈B Yj,t ≥ `

]
and

P[X ≥ ` ] = P

 ∑
1≤t≤T

∑
j∈B

Xj,t ≥ `

 ≤ P

 ∑
1≤t≤T

∑
j∈B

Yj,t ≥ `

. (12.9)

Let us define p := 1/n + 1/n5. By the definition of tmix, we have for all j ∈ B and t ≤ T

that
P
[
Yj,t = 1|Y1,1, Y2,1, . . . , Y|B|,1, Y1,2, . . . , Yj−1,t

]
≤ p. (12.10)

Combining our observations with Theorem A.5 (see above), we get P[X ≥ ` ] ≤ Bin(T ·
|B|, p). Recall that µ = T · |B| · p. Thus, by applying standard Chernoff bounds we get

P[X ≥ (1 + δ)µ ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ eδ2µ/3, (12.11)

which yields the desired statement.

Together, these lemmas generalize a result given in [SS12] to a setting with considerably
more dependencies. Equipped with this Chernoff bound, we prove concentration of the
counter values.

Lemma 12.8 (Counter Separation). Let c ≥ 12. For every time t ≥ c · T · tmix there exist
values `> > `⊥ such that

1. For all nodes w with ow ≥ 2 we have (w.h.p.) cw ≤ `⊥.

2. For all nodes v with ov = 1 we have (w.h.p.) cv ≥ `>.

For (a) we show that for any given node the number of tokens received is not much
larger than its exception. See Figure 12.2 for an illustration. Showing (b) is slightly more
involved. Due to the negative association, we refrain from showing directly that the number
of tokens received by a node u of opinion ov = 1 is lower bounded by its expectation minus
some deviation. Instead, we show (b) by arguing that out of the total number of tokens
considered which do not end up on node v with ov = 1 is concentrated. This gives a lower
bound on the number of tokens which did land on v.
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Proof. Let v and w be two nodes with ov = 1 and ow ≥ 2. We define for all i ∈ {2, . . . , k}

µi := (1/n+ 1/n5)c · T · γ · ni and µ′ := (1/n+ 1/n5)c · T · γ · (n− n1).

For i ∈ {2, . . . , k} define

`⊥(i) := µi +
√
c2 · logn · T · γni

n
and `> := c · Tγ − µ′ −

√
c2 · logn · T · γn− n1

n
.

We set `⊥ := `⊥(2). We first show that `> > `⊥: recall that α = n1−n2
n ≥ 1/n and

γ =
⌈
cγ · logn

α2T

⌉
, where cγ is a suitable constant.

µ2 `⊥(2) `> µ′µ2 + λ(2)

Γ1 ∈Γ2 ∈

µ′ − λ′

Figure 12.2: The figure depicts the random variables in the proof of Lemma 12.8 for the case of two
nodes where node 1 supports opinion 1 and node 2 supports opinion 2. The total expected number of
tokens counter by a node supporting the most prominent color 1 (2, respectively) is approximatively µ′ (µ2,
respectively) up to an second order error accounting for the difference between the distribution of a random
walk after tmix time steps and the stationary distribution. We will show that w.h.p. the number of tokens
counted will be in [µ′−λ′,∞] and in [0, µ2 +λ(2)] for node 2. These intervals are separated by the carefully
chosen quantities `⊥(2) and `> where `⊥(2) < `>. This establishes the separation of the counters.

We have

`> − `⊥
c

≥ Tγ − (1/n+ 1/n5) · T · γ · (n− n1)−
√
· logn · T · γn− n1

n

− (1/n+ 1/n5)T · γ · n2 −
√
· logn · T · γn2

n

≥ Tγ · (n1
n −

n−n1
n5 )−

√
logn · T · γ n−n1

n − Tγ · (n2
n + n2

n5 )−
√

logn · T · γ n2
n

≥
√
Tγ ·

(√
Tγ ·

(
n1−n2
n − 2

n4

)
−
√

logn ·
(√

n−n1
n +

√
n2
n

))
≥
√
Tγ ·

(√
cγ logn
α2

(
α− 2

n4

)
−
√

logn ·
(√

n−n1
n +

√
n2
n

))
≥
√
Tγ ·

(√
cγ logn
α2

(
0.9α+ 0.1/n− 2

n4

)
−
√

logn ·
(√

n−n1
n +

√
n2
n

))
≥
√
Tγ ·

(
0.9
√
cγ logn− 2

√
logn

)
> 0.

where the last inequality holds for cγ ≥ 5. Now, let all γn tokens be labeled from 1 to γn.
We proceed by showing the lemma’s statements:

• For the first statement, consider a node w with ow ≥ 2 and set

λ(ow) := `⊥(ow)− µow =
√
c2 · logn · T · γ · now/n.
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Set the random indicator variable Xi,t to be 1 if and only if token i is on node w at
time t and if i’s label is ow. Let cw = ∑c·T

j=1
∑
i∈BXi,j·tmix , where B is the set of all

tokens [γn] with label ow. We compute

P[ cw ≥ `⊥ ] ≤ P[ cw ≥ µow + λ(ow) ] = P
[
cw ≥

(
1 + λ(ow)

µow

)
· µow

]
≤ exp

(
−λ

2(ow)
3µow

)
≤ exp

(
− c6 logn

)
,

(12.12)

where the last line follows by Lemma 12.7 applied to cw = ∑c·T
j=1

∑
i∈BXi,j·tmix and

setting B to the set of all tokens with label ow. Hence, the claim follows for c large
enough after taking the union bound over all n− n1 ≤ n nodes w with ow ≥ 2.

• For the lemma’s second statement, consider a node v with ov = 1 and set

λ′ := c · Tγ − µ′ − `> =
√
c2 · logn · T · γn− n1

n
.

Define the random indicator variable Yi,t to be 1 if and only if token i is on node v at
time t and if i’s label is not 1. Set Y = ∑c·T

j=1
∑
i∈B′ Yi,j·tmix , where B′ is the set of all

tokens with opinion different than 1. Note that cv = c · Tγ − Y . We compute

P[ cv ≤ `> ] = P[ c · Tγ − Y ≤ `> ] = P
[
c · Tγ − Y ≤ c · Tγ − µ′ − λ′

]
= P

[
Y ≥ µ′ + λ′

]
= P

[
Y ≥

(
1 + λ′

µ′

)
· µ′

]
≤ exp

(
− λ
′2

3µ′

)
≤ exp

(
c

6 logn
)
,

where the first inequality follows by Lemma 12.7 applied to Y . Hence, the claim
follows for c large enough after taking the union bound over all n1 ≤ n nodes v with
ou ≥ 2.

We now give the proof of our main theorem.

Theorem 12.1. Fix an arbitrary time t ∈ [c · T · tmix, N ] with tmix dividing t, where c is
the constant from the statement of Lemma 12.8. From Lemma 12.8 we have that (w.h.p.)
the node u with the highest counter cu has ou = 1 (ties are broken arbitrarily). In the
following we condition on ou = 1. We claim that at time t′ = t + tmix all nodes v ∈ V

have pluv = 1. This is because the counters during the “broadcast part” (Lines 3 to 7)
propagate the highest counter received after time t. The time τ until all nodes v ∈ V have
pluv = 1 is bounded by the tmix(n−5) by definition: In order for [t, t′] to be 1/n5-smoothing,
the random walk starting at u at time t is with probability at least 1/n − 1/n5 on node v
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and, thus, there exists a path from u to v (with respect to the communication matrices).
If there is such a path for every node v, the counter of u was also propagated to that v
and we have τ ≤ tmix. Consequently, at time t′ all nodes have the correct majority opinion.
This implies the desired time bound. For the memory requirements, note that each node
u stores γ tokens with a label from the set [k] (γ · O(log k) bits), three opinions (its own,
its plurality guess, and the dominating opinion; O(log k) bits), the two counters cu and eu
and the time step counter. The memory to store the counter cu and eu is O(γT ). Finally,
the time step counter is bounded by O(log(T · tmix)) bits. This yields the claimed space
bound.

12.5 Protocol Balance - Theorem 12.9

Protocol Description. The idea of our Balance protocol is quite simple: Every node u
stores a k-dimensional vector `t(u) with k integer entries, one for each opinion. Balance
performs an entry-wise load balancing on `t(u) according to the communication pattern
M = (Mt)t≥0 and the corresponding transition matrices Pt (cf. Section 12.3). Once the
load is properly balanced, the nodes look at their largest entry and assume that this is the
plurality opinion (stored in the variable pluu).

In order to ensure a low memory footprint, we must not send fractional loads over active
edges. To this end, we use a rounding scheme from [BCF+15, SS12], which works as follows:
Consider a dimension i ∈ [k] and let `i,t(u) ∈ N denote the current (integral) load at u in
dimension i, then u sends b`i,t(u) · Pt[u, v]c tokens to all neighbors v with Mt[u, v] = 1.
This results in at most degu(t) remaining excess tokens (`i,t(u) minus the total number
of tokens sent out). These are then randomly distributed (without replacement), where
neighbor v receives a token with probability Pt[u, v]. In the following we call the resulting
balancing algorithm the Vertex-Based Balancer algorithm.

The formal description of protocol Balance is given in Listing 13.
Algorithm 13: Protocol Balance as executed by node u at time t. At time zero, each node initializes

`ou,0(u) := γ and `j,0(u) := 0 for all j 6= ou. .

Algorithm Shuffle
for i ∈ [k] do

for {u, v } ∈ E with Mt[u, v] = 1: do
send b`i,t(u) · Pt[u, v]c tokens from dimension i to v

x := `i,t(u)−
∑
v : Mt[u,v]=1b`i,t(u) · Pt[u, v]c ; // excess tokens

forall the token x do
randomly distribute x such that:;
every v 6= v with Mt[u, v] = 1 receives 1 token w.p. Pt[u, v] (and zero otherwise)

pluu := i with `i,t(u) ≥ `j,t(u) ∀1 ≤ i, j ≤ k ; // plurality guess
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Analysis of Balance. Consider initial load vectors `0 with ‖`0‖∞ ≤ n5. Let τ :=
τ(g,M) be the first time step when Vertex-Based Balancer under the (fixed) commu-
nication patternM = (Mt)t≥0 is able to balance any such vector `0 up to a g-discrepancy.
With this, we show:

Theorem 12.9. Let α = n1−n2
n ∈ [1/n, 1] denote the initial bias. Consider a fixed com-

munication pattern M = (Mt)t≥0 and let γ ∈ [3 · gα , n5] be an arbitrary integer. Protocol
Balance ensures that all nodes know the plurality opinion after τ(g,M) rounds and re-
quires k · log(γ) memory bits per node.

Proof. Recall that γ ≥ 3 gα = 3g · n
n1−n2

. For i ∈ [k] let ¯̀
i := ni · γ/n. The definition of

τ(g,M) implies `1,t(u) ≥ ¯̀1−g and `i,t(u) ≤ ¯̀
i+g for all nodes u and i ≥ 2. Consequently,

we get
`1,t(u)− `i,t(u) ≥ ¯̀1 − ¯̀

i − 2g = 3g · n1 − ni
n1 − n2

− 2g > 0. (12.13)

Thus, every node u has the correct plurality guess at time t.

The memory usage of Balance depends on the number of opinions (k) and on the
number of tokens generated on every node (γ). The algorithm is very efficient for small
values of k but it becomes rather impractical if k is large. Note that if one chooses γ
sufficiently large, it is easy to adjust the algorithm such that every node knows the frequency
of all opinions in the network. The next corollary gives a few concrete examples for common
communication patterns on general graphs.

Corollary 12.10. Let G be an arbitrary d-regular graph. Balance ensures that all nodes
agree on the plurality opinion with probability 1− e−(log(n))c for some constant c

1. using O(k · logn) bits of memory in time O
( logn

1−λ2

)
in the diffusion model,

2. using O(k · logn) bits of memory in time O
( 1
d·pmin

· logn
1−λ2

)
in the random matching

model,

3. using O
(
k · log(α−1)

)
bits of memory in time O

(
d· logn

1−λ2

)
in the balancing circuit model,

and

4. using O
(
k · log(α−1)

)
bits of memory in time O

(
n · logn

1−λ2

)
in the sequential model.

Proof. Part 1 follows directly from [SS12, Theorem 6.6] and Part 3 follows directly
from [SS12, Theorem 1.1]. To show Part 2 and 4 we choose τ such that M1,M2, . . . ,Mτ

enable Vertex-Based Balancer to balance any vector `0 (with initial discrepancy of at
most n5) up to a g-discrepancy. The bound on τ then follows from [SS12, Theorem 1.1].

205



Chapter 13

Future Work - Distributed
Consensus Processes

The results for consensus dynamics in Part II can be generalized in many ways—the most
obvious being to general graphs. Another interesting open problem would be to analyze
3-Majority and faster protocols in presence of an adversary that is allowed to change the
opinion of say

√
n nodes per round—starting from all configurations.

In the following we elaborate on these research directions.

Fault Tolerance. As mentioned in Chapter 9, previous studies [BCN+14b, BCN+16,
CER14, EFK+16] show that 2-Choices and 3-Majority are consensus protocols that can
tolerate dynamic, worst-case adversarial faults. More specifically, the protocols work even
in the presence of an adversary that can, in every round, corrupt the state of a bounded
set of nodes. The goal in this setting is to achieve a stable regime in which “almost-all”
nodes support the same valid color (i.e. a color initially supported by at least one non-
corrupted node). The size of the corrupted set is one of the studied quality parameters and
depends on the number k of colors and/or on the bias in the starting configuration. For
instance, in [BCN+16] it is proven that, for k = o

(
n1/3

)
, 3-Majority tolerates a corrupted

sets of size O
(√

n/(k5/2 logn)
)
. A natural important open issue is to investigate whether

our framework for AC-processes can be used to make statements about fault-tolerance
properties in this (or in similar) adversarial models. We moderately lean toward thinking
that our analysis is sufficiently general and “robust” to be suitably adapted in order to cope
with this adversarial scenario over a wider range of k and bias w.r.t. the relative previous
analyses. Finally, we ask whether there exists any poly-log consensus time protocols agreeing
on the plurality color in presence of an adversary?

Towards a Hierarchy. Consider the process functions of the general h-Majority process
for arbitrary h ∈ N. Intuitively, h-Majority should be (stochastically) slower than (h+ 1)-
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Majority. We strongly believe this result holds. However, naïvely applying our machinery to
prove this does not work and needs to be amended. Our conjecture that such a “hierarchy”
for h−Majority for different h ∈ N holds is backed by the proof of Proposition 9.10 (which
shows this for h ∈ { 1, 2, 3 }, since the Voter process is actually equivalent to 1-Majority and
2-Majority).

Conjecture 13.1. For h ∈ N, we can couple h-Majority and (h + 1)-Majority such that
the latter never has more remaining colors than the former. In particular, (h+ 1)-Majority
is stochastically faster than h-Majority.

However, as we have shown in Section 9.5 via a counterexample, it turns out that
Lemma 9.5 is not strong enough to derive Conjecture 13.1. In fact, our failed attempts in
adapting our approach may suggest that similar counterexamples exist for any majorization
attempt that uses a total order on vectors.

General Graphs. To obtain result for 3-Majority on general graphs, it seems natural
to try generalizing the coupling of Proposition 9.10 to general graphs. However, there are
graphs for which this is not true: versions of the stochastic block model seem to require a
super-exponential number of rounds whereas Voter requires at most O(n3) rounds [KMS16].
Nevertheless, 3-Majority seems to perform at least as good as Voter on graphs like the cycle,
the grid and the star. It is natural to ask whether there are any dynamics reaching consensus
faster than Voter, 3-Majority, and 2-Choices on any graph.

The Right Model. The most flagrant and yet most difficult and long-term based chal-
lenge is to find the right model. We are far from a general understanding of the domain
partially due to the vast choice of parameters: Synchronous vs asynchronous time steps,
knowledge of the graph size n, execution starts for all nodes at the same time, presence
of adversaries, trade-off consensus guarantees and space etc. Finding the correct model
and assumptions could benefit greatly from industrial applications as well as applications
in computational biology modelling the behaviour and communication of species. Alter-
natively, it would be very interesting to obtain a general understand of how results in one
setting relate to another—is it possible to translate results for synchronous dynamics to
asynchronous dynamics and vice versa?
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A.1 Elementary Bounds
Proposition A.1 (Markov’s Inequality). Let X be a random variable that assumes only
nonnegative values. Then, for all a > 0

P[X ≥ a ] ≤ E[ x ]
a

Proposition A.2 (Union Bound). For any countable set of events E1, E2, . . . , En we have

P

 ⋃
i∈[n]
Ei

 ≤ ∑
i∈[n]

P[ Ei ].

A.2 Concentration Inequalities and Drift Analysis

A.2.1 Binomial Distribution

Proposition A.3 (Chernoff bound [MU05, Theorem 4.4 and 4.5]). Let X = ∑
iXi be the

sum of 0/1 independent random variables. Then,

1. for any δ > 0,

P[X ≥ (1 + δ)E[X ] ] <
(

eδ

(1 + δ)1+δ)

)E[X ]

.

2. for any 0 < δ ≤ 1,
P[X ≥ (1 + δ)E[X ] ] ≤ e−E[X ]δ2/3.

3. for R ≥ 6E[X],
P[X ≥ R ] ≤ 2−R.

4. for 0 < δ < 1,

P[X ≤ (1− δ)E[X ] ] ≤
(

e−δ

(1− δ)1−δ)

)E[X ]

.

5. for 0 < δ < 1,
P[X ≤ (1− δ)E[X ] ] ≤ e−E[X ]δ2/2.

Theorem A.4 ([HR90, Equation 10]). Let Y = ∑m
i=1 Yi be the sum of m i.i.d. random

variables with P[Yi = 1 ] = p and P[Yi = 0 ] = 1− p. We have for any α ∈ (0, 1) that

P[Y ≥ α ·m ] ≤
((

p

α

)α( 1− p
1− α

)1−α
)m

.

Theorem A.5 ([ABKU99, Lemma 3.1]). Let X1, X2, . . . , Xn be a sequence of random
variables with values in an arbitrary domain and let Y1, Y2, . . . , Yn be a sequence of binary
random variables with the property that Yi = Yi(X1, . . . , Xi). If P[Yi = 1|X1, . . . , Xi−1 ] ≤ p,
then

P
[∑

Yi ≥ `
]
≤ P[ Bin(n, p) ≥ ` ] (A.1)
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and, similarly, if P[Yi = 1|X1, . . . , Xi−1 ] ≥ p, then

P
[∑

Yi ≤ `
]
≤ P[ Bin(n, p) ≤ ` ]. (A.2)

Here, Bin(n, p) denotes the binomial distribution with parameters n and p.

We adapt Theorem 2 and equation (6.7) from [Fel68] as follows.

Theorem A.6 (DeMoivre-Laplace limit theorem [Fel68]). Let X be a random variable with
binomial distribution X ∼ Bin(N, p). It holds for any x > 0 with x = o

(
N1/6

)
that

P
[
X ≥ E[X ] + x ·

√
Var[X ]

]
= 1√

2π · x
· exp

(
−x22

)
± o(1) .

A.2.2 Negative Regression

Negative regression is defined as follows.

Definition A.7 (Neg. Regression [DR98, Def. 21]). A vector (X1, X2, . . . , Xn) of random
variables is said -to satisfy the negative regression condition if

E[ f(Xl, l ∈ L )|Xr = xr, r ∈ R ]

is non-increasing in each xr for any disjoint L ,R ⊆ [n] and for any non-decreasing function
f .

Proposition A.8 ([DR98, Lemma 26]). Let (X1, X2, . . . , Xn) satisfy the negative regression
condition and consider an arbitrary index set I ⊆ [n] as well as any family of non-decreasing
functions fi (i ∈ { I }). Then, we have

E
[∏
i∈I

fi(Xi)
]
≤
∏
i∈I

E[ fi(Xi) ] (A.3)

A.2.3 Poisson Distribution

Lemma A.9. Let Xn ∼ Bin(n, α/n) for all n. Let Y ∼ Poi(eα). Let α ≤ 1/e. For all n
and k ≥ 1 we have Pr(Xn ≥ k) ≤ Pr(Y ≥ k).

Proof. Fix an arbitrary n and k ≥ 1. Pr(Xn = k) ≤
(n
k

)
(α/n)k ≤ αk/k! ≤ αk

k!
e
eeα ≤

(eα)k
k!

1
eeα = Pr(Y = k).

Lemma A.10 (Poisson tail bound). Let α ≥ 1. Let α′ = 1 + deαe + eα. Let Ni be
sum of Ni−1 independent (1 + deαe + Poisson(eα))-distributed random variables. Let bi =
(6α′)i(k + 1). Then, P[Ni ≥ bi|Ni−1 < bi−1 ] ≤ 2−6eαbi−1 .

Proof. Due to the independence of the random variables, we have Ni−1 · Poisson(eα) =
Poisson(eαNi−1). In the following we fix Ni−1 = n for n < bi−1. We derive, by using the
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definition bi and by applying the Poisson tail bound given in [MU05],

P[Ni ≥ bi|n < bi−1 ] ≤ P[ Poisson(eαn) + n(1 + deαe) ≥ bi|n < bi−1 ]
≤ P

[
Poisson(eαn) ≥ (6α′)bi−1 − bi−1(1 + deαe)|n < bi−1

]
= P[ Poisson(eαn) ≥ 6eαbi−1|n < bi−1 ]

≤ e−eαn · (e2αn)6eαbi−1

(6eαbi−1)6eαbi−1
≤ 1 · (e2αbi−1)6eαbi−1

(6eαbi−1)6eαbi−1
≤ 2−6eαbi−1 .

A.2.4 Hajek’s Theorem

Theorem A.11 (Hajek’s Theorem – Simplified version of [Haj82, Theorem 2.3]). Let
(Y (t))t≥0 be a sequence of random variables on a probability space (Ω,F , P ) with respect to
the filtration (F(t))t≥0. Assume the following two conditions hold:

(i) (Majorization) There exists a random variable Z and a constant λ′ > 0, such that
E
[
eλ
′Z
]
≤ D for some finite D, and (|Y (t+ 1)− Y (t)|

∣∣F(t)) ≤st Z for all t ≥ 0; and

(ii) (Negative Bias) There exist a, ε0 > 0, such for all t we have

E[Y (t+ 1)− Y (t)|F(t), Y (t) > a ] ≤ −ε0.

Let η = min{λ′, ε0 · λ′2/(2D), 1/(2ε0)}. Then, for all b and t we have

P[Y (t) ≥ b|F(0) ] ≤ eη(Y (0)−b) + 2D
ε0 · η

· eη(a−b).

Proof. The statement of the theorem provided in [Haj82] requires besides (i) and (ii) to
choose constants η, and ρ such that 0 < ρ ≤ λ′, η < ε0/c and ρ = 1− ε0 · η + cη2 where

c =
E
[
eλ
′Z
]
− (1 + λ′E[Z ])
λ′2

=
∞∑
k=2

λ′k−2

k! E
[
Zk
]
.

With these requirements it then holds that for all b and t

P[Y (t) ≥ b|F(0) ] ≤ ρteη(Y (0)−b) + 1− ρt
1− ρ ·D · e

η(a−b). (A.4)

In the following we bound (A.4) by setting η = min {λ′, ε0 · λ′2/(2D), 1/(2ε0) }. The
following upper and lower bound on ρ follow.

• ρ = 1− ε0 · η+ cη2 ≤ 1− ε0 · η+ ε0 · η · c ·λ′2/(2D) ≤ 1− ε0 · η+ ε0 · η/2 = 1− ε0 · η/2,
where we used c ≤ D/λ′2.

• ρ = 1− ε0 · η + cη2 ≥ 1− ε0/(2ε0) ≥ 0.

We derive, from (A.4) using that for any t ≥ 0 we have 0 ≤ ρt < 1
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P[Y (t) ≥ b|F(0) ] ≤ ρteη(Y (0)−b) + 1− ρt
1− ρ ·D · e

η(a−b) ≤ eη(Y (0)−b) + 1
1− ρ ·D · e

η(a−b)

≤ eη(Y (0)−b) + 2D
ε0 · η

· eη(a−b),

(A.5)

since 1
(1−ρ) ≤

2
ε0·η . This yields the claim.

A.2.5 Drift Theorem

The following is a version of the multiplicative drift theorem which we will use in
Lemma 11.12 to derive a bound on the number of required periods until all nodes agree on
one opinion.

Theorem A.12 ([LS16, Theorem 5]). Let (Xt)t∈N0 be a Markov chain with state space
S ⊆ {0} ∪ [1,∞) and with X0 = n. Let T be the random variable that denotes the earliest
point in time t ≥ 0 such that Xt = 0. Assume that there is δ > 0 such that for all x ∈ S

E[Xt+1 | Xt = x ] ≤ (1− δ)x .

Then
P
[
T >

⌈ logn+ k

| log(1− δ)|

⌉ ]
≤ e−k .

Theorem A.13 (Variable Drift Theorem [LW14, Corollary 1.(i)]). Let (Xt)t≥0, be a
stochastic process over some state space S ⊆ {0} ∪ [xmin, xmax], where xmin ≥ 0. Let
h : [xmin, xmax] → R+ be a differentiable function. Then the following statements hold for
the first hitting time T := min{t | Xt = 0}. If E[Xt+1 −Xt | Ft;Xt ≥ xmin ] ≤ −h(Xt) and
d
dxh(x) ≥ 0, then

E[T | X0 ] ≤ xmin
h(xmin) +

∫ X0

xmin

1
h(y) dy.

Lemma A.14. Let (Xt)t≥0 be a stochastic process satisfying (i) E[Xt|Ft−1 ] ≤ β ·Xt−1, for
some β < 1, and (ii) Xt ≥ 0 for all t ≥ 0. Let τ(g) = min{t ≥ 0|Xt ≤ g} for g ∈ (0, |X0|),
then

E[ τ(g) ] ≤ 2 ·
⌈
logβ(g/(2X0))

⌉
.

Proof. By the iterative law of expectation, we have

E[Xt ] ≤ βt ·X0.

Furthermore, by Markov’s inequality, for any λ ≥ 1

P
[
τ(g) > λ ·

⌈
logβ(g/(2X0)

⌉ ]
≤ P

[
Xλ·dlogβ(g/(2X0)e > g

]
≤

E
[
Xλ·dlogβ(g/(2X0)e

]
g

≤ 2−λ.
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Therefore,

E[ τ(g) ] =
∞∑
i=1

P[ τ(g) ≥ i ]

≤
⌈
logβ(g/(2X0))

⌉
+
∞∑
λ=1

⌈
logβ(g/(2X0))

⌉
· P
[
τ(g) > λ ·

⌈
logβ(g/(2X0)

⌉ ]
≤ 2 ·

⌈
logβ(g/(2X0))

⌉
.

A.2.6 Doob-Martingale

We thus consider the process of uncovering Yv(τ) one node after the other in order to
obtain the Doob martingale of Y (τ) as follows. We define the sequence Zj(τ) as Zj(τ) =
E[Y (τ)|Tj(τ), . . . , T1(τ) ] with Z0(τ) = E[Y (τ) ]. We have

E[Zj(τ)|Tj−1(τ), . . . , T1(τ) ] = E[E[Y (τ)|Tj(τ), . . . , T1(τ) ]|Tj−1(τ), . . . , T1(τ) ]

which, applying the tower property, gives us that

E[Zj(τ)|Tj−1(τ), . . . , T1(τ) ] = E[Y (τ)|Tj−1(τ), . . . , T1(τ) ] = Zj−1(τ).

Therefore Zj(τ) is indeed the Doob martingale of Y (τ).

A.2.7 Azuma-Hoeffding Inequality

The following definitions and propositions were introduced in [DP09].

Definition A.15 (Martingale). A martingale is a sequence of random variables X0, X1, . . .
such that for all i ≥ 1

E[Xi | X0, X1, . . . , Xi−1 ] = Xi−1.

Definition A.16. The Doob sequence of a function f w.r.t. a sequence of random variables
X1, . . . , Xn is defined by

Yi := E[ f |Xi ], i ∈ {0, 1, . . . , n}.

Proposition A.17. The Doob sequence of a function defines a martingale, i. e.,

E[Yi | Xi−1 ] = Yi−1, i ∈ {0, 1, . . . , n}.

Proposition A.18 (Azuma-Hoeffding Inequality). Let Y0, Y1, . . . be a martingale with re-
spect to the sequence X0, X1, . . .. Suppose also that for ai ≤ Yi − Yi−1 ≤ bi for i ≥ 1.
Then,

P[ |Yn − Y0|+ t ] ≤ exp
(
− 2t2∑

i∈[n](bi − ai)2

)
.
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A.3 Markov Chains

A.3.1 Couplings

The following lemma will be helpful to define a coupling between distributions that are
close to the stationary distribution and the exact stationary distribution. (A very similar
lemma has been derived in [ES11, Lemma 2.8])

Lemma A.19. Let ε ∈ (0, 1] be an arbitrary value. Let Z1 and Z2 be two probability
distributions over {1, . . . , n} so that P[Z1 = i ] ≥ ε · P[Z2 = i ] for every 1 ≤ i ≤ n. Then,
there is a coupling (Z̃1, Z̃2) of (Z1, Z2) and an event E with P[ E ] ≥ ε so that

P
[
Z̃1 = i | E

]
= P

[
Z̃2 = i

]
for every 1 ≤ i ≤ n.

Proof. Let U ∈ [0, 1] be a uniform random variable. We next define our coupling (Z̃1, Z̃2)
of Z1 and Z2 that will depend on the outcome of U . First, if U ∈ [0, ε), then we set

Z̃1 = Z̃2 = i, if i satisfies ε ·∑i−1
k=1 P[Z2 = k ] ≤ U < ε ·

∑i
k=1 P[Z2 = k ].

For the case where U ∈ (ε, 1), it is clear that the definition of U can be extended in a
way so that Z̃1 has the same distribution as Z1, and Z̃2 has the same distribution as Z2.
Furthermore, notice that if U ∈ [0, ε) happens, then Z̃1 has the same distribution as Z2,
and Z̃1 = Z̃2. Observing that P[U ∈ [0, ε) ] = ε completes the proof.

A.3.2 Strassen’s Theorem

Proposition A.20 ([MOA11, Proposition 11.E.11],[RS+77]). For N ∈ N and a proba-
bility vector Θ ∈ [0, 1]l, consider a random vector X having the multinomial distribution
Mult(N,Θ). Let

φ :

 x ∈ Nl0

∣∣∣∣∣∣
∑
i∈[l]

xi = N

→ R (A.6)

be such that E[φ(X) ] exists. Note that this expected value depends on Θ. Define the function
ψ on probability vectors as ψ(Θ) := E[φ(X) ]. If φ is Schur-convex, then so is ψ.

Theorem A.21 (Strassen’s Theorem [MOA11, 17.B.6]). Suppose that A ⊆ Rn is closed
and that ≤C is the preorder of A generated by the convex cone C of real-valued functions
defined on A. Suppose further that { (x, y) | x ≤C y } is a closed set. Then the conditions

(i) X ≤st
C Y and

(ii) there exists a pair X̃, Ỹ of random variables such that

(a) X and X̃ are identically distributed, Y and Ỹ are identically distributed and

(b) P
[
X̃ ≤C Ỹ

]
= 1

are equivalent if and only if C+ = C∗; i.e., the stochastic completion C+ of C is complete.
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A.3.3 Positive Recurrence

A Markov chain X is time-homogeneous (transition probabilities are time-independent),
irreducible (every state is reachable from every other state1), and aperiodic (path lengths
have no period). Recall that such a Markov chain is positive recurrent (or ergodic) if
the probability to return to the start state is 1 and the expected return time is finite. In
particular, this implies the existence of a unique stationary distribution. Positive recurrence
is a standard formalization of the intuitive concept of stability. See [LP08] for an excellent
introduction into Markov chains and the involved terminology.
Theorem A.22 (Fayolle et al. [FMM95, Theorem 2.2.4]). A time-homogeneous irreducible
aperiodic Markov chain ζ with a countable state space Ω is positive recurrent if and only
if there exists a positive function φ(x), x ∈ Ω, a number η > 0, a positive integer-valued
function β(x), x ∈ Ω, and a finite set C ⊆ Ω such that the following inequalities hold:

1. E[φ(ζ(t+ β(x)))− φ(x)|ζ(t) = x] ≤ −ηβ(x), x 6∈ C

2. E[φ(ζ(t+ β(x)))|ζ(t) = x] <∞, x ∈ C

A.4 Markov Chains: Random Walks
Proposition A.23 ([LPW06]). Consider two irreducible Markov chains (Xt)t≥0, (Yt)t≥0
with transition matrix P , X0 = x, and Y0 = y. Let {(Xt, Yt)} be a coupling satisfying that
if Xs = Ys, then Xt = Yt for t ≥ s. Let T = min{t ≥ 0 | Xt = Yt}. Then ‖pt(x, ·) −
pt(y, ·)‖TV ≤ P[T > t ].
Proposition A.24. Biased Random Walk [Fel68, Chapter XIV.2]] Let p ∈ (0, 1/2) and
b, s ∈ N. Consider a discrete time Markov chain (Zt)t≥0 with state space Ω = [0, b] where

• Z0 = s ∈ [0, b]

• P[Zt = i | Zt−1 = i− 1 ] = p for i ∈ [1, b− 1], t ≥ 1

• P[Zt = i | Zt−1 = i+ 1 ] = 1− p for i ∈ [1, b− 1], t ≥ 1

• P[Zt = i | Zt−1 = i ] = 1 for i ∈ {0, b}, t ≥ 1
Let T = min{t ≥ 0 | Zt ∈ {0, b}}. Then

P[ZT = b ] =

(
1−p
p

)s
− 1(

1−p
p

)b
− 1

.

Observation A.25. Consider two random walks (Xt)t≥0 and (Yt)t≥0 starting on nodes
drawn from the stationary distribution. Fix an arbitrary t ∈ N. Define the collision-
counting random variables Z1 = ∑dt/2e

i=0 1Xt=Yt, Z2 = ∑t
i=dt/2e+1 1Xt=Yt, and Z = Z1 + Z2.

Then P[Z1 ≥ 1 | Z ≥ 1 ] ≥ 1
2 .

Proof. Since both nodes start from the stationary distribution, P[Z1 ≥ 1 ] ≥ P[Z2 ≥ 1 ].
By the Union bound, P[Z ≥ 1 ] ≤ P[Z1 ≥ 1 ] + P[Z2 ≥ 1 ] ≤ 2 · P[Z1 ≥ 1 ]. By law of total
probability, P[Z1 ] = P[Z1 ≥ 1 | Z ≥ 1 ] · P[Z ≥ 1 ]. Putting everything together yields
P[Z1 ≥ 1 | Z ≥ 1 ] ≥ 1

2 .
1The state space includes all vectors with non-increasing entries over Nn.
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A.4.1 Spectral Gap

We will frequently use the following basic fact about lazy random walks, which in fact also
holds for arbitrary reversible Markov chains:

Proposition A.26 (cf. [LPW06, Chapter 12]). Let P be the transition matrix of a reversible
Markov chain with state space Ω. Then the following statements hold:

(i) If P is irreducible, then for any two states x, y ∈ Ω,

ptx,y ≤ π(y) +
√
π(y)
π(x) · λ

t,

where λ := max{λ2, |λn|} and λ1 ≥ λ2 ≥ · · · ≥ λn are the n real eigenvalues of the
matrix P .

(ii) If the Markov chain is a non-lazy random walk on a bipartite regular graph with two
partitions V1 and V2, then for any pair of states x, y in the same partition

ptx,y ≤
2
n
·
(
1 + (−1)t−1

)
+ 2(max{λ2, |λn−1|})t.

Similarly, if x and y are in opposite partitions,

ptx,y ≤
2
n
·
(
1 + (−1)t

)
+ 2(max{λ2, |λn−1|})t.

(iii) If the Markov chain is lazy, then for any state x ∈ Ω, ptx,x is non-increasing in t. In
particular, ptx,x ≥ π(u).

Proof. The first statement can be found in [LPW06, Equation 12.11].
For the second statement, recall the spectral representation [LPW06, Lemma 12.2 (iii)]

ptx,y = π(y) + π(y) ·
n∑
k=2

uk(x) · uk(y) · λtk, (A.7)

where uk is the corresponding eigenvector to λk. Since all eigenvalues are non-negative,
we conclude from (A.7) that ptx,x is non-increasing in t as needed. Since G is bipartite
and regular, it is not difficult to verify that λn = −1 and un(x) =

√
1/n if x ∈ V1 and

un(x) = −
√

1/n if x ∈ V2 is the corresponding eigenvector. Hence,
∣∣∣∣ptx,y − 2

n
·
(
1 + (−1)t−1

)∣∣∣∣ ≤ π(y) ·
∣∣∣∣∣
n−1∑
k=2

uk(x) · uk(y) · λtk

∣∣∣∣∣
≤ 2
n
· max

2≤k≤n−1

∣∣∣λtk∣∣∣ · 1
n
·
n−1∑
k=2
|uk(x) · uk(y)|

≤ 2
n
· max

2≤k≤n−1

∣∣∣λtk∣∣∣ ·
√√√√n−1∑
k=2

uk(x)2 ·
n−1∑
k=2

uk(y)2
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As in [LPW06, Proof of Theorem 12.3], using the orthonormality of the eigenvectors, we
have

n−1∑
k=2

uk(x)2 ≤
n∑
k=2

uk(x)2 ≤ n,

and the second statement follows if u and v are in the same partition. The case where u
and v are in different partitions follows analogously.

For the third statement, first note that by [LPW06, Exercise 12.3], all eigenvalues of the
transition matrix M are non-negative. Since all eigenvalues are non-negative, we conclude
from (A.7) that ptx,x is non-increasing in t as needed. Due to this, we get that ptx,x ≥ π(u).
This can be verified by means of a simple proof by contradiction. The existence of a t with
ptx,x < π(u) and the fact that ptx,x is non-increasing in t implies that the expected number
of visits to u during a sufficiently long period of length τ starting from the stationary
distribution would be strictly less than τ · π(u). A contradiction.

A.4.2 Separation Time (tsep)

The following lemma is an immediate consequence of Lemma A.19.

Lemma A.27. Consider a random walk (Xt)t≥0, starting from an arbitrary but fixed ver-
tex x0. Then with probability at least 1 − 1/e, we can couple X4tmix with the stationary
distribution.

Proof. Consider the random walk (Xt)t≥0 after step s := tsep ≤ 4tmix. By definition of tsep,
psu,v ≥ (1−1/e)π(v). Applying Lemma A.19, where Z1 is the distribution given by ptu,v and
Z2 is the stationary distribution shows that with probability at least 1 − 1/e, Xs has the
same distribution as π. If this is the case, then the same holds for X4tmix as well.

Lemma A.28. For any graph G,

max{(1/e)tmix, t
π
meet} ≤ tmeet ≤

2
(1− 1/e)2 · (4tmix + 2tπmeet),

and similarly, tcoal ≤ 4 · (4tmix + 2tπcoal).

Proof. We begin by proving the lower bound on tmeet. First, consider two independent
random walks (Xt)t≥0 and (Yt)t≥0 that are run for t = e · tmeet time steps. Then, we have

d̄(t) = max
u,v
‖ptu,· − ptv,·‖TV ≤ P

[
∪ts=0Xs = Ys

]
≤ 1
e
,

where the first inequality is due to the coupling method [LPW06, Theorem 5.3] and the
second inequality follows by Markov’s inequality. The above inequality implies tmix ≤
e · tmeet. Furthermore, tπmeet ≤ tmeet holds by definition, and the lower bound follows.

For the upper bound, we divide the two random walks into consecutive epochs of length
` := 4tmix +2tπmeet. For the statement it suffices to prove that in each such epoch, regardless
of the start vertices of the two random walks, a meeting occurs with probability at least
(1− 1/e)2 · 1/2.

Consider the first random walk (Xt)t≥0 starting from an arbitrary vertex after s := 4tmix
steps. By Lemma A.27, we obtain that with probability at least 1− 1/e, the distribution of
Xs is equal to that of a stationary random walk. Similarly, we obtain that with probability

229



at least 1−1/e, the distribution of Ys is equal to that of a stationary distribution. Hence with
probability (1−1/e)2, Xs and Ys are drawn independently from the stationary distribution.
In this case, it follows by Markov’s inequality that the two random walks meet before step
s + 2tπmeet with probability at least 1/2. Overall, we have shown that with probability at
least (1 − 1/e)2 · 1/2, a meeting occurs in a single epoch. Since this lower bound holds
for every epoch, independent of the outcomes in previous epochs, the upper bound on the
expected time tmeet follows. The upper bound on tcoal in terms of tπcoal is shown in exactly
the same way.

A.4.3 Ramanujan graphs

The following is a simple corollary from a recent work by Marcus et al. [MSS15] on the
existence of Ramanujan graphs.

Proposition A.29 (cf. [MSS15]). For any integer d ≥ 3, there are d-regular graphs H =
(V,E) with tmix = O(logn/ log(d)).

Proof. Marcus et al. [MSS15] show that the existence of a d-regular bipartite Ramanujan
graph H such that max{λ2(Q̂), |λn−1(Q̂)|} = O(1/

√
d), where Q̂ = 1

dA is the transition
matrix of a non-lazy random walk where A is the adjacency matrix. By the second statement
of Proposition A.26, for any pair of states x, y in the same partition

q̂tx,y ≤
2
n
·
(
1 + (−1)t−1

)
+ 2(max{λ2, |λn−1|})t.

Similarly, x and y are in opposite partitions,

q̂tx,y ≤
2
n
·
(
1 + (−1)t

)
+ 2(max{λ2, |λn−1|})t.

Furthermore note that qtx,y ≥ 2/n due to Proposition A.26.(iii) for even (or odd) t depending
on whether x and y are in the same partitions.

Fix t = O(logn/ log d) such that 2
(
max{λ2(Q̂), |λn−1(Q̂)|}

)t
≤ 1

20n , where we note that
such a t exists due to max{λ2(Q̂), |λn−1(Q̂)|} = O(1/

√
d). We choose s to be the smallest

odd integer being greater than 20t. To translate from the non-lazy random walk Q̂ to a
lazy-random walk P , let Z denote the number of non-loops performed by a lazy random
walk of length s. Since, the probability for a self-loop is 1/2 and the number of self-loops
is binomially distributed, we have

P[Z ≥ t ] ≥ 19/20.

By symmetry and the fact that s is odd, P[Z is even ] = 1
2 . Hence, by the Union bound,

P[Z is even | Z ≥ t ] ≥ P[Z is even ∩ Z ≥ t ] ≥ P[Z is even ]− P[Z < t ] ≥ 9
20 ,
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and similarly, P[Z is odd | Z ≥ t ] ≥ 9
20 . Let V1 and V2 be the bipartite partition of V .

‖psu,· − π‖TV ≤ P[Z < t ] · 1 + P[Z ≥ t ] ·

∑
v∈V1

∣∣∣∣11
20 q̂

t
u,v −

1
n

∣∣∣∣+ ∑
v∈V2

∣∣∣∣11
20 q̂

t
u,v −

1
n

∣∣∣∣


≤ P[Z < t ] · 1 + P[Z ≥ t ] ·
(∑
v∈V

∣∣∣∣11
20

( 2
n

+ 1
20n

)
− 1
n

∣∣∣∣
)

≤ P[Z < t ] · 1 + P[Z ≥ t ] ·
(∑
v∈V

∣∣∣∣ 22
20n −

1
n

∣∣∣∣+ 11
400

)

≤ 1
20 · 1 + 19

20

( 2
20 + 11

400

)
< 1/e,

where the first inequality follows from the equations for ptx,y above.

Corollary A.30. Let n0 be a sufficiently large constant. Let Hn be the graph of Proposi-
tion A.29 with n nodes and d = d

√
ne for n ≥ n0. There exists a universal constant C such

that maxn≥n0{tsep(Hn)} ≤ C.

The corollary follows directly from Proposition A.29 and tsep ≤ 4tmix.

A.4.4 Mixing time bounds via Hitting time

The following result of Peres and Sousi is useful to establish a bound on the mixing time.

Theorem A.31 ([PS15]). For any β < 1/2, let thit(β) = maxu,A:π(A)≥β thit(u,A). Then
there exist positive constants cβ and c′β such that

c′β · thit(β) ≤ tmix(1/4) ≤ cβ · thit(β).

A.5 Random Processes

A.5.1 Galton-Watson Trees

The analysis of the Forest Fire Process uses reductions to Galton-Watson branching pro-
cesses.

Definition A.32 (Galton-Watson Tree). A Galton-Watson process is a stochastic process
{Xn} which evolves according to the recurrence formula X0 = 1 and Xn+1 = ∑Xn

j=1 ξ
(n)
j ,

where {ξ(n)
j : n, j ∈ N} is a set of i.i.d. natural number-valued random variables.

The interpretation is as follows: the process builds a random tree. Xn can be thought of
as the number of descendants of the root in the nth generation, and ξ(n)

j can be thought of as
the number of children (in generation n+1) of the jth of these (nth generation) descendants.
The recurrence relation states that the number of descendants in the (n+ 1)st generation is
the sum, over all nth generation descendants, of the number of children of that descendant.
For more information, see [LP15].
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Proposition A.33 ([DM10, Lemma 1.9]). Consider the Galton-Watson process with ξ(n)
j =

ξ such that E[ ξ ] < 1. Then, we have for the total population size X

P[X > k ] ≤ e−k·h(1),

where h(x) = supθ≥0{θx − logE
[
eθξ
]
}. Furthermore, if ξ ∼ Poisson(λ), then h(1) =

log(1/λ)− 1 + λ.

A.5.2 Balls-Into-Bins

Theorem A.34 (Raab and Steger [RS98, Theorem 1]). Let M be the random variable that
counts the maximum number of balls in any bin, if we throw m balls independently and
uniformly at random into n bins. Then P[M > kα ] = o(1) if α > 1 and P[M > kα ] =
1− o(1) if 0 < α < 1, where

kα =



logn
log n logn

m

(
1 + α

log log n logn
m

log n logn
m

)
if n

polylog(n) ≤ m� n logn

(dc − 1 + α) logn if m = c · n logn for some constant c
m
n + α

√
2mn logn if n logn� m ≤ n polylog(n)

m
n +

√
2mn logn

(
1− 1

α
log logn
2 logn

)
if m� n(logn)3,

where dc is largest solution of 1 + x(log c− log x+ 1)− c = 0.

A.5.3 Póly-Urn

The Póly urns [JK77]. In this model, we are given an urn containing marbles of two colors,
black and white. In every step, one marble is drawn uniformly at random from the urn. Its
color is observed, the marble is returned to the urn and one more marble of the same color
is added. For any color, the ratio of marbles with that given color over the total number of
marbles is a martingale. Formally, the Póly urn process is defined as follows.

Definition A.35 (Pólya Urn Process). Let Pólya(α1, α2) with α1, α2 ∈ Z+
0 be the following

urn process. At the beginning there are α1 black marbles and α2 white marbles in the
urn. The process runs in multiple steps where α1(i) and α2(i) denote the number of black
and white marbles in the urn, respectively, for every time step i. In every time step i, a
black marble is added with probability α1(i)/(α1(i) + α2(i)), and with remaining probability
α2(i)/(α1(i) + α2(i)) a white marble is added.

Proposition A.36. Consider a Pólya urn starting with a fraction X1 > 0 of white balls.
Then, the sequence X1, X2, . . . forms a martingale.

The statement and the proposition are folklore.
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Proof. Let `i denote the number of balls at time step i. Let Ei be the event that the ball
drawn at step i is white. We have

E[Xi | Xi−1, . . . , X1 ] = E[Xi | Xi−1 ]

= `i−1Xi−1 + 1
`i−1 + 1 · P[ Ei | Xi−1 ] + `i−1Xi−1

`i−1 + 1 · (1− P[ Ei | Xi−1 ])

= `i−1Xi−1 + 1
`i−1 + 1 ·Xi−1 + `i−1Xi−1

`i−1 + 1 · (1−Xi−1)

=
`i−1X

2
i−1 +Xi−1 + `i−1Xi−1 − `i−1X

2
i−1

`i−1 + 1 = Xi−1.
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Résumé 

Cette thèse est consacrée à l'étude des 
processus stochastiques décentralisés. 
Parmi les exemples typiques de ces processus 
figurent la dynamique météorologique, la 
circulation automobile, la façon dont nous 
rencontrons nos amis, etc.  
 Dans cette thèse, nous exploitons une large 
palette d'outi ls probabil istes permettant 
d'analyser des chaînes de Markov afin 
d'étudier un large éventail de ces processus 
distribués : 
 modèle des feux de forêt (réseaux sociaux), 
balls-into-bins avec suppression, et des 
dynamiques et protocoles de consensus 
fondamentaux tels que Voter Model, 2-Choices, 
et 3-Majority.  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Abstract 

This thesis is devoted to the study of stochastic 
decentralized processes. 
Typical examples in the real world 
include the dynamics of weather and 
temperature, of traffic, the way we meet our 
friends, etc. 
We take the rich tool set from probability theory 
 for the analysis of Markov Chains and employ 
it to   
  study  a wide range of such distributed 
processes: 
Forest Fire Model (social networks),  Balls-into-
Bins with Deleting Bins, and fundamental 
consensus dynamics and protocols such as the 
Voter Model, 2-Choices, and 3-Majority.  
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