L. ,

, Les approches basées sur la surveillance de précurseurs de défaillance

, Les solutions de suivi d'état de santé

, Ces différentes méthodes sont détaillées dans les sections suivantes puis comparées pour identifier laquelle est la plus à même de répondre à la problématique introduite dans le cadre du projet CAPTIF. [1] S. Zelmat. Etude des propriétés électriques d'un matériau polyimide à haute température : application à la passivation des composants de puissance en carbure de silicium, 2006.

J. B. Casady and R. W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review, Solid-State Electronics, vol.39, issue.10, pp.391409-1422, 1996.
DOI : 10.1016/0038-1101(96)00045-7

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto et al., A gallium nitride single-photon source operating at 200???K, Nature Materials, vol.95, issue.11, p.887, 2006.
DOI : 10.1103/PhysRevLett.95.013904

G. Civrac, Vers la réalisation de composants haute tension, forte puissance sur diamant CVD. Développement des technologies associées, 2009.

L. Ménager, B. Allard, and V. Bley, , 2010.

S. Menon, E. George, M. Osterman, and M. Pecht, High lead solder (over 85??%) solder in the electronics industry: RoHS exemptions and alternatives, Journal of Materials Science: Materials in Electronics, vol.49, issue.3, pp.4021-4030, 2015.
DOI : 10.1016/j.microrel.2009.03.009

V. R. Manikam and K. Y. Cheong, Die Attach Materials for High Temperature Applications: A Review, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.1, issue.4, pp.457-478, 2011.
DOI : 10.1109/TCPMT.2010.2100432

L. Henaff, Contribution à l'étude, la mise en oeuvre et à l'évaluation d'une solution de report de puce de puissance par procédé de frittage de pâte d'argent à haute pression et basse température, p.9

T. Youssef, Modélisation multiphysique d'un assemblage de puissance haute température destiné à l'environnement aéronautique

C. , Sinter technology enhances power-module robustness, 2009.

D. Yu, X. Chen, G. Chen, G. Lu, and Z. Wang, Applying Anand model to low-temperature sintered nanoscale silver paste chip attachment, Materials & Design, vol.30, issue.10, pp.4574-4579, 2009.
DOI : 10.1016/j.matdes.2009.04.006

A. Technology, Manufacturer of adhesives, thermoplastic, thermal management material and specialty materials serving the semiconductor and electronic packaging industry, p.11

. Kyocera, Amb cu-bonded ceramic substrates for power modules. xiii, p.11

W. Sheng and R. Colino, Power electronic modules : design and manufacture, 2004.
DOI : 10.1201/9780203507308

J. Schulz-harder, Advantages and new development of direct bonded copper substrates . Microelectronics Reliability, pp.359-365, 2003.

C. Défaillance,

, Tong Hsing Electronic Industries. Dbc (direct bonded copper) substrates, p.11

A. Fukumoto, D. Berry, K. Ngo, and G. Lu, Effects of extreme temperature swings (-55 c to 250 c) on silicon nitride active metal brazing (si3n4-amb) substrates, p.12

M. Occhionero, R. Adams, and K. Fennessy, A new substrate for electronic packaging : aluminum silicon carbide (alsic) composites, Proceedings of the Forth Annual Portable by Design Conference, Electronics Design, pp.398-403, 1997.

S. Dimitrijev and P. Jamet, Advances in sic power mosfet technology. Microelectronics reliability, pp.225-233, 2003.

G. Harman and J. Albers, The Ultrasonic Welding Mechanism as Applied to Aluminum-and Gold-Wire Bonding in Microelectronics, IEEE Transactions on Parts, Hybrids, and Packaging, vol.13, issue.4, pp.406-412, 1977.
DOI : 10.1109/TPHP.1977.1135225

F. Farassat and W. Birgel, Ball bonding method and apparatus for performing the method, 1990.

N. Marenco, M. Kontek, W. Reinert, J. Lingner, and M. Poech, Copper ribbon bonding for power electronics applications, Microelectronics Packaging Conference (EMPC), 2013 European, pp.1-4, 2013.

S. Jacques, R. Leroy, and M. Lethiecq, Impact of aluminum wire and ribbon bonding technologies on D 2 PAK package reliability during thermal cycling applications, Microelectronics Reliability, vol.55, issue.9-10, pp.1821-1825, 2015.
DOI : 10.1016/j.microrel.2015.06.012

URL : https://hal.archives-ouvertes.fr/hal-01784763

M. Mermet-guyennet, New structure of power integrated module, Integrated Power Systems (CIPS) 4th International Conference on, pp.1-6, 2006.

P. Lasserre, C. Duchesne, and E. Batista, Technologie d'interconnexions par bumps pour semi-conducteurs de puissance, 14ème Édition de la Conférence Electronique de Puissance du Futur, number 60, p.14, 2012.

M. Barrière, S. Azzopardi, R. Roder, I. Favre, E. Woirgard et al., Silver sintered double-sided cooling power package process for controlled Si power semiconductor devices with aluminum top-metallization, 2015 IEEE International Workshop on Integrated Power Packaging (IWIPP), pp.103-106, 2015.
DOI : 10.1109/IWIPP.2015.7295989

A. Masson, S. Azzopardi, F. Le-henaff, J. Deletage, E. Woirgard et al., Processing and characterization of a 100% low-temperature Ag-sintered three-dimensional structure, 2013 15th European Conference on Power Electronics and Applications (EPE), pp.1-9, 2013.
DOI : 10.1109/EPE.2013.6631925

URL : https://hal.archives-ouvertes.fr/hal-00955727

C. Gillot, C. Schaeffer, C. Massit, and L. Meysenc, Double-sided cooling for high power IGBT modules using flip chip technology, IEEE Transactions on Components and Packaging Technologies, vol.24, issue.4, pp.698-704, 2001.
DOI : 10.1109/6144.974963

R. Riva, Solution d'interconnexions pour la haute température, p.14, 2014.

, JEDEC Solid State Technology Association et al. Failure mechanisms and models for semiconductor devices, p.15, 2011.

P. Mccluskey, D. Das, J. Jordan, L. Condra, R. Grzybowski et al., Packaging of power electronics for high temperature applications, Advancing Microelectronics, vol.25, pp.19-24, 1998.

V. Smet, F. Forest, J. Huselstein, F. Richardeau, Z. Khatir et al., Ageing and Failure Modes of IGBT Modules in High-Temperature Power Cycling, IEEE Transactions on Industrial Electronics, vol.58, issue.10, pp.584931-4941, 2011.
DOI : 10.1109/TIE.2011.2114313

URL : https://hal.archives-ouvertes.fr/hal-00713206

M. Ciappa, Selected failure mechanisms of modern power modules. Microelectronics reliability, pp.653-667, 2002.

W. Wu, M. Held, P. Jacob, P. Scacco, and A. Birolini, Thermal stress related packaging failure in power igbt modules, Power Semiconductor Devices and ICs, 1995. ISPSD'95., Proceedings of the 7th International Symposium on, pp.330-334, 1995.

G. Coquery, R. Lallemand, D. Wagner, and P. Gibard, Reliability of the 400a igbt modules for traction converters. contribution on the power thermal fatigue influence on life expectancy, EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, pp.1-060, 1995.

P. Jacob, M. Held, P. Scacco, and W. Wu, Reliability testing and analysis of IGBT power semiconductor modules, IEE Colloquium on `IGBT Propulsion Drives', p.17, 1995.
DOI : 10.1049/ic:19950531

G. Mitic, R. Beinert, P. Klofac, H. Schultz, and G. Lefranc, Reliability of aln substrates and their solder joints in igbt power modules. Microelectronics reliability, pp.1159-1164, 1999.

J. Schulz-harder, The new standard for direct bonded copper substrates-feature of dcb is thick solid copper conductors, Conference PCIM, pp.36-39, 2000.

N. Vichare, P. Rodgers, V. Eveloy, and M. Pecht, Environment and Usage Monitoringof Electronic Products for Health Assessment and Product Design, Quality Technology & Quantitative Management, vol.4, issue.2, pp.235-250, 2007.
DOI : 10.1109/TCAPT.2006.870387

R. Drees and N. Young, Role of BIT in support system maintenance and availability, IEEE Aerospace and Electronic Systems Magazine, vol.19, issue.8, pp.3-7, 2004.
DOI : 10.1109/MAES.2004.1346885

M. Pecht, M. Dube, M. Natishan, R. Williams, J. Banner et al., Evaluation of built-in test, IEEE Transactions on Aerospace and Electronic Systems, vol.37, issue.1, pp.266-271, 2001.
DOI : 10.1109/7.913684

S. Ganesan, V. Eveloy, D. Das, and M. Pecht, Identification and utilization of failure mechanisms to enhance fmea and fmeca, Proceedings of the IEEE workshop on accelerated stress testing & reliability (ASTR), pp.5-20, 2005.

F. Born and R. Boenning, Marginal checking-a technique to detect incipient failures, Proceedings of the IEEE National Aerospace and Electronics Conference, pp.1880-1886, 1989.
DOI : 10.1109/NAECON.1989.40473

P. Lall, N. Islam, K. Rahim, J. Suhling, and S. Gale, Leading indicators-of-failure for prognosis of electronic and MEMS packaging, 2004 Proceedings. 54th Electronic Components and Technology Conference (IEEE Cat. No.04CH37546), pp.1570-1578, 2004.
DOI : 10.1109/ECTC.2004.1320325

P. Lall, N. Islam, and J. Suhling, Prognostication and health monitoring of leaded and lead free electronic and mems packages in harsh environments, Electronic Components and Technology Conference, 2005. Proceedings. 55th, pp.1305-1313, 2005.

A. Ramakrishnan and M. Pecht, A life consumption monitoring methodology for electronic systems, IEEE Transactions on Components and Packaging Technologies, vol.26, issue.3, pp.625-634, 2003.
DOI : 10.1109/TCAPT.2003.817654

S. Mishra, M. Pecht, T. Smith, R. Mcnee, and . Harris, Remaining life prediction of electronic products using life consumption monitoring approach, Proceedings of the European Microelectronics Packaging and Interconnection Symposium, pp.136-142, 2002.

C. Et-contrainte-ne-sont-pas-Équivalents, un essai sur éprouvette de traction, la contrainte est égale au rapport de la charge sur la section de l'éprouvette. Lorsque la striction (rétrécissement de la section de l'éprouvette due à la déformation) de l'éprouvette intervient, la charge imposée reste constante, mais puisque la section diminue, la contrainte augmente. C'est la raison pour laquelle on parle, dans le cas du fluage, de charge constante, et non de contrainte constante. [1] J. Lemaitre, J.-L. Chaboche, A. Benallal, and R. Desmorat. Mécanique des matériaux solides-3eme édition. Dunod, p.32, 2009.

E. Donth, The glass transition : relaxation dynamics in liquids and disordered materials, p.34, 2013.
DOI : 10.1007/978-3-662-04365-3

H. Liebowitz, Fracture of Metals : An Advanced Treatise, p.34, 2013.

T. ?mida and V. Magula, Brittle to ductile transition ??? An engineer???s point of view, Materials & Design (1980-2015), vol.54, pp.582-586, 1980.
DOI : 10.1016/j.matdes.2013.08.039

C. T. Lachowicz, Calculation of the elastic???plastic strain energy density under cyclic and random loading, International Journal of Fatigue, vol.23, issue.7, pp.643-652, 2001.
DOI : 10.1016/S0142-1123(00)00102-X

K. M. Golos, Total strain energy density parameter for fatigue analysis, Zeitschrift für Angewandte Mathematik und Mechanik, pp.469-470, 2000.
DOI : 10.1002/zamm.200008014106

F. Ellyin, Cyclic strain energy density as a criterion for multiaxial fatigue failure, ICBMFF2, 1985. ix, p.41

Y. Duyi and W. Zhenlin, A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue, International Journal of Fatigue, vol.23, issue.8, pp.679-687, 2001.
DOI : 10.1016/S0142-1123(01)00027-5

Y. Belmehdi, Contribution à l'identification de nouveaux indicateurs de défaillance des modules de puissance à IGBT, p.64, 2011.

E. Marcault, Contribution à l'intégration d'un indicateur de vieillissement lié à l'état mécanique de composants électroniques de puissance, p.64, 2012.

P. Gaiser, M. Klingler, and J. Wilde, Fracture mechanical modeling for the stress analysis of DBC ceramics, 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, pp.1-6, 2015.
DOI : 10.1109/EuroSimE.2015.7103115

T. J. Kilinski, J. R. Lesniak, and B. I. Sandor, Modern Approaches to Fatigue Life Prediction of SMT Solder Joints, Solder Joint Reliability, pp.384-405, 1991.
DOI : 10.1007/978-1-4615-3910-0_13

N. E. Dowling, Mechanical behavior of materials : engineering methods for deformation , fracture, and fatigue, p.38, 2012.

J. G. Choi, F. Lee, T. R. Guo, K. N. Bieler, J. P. Subramanian et al., Creep properties of Sn-Ag solder joints containing intermetallic particles, JOM, vol.29, issue.2, pp.22-26, 2001.
DOI : 10.1016/S0921-5093(00)00661-4

X. Li, G. Chen, L. Wang, Y. Mei, X. Chen et al., Creep properties of low-temperature sintered nano-silver lap shear joints, Materials Science and Engineering: A, vol.579, pp.108-113, 2013.
DOI : 10.1016/j.msea.2013.05.001

D. Klahn, A. K. Mukherjee, and J. E. Dorn, Strain-rate effects, p.39, 1970.
DOI : 10.2172/4081068

G. M. Swallowe, Strain Rate Effects, pp.214-218, 1999.
DOI : 10.1007/978-94-015-9231-4_47

M. Sepe, The strain rate effect, p.39, 2011.

J. H. Pang, T. Tan, and S. K. Sitaraman, Thermo-mechanical analysis of solder joint fatigue and creep in a flip chip on board package subjected to temperature cycling loading, 1998 Proceedings. 48th Electronic Components and Technology Conference (Cat. No.98CH36206), pp.48-878, 1998.
DOI : 10.1109/ECTC.1998.678811

R. Darveaux, Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction, Journal of Electronic Packaging, vol.124, issue.3, pp.147-154, 2002.
DOI : 10.1109/ECTC.2000.853300

M. G. Bevan and M. Wittig, Complex fatigue of soldered joints-comparison of fatigue models, 1997 Proceedings 47th Electronic Components and Technology Conference, pp.127-133, 1997.
DOI : 10.1109/ECTC.1997.606157

P. M. Hall and W. M. Sherry, Materials, structures and mechanics of solder joints for surface-mount microelectronics technology, Proc. Lectures 3rd Int. Conf. Tech. De Connexion en Electronique. Welding Society, p.40, 1986.

T. Pan, Critical Accumulated Strain Energy (Case) Failure Criterion for Thermal Cycling Fatigue of Solder Joints, Journal of Electronic Packaging, vol.116, issue.3, pp.163-163, 1994.
DOI : 10.1115/1.2905681

G. C. Sih and B. Macdonald, Fracture mechanics applied to engineering problems-strain energy density fracture criterion, Engineering Fracture Mechanics, vol.6, issue.2, pp.361-386, 1974.
DOI : 10.1016/0013-7944(74)90033-2

C. E. Feltner and J. D. Morrow, Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture, Journal of Basic Engineering, vol.83, issue.1, pp.15-22, 1961.
DOI : 10.1115/1.3658884

L. Henaff, Contribution à l'étude, la mise en oeuvre et à l'évaluation d'une solution de report de puce de puissance par procédé de frittage de pâte d'argent à haute pression et basse température, p.43, 2014.

T. Youssef, Modélisation multiphysique d'un assemblage de puissance haute température destiné à l'environnement aéronautique

M. Barrière, Assemblages de puissance innovants haute température -haute tension pour composants Si dédiés aux applications embarquées aéronautiques, automobiles et ferroviaires, pp.2017-2060

M. Pecht, R. Agarwal, P. Mccluskey, T. J. Dishongh, S. Javadpour et al., Electronic packaging materials and their properties, pp.45-47, 1998.

L. Anand, Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures, Journal of Engineering Materials and Technology, vol.104, issue.1, pp.12-17, 1982.
DOI : 10.1115/1.3225028

S. B. Brown, K. H. Kim, and L. Anand, An internal variable constitutive model for hot working of metals, International Journal of Plasticity, vol.5, issue.2, pp.95-130, 1989.
DOI : 10.1016/0749-6419(89)90025-9

S. Koric and B. G. Thomas, Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws. journal of materials processing technology, pp.408-418, 2008.
DOI : 10.1016/j.jmatprotec.2007.06.060

D. Yu, X. Chen, G. Chen, G. Lu, and Z. Wang, Applying Anand model to low-temperature sintered nanoscale silver paste chip attachment, Materials & Design, vol.30, issue.10, pp.4574-4579, 2009.
DOI : 10.1016/j.matdes.2009.04.006

G. Dong, G. Lei, X. Chen, K. Ngo, and G. Lu, Edge tail length effect on reliability of dbc substrates under thermal cycling. Soldering & Surface Mount Technology, pp.10-15, 2009.
DOI : 10.1108/09540910910970367

. Kyocera, Amb cu-bonded ceramic substrates for power modules. xiii, p.48

M. Pecht, Quality conformance and qualification of microelectronic packages and interconnects, p.50, 1994.
DOI : 10.1016/s0026-2714(97)83454-3

M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, vol.76, issue.5, pp.965-977, 2008.
DOI : 10.1016/j.talanta.2008.05.019

P. B. Bochev and M. D. Gunzburger, Least-squares finite element methods, p.54, 2009.

D. C. Montgomery and R. H. Myers, Response surface methodology. Design and analysis of experiments, pp.445-474, 1995.

G. E. Box and N. R. Draper, Empirical model-building and response surfaces, p.61, 1987.

A. J. Schoofs, Experimental Design and Structural Optimization, Structural optimization, pp.307-314, 1988.
DOI : 10.1007/978-94-009-1413-1_39

R. H. Myers and D. C. Montgomery, Response surface methodology : Process and product optimization using designed experiments, 1995.

D. C. Montgomery, Design and analysis of experiments, pp.2017-57

. Ch, J. Wu, and . Chen, Sampling and experimental design, p.58, 2006.

P. Audze and V. Eglais, New approach for planning out of experiments. Problems of dynamics and strengths, pp.104-107, 1977.

, Ansys Inc. Documentation officielle, p.60

G. R. Iversen and H. Norpoth, Analysis of variance. Number 1. Sage, 1987. 62 CHAPITRE 3. MODÉLISATIONS POUR LE SUIVI DE VIEILLISSEMENT FIGURE 3.40 ? Les véhicules de test avant vieillissement 3.5.1.2 Équipements et appareils de mesure Les capteurs sont soumis à un cyclage passif. Pour réaliser ces essais de vieillissement

. La-température-À, Les valeurs des résistance de chaque véhicule de test est enregistrée à l'aide d'une centrale d'acquisition Keysight 34970A (c.f. figure 3.42) Durant toute la durée de l'essai, une mesure sera enregistrée chaque minute. [1] R. Darveaux. Effect of simulation methodology on solder joint crack growth correlation and fatigue life prediction, TRANSACTIONS-AMERICAN SOCIETY OF MECHA- NICAL ENGINEERS JOURNAL OF ELECTRONIC PACKAGING, vol.124, issue.3, pp.147-154, 2002.

J. Pang, T. H. Low, B. S. Xiong, X. Luhua, and C. C. Neo, Thermal cycling aging effects on Sn???Ag???Cu solder joint microstructure, IMC and strength, Thin Solid Films, vol.462, issue.463, pp.370-375, 2004.
DOI : 10.1016/j.tsf.2004.05.092

F. Arabi, Étude de vieillissement et caractérisation d'assemblage de module de puissance 40 kW pour l'aéronautique, p.78, 2017.

L. March, Parallélisme, corrélation, causalité. Revue de l'Institut International de Statistique, pp.9-22, 1933.

T. Foucart, L'interprétation des résultats statistiques Mathématiques et sciences humaines, Mathematics and social sciences, issue.153, p.102, 2001.